
Infrastructure for Web Explanations

Deborah L. McGuinness and Paulo Pinheiro da Silva

Knowledge Systems Laboratory,
Stanford University, Stanford CA 94305

{dlm,pp}@ksl.stanford.edu

Abstract. The Semantic Web lacks support for explaining knowledge
provenance. When web applications return answers, many users do not
know what information sources were used, when they were updated,
how reliable the source was, or what information was looked up ver-
sus derived. The Semantic Web also lacks support for explaining rea-
soning paths used to derive answers. The Inference Web (IW) aims to
take opaque query answers and make the answers more transparent by
providing explanations. The explanations include information concern-
ing where answers came from and how they were derived (or retrieved).
In this paper we describe an infrastructure for IW explanations. The
infrastructure includes: an extensible web-based registry containing de-
tails on information sources, reasoners, languages, and rewrite rules; a
portable proof specification; and a proof and explanation browser. Source
information in the IW registry is used to convey knowledge provenance.
Representation and reasoning language axioms and rewrite rules in the
IW registry are used to support proofs, proof combination, and semantic
web agent interoperability. The IW browser is used to support navigation
and presentations of proofs and their explanations. The Inference Web is
in use by two Semantic Web agents using an embedded reasoning engine
fully registered in the IW. Additional reasoning engine registration is
underway in order to help provide input for evaluation of the adequacy,
breadth, and scalability of our approach.

1 Introduction

Inference Web (IW) aims to enable applications to generate portable and dis-
tributed explanations for any of their answers. IW addresses needs that arise with
systems performing reasoning and retrieval tasks in heterogeneous environments
such as the web. Users (humans and computer agents) need to decide when to
trust answers from varied sources. We believe that the key to trust is understand-
ing. Explanations of knowledge provenance and derivation history can be used
to provide that understanding [16]. In the simplest case, users would retrieve
information from individual or multiple sources and they may need knowledge
provenance (e.g., source identification, source recency, authoritativeness, etc.)
before they decide to trust an answer. Users may also obtain information from
systems that manipulate data and derive information that was implicit rather
than explicit. Users may need to inspect the deductive proof trace that was used

D. Fensel et al. (Eds.): ISWC 2003, LNCS 2870, pp. 113–129, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



114 D.L. McGuinness and P. Pinheiro da Silva

to derive implicit information before they trust the system answer. Many times
proof traces are long and complex so users may need the proof transformed (or
abstracted) into something more understandable that we call an explanation.
Some users may agree to trust the deductions if they know what reasoner was
used to deduce answers and what data sources were used in the proof. Users may
also obtain information from hybrid and distributed systems and they may need
help integrating answers and solutions. As web usage grows, a broader and more
distributed array of information services becomes available for use and the needs
for explanations that are portable, sharable, and reusable grows. Inference web
addresses the issues of knowledge provenance with its registry infrastructure. It
also addresses the issues of proof tracing with its browser. It addresses the issues
of explanations (proofs transformed by rewrite rules for understandability) with
its language axioms and rewrite rules. IW addresses the needs for combination
and sharing with its portable proof specification.

In this paper, we include a list of explanation requirements gathered from
past work, literature searches, and from surveying users. We present the Infer-
ence Web architecture and provide a description of the major IW components
including the portable proof specification, the registry [17] (containing informa-
tion about inference engines, proof methods, ontologies, and languages and their
axioms), the explanation mechanism, and the justification browser. We also pro-
vide some simple usage examples. We conclude with a discussion of our work
in the context of explanation work and state our contributions with respect to
trust and reuse.

2 Background and Related Work

Recognition of the importance of explanation components for reasoning systems
has existed in a number of fields for many years. For example, from the early days
in expert systems (e.g., MYCIN [18]), expert systems researchers identified the
need for systems that understood their reasoning processes and could generate
explanations in a language understandable to its users. Inference Web attempts
to stand on the shoulders of past work in expert systems, such as MYCIN and
the Explainable Expert System [20] on generating explanations.

IW also builds on the learnings of explanation in description logics (e.g., [1,2,
13,14]) which attempt to provide a logical infrastructure for separating pieces of
logical proofs and automatically generating follow-questions based on the logical
format. IW goes beyond this work in providing an infrastructure for explaining
answers in a distributed, web-based environment possibly integrating many ques-
tion answering agents using multiple reasoners. IW also attempts to integrate
learnings from the theorem proving community on proof presentation(e.g., [4,9])
and explanation (e.g., [12]), moving from proof tracing presentation to abstrac-
tions and understandable explanations. IW attempts to learn from this and push
the explanation component started in Huang’s work and also add the emphasis
on provenance and distributed environments.



