<u>CSC2209</u> Computer Networks

Network Architecture

Stefan Saroiu Computer Science University of Toronto

Outline

Overview

- Protocols and layering
- Brief Internet tour
- E2E paper
- Internet design philosophy

Protocols and Layering

We need abstractions to handle all this system complexity

A <u>protocol</u> is an agreement dictating the form and function of data exchanged between parties to effect communication

- Two parts:
 - Syntax: format -- where the bits go
 - Semantics: meaning -- what the words mean, what to do with them
- Examples:
 - Ordering food from a drive-through window
 - IP, the Internet protocol
 - TCP and HTTP, for the Web

Protocol Standards

- Different functions require different protocols
- Thus there are many protocol standards
 - E.g., IP, TCP, UDP, HTTP, DNS, FTP, SMTP, NNTP, ARP, Ethernet/802.3, 802.11, RIP, OPSF, 802.1D, NFS, ICMP, IGMP, DVMRP, IPSEC, PIM-SM, BGP
- Organizations: IETF, IEEE, ITU
- IETF (<u>www.ietf.org</u>) specifies Internet-related protocols
 - RFCs (Requests for Comments)
 - "We reject kings, presidents and voting. We believe in rough consensus and running code.", Dave Clark.

Layering and Protocol Stacks

Layering is how we combine protocols

- Higher level protocols build on services provided by lower levels
- Peer layers communicate with each other

Example – Layering at work

Layering Mechanics

Encapsulation and de(en)capsulation

A Packet on the Wire

Starts looking like an onion!

- This isn't entirely accurate
 - ignores segmentation and reassembly, Ethernet trailers, etc.
- But you can see that layering adds overhead

More Layering Mechanics

Multiplexing and demultiplexing in a protocol graph

Outline

Overview

- Protocols and layering
- Brief Internet tour
- E2E paper
- Internet design philosophy

A Brief Tour of the Internet

What happens when you "click" on a web link?

This is the view from 10,000 ft ...

- We cut down on transfers:
 - Check cache (local or proxy) for a copy
 - Check with server for a new version

Map domain names to IP network addresses

Nameserver

- All messages are sent using IP addresses
 - So we have to translate names to addresses first
 - But we cache translations to avoid doing it next time (why?)

7,000 ft: Sessions (HTTP)

A single web page can be multiple "objects"

Fetch each "object" either sequentially or in parallel

6,000 ft: Reliability (TCP)

Messages can get lost

 We acknowledge successful receipt and detect and retransmit lost messages (e.g., timeouts)

5,000 ft: Congestion (TCP)

Need to allocate bandwidth between users

Senders balance available and required bandwidths by probing network path and observing the response

4,000 ft: Packets (TCP/IP)

- Long messages are broken into packets
 - Maximum Ethernet packet is 1.5 Kbytes
 - Typical web page is 10 Kbytes

Number the segments for reassembly

3,000 ft: Routing (IP)

2,000 ft: Multi-access (e.g., Cable)

May need to share links with other senders

- Poll headend to receive a timeslot to send upstream
 - Headend controls all downstream transmissions
 - A lower level of addressing (than IP addresses) is used ... why?

1,000 ft: Framing/Modulation

Protect, delimit and modulate payload as signal

Sync / Unique Header Payload w/ error correcting code

- E.g, for cable, take payload, add error protection (Reed-Solomon), header and framing, then turn into a signal
 - Modulate data to assigned channel and time (upstream)
 - Downstream, 6 MHz (~30 Mbps), Upstream ~2 MHz (~3 Mbps)

Outline

Overview

- Protocols and layering
- Brief Internet tour
- E2E paper
- Internet design philosophy

End-to-End Principle

- Question: where should functionality be placed in the network?
- The argument:
 - 1. Functionality should be implemented at a lower level iff it can be implemented correctly and completely
 - 2. Incomplete functionality could be implemented at a lower level for performance

