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Abstract. There are many problems requiring a semantic account of a database
schema. At its best, such an account consists of mapping formulasdretive
schema and a formal conceptual model or ontology (CM) of the danTiis
paper describes the underlying principles, algorithms, and a protofya¢ool

which infers such semantic mappings when gigenple correspondencéom

table columns in a relational schema to datatype properties of classes im an o
tology. Although the algorithm presented is necessarily heuristic, wefoffieal
results stating that the answers returned are “correct” for relatiohahsas de-
sighed according to standard Entity-Relationship techniques. We alsad cepo
experience in using the tool with public domain schemas and ontologies.

1 Introduction and Motivation

A number of important database problems have been showwéain@roved solutions
by using a conceptual model or an ontology (CM) to provide fifecise semantics
of the database schema. These include federated databbatsesarehousing [1], and
information integration through mediated schemas [7]e(S#&rvey [15].) Since much
information on the web is generated from databases (they“dexb”), the recent call
for a Semantic Web, which requires a connection between wetent and ontologies,
provides additional motivation for the problem of assan@gsemantics with data (e.qg.,
[6]). In almost all of these cases semantics of the data isuoegh by some kind of
semantic mappingetween the database schema and the CM. Although sometimes t
mapping is just &impleassociation from terms to terms, in other cases what ismedjui
is acomplexformula, often expressed in logic or a query language.

For example, in both the Information Manifold data integmatsystem presented in
[7] and the study of data integration in data warehousinggorted in [1], Horn formulas
in the formT'(X) :- #(X,Y) are used to connect a relational data source to a CM
described by some Description Logic, whéfé€X) is a single predicate representing
a table in the relational data source ab@X,Y’) is a conjunctive formula over the
predicates representing the concepts and relationshtpe I@M. In the literature, such
a formalism is called local-as-view (LAV).

So far, it has been assumed thamansspecify the mapping formulas — a difficult,
time-consuming and error-prone task. In this paper, wegse tool that assists users



in specifying LAV mapping formulas between relational detses and ontologies. Intu-
itively, it is much easier for users to draw thienple correspondencé®m the columns
of the tables in the database to datatype properties ofed@sshe ontology — manually
or through some existing schema matching tools (e.g., [3-4&an to compose the
logic formulas. Given the set of correspondences and fatigehe LAV formalism, the
tool is expected to reason about the database schema anatohegy, and to generate
a ranked list of candidate Horn formulas for each table inrétational database. Ide-
ally, one of the formulas is the right one capturing the ssifention underlying the
specified correspondences. The following example illtasrthe input/output behavior
of the tool we seek.
Example 1.An ontology contains concepts (classes), attributes ofepts (datatype
properties of classes), and relationships between canfapect properties of classes).
Graphically, we use the UML notations to represent the alifeemation. Given the
ontology in Figure 1 and a relational tali#nployeefsn, name, dept, projyith key
ssn, a user could draw the simple correspondences as the ardasbeines shown in
Figure 1. Using prefixe$ andO to distinguish predicates in the relational schema and
the ontology, we represent the correspondences as follows:
T : Employee.ssne~QO : Employee.hasSsn
T : Employee.namee~Q : Employee.hasName
T : Employee.dept«~Q : Department.hasDept Number
T . Employee.proj«~QO : Worksite.hasNumber
Given the above input, we may expect the tool generate a mgpimula of the form
7 :Employee(ssn, name, dept, proj)
O:Employeeg:), O:hasSsnt,,ssn),0:hasNamet;,name),O:Departmentts),
O:worksfor(z1,x2), O:hasDeptNumbesf, ,dept), O:Worksite(rs), O:works.on(z:,zs),
O:hasNumbet{s,proj). [

o] [1- works_on 0.1
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Employee(ssn, name, dept, proj)

Fig. 1. Relational table, Ontology, and Correspondences.

An intuitive and naive solution (inspired by early work of iian in [12]) gives
rise to finding the minimum spanning trees or Steiner fre@song the classes that
have datatype properties corresponding to table columdseanoding the trees into
logic formulas. However, the problem is that a spanningfi®tetree may not match

8 A Steiner tree for sed/ of nodes in graplt is a minimum spanning tree aff that contains
nodes ofG which are not inM.



the semantics of the given table due to their constraintsekample, consider the re-
lational tableProject(name, supervisor), with name as its key and corresponding
to O:Worksite.hasName, plus supervisor corresponding t@: Employee.hasSsn

in Figure 1. The minimum spanning tree consistingi0érksite, Employee, and the
edgewor ks_on does not match the semantics of taBlevject because there are mul-
tiple Employees working on al¥ orksite. In this paper, we turn to a database design
process to uncover the connections between the constmirgtational schemas and
ontologies. In contrast to the graph theoretic results wkiwow that there might be too
many minimum spanning/Steiner trees between a fixed setdd#ador example, there
are already 5 minimum spanning trees amémgployee, DepartmenandWorksitein
the very simple graph in Figure 1, considering each edge msame weight,) we
propose to generate a limited number of “reasonable” tred$@amulas.

Our approach is directly inspired by the Clio project [10], Mhich developed a
successful tool that infers mappings from one set of rafatitables and/or XML docu-
ments to another, given just a set of correspondences betiveie respective attributes.
Without going into further details at this point, we summarthe contributions which
we feel are being made here:

— The paper identifies a new version of the data mapping pralitesh of inferring
complex formulas expressing the semantic mapping betwelatianal database
schemas and ontologies from simple correspondences.

— We propose an algorithm to find a “reasonable” tree connedtiche ontology
graph. The algorithm is enhanced to take into account irdition about the schema
(key and foreign key structure), the ontology (cardinaléstrictions), and standard
database schema design guidelines.

