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( Abstract [AU: Please write a 100-150-word abstract.]
In the vertebrate nervous system, sensory stimuli are typically encoded through the concerted activity of large populations of neurons. Classically, these patterns of activity have been treated as encoding the value of the stimulus (e.g. the orientation of a contour) and computation has been formalized in terms of function approximation. More recently, there have been several suggestions that neural computation is akin to a Bayesian inference process, with population activity patterns representing uncertainty about stimuli in the form of probability distributions (e.g. the probability density function over the orientation of a contour). This paper reviews both approaches, with a particular emphasis on the latter, which we see as a very promising framework for future modeling and experimental work. 

INTRODUCTION

The way that neural activity represents sensory and motor information has been the subject of intense investigation. A salient finding is that single aspects of the world (i.e., single variables) induce activity in multiple neurons. For instance, the direction of an air current caused by movement of a nearby predator of a cricket is encoded in the concerted activity of several neurons called cercal interneurons (Theunissen & Miller 1991). Further, each neuron is activated to a greater or lesser degree by different wind directions. Evidence exists for this form of coding at the sensory input areas of the brain (e.g., retinotopic and tonotopic maps), as well as at the motor output level and in many other intermediate neural processing areas, including superior colliculus neurons encoding saccade direction (Lee et al. 1988), MT[AU: please spell out on first instance middle temporal] :middle temporal]cells responding to local velocity (Maunsell & Van Essen 1983), MST[AU: please spell out on first instance:  middle superior temporal] : cells sensitive to global motion parameters (Graziano et al. 1994), inferotemporal (IT) neurons responding to human faces (Perrett et al. 1985), hippocampal place cells responding to the location of a rat in an environment (O'Keefe & Dostrovsky 1971), and cells in primary motor cortex of a monkey responding to the direction it is to move its arm (Georgopoulos et al. 1982).

A major focus of theoretical neuroscience has been to understand how populations of neurons encode information about single variables; how this information can be decoded from the population activity; how population codes support nonlinear computations over the information they represent; how populations may offer a rich representation of such things as uncertainty in the aspects of the stimuli they represent; how multiple aspects of the world are represented in single populations; and what computational advantages (or disadvantages) such schemes have. [AU: AR house style does not use italics for emphasis or key words.]
The first section below, considers the standard model of population coding that is now part of the accepted canon of systems neuroscience. The second sectionconsiders more recent proposals that extend the scope of the standard model.

THE STANDARD MODEL

Coding and Decoding 
Figure 1A shows the normalized mean firing rates of the four low-velocity interneurons of the cricket cercal system as a function of a stimulus variable s, which is the direction of an air current that could have been induced by the movement of a nearby predator (Theunissen & Miller 1991). This firing is induced by the activity of the primary sensory neurons for the system, the hair cells on the cerci.

Such curves are called tuning curves and indicate how the mean activity fa(s) of cell a depends on s. To a fair approximation, these tuning curves are thresholded cosines,
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 is the maximum firing rate, and sa is the preferred direction of cell a, namely the wind direction leading to the maximum activity of the cell. From the figure, sa  {45, 135, 225, 315}. Given the relationship between the cosine function and projection, Figure 1B shows the natural way of describing these tuning curves. The wind is represented by a unit length two dimensional vector v pointing in its direction and cell a by a similar unit vector ca pointing in its preferred wind direction. Then 
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 [AU: something missing here in equation? = what? The second = was not needed. I removed it.]is proportional to the thresholded projection of v onto ca (Figure 1B). This amounts to a Cartesian coordinate system for the wind direction (see Salinas & Abbot 1994).

Figure 1 Cercal system. (A) Normalized tuning curves for four low-velocity interneurons. These are well approximated as rectified cosines, with preferred values approximately 90 apart. rmax is about 40 Hz for these cells. (B) Alternative representation of the cells in a 2D coordinate plane, with the firing rates specified by the projection of the wind direction v onto vectors representing the interneurons. (C) Root mean square error in decoding the wind direction as a function of s[90o,270o] (these functions are periodic) using the population vector method. (D, E) The difference in root mean square errors between the population vector and maximum likelihood (D) and Bayesian (E) decoders (positive values imply that the population vector method is worse). Note that the population vector method has lower error for some stimulus values, but, on average, the Bayesian decoder is best. The error is 0 for all methods at [AU: is there are reason why there are two degree symbols in the following two equations? No, I took them off]s = 135o and s = 225o, since only one neuron has a non-zero firing rate for those values, and the Poisson distribution has zero variance for zero mean. (A) was adapted from Theunissen & Miller 1991, and (B) was adapted from Dayan & Abbott 2001.

