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Abstract. There are many problems requiring a semantic account of a database
schema. At its best, such an account consists of mapping formulas between the
schema and a formal conceptual model or ontology (CM) of the domain. This
paper describes the underlying principles, algorithms, and a prototype of a tool
which infers such semantic mappings when givensimple correspondencesfrom
table columns in a relational schema to datatype properties of classes in an on-
tology. Although the algorithm presented is necessarily heuristic, we offerformal
results stating that the answers returned are “correct” for relational schemas de-
signed according to standard Entity-Relationship techniques. We also report on
experience in using the tool with public domain schemas and ontologies.

1 Introduction and Motivation

A number of important database problems have been shown to have improved solutions
by using a conceptual model or an ontology (CM) to provide theprecise semantics
of the database schema. These include federated databases,data warehousing [1], and
information integration through mediated schemas [7]. (See survey [15].) Since much
information on the web is generated from databases (the “deep web”), the recent call
for a Semantic Web, which requires a connection between web content and ontologies,
provides additional motivation for the problem of associating semantics with data (e.g.,
[6]). In almost all of these cases semantics of the data is captured by some kind of
semantic mappingbetween the database schema and the CM. Although sometimes the
mapping is just asimpleassociation from terms to terms, in other cases what is required
is acomplexformula, often expressed in logic or a query language.

For example, in both the Information Manifold data integration system presented in
[7] and the study of data integration in data warehousing presented in [1], Horn formulas
in the formT (X) :- Φ(X,Y ) are used to connect a relational data source to a CM
described by some Description Logic, whereT (X) is a single predicate representing
a table in the relational data source andΦ(X,Y ) is a conjunctive formula over the
predicates representing the concepts and relationships inthe CM. In the literature, such
a formalism is called local-as-view (LAV).

So far, it has been assumed thathumansspecify the mapping formulas – a difficult,
time-consuming and error-prone task. In this paper, we propose a tool that assists users



in specifying LAV mapping formulas between relational databases and ontologies. Intu-
itively, it is much easier for users to draw thesimple correspondencesfrom the columns
of the tables in the database to datatype properties of classes in the ontology – manually
or through some existing schema matching tools (e.g., [3, 13]) – than to compose the
logic formulas. Given the set of correspondences and following the LAV formalism, the
tool is expected to reason about the database schema and the ontology, and to generate
a ranked list of candidate Horn formulas for each table in therelational database. Ide-
ally, one of the formulas is the right one capturing the user’s intention underlying the
specified correspondences. The following example illustrates the input/output behavior
of the tool we seek.
Example 1.An ontology contains concepts (classes), attributes of concepts (datatype
properties of classes), and relationships between concepts (object properties of classes).
Graphically, we use the UML notations to represent the aboveinformation. Given the
ontology in Figure 1 and a relational tableEmployee(ssn, name, dept, proj)with key
ssn, a user could draw the simple correspondences as the arroweddash-lines shown in
Figure 1. Using prefixesT andO to distinguish predicates in the relational schema and
the ontology, we represent the correspondences as follows:
T : Employee.ssn!O : Employee.hasSsn

T : Employee.name!O : Employee.hasName

T : Employee.dept!O : Department.hasDeptNumber

T : Employee.proj!O : Worksite.hasNumber

Given the above input, we may expect the tool generate a mapping formula of the form
T :Employee(ssn, name, dept, proj):-

O:Employee(x1), O:hasSsn(x1,ssn),O:hasName(x1,name),O:Department(x2),
O:works for(x1,x2), O:hasDeptNumber(x2,dept),O:Worksite(x3), O:works on(x1,x3),
O:hasNumber(x3,proj). �
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Fig. 1.Relational table, Ontology, and Correspondences.

An intuitive and naive solution (inspired by early work of Quillian in [12]) gives
rise to finding the minimum spanning trees or Steiner trees3 among the classes that
have datatype properties corresponding to table columns and encoding the trees into
logic formulas. However, the problem is that a spanning/Steiner tree may not match

3 A Steiner tree for setM of nodes in graphG is a minimum spanning tree ofM that contains
nodes ofG which are not inM .



the semantics of the given table due to their constraints. For example, consider the re-
lational tableProject(name, supervisor), with name as its key and corresponding
to O:Worksite.hasName, plussupervisor corresponding toO:Employee.hasSsn
in Figure 1. The minimum spanning tree consisting ofWorksite, Employee, and the
edgeworks_on does not match the semantics of tableProject because there are mul-
tiple Employees working on aWorksite. In this paper, we turn to a database design
process to uncover the connections between the constraintsin relational schemas and
ontologies. In contrast to the graph theoretic results which show that there might be too
many minimum spanning/Steiner trees between a fixed set of nodes (for example, there
are already 5 minimum spanning trees amongEmployee, Department, andWorksitein
the very simple graph in Figure 1, considering each edge has the same weight,) we
propose to generate a limited number of “reasonable” trees and formulas.

Our approach is directly inspired by the Clio project [10, 11], which developed a
successful tool that infers mappings from one set of relational tables and/or XML docu-
ments to another, given just a set of correspondences between their respective attributes.
Without going into further details at this point, we summarize the contributions which
we feel are being made here:

– The paper identifies a new version of the data mapping problem: that of inferring
complex formulas expressing the semantic mapping between relational database
schemas and ontologies from simple correspondences.

– We propose an algorithm to find a “reasonable” tree connection in the ontology
graph. The algorithm is enhanced to take into account information about the schema
(key and foreign key structure), the ontology (cardinalityrestrictions), and standard
database schema design guidelines.

– To gain theoretical confidence, we describe formal results which state that if the
schema was designed from a CM using techniques well-known inthe Entity Rela-
tionship literature (which provide a natural semantic mapping for each table), then
the tool will report essentially all and only the appropriate semantics. This shows
that our heuristics are not just shots in the dark: in the casewhen the ontology has
no extraneous material, and when a table’s schema has not been denormalized, the
algorithm will produce good results.