Infrastructure for Web Explanations 115

The work in this paper also builds on experience designing query components
for frame-like systems [3,10,13] to generate requirements. The foundational work
in those areas typically focus on answers and only secondarily on information
supporting the understanding of the answers. In our requirements gathering ef-
fort, we obtained requirements input from contractors in DARPA-sponsored pro-
grams concerning knowledge-based applications (the High Performance Knowl-
edge Base program1, Rapid Knowledge Formation Program2, and the DARPA
Agent Markup Language Program3) and more recently, the ARDA AQUAINT4

and NIMD5 programs and DARPA’s IPTO Office programs. We also gathered
requirements from work on the usability of knowledge representation systems
(e.g., [15]) and ontology environments (e.g., [8]). We have also gathered needs
from the World Wide Web Consortium efforts on CWM6 and the related rea-
soner effort on Euler7. Finally, we gathered knowledge provenance requirements
from the programs above and from previous work on data provenance from the
database community(e.g., [5]).

3 Requirements

If humans and agents need to make informed decisions about when and how to
use answers from applications, there are many things to consider. Decisions will
be based on the quality of the source information, the suitability and quality of
the reasoning/retrieval engine, and the context of the situation. Particularly for
use on the web, information needs to be available in a distributed environment
and be interoperable across applications.

3.1 Support for Knowledge Provenance

Even when search engines or databases simply retrieve asserted or “told” infor-
mation, users (and agents) may need to understand where the source information
came from with varying degrees of detail. Similarly, even if users are willing to
trust the background reasoner in a question answering environment, they may
need to understand where the background reasoner obtained its ground facts. In-
formation about the origins of asserted facts, sometimes called provenance, may
be viewed as meta information about told information. Knowledge provenance
requirements may include:

• Source name (e.g., CIA World Fact Book). If facts are encountered in multi-
ple sources, any integrated solution needs to have a way of identifying from
which source information was taken.

1 http://reliant.teknowledge.com/HPKB/
2 http://reliant.teknowledge.com/RKF/
3 http://www.daml.org
4 http://www.ic-arda.org/InfoExploit/aquaint/
5 http://www.ic-arda.org/Novel Intelligence/
6 http://www.w3.org/2000/10/swap/doc/cwm.html
7 http://www.agfa.com/w3c/euler/



116 D.L. McGuinness and P. Pinheiro da Silva

• Date and author(s) of original information and any updates
• Authoritativeness of the source (is this knowledge store considered or certi-

fied as reliable by a third party?)
• Degree of belief (is the author certain about the information?)
• Degree of completeness (Within a particular scope, is the source considered

complete. For example, does this source have information about all of the
employees of a particular organization up until a some date? If so, not finding
information about a particular employee would mean that this person is not
employed, counting employees would be an accurate response to number of
employees, etc.)

The information above could be handled with meta information about content
sources and about individual assertions. Additional types of information may
be required if users need to understand the meaning of terms or implications of
query answers.

• Term or phrase meaning (in natural language or a formal language)
• Term inter-relationships (ontological relations including subclass, superclass,

part-of, etc.)

3.2 Support for Reasoning Information

Once systems do more than simple retrieval, additional requirements result. If
information is manipulated as a result of integration, synthesis, abstraction,
deduction, etc., then users may need access to a trace of the manipulations
performed along with information about the manipulations as well as informa-
tion about the provenance. We refer to this as reasoning traces or proof traces.
Requirements as a result of reasoning may include the following:

• The reasoner used
• Reasoning method (e.g., tableaux, model elimination, etc.)
• Inference rules supported by the reasoner
• Reasoner soundness and completeness properties
• Reasoner assumptions (e.g., closed world vs. open world, unique names as-

sumption, etc.)
• Reasoner authors, version, etc.
• Detailed trace of inference rules applied (with appropriate variable bindings)

to provide conclusion
• Term coherence (is a particular definition incoherent?)
• Were assumptions used in a derivation? If so, have the assumptions changed?
• Source consistency (is there support in a system for both A and ¬A)
• Support for alternative reasoning paths to a single conclusion

3.3 Support for Explanation Generation

While knowledge provenance and proof traces may be enough for expert logi-
cians when they attempt to understand why an answer was returned, usually



Infrastructure for Web Explanations 117

they are inadequate for a typical user. For our purposes, we view an explanation
as a transformation of a proof trace into an understandable justification for an
answer. With this view in mind, we consider techniques for taking proofs and
proof fragments and rewriting them into abstractions that produce the foun-
dation for what is presented to users. In order to handle rewriting, details of
the representation and reasoning language must be captured along with their
intended semantics. Requirements for explanations may include:

