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Today’s Questions

e How fast should a transmitter send data?

— Not too slow....
— Not too fast...
— Just about right!

e Shouldn’t be faster than receiver can process
— This is called...

e Shouldn’t be faster than network can process
— This is called...



Congestion Control Goals



Congestion Control Goals

Efficiency

— Utilize all available bandwidth
Fairness

— All hosts get equal access to bandwidth
Distributed implementation

— Only require state at endpoints
Convergence

— For constant load, arrive at single solution for using/sharing
bandwidth



Questions

How to detect congestion?
How to limit sending data rate?
How fast to send?

How to achieve stability?



Detecting Congestion



Detecting Congestion

e Implicit signaling
— Packet loss
e Assumes congestion is primary cause of packet loss
— Packet delay
e RTT increases as packets queue
e Packet inter-arrival time is a function of bottleneck link
e Pros/cons?
e Explicit signaling
— Source quench: router sends ICMP “Hey buddy, slow down”
— ECN: router marks packet on how full queue is
— Hop-by-hop backpressure
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e Window-based (TCP)

— Artificially constrain number of outstanding packets allowed
— Increase window to send faster, decrease to send slower

— Pro: cheap to implement, good failure properties

— Cons:
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How to Limit Sending Rate?

e Window-based (TCP)

— Artificially constrain number of outstanding packets allowed
— Increase window to send faster, decrease to send slower

— Pro: cheap to implement, good failure properties

— Cons: creates bursty tratfic

e Rate-based

— Two parameters (period, packets)

— Send x packets in period y

— Pro: smooth traffic

— Cons: per connection timers, what if receiver fails



Questions

How to detect congestion?
How to limit sending data rate?
How fast to send?

How to achieve stability?



How fast to send?

e Ideally: keep equilibrium at “knee” of power curve
— Find “knee” somehow
— Keep number of packets in flight the same
— Don’t inject new packet until old one left the network
— What if you guessed wrong?

 Compromise: adaptive approximation
— If congestion signaled, reduce sending rate by x
— If data delivered successfully, increase sending rate by y
— How should x and y be related? Convergence?
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How to achieve stability?

e Additive increase, multiplicative decrease (AIMD)
— Increase sending rate by a constant (e.g., 1500 bytes)
— Decrease sending rate by a linear factor (e.g., divide by 2)

e Rough intuition why this works
— Let L, be length of queue at time i
— In steady state: L,=N, where N is a constant
— During congestion: L.=N+yL, ;,, where y >0
— If y is large (close to 1), queue size increases exponentially



Resulting TCP/IP Improvements

Slow-start Y
Round-trip time variance estimation

Exponential retransmit timer backoff == Packat Consarvation

Principle

More aggressive receiver ack policy

Dynamic window sizing on congestion
y 8 g )

Clamped retransmit backoff (Karn)
Fast Retransmit

Congestion control means: “Finding places that violate the
conservation of packets principle and then fixing them.”



Slow-start

Goal: find equilibrium sending rate

Quickly increase sending rate until congestion detected
Algorithm:

— On new connection, or after timeout, set cwnd=1
— For each segment acknowledged, cwnd +=1

— If timeout then cwnd /= 2, set ssthresh = cwnd
— If cwnd >= ssthresh then exit slow start

Very confusing name



Adaptive Timing

e How long should we wait for a packet’s acknowledgement
— Too short: spurious timeouts and retransmissions
— Too long: wasteful

e QOld TCP
— Maintain weighted average of RTT samples: R
— Timeout set to B*R, where B=2

— Under high load, this scheme doesn’t reflect variation

e Jacobson’s contributions
— Estimate variation, B based on some samples
— After loss, increase timeout exponentially (by 2)



Fast Retransmit & Fast Recovery

e Fast retransmit
— Timeouts are slow (1 second is shortest TCP timeout)
— When packet is lost, receiver still acks last in-order packet
— Use 3 duplicate ACKs to indicate loss
e Why 3? When wouldn’t this work?

e Fast recovery
— If ACKs are still arriving, then no need for slow start
— Divide cwnd by 2 after fast retransmit
— Increment cwnd by 1 for each duplicate ACK



A TCP Taxonomy

TCP Tahoe (1988)

— Slow-start, fast retransmit, congestion avoidance
TCP Reno (1990)

— Tahoe + fast recovery

TCP New-Reno (1996)
— Reno + partial ACKs
SACK TCP (1996)

— Selective acknowledgements
TCP Vegas (1993)
— Uses RTT variation to measure congestion

TCP BIC (2004)

— Binary search between W_. and W___
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Congestion Control in POTS

e How isit done?
— Pricing
— Call doesn’t get through (admission control)



Short Connections

e How are short connections affected by slow-start?

— What happens if drop in slow-start?
— What happens when SYN dropped?

e Bottom line: which packet gets dropped matters a lot!
e Are most flows long or short?



Cooperation

e TCP is designed around the premise of cooperation

— What if receiver lies about receiving packets?

e Does over-provisioning always help?

— Let’s look at router queues