– To test the effectiveness and usefulness of the algorithm inpractice, we imple-
mented the algorithm in a prototype tool and applied it to a variety of database
schemas and ontologies. Our experience has shown that the user effort in specify-
ing complex mappings by using the tool is significantly less than that by manually
writing formulas from scratch.

The rest of the paper is structured as follows. Section 2 discusses related work, and Sec-
tion 3 presents the necessary background and notation. Section 4 describes an intuitive
progression of ideas underlying our approach, while Section 5 provides the mapping
inference algorithm. In Section 6 we report on the prototypeimplementation of these
ideas and experience with the prototype. Finally, Section 7concludes and discusses
future work.



2 Related Work

As mentioned earlier, the Clio tool [10, 11] discovers formal queries describing how tar-
get schemas can be populated with data from source schemas. The present work could
be viewed as extending this to the case when the source schemais a relational database,
while the target is a ontology. For example, in Example 1, if one viewed the ontology as
a relational schema made of unary tables, e.g.,Employee(x1), Department(x2), bi-
nary tables, e.g.,hasSsn(x′1, ssn), hasDeptNumber(x′2, dept),works for(x

′′

1 , x
′′

2),
and foreign key constraints, e.g.,x′1 andx′′1 referencingx1, x′2 andx′′2 referencingx2,
wherexi, x′i, x

′′

i (i = 1, 2) are object identifiers available in the ontology, one couldin
fact try to apply directly the Clio algorithm to it, pushing it beyond its intended appli-
cation domain. The desired mapping formula from Example 1 would not be produced
for several reasons: (i) Clio [11] does not make a so-called logical relation connecting
hasSsn(x′1, ssn) andhasDeptNumber(x′2, dept), since the chase algorithm of Clio
only follows foreign key referencesoutof tables. Specifically, there would be three sep-
arate logical relations, i.e.,Employee(x1) ./x1=x′

1
hasSsn(x′1, ssn),Department(x2)

./x2=x′

2
hasDeptNumber(x′2, dept), andworks for(x′′1 , x

′′

2) ./x′′

1
=x1

Employee(x1)
./x′′

2
=x2

Department(x2). (ii) The fact thatssn is a key in the tableT :Employee,
leads us to prefer (see Section 4) a many-to-one relationship, such asworks for, over
some many-to-many relationship which could have been part of the ontology (e.g.,
O:previouslyWorkedFor); Clio does not differentiate the two. So the work to be pre-
sented here analyzes the key structure of the tables and the semantics of relationships
(cardinality, IsA) to eliminateunreasonableoptions that arise in mapping to ontologies.

The problem ofdata reverse engineeringis to extract a CM, for example, an ER
diagram, from a database schema. Sophisticated algorithmsand approaches to this have
appeared in the literature over the years (e.g., [8, 5]). Themajor difference between data
reverse engineering and our work is that we are given an existing ontology, and want
to interpret a legacy relational schema in terms of it, whereas data reverse engineering
aims to construct a new ontology.

Schema matching(e.g., [3, 13]) identifies semantic relations between schema ele-
ments based on their names, data types, constraints, and schema structures. The primary
goal is to find the one-to-one simple correspondences which are part of the input for our
mapping inference algorithms.

3 Formal Preliminaries

For an ontology, we do not restrict ourselves to any particular ontology language in
this paper. Instead, we use a generic conceptual modeling language (CML), which
containscommonaspects of most semantic data models, UML, ontology languages
such as OWL, and description logics. In the sequel, we use CM todenote an ontology
prescribed by the generic CML. Specifically, the language allows the representation
of classes/concepts(unary predicates over individuals),object properties/relationships
(binary predicates relating individuals), anddatatype properties/attributes(binary pred-
icates relating individuals with values such as integers and strings); attributes are single
valued in this paper. Concepts are organized in the familiaris-ahierarchy. Object prop-
erties, and their inverses (which are always present), are subject to constraints such



as specification of domain and range, plus the familiar cardinality constraints, which
here allow 1 as lower bounds (calledtotal relationships), and 1 as upper bounds (called
functionalrelationships). We shall represent a given CM using a directed and labeled
ontology graph, which has concept nodes labeled with concept namesC, and edges
labeled with object propertiesp; for each suchp, there is an edge for the inverse re-
lationship, referred to asp−. For each attributef of conceptC, we create a separate
attribute node denoted asNf,C , whose label isf , and with edge labeledf from nodeC
toNf,C .4 For the sake of simplicity, we sometimes use UML notations, as in Figure 1,
to represent the ontology graph. Note that in such a diagram,instead drawing separate
attribute nodes, we place the attributes inside the rectangle nodes. Readers should not
be confused by this compact representation.

If p is a relationship between conceptsC andD (or object property having domain
C and rangeD), we propose to write in text asC ---p--- D (If the relationship p is
functional, we writeC ---p->-- D .) For expressive CMLs such as OWL, we may
also connectC toD by p if we find an existential restriction stating that each instance
of C is related tosomeor all instance ofD by p.

For relational databases, we assume the reader is familiar with standard notions as
presented in [14], for example. We will use the notationT [K,Y ] to represent a rela-
tional tableT with columnsKY , and keyK. If necessary, we will refer to the individual
columns inY usingY [1], Y [2], . . ., and useXY as concatenation. Our notational con-
vention is that single column names are either indexed or appear in lower-case. Given a
table such asT above, we use the notationkey(T), nonkey(T) andcolumns(T) to refer
toK, Y andKY respectively. (Note that we use the terms “table” and “column” when
talking about relational schemas, reserving “relation(ship)” and “attribute” for aspects
of the CM.) A foreign key (fk) inT is a set of columns F thatreferencestableT ′, and
imposes a constraint that the projection ofT onF is a subset of the projection ofT ′ on
key(T ′).