• Representation language descriptions (e.g., DAML+OIL, OWL, RDF, ...)
• Axioms capturing the semantics of the representation languages
• Description of rewriting rules based on language axioms

3.4 Support for Distributed Proofs

Much of the past work on explanation, whether from expert systems, theorem
proving, or description logics, has focused on single systems or integrated systems
that either use a single reasoner or use one integrated reasoning system. Systems
being deployed on the web are moving to distributed environments where source
information is quite varied and sometimes question answering systems include
hybrid reasoning techniques. Additionally multi-agent systems may provide in-
ference by many applications. Thus many additional requirements for proofs and
their explanations may arise from a distributed architecture. Some requirements
we are addressing are listed below:

• Reasoner result combinations (if a statement is proved by one system and
another system uses that statement as a part of another proof, then the
second system needs to have access to the proof trace from the first system).

• Portable proof interlingua (if two or more systems need to share proof frag-
ments, they need an language for sharing proofs).

3.5 Support for Proof Presentation

If humans are expected to view proofs and their explanations, presentation sup-
port needs to be provided. Human users will need some help in asking questions,
obtaining manageable size answers, asking followup question, etc. Additionally,
even agents need some control over proof requests. If agents request very large
proofs, they may need assistance in breaking them into appropriate size por-
tions and also in asking appropriate follow-up questions. Requirements for proof
presentation may include:

• A method for asking for explanations (or proofs)
• A way of breaking up proofs into manageable pieces
• A method for pruning proofs and explanations to help the user find relevant

information
• A method for allowing proof and explanation navigation (including the abil-

ity to ask followup questions)
• A presentation solution compatible with web browsers
• A way of seeing alternative justifications for answers



118 D.L. McGuinness and P. Pinheiro da Silva

4 Use Cases

Every combination of a query language with a query-answering environment is a
potential new context for the Inference Web. We provide two motivating scenar-
ios. Consider the situation where someone has analyzed a situation previously
and wants to retrieve this analysis. In order to present the findings, the analyst
may need to defend the conclusions by exposing the reasoning path used along
with the source of the information. In order for the analyst to reuse the previous
work, s/he will also need to decide if the source information used previously is
still valid (and possibly if the reasoning path is still valid).

Another simple motivating example arises when a user asks for information
from a web application and then needs to decide whether to act on the informa-
tion. For example, a user might use a search engine interface or a query language
such as DQL8 for retrieving information such as “zinfandels from Napa Valley”
or “wine recommended for serving with a spicy red meat meal” (as exemplified
in the wine agent example in the OWL guide document [19]). A user might ask
for an explanation of why the particular wines were recommended as well as why
any particular property of the wine was recommended (like flavor, body, color,
etc.). The user may also want information concerning whose recommendations
these were (a wine store trying to move its inventory, a wine writer, etc.). In
order for this scenario to be operationalized, we need to have the following:

• A way for applications (reasoners, retrieval engines, etc.) to dump justifica-
tions for their answers in a format that others can understand. This supports
the distributed proofs requirements above. To solve this problem we intro-
duce a portable and sharable proof specification.

• A place for receiving, storing, manipulating, annotating, comparing, and
returning meta information used to enrich proofs and proof fragments. To
address this requirement, we introduce the Inference Web registry for storing
the meta information and the Inference Web registrar web application for
handling the registry. This addresses the issues related to knowledge prove-
nance.

• A way to present justifications to the user. Our solution to this has multiple
components. First the IW browser is capable of navigating through proof
dumps provided in the portable proof format. It can display multiple for-
mats including KIF9 and English. Additionally, it is capable of using rewrite
rules (or tactics) to abstract proofs in order to provide more understandable
explanations. This addresses the issues related to reasoning, explanations,
and presentation.

5 Inference Web

Inference Web contains both data used for proof manipulation and tools for
building, maintaining, presenting, and manipulating proofs. Figure 1 presents an
8 http://www.daml.org/2002/08/dql/
9 http://logic.stanford.edu/kif/kif.html



Infrastructure for Web Explanations 119

Fig. 1. Inference Web framework overview.

abstract and partial view of the Inference Web framework10. There, Inference
Web data includes proofs and explanations published anywhere on the web.
Inference and search engines can generate proofs using the IW format. The
explainer, an IW tool, can abstract proofs into explanations. Inference Web
data also has a distributed repository of meta-data including sources, inference
engines, inference rules and ontologies. In addition to the explainer, Inference
Web tools include a registrar for interacting with the registry, a browser for
displaying proofs, and planned future tools such as proof web-search engines,
proof verifiers, proof combinators, and truth maintenance systems. In this paper,
we limit our discussion to the portable proofs (and an associated parser), registry
(and the associated registrar tools), explanations, and the browser.

