
Translating XML Web Data into Ontologies

Yuan An and John Mylopoulos

University of Toronto, Canada
{yuana,jm}@cs.toronto.edu

Abstract. Translating XML data into ontologies is the problem of find-
ing an instance of an ontology, given an XML document and a specifi-
cation of the relationship between the XML schema and the ontology.
Previous study [8] has investigated the ad hoc approach used in XML
data integration. In this paper, we consider to translate an XML web
document to an instance of an OWL-DL ontology in the Semantic Web.
We use the semantic mapping discovered by our prototype tool [1] for the
relationship between the XML schema and the ontology. Particularly, we
define the solution of the translation problem and develop an algorithm
for computing a canonical solution which enables the ontology to answer
queries by using data in the XML document.

1 Introduction

XML has become an accepted standard for publishing data on the Web. To
integrate XML data, a former paper [8] has studied the ad hoc approach to
translating various XML documents into a central ontology instance. In this
paper, we study a generic and a formal framework for translating an XML doc-
ument into an instance of an ontology. The following example illustrates the
problem. Suppose we have an XML document X :
<db>

<student sname=’’Jerry’’>

<takes>

<course title=’’Database Theory’’/>

<course title=’’Combinatorial Optimization’’/>

</takes>

<advisor pname=’’John’’/>

</student>

</db>

Suppose we have an ontology shown graphically in Figure 1 using UML
notation. Given a natural mapping semantically relating the XML schema to the
ontology, we would expect that an instance of the ontology contains the following
assertions: Student(t1), Course(t2), Course(t3), Professor(t4), hasName(t1,”Jerry”),

hasTitle(t2,”Data base Theory”), hasTitle(t3,”Combinatorial Optimization”), hasName

(t4,”John”), takes(t1,t2), takes (t1,t3), hasAdvisor(t1,t4), Professor(u1), Professor(u2),

Course(u3), teaches(u1,t2), teaches(u2, t3), teaches(t4,u3), where ti i = 1, ..., 4 and
uj j = 1, ...3 are anonymous individuals in the ontology.

Note that the difference between tis and ujs is that the original XML doc-
ument provides no information about the individuals u1, u2 and u3. They were
deduced by the ontology constraints. However, if we replace u1 and u2 by t4, then
the resulting instance will still satisfy all constraints and it says that professor
t4 teaches both courses t2 and t3. Alternatively, we could also construct an in-
stance in which the professor t4 teaches only the course t2, while the course t3 is
taught by some unknown professor u2. This tells us that there could be different
instances that are consistent with the ontology and satisfy a given mapping from
the XML schema to the ontology. So if we are given a source document X shown
above and a query over the ontology, how can we answer it? If our query is, for
example, What is the name of the person who is the advisor of the person whose
name is Jerry? The answer is John regardless of a particular instance that was
created for the ontology. As another example, consider the query What is the
title of the course taught by Jerry’s advisor? This query cannot be answered
with certainty in this scenario.

Ontologies play a central

-hasName

Person

-hasName

Student

-hasName

Professor

-hasTitle

Course

hasAdvisor

takes

teaches

1..*

1..*

1..*
1..*

1..1

0..*

Fig. 1. An Ontology

role in the Semantic web. Re-
cently, W3C has recommended
the OWL web ontology lan-
guage for describing ontolo-
gies in the Semantic Web. If
an XML document needs to
be translated into an OWL
ontology, the resulting ontol-
ogy should preserve the infor-
mation in the XML document and be able to answer queries by using these infor-
mation. Consequently, a translation involves specifying a mapping, checking the
consistency, and preserving information. In this paper, we consider the OWL-DL
ontology language because of its close relationship with Description Logics. As a
result, the OWL-DL ontology language enable us to develop a translation algo-
rithm. The overall framework is generic in the sense that the theoretical issues
apply to many translation problems between databases and ontologies.

The rest of the paper is organized as follows. Section 2 presents the formal
specifications about OWL-DL ontology and XML. Section 3 defines the problem
and Section 4 defines the canonical solution. Section 5 develops the algorithm,
and finally, Section 6 gives the conclusions.