In this paper, acorrespondenceT.c !D.f will relate columnc of tableT to at-
tribute f of conceptD. Since our algorithms deal with ontology graphs, formally a
correspondenceL will be a mathematical relationL(T, c,D, f,Nf,D), where the first
two arguments determine unique values for the last three.

Finally, we use Horn-clauses in the formT (X) :- Φ(X,Y ), as described in Intro-
duction, to representsemantic mappings, whereT is a table with columnsX (which
become arguments to its predicate), andΦ is a conjunctive formula over predicates rep-
resenting the CM, withY existentially quantified as usual.

4 Principles of Mapping Inference

We begin with the set ofconcept nodes, M , such that for each node inM some of the
attribute nodes connected to it are corresponded by some of the columns of a table, and
M contains all of the nodes singled out by all of the correspondences from the columns
of the table. We assume that the correspondences have been specified by users. To seek
LAV mapping, it is sufficient to only focus on the connectionsamong nodes inM

4 Unless ambiguity arises, we will use “nodeC”, when we mean “concept node labeledC”.



by stripping off the attribute nodes5. Note that attribute nodes, which we can attach
them back at any time, are important when encoding trees intoformulas for proving the
formal results. The primary principle of our mapping inference algorithm is to look for
shortest“reasonable” trees connecting nodes inM . In the sequel, we will call such a
treesemantic tree.

As mentioned before, the naive solution of finding min-spanning trees or Steiner
trees does not give us good results. The semantic tree we seekis not only shortest
but “reasonable”. Although the “reasonableness” is vague at this moment, we will lay
out some principles according to the semantics carried by the relational schemas and
ontologies; and we will show that our principles have a solidfoundation that the “rea-
sonableness” can be formally proved in a very strict but useful setting.

Consider the case whenT [c, b] is a table with keyc, corresponding to an attribute
f on conceptC, andb is a foreign key corresponding to an attributee on conceptB.
Then for each value ofc (and hence instance ofC), T associates at most one value
of b (instance ofB). Hence the semantic mapping forT should be some formula that
acts as a function from its first to its second argument. The semantic trees for such
formulas look like functional edges, and hence should be preferred. For example, given
tableDep[dept, ssn, . . .], and correspondences which link the two named columns to
hasDeptNumber andhasSsn in Figure 1, respectively, the proper semantic tree uses
manages− (i.e.,hasManager) rather thanworks_for− (i.e.,hasWorkers).

Conversely, for tableT ′[c, b], an edge that is functional fromC to B, or fromB

to C, is likely not to reflect a proper semantics since it would mean that the key cho-
sen forT ′ is actually a super-key – an unlikely error. (In our example,consider a ta-
bleT [ssn, dept, . . .], where both named columns are foreign keys.) To deal with such
problems, an algorithm should work in two stages: first connecting the concepts corre-
sponding to key columns into somehow askeleton tree, then connecting the rest nodes
corresponding to other columns to the skeleton by, preferably, functional edges.

Most importantly, we must deal with the assumption that the relational schema
and the CM were developed independently, which implies thatnot all parts of the CM
are reflected in the database schema and vice versa. This complicates things, since in
building the semantic tree we may need to go through additional nodes, which end
up not being corresponded by any columns in the relational schema. For example,
Consider again theProject(name, supervisor) table and its correspondences men-
tioned in Introduction. Instead of the edgeworks_on, we prefer thefunctional path
controls−.manages− (i.e., controlledBy followed byhasManager), pass-
ing through nodeDepartment. Similar situations arise when the CM contains detailed
aggregationhierarchies (e.g.,city part-of townshippart-ofcountypart-ofstate), which
are abstracted in the database (e.g., a table with columns for city andstateonly).

We have chosen to flesh out the above principles in a systematic manner by con-
sidering the behavior of our proposed algorithm on relational schemas designed from
Entity Relationship diagrams — a topic widely covered in even undergraduate database
courses [14]. (We call thiser2rel schema design.) One benefit of this approach will be
to allow us to prove that our algorithm, though heuristic in general, is in some sense

5 In the sequel, we will say “a concept corresponded by some columns of a table” without
mentioning its attributes.



“correct” for a certain class of schemas. Of course, in practice such schemas may be
“denormalized” in order to improve efficiency, and, as we mentioned, only parts of the
CM are realized in the database. We emphasize that our algorithm uses the general
principles enunciated above even in such cases, with relatively good results in practice.

To reduce the complexity of the algorithms which is inherently a tree enumeration,
and the size of the answer set, we modify the graph by collapsing multiple edges be-
tween nodesE andF , labeledp1, p2, . . . say, into a single edge labeled′p1; p2; . . .

′ The
idea is that it will be up to the user to choose between the alternative labels after the
final results have been presented by the tool, though the system may offer suggestions,
based on additional information, such as heuristics concerning the identifiers labeling
tables and columns, and their relationship to property names.

5 Mapping inference Algorithms

As stated before, the algorithm is based on the relational database design methodology
from ER models. We will introduce the details of the algorithm in a gradual manner, by
repeatedly adding features of an ER model that appear as partof the CM. We assume
that the reader is familiar with basics of ER modeling and database design [14], though
we summarize the ideas.