 The Cartesian population code uses just four preferred values; an alternative, homogeneous form of coding allocates the neurons more evenly over the range of variable values. One example of this is the representation of orientation in striate cortex (Hubel & Wiesel 1962).  Figure 2A (see color insert) shows an (invented) example of the tuning curves of a population of orientation-tuned cells in V1 in response to small bars of light of different orientations, presented at the best position on the retina. These can be roughly characterized as Gaussians (or, more generally, bell-shaped curves), with a standard deviation of   = 15o. The highlighted cell has preferred orientation s = 180o, and preferred values are spread evenly across the circle. As we shall see, homogeneous population codes are important because they provide the substrate for a wide range of nonlinear computations. 

For either population code, the actual activity on any particular occasion, for instance the firing rate ra = na/t computed as the number of spikes na fired in a short time window t, is not exactly fa(s) because neural activity is almost invariably noisy. Rather, it is a random quantity (called a random variable) with mean ra =  fa(s) (using to indicate averaging over the randomness). We mostly consider the simplest reasonable model of this for which the number of spikes na has a Poisson distribution. For this distribution, the variance is equal to the mean, and the noise corrupting  [AU: ok? ‘no correlations that corrupt’. Or do you mean ‘in the noise that corrupts’? Is the subject of ‘corrupt’ ‘correlations’ or ‘noise’? ‘noise’ is the subject in this case] the activity of each member of the population of neurons contains no correlations (this is indeed a fair approximation to the noise found in the nervous system; see, for instance, Gershon et al. 1998, Shadlen et al. 1996, Tolhurst et al. 1982). In this review, we also restrict our discussion to rate-based descriptions, ignoring the details of precise spike timing.

Equation 1, coupled with the Poisson assumption, is called an encoding model for the wind direction s. One natural question that we cannot yet answer is how the activities of the myriad hair cells actually give rise to such simple tuning. A more immediately tractable question is how the wind direction s can be read out of, i.e., decoded, from the noisy rates r. Decoding can be used as a computational tool, for instance, to assess the fidelity with which the population manages to code for the stimulus or (at least a lower bound to) the information contained in the activities (Borst & Theunissen 1999, Rieke et al. 1999). However, decoding is not an essential neurobiological operation because there is almost never a reason to decode the stimulus explicitly. Rather, the population code is used to support computations involving s, whose outputs are represented in the form of yet more population codes over the same or different collections of neurons. Some examples of this will shortly be presented; for the moment we consider the narrower, but still important, computational question of extracting approximations 
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Consider, first, the case of the cricket. A simple heuristic method for decoding is to say that cell a “votes” for its preferred direction ca with a strength determined by its activity ra. Then, the population vector, vpop, is computed by pooling all votes (Georgopoulos et al. 1982),  and  an estimate 
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can be derived from the direction of vpop: 
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The main problem with the population vector method is that it is not sensitive to the noise process that generates the actual rates ra from the mean rates fa(s). Nevertheless, it performs quite well. The solid line in Figure 1C shows the average square error in assessing s from r, averaging over the Poisson randomness. This error has two components: the bias, 
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, which quantifies any systematic misestimation, and the variance 
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, which quantifies to what extent 
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can differ from trial to trial because of the random activities. In this case, the bias is small, but the variance is appreciable. Nevertheless, with just 4 noisy neurons, estimation of wind direction to within a few degrees is possible. 

To evaluate the quality of the population vector method, we need to know the fidelity with which better decoding methods can extract s from r. A particularly important result from classical statistics is the Cramér-Rao lower bound (Papoulis 1991), which provides a minimum value for the variance of any estimator 
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 as a function of two quantities: the bias of the estimator and an estimator-independent quantity called the Fisher information IF for the population code, which is a measure of how different the recorded activities are likely to be when two slightly different stimuli are presented.  The greater is the Fisher information, the smaller is the minimum variance, and the better is the potential quality of any estimator (Paradiso 1988, Seung & Sompolinsky 1993). The Fisher information is related to the Shannon information (s;r), which quantifies the deviation from independence of the stimulus s and the noisy activities r (see Brunel & Nadal 1998). 

A particularly important estimator that in some limiting circumstances achieves the Cramér-Rao lower bound is the maximum likelihood estimator (Papoulis 1991). This estimator starts from the full probabilistic encoding model, which, by taking into account the noise corrupting the activities of the neurons, specifies the probability P[r|s] of observing activities r if the stimulus is s. For the Poisson encoding model, this is the so-called likelihood :
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Values of s for which P[r| s] is high are directions that are likely to have produced the observed activities r; values of s for which P[r|s] is low are unlikely. The maximum likelihood estimate 
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 is the value that maximizes P[r|s]. Figure 1D shows, as a function of s, how much better or worse the maximum likelihood estimator is than the population vector. By taking correct account of the noise, it does a little better on average. 