2 Preliminaries

We assume readers are familiar with the standard notations and semantics of De-
scription Logics, though we summarize here one flavor relating to the OWL-DL
web ontology language. OWL-DL is closely related to the SHOIN (D) descrip-
tion logic [5], and the meanings of its terminology can be found in [4, 5].

A datatype theory D is a mapping from a set of datatypes to a set of values.
The datatype (or concrete) domain, written ∆I

D
, is the union of the mappings

of the datatypes. Let R be set of role names consisting of a set of abstract role
names RA and a set of concrete role names RD. The set of SHOIN -roles (or
roles for short) consist of a set of abstract roles RA∪{R−|R ∈ RA} and a set
of concrete roles RD. An RBox R consists of a finite set of transitivity axioms
Trans(R), and role inclusion axioms of the form R v S and T v U , where R and
S are abstract roles, and T and U are concrete roles. v∗ denotes the reflexive-
transitive closure of v on roles, i.e., for two abstract roles R, S, S v∗ R∈R if
S and R are the same, S v R ∈ R, Inv(S) v Inv(R) ∈ R, or there exists some
role Q such that S v∗ Q ∈ R and Q v∗ R ∈ R. A role not having transitive
sub-roles is called a simple role, and Inv(R) = R−.

The set of SHOIN (D) concepts is defined by the following syntactic rules,
where Cis are concepts, A is an atomic concept, R is an abstract role, S is an
abstract simple role, T is a concrete role, oi are individuals, D is a datatype,
and n is a non-negative integer:

C → A|¬C|C1 u C2|C1 t C2|∃R.C|∀R.C| ≥ nS| ≤ nS|
{o1, .., on}| ≥ nT | ≤ nT |∃T.D|∀T.D

A TBox T consists of a finite set of concept inclusion axioms C1 v C2; an
ABox A consists of a finite set of concept and role assertions and individual
(in)equalities C(a), R(a, b), a = b, a 6= b, respectively. A SHOIN (D) knowl-
edge base (an ontology) O = (T ,R,A) consists of a TBox T , an RBox R, and
an ABox A. The semantics of SHOIN (D) is given by means of an interpre-
tation I = (∆I , ·I) consisting of an non-empty domain ∆I , disjoint from the
datatype domain ∆I

D
, and a mapping ·I , which interprets atomic and complex

concepts, roles, axioms, and assertions in the standard description logic way. An
interpretation I is a model of the knowledge base O = (T ,R,A) if I satisfies
every concept, axiom, and assertion in O. From the database perspective, the
TBox T and the RBox R can be viewed as a schema with unary and binary
relational tables, and the ABox A can be viewed as an instance. An ABox A
is consistent with respect to O if there is a model of (T ,R,A) (we say O is
consistent). A concept or role assertion β is a logical consequence of an ABox A
(written A |= β), if for every model of A w.r.t < T ,R >, β is true. We write
O |= β for β is a logical consequence of the ontology.

An XML document is typically modeled as a node-labeled tree. For our pur-
pose, we assume that each XML document is described by an XML schema
consisting of a set of element and attribute type definitions. Specifically, we as-
sume the following countably infinite disjoint sets: Ele of element names, Att
of attribute names, and Dom of simple type names including the built-in XML
schema datatypes. Attribute names are preceded by a ”@” to distinguish them
from element names. Given finite sets E ⊂Ele and A ⊂Att, a XML schema
S = (E,A, τ, ρ, κ) specifies the type of each element ` in E, the attributes that `
has, and the datatype of each attribute in A. Specifically, An element type τ is de-
fined by the grammar τ ::= ε|Sequence[`1 : τ1, ...`n : τn]|Choice[`1 : τ1, .., `n : τn]
(`1, .., `n ∈ E), where ε is for the empty type, and Sequence and Choice are com-
plex types. Each element associates an occurrence constraint with two values:

minOccurs indicating the minimum occurrence and maxOccurs indicating the
maximum occurrence. The set of attributes of an element ` ∈ E is defined by the
function ρ : E → 2A; and the function κ : A →Dom specifies the datatypes of
attributes in A. Each datatype name associates with a set of values in a domain
Dom. In this paper, we do not consider the simple type elements (correspond-
ing to DTD’s PCDATA), assuming instead that they have been represented
using attributes. Furthermore, a special element r ∈ E is the root of the XML
schema such that ρ(r) = ∅, and we assume that for any two element `i, `j ∈ E,
ρ(`i) ∩ ρ(`j) = ∅.