5.1 An Initial Subset of ER notions

We start with a subset of ER that contains the notions such asentity setE (called
just “entity” here), with attributes referred asattribs(E), andbinary relationship set.
In order to facilitate the statement of correspondences andtheorems, we assume in
this section that attributes in the CM have globally unique names. (Our implemented
tool does not make this assumption.) An entity is represented as a concept/class in
our CM. A binary relationship set corresponds to two relationships in our CM, one
for each direction, though only one is mapped to a table. Sucha relationship will be
calledmany-manyif neither it nor its inverse is functional. Astrong entityS has some
attributes that act as identifier. We shall refer to these usingunique(S) when describing
the rules of schema design. Aweak entityW has insteadlocalUnique(W ) attributes,
plus a functional total binary relationshipp (denoted asidRel(W )) to an identifying
owner entity (denoted asidOwn(W )).

Note that information about general identification cannot be represented in even
highly expressive languages such as OWL. So functions likeunique are only used while
describing the er2rel mapping, and are not assumed to be available during semantic
inference. The er2rel design methodology (we follow mostly[8, 14]) is defined by two
components: To begin with, Table 1 specifies a mappingτ(O) returning a relational
table schema for every CM componentO, whereO is either a concept/entity or a binary
relationship. In this subsection, we assume that no pair of concepts is related by more
than one relationship, and that there are no so-called “recursive” relationships relating
an entity to itself. (We deal with these in Section 5.3.)

In addition to the schema (columns, key, fk’s), Table 1 also associates with a rela-
tional tableT [V ] a number of additional notions:



ER Model object O Relational Table τ (O)

Strong Entity S columns: X

primary key: K

Let X=attribs(S) fk’s: none

Let K=unique(S) anchor: S

semantics: T (X) :- S(y),hasAttribs(y, X).

identifier: identifyS(y, K) :- S(y),hasAttribs(y, K).

Weak Entity W columns: ZX

let primary key: UX

E = idOwn(W ) fk’s: X

P = idrel(W ) anchor: W

Z=attribs(W ) semantics: T (X, U, V ) :- W (y), hasAttribs(y, Z), E(w),P (y, w),

X = key(τ(E)) identifyE(w, X).

U =localUnique(W ) identifier: identifyW (y, UX) :- W (y),E(w), P (y, w), hasAttribs(y, U),

V = Z − U identifyE(w, X).

Functional columns: X1X2

Relationship F primary key: X1

E1 --F->- E2 fk’s: Xi referencesτ(Ei),

let Xi = key(τ(Ei)) anchor: E1

for i = 1, 2 semantics: T (X1, X2) :- E1(y1),identifyE1
(y1, X1), F (y1, y2), E2(y2),

identifyE2
(y2, X2).

Many-many columns: X1X2

Relationship M primary key: X1X2

E1 --M-- E2 fk’s: Xi referencesτ(Ei),

let Xi = key(τ(Ei)) semantics: T (X1, X2) :- E1(y1),identifyE1
(y1, X1), M(y1, y2),E2(y2),

for i = 1, 2 identifyE2
(y2, X2).

Table 1.er2rel Design Mapping.

– an anchor, which is the central object in the CM from whichT is derived, and
which is useful in explaining our algorithm (it will be the root of the semantic tree);

– a formula for the semantic mapping for the table, expressed as a Horn formula
with headT (V ) (this is what our algorithm should be recovering); in the body of
the Horn formula, the functionhasAttribs(x, Y ) returns conjunctsattrj(x, Y [j])
for the individual columns Y[1], Y[2],... in Y, whereattrj is the attribute name
corresponded by columnY [j].

– the formula for a predicateidentifyC(x, Y ), showing how objectx in (strong or
weak) entityC can be identified by values inY 6.

Note thatτ is defined recursively, and will only terminate if there are no “cycles” in the
CM (see [8] for definition of cycles in ER).

The er2rel methodology also suggests that the schema generated usingτ can be
modified by (repeatedly)merginginto the tableT0 of an entityE the tableT1 of some
functional relationship involving the same entityE (which has a foreign key refer-

6 This is needed in addition tohasAttribs, because weak entities have identifying values spread
over several concepts.



ence toT0). If the semantics ofT0 is T0(K,V ) :- φ(K,V ), and ofT1 is T1(K,W )
:- ψ(K,W ), then the semantics of table T=merge(T0,T1) is, to a first approximation,
T (K,V,W ) :- φ(K,V ), ψ(K,W ). And the anchor ofT is the entityE.

Please note that one conceptual model may result in several different relational
schemas, since there are choices in which direction a one-to-one relationship is en-
coded (which entity acts as a key), and how tables are merged.Note also that the re-
sulting schema is in Boyce-Codd Normal Form, if we assume that the only functional
dependencies are those that can be deduced from the ER schema(as expressed in FOL).

Now we turn to the algorithm for finding the semantic trees between nodes in the
setM singled out by the correspondences from columns of a table. As mentioned in
the previous section, because the keys of a table functionally determine the rest of the
columns, the algorithm for finding the semantic trees works in several steps:

1. Determine a skeleton tree connecting the concepts corresponding to key columns;
also determine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns usingshortest functional
paths to the skeleton anchor.

3. Link any unaccounted-for concepts corresponding to someother columns by arbi-
trary shortest paths to the tree.

More specifically, the main function,getTree(T ,L), will infer the semantics of table
T , given correspondenceL, by returning an semantic treeS. EncodingS into formula
yields the conjunctive formula defining the semantics of table T .

Function getTree(T,L)
input: tableT , correspondencesL for columns(T )
output: set of semantic trees7

steps:

1. Let Lk be the subset ofL containing correspondences fromkey(T );
compute(S′, Anc′)=getSkeleton(T ,Lk).

2. If onc(nonkey(T ))8- onc(key(T )) is empty, then return (S′, Anc′). /*if all columns corre-
spond to the same set of concepts as the key does, then return the skeleton tree.*/

3. For each foreign keyFi in nonkey(T ) referencingTi(Ki):
let Li

k = {Ti.Ki!L(T, Fi)}, and compute(Ss′′i , Anc′′i )= getSkeleton(Ti,Li
k). /*recall

that the functionL(T, Fi) is derived from a correspondenceL(T, Fi, D, f, Nf,D) such that
it gives a conceptD and its attributef (Nf,D is the attribute node in the ontology graph.)*/
find πi=shortest functional path fromAnc′ to Anc′′i ; let S = combine9(S′, πi, {Ss′′i }).