When its estimates are based on the activity of many neurons (as is the case in a homogeneous code) (Figure 2A), the maximum likelihood estimator can be shown to possess many properties, such as being unbiased (Paradiso 1988, Seung & Sompolinsky 1993). Although the cercal system, and indeed most other invertebrate population codes, involves only a few cells, most mammalian cortical population codes are homogeneous and involve sufficient neurons for this theory to apply. 

The final class of estimators, called Bayesian estimators, combine the likelihood P[r|s] (Equation 2) with any prior information about the stimulus s (for instance, that some wind directions are intrinsically more likely than others for predators) to produce a posterior distribution P[sr] (Foldiak 1993, Sanger 1996):
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When the prior distribution P[s] is a flat, that is when there is no specific prior information about s, this is a renormalized version of the likelihood, where the renormalization ensures that it is a proper probability distribution (i.e., integrates to 1). The posterior distribution summarizes everything that the neural activity and any prior information have to say about s, and so is the most complete basis for decoding. Bayesian inference proceeds using a loss function L(s,s), which indicates the cost of reporting s when the true value is s; it is optimal to decode to the value 
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, which minimizes the cost averaged over the posterior distribution (DeGroot 1970). Figure 1E shows the comparative quality of the Bayesian estimator. By including information from the whole likelihood, and not just its peak, the Bayesian estimator does a little better than the maximum likelihood and population vector methods. However, all methods work well here. 

Exactly the same set of methods applies to decoding homogeneous population codes as Cartesian ones, with the Bayesian and maximum likelihood decoding typically outperforming the population vector approach by a rather larger margin. In fact, some calculations are easier because the mean sum activity across the whole population is the same whatever the value of the stimulus s. Also, in general, the greater is the number of cells, the greater is the accuracy with which the stimulus can be decoded by any method, since more cells can provide more information about s. However, this conclusion does depend on the way, if at all, that the noise corrupting the activity is correlated between the cells (Abbott & Dayan 1999, Oram et al. 1998, Snippe & Koenderink 1992b, Sompolinsky et al. 2001, Wilke & Eurich 2002, Yoon & Sompolinsky 1999) and the way that information about these correlations is used by the decoders.

The Bayesian estimator and the population vector method bear a subtle relationship to each other. In this simple case, the former averages possible stimulus values s weighted by their (renormalized) likelihoods P[r|s], rather than averaging preferred stimulus values ca weighted by the spike rates ra. 

Computation with Population Codes

DISCRIMINATION One important computation based on population codes involves using the spiking rates of the cells r to discriminate between different stimuli, for instance, telling between orientations s* + s and s* s, where s is a small angle. It is formally possible to perform discrimination by first decoding, say finding the Bayesian posterior P[s|r], and then reporting whether it is more likely that s < s* or s > s*. However, assuming the prior distribution does not favor either outcome, it is also possible to perform discrimination based directly on the activities by computing a linear, feedforward, test:
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where ( is usually 0 for a homogeneous population code, and  wa = fa(s)/fa(s) (Figure 2B). The appropriate report is s* + s if t(r) > 0 and s* s if t(r) < 0 (Pouget & Thorpe 1991, Seung & Sompolinsky 1993, Snippe & Koenderink 1992a). Figure 2B shows the discrimination weights for the case that s* = 210o. The weight wa for cell a is proportional to the slope of the tuning curve, fa(s), because the slope determines the amount by which the mean activity of neuron a varies when the stimulus changes from s* - s to s* s: the larger is the activity change, the more informative the neuron is about the change in the stimulus, and the larger is its weight. Note an interesting consequence of this principle: The neuron whose preferred value is actually the value about which the task is set (sa = s*) has a weight of 0. This occurs because its slope is zero for s*, i.e., its mean activity is the same for s* + s and s* s, and so it is unhelpful for performing the discrimination. The weight wa is also inversely proportional to the variance of the activity of cell a, which is the same as the mean, fa(s). Psychophysical and neurophysiological data indicate that this pattern of weights is indeed used in humans and animals alike when performing fine discrimination (Hol & Treue 2001, Regan & Beverley 1985). 

Signal detection theory (Green & Swets 1966) underpins the use of population codes for discrimination. Signal detection’s standard measure of discriminability, called d, is a function of the Fisher information---the same quantity that determines the quality of the population code for decoding. 

NOISE REMOVAL As discussed above, although the maximum likelihood estimator is mathematically attractive, its neurobiological relevance is unclear. First, finding a single scalar value seems unreasonable because population codes seem to be used almost throughout the brain. Second, in general, finding the maximum likelihood value requires solving a nonquadratic optimization problem (Bishop 1995). 