An XML document X = (N,<, r, λ, η) over (E,A) consists of a set of nodes
N , a child relation < between nodes, a root node r, and two functions such as:

– a labeling function λ:N → E ∪A such that if λ(v) = ` ∈ E, we say that v is
in the element type `; if λ(v) = @a ∈ A, we say that v is an attribute @a;

– a partial function η:N → Dom for every node v with λ(v) = @a ∈ A,
assigning values in domain Dom that supplies values to simple type names
in Dom.

An XML document X = (N,<, r, λ, η) conforms to a schema S = (E,A, τ, ρ, κ),
denoted by X |= S, if:

1. for every node v in X with children v1, .., vm such that λ(vi) ∈ E for i =
1, ...,m, if λ(v) = `, then λ(v1),..., λ(vm) satisfies τ(`) and the occurrence
constraints.

2. for ever node v in X with children u1, ..., un such that λ(ui) = @ai ∈ A for
i = 1, ..., n, if λ(v) = `, then λ(ui) = @ai ∈ ρ(`), and η(ui) is a value having
datatype κ(@ai).

Now we turn to the mapping language relating a pattern in an XML schema with
a formula in an ontology. On the XML side, the basic component is attribute for-
mulas [2], which are specified by the syntax α ::= `|`(@a1 = x1, ..,@an = xn),
where ` ∈ E, @a1, ..,@an ∈ A, E and A are element names and attribute
names respectively; and variables x1, .., xn are the free variables of α. Tree-
pattern formulas over an XML schema S = (E,A, τ, ρ, κ) are defined by ψ ::=
α|α[ϕ1, .., ϕn], where α ranges over attribute formulas over (E,A). The free vari-
ables of a tree formula ψ are the free variables in all the attribute formulas that
occur in it. For example, Company[Department[employee(@eid = x1)[manager
(@mid = x2) [employee(@eid = x3)]]]] is a tree formula.

An attribute formula is evaluated in a node of an XML document, and values
for free variables come from domain Dom. If X is an XML document over (E,A)
and v a node of X , then

– (X , v) |= ` iff λ(v) = `, for ` ∈ E.
– if α(x1, ..., xn)= `(@a1 = x1, ..,@an = xn), then (X , v) |= α(s1, ..., sn), where
s1, ..., sn ∈ Dom, iff λ(v) = `, and for each child vi of v such that λ(vi) = @ai,
η(vi) = si for i ∈ [1, ..n].

Given a document X , a tree-pattern formula ψ(x), and a tuple s from Dom,
ψ(s) is satisfied in X (written X |= ψ(s)) if there is a witness node v for ψ(s).
Formally, a witness node for a ψ(s) is defined as follows:

– v is a witness node for α(s), where α is an attribute formula, iff (X , v) |= α(s).
– v is witness node for α(s)[ψ1(s1),...,ψm(sm)] iff (X , v) |= α(s) and there are
m children v1, ..., vm of v such that each vi is a witness node for ψi(si), for
i = 1, ...,m.

On the ontology side, we use conjunctive formulas with annotations, which treat
atomic concepts and roles as unary and binary predicates, respectively. For ex-
ample, given an ontology containing the atomic concept Employee and roles
hasId, hasManager, and manages, the following is a mapping formula,
Company[Department[

employee(@eid = x1)[
manager (@mid = x2) [

employee (@eid=x3)]]]] →
Employee(Y1), hasId(Y1, x1), Employee(Y2), hasId(Y2, x2),
hasManager(Y1, x2), Employee(Y3), hasId(Y3, x3), manages(Y2, Y3)::
identif(Y1, x1), identif(Y2, x2), identif(Y3, x3).

