<u>CSC2209</u> Computer Networks

MAC Protocols + Routing

Stefan Saroiu Computer Science University of Toronto

Administrivia

- TONS seminar Fridays at 3pm in BA1170
- *"Balancing distance and lifetime in delay constrained multihop wireless networks"*. Ben Liang ECE U. of T.
- Start brainstorming project ideas!
 - Lots of suggestions available
 - Project suggestion on course's website
 - News writeups contain suggestions
 - Lectures' slides contain suggestions

Question

- Would it be useful to setup a 1-2 hour meeting to discuss project suggestions?
 - Serves to bring everyone on the same page

• If yes, when?

Outline

- 1. ALOHA
- 2. CSMA MAC protocols
- 3. Ethernet
- 4. Measured capacity of an Ethernet

1. ALOHA

- Wireless links between the Hawaiian islands in the 70s
- Want distributed allocation
 - no special channels, or single point of failure
- Aloha protocol:
 - Just send when you have data!
 - There will be some collisions of course ...
 - Detect errored frames and retransmit a random time later
- Simple, decentralized and works well for low load
 - For many users, analytic traffic model, max efficiency is 18%

2. Carrier Sense Multiple Access

- We can do better by listening before we send (CSMA)
 - good defense against collisions only if "a" is small (LANs)

- "a" parameter: number of packets that fit on the wire
 - a = bandwidth * delay / packet size
 - Small (<<1) for LANs, large (>>1) for satellites

What if the Channel is Busy?

- 1-persistent CSMA
 - Wait until idle then go for it
 - Blocked senders can queue up and collide
- non-persistent CSMA
 - Wait a random time and try again
 - Less greedy when loaded, but larger delay
- p-persistent CSMA
 - If idle send with prob p until done; assumed slotted time
 - Choose p so p * # senders < 1; avoids collisions at cost of delay

CSMA with Collision Detection

• Even with CSMA there can still be collisions. Why?

- For wired media we can detect all collisions and abort (CSMA/CD):
 - Requires a minimum frame size ("acquiring the medium")
 - B must continue sending ("jam") until A detects collision

3. Classic Ethernet

- IEEE 802.3 standard wired LAN (1-persistent CSMA/CD)
- Classic Ethernet: 10 Mbps over coaxial cable
 - baseband signals, Manchester encoding, preamble, 32 bit CRC

- Newer versions are much faster
 - Fast (100 Mbps), Gigabit (1 Gbps)
- Modern equipment isn't one long wire
 - hubs and switches

Modern (Ethernet II) Frames

Preamble (8) De	Dest (6) Source (6)	Type (2)	Payload (var)	Pad (var)	CRC (4)
-----------------	---------------------	----------	---------------	-----------	---------

- Min frame 64 bytes, max 1500 bytes
- Max length 2.5km, max between stations 500m (repeaters)
- Addresses unique per adaptor; 6 bytes; globally assigned
- Broadcast media is readily tapped:
 - Promiscuous mode; multicast addresses

Binary Exponential Backoff

- Build on 1-persistent CSMA/CD
- On collision: jam and exponential backoff
 - Jamming: send 48 bit sequence to ensure collision detection
- Backoff:
 - First collision: wait 0 or 1 frame times at random and retry
 - Second time: wait 0, 1, 2, or 3 frame times
 - Nth time (N<=10): wait 0, 1, ..., 2^N-1 times
 - Max wait 1023 frames, give up after 16 attempts
 - Scheme balances average wait with load

Ethernet Capture

- Randomized access scheme is not fair
- Stations A and B always have data to send
 - They will collide at some time
 - Suppose A wins and sends, while B backs off
 - Next time they collide and B's chances of winning are halved!

Ethernet Performance

- Much better than Aloha or CSMA!
 - Works very well in practice
- Source of protocol inefficiency: collisions
 - More efficient to send larger frames
 - Acquire the medium and send lots of data
 - Less efficient as the network grows in terms of frames
 - recall "a" = delay * bandwidth / frame size
 - "a" grows as the path gets longer (satellite)
 - "a" grows as the bit rates increase (Fast, Gigabit Ethernet)

Key Concepts

• Ethernet (CSMA/CD): randomness can lead to an effective distributed means of sharing a channel

4. Measured Capacity of Ethernet

- Systematic Ethernet evaluation
- Contributions:
 - Measured-based analysis of performance
 - Present implementation issues
 - "Systems-approach to networking"
- Non-contributions:
 - Synthetic measurements

Theoretical Studies' Limitations

- Unrealistic assumptions:
 - Infinite populations, Poisson arrivals, uniform packet sizes, worst-case analysis
- Inconsistent definitions of offered load:
 - Flow control not considered
- Average case vs. worst-case
 - The average load is really low
- Myths:
 - Ethernet saturates at an offered load of 37%
 - Latency shoots up after 37%

Findings

- Ethernet performs well under high load
 - Xput fall with # of hosts
 - Fairness increases with # of hosts
 - Latency increases linearly with # of hosts
- Bimodal packet size distribution
 - Even a few packets can boost utilization
- Problems due to implementation
 - Buggy firmware (garbled packets, broadcast storm)
 - Linear back-off instead of exponential

What's Missing?

What's Missing?

- "Semi-experimental" study
 - Is this science or engineering?
- Only considered balanced topologies
 - Unequal clusters can lead to unfairness
- Only considered aggregate statistics
 - Do corner-cases occur?

Ethernet Trends

- Newer standards: 100Mbps (Fast Ethernet), 1Gbps, 10Gbps
- Switch rather than contention:
 - Is contention relevant anymore?
- Reasons for success:

Ethernet Trends

- Newer standards: 100Mbps (Fast Ethernet), 1Gbps, 10Gbps
- Switch rather than contention:
 - Is contention relevant anymore?
- Reasons for success:
 - Low connection cost
 - Robustness
 - Flexible (protocol changes are easy)

Cable Modems (DOCSIS)

• Broadcast medium for hosts don't hear each other (head-end coordination)

- Downstream: head-end coordination
- Upstream: reserve slots with ALOHA

Research on Wired MAC's anymore

• Ideas?

Research on Wired MAC's anymore

- Ideas?
- Sure: faster MACs are being proposed all the time:
 - How would a 1Tbps MAC work?
 - Build a simulator??? How?!

Next class

- Papers review
 - V. Bharghavan, A. Demers, S. Shenker, L. Zhang. *MACAW: a media access protocol for wireless LAN's*. Sigcomm 94.

• Review due at 11am