Both of these problems can be addressed by utilizing recurrent connections within the population to make it behave like an autoassociative memory (Hopfield 1982). Autoassociative memories use nonlinear recurrent interactions to find the stored pattern that most closely matches a noisy input. One can roughly characterize these devices in the physical terms of a mountainous landscape. The pattern of neural activities at any time (characterized by the firing rates of the neurons) is represented by a point on the surface. The recurrent interactions have the effect of moving the point downhill (Cohen & Grossberg 1983), and the stored memories induce dips or wells. In this case, a noisy version of one of the inputs lies at a point displaced from the bottom of a well; the nonlinear recurrent interactions move the state to the bottom of the closest well and thus perform retrieval. The bottoms of the wells are stable points for the recurrent dynamics.

Ben-Yishai et al. (1995), Zhang (1996), and Seung (1996) constructed autoassociative devices (called continuous line or surface attractor networks) whose landscapes have the structure of perfectly flat and one-dimensional (or perhaps higher-dimensional) valleys. Points at the bottom of a valley represent perfectly smooth bell-shaped activity profiles in the network. There is one point for each possible location s of the peak (e.g., each possible orientation), with activities ra = fa(s). In this case, starting from a noisy initial pattern r, the recurrent dynamics finds a point at the bottom of the valley and thus takes r into a perfectly smooth bell-shaped activity pattern fa(ŝ(r)) (Figure 3A, see color insert). This is how the scheme answers the first objection to decoding: It does not directly find a scalar value but instead integrates all the information in the input and provides the answer in the form of another, but more perfect, population code. Note that such recurrent networks are themselves used to model activity-based short-term or working memory (Compte et al. 2000). 

Pouget et al. (1998, Deneve, Latham Pouget1999) proved that a wide variety of recurrent networks with continuous attractors can implement a close approximation to maximum likelihood decoding, i.e., turning r into activities 
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, with the smooth bump centered at the maximum likelihood value. This result holds regardless of the activation functions of the units (which determine how the input to a unit determines its output firing rate) and includes networks that use biologically inspired activation functions, such as divisive normalization (Heeger 1992, Nelson 1994). This approach therefore answers the second objection to maximum likelihood decoding: If necessary, once the noise has been removed, a simple inference method such as the population vector can be used to determine the location of the peak of the activity pattern.

For this maximum likelihood noise removal method to work, it is critical that all stimulus values should be (almost) equivalently represented. This is not true of the Cartesian population code because the activity patterns for s = 45o and s = 90o have structurally different forms. It is true of the homogeneous population code, with a dense distribution of preferred values and stereotypical response patterns. 

BASIS FUNCTION COMPUTATIONS Many computations can ultimately be cast in terms of function approximation, that is computing the output of functions t = g(s) of variable s, or, more generally, t = g(s), for the case of multiple stimulus dimensions. A particularly influential example has been relating (the horizontal coordinate of) the head-centered direction to a target sh, with the eye-centered (i.e., retinal) direction sr and the position of the eyes in the head se. The relationship between these variables has the simple form sh = sr+se (Mazzoni & Andersen 1995). Computations associated with this coordinate transformation are believed to take place in the parietal cortex of monkeys (Andersen et al. 1985), and there is substantial electrophysiological evidence as to the nature of the population codes involved (Andersen et al. 1985). 

Because the stimulus variables and the outputs of these computations are represented in the form of population codes, the task is to understand how population codes support computations such as these. Fortuitously, there is a whole mathematical theory of basis functions devoted to this topic (e.g., Poggio 1990). We first consider the implementation of a simple function t = g(s) as a mapping from one population code to another. Ignoring noise for the moment, consider generating the mean activity 
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 of the ath neuron in a population code representation of t from the activities 
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 in a population code for s. It turns out that, under some fairly general conditions, representations such as homogeneous population codes are basis functions in that they support linear solutions:
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where wab is a matrix of weights that implements the transformation. Some intuition for how a set of simple linear, feedforward combinations of the population activities 
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 could lead to a population code for t = g(s) comes from the case that the tuning functions are very narrow (nearly Dirac, or delta functions):
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The question is what should be the weights to generate a population code for t with the narrow tuning curves:
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Consider what happens if the input variable takes the value sb. In the input layer, the only active unit is the bth unit, i.e., the one with tuning curve peaking at sb. If the input value is sb, the value of the output variable is given by t* = g(sb). Let us denote a* as the index of the unit peaking at t*. All we need now is to make sure that the only active unit in the output layer is the unit with index a*. This is done by setting the weight wa*b to one, and all the other weights sent by the bth input unit to zero. The general wiring rule can be written as
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Basis function mappings are the extension of this simple structure to true population representations for which multiple cells are simultaneously active for both input and output populations. Homogeneous population codes can readily carry out these computations; however, because of their greater parsimony (effectively using only two neurons to represent each dimension), the Cartesian population codes of the cercal system cannot support computations such as this. 