5.1 Portable Proof

The Inference Web provides a proof specification written in the web markup
language DAML+OIL11 [7]. Proofs dumped in the portable proof format become
a portion of the Inference Web data used for combining and presenting proofs and
for generating explanations. Our portable proof specification includes two major
components of IW proof trees: inference steps and node sets. Proof metadata as
described in Section 5.2 are the other components of our proof specification.

Figure 2 presents a typical dump of an IW node set. Each node set is labeled
by a well formed formula (WFF) written in KIF. (In this example, the node
set is labeled with a WFF stating that the color of W1 is ?x or the value of
the color property of Wine1 is the item of interest.) The node set represents a
10 A more detailed view is available at

http://ksl.stanford.edu/software/IW/details.shtml
11 An OWL version is coming soon.



120 D.L. McGuinness and P. Pinheiro da Silva

statement and the last step in a deductive path that led a system to derive the
statement. It is a set because there could be multiple deductive paths leading to
the statement.

Figure 2 shows an instance of a node set, an inference step, and a reference
to an inference rule. There is no source associated with this node set since it is
derived (although it could be derived and associated with a source). If it had
been asserted, it would require an association to a source, which is typically
an ontology that contains it. In general, each node set can be associated with
multiple, one, or no inference steps as described by the iw:isConsequentOf
property of the node set in Figure 2. A proof can then be defined as a tree
of inference steps explaining the process of deducing the consequent sentence.
Thus, a proof can physically vary from a single file containing all its node sets
to many files, each one containing a single node set. Also, files containing node
sets can be distributed in the web. Considering the IW requirement that proofs
need to be combinable, it is important to emphasize that an IW proof is a forest
of trees since the nodes of a proof tree are sets of inference steps. In contrast
with typical proof trees that are composed of nodes rather than node sets, every
theorem in an IW proof can have multiple justifications.

An inference step is a single application of an inference rule, whether the
rule is atomic or derived as discussed in Section 5.2. Inference rules (such as
modus ponens) can be used to deduce a consequent (a well formed formula)
from any number of antecedents (also well formed formulae). Inference steps
contain pointers to proof nodes of its antecedents, the inference rule used, and
any variable bindings used in the step. The antecedent sentence in an infer-
ence step may come from inference steps in other node sets, existing ontologies,
extraction from documents, or they may be assumptions.

With respect to a query, a logical starting point for a proof in Inference Web is
a proof fragment containing the last inference step used to derive a node set that
contains the answer sentence for the query. Any inference step can be presented
as a stand alone, meaningful proof fragment as it contains the inference rule
used with links to its antecedents and variable bindings. The generation of proof
fragments is a straightforward task once inference engine data structures storing
proof elements are identified as IW components. To facilitate the generation of
proofs, the Inference Web provides a web service that dumps proofs from IW
components and uploads IW components from proofs. This service is a language-
independent facility used to dump proofs. Also, it is a valuable mechanism for
recording the usage of registry entries.

The IW infrastructure can automatically generate follow-up questions for
any proof fragment by asking how each antecedent sentence was derived. The
individual proof fragments may be combined together to generate a complete
proof, i.e., a set of inference steps culminating in inference steps containing
only asserted (rather than derived) antecedents. When an antecedent sentence
is asserted, there are no additional follow-up questions required and that ends
the complete proof generation. The specification of IW concepts used in Figure 2
is available at http://www.ksl.stanford.edu/software/IW/spec/iw.daml.



Infrastructure for Web Explanations 121

<?xml version=’1.0’?> <rdf:RDF (...)>
<iw:NodeSet rdf:about=’../sample/IW1.daml#IW1’>

<iw:NodeSetContent>
<iw:KIF>

<iw:Statement>(wines:COLOR W1 ?x)</iw:Statement>
</iw:KIF>

</iw:NodeSetContent>
<iw:isConsequentOf rdf:parseType=’daml:collection’>

(a NodeSet can be associated to a set of Inference steps)
<iw:InferenceStep>

<iw:hasInferenceRule rdf:parseType=’daml:collection’>
<iw:InferenceRule rdf:about=’../registry/IR/GMP.daml’/>

</iw:hasInferenceRule>
<iw:hasInferenceEngine rdf:parseType=’daml:collection’>

<iw:InferenceEngine rdf:about=’../registry/IE/JTP.daml’/>
</iw:hasInferenceEngine>
(...)

