
Building Semantic Mappings from Databases to Ontologies

Yuan An and John Mylopoulos
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4, Canada

{yuana,jm}@cs.toronto.edu

Alex Borgida
Department of Computer Science

Rutgers University
Piscataway, NJ 08855, USA

borgida@cs.rutgers.edu

Abstract

A recent special issue of AI Magazine (AAAI 2005)
was dedicated to the topic of semantic integration —
the problem of sharing data across disparate sources.
At the core of the solution lies the discovery the “se-
mantics” of different data sources. Ideally, the se-
mantics of data are captured by a formal ontology of
the domain together with a semantic mapping connect-
ing the schema describing the data to the ontology.
However, establishing the semantic mapping from a
database schema to a formal ontology in terms of for-
mal logic expressions is inherently difficult to automate,
so the task was left to humans. In this paper, we re-
port on our study (An, Borgida, & Mylopoulos 2005a;
2005b) of a semi-automatic tool, called MAPONTO, that
assists users to discover plausible semantic relation-
ships between a database schema (relational or XML)
and an ontology, expressing them as logical formu-
las/rules.

Introduction and Motivation
Semantic integration, the problem of sharing data across dis-
parate sources, has been a long-standing challenge for the
database community. A recent special issue of AI Magazine
(AAAI 2005) was dedicated to the same topic. It is thus be-
coming clear that semantic integration also lies at the heart
of many AI problems and that addressing it will require so-
lutions that blend database and AI techniques. The core of
semantic integration is the problem of discovering the se-
mantics of different data sources. The solutions proposed
for a number of important database challenges rely on an
ontology to provide the precise semantics of the database
schema. These include federated databases, data ware-
housing (Calvanese et al. 2001), information integration
through mediated schemas (Levy, Srivastava, & Kirk 1996;
Goasdoue & Rousset 2004), and peer-to-peer data manage-
ment systems (Halevy et al. 2003). Since much informa-
tion on the Web is generated from databases, the Seman-
tic Web also requires associating semantics with database-
resident data using ontologies (e.g., (Handschuh, Staab, &
Volz 2003)).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In almost all of these cases semantics of the data is
captured by some kind of semantic mapping between the
database schema and the ontology. Although sometimes the
mapping is just a simple association from terms to terms,
in other cases what is required is a complex formula, of-
ten expressed in logic or a query language (Levy 2000;
Amann et al. 2002).

For example, in both the Information Manifold data inte-
gration system presented in (Levy, Srivastava, & Kirk 1996),
and the DWQ data warehousing system (Calvanese et al.
2001), rules of the form T (X) :- Φ(X,Y ) are used to con-
nect a relational data source to an ontology described in a
Description Logic, where T (X) is a single predicate repre-
senting a table in the relational data source, and Φ(X,Y ) is
a conjunctive formula over the predicates representing the
concepts and relationships in the ontology.

In all previous work it has been assumed that humans
specify the mapping rules – a difficult, time-consuming and
error-prone task, especially since the specifier must be fa-
miliar with both the semantics of the database schema and
the contents of the ontology. As the size and complexity of
ontologies increase, it becomes desirable to have some kind
of computer tool to assist people in the task. Note that the
problem of semantic mapping discovery is superficially sim-
ilar to that of database schema reverse engineering, whose
goal is to find a conceptual model (often an Entity Relation-
ship diagram) from which the database schema might have
been derived; the significant difference is that in our case
the ontology is already given, and we need to find a detailed
connection between its conceptualizations of the world and
that of the schema.

In this paper, we report on our studies (An, Borgida, &
Mylopoulos 2005a; 2005b) in the context of the develop-
ment of the MAPONTO tool, which assists users in discov-
ering mapping rules between database schemas and ontolo-
gies. The discovery of data semantics is a necessarily heuris-
tic task, but one which in our case is underpinned by a care-
ful study of the standard design process relating the con-
structs of database schemas with those of conceptual model-
ing languages, such as the Entity Relationship model. In
order to improve the effectiveness of MAPONTO, we as-
sume some user input in addition to the database schema
and the ontology. Specifically, inspired by the Clio project
(Miller, Haas, & Hernandez 2000), we expect the MAPONTO



-hasSsn


-hasName

-hasAddress


-hasAge


Professor


-hasDeptNumber


-hasName

-.