In the more general case of combining two population codes to obtain a third, such as mapping eye-centered location and eye position to head-centered location, the same method applies but with two-dimensional basis functions. This amounts to a population code tuned in the two different dimensions of eye-centered location and eye position, with joint tuning functions fb(sr,se), such that
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Pouget & Sejnowski (1997, 1995) modeled gain fields in parietal cortex-neural responses tuned to location of images on the retina and multiplicatively (gain) modulated by the eye (and head) position in exactly this manner, using tuning functions that are the products of Gaussians for eye-centered position sr and monotonic sigmoids for eye position se (for which preferred values are really points of inflection). In theory, one would need a huge number of basis functions, one for each combination of preferred value of eye-centered location and eye position; but in practice, the actual number depends on the required fidelity. Salinas & Abbott (1995) proposed a similar scheme and subsequently showed that these gain fields could arise from a standard network model (Salinas & Abbott 1996). In this model, simple additive synaptic inputs to a recurrently connected population, with excitatory synapses between similarly tuned neurons and inhibitory synapses between differently tuned neurons, approximate a product operation, which allows additive inputs from retinal position and eye position signals to be combined multiplicatively. 

Two aspects of these proposals make them incomplete as neural models. First is noise: Equations such as Equation 4 are true for the tuning functions themselves, but the recorded activities are only noisy versions of these tuning functions. Second is the unidirectional nature of the computation: In cases such as the parietal cortex, there is nothing privileged about computing head-centered location from eye-centered location, as the inverse computation sr = sh se is just as relevant (for instance, this computation is required to predict the visual location of a sound source).
It is possible to solve the problem of noise using the recurrent network of the previous section to eliminate the noise, effectively producing 
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, and then using this in computations such as Equation (2001)4. However, Deneve et al.  suggested a variant of this recurrent network that solves the second problem too, thus combining noise removal, basis function computation, and also cue integration in a population-coding framework. 

In this final scheme, the inverse problems t = g(s) and s = g1(t) (or, in the case of the parietal cortex, sh = sr + se and sr = sh se) are treated symmetrically. This implies the use of a joint population code in all three variables, with tuning functions fa(sh, sr, se). From this representation, population codes for any of the individual sh, sr, and se can be generated as in Equation 5. In the recurrent maximum likelihood decoding scheme of the previous section, there is a point along the bottom of the valley that represents any value of the stimuli s = {sh, sr, se}. In Deneve et al.’s suggestion, the recurrent weights are designed so that only values of s that satisfy the relationship sh = sr + se lie at the bottom of the valley (which, in this case, has the structure of a two-dimensional plane). Thus, only these values of s [AU: ok? NO, s is the subject in this case]are stable points of the recurrent dynamics. Now, starting from noisy activity pattern, the recurrent dynamics will lead to a smooth population code, which represents nearly the maximum likelihood values of sh, sr, se that satisfy sh = sr + se and thus solves any of the three equivalent addition/subtraction problems. 

Figure 3 shows an implementation of this scheme, including bidirectional weights between the individual population codes and the joint population code. The recurrent dynamics work in such a fashion that if there is no initial activity in one of the population codes, say if only eye-centered and eye-position information is available, then the position on the valley found by the network is determined only by the noisy activities representing sr and se. This implies that the network implements noise removal and basis function computation. If noisy information about all three variables is available, as in the case of cue integration (e.g., when an object can be seen and heard at the same time), then the recurrent dynamics will combine them. If one population has smaller activities than the others, then it will exert less influence over the overall maximum likelihood solution. This outcome [AU: or better word?]is statistically appropriate if less-certain input variables are represented by lower population activity (as they exactly are for the Poisson noise model for spiking, for which the standard deviation of the activity of a neuron is equal to the square root of its mean). Deneve et al. (2001) showed that this network could perform statistically near optimal cue integration, together with coordinate transformation. Furthermore, the full, three-dimensional, tuning functions in this scheme have very similar tuning properties to those of parietal cells (Pouget et al. 2002). 

Discussion of Standard Model

We review the standard models of Cartesian and homogeneous population codes, showing how they encode information about stimulus variables, how information can be decoded and used for discrimination, and how homogeneous population codes, because of their close relationship with basis function approximation schemes, can support nonlinear computations, such as coordinate transformations, and statistical computations, such as cue integration. Dayan & Abbott (2001) reviews most of the methods in more detail. 

Various issues about the standard model are actively debated. First, it might be thought that population codes should have the characteristic of enabling the most accurate decoding across a range of stimulus values. In fact, maximizing the Fisher information is not always a good strategy, especially when short time windows are being considered (Bethge et al. 2002). Moreover, nonhomogeneity in tuning widths can improve coding accuracy in some cases (Eurich & Wilke 2000). 