4. For each columnc in nonkey(T) that is not part of an fk, letN = onc(c); find π=shortest
functional path fromAnc′ to N ; updateS := combine(S, π).

5. In all cases above asking for functional paths, use a shortest path if afunctional one does not
exist.

6. ReturnS.

7 To make the description simpler, at times we will not explicitly account for thepossibility of
multiple answers. Every function is extended to set arguments by element-wise application of
the function to set members.

8 onc(X) is the function which gets the setM of concepts corresponded by the columnsX.
9 Functioncombine merges edges of trees into a larger tree.



The functiongetTree(T, L) makes calls to functiongetSkeleton on T and other
tables referenced by fks inT , in order to get a set of (skeleton tree, anchor)-pairs, which
have the property that in the case of er2rel designs, if the anchor returned is conceptC,
then the encoding of the skeleton tree is the formula foridentifyC .

Function getSkeleton(T,L)
input: tableT , correspondencesL for key(T )
output: a set of (skeleton tree, anchor) pairs
steps:
Supposekey(T ) contains fksF1,. . . ,Fn referencing tablesT1(K1),..,Tn(Kn);

1. If n ≤ 1 andonc(key(T )) is just a singleton set{C}, then return(C, {C}).10/*Likely a
strong entity: the base case.*/

2. Else, letLi={Ti.Ki!L(T, Fi)}/*translate corresp’s thru fk reference*/;
compute (Ssi, Anci) = getSkeleton(Ti, Li).
(a) If key(T ) = F1, then return (Ss1, Anc1). /*functional relationship of weak entities.*/
(b) If key(T )=F1A, where columnsA are not in any foreign key ofT then /*possibly a

weak entity*/
i. if Anc1 = {N1} andonc(A) = {N} such that there is a total functional pathπ

from N to N1, then return (combine(π, Ss1), {N}). /*N is a weak entity.*/
(c) Else supposingkey(T ) has additional non-fk columnsA[1], . . . A[m], (m ≥ 0); let

Ns={Anci} ∪ {onc(A[j]), j = 1, .., m}, and find skeleton treeSs′ connecting the
nodes inNs, where any pair of nodes inNs is connected by a many-many path; return
(combine(Ss′, {Ssj}), Ns). /*dealing with the many-to-many binary relationships;
also the default action for unaccounted-for tables, e.g., cannot find an identifying rela-
tion from a weak entity to the supposed owner entity. No unique anchor exists.*/

In order forgetSkeleton to terminate, it is necessary that there be no cycles in fk
references in the schema. Such cycles (which may have been added to represent ad-
ditional integrity constraints, such as the the fact that anassociation is total) can be
eliminated from a schema by replacing the tables involved with their outer join over the
key. getSkeleton deals with strong entities and their functional relationships in step
(1), with weak entities in step (2.b.i), and so far, with functional relationships of weak
entities in (2.a). In addition to being a catch-all, step (2.c) deals with tables represent-
ing many-many relationships (which in this section have keyK = F1F2), by finding
anchors for the ends of the relationship, and then connecting them with paths that are
not functional, even when every edge is reversed.

To get the logic formula from a tree based on correspondenceL, we provide the
procedureencodeTree(S,L) below, which basically assigns variables to nodes, and
connects them using edge labels as predicates.

Function encodeTree(S,L)
input: subtreeS of ontology graph, correspondencesL from table columns to attributes
of concept nodes inS.
output: variable name generated for root ofS, and conjunctive formula for the tree.
steps:SupposeN is the root ofS. LetΨ = {}.

10 Both here and elsewhere, when a conceptC is added to a tree, so are edges and nodes forC ’s
attributes that appear inL.



1. if N is an attribute node with labelf , find d such thatL( , d, , f,N) = true,
return(d, true). /*for leaves of the tree, which are attribute nodes, return the corresponding
column name as the variable and an empty formula.*/
2. if N is a concept node with labelC, then introduce new variablex; add conjunct
C(x) to Ψ ;

for each edgepi fromN toNi /*recursively get the entire formula.*/
let Si be the subtree rooted atNi,
let (vi, φi(Zi))=encodeTree(Si, L),
add conjunctspi(x, vi) ∧ φi(Zi) to Ψ ;

return(x, Ψ).

To specify the properties of the algorithm, we now suppose that the correspondences
L be the identity mappings from attribute names to table columns. The interesting prop-
erty ofgetSkeleton is that ifT = τ(C) according to the er2rel rules in Table 1, where
C corresponds to a (strong or weak) entity, thengetSkeleton returns(S,Anc), where
Anc = C as anchor, andencodeTree(S,L) is logically equivalent toidentifyC . Simi-
lar property exists forT = τ(p), wherep is a functional relationship originating from
conceptC, in which case its key looks just like an entity key. We now state the desirable
properties more formally. Since the precise statement of theorems (and algorithms) is
quite lengthy and requires a lot of minute details for which we do not have room here,
we express the results as “approximately phrased” propositions. First,getTree finds the
desired semantic mapping, in the sense that

Proposition 1. Let tableT be part of a relational schema obtained by er2rel derivation
from conceptual modelE . Then some treeS returned bygetTree(T,L) has the property
that the formula returned byencodeTree(S,L) is logically equivalent to the semantics
assigned toT by the er2rel design.