— To gain theoretical confidence, we describe formal resutikhvstate that if the
schema was designed from a CM using techniques well-knowheiftntity Rela-
tionship literature (which provide a natural semantic nmagor each table), then
the tool will report essentially all and only the appropgigemantics. This shows
that our heuristics are not just shots in the dark: in the eds=n the ontology has
no extraneous material, and when a table’s schema has notleeermalized, the
algorithm will produce good results.

— To test the effectiveness and usefulness of the algorithpractice, we imple-
mented the algorithm in a prototype tool and applied it to aetg of database
schemas and ontologies. Our experience has shown thateéhefimrt in specify-
ing complex mappings by using the tool is significantly ldgmtthat by manually
writing formulas from scratch.

The rest of the paper is structured as follows. Section 2idises related work, and Sec-
tion 3 presents the necessary background and notatiorioSdatiescribes an intuitive
progression of ideas underlying our approach, while Sedirovides the mapping
inference algorithm. In Section 6 we report on the prototypplementation of these
ideas and experience with the prototype. Finally, Sectiaorcludes and discusses
future work.



2 Related Work

As mentioned earlier, the Clio tool [10, 11] discovers forauzeries describing how tar-
get schemas can be populated with data from source schehmgprdsent work could
be viewed as extending this to the case when the source séhemalational database,
while the target is a ontology. For example, in Example 1n# giewed the ontology as
a relational schema made of unary tables, &guployee(x), Department(xz), bi-
nary tables, e.ghasSsn(x}, ssn), hasDept Number(zh, dept), works_for(zy, z}),
and foreign key constraints, e.g’, andx{ referencinge, 24 andx4 referencinges,
wherex;, %, «/ (i = 1, 2) are object identifiers available in the ontology, one conld
fact try to apply directly the Clio algorithm to it, pushingtdeyond its intended appli-
cation domain. The desired mapping formula from Example tildvoot be produced
for several reasons: (i) Clio [11] does not make a so-cabhgithl relation connecting
hasSsn(z}, ssn) andhasDept Number(zh, dept), since the chase algorithm of Clio
only follows foreign key referencemut of tables. Specifically, there would be three sep-
arate logical relations, i.elfmployee(z1) <, =, hasSsn(x}, ssn), Department(xz)
Dy, =gy, hasDept Number(xy, dept), andworks_for(zY, x5) b<,n —p, Employee(wy)
Xy =z, Department(xz). (i) The fact thatssnis a key in the table: Employee,
leads us to prefer (see Section 4) a many-to-one relatipnshch asvorksfor, over
some many-to-many relationship which could have been fattieo ontology (e.g.,
O:previouslyWorkedF9r Clio does not differentiate the two. So the work to be pre-
sented here analyzes the key structure of the tables aneéithengics of relationships
(cardinality, IsA) to eliminateinreasonabl@ptions that arise in mapping to ontologies.

The problem ofdata reverse engineerinig to extract a CM, for example, an ER
diagram, from a database schema. Sophisticated algor&hdchapproaches to this have
appeared in the literature over the years (e.g., [8, 5]).majr difference between data
reverse engineering and our work is that we are given aniegisntology, and want
to interpret a legacy relational schema in terms of it, wasmata reverse engineering
aims to construct a new ontology.

Schema matchin(g.g., [3, 13]) identifies semantic relations between scheta-
ments based on their names, data types, constraints, amgaatructures. The primary
goal is to find the one-to-one simple correspondences whehaxt of the input for our
mapping inference algorithms.

3 Formal Preliminaries

For an ontology, we do not restrict ourselves to any pawicohtology language in
this paper. Instead, we use a generic conceptual modelirguéme (CML), which
containscommonaspects of most semantic data models, UML, ontology langgiag
such as OWL, and description logics. In the sequel, we use Ciénote an ontology
prescribed by the generic CML. Specifically, the languadenal the representation
of classes/concep(sinary predicates over individual®)bject properties/relationships
(binary predicates relating individuals), adatatype properties/attributgbinary pred-
icates relating individuals with values such as integetssarings); attributes are single
valued in this paper. Concepts are organized in the fanigliatierarchy. Object prop-
erties, and their inverses (which are always present), @ngst to constraints such



as specification of domain and range, plus the familiar catdy constraints, which
here allow 1 as lower bounds (callemtal relationships), and 1 as upper bounds (called
functionalrelationships). We shall represent a given CM using a dickeind labeled
ontology graph which has concept nodes labeled with concept nafiieand edges
labeled with object properties, for each suclhp, there is an edge for the inverse re-
lationship, referred to ag—. For each attributg’ of conceptC, we create a separate
attribute node denoted &é; ¢, whose label igf, and with edge labelefl from nodeC'

to N . For the sake of simplicity, we sometimes use UML notatiossneFigure 1,
to represent the ontology graph. Note that in such a diagrstead drawing separate
attribute nodes, we place the attributes inside the retdamgdes. Readers should not
be confused by this compact representation.

If pis arelationship between concegtsand D (or object property having domain
C and rangdD), we propose to write in text ---p--- @ (If the relationship p is
functional, we Writ ---p->-- @.) For expressive CMLs such as OWL, we may
also connecC to D by p if we find an existential restriction stating that each ins&a
of C is related tcsomeor all instance ofD by p.

For relational databases, we assume the reader is famitiaistandard notions as
presented in [14], for example. We will use the notatiffi’, Y] to represent a rela-
tional tableT” with columnsKY', and keyK . If necessary, we will refer to the individual
columns inY usingY[1],Y[2], ..., and useX'Y" as concatenation. Our notational con-
vention is that single column names are either indexed ceapp lower-case. Given a
table such a% above, we use the notatiéey(T), nonkey(T) andcolumns(T) to refer
to K,Y andKY respectively. (Note that we use the terms “table” and “cailimhen
talking about relational schemas, reserving “relatioip)stand “attribute” for aspects
of the CM.) A foreign key (fk) inT" is a set of columns F thagferencegableT”, and
imposes a constraint that the projectiorifobn F is a subset of the projection @f on
key(T").

