CSC2209
Computer Networks

Congestion Control (end-host view)

Stefan Saroiu
Computer Science
University of Toronto

Today’s Questions

e How fast should a transmitter send data?

— Not too slow....
— Not too fast...
— Just about right!

e Shouldn’t be faster than receiver can process
— This is called...

e Shouldn’t be faster than network can process
— This is called...

Congestion Control Goals

Congestion Control Goals

Efficiency

— Utilize all available bandwidth
Fairness

— All hosts get equal access to bandwidth
Distributed implementation

— Only require state at endpoints
Convergence

— For constant load, arrive at single solution for using/sharing
bandwidth

Questions

How to detect congestion?
How to limit sending data rate?
How fast to send?

How to achieve stability?

Detecting Congestion

Detecting Congestion

e Implicit signaling
— Packet loss
e Assumes congestion is primary cause of packet loss
— Packet delay
e RTT increases as packets queue
e Packet inter-arrival time is a function of bottleneck link
e Pros/cons?
e Explicit signaling
— Source quench: router sends ICMP “Hey buddy, slow down”
— ECN: router marks packet on how full queue is
— Hop-by-hop backpressure

Questions

How to detect congestion?
How to limit sending data rate?
How fast to send?

How to achieve stability?

How to Limit Sending Rate?

How to Limit Sending Rate?

e Window-based (TCP)

— Artificially constrain number of outstanding packets allowed
— Increase window to send faster, decrease to send slower

— Pro: cheap to implement, good failure properties

— Cons:

How to Limit Sending Rate?

e Window-based (TCP)

— Artificially constrain number of outstanding packets allowed
— Increase window to send faster, decrease to send slower

— Pro: cheap to implement, good failure properties

— Cons: creates bursty tratfic

How to Limit Sending Rate?

e Window-based (TCP)

— Artificially constrain number of outstanding packets allowed
— Increase window to send faster, decrease to send slower

— Pro: cheap to implement, good failure properties

— Cons: creates bursty tratfic

e Rate-based

— Two parameters (period, packets)
— Send x packets in period y

— Pro: smooth traffic

— Cons:

How to Limit Sending Rate?

e Window-based (TCP)

— Artificially constrain number of outstanding packets allowed
— Increase window to send faster, decrease to send slower

— Pro: cheap to implement, good failure properties

— Cons: creates bursty tratfic

e Rate-based

— Two parameters (period, packets)

— Send x packets in period y

— Pro: smooth traffic

— Cons: per connection timers, what if receiver fails

Questions

How to detect congestion?
How to limit sending data rate?
How fast to send?

How to achieve stability?

How fast to send?

e Ideally: keep equilibrium at “knee” of power curve
— Find “knee” somehow
— Keep number of packets in flight the same
— Don’t inject new packet until old one left the network
— What if you guessed wrong?

 Compromise: adaptive approximation
— If congestion signaled, reduce sending rate by x
— If data delivered successfully, increase sending rate by y
— How should x and y be related? Convergence?

Questions

How to detect congestion?
How to limit sending data rate?
How fast to send?

How to achieve stability?

How to achieve stability?

e Additive increase, multiplicative decrease (AIMD)
— Increase sending rate by a constant (e.g., 1500 bytes)
— Decrease sending rate by a linear factor (e.g., divide by 2)

e Rough intuition why this works
— Let L, be length of queue at time i
— In steady state: L,=N, where N is a constant
— During congestion: L.=N+yL, ;,, where y >0
— If y is large (close to 1), queue size increases exponentially

Resulting TCP/IP Improvements

Slow-start Y
Round-trip time variance estimation

Exponential retransmit timer backoff == Packat Consarvation

Principle

More aggressive receiver ack policy

Dynamic window sizing on congestion
y 8 g)

Clamped retransmit backoff (Karn)
Fast Retransmit

Congestion control means: “Finding places that violate the
conservation of packets principle and then fixing them.”

Slow-start

Goal: find equilibrium sending rate

Quickly increase sending rate until congestion detected
Algorithm:

— On new connection, or after timeout, set cwnd=1
— For each segment acknowledged, cwnd +=1

— If timeout then cwnd /= 2, set ssthresh = cwnd
— If cwnd >= ssthresh then exit slow start

Very confusing name

Adaptive Timing

e How long should we wait for a packet’s acknowledgement
— Too short: spurious timeouts and retransmissions
— Too long: wasteful

e QOld TCP
— Maintain weighted average of RTT samples: R
— Timeout set to B*R, where B=2

— Under high load, this scheme doesn’t reflect variation

e Jacobson’s contributions
— Estimate variation, B based on some samples
— After loss, increase timeout exponentially (by 2)

Fast Retransmit & Fast Recovery

e Fast retransmit
— Timeouts are slow (1 second is shortest TCP timeout)
— When packet is lost, receiver still acks last in-order packet
— Use 3 duplicate ACKs to indicate loss
e Why 3? When wouldn’t this work?

e Fast recovery
— If ACKs are still arriving, then no need for slow start
— Divide cwnd by 2 after fast retransmit
— Increment cwnd by 1 for each duplicate ACK

A TCP Taxonomy

TCP Tahoe (1988)

— Slow-start, fast retransmit, congestion avoidance
TCP Reno (1990)

— Tahoe + fast recovery

TCP New-Reno (1996)
— Reno + partial ACKs
SACK TCP (1996)

— Selective acknowledgements
TCP Vegas (1993)
— Uses RTT variation to measure congestion

TCP BIC (2004)

— Binary search between W_. and W___

Congestion Control in POTS

e How is it done?

Congestion Control in POTS

e How isit done?
— Pricing
— Call doesn’t get through (admission control)

Short Connections

e How are short connections affected by slow-start?

— What happens if drop in slow-start?
— What happens when SYN dropped?

e Bottom line: which packet gets dropped matters a lot!
e Are most flows long or short?

Cooperation

e TCP is designed around the premise of cooperation

— What if receiver lies about receiving packets?

e Does over-provisioning always help?

— Let’s look at router queues

