
CSC2209
Computer Networks

Stefan Saroiu
Computer Science
University of Toronto

Congestion Control (end-host view)



Today’s Questions

• How fast should a transmitter send data?
– Not too slow….
– Not too fast…
– Just about right!

• Shouldn’t be faster than receiver can process
– This is called…

• Shouldn’t be faster than network can process
– This is called…



Congestion Control Goals



Congestion Control Goals

• Efficiency
– Utilize all available bandwidth

• Fairness
– All hosts get equal access to bandwidth

• Distributed implementation
– Only require state at endpoints

• Convergence
– For constant load, arrive at single solution for using/sharing

bandwidth



Questions

• How to detect congestion?

• How to limit sending data rate?

• How fast to send?

• How to achieve stability?



Detecting Congestion



Detecting Congestion

• Implicit signaling
– Packet loss

• Assumes congestion is primary cause of packet loss
– Packet delay

• RTT increases as packets queue
• Packet inter-arrival time is a function of bottleneck link
• Pros/cons?

• Explicit signaling
– Source quench: router sends ICMP “Hey buddy, slow down”
– ECN: router marks packet on how full queue is
– Hop-by-hop backpressure



Questions

• How to detect congestion?

• How to limit sending data rate?

• How fast to send?

• How to achieve stability?



How to Limit Sending Rate?



How to Limit Sending Rate?

• Window-based (TCP)
– Artificially constrain number of outstanding packets allowed
– Increase window to send faster, decrease to send slower
– Pro: cheap to implement, good failure properties
– Cons:



How to Limit Sending Rate?

• Window-based (TCP)
– Artificially constrain number of outstanding packets allowed
– Increase window to send faster, decrease to send slower
– Pro: cheap to implement, good failure properties
– Cons: creates bursty traffic



How to Limit Sending Rate?

• Window-based (TCP)
– Artificially constrain number of outstanding packets allowed
– Increase window to send faster, decrease to send slower
– Pro: cheap to implement, good failure properties
– Cons: creates bursty traffic

• Rate-based
– Two parameters (period, packets)
– Send x packets in period y
– Pro: smooth traffic
– Cons:



How to Limit Sending Rate?

• Window-based (TCP)
– Artificially constrain number of outstanding packets allowed
– Increase window to send faster, decrease to send slower
– Pro: cheap to implement, good failure properties
– Cons: creates bursty traffic

• Rate-based
– Two parameters (period, packets)
– Send x packets in period y
– Pro: smooth traffic
– Cons: per connection timers, what if receiver fails



Questions

• How to detect congestion?

• How to limit sending data rate?

• How fast to send?

• How to achieve stability?



How fast to send?

• Ideally: keep equilibrium at “knee” of power curve
– Find “knee” somehow
– Keep number of packets in flight the same
– Don’t inject new packet until old one left the network
– What if you guessed wrong?

• Compromise: adaptive approximation
– If congestion signaled, reduce sending rate by x
– If data delivered successfully, increase sending rate by y
– How should x and y be related? Convergence?



Questions

• How to detect congestion?

• How to limit sending data rate?

• How fast to send?

• How to achieve stability?



How to achieve stability?

• Additive increase, multiplicative decrease (AIMD)
– Increase sending rate by a constant (e.g., 1500 bytes)
– Decrease sending rate by a linear factor (e.g., divide by 2)

• Rough intuition why this works
– Let Li be length of queue at time i
– In steady state: Li=N, where N is a constant
– During congestion: Li=N+yLi-1, where y > 0
– If y is large (close to 1), queue size increases exponentially



Resulting TCP/IP Improvements

• Slow-start
• Round-trip time variance estimation
• Exponential retransmit timer backoff
• More aggressive receiver ack policy
• Dynamic window sizing on congestion
• Clamped retransmit backoff (Karn)
• Fast Retransmit

Packet Conservation 
Principle

Congestion control means: “Finding places that violate the
conservation of packets principle and then fixing them.”



Slow-start

• Goal: find equilibrium sending rate

• Quickly increase sending rate until congestion detected
• Algorithm:

– On new connection, or after timeout, set cwnd=1
– For each segment acknowledged, cwnd += 1
– If timeout then cwnd /= 2, set ssthresh = cwnd
– If cwnd >= ssthresh then exit slow start

• Very confusing name



Adaptive Timing

• How long should we wait for a packet’s acknowledgement
– Too short: spurious timeouts and retransmissions
– Too long: wasteful

• Old TCP
– Maintain weighted average of RTT samples: R
– Timeout set to B*R, where B=2
– Under high load, this scheme doesn’t reflect variation

• Jacobson’s contributions
– Estimate variation, B based on some samples
– After loss, increase timeout exponentially (by 2)



Fast Retransmit & Fast Recovery

• Fast retransmit
– Timeouts are slow (1 second is shortest TCP timeout)
– When packet is lost, receiver still acks last in-order packet
– Use 3 duplicate ACKs to indicate loss

• Why 3? When wouldn’t this work?

• Fast recovery
– If ACKs are still arriving, then no need for slow start
– Divide cwnd by 2 after fast retransmit
– Increment cwnd by 1 for each duplicate ACK



A TCP Taxonomy

• TCP Tahoe (1988)
– Slow-start, fast retransmit, congestion avoidance

• TCP Reno (1990)
– Tahoe + fast recovery

• TCP New-Reno (1996)
– Reno + partial ACKs

• SACK TCP (1996)
– Selective acknowledgements

• TCP Vegas (1993)
– Uses RTT variation to measure congestion

• TCP BIC (2004)
– Binary search between Wmin and Wmax



Congestion Control in POTS

• How is it done?



Congestion Control in POTS

• How is it done?
– Pricing
– Call doesn’t get through (admission control)



Short Connections

• How are short connections affected by slow-start?
– What happens if drop in slow-start?
– What happens when SYN dropped?

• Bottom line: which packet gets dropped matters a lot!
• Are most flows long or short?



Cooperation

• TCP is designed around the premise of cooperation
– What if receiver lies about receiving packets?

• Does over-provisioning always help?
– Let’s look at router queues