-.


Department


works_for


controls


4..*
 1..1


1..1


0..1


1..1
 0..*


1..*


0..1
-hasNumber


-hasName

-.


-.


Project


hasChair


works_on
 0..1


Professor(ssn, name, dept, proj)


Figure 1: Relational table, Ontology, and Correspondences.

user to provide simple correspondences between atomic el-
ements used in the database schema (e.g., column names in
tables) and those in the ontology (e.g., attribute/”data type
property” names on concepts). Given the set of correspon-
dences, MAPONTO is expected to reason about the database
schema and the ontology, and to generate a list of candi-
date rules for each individual component (e.g., a table) in
the database schema. Ideally, one of the rules is the correct
one — capturing the user’s intention underlying the given
correspondences. The hypothesis underlying this work is
then that, compared to composing logical rules representing
semantic mappings, it is much easier for users (i) to draw
simple correspondences/arrows from atomic elements in the
database schema to datatype properties of classes in the on-
tology1 and then (ii) to evaluate proposed formulas returned
by MAPONTO.

We illustrate the input/output behavior of MAPONTO by
the following example.

Example Figure 1 shows an academic ontology contain-
ing some basic concepts (classes), attributes of concepts
(datatype properties of classes), relationships between con-
cepts (object properties of classes), and cardinality con-
straints on relationships. We actually construct an ontol-
ogy graph, with concepts corresponding to nodes, and ob-
ject properties to edges. (Attributes are treated as special
edges.) In our diagrams, we represent the information us-
ing the UML notations. (In UML, cardinality constraints
are written at the opposite end of the association: a Depart-
ment has at least 4 Professors working for it, and a Professor
works in one Department.)

Suppose we wish to discover the semantics of a relational
table Professor(ssn, name, dept, proj) with key2 ssn in
terms of the academic ontology. And suppose that by look-
ing at column names and the ontology graph, the user draws
the simple correspondences shown as dashed lines in Figure
1. This indicates, for example, that the values in the ssn col-
umn correspond values of to the hasSsn property/function

1In fact, there exist already tools used in schema matching
which help perform such tasks using linguistic, structural, and sta-
tistical information (e.g., (Dhamankar et al. 2004; Rahm & Bern-
stein 2001)).

2The key of a table is a unique (set of) columns that is desig-
nated to uniquely identify each tuple in the table.

of Professor concept instances. Using prefixes T and O
to distinguish tables in the relational schema and concepts
in the ontology (both of which will be thought of as predi-
cates), we represent the correspondences as follows:
T : Professor.ssn!O : Professor.hasSsn

T : Professor.name!O : Professor.hasName

T : Professor.dept!O : Department.hasDeptNumber

T : Professor.proj!O : Project.hasNumber

Given the above inputs, MAPONTO is expected to produce
a list of plausible mapping rules, which should include the
following rule, expressing the most plausible semantics for
the table:
T :Professor(ssn, name, dept, proj) :-

O:Professor(x1), O:hasSsn(x1,ssn), O:hasName(x1,name),
O:Department(x2), O:works for(x1,x2),
O:hasDeptNumber(x2,dept), O:Project(x3),
O:works on(x1,x3), O:hasNumber(x3,proj).

Note that, as explained in (Levy 2000), the above, admit-
tedly confusing notation in the literature, should really be
interpreted as the First Order Logic formula

(∀ssn, name, dept, proj) T :Professor(ssn, name, dept, proj)
⇒ (∃x1, x2, x3) O:Professor(x1) ∧...

because the ontology explains what is in the table (i.e., every
tuple corresponds to a O:Professor), rather than guarantee-
ing that the table satisfies the closed world assumption (i.e.,
for every O:Professor there is a tuple in the table). �

An intuitive (but somewhat naive) solution, inspired by
early work of Quillian (Quillian 1968), is based on find-
ing the shortest paths between concepts in the ontology.
Technically, this involves (i) finding the minimum span-
ning tree(s) (actually Steiner trees 3). connecting the con-
cepts having datatype properties corresponding to table
columns, and then (ii) encoding the tree(s) into rules. How-
ever, in some cases the spanning/Steiner tree may not pro-
vide the desired semantics for a table because of known
relational schema design rules. For example, consider
the relational table Project(num, supervisor), with key
num corresponding to O:Project.hasNumber, and col-
umn supervisor corresponding to O:Professor.hasSsn
in Figure 1. The minimum spanning tree consisting of
Project, Professor, and the edge works on probably
does not match the semantics of table Project because there
are multiple Professors working on a Project according
to the ontology cardinality, yet the table allows only one to
be recorded, since supervisor is functionally dependent on
num, the key. Therefore we must seek a functional connec-
tion from Project to Professor, and the connection will
be the chair of the department controlling the project.

In MAPONTO, we use ideas of standard schema design
from conceptual models in order to craft heuristics that sys-
tematically uncover the connections between the constructs
of database schemas and those of ontologies. We propose
to generate “reasonable” trees connecting the set of corre-
sponded concepts in an ontology. For the sake of space lim-
itation, in the sequel we will focus on reporting MAPONTO’s

3A Steiner tree for a set M of nodes in graph G is a minimum
spanning tree of M that may contain nodes of G which are not in
M .



solution and results on building semantic mappings from re-
lational schemas to ontologies appearing in (An, Borgida,
& Mylopoulos 2005b). For XML schemas, the solution is in
the same spirit except that it seeks to map a tree structure of
an XML schema, instead of a relational table, to an ontol-
ogy. Details can be found in (An, Borgida, & Mylopoulos
2005a).

Outline of Mapping Inference
For relational schemas, we aim at generating a formula of
the form T (X) :- Φ(X,Y ) to represent semantic mappings,
where T is a table with columns X (which become argu-
ments to its predicate), and Φ is a conjunctive formula over
predicates representing the ontology, with Y existentially
quantified, as usual. As implied earlier, we construct an
ontology graph, where concept nodes are connected by di-
rected edges – one for the property and one for its inverse. It
will be important for our algorithm to distinguish functional
edges — ones with upper bound cardinality of 1, and their
composition: functional paths.

Given a table T , and correspondences to an ontology pro-
vided by a person or a tool, let the set CT consist of those
concept nodes which have at least one attribute correspond-
ing to some column of T . Our task is to find semantic con-
nections between concepts in CT , because attributes can then
be connected to the result using the correspondence relation.
The primary principle of our mapping inference algorithm is
to look for smallest “reasonable” trees connecting nodes in
CT . We will call such a tree a semantic tree.

Consider the case when T (c, b) is a table with key c, cor-
responding to an attribute f on concept C, and b is a foreign
key corresponding to an attribute e on concept B.4 Then for
each value of c (and hence instance of C), T associates at
most one value of b (instance of B). Hence the semantic
mapping for T should be some formula that acts as a func-
tion from its first to its second argument. The semantic trees
for such formulas look like functional edges in the ontology,
and hence are preferable.

Conversely, for table T ′(c, b), where c and b are as above,
values in column c are intended to be associated with mul-
tiple values of in column b, and conversely – otherwise the
table would have been specified to have a smaller key: ei-
ther c or b alone. Therefore a tree with a functional edge
from C to B, or from B to C, is likely not to reflect a proper
semantics.

To deal with such problems, our algorithm works in two
stages: first connect the concepts corresponding to key
columns into a skeleton tree, then connect the rest of the
nodes in CT to the skeleton using functional edges (when-
ever possible).

We must however also deal with the assumption that the
relational schema and the ontology were developed inde-
pendently, which implies that not all parts of the ontol-
ogy are reflected in the database schema. This complicates
things, since in building the semantic tree we may need to

4In a relational table T , a column f is specified to be a foreign
key to table S (which may be identical to T ), if every value in f
must appear in the key column of table S.

go through additional nodes, which end up not correspond-
ing to columns of the relational table. An example of such a
situation arises when the ontology contains detailed aggre-
gation hierarchies (e.g., city part-of township part-of county
part-of state), which are abstracted in the database (e.g., a
table with columns for city and state only).