Example – File transfer

If not done E2E, checks must be done at every single step

Performance Optimizations

- Functionality at lower layer can enhance performance
 - Could come in very useful
- E.g. path with 15 hops
 - Prob of packet loss is 0.0001% per hop
 - Prob of e2e loss is 0.0015%
 - Prob of packet loss is 1% per hop
 - Prob of e2e loss is 14%

Optimization Trade-Off

- Higher layers have semantic information about the data
 - HTML text bits more important than IMG in the presence of massive loss
- Lower layers are "closer" to the data
 - They are the ones dealing with loss, bandwidth issues, corruption, etc...
- This trade-off is one of the main driving factors behind networking research

Additional Examples

- Networking
 - Reordering
 - Retransmission
 - Supressing duplicate messages
- Security
 - WEP

E2E Final Thoughts

What's the consensus?

Do these violate E2E?
 Proxy caches
 NATs

Outline

Overview

- Protocols and layering
- Brief Internet tour
- E2E paper
- Internet design philosophy

Design Philosophy of DARPA

Context:

- Multiple research and military networks
- How can we connect them?
- Before LANs existed

Main Internet Goal

- Multiplexed utilization of existing interconnected networks
 - i.e., functionality
- Minimal assumptions underlying networks
 No support for broadcast, multicast, real-time
- Packet switched, store-and-forward
- "Gateways" interconnect networks

This is a hard problem

- Main reason: heterogeneity
 - Addressing: each network different addressing scheme
 - Bandwidth: dialups to dedicated links
 - Latency: seconds to nanoseconds
 - Packet size
 - Loss rates
 - Service guarantees

IP: Common Substrate

Convert all formats to IPIP over everything

Alternative?

Secondary Goals

- Survivability in the face of failure
- Support for multiples types of service
- Support for a variety of networks
- Distributed management of resources
- Cost effectiveness
- Easy addition of new hosts
- Accounting of resource usage

Survivability Implications

- No hard-state in the middle
 - Routers are stateless
 - Endpoints responsible for failure recovery\
 - "fate-sharing"
- Host machines are trusted
 - Must implement protocols correctly
 - Easy to be malicious
- Problems:
 - Hard to detect cause of failures
 - Hard to prevent hosts from becoming malicious
 - Much more complex functionality than routers

Types of Service

- Common denominator: IP
- Reliable delivery TCP
- Unreliable delivery UDP
- Real-time delivery: ???
- Multicast: ???
- Broadcast: ???

Network Variety

- Internet successful in part due to so little assumptions of the underlying network
 - Topology: point-to-point, bus, ring, radio
 - Characteristics: dial-up, fiber, etc...
- Does not mean IP is efficient:
 - ATM uses 53 byte cells, poor fragmentation for IP packets

Other Goals

Distributed management

- Different parts of network owned, controlled, and managed by different entities
- Hard to get consensus
- What does optimize mean in this context?
- Cost-effective
 - Routers are cheap compared to POTS
 - Efficient bandwidth use
 - But much more unreliable than POTS switches

Other Goals (2)

- Attachment costs
 - Success if you look at costs per user (millions of users)
 - Misbehaving hosts due to bugs
 - Think Wal-Mart vs. Harrods
- Accountability
 - Who pays for all of this
 - What is the economic model
 - Hot religious debate

Questions

- Did the Internet realized its vision?
- What is different about the Internet today?
- What are the limitations of Internet design
- The Internet has evolved very much like a research project:
 - Many iterations, trial-and-error

Summary

- Layering: key technique for managing complexity in systems
- Key question:
 - Where to put functionality
- E2E: put functionality at the highest level where service is provided
 - Use lower-levels for optimizations
 - Trade-offs btw. complexity and performance
- Internet design points
 - Internetworking: minimal assumptions about networks
 - Fate-sharing: smart hosts, dumb core
 - All higher services built on top of IP

Next class

Papers review

- Measured Ethernet: Myths and Relity. Boggs, Mogul, and Kent. Sigcomm 88.
- Revised ARPANET routing metric. Khanna and Zinky. Sigcomm '89.

Reviews due at 11am