<iw:has Antecedent rdf:parseType=’daml:collection’>
(inference step antecedents are IW files with their own URIs)

<iw:NodeSet rdf:about=’../sample/IW3.daml#IW3’/>
<iw:NodeSet rdf:about=’../sample/IW4.daml#IW3’/>

</iw:hasAntecedent>
<iw:hasVariableMapping

rdf:type=’http://www.daml.org/2001/03/daml+oil#List’/>
(...)

</iw:InferenceStep>
</iw:isConsequentOf>

</iw:NodeSet>
</rdf:RDF>

Fig. 2. An Inference Web Proof.

5.2 Registry

The IW registry is a hierarchical interconnection of distributed repositories of
information relevant to proofs and explanations. Entries in the registry contain
the information linked to in the proofs. Every entry in the registry is a file
written in DAML+OIL. Also, every entry is an instance of a registry concept.
InferenceEngine, Language and Source are the core concepts in the registry.
Other concepts in the registry are related to one of these core concepts.

In order to interact with the IW registry, the IW provides a web agent regis-
trar that supports users in updating or browsing the registry. The registrar may
grant update or access privileges on a concept basis and it may define and im-
plement policies for accessing the registry. The current demonstration registrar
is available at: http://onto.stanford.edu:8080/iwregistrar/.

The InferenceEngine is a core concept since every inference step should
have a link to at least one entry of InferenceEngine that was responsible for
instantiating the inference step itself. For instance, Figure 2 shows that the
iw:hasInferenceEngine property of iw:InferenceStep has a pointer to JTP.-



122 D.L. McGuinness and P. Pinheiro da Silva

daml, which is the registry meta information about Stanford’s JTP12 model-
elimination theorem prover. Inference engines may have the following properties
associated with them: name, URL, author(s), date, version number, organiza-
tion, etc. InferenceRule is one of the most important concepts associated with
InferenceEngine. With respect to an inference engine, registered rules can be
either atomic or derived from other registered rules.

A screen shot from an IW registrar interface browsing the entry for the
generalized modus ponens (GMP) rule is presented in Figure 3. GMP is an
atomic inference rule for JTP13. Each of the inference rules includes a name,
description, optional example, and optional formal specification. An inference
rule is formally specified by a set of sentences patterns for its premises, a sentence
pattern for its conclusion, and optional side conditions. Patterns and conditions
are specified using KIF and a set of name conventions for KIF arguments. For
example, an argument @Si such as the @S1 and @S2 in Figure 3 says that it can
be bound to a sentence while @SSi says that it can be bound to a set of sentences.
Many reasoners also use a set of derived rules that may be useful for optimization
or other efficiency concerns. One individual reasoner may not be able to provide
a proof of any particular derived rule but it may point to another reasoner’s proof
of a rule. Thus, reasoner-specific rules can be explained in the registry before the
reasoner is actually used to generate IW proofs. Inference Web thus provides a
way to use one reasoner to explain another reasoner’s inference rules. (This was
the strategy used in [2] for example where the performance tableaux reasoner was
explained by a set of natural-deduction style inference rules in the explanation
system.) This strategy may be useful for explaining heavily optimized inference
engines. Inference Web’s registry, when fully populated, will contain inference
rule sets for many common reasoning systems. In this case, users may view
inference rule sets to help them decide whether to use a particular inference
engine.

Inference engines may use specialized language axioms to support a language
such as DAML or RDF. Language is a core IW concept. Axiom sets such as the
one specified in [11] may be associated with a Language. The axiom set may
be used as a source and specialized rewrites of those axioms may be used by a
particular theorem prover to reason efficiently. Thus proofs may depend upon
these language-specific axioms sets called LanguageAxiomSet in the IW. It is
worth noting that an entry of Language may be associated with a number of
entries of LanguageAxiomSet as different reasoners may find different sets of
axioms to be more useful. For example, JTP uses a horn-style set of DAML
axioms while another reasoner may use a slightly different set. Also, an entry of
an Axiom can be included in multiple entries of LanguageAxiomSet. The content
attribute of Axiom entries contains the axiom stated in KIF.

Source is the other core concept of the registry. Source is specialized into
five basic classes: Person, Team, Publication, Ontology, and Organization. At

12 http://www.ksl.stanford.edu/software/jtp/
13 GMP or any rule may be atomic for one reasoner while it may be derived for another

reasoner.



Infrastructure for Web Explanations 123

Fig. 3. Sample registry entry for an inference rule.