There are two sorts of variables. One sort of variables denoted, e.g., by Yis,
represent the individuals in the ontology, and another sort of variables denoted,
e.g., by xjs, represent data values containing the attribute values in the XML
document and concrete values in the ontology. Since attribute values in the XML
document come from the domain Dom, while concrete values in the ontology
come from domain ∆I

D
, we assume that each mapping formula implies a set

of conversion functions such that when the single variable name xj is used on
both sides, both datatypes in the corresponding positions are matched through
an implicit conversion function. We denote by ConstValue the set of all data
values that occur in the XML document and we also call them constant values.
In addition, we assume an infinite set VarValue which we call variable values
including an infinite set Individual of individuals and an infinite set DataValue
of data values. We require that ConstValue∩VarValue=∅.

The annotation comes after :: in the mapping formula. Each predicate in
the annotation is of the form identif(Y,Z) in which Y is an individual variable
and Z is a tuple of variables. The meaning of identif(Y,Z) is as follows. The
information in XML document indicates that an individual belonging to the
concept C in which Y is the placeholder variable, i.e, C(Y) appearing in the
formula, can be identified by a set of roles P1,...,Pn in the ontology, whereas
P1,...,Pn bind Y with Z in the formula, i.e., P1(Y,Z1),...,Pn(Y,Zn) appear. We
will see later that the annotation is important during the translation and for
consistency checking in the ontology. To specify the mapping formulas, we have
proposed a semi-automatic tool MAPONTO in [1].

3 The Problem of Translating XML data into Ontologies

We now define the problem of translating XML into ontologies (X-to-O).

Definition 1 (Semantics of Mapping Formulas). Given an XML schema
S and an ontology O =< T ,R,A >, a mapping formula is an expression of the
form:

Ψ : ψ(x)→ ϕ(Y , x) :: annotation. (1)

where ψ(x) is a tree-pattern formula over S, ϕ(Y , x) is a conjunctive formula
over atomic concept and role names of O, and Y and x have no variables in
common.

Given an XML document X conforming to S and an ontology instance A
consistent with O, we say that the pair < X ,A > satisfies the formula (1) if
whenever there is a tuple s such that X |= ψ(s), there exists a tuple t such that
for each assertion β in the formula ϕ(t, s), A |= β.

Definition 2 (X-to-O problem). The problem of translating XML data into
ontologies (X-to-O) is a triple (S,O, ΣSO), where S =< E,A, τ, ρ, κ > is an
XML schema, O =< T ,R,A > is an ontology, and ΣSO is a set of mapping
formulas between S and O.

Definition 3 (Solutions). Given an X-to-O problem P = (S,O, ΣSO) and an
XML document X conforming to S, an instance A consistent with O such that
< X ,A > satisfies all formulas in ΣSO is called a solution for P.

Recall the Data Exchange problem [3, 2]. A data exchange setting is a tuple
(S,T, Σst, Σt), where S is a source schema, T is a target schema, Σst is a set of
source-to-target dependencies, or STDs, that express the relationship between S
and T, and Σt is a set of constraints on the target schema. A solution of the
data exchange problem is an instance J over the target schema T when given
an instance I over the source schema S, such that I and J together satisfy all
formulas in Σst and Σt. In general, there may be many different solutions for a
given instance I, and under target constraints, there may be no solutions at all.
If one poses query Q over the target schema, and a source instance I is known,
the usual semantics in data exchange uses certain answers. A key problem in
data exchange is to find a particular solution J0 so that certain(Q, I) can be
obtained by evaluating some query over J0.

Coming back to X-to-O problem, we have defined that the source is an XML
schema and the target is an ontology. By analogy, our mapping formulas are the
source-to-target dependencies that express the relationships between the XML
schema and the ontology. Given an XML document conforming to the XML
schema, we want to compute a consistent instance of the ontology, such that the
XML document together with the ontology instance satisfy all formulas in the
mapping. The major difference from the data exchange problem is that with an
ontology as the target, computing a solution calls for a different algorithm.