A second area of active debate is the existence and effect of noise correlations (Abbott & Dayan 1999, Oram et al. 1998, Pouget et al. 1999, Snippe & Koenderink 1992b, Sompolinsky et al. 2001, Wilke & Eurich 2002, Wu et al. 2001, Yoon & Sompolinsky 1999). The little available experimental data suggest that correlations decrease information content (Lee et al. 1998, Zohary et al. 1994),  but theoretical studies have shown that correlations can, in principle, greatly increase Fisher information (Abbott & Dayan 1999, Oram et al. 1998, Sompolinsky et al. 2001, Wilke & Eurich 2002, Yoon & Sompolinsky 1999). Also, decoding a correlated population code under the assumption that the noise is independent (a common practice in experimental studies because correlations are hard to measure) can (though need not necessarily) have deleterious consequences for decoding (Wu et al. 2001). [Peter: Wu et al show that unfaithful decoding is actually not catastrophic].
Another important issue for the recurrent network population coding methods is that it is not reasonable to eliminate noise completely in the way we have discussed; rather, population codes are continually noisy. It is thus important to assess the effect of introducing noise into the recurrent dynamics by understanding how it propagates through the computations. 

A final issue is that of joint coding. In the discussion of basis functions, we have assumed that there are neurons with tuning functions that depend on all possible stimulus variables and with preferred values that are evenly distributed. This is obviously implausible, and only some combinations can afford to be represented, perhaps in a hierarchical scheme. In the case of V1, there are some ideas from natural scene statistics (e.g. Li & Atick 1994) and also from general symmetry principles (e.g. Bressloff & Cowan 2002) as to which combinations should exist; however, these have yet to be put together with the basis function approximation schemes. 

The standard model treats population codes as noisily representing certain information about only one particular value of the stimulus s. This is a substantial simplification, and in the next section we consider recent extensions that require a radical change in the conception of the population code. 

ENCODING PROBABILITY DISTRIBUTIONS

Motivation

The treatment in the previous section has two main restrictions. First, we only consider a single source of uncertainty coming from noisy neural activities, which is often referred to as internal noise. In fact, as we see below, uncertainty is inherent in the structure of most relevant computations, independent of the presence of internal noise.  The second restriction is that, although we consider how noise in the activities leads to uncertainty in the Bayesian posterior distribution P[s|r] over a stimulus given neural responses, we do not consider anything other than estimating the single value underlying such a distribution.  Preserving and utilizing the full information contained in the posterior, such as the uncertainty and possibly multimodality, is computationally critical. We use the term distributional population codes for population code representations of such probability distributions. 

In the computer vision literature, the way that uncertainty is inherent in computations has been studied for quite some time in terms of “ill-posed problems” (Kersten 1999, Marr 1982, Poggio et al. 1985). Most questions of interest that one may want to ask about an image are ill-posed, in the sense that the images do not contain enough information to provide unambiguous answers. Perhaps the best-known example of such an ill-posed problem is the aperture problem in motion processing.  When a bar moves behind an aperture, there is an infinite number of 2D motions consistent with the image (Figure 4A). In other words, the image by itself does not specify unambiguously the motion of the object. This may appear to be a highly artificial example because most images are not limited to bars moving behind apertures. Yet, this is a real problem for the nervous system because all visual cortical neurons see the world through the apertures of their visual receptive fields. Moreover, similar problems arise in the computation of the 3D structure of the world, the localization of auditory sources, and many other computations (Knill & Richards 1996).

Figure 4 (A) The aperture problem. Two successive snapshots (at time t and t + 1) of an edge moving behind an aperture. An infinite number of motion vectors is consistent with this image sequence, some of them shown with red arrows. (B) Probability distribution over all velocities given the image sequence shown in (A). All velocities have zero probability except for the ones corresponding to the black line, which have an equal non-zero probability. (C) Same as in (A) but for noisy images of a blurred moving contour. This time, possible motions differ not only in direction but also in speed. (D)  The corresponding probability distribution takes the form of an approximately gaussian ridge whose width is a function of the noise and blurring level in the image sequence. 

What can be done to deal with this uncertainty? The first part of the solution is to adopt a probabilistic approach. Within this framework, we no longer seek a single value of the variable of interest, since this does not exist; rather, perception is conceived as statistical inference giving rise to probability distributions over the values. For the aperture problem, the idea is to recover the probability distribution over all possible motions s given the sequence of images I. This posterior distribution P[s|I] is analogous to the posterior distribution P[s|r] over the stimulus s, given the responses we discuss above, except that uncertainty here does not arise from the fact that multiple stimuli can lead to the same neural responses owing to internal noise rather, it comes from the fact that many different underlying motions give rise to the same observed image. In the case of no strong prior and a simple bar moving behind an aperture, the posterior distribution takes the form indicated in Figure 4B. Only the motions lying on a particular line in a 2D plane of velocities have non-zero probabilities; all are equally likely in the absence of any further information. 