We have chosen to flesh out the above principles in a
systematic manner by considering the behavior of our pro-
posed algorithm on relational schemas designed from Ex-
tended Entity Relationship (EER) diagrams — a technique
widely covered in undergraduate database courses. (We re-
fer to this er2rel schema design.) One benefit of this ap-
proach is that it allows us to prove that our algorithm, though
heuristic in general, is in some sense “correct” for a certain
class of schemas. Of course, in practice such schemas may
be “denormalized” in order to improve efficiency, and, as we
mentioned, only parts of the ontology may be realized in the
database. Our algorithm uses the general principles enunci-
ated above even in such cases, with relatively good results
in practice. Also note that the assumption that a given re-
lational schema was designed from some EER conceptual
model does not mean that given ontology is this EER model,
or is even expressed in the EER notation. In fact, our heuris-
tics have to cope with the fact that it is missing essential
information, such as keys for weak entities.

In particular, we have specified a mapping τ(C) of the
er2rel design returning a relational table for every EER
component C. Furthermore, we have observed that the
er2rel design, for our purposes, associates with a relational
table T a number of additional notions. An important one
is anchor. An anchor is the central object in the ontology
from which T is derived. (for details see (An, Borgida, &
Mylopoulos 2005b)).

Consequently, the algorithm consists of two major func-
tions getSkeleton and getTree. The function getSkeleton
returns a set of (skeleton, anchor)-pairs, when given a ta-
ble T and a set of correspondences L from key(T ) (the key
column(s) of T ). The function is essentially a recursive al-
gorithm attempting to reverse the mapping τ(C). The func-
tion getTree finds the entire semantic tree by connecting
the concepts corresponding to the rest of the columns, i.e.,
nonkey(T ), to the anchor.

Summary of the Results
We now summarize our results. Theoretically, if the schema
was derived from an EER diagram following the er2rel de-
sign and the ontology encodes the EER diagram, then our al-
gorithm in most cases satisfies the following two properties:
(1) A sense of “completeness”: the algorithm lists, among
others the correct semantics; (2) A sense of “soundness”: if
for such a table there are multiple semantic trees returned by
the algorithm, then each of the trees would produce an indis-
tinguishable relational table according to the er2rel design.

Nonetheless, it is crucial to test the algorithm on real-
world schemas and ontologies. The algorithm has been im-
plemented as a third-party plugin of the well-known knowl-
edge base management system Protégé5, which is an open

5http://protege.stanford.edu



platform for ontology modeling and knowledge acquisi-
tion. Ontologies are described in OWL ontology language
in MAPONTO.

Our test data were obtained from various sources, and we
have ensured that the databases and ontologies were devel-
oped independently. We have tested 5 schemas and 5 on-
tologies. The schemas and ontologies have a variety of sizes
and complexities. Their characteristic features can be found
in (An, Borgida, & Mylopoulos 2005b).

To evaluate MAPONTO, we sought to understand whether
MAPONTO could produce the intended mapping formula if
the simple correspondences were given. We were espe-
cially concerned with the number of formulas presented by
MAPONTO for users to sift through. Further, we wanted to
know whether MAPONTO was still useful if the correct for-
mula was not generated. In this case, we expected that a user
could more easily debug a generated formula to reach the
correct one instead of creating it from scratch. The detailed
experimental results are available in the original publication
(An, Borgida, & Mylopoulos 2005b).

In summary, our results indicate that MAPONTO only
presents a few mapping formulas (≤ 4) for users to ex-
amine. To measure the overall performance, we manually
created the mapping formulas for all the 36 tables and com-
pared them to the formulas generated by MAPONTO. We
observed that MAPONTO produced correct formulas for 31
tables. This demonstrates that MAPONTO is able to infer the
semantics of many relational tables occurring in practice in
terms of an independently developed ontology.