In this paper, aorrespondencé’.c «~D.f will relate columnc of tableT to at-
tribute f of conceptD. Since our algorithms deal with ontology graphs, formally a
correspondencé will be a mathematical relatioh(T', ¢, D, f, Ny p), where the first
two arguments determine unique values for the last three.

Finally, we use Horn-clauses in the forfi{ X) :- &(X,Y), as described in Intro-
duction, to represergemantic mappingsvhereT is a table with columnsX (which
become arguments to its predicate), @nid a conjunctive formula over predicates rep-
resenting the CM, witly” existentially quantified as usual.

4 Principles of Mapping Inference

We begin with the set afoncept nodesV/, such that for each node i some of the
attribute nodes connected to it are corresponded by sonme ablumns of a table, and
M contains all of the nodes singled out by all of the correspords from the columns
of the table. We assume that the correspondences have kmmfieshby users. To seek
LAV mapping, it is sufficient to only focus on the connecticasiong nodes in\/

4 Unless ambiguity arises, we will use “nod#, when we mean “concept node labeléd.



by stripping off the attribute nod&sNote that attribute nodes, which we can attach
them back at any time, are important when encoding treegontaulas for proving the
formal results. The primary principle of our mapping infece algorithm is to look for
shortest‘reasonable” trees connecting nodeshh In the sequel, we will call such a
treesemantic tree

As mentioned before, the naive solution of finding min-spagrrees or Steiner
trees does not give us good results. The semantic tree weiset only shortest
but “reasonable”. Although the “reasonableness” is vagukissmoment, we will lay
out some principles according to the semantics carried bydftational schemas and
ontologies; and we will show that our principles have a sfdighdation that the “rea-
sonableness” can be formally proved in a very strict butwlsaftting.

Consider the case whéfic, b] is a table with key, corresponding to an attribute
f on concept”, andb is a foreign key corresponding to an attributen conceptB.
Then for each value of (and hence instance @f), 7' associates at most one value
of b (instance ofB). Hence the semantic mapping foérshould be some formula that
acts as a function from its first to its second argument. Timeasdic trees for such
formulas look like functional edges, and hence should beeped. For example, given
table Depl[dept, ssn, .. .], and correspondences which link the two named columns to
hasDept Number andhasSsn in Figure 1, respectively, the proper semantic tree uses
manages— (i.e.,hasManager ) rather thamor ks_f or — (i.e.,hasWor ker s).

Conversely, for tabld”[c, b], an edge that is functional fro@ to B, or from B
to C, is likely not to reflect a proper semantics since it would mteat the key cho-
sen forT” is actually a super-key — an unlikely error. (In our examptasider a ta-
ble T'[ssn, dept, . . .], where both nhamed columns are foreign keys.) To deal with suc
problems, an algorithm should work in two stages: first coting the concepts corre-
sponding to key columns into somehowgkeleton tregthen connecting the rest nodes
corresponding to other columns to the skeleton by, prefgramctional edges.

Most importantly, we must deal with the assumption that thlational schema
and the CM were developed independently, which impliestbatll parts of the CM
are reflected in the database schema and vice versa. Thidicatap things, since in
building the semantic tree we may need to go through additiondes, which end
up not being corresponded by any columns in the relationa¢rea. For example,
Consider again théroject(name, supervisor) table and its correspondences men-
tioned in Introduction. Instead of the edger ks_on, we prefer thefunctional path
control s—.manages— (i.e.,control | edBy followed by hasManager ), pass-
ing through noddepartment Similar situations arise when the CM contains detailed
aggregationhierarchies (e.ggity part-oftownshippart-of countypart-of statg, which
are abstracted in the database (e.g., a table with columegy@ndstateonly).

We have chosen to flesh out the above principles in a systemathner by con-
sidering the behavior of our proposed algorithm on relai@themas designed from
Entity Relationship diagrams — a topic widely covered inreuadergraduate database
courses [14]. (We call thisr2rel schema designOne benefit of this approach will be
to allow us to prove that our algorithm, though heuristic @ngral, is in some sense

5 In the sequel, we will say “a concept corresponded by some columastable” without
mentioning its attributes.



“correct” for a certain class of schemas. Of course, in gactuch schemas may be
“denormalized” in order to improve efficiency, and, as we tiwared, only parts of the
CM are realized in the database. We emphasize that our #igorises the general
principles enunciated above even in such cases, withvelatjood results in practice.

To reduce the complexity of the algorithms which is inhelgeattree enumeration,
and the size of the answer set, we modify the graph by collgpsiultiple edges be-
tween node#’ andF, labeledp, ps, . . . Say, into a single edge labeléd ; py;..." The
idea is that it will be up to the user to choose between theraltyve labels after the
final results have been presented by the tool, though theraysiay offer suggestions,
based on additional information, such as heuristics congithe identifiers labeling
tables and columns, and their relationship to property same

5 Mapping inference Algorithms

As stated before, the algorithm is based on the relationtabdae design methodology
from ER models. We will introduce the details of the algaritin a gradual manner, by
repeatedly adding features of an ER model that appear asfptie CM. We assume

that the reader is familiar with basics of ER modeling anébase design [14], though
we summarize the ideas.