Note that this “completeness” result is non-trivial, since, as explained earlier, it would
not be satisfied by the current Clio algorithm [11], if applied blindly to E viewed as
a relational schema with unary and binary tables. SincegetTree may return multiple
answers, the following converse “soundness” result is significant

Proposition 2. If S′ is any tree returned bygetTree(T,L), with T as above, then the
formula returned byencodeTree(S′, L) represents the semantics ofsometable T ′

derivable by er2rel design fromE , whereT ′ is isomorphic11 to T .

Such a result would not hold of an algorithm which returns only minimal spanning
trees, for example.

We would like to point out that the above algorithm performs reasonably on some
non-standard designs as well. For example, consider the relational tableT (personName,
cityName, countryName), where the columns correspond to, respectively, attributes
pname, cname, andcrname of conceptsPerson,City andCountry in a CM. If the
CM contains a path such thatPerson -- bornIn ->- City -- locatedIn

->- Country , then the above table, which is not in 3NF and was not obtainedusing

11 Informally, two tables are isomorphic if there is a bijection between their columns which pre-
serves key and foreign key structure.



er2rel design (which would have required a table forCity), would still get the proper
semantics:
T(personName,cityName,countryName):-

Person(x1), City(x2),Country(x3), bornIn(x1,x2), locatedIn(x2,x3),
pname(x1,personName), cname(x2,cityName),crname(x3,countryName).

If on the other hand, there was a shorter functional path fromPerson toCountry,
say an edge labeledcitizenOf, then the mapping suggested would have been:
T(personName, cityName, countryName):-

Person(x1), City(x2), Country(x3), bornIn (x1,x2 ),citizenOf(x1,x3), ...
which corresponds to the er2rel design. Moreover, hadcitizenOf not been func-
tional, then once again the semantics produced by the algorithm would correspond to the
non-3NF interpretation, which is reasonable since the table, having onlypersonName
as key, could not store multiple country names for a person.

5.2 Reified Relationships

It is desirable to also have n-ary relationship sets connecting entities, and to allow re-
lationship sets to have attributes (called “association classes” in UML). Unfortunately,
these features are not directly supported in most CMLs, suchas OWL, which only have
binary relationships. Such notions must instead be represented by “reified relation-
ships” [2] (we use an annotation * to indicate the reified relationships in a diagram):
concepts whose instances represent tuples, connected by so-called “roles” to the tuple
elements. So, ifBuysrelatesPerson, ShopandProduct, through rolesbuyer, sourceand
object, then these are explicitly represented as (functional) binary associations, as in
Figure 2. And a relationship attribute, such as when the buying occurred, becomes an
attribute of theBuysconcept, such aswhenBought.

Unfortunately, reified relationships can-
Person
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Fig. 2.N-ary Relationship Reified.

not be distinguished reliably from ordi-
nary entities in normal CMLs on purely
formal, syntactic grounds, yet they need
to be treated in special ways during re-
covery. For this reason we assume that
they can be distinguished onontologi-
cal grounds. For example, in Dolce [4],
they are subclasses of top-level concepts
Quality andPerdurant/Event. For a rei-
fied relationshipR, we use functionsroles(R) andattribs(R) to retrieve the appropriate
(binary) properties.

The designτ of relational tables for reified relationships is shown in Table 2. To
discover the correct anchor for reified relationships and get the proper tree, we need to
modify getSkeleton, by adding the following case between steps 2(b) and 2(c):

– If key(T )=F1F2 . . . Fn and there exist reified relationshipRwith n rolesr1, . . . , rn
pointing at the singleton nodes inAnc1, . . . , Ancn respectively,
then letS = combine({rj}, {Ssj}), and return(S, {R}).

The main change togetTree is to compensate for the fact that ifgetSkeleton finds a
reifiedversion of a many-many binary relationship, it will no longer look for an unrei-
fied one. So after step 1. we add



ER model object O Relational Table τ (O)

Reified Relationship R columns: ZX1 . . . Xn

if r1, . . . , rn are roles ofR primary key: X1 . . . Xn

let Z=attribs(R) fk’s: X1, . . . , Xn

Xi=key(τ(Ei)) anchor: R

whereEi fills role ri semantics: T (ZX1 . . . Xn) :- R(y),Ei(wi), hasAttribs(y, Z), ri(y, wi),

identifyEi
(wi, Xi), . . .

identifier: identifyR(y, . . . Xi . . .) :- R(y), . . . Ei(wi), ri(y, wi),

identifyEi
(wi, Xi),...

Table 2.er2rel Design for Reified Relationship.

– if key(T ) is the concatenation of two foreign keysF1F2, andnonkey(T) is empty,
compute (Ss1,Anc1) and (Ss2, Anc2) as in step 2. ofgetSkeleton; then find
ρ=shortest many-many path connectingAnc1 toAnc2;
return (S′) ∪ (combine(ρ, Ss1, Ss2))

The previous version ofgetTree was set up so that with these modifications, attributes
to reified relationships will be found properly, and the previous propositions continue
to hold.

5.3 Replication

If we allow recursive relationships, or allow the merger of tables for different functional
relationships connecting the same pair of concepts (e.g.,works_for andmanages),
the mapping in Table 1 is incorrect because column names willbe repeated in the multi-
ple occurrences of the foreign keys. We will distinguish these (again, for ease of presen-
tation) by adding superscripts as needed. For example, ifPersonis connected to itself
by thelikesproperty, then the table forlikeswill have schemaT [ssn1, ssn2].

During mapping discovery, such situations are signaled by the presence of multiple
columnsc andd of tableT corresponding to the same attributef of conceptC. In such
situations, the algorithm will first make a copyCcopy of nodeC in the ontology graph,
as well as its attributes.Ccopy participates in all the object relationsC did, so edges must
be added. After replication, we can setonc(c) = C andonc(d) = Ccopy, or onc(d) =
C andonc(c) = Ccopy (recall thatonc(c) gets the concept corresponded by columnc in
the algorithm). This ambiguity is actually required: givena CM withPersonandlikesas
above, a tableT [ssn1, ssn2] could have alternate semantics corresponding tolikes, and
its inverse,likedBy. (A different example would involve a tableT [ssn, addr1, addr2],
wherePersonis connected by two relationships,homeandoffice, to conceptBuilding,
which has anaddressattribute.