This is actually an idealized case. In reality, the image itself is likely to be corrupted by noise, and the moving object may not have very well-defined contours. For instance, Figure 4C shows two snapshots of a blurred contour moving through an aperture. This time the speed, as well as the direction of the stimulus, is ambiguous. As a result, the posterior becomes a diffuse (e.g., Gaussian) ridge instead, centered on the idealized line (Figure 4D). 

These posterior probability distributions capture everything there is to know about the variables of interest given the image. [AU: what does ‘this’ refer to? Reword as shown] At least two critical questions then arise: Does the brain work with probability distributions? And, if so, how are they encoded in neural activities? The first part of this section reviews psychophysical evidence suggesting that the answer to the first question is very likely to be yes. These experiments attempt to refute the null hypothesis that only a single aspect of such distributions (such as their means or the locations of their peaks) plays any role in perception, as opposed to an alternative hypothesis that other information, notably the width of the distributions, is also important.  Having established the importance of distributional encoding, we consider how populations of neurons might encode, and compute, probability distributions.  We then study some experimental neurobiological evidence supporting this view and finally discuss how these probabilistic population codes can be used for computation. 

Psychophysical Evidence

Many experiments support the notion that perception is the result of a statistical inference process (Knill & Richards 1996). Perhaps one of the simplest demonstrations of this phenomenon is the way that contrast influences speed perception. It has been known for quite some time that the perceived speed of a grating increases with contrast (Blakemore & Snowden 1999, Stone & Thompson 1992, Thompson 1982). This effect is easy to explain within a probabilistic framework. The idea is that the nervous system seeks the posterior distribution of velocity given the image sequence, obtained through Bayes rule: 
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In this example, the prior distribution P[s] represents any prior knowledge the nervous system has about the velocity of objects in the real world, independently of any particular image.  For convenience, we consider velocity in only one dimension (say horizontal for a vertical grating, thus eliminating the aperture problem). Experimental measurements suggest that the prior distribution of 1D velocity in movies of natural scenes takes the form of a Gaussian distribution centered at zero ([AU: first initial? R.]de Ruyter van Steveninck, personal communation; red curve in Figure 5A). In other words, in natural movies, most motions tend to be slow.  Note that the observation that slow motions tend to be more common in real images is independent of seeing any particular image, which is precisely what the prior is about. 

To compute the likelihood P[I|s] as a function of s, one needs to know the type of noise corrupting natural movies and its dependence on contrast (Weiss et al. 2002).  Fortunately, we do not need to venture into those technical details, as intuitive notions are sufficient. The likelihood always peaks near the veridical velocity. However, the width of this peak (compared to its height) is a function of the extent to which the presented image outweighs the noise. This is a function of contrast; as the contrast increases, the image more strongly outweighs the noise, and the peak gets narrower (compare the green curve in Figure 5A and B). 

Given this knowledge of the prior and likelihood functions, we can examine the posterior distribution over velocity, which is simply proportional to the product of these two functions (Equation 6). At high contrast, the posterior distribution peaks at about the same velocity as the likelihood function because the likelihood function is narrow and dominates the product. At low contrast, the likelihood function widens, and the product is more strongly influenced by the prior. Because the prior favors slow speeds, the result is a posterior peaking at slower velocity than the likelihood function.  If the perceived velocity corresponds to either the peak (mode) or the mean of the posterior distribution, it [AU: what? The preceived velocity, how about this wording? will clearly decrease with contrast. Experimental evidence concerning human perception of speed directly follows this prediction (Blakemore & Snowden 1999, Hurlimann et al. 2002, Stone & Thompson 1992, Thompson 1982).  Note that to model this effect it is critical to have a representation of the likelihood function or at least its width. If we knew only its peak position, it would be impossible to reproduce the experimental data because the peak remains at the same position across contrast. Such experiments provide compelling evidence that the nervous system, by some means, represents probability distributions. 

This example alone is not an ironclad proof, but what is remarkable is that this basic set of assumptions (i.e., with no additional parameters) can account for a very large body of experimental data regarding velocity perception---a feat that no other model can achieve (Weiss et al. 2002). 