5.1 An Initial Subset of ER notions

We start with a subset of ER that contains the notions sucknéity setE (called
just “entity” here), with attributes referred astribs(E), andbinary relationship set
In order to facilitate the statement of correspondencesthedrems, we assume in
this section that attributes in the CM have globally unigaenes. (Our implemented
tool does not make this assumption.) An entity is represeatea concept/class in
our CM. A binary relationship set corresponds to two relaldps in our CM, one
for each direction, though only one is mapped to a table. Sudationship will be
calledmany-manyf neither it nor its inverse is functional. 8trong entityS has some
attributes that act as identifier. We shall refer to thesegusnique(S) when describing
the rules of schema design.weak entityiV has insteadocalUnique(17) attributes,
plus a functional total binary relationshjp(denoted asdRel(1¥)) to an identifying
owner entity (denoted adOwn(W)).

Note that information about general identification cannetrépresented in even
highly expressive languages such as OWL. So functionslliigue are only used while
describing the er2rel mapping, and are not assumed to bkleaduring semantic
inference. The er2rel design methodology (we follow mofgi\14]) is defined by two
components: To begin with, Table 1 specifies a mappif@) returning a relational
table schema for every CM componéntwhereQ is either a concept/entity or a binary
relationship. In this subsection, we assume that no paioo€epts is related by more
than one relationship, and that there are no so-called fsaei relationships relating
an entity to itself. (We deal with these in Section 5.3.)

In addition to the schema (columns, key, fk's), Table 1 alssoaiates with a rela-
tional tableT'[V] a number of additional notions:



ER Model object O Relational Table 7(O)
Strong Entity S |columns: X
primary key: K
Let X=attribs(S) |fk's: nong
Let K=unique(S) |anchor: S
semantics: T(X) - S(y),hasAttribs(y, X).
identifier: identify g (v, K') :- S(y),hasAttribs(y, K).
Weak Entity W |columns: ZX
let primary key: UX
E =idown(W) [fk's: X
P = idrel(W) anchor: w
Z=attribs(W) semantics: T(X,U,V):-W(y), hasAttribs(y, Z), E(w),P(y, w),
X = key(7(E)) identify g (w, X).
U =localUnique(W) |identifier: identifyyy (v, UX) - W(y),E(w), P(y, w), hasAttribs(y, U),
V=Z-U identify > (w, X).
Functional columns: X1Xo
Relationship F |primary key: X,
--F->- fk's: X; references (E;),
let X; = key(7(E;))|anchor: Eq
fori =1,2 semantics: T(X1, X2) - El(yl),ideminy1 (y1, X1), F(y1,92), E2(y2),
identiny2 (y2, X2).
Many-many columns: X1Xo
Relationship M |primary key: X1 X2
- -M-- fk’s: X; references (E;),
let X; = key(7(E;))|semantics: T'(X1, X2) :- El(yl),identiny1 (y1, X1), M (y1,92),E2(y2),
fori =1,2 identiny2 (y2, X2).

Table 1.er2rel Design Mapping.

— an anchor, which is the central object in the CM from whichis derived, and
which is useful in explaining our algorithm (it will be theabof the semantic tree);

— a formula for the semantic mapping for the table, expressed Elorn formula
with headT'(V') (this is what our algorithm should be recovering); in the Yool
the Horn formula, the functiohasAttribs(z,Y") returns conjunctattr;(x, Y[j])
for the individual columns Y[1], Y[2].... in Y, wherattr; is the attribute name
corresponded by columii[j].

— the formula for a predicat@lentify . (z,Y’), showing how object: in (strong or
weak) entityC' can be identified by values i®.

Note thatr is defined recursively, and will only terminate if there ace“aycles” in the
CM (see [8] for definition of cycles in ER).

The er2rel methodology also suggests that the schema gedersingr can be
modified by (repeatedlynerginginto the tablel; of an entity E the tableT’; of some
functional relationship involving the same entify (which has a foreign key refer-

8 This is needed in addition toasAttribs, because weak entities have identifying values spread
over several concepts.



ence toTy). If the semantics ofy is T (K, V) - ¢(K,V), and of Ty is Ty (K, W)
- (K, W), then the semantics of table erge(7y,71) is, to a first approximation,
T(K,V,W):-¢(K,V),¥(K,W). And the anchor of is the entityE.

Please note that one conceptual model may result in sevifiededt relational
schemas, since there are choices in which direction a epnedarelationship is en-
coded (which entity acts as a key), and how tables are mel&é. also that the re-
sulting schema is in Boyce-Codd Normal Form, if we assumettieonly functional
dependencies are those that can be deduced from the ER s@dsexpressed in FOL).

Now we turn to the algorithm for finding the semantic treesMeein nodes in the
set M singled out by the correspondences from columns of a taldenéntioned in
the previous section, because the keys of a table funcljodetermine the rest of the
columns, the algorithm for finding the semantic trees wonksaveral steps:

1. Determine a skeleton tree connecting the concepts pameig to key columns;
also determine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns usimgytest functional
paths to the skeleton anchor.

3. Link any unaccounted-for concepts corresponding to soitmer columns by arbi-
trary shortest paths to the tree.

More specifically, the main functiomgetTree(7",L), will infer the semantics of table
T, given correspondendg, by returning an semantic tré& Encoding$ into formula
yields the conjunctive formula defining the semantics ofetdh

Function getTree(T,L)

input: tableT, correspondences for columns(T')
output: set of semantic tre€s

steps:

1. Let L, be the subset af containing correspondences frawy (7');
compute(S’, Anc’)=getSkeleton(T",Ly).

2. If onc(nonkey(T'))2- onc(key(T)) is empty, then returny’, Anc’). *if all columns corre-
spond to the same set of concepts as the key does, then return therskeketd

3. For each foreign key; in nonkey(T") referencingl’; (K;):
let L, = {T;.K;~~L(T, F;)}, and computéSs/, Anc} )= getSkeleton(T;,L). /*recall
that the functionL (T, F;) is derived from a correspondend€T’, F;, D, f, Ny p) such that
it gives a concepD and its attributef (NN, p is the attribute node in the ontology graph.)*/
find m;=shortest functional path fromnc’ to Anc/’; let S = combine®(S’, 7, {Ss!/}).