We were also interested in the usefulness of MAPONTO in
those cases where the formulas generated were not the in-
tended ones. For each such formula, we compared it to the
manually generated correct one, and we used a very coarse
measurement to record how much effort it would take to “de-
bug” the generated formula: the number of changes of pred-
icate names in a formula. Our experience working with the
data sets shows that at average only about 30% predicates in
a single incorrect formula returned by MAPONTO needed
to be modified to reach the correct formula. This is a signif-
icant saving in terms of human labors.

Our results also indicate that execution times were not sig-
nificant (see (An, Borgida, & Mylopoulos 2005b)), since, as
predicted, the search for subtrees and paths took place in a
relatively small neighborhood.

Conclusion and Future Work
Numerous additional sources of knowledge, including richer
ontologies, actual data stored in the databases, linguistic and
semantic relationships between schema elements and the on-
tology, can be used to refine the suggestions of MAPONTO.
In addition, more complex correspondences (e.g., from
columns to sets of attribute names or class names), should
also be investigated in order to generate the full range of
mappings encountered in practice.

From our experience in developing and evaluating
MAPONTO, we venture to generalize several observations
that might be applicable to AI research in general:

• In solving complex problems, there is considerable bene-

fit to be gained from finding hints that can be provided as
additional inputs by (naive) users. In our case, as inspired
by Clio (Miller, Haas, & Hernandez 2000), correspon-
dences played this role.

• Finding an important core class of problems, which can be
thoroughly studied, provides the opportunity to actually
prove that the otherwise heuristic algorithm is correct for
a subclass of inputs.

• For tools producing complex artifacts, it may be reason-
able to measure success not just by the number of cases
where the tool produced the exact answer desired, but also
by the ease with which incorrect answers can be modified
to produce correct ones. Ultimately, tools will be success-
ful if they can reduce the amount of human effort required
to perform a given task.

References
AAAI. 2005. AI Magazine: Special Issue on Semantic
Integration. Volume 26, Number 1.
Amann, B.; Beeri, C.; Fundulaki, I.; and Scholl, M. 2002.
Ontology-Based Integration of XML Web Resources. In
ISWC’02.
An, Y.; Borgida, A.; and Mylopoulos, J. 2005a. Construct-
ing complex semantic mappings between xml data and on-
tologies. In ISWC’05.
An, Y.; Borgida, A.; and Mylopoulos, J. 2005b. Inferring
complex semantic mappings between relational tables and
ontologies from simple correspondences. In ODBASE’05.
Calvanese, D.; Giacomo, G. D.; Lenzerini, M.; Nardi, D.;
and Rosati, R. 2001. Data Integration in Data Warehous-
ing. J. of Coop. Info. Sys. 10(3):237–271.
Dhamankar, R.; Lee, Y.; Doan, A.; Halevy, A.; and Domin-
gos, P. 2004. iMAP: Discovering Complex Semantic
Matches between Database Schemas. In SIGMOD’04.
Goasdoue, F., and Rousset, M.-C. 2004. Answering
Queries using Views: a KRDB Perspective for the Seman-
tic Web. ACM TOIT 4(3):255 – 288.
Halevy, A.; Ives, Z.; Mork, P.; and Tatarinov, I. 2003.
Piazza: Data Management Infrastructure for Semantic Web
Applications. In WWW’03.
Handschuh, S.; Staab, S.; and Volz, R. 2003. On Deep
Annotation. In Proc. WWW’03.
Levy, A. Y.; Srivastava, D.; and Kirk, T. 1996. Data Model
and Query Evaluation in Global Information Systems. J. of
Intelligent Info. Sys. 5(2):121–143.
Levy, A. Y. 2000. Logic-Based Techniques in Data Integra-
tion. Jack Minker (ed), Logic Based Artificial Intelligence,
Kluwer Publishers.
Miller, R.; Haas, L. M.; and Hernandez, M. A. 2000.
Schema Mapping as Query Discovery. In VLDB’00.
Quillian, M. R. 1968. Semantic Memory. In Semantic
Information Processing, 227–270. The MIT Press.
Rahm, E., and Bernstein, P. A. 2001. A Survey of Ap-
proaches to Automatic Schema Matching. VLDB Journal
10.