Fig. 4. Sample registry entry for an ontology.

the moment, we are expanding the specification of (authoritative) sources as
required. Thus, we are keeping a minimal description of these sources in the
initial specification used in the IW. Entries of Ontology, for example, describe
stores of assertions that may be used in proofs. It can be important to be able to
present information such as ontology source, date, version, URL (for browsing),
etc. Figure 4 contains a sample ontology registry entry for the ontology used in
our wine examples.



124 D.L. McGuinness and P. Pinheiro da Silva

5.3 Explanations

Although essential for automated reasoning, inference rules such as those used
by theorem provers and registered in the registry as InferenceRule entries are
often inappropriate for “explaining” reasoning tasks. Moreover, syntactic ma-
nipulations of proofs based on atomic inference rules may also be insufficient
for abstracting machine-generated proofs into some more understandable proofs
[12]. Proofs, however, can be abstracted when they are rewritten using rules de-
rived from axioms and other rules. Axioms in rewriting rules are the elements
responsible for aggregating some semantics in order to make the rules more
understandable. Entries of DerivedRule are the natural candidates for storing
specialized sets of rewriting rules. In the IW, tactics are rules associated with
axioms, and are used independent of whether a rule is atomic or derived.

Many intermediate results are “dropped” along with their supporting ax-
ioms, thereby abstracting the structure of proofs. The user may always ask
follow-up questions and still obtain the detail, however the default explana-
tion provides abstracted explanations. The general result is to hide the core
reasoner rules and expose abstractions of the higher-level derived rules. An ex-
ample of an IW explanation is described in the Inference Web web page at:
http://www.ksl.stanford.edu/software/iw/Ex1/. The implementation of the IW
explainer is work in progress. The explainer algorithm generate explanations in
a systematic way using the derived rules related to a selected language axiom
set.

5.4 Browser

Inference Web includes a browser that can display both proofs and their expla-
nations in a number of proof styles and sentence formats. Initially, we include
the “English”, “Proof” and “Dag” styles and the restricted “English” and “KIF”
formats14. We also expect that some applications may implement their own dis-
plays using the IW API. The browser implements a lens metaphor responsible
for rendering a fixed number of levels of inference steps depending on the lens
magnitude setting. The prototype browser allows a user to see up to five levels of
inference steps simultaneously along with their derived sentences and antecedent
sentences.

Figure 5 presents two levels of inference step for one wine use case in Section 4.
Prior to this view, the program has asked what wine to serve with a seafood
course. In Figure 5, one can see that New-course, which is the selected meal
course, requires a drink that has a white color since it is a seafood course. The
sentences are formatted in English and the lens magnitude is two, thus the
browser displays the inference steps used to derive it including its antecedents
and the antecedent’s derivations.

We believe that one of the keys to presentation of justifications is breaking
proofs into separable pieces. Since we present fragments, automatic follow-up
14 Current investigations are underway for an N3 format as well.



Infrastructure for Web Explanations 125

Fig. 5. An Inference Web Browser screen.

question support is a critical function of the IW browser. Every element in the
viewing lens can trigger a browser action. The selection of an antecedent re-
focuses the lens on an antecedent’s inference step. For other lens elements, asso-
ciated actions present registry meta-information. The selection of the consequent
presents details about the inference engine used to derive the actual theorem.
The selection of an inference rule presents a description of the rule. The selection
of the source icon beside sentences associated with source documents presents
details about sources where the axiom is defined. In Figure 5, selecting the con-
sequent would present information about JTP - the inference engine used to
derive it. Selecting GMP - the inference rule, would present information about
JTP’s Generalized Modus Ponens rule as presented in Figure 3.

6 Contributions and Future Work

The Wine Agent15 and the DAML Query Language Front-End16 are Semantic
Web agents supported by the Inference Web. These agents are based on the
Stanford’s JTP theorem prover that produces portable proofs. The IW registry
is populated with JTP information: one InferenceEngine entry for the reasoner

15 http://onto.stanford.edu:8080/wino/
16 http://onto.stanford.edu:8080/dql/servlet/DQLFrontEnd



126 D.L. McGuinness and P. Pinheiro da Silva

itself, nine entries for its primitive inference rules, one entry for its set of DAML
axioms, and 56 entries for the axioms.

Beyond just explaining a single system, Inference Web attempts to incorpo-
rate best in class explanations and provide a way of combining and presenting
proofs that are available. It does not take one stance on the form of the expla-
nation since it allows deductive engines to dump single or multiple explanations
of any deduction in the deductive language of their choice. It provides the user
with flexibility in viewing fragments of single or multiple explanations in mul-
tiple formats. IW simply requires inference rule registration and portable proof
format.