4. For each columm in nonkey(T) that is not part of an fk, lelV = onc(c); find m=shortest
functional path fromAnc’ to IV; updateS := combine(.S, ).

5. In all cases above asking for functional paths, use a shortest pdimi¢éonal one does not
exist.

6. ReturnsS.

" To make the description simpler, at times we will not explicitly account forpibssibility of
multiple answers. Every function is extended to set arguments by elem@mn&pplication of
the function to set members.

8 onc(X) is the function which gets the s&f of concepts corresponded by the coluriis

% Functioncombine merges edges of trees into a larger tree.



The functiongetTree(7', L) makes calls to functiogetSkeleton on 7" and other
tables referenced by fks ifi, in order to get a set of (skeleton tree, anchor)-pairs, whic
have the property that in the case of er2rel designs, if teh@returned is conceft,
then the encoding of the skeleton tree is the formuladentify,-.

Function getSkeleton(7',L)

input: tableT, correspondences for key(T")

output: a set of (skeleton tree, anchor) pairs

steps:

Supposeey(T') contains fksFi,. . . ,F, referencing table® (K1),...Tn (K»);

1. If n < 1 andonc(key(T)) is just a singleton sefC}, then return(C, {C}).%/*Likely a
strong entity: the base case.*/
2. Else, letL;={T;.K;~~ L(T, F;) }/*translate corresp’s thru fk reference*/

comPute Ssz, Ancz = getSkeleton(T;, L;).
(a) If key(T F1, then return §s1, Ancl) [*functional relationship of weak entities.*/

(b) If key( ) F1 A, where columnsA are not in any foreign key df’ then/*possibly a
weak entity*/

i. if Anci = {N1} andonc(A) = {N} such that there is a total functional path
from N to Ny, then return§ombine(r, Ss1), {N}). /* N is a weak entity.*/

(c) Else supposingey(T') has additional non-fk columnd[1],... A[m], (m > 0); let
Ns={Anc;} U {onc(A[j]),j = 1,..,m}, and find skeleton tre€'s’ connecting the
nodes inNV's, where any pair of nodes i s is connected by a many-many path; return
(combine(Ss’, {Ss;}), Ns). I*dealing with the many-to-many binary relationships;
also the default action for unaccounted-for tables, e.g., cannot findextifging rela-
tion from a weak entity to the supposed owner entity. No unique anchor #xists.

In order forgetSkeleton to terminate, it is necessary that there be no cycles in fk
references in the schema. Such cycles (which may have beksd ad represent ad-
ditional integrity constraints, such as the the fact thatasociation is total) can be
eliminated from a schema by replacing the tables involved thieir outer join over the
key. getSkeleton deals with strong entities and their functional relatidpstin step
(1), with weak entities in step (2.b.i), and so far, with ftianal relationships of weak
entities in (2.a). In addition to being a catch-all, steg)2leals with tables represent-
ing many-many relationships (which in this section have key= F F5), by finding
anchors for the ends of the relationship, and then conrgthiem with paths that are
not functional, even when every edge is reversed.

To get the logic formula from a tree based on correspondénage provide the
procedureencodeTree(S, L) below, which basically assigns variables to nodes, and
connects them using edge labels as predicates.

Function encodeTree(S,L)

input: subtreeS of ontology graph, correspondendefrom table columns to attributes
of concept nodes ily.

output: variable name generated for root®fand conjunctive formula for the tree.
steps:SupposeV is the root ofS. Let¥ = {}.

10 Both here and elsewhere, when a conegjis added to a tree, so are edges and nodesfor
attributes that appear ib.



1. if N is an attribute node with labef, find d such thatL(_,d,_, f, N) = true,
returr(d7 true). /*for leaves of the tree, which are attribute nodes, return the corresimond
column name as the variable and an empty formula.*/
2. if N is a concept node with labégl, then introduce new variable; add conjunct
C(z)tow;
for each edge; from N to N; /*recursively get the entire formula.*/

let S; be the subtree rooted Af;,

let (v;, ¢:(Z;))=encodeTree(S;, L),

add conjuncte;(x, v;) A ¢;(Z;) to &;
return(z, ¥).

To specify the properties of the algorithm, we now suppoatttie correspondences
L be the identity mappings from attribute names to table cakirfihe interesting prop-
erty of getSkeleton is that if T" = 7(C') according to the er2rel rules in Table 1, where
C corresponds to a (strong or weak) entity, tlyentSkeleton returns(.S, Anc), where
Anc = C as anchor, andncodeTree(S, L) is logically equivalent tadentify . Simi-
lar property exists fol’ = 7(p), wherep is a functional relationship originating from
concept’, in which case its key looks just like an entity key. We nowesthe desirable
properties more formally. Since the precise statementexréms (and algorithms) is
quite lengthy and requires a lot of minute details for whighdo not have room here,
we express the results as “approximately phrased” prapositFirstgetTree finds the
desired semantic mapping, in the sense that

Proposition 1. Let tableT be part of a relational schema obtained by er2rel derivation
from conceptual modél. Then some tre€ returned bygetTree (T, L) has the property
that the formula returned bgncodeTree(S, L) is logically equivalent to the semantics
assigned td" by the er2rel design.

Note that this “completeness” result is non-trivial, sinae explained earlier, it would
not be satisfied by the current Clio algorithm [11], if apglielindly to £ viewed as

a relational schema with unary and binary tables. Sgetdree may return multiple

answers, the following converse “soundness” result isitogmt

Proposition 2. If S’ is any tree returned bygetTree (T, L), with T' as above, then the
formula returned byencodeTree(S’, L) represents the semantics ebmetable T”
derivable by er2rel design frod, whereT” is isomorphié! to 7.