4 Canonical Solution

As illustrated by the example in Section 1, there could be many solutions for
an X-to-O problem. In this section, we define the canonical solution in terms of

answering queries against ontologies. For the query language, we use a simple
conjunctive query language (CQ0) which can represent most of the proposed
query languages for RDF data (e.g., SPARQL [7]). Formally, a CQ0 query is of
the form:

Q : q(x)← p1(Y1), p2(Y2), ..., pn(Yn). (2)

where x is a tuple of variables or constants which take values from concrete
(datatype) domains (e.g., Integer, String, etc.), Y1, ..., Yn are tuples of variables
or constants which take values from both concrete domains and individuals (e.g.,
object identifiers), and we require x ⊂ Y1 ∪ ...∪ Yn. The predicates p1, ..., pn are
atomic concept and (abstract and concrete) role names in an ontology. The
predicate q is an ordinary predicate with an arity m = |x|. Let Const denote
the set of constants appearing in an ontology, Var denote a set of variables, and
Const∩Var=∅. Let h:Const∪Var→Const be a mapping from a tuple of variables
or constants to a tuple of constants such that if c ∈Const, h(c) = c. Given an
ontology O =< T ,R,A > with an instance A, the answer of the query (2) is
defined as a set of tuples of concrete (datatype) values {s} such that for each
tuple s there is a mapping h such that h(x) = s and there are tuples h(Yi),
O |= pi(h(Yi)) for each i = 1, ..., n. A CQ0 query only returns tuples consisting
of datatype values.

Assume that we are given an X-to-O problem (S,O, ΣSO), an XML document
X conforming to S, and a CQ0 query Q against the ontology. What does it mean
to answer Q? As in the data exchange problem [3], since there may be many
possible solutions to the X-to-O problem, we define the semantics of Q in terms
of certain answers:

certain(Q,X) =
⋂

A′ is a solution

Q(A′) (3)

where, Q(A′) is the answers of the query Q evaluated over the solution A′.
Thus, a tuple s of datatype values is in the set of certain answers certain(Q,X),
if s ∈ Q(A′) for every solution A′ of the X-to-O problem.

Definition 4 (Canonical Solution). Given an X-to-O problem and a CQ0

query Q against the ontology. A solution A is a canonical solution if it produces
the certain answers when given an XML document X conforming to the XML
schema.

5 Computing a Canonical Solution

Given an X-to-O problem P = (S,O, ΣSO), we assume that the ontology O =<
T ,R,A > is satisfiable. For each mapping formula Ψ : ψ(x) → ϕ(Y , x) ::
annotation, the formula ϕ(Y , x) has the form Ci(Yi),...,Pi (Yi, Yj),...,Ti(Yi, xij

),...
where Ci is an atomic concept name, Pi is an abstract role name, Ti is a concrete
role name, and x={...xij

...}. We assume that ϕ(Y , x) is consistent with the ontol-

ogy O (written O |= ϕ(Y , x)), which means that for each model I =< ∆I , ·I >

of O, the interpretation function ·I can be extended to the variables in ϕ(Y , x)

in such a way that I satisfies every atom in ϕ(Y
I
, xI).

Informally, to compute a canonical solution when given a mapping formula
Ψ and an XML document X , we start from an initial ontology O0=< T , R,
A0 > and add new assertions Ci(ti), Pi(ti, tj), and Ti(ti, sij

) in turn to generate
a series of ABoxes A1, A2, A3..., whenever there is a tuple s∈ConstValue such
that X |= ψ(s). The assertions Ci(ti), Pi(ti, tj), and Ti(ti, sij

) are instantiated

from the mapping formula by substituting s for x and by substituting t for Y ,
where t is a tuple of values in Individual. When adding these assertions, some
extra assertions will probably be added according to axioms in TBox and RBox.
There will be a finite number of ABoxes A1, A2, ...,An because there are finite
number of tuples in X satisfying the mapping formula and the propagation we
will use terminates. Before presenting the algorithm, we first describe how to
generate t.