Revisiting the Inference Web requirements in Section 3, we can identify the
following contributions:

• Support for knowledge provenance is provided by: the portable proof specifi-
cation that allows node sets to be associated with sources; and the registry
that supports meta information for annotating sources.

• Support for reasoning information is provided by: the proof specification that
supports a comprehensive representation of proof trees; and the registry that
supports meta information for annotating inference engines along with their
primitive inference rules. Also, the proof specification provides support for
alternative justifications by allowing multiple inference steps per node set
and the proof browser supports navigation of the information.

• Support for explanation generation is provided by the registry that supports
both formal and informal information about languages, axioms, axiom sets,
derived and rewrite rules. Rewrite rules provide the key to abstracting com-
plicated proofs into more understandable explanations. The proof support
for alternative justifications allows derivations to be performed by perfor-
mance reasoners with explanations being generated by alternative reasoners
aimed at human consumption.

• Support for distributed proofs are provided by the IW architecture. Portable
proofs are specified in the emerging web standard DAML+OIL so as to lever-
age XML-, RDF-, and DAML-based information services. Proof fragments
as well as entire proofs may be combined and interchanged.

• Support for proof presentation is provided by a lightweight proof browsing
using the lens-based IW browser. The browser can present either pruned
justifications or guided viewing of a complete reasoning path.

We are currently extending SRI’s SNARK17 theorem prover to produce
portable proofs and simultaneously populating the IW registry with SNARK
information. Also, we are in the process of discussing the registration of the
W3C’s CWM18 theorem prover in the Inference Web.

Future work includes the registration of more inference engines. Explana-
tions for some proofs can be automatically created as presented in http://www.

17 http://www.ai.sri.com/˜stickel/snark.html
18 http://www.w3.org/2000/10/swap/doc/cwm.html



Infrastructure for Web Explanations 127

ksl.stanford.edu/software/IW/Ex1. Currently, we are developing tools for gener-
ating tactics that are required for explaining other proofs. We also intend to pro-
vide specialized support for why-not questions expanding upon [6] and [13]. We
are also looking at additional support for proof browsing and pruning. We have
also initiated conversations with the verification community in order to provide a
portable proof and registry format that meets their needs as well as meeting the
needs of the applications that require explanation. Initial discussions at least
for utilizing registry inference rule information with ”correct-by-construction”
software environments such as Specware19 appear promising.

7 Conclusion

Inference Web enables applications to generate portable explanations of their
conclusions. We identified the support for knowledge provenance, reasoning in-
formation, explanation generation, distributed proofs, and proof presentation as
requirements for explanations in the web. We described the major components
of IW - the portable proof specification based on the emerging web language-
DAML (soon to be updated to OWL) supporting proofs and their explanations,
the registry, and the IW proof browser. We described how Inference Web fea-
tures provide infrastructure for the identified requirements for web explanations.
We facilitated use in a distributed environment by providing IW tools for regis-
tering and manipulating proofs, proof fragments, inference engines, ontologies,
and source information. We also facilitated interoperability by specifying the
portable proof format and providing tools for manipulating proofs and frag-
ments. We have implemented the IW approach for two Semantic Web agents
based on JTP and are in discussions with additional reasoner authors to include
more reasoning engines. We have presented the work at government sponsored
program meetings(RKF, DAML, AQUAINT, and NIMD) to gather input from
other reasoner authors/users and have obtained feedback and interest. Current
registration work includes SRI’s SNARK and W3C’s CWM.

Acknowledgments. Many people have provided valuable input to our work.
Thanks in particular go to colleagues at KSL including Richard Fikes, Jessica
Jenkins, Gleb Frank, Eric Hsu, Bill MacCartney, Rob McCool, Sheila McIlraith,
and Yulin Li for input on JTP, our specification or applications. Also thanks
go to a number of colleagues in some government programs who provided input
including Hans Chalupsky, Peter Clark, Ken Forbus, Ken Murray, and Steve
Reed. All errors, of course are our responsibility.

This work is supported by the following grants DARPA F30602-00-2-0579,
N66001-00-C-8027, NBCHD030010, and ARDA H278000*000 and H768000*
000/4400049114.

19 http://www.kestrel.edu/HTML/prototypes/specware.html



128 D.L. McGuinness and P. Pinheiro da Silva

References

[1] Alex Borgida, Enrico Franconi, and Ian Horrocks. Explaining ACL Subsumption.
In Proc. of the 14th European Conf. on Artificial Intelligence (ECAI2000), pages
209–213. IOS Press, 2000.