Such a result would not hold of an algorithm which returnsyaminimal spanning
trees, for example.

We would like to point out that the above algorithm perforreasonably on some
non-standard designs as well. For example, consider thiéxehl tablel’ (person N ame,
cityName, countryName), where the columns correspond to, respectively, attribute
pname, cname, andername of conceptsPerson, City andCountry in a CM. If the

CM contains a path such thd@er son|-- bornln - >- -- locatedln
->- |Count ry | then the above table, which is not in 3NF and was not obtaiset

1 Informally, two tables are isomorphic if there is a bijection between their cofuwhich pre-
serves key and foreign key structure.



er2rel design (which would have required a table @ity), would still get the proper
semantics:
T(personName,cityName,countryName)
Persong1), City(z2),Countryfs), borning,x2), locatedingz,zs),
pnameg;,personName), cnamef,cityName),crname(s,countryName).

If on the other hand, there was a shorter functional path ffamson to Country,
say an edge labelaed ti zenOf , then the mapping suggested would have been:
T(personName, cityName, countryName)

Persont1), City(z2), Countrys), bornin (1,22 ),citizenOf@c1,x3), ...
which corresponds to the er2rel design. Moreover, batli zenOf not been func-
tional, then once again the semantics produced by the tigowould correspond to the
non-3NF interpretation, which is reasonable since thestdiaving onlyperson Name
as key, could not store multiple country names for a person.

5.2 Reified Relationships

It is desirable to also have n-ary relationship sets coimgentities, and to allow re-
lationship sets to have attributes (called “associatiass#s” in UML). Unfortunately,
these features are not directly supported in most CMLs, asaéWL, which only have
binary relationships. Such notions must instead be reptedeby “reified relation-
ships” [2] (we use an annotation * to indicate the reified relatiopshn a diagram):
concepts whose instances represent tuples, connecteddajiso “roles” to the tuple
elements. So, BuysrelatesPerson ShopandProduct through rolebuyer, sourceand
object then these are explicitly represented as (functionalayirassociations, as in
Figure 2. And a relationship attribute, such as when thergugccurred, becomes an
attribute of theBuysconcept, such ashenBought

Unfortunately, reified relationships can-
not be distinguished reliably from ordi- e e By Shop
nary entities in normal CMLs on purely :
formal, syntactic grounds, yet they nee
to be treated in special ways during re-
covery. For this reason we assume that
they can be distinguished amntologi-
cal grounds For example, in Dolce [4],
they are subclasses of top-level concepts
Quality and Perdurant/EventFor a rei-
fied relationshipR, we use functionsoles(R) andattribs(R) to retrieve the appropriate
(binary) properties.

The designr of relational tables for reified relationships is shown ibl€a2. To
discover the correct anchor for reified relationships artdtgeproper tree, we need to

modify getSkeleton, by adding the following case between steps 2(b) and 2(c):
— If key(T)=F, F; ... F, and there exist reified relationshipwith n rolesry, ..., r,

pointing at the singleton nodes itvicy, . . ., Anc,, respectively,

then letS = combine({r;}, {Ss;}), and return(S, { R}).
The main change tgetTree is to compensate for the fact thatgétSkeleton finds a
reified version of a many-many binary relationship, it will no londok for an unrei-
fied one. So after step 1. we add

1.1 * * 1.1

object

product

Fig. 2. N-ary Relationship Reified.



ER model object O Relational Table 7(0O)

Reified Relationship R |columns: ZX1 ... Xy
if r1,...,r, areroles ofR|primary key: Xi... X,
let Z=attribs(R) fk's: D C Xn
Xi=key(T(E,;)) anchor: R

whereE; fillsrole r; semantics: T(ZX1...Xyp):- R(y),E;(w;), hasAttribs(y, Z), r; (y, w;),
identinyi(wi, Xi)y. ..

identifier: identify (v, ... Xi...) = R(y), ... Bi(wi), ri(y, ws),
identify r (wiy Xi),een

Table 2.er2rel Design for Reified Relationship.

— if key(T) is the concatenation of two foreign ke§s F», andnonkey(T) is empty,
compute Fs1,Anci) and (Ssq, Ancy) as in step 2. ofgetSkeleton; then find
p=shortest many-many path connectigc; to Anco;
return (5’) U (combine(p, Ss1, Ss2))

The previous version ajetTree was set up so that with these modifications, attributes
to reified relationships will be found properly, and the poer¢ propositions continue
to hold.

5.3 Replication

If we allow recursive relationships, or allow the mergeraiiles for different functional
relationships connecting the same pair of concepts (gog.ks _f or andmanages),
the mapping in Table 1 is incorrect because column names&ikpeated in the multi-
ple occurrences of the foreign keys. We will distinguiststhéagain, for ease of presen-
tation) by adding superscripts as needed. For exampRerfonis connected to itself
by thelikesproperty, then the table fdikeswill have schemd [ssn!, ssn?].

During mapping discovery, such situations are signaledbyptesence of multiple
columnsc andd of tableT" corresponding to the same attribytef conceptC'. In such
situations, the algorithm will first make a copy,,, of nodeC in the ontology graph,
as well as its attributes!.,,, participates in all the object relationsdid, so edges must
be added. After replication, we can sgic(c) = C andonc(d) = Cqopy, Oronc(d) =
C'andonc(c) = C.qpy (recall thatonc(c) gets the concept corresponded by colunm
the algorithm). This ambiguity is actually required: givee@M with Personandlikesas
above, a tablé[ssn!, ssn?] could have alternate semantics correspondirikes, and
its inverse/iked By. (A different example would involve a tab®ssn, addr!, addr?,
wherePersonis connected by two relationshigspmeandoffice to concepBuilding,
which has araddressattribute.