Let Skolem be a set of function symbols each of which has an arity. For a
function symbol fC of arity n w.r.t. the concept C, the value of applying fC

to a set of values d1, ..., dn ∈ConstValue∪Individual is denoted as fC(d1, .., dn).
We require that fC(d1, .., dn) is in the set Individual and two fC(d1, ..., dn) are
equal iff they are syntactically equivalent. We choose t as follows. Suppose the
annotation of the formula Ψ has a predicate identif(Yi, Z), where Ci(Yi) is in
Ψ . If Z consists of only variables in x, then let ti=fCi

([Z/s]) ([Z/s] means
substituting s for the variables in Z w.r.t. the substitution of x in ϕ(Y , x));
else ti=fCi

([Z/s ∪ tj]), where each tj is an individual chosen recursively for
individual variables in Z. The process terminates due to the propagation of the
tree structures in XML documents in the annotation.

To detect any inconsistent ABox during the process of computing the canon-
ical solution, we add extra assertions in addition to the assertions instantiated
from the mapping formula. A set of propagation rules serves this purpose. The
propagation rules are derived from the axioms in the TBox and RBox, and they
only apply to the individuals constructed by Skolem functions. We assume that
all inclusion axioms in TBox are concept definition and the TBox is acyclic. That
means only axioms of the form CN v C or CN

.
= C are in TBox, where CN is

a concept name, and C does not directly or indirectly refer to CN .
Here are the propagation rules. For an ABox Ai and individuals t of the form

fC(s) where fC is a Skolem function symbol, we add new assertions which do
not exist previously to Ai by the following rules:

1. adding C(t) if CN(t) and CN v C or CN
.
= C are in TBox;

2. adding C1(t) and C2(t) if (C1 u C2)(t) is in Ai;
3. adding C(t1) (v ∈ d) if (∀R.C)(t) and R(t, t1) (resp. (∀T.d)(t) and T (t, v))

are in Ai;
4. adding R(t, u) and C(u) (T (t, v) and v ∈ d) if (∃R.C)(t) (resp. (∃T.d)(t)) is

in Ai and there is no R(t, u) (resp. T (t, v));
5. adding P (t, t1) (or P (t1, t)) if R(t, t1) (or R(t1, t)) is in Ai and R v∗ P in

RBox;
6. replacing t with one of {o1, ..., on} if {o1, ..., on}(t) is in Ai;

7. adding C1(t) or C2(t) if (C1 t C2)(t) is in Ai;
8. replacing the occurrences of ti with tj for an individual ti not computed by

a Skolem function and an individual tj of the form fC(s), if (≤ nR)(t) is in
Ai and there exists tk k = 1, ..., n+ 1 such that R(t, tk) exists.

Rules 1-5 above are deterministic and rules 6-8 are nondeterministic. There is
only one generating rule 4.) which generates u from VarValue but u does not use
Skolem functions; therefore, the propagation will terminate for a tree structure
with depth at most 1.

A number restriction clash is the situation in that some abstract role R (resp.
concrete role T), (≤ nR)(t) (resp. (≤ nT)(t)) is in Ai and there are n+1 different
individuals t1, ..., tn+1 (resp. values v1, ..., vn+1) such that R(t, tj) (resp. T (t, vj))
in Ai for j = 1, ..., n+1. If an ABox Ai contains a number restriction clash when
adding assertions either by instantiating the mapping formula or by applying the
propagation rules, then no canonical solution exists and the algorithm returns
immediately with an empty solution. Otherwise, the algorithm terminates and
generates a series of consistent ABoxes A0,A1, ...,An. Starting from a consistent
initial ABox A0, for the last ABox An, we have the following property:

Lemma 1. An is a solution.¤

Proof. (Sketch) An contains all assertions which can be constructed from the
mapping formulas and tuples s such that X |= ψ(s). What we need to prove is
that An is consistent. To do this, we will use the sound and complete tableaux
algorithm for deciding SHOIN (D) knowledge bases. The algorithm is shown
in the papers [4, 5]. They show that if a knowledge base is satisfiable, then the
algorithm does not generate any clashes.