The main modification needed to thegetSkeleton andgetTree algorithms is that
no tree should contain both a functional edgeD --- p ->-- C and its replicate
D --- p ->-- Ccopy , (or several replicates), since a function has a single value,

and hence the different columns of a tuple will end up having identical values: a clearly
poor schema.



5.4 Addressing Class Specialization

The ability to represent subclass hierarchies, such as the one in Figure 3 is a hallmark
of CMLs and modern so-called Extended ER (EER) modeling.

Almost all textbooks (e.g., [14]) describe two techniques for designing relational
schemas in the presence of class hierarchies

1. Map each concept/class into a separate table following the standard er2rel rules.
This approach requires two adjustments: First, subclassesmust inherit identifier
attributes from a single super-class, in order to be able to generate keys for their
tables. Second, in the table created for an immediate subclassC ′ of classC, its
key key(τ(C ′)) should also be set to reference as a foreign keyτ(C), as a way of
maintaining inclusion constraints dictated by the is-a relationship.

2. Expand inheritance, so thatall attributes and relations involving a classC appear on
all its subclassesC ′. Then generate tables as usual for the subclassesC ′, though not
for C itself. This approach is used only when the subclasses coverthe superclass.
some researchers also suggest a third possibility:

3. “Collapse up” the information about subclasses into the table for the superclass.
This can be viewed as the result ofmerge(TC , TC′), whereTC [K,A] andTC′ [K,B]
are the tables generated forC and its subclassC ′ according to technique (1.) above.
In order for this design to be “correct”, [8] requires thatTC′ not be the target of any
foreign key references (hence not have any relationships mapped to tables), and
thatB be non-null (so that instances ofC ′ can be distinguished from those ofC).

The use of the key for the root class,
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Fig. 3.Specialization Hierarchy.

together with inheritance and the use of
foreign keys to also check inclusion con-
straints, make many tables highly ambigu-
ous. For example, according to the above,
tableT (ss#, crsId), with ss# as the key
and a foreign key referencingT ′, could
represent at least
(a)Faculty teach Course
(b) Lecturer teach Course
(c) Lecturer coord Course.
This is made combinatorially worse by
the presence of multiple and deep hier-
archies (e.g., imagine a parallelCoursehierarchy), and the fact that not all ontology
concepts are realized in the database schema, according to our scenario. For this reason,
we have chosen to try to deal with some of the ambiguity relying on users, during the
establishment of correspondences. Specifically, the user is supposed to provide a cor-
respondence from columnc to attributef on the lowest class whose instances provide
data appearing in the column. Therefore, in the above example of tableT (ss#, crsId),
ss#is made to correspond tossnon Faculty in case (a), while in cases (b) and (c) it is
made to correspond toss#on Lecturer. This decision was also prompted by the CM
manipulation tool that we are using, which automatically expands inheritance, so that
ss#appears on all subclasses.



Under these circumstances, in order to capture designs (1.)and (2.) above, we do
not need to modify our earlier algorithm in any way, if we firstexpand inheritance
in the graph. So the graph would showLecturer -- teaches;coord ->-

Course in the above example, andLecturerwould have all the attributes ofFaculty.
To handle design (3.), we can add to the graph an actual edge for the inverse of theis-

a relation: a functional edge labeledalsoA, with lower-bound0: C --- alsoA ->--

C’ , connecting superclassC to each of its subclassesC’. It is then sufficient to allow
functional paths between concepts to consist ofalsoAedges, in addition to the normal
kind, in getTree.

5.5 Outer Joins

The observant reader has probably noticed that the definition of the semantic mapping
for T = merge(TE , Tp) was not quite correct:T (K,V,W ) : −φ(K,V ), ψ(K,W )
describes a join onK, rather than a left-outer join, which is what is required ifp is a
non-total relationship. In order to specify the equivalentof outer joins in a perspicuous
manner, we will use conjuncts of the formdµ(X,Y )eY , which will stand for the for-
mulaµ(X,Y )∨ (Y = null∧¬∃Z.µ(X,Z)), indicating that null should be used if there
are no satisfying values for the variablesY . With this notation, the proper semantics for
merge isT (K,V,W ) : −φ(K,V ), dψ(K,W )eW .

In order to obtain the correct formulas from trees,encodeTree needs to be modified
so that when traversing a non-total edgepi that is not part of the skeleton, in the second-
to-last line of the algorithm we must allow for the possibility of vi not existing.

Our formal results still hold under the replication, the treatment of specialization
hierarchy, and the encoding of the merging of non-total functional relationships into
outer joins.

6 Experience

So far, we have developed the mapping inference algorithm byinvestigating the con-
nections between the semantic constraints in both relational models and ontologies.
The theoretical results show that our algorithm will reportthe “right” semantics for
schemas designed following the widely accepted design methodology. Nonetheless, it
is crucial to test the algorithm in real-world schemas and ontologies to see its overall
performance. To do this, we have implemented the mapping inference algorithm in our
prototype systemMAPONTO, and have applied it on a set of schemas and ontologies.
In this section, we provide some evidence for the effectiveness and usefulness of the
prototype tool by discussing the set of experiments and our experience.