[2] Alex Borgida, Enrico Franconi, Ian Horrocks, Deborah L. McGuinness, and Pe-
ter F. Patel-Schneider. Explaining ALC Subsumption. In Proc. of the Interna-
tional Workshop on Description Logics (DL’99), pages 33–36, Linköping, Sweden,
July 1999.

[3] Alex Borgida and Deborah L. McGuinness. Asking Queries about Frames. In Pro-
ceedings of Fifth International Conference on the Principles of Knowledge Rep-
resentation and Reasoning, Cambridge, Massachusetts, November 1996. Morgan
Kaufmann.

[4] Robert Boyer, Matt Kaufmann, and J. Moore. The Boyer-Moore Theorem Prover
and Its Interactive Enhancements. Computers and Mathematics with Applications,
29(2):27–62, 1995.

[5] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A
Characterization of Data Provenance. In Proceedings of 8th International Con-
ference on Database Theory, pages 316–330, January 2001.

[6] Hans Chalupsky and Tom Russ. WhyNot: Debugging Failed Queries in Large
Knowledge Bases. In Proc. of the 14th Innovative Applications of Artificial Intel-
ligence Conference (IAAI-02), pages 870–877, 2002.

[7] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, Pe-
ter F. Patel-Schneider, and Lynn Andrea Stein. DAML+OIL (March 2001) Refer-
ence Description. Technical Report Note 18, World Wide Web Committee (W3C),
December 2001.

[8] Aseem Das, Wei Wu, and Deborah L. McGuinness. Industrial Strength Ontology
Management. In Isabel Cruz, Stefan Decker, Jerome Euzenat, and Deborah L.
McGuinness, editors, The Emerging Semantic Web. IOS Press, 2002.

[9] Amy Felty and Dale Miller. Proof Explanation and Revision. Technical Report
MSCIS8817, University of Pennsylvania, 1987.

[10] Richard Fikes, Pat Hayes, and Ian Horrocks. DAML Query Language (DQL)
Abstract Specification. Technical report, W3C, 2002.

[11] Richard Fikes and Deborah L. McGuinness. An Axiomatic Semantics for RDF,
RDF-S, and DAML+OIL (March 2001). Technical Report Note 18, W3C, De-
cember 2001.

[12] Xiaorong Huang. Reconstructing Proofs at the Assertion Level. In Proceedings of
CADE-94, LNAI-814, pages 738–752. Springer, 1994.

[13] Deborah L. McGuinness. Explaining Reasoning in Description Logics. PhD thesis,
Rutgers University, 1996.

[14] Deborah L. McGuinness and Alex Borgida. Explaining Subsumption in Descrip-
tion Logics. In Proc. of the 14th International Joint Conference on Artificial
Intelligence, pages 816–821, Montreal, Canada, August 1995. Morgan Kaufmann.

[15] Deborah L. McGuinness and Peter Patel-Schneider. From Description Logic
Provers to Knowledge Representation Systems. In Franz Baader, Diego Calvanese,
Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors, The De-
scription Logic Handbook: Theory, Implementation, and Applications, pages 265–
281. Cambridge University Press, 2003.

[16] Deborah L. McGuinness and Paulo Pinheiro da Silva. Trusting Answers on
the Web. In Mark T. Maybury, editor, New Directions in Question Answering.
AAAI/MIT Press. To appear.



Infrastructure for Web Explanations 129

[17] Deborah L. McGuinness and Paulo Pinheiro da Silva. Registry-Based Support for
Information Integration. In Proceedings of IJCAI-2003 Workshop on Information
Integration on the Web (IIWeb-03), pages 117–122, Acapulco, Mexico, August
2003.

[18] Edward Hance Shortliffe. Computer-Based Medical Consultations: MYCIN. Else-
vier/North Holland, New York, NY, USA, 1976.

[19] Michael Smith, Deborah L. McGuinness, Raphael Volz, and Chris Welty. Web
Ontology Language (OWL) Guide Version 1.0. Technical Report Working Draft,
World Wide Web Committee (W3C), 2003.

[20] W. Swartout, C. Paris, and J. Moore. Explanations in Knowledge Systems: Design
for Explainable Expert Systems. IEEE Intelligent Systems, June 1991.


	Introduction
	Background and Related Work
	Requirements
	Support for Knowledge Provenance
	Support for Reasoning Information
	Support for Explanation Generation
	Support for Distributed Proofs
	Support for Proof Presentation

	Use Cases
	Inference Web
	Portable Proof
	Registry
	Explanations
	Browser

	Contributions and Future Work
	Conclusion