The propagation rules used in our algorithm for computing a canonical solu-
tion is a subset of the expansion rules for deciding SHOIN (D) knowledge bases.
However, in contrast to application of the expansion rules, our propagation rules
only apply to individuals computed from the mapping formula and tuples in the
XML document. Each individual has the form of fC(s).

Then it suffices to prove that if An does not contains the number restriction
clash, then the decision procedure does not generate any clashes. ¤

Further, we have

Proposition 1. An is a canonical solution. That is, given an XML document
X and a CQ0 query Q, Q(An) = certain(Q,X). ¤

Proof. Suppose Q is q(x)← p1(Y1),...,pn(Yn).
Lemma 1 has shown that An is a solution.
Let s be a tuple of data values. If s∈Q(An), then there is a mapping h from

x to s such that (T , R, An)|= pi(h(Yi)) for each i. We need to prove that for
every solution A, s ∈ Q(A), i.e., (T ,R,A) |= pi(h(Yi)) for each i. Suppose a
mapping formula Ψ is in the form ψ(x) → ϕ(Y , x):: annotation. Let A be a
solution and let I=< ∆I , ·I > be a model of (T , R, A). Since A is a solution
w.r.t. X , then < X , A > satisfies all Ψs in ΣSO, i.e., for a tuple s′ in X such

that X |=ψ(s′), there is a tuple t in Individual such that A|=ϕ(t, s′) for each
formula ϕ(Y , x). By the construction of An, we know that if there is a tuple s′

in X such that X |= ψ(s′), then we add each assertion in the formula ϕ(t, s′)
to An and An contains all and only the assertions which can be constructed
from all mapping formulas ϕ(t, s′) and the axioms in TBox and RBox. Let A′

n

be the set of assertions instantiated from all formula ϕ(t, s′) and A′′
n be the set

of assertions added by applying propagation rules. Since A |= ϕ(t, s′) for each
formula ϕ(t, s′), A |=A′

n. Hence, the model of (T ,R,A), I =< ∆I , ·I >, is a
model of (T ,R,A′

n). By the properties of the propagation rules, we know< T ,R,
A′

n >|=A′′
n; therefore, I is a model of (T ,R,An). Since (T ,R,An)|=pi(h(Yi))

for each i, I|=pi(h(Yi)) for each i. By this we proved (T , R, A)|=pi(h(Yi)) for
each i. Therefore, s∈certain(Q,X). ¤

6 Conclusions

We have studied the problem of translating an XML document into an instance
of an OWL-DL ontology. However, we are aware that the problem of checking
the satisfiability of the ontology and the consistency of the mapping formu-
las as well as answering conjunctive queries still has a very high complexity
– NEXPTIME-complete for OWL-DL ontologies and EXPTIME-complete for
OWL Lite ontologies [6, 9]. We attempt to investigate some efficient algorithms
for answering conjunctive queries over OWL-DL ontologies, probably incomplete
but acceptable, in the future.
Acknowledgments: We are grateful to anonymous reviewers for offering valu-
able comments, corrections, and suggestions for improvement.

References

1. Y. An, A. Borgida, and J. Mylopoulos. Constructing Complex Semantic Mappings
between XML Data and Ontologies. In ISWC’05, 2005.

2. M. Arenas and L. Libkin. XML Data Exchange: Consistency and Query Answering.
In PODS’05, Baltimore, USA.

3. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantic and
Query Answering. In ICDT’03.

4. I. Horrocks and U. Sattler. Ontology Reasoning in the SHIQ(D) Description Logic.
In IJCAI’01.

5. I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ. In IJ-
CAI’05.

6. I. Horrocks and S. Tessaris. A Conjunctive Query Language for Description Logic
Aboxes. In AAAI’00.

7. E. Prud’hommeaux, A. Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/2004/WD-rdf-sparql-query-20041012/

8. R. Rodriguez-Gianolli and J. Mylopoulos. A Semantic Approach to XML-bases
Data Integration. In ER’01.

9. S. Tobies. Complexity Results and Practical Algorithm for Logics in Knowl-
edge Representation. PhD Thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, Germany, 2001.

