
APPENDIX
A. DETAILED EVALUATION

This appendix provides a detailed description of the experimen-
tal study we conducted in the ICSE14 paper entitled ”Lifting Model
Transformations to Product Lines”. The next subsection A.1 is meant
to replace subsection 6.1 in the paper.

A.1 Methodology
Lifted rule application begins with finding a rule matching site

which is a well-studied subgraph isomorphism problem [18]. For this
step, our approach performs as well as the traditional graph transfor-
mations. Afterwards, the application algorithm in Fig. 6 is applied.
Steps 4-9 of the algorithm can be completed in time linear in the size
of the matching site K. We thus focus our examination to Steps 3 and
10 since they require solving the satisfiability problem, which is NP-
complete. The former entails checking whether Φp ∧ Φapply (Def. 8)
is SAT and the latter – if Φp ∧ Φd ∧ ¬Φapply is UNSAT. In this sec-
tion, we refer to these formulas as Φ1 and Φ2, respectively. Since
Φ1 and Φ2 are similar in structure, we use the same experimental de-
sign whereby we generate random but realistic inputs to a SAT solver
to measure the time required to check SAT and UNSAT, respectively.
To generate realistic inputs, we simulated the execution of the algo-
rithm in Fig. 6, replacing matching with random element selection.
We varied input generation using two experimental variables: (a) the
feature model, and (b) the transformation rule. In addition, based
on pilot runs and the case study described in Sec. 5, we calibrated
random input generation with additional parameters to ensure that
the generated formulas correspond to realistic scenarios. We describe
these below.

Varying the Feature Model. Each element in Φ1 and Φ2 is rep-
resented by its presence conditions which are expressed over the set
of features. Moreover, as described in Sec. 3.1, the feature model of
a product line P can be encoded in the propositional formula Φp ex-
pressed over the set of features [15]; Φp is a subformula of Φ1 and
Φ2. Thus, the first experimental variable is the choice of a feature
model. To get realistic values of this parameter, we used the collec-
tion of real feature models available in the S.P.L.O.T repository [30]
. At the time of experimentation, the repository contained 359 real
feature models, ranging from 9 to 290 features, with an average of 26
features each.

Varying the Transformation Rule. The subformula Φapply of
Φ1 and Φ2 in Def. 8 gets more complex for larger sizes of the rule’s
LHS and NACs. Thus, our second experimental variable is the choice
of the rule. To vary it, we use seven real graph transformation rules
chosen from the literature and shown in Table 3. We specifically chose
those that represent variety of transformation use cases (translation,
refactoring, refinement, etc.) and have LHS, RHS and NACs of dif-
ferent sizes, ranging from 0 to 30.

Generating inputs. In order to generate realistic inputs, we sim-
ulate the rule application algorithm in Fig. 6. At each simulation
step r, we produce a formula Φapply(r) that approximates the for-
mula Φapply in Φ1 and Φ2. We resorted to simulating the algorithm
due to the lack of readily available real examples of product line do-
main models. We simulated the matching and transformation steps of
the algorithm by generating expressions that represent elements with
randomly generated presence conditions.

The simulated algorithm iterates to represent subsequent rule ap-
plications. We distinguish two classes of model elements: First, those
with simple presence conditions, symbolized as eN , eD and eC . These
represent elements of the untransformed model and are generated with
a simple random presence condition which is either True or a single
feature variable. Second, those with more complex presence condi-
tions, symbolized as eA. These are elements that are added over time
via rule application and their presence condition is Φapply(r), where
r is the iteration counter.

Given an initial model size s0, at the first iteration step r = 1, we
first construct a new Φapply(1) as shown in step 2 of the algorithm in

Fig. 6. Its subformulas φand
N (1), φand

C (1), and φand
D (1) are constructed

using n eN elements, c eC elements, and d eD elements. The con-
stants n, c, and d represent the size of the respective parts of the rule
being applied, as shown in Table 3. We then simulate the addition
step of algorithm (step 5 in Fig. 6), by generating a eA elements with
presence condition Φapply(1) and calculating the size s1 = s0 + a.
We keep track of all generated eA elements in a global data structure
B which also associates each eA with a “chaining counter”, which is
initialized to a common value. Before the next iteration step we calcu-
late the “selection probability” p1 = |B|/s1, where |B| is the number
of eA elements in B.

In every subsequent step r+1, we repeat the above process modified
as follows: Each element in the new Φapply(r+ 1) has probability pr

to be taken from the global data structure B and probability 1−pr to
be freshly generated with a simple presence condition. If an element
eA is reused from B, its chaining counter is decremented. Once an eA
element’s chaining counter reaches zero it is removed from B. Next,
a new eA elements are added to B, the model size is increased to
sr+1 = sr + a, and the new selection probability is computed to
pr+1 = |B|/sr+1.

The process is iterated for a preset number of steps to simulate the
growing complexity of presence conditions resulting from repeated
rule application. Because of the way the selection probability is com-
puted at each step, there is an increasing likelihood that existing eA
elements are reused from B. The decay of the chaining counter also
ensures that presence conditions do not become arbitrarily large, thus
approximating the behavior that we observed in the case study and
pilot runs.

Calibrating input generation. The generation process described
above requires calibration of a few additional experimental param-
eters. Rather than considering these as independent variables, we
chose to fix their values based on pilot runs and observations of the
case study in order to avoid the combinatoric explosion of possible
experimental configurations. These parameters are:

a) The size s0 of the original domain model has an impact on the
calculation of the selection probability. We chose to start with a
fixed size of 100 elements to simulate models that are reasonably
large in size.

b) Whenever we generate a fresh random element with simple pres-
ence conditions, we must decide whether its presence condition will
be True or a single feature variable. We fixed these probabilities
to 0.4 and 0.6 respectively.

c) A real model transformation would stop once there would be no
more application sites for which the applicability condition would
hold. For our simulated generation of inputs, we set a maximum
number of iterations after which we cut off execution. Based on
our observations in the case study we fixed this parameter to 500.

d) In real transformations, an element would be likely to participate
in more than one rule applications, especially in the case of lay-
ered rule application. To simulate this we used the global data
structure B and defined the chaining counter for each element in
B. Based on our pilot observations, we initialized it for each new
added element to 4.

e) In pilot runs, we observed that usually NACs would tend to only
match towards the end of a transformation chain, ultimately caus-
ing the transformation to stop. We thus made it so that the gen-
erated Φapply(r) would only contain the subformula φand

N with a
fixed probability 0.5, similarly to the behavior that we observed
in pilot runs.