The main modification needed to tgetSkeleton andgetTree algorithms is that
no tree should contain both a functional e@— --p ->-- and its replicate

[D]--- p ->-- , (or several replicates), since a function has a singleeyalu

and hence the different columns of a tuple will end up havitantical values: a clearly
poor schema.




5.4 Addressing Class Specialization

The ability to represent subclass hierarchies, such asntbénoFigure 3 is a hallmark
of CMLs and modern so-called Extended ER (EER) modeling.

Almost all textbooks (e.g., [14]) describe two techniques designing relational
schemas in the presence of class hierarchies

1. Map each concept/class into a separate table followiagsthndard er2rel rules.
This approach requires two adjustments: First, subclasees inherit identifier
attributes from a single super-class, in order to be ablesteetate keys for their
tables. Second, in the table created for an immediate ss&€laof classC, its
key key(7(C”)) should also be set to reference as a foreignkey), as a way of
maintaining inclusion constraints dictated by the is-atiehship.

2. Expand inheritance, so thalt attributes and relations involving a claSsppear on
allits subclasse§”. Then generate tables as usual for the subclasselsough not
for C itself. This approach is used only when the subclasses togesuperclass.
some researchers also suggest a third possibility:

3. “Collapse up” the information about subclasses into #i#et for the superclass.
This can be viewed as the resultoérge(T¢, T¢ ), whereT¢[K, A] andT¢ [K, B]
are the tables generated fGrand its subclas§” according to technique (1.) above.
In order for this design to be “correct”, [8] requires thiat not be the target of any
foreign key references (hence not have any relationshiggpathto tables), and
that B be non-null (so that instances €f can be distinguished from those @j.

The use of the key for the root class,

together with inheritance and the use of Person

foreign keys to also check inclusion con- [

straints, make many tables highly ambigu- =

ous. For example, according to the above, Faculty . Course
tableT (ss#, crsId), with ss# as the key oese T oapese
and a foreign key referencirg’, could 7A) 01

coord
1.

(a) Faculty teach Course

(b) Lecturer teach Course

(c) Lecturer coord Course

This is made combinatorially worse by
the presence of multiple and deep hier-
archies (e.g., imagine a parall@bursehierarchy), and the fact that not all ontology
concepts are realized in the database schema, accordinggoanario. For this reason,
we have chosen to try to deal with some of the ambiguity relyin users, during the
establishment of correspondences. Specifically, the sssrpgposed to provide a cor-
respondence from columnto attributef on the lowest class whose instances provide
data appearing in the columiTherefore, in the above example of tabless#, crsid),
ss#is made to correspond &snon Facultyin case (a), while in cases (b) and (c) it is
made to correspond tes#on Lecturer This decision was also prompted by the CM
manipulation tool that we are using, which automaticallpands inheritance, so that
ss#appears on all subclasses.

Fig. 3. Specialization Hierarchy.



Under these circumstances, in order to capture designsitdl.J2.) above, we do
not need to modify our earlier algorithm in any way, if we fiestpand inheritance
in the graph. So the graph would sholecturer |-- teaches; coord ->-
in the above example, atgcturerwould have all the attributes Eaculty.

To handle design (3.), we can add to the graph an actual edtesfmverse of thés-
arelation: a functional edge labelatsoA with lower-bound): — -- al soA ->--
, connecting superclagsto each of its subclass€s. It is then sufficient to allow
functional paths between concepts to consistlsbAedges, in addition to the normal
kind, in getTree.

5.5 Outer Joins

The observant reader has probably noticed that the defirdfithe semantic mapping
for T = merge(Tg,T,) was not quite correctl (K, V,W) : —¢(K,V), (K, W)
describes a join ot(, rather than a left-outer join, which is what is requireg i a
non-total relationship. In order to specify the equivaleihbuter joins in a perspicuous
manner, we will use conjuncts of the forfp(X, Y)]", which will stand for the for-
mulap(X,Y) vV (Y = nullA—-3Z.u(X, Z)), indicating that null should be used if there
are no satisfying values for the variablésWith this notation, the proper semantics for
merge iST'(K, V, W) : —¢(K, V), [:(K,W)]"W.

In order to obtain the correct formulas from treescode Tree needs to be modified
so that when traversing a non-total edgéhat is not part of the skeleton, in the second-
to-last line of the algorithm we must allow for the posstyilbf v; not existing.

Our formal results still hold under the replication, theatreent of specialization
hierarchy, and the encoding of the merging of non-total fienel relationships into
outer joins.

6 Experience

So far, we have developed the mapping inference algorithimimstigating the con-
nections between the semantic constraints in both rehdtiomdels and ontologies.
The theoretical results show that our algorithm will repitwe “right” semantics for
schemas designed following the widely accepted designadetbgy. Nonetheless, it
is crucial to test the algorithm in real-world schemas antblogies to see its overall
performance. To do this, we have implemented the mappimgente algorithm in our
prototype systenMAPONTO, and have applied it on a set of schemas and ontologies.
In this section, we provide some evidence for the effectgsnand usefulness of the
prototype tool by discussing the set of experiments and xperence.

