<u>CSC2209</u> Computer Networks

Congestion Control (in-the-middle view)

Stefan Saroiu Computer Science University of Toronto

Today's Questions

- Why do in-the-middle congestion control?
- What are techniques to control congestion in middle?

Why in-the-middle congestion control?

Why in-the-middle congestion control?

- Congestion occurs "in the middle"
 - Can be directly measured, manipulated, ...
 - Resources are local (buffers, queues, link bandwidths)
- Control more tightly integrated
 - No need to wait-and-see if packet was lost, RTT varied, etc..
- Much more attack resilient!

Ways to Control Congestion in the Middle

Ways to Control Congestion in the Middle

- Scheduling
 - Decide order in which packets are forwarded
 - FIFO, fair queuing, priority queuing
- Queue management
 - Decide how to "manage" buffer resources
 - Drop-tail, random-drop, RED

Scheduling

• FIFO has problems...

Scheduling

• FIFO does not guarantee fairness

- Flows interference
- Hosts might pro-actively blast packets

- Alternatives:
 - Priority scheduling
 - Fair queuing

Fair Queuing (FQ)

- Maintain one queue per flow
 - Round-robin service each queue
 - Provides each flow with its "fair share" of bandwidth
 - Packets have different sizes!
- Problem:
 - What is a "flow"?

FQ Description

- Bit-level round robin doesn't work in practice
- Approximate using packet "finish" times
 - Finish time depends on number of flows
 - Send in order of finish times
 - Lower delay if flow underutilizes bandwidth
 - VoIP

FQ Problems

FQ Problems

- Implementation complexity
 - Need as many queues as flows
 - Per-flow state
 - O(log(#flows)) processing per packet <-- ouch!</p>
- Delay increases for low-bandwidth & bursty flows
 - Speak monotonically when you use VoIP + FQ :-)

Ways to Control Congestion in the Middle

- Scheduling
 - Decide order in which packets are forwarded
 - FIFO, fair queuing, priority queuing
- Queue management
 - Decide how to "manage" buffer resources
 - Drop-tail, random-drop, RED

Drop-Tail Queuing Policy

- Pros:
 - Simple and efficient to implement
- Cons:
 - Bias against bursty connections
 - Creates global synchronization
 - unfair

Active Queue Management

- Let's avoid congestion rather than control it
- ECN
- Random early detection (RED)

Random Early Detection (RED)

- Congestion avoidance by detection incipient congestion and dropping packets early
- High-level view:
 - Triggered when average queue length exceeds threshold
 - Packets dropped at random (proportional to bandwidth share)
 - No per-flow state
 - Dropping and marking are equivalent in semantics
 - Agnostic to scheduling discipline
 - Incrementally deployable

Queue Dynamics

Queue Management in RED

• Send "early" signal by probabilistically dropping packet

Setting the Probability Parameter

- Probabilistically drop as queue builds
- Switch to drop-tail if queue too long

RED vs. ECN

• Which one is better, or are they equivalent?

RED vs. ECN

- Which one is better, or are they equivalent?
- Misbehaving users
 - RED punishes them
 - Could implement sampling mechanisms in ECN as well
- ECN helps short flows

Summary

- Two ways to do congestion control in the middle
 - Scheduling FIFO, fair queuing, priority queuing
 - Queue management: drop-tail, RED, ECN
- RED + ECN have seen little deployment
- Most router queues are drop-tail, FIFO by default
- Still very much an open problem!