Our test data were obtained from various sources, and we haveensured that the
databases and ontologies were developed independently. The test data are listed in
Table 3. They include the following databases: the Department of Computer Science
database in University of Toronto; the VLDB conference database; the DBLP computer
science bibliography database; the COUNTRY database appearing in one of reverse
engineering papers; and the test schemas in OBSERVER [9] project. For the ontolo-
gies, our test data include: the academic department ontology in the DAML library; the



academic conference ontology from the SchemaWeb ontology repository; the bibliog-
raphy ontology in the library of the Stanford’s Ontolingua server; and the CIA factbook
ontology. Ontologies are described in OWL. For each ontology, the number of links in-
dicates the number of edges in the multi-graph resulted fromobject properties. We have
made all these schemas and ontologies available on our web page: www.cs.toronto.edu/
˜yuana/research /maponto/relational/testData.html.

Database SchemaNumber of Number of Ontology Number of Number of

Tables Columns Nodes Links

UTCS Department 8 32 Academic Department 62 1913

VLDB Conference 9 38 Academic Conference 27 143

DBLP Bibliography 5 27 Bibliographic Data 75 1178

OBSERVER Project 8 115 Bibliographic Data 75 1178

Country 6 18 CIA factbook 52 125

Table 3.Characteristics of Schemas and ontologies for the Experiments.

To evaluate our tool, we sought to understand whether the tool could produce the in-
tended mapping formula if the simple correspondences were given. We were concerned
about the number of formulas presented by the tool for users to sift through. Further,
we wanted to know whether the tool was still useful if the correct formula was not gen-
erated. In this case, we expected that a user could easily debug a generated formula to
reach the correct one instead of creating it from scratch. A summary of the experimen-
tal results are listed in Table 4 which shows the average sizeof each relational table
schema in each database, the average number of candidates generated, and the average
time for generating the candidates. Notice that the number of candidates is the number
of semantic trees obtained by the algorithm. Also, a single edge of an semantic tree may
represent the multiple edges between two nodes, collapsed using ourp; q abbreviation.
If there arem edges in a semantic tree and each edge hasni i = 1, ..,m original edges
collapsed, then there are

∏m

i ni original semantic trees. We show below a formula gen-
erated from such a collapsed semantic tree:
TaAssignment(courseName, studentName):-

Course(x1), GraduateStudent(x2), [hasTAs;takenBy](x1,x2),
workTitle(x1,courseName), personName(x2,studentName).

where, in the semantic tree, the nodeCourseand the nodeGraduateStudentare con-
nected by a single edge with labelhasTAs;takenBy which represents two separate
edges,hasTAsandtakenBy.

Table 4 shows that the tool only present a few mapping formulas for users to ex-
amine. This is due in part to our compact representation of parallel edges between two
nodes shown above. To measure the overall performance, we manually created the map-
ping formulas for all the 28 tables and compared them to the formulas generated by the
tool. We observed that the tool produced correct formulas for 24 tables. It demonstrated
that the tool is able to understand the semantics of many practical relational tables in
terms of an independently developed ontology.



Database SchemaAvg. Number of Avg. Number of Avg. Execution

Cols/per table Candidates generated time(ms)

UTCS Department 4 4 279

VLDB Conference 5 1 54

DBLP Bibliography 6 3 113

OBSERVER Project 15 2 183

Country 3 1 36

Table 4.Performance Summary for Generating Mappings from Relational Tables to Ontologies.

However, we wanted to know the usefulness of the tool. To evaluate this, we exam-
ined the generated formulas which were not the intended ones. For each such formula,
we compared it to the manually created and correct one, and weused a very coarse mea-
surement to record how much effort we had to spend to debug thegenerated formula in
order to make it correct. Such a measurement only recorded the changes of predicate
names in a formula. For example, the tool generated the following formula for the table
Student(name, office, position, email, phone, supervisor):

Student(X1), emailAddress(X1,email), personName(X1,name), Professor(X2),
Institute(X3), head(X3,X2), affiliatedOf(X3,X1), personName(X2, supervisor)... (1)

If the intended semantics for the above table columns is:

Student(X1), emailAddress(X1,email), personName(X1,name), Professor(X2),
GraduateStudent(X3), hasAdvisor(X3,X2), isA(X3,X1), personName(X2, supervisor)... (2)

then, one can change the three predicatesInstitute(X3), head(X3,X2), affiliatedOf(X3,X1)
in formula (1) toGraduateStudent(X3), hasAdvisor(X3,X2), isA(X3,X1) instead of writing
the entire formula (2) from scratch. Our experience workingwith the tool has shown
that significant effort have been saved when building semantic mappings from tables to
ontologies, because in most cases one only needed to change arelatively small number
of predicates in an existing formula.

Tables 4 indicate that execution times were not significant,since, as predicted, the
search for subtrees and paths took place in a relatively small neighborhood.

7 Conclusion and Future Work

Semantic mappings between relational database schemas andontologies in the form of
logic formulas play a critical role in realizing the semantic web as well as in many data
sharing problems. We have proposed a solution to infer the LAV mapping formulas
from simple correspondences, relying on information from the database schema (key
and foreign key structure) and the ontology (cardinality restrictions,is-a hierarchies).
Theoretically, our algorithm infers all and only the semantics implied by the ER-to-
relational design if a table’s schema follows ER design principles. In practice, our ex-



perience working with independently developed schemas andontologies has shown that
significant effort has been saved in specifying the LAV mapping formulas.

We are working towards disambiguation between multiple possible semantics by
exploiting the following sources of information: first, a richer modeling language, sup-
porting at least disjointness/coverage inis-ahierarchies, but also more complex axioms
as in OWL ontologies; second, the use of thedatastored in the relational tables whose
semantics we are investigating. For example, queries may beused to check whether
complex integrity constraints implied by the semantics of aconcept/relationship fail to
hold, thereby eliminating some candidate semantics.
Acknowledgments:We are most grateful to Renée Miller and Yannis Velegrakis for
their clarifications concerning Clio, comments on our results, and encouragement. Re-
maining errors are, of course, our own.
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