Our test data were obtained from various sources, and we dragred that the
databases and ontologies were developed independentyteEh data are listed in
Table 3. They include the following databases: the Departroé Computer Science
database in University of Toronto; the VLDB conference Hate; the DBLP computer
science bibliography database; the COUNTRY database apgea one of reverse
engineering papers; and the test schemas in OBSERVER [fqbré-or the ontolo-
gies, our test data include: the academic department gytabche DAML library; the



academic conference ontology from the SchemaWeb ontolggysitory; the bibliog-
raphy ontology in the library of the Stanford’s Ontolingunger; and the CIA factbook
ontology. Ontologies are described in OWL. For each ontqltgynumber of links in-
dicates the number of edges in the multi-graph resulted &oject properties. We have
made all these schemas and ontologies available on our vgebypaw.cs.toronto.edu/
“yuana/research /maponto/relational/testData._html

Database SchemgNumber of|[Number of Ontology Number of [ Number of
Tables | Columns Nodes Links
UTCS Departmen 8 32 Academic Department 62 1913
VLDB Conference| 9 38 Academic Conferenge 27 143
DBLP Bibliograph 5 27 Bibliographic Data 75 1178
OBSERVER Projegt 8 115 Bibliographic Data 75 1178
Country 6 18 CIA factbook 52 125

Table 3. Characteristics of Schemas and ontologies for the Experiments.

To evaluate our tool, we sought to understand whether thesartd produce the in-
tended mapping formula if the simple correspondences weea gWWe were concerned
about the number of formulas presented by the tool for usesifttthrough. Further,
we wanted to know whether the tool was still useful if the eotfformula was not gen-
erated. In this case, we expected that a user could easiligdegenerated formula to
reach the correct one instead of creating it from scratcturrsary of the experimen-
tal results are listed in Table 4 which shows the averagedfizach relational table
schema in each database, the average number of candidaézatgd, and the average
time for generating the candidates. Notice that the numbeamdidates is the number
of semantic trees obtained by the algorithm. Also, a sindtgeeof an semantic tree may
represent the multiple edges between two nodes, collapsed aurp; ¢ abbreviation.

If there arem edges in a semantic tree and each edgenhas- 1, .., m original edges
collapsed, then there af§." n; original semantic trees. We show below a formula gen-
erated from such a collapsed semantic tree:
TaAssignment(courseName, studentNarae)

Coursef1), GraduateStudentt), [hasTAs;takenBy](x1,x2),

workTitle(z1,courseName), personName(studentName).
where, in the semantic tree, the no@eurseand the nodé&raduateStudenare con-
nected by a single edge with lablehsTAs;takenBy which represents two separate
edgeshasTAsandtakenBy

Table 4 shows that the tool only present a few mapping formfdausers to ex-
amine. This is due in part to our compact representation iilighedges between two
nodes shown above. To measure the overall performance, megaihyacreated the map-
ping formulas for all the 28 tables and compared them to thaditas generated by the
tool. We observed that the tool produced correct formulag4dables. It demonstrated
that the tool is able to understand the semantics of manytipahcelational tables in
terms of an independently developed ontology.



Database SchemgAvg. Number of|  Avg. Number of  |Avg. Execution
Cols/per table |Candidates generated time(ms)
UTCS Departmen 4 4 279
VLDB Conference| 5 1 54
DBLP Bibliography/ 6 3 113
OBSERVER Projedt 15 2 183
Country 3 1 36

Table 4. Performance Summary for Generating Mappings from Relational Fabl®ntologies.

However, we wanted to know the usefulness of the tool. Touatalthis, we exam-
ined the generated formulas which were not the intended ¢ioesach such formula,
we compared it to the manually created and correct one, ans®@cba very coarse mea-
surement to record how much effort we had to spend to debugetherated formula in
order to make it correct. Such a measurement only recordedtithnges of predicate
names in a formula. For example, the tool generated theaAioilpformula for the table
Student(name, office, position, email, phone, supervisor)

Student;), emailAddressX; ,email), personNamé{; ,name), Professo(;),
Institute(X'3), head(Xs,X>), affiliatedOf(X’3,X1), personNameX2, supervisor).. Q)

If the intended semantics for the above table columns is:

Studentf;), emailAddressX; ,email), personNamé{; ,name), Professo,),
GraduateStudenk(s), hasAdvisorks,X2), isA(X3,X1), personNameXz, supervisor)..  (2)

then, one can change the three predicatgtitute(Xs), head(Xs,X>), affiliatedOf(X3,X1)
in formula (1) toGraduateStudeni(s), hasAdvisorks,X5), isA(X3,X1) instead of writing
the entire formula (2) from scratch. Our experience workiith the tool has shown
that significant effort have been saved when building seimamppings from tables to
ontologies, because in most cases one only needed to chagigéivaely small number
of predicates in an existing formula.

Tables 4 indicate that execution times were not significsinte, as predicted, the
search for subtrees and paths took place in a relativelyl smigihborhood.

7 Conclusion and Future Work

Semantic mappings between relational database schemasthagies in the form of
logic formulas play a critical role in realizing the semantieb as well as in many data
sharing problems. We have proposed a solution to infer theé apping formulas
from simple correspondences, relying on information fréva tlatabase schema (key
and foreign key structure) and the ontology (cardinalitstrietions,is-a hierarchies).
Theoretically, our algorithm infers all and only the seniemimplied by the ER-to-
relational design if a table’s schema follows ER designqipies. In practice, our ex-



perience working with independently developed schemasatalogies has shown that
significant effort has been saved in specifying the LAV maggbrmulas.

We are working towards disambiguation between multiplesiids semantics by
exploiting the following sources of information: first, &hier modeling language, sup-
porting at least disjointness/coveragesia hierarchies, but also more complex axioms
as in OWL ontologies; second, the use of tia#astored in the relational tables whose
semantics we are investigating. For example, queries maysed to check whether
complex integrity constraints implied by the semantics obacept/relationship fail to
hold, thereby eliminating some candidate semantics.

Acknowledgments: We are most grateful to Rér Miller and Yannis Velegrakis for
their clarifications concerning Clio, comments on our ressind encouragement. Re-
maining errors are, of course, our own.
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