There are many other demonstrations as to how perception can be interpreted as a statistical inference problem requiring the explicit manipulation of uncertainty (Jacobs 2002, Knill 1998, Knill & Richards 1996). One compelling example concerns how humans combine visual and haptic cues to assess the shape of objects (Ernst & Banks 2002). In this experiment, subjects were asked to judge the height of a bar, which they could see and touch.  First, subjects viewed with both eyes a visual stimulus consisting of many dots, displayed as if glued to the surface of the bar.  To make the task harder, each dot was moved in depth away from the actual depth of the bar, according to a noise term drawn from a Gaussian distribution. As the width of the noise distribution was increased, subjects found it harder and harder to estimate the height of the bar accurately. Ernst & Banks (2002) suggested that observers recover a posterior distribution over heights given the visual image and that this distribution widens as the noise in the image increases.  Next, haptic information as to the height was also provided through a force-feedback robot, allowing subjects the chance to integrate it with the variably uncertain visual information. Ernst & Banks reported that humans behave as predicted by Bayes law in combining visual and haptic information. That is, in estimating the height of the bar, subjects take into account the reliability of the two different cues. This again suggests that the human brain somehow represents and manipulates the widths of the likelihood functions for vision and touch. 

Encoding and Decoding Probability Distributions 
Several schemes have been proposed for encoding and decoding probability distributions in populations of neurons. As for the standard account covered in the first section of this review, there is a difference between mechanistic and descriptive models. Mechanistic models set out to explain the sensory processing path by which neurons come to code for aspects of a probability distribution. The only example of this that we consider is the log likelihood model of Weiss & Fleet (2002). Descriptive models, which are our main focus, offer a more abstract account of the activities of cells, ignoring the mechanistic details. There are also important differences in the scope of the models. Some, such as the gain and log-likelihood models, are more or less intimately tied to the idea that the only important aspect of uncertainty is the width of a single peaked likelihood (which often translates into the variance of the distribution). Others more ambitiously attempt to represent probability distributions in rich and multimodal glory. 

LOG-LIKELIHOOD METHOD A major question for distributional population codes is where the distributions come from. Sensory organs sense physical features of the external world, such as light or sound waves, not probability distributions.  How are the probability distributions inferred from photons or sound waves?  Weiss & Fleet (2002) have suggested a very promising answer to this question. They considered the motion-energy filter model, which is one of the most popular accounts of motion processing in the visual system (Adelson & Bergen 1985). Under their interpretation, the activity of a neuron tuned to prefer velocity v (ignoring its other preferences for retinal location, spatial frequency, etc.) is viewed as reporting the logarithm of the likelihood function of the image given the motion log(P[I|v]). This suggestion is intrinsically elegant, neatly providing a statistical interpretation for conventional filter theory. Further, in the case that there is only a single motion in the image, decoding only involves the simple operation of (summing and) exponentiating to find the full likelihood. A variety of schemes for computing based on the likelihood are made readily possible by this scheme, although some of these require that the likelihood only have one peak for them to work. 

GAIN ENCODING FOR GAUSSIAN DISTRIBUTIONS We have already met the simplest distributional population code. When a Bayesian approach is used to decode a population pattern of activity (Equation 3), the result is a posterior distribution P[s|r] over the stimulus. If the noise in the response of neurons in a large population is assumed to be independent, the law of large numbers dictates that this posterior distribution converges to a Gaussian (Papoulis 1991).  Like any Gaussian distribution, it is fully characterized by its mean and standard deviation. The mean of this posterior distribution is controlled by the position of the noisy hill of activity. If the noisy hill is centered around a different stimulus value, so will be the posterior distribution. By contrast, when the noise follows a Poisson distribution, the standard deviation of the posterior distribution is controlled by the amplitude of the hill. These effects are illustrated in Figure 6 (see color insert). [AU: you don’t appear to have called out Figure 5. Please call it out before Figure 6 is called out. We called out Fig 4 rather than Fig  5 above by mistake.]
Figure 5 Bayesian estimation of the speed of an object moving at 10 deg/s for low and high contrast. For visual clarity, the amplitudes of all distributions have been normalized to one (A). At low contrast, the likelihood function (light gray curve) is wide because the image provides unreliable data about the motion. When this likelihood function is multiplied with the prior (dotted curve) to obtain the posterior distribution (solid black curve), the peak of the posterior distribution (arrow) ends up indicating a slower speed than the veridical speed (10 deg/s). (B) For a high contrast, the likelihood function is narrower, because the image provides more reliable information. As a result, the posterior distribution is almost identical to the likelihood function and peaks closer to the veridical speed. This could explain why humans perceive faster speeds for higher contrasts.

This observation [AU: what? observation, finding? observation] implies that the gain of the population activity controls the standard deviation of the posterior distribution, which is the main quantity required to account for the simple psychophysical examples above. For instance, that lower contrast leads to lower population activities is exactly a mechanistic implementation of increased uncertainty in the quantity encoded.


This method is subject to some strong limitations. In particular, although one can imagine a mechanism that substitutes carefully chosen activities for the random Poisson noise so that the posterior distribution takes on a different form, the central limit theorem argument above implies that it is not a viable way of encoding distributions other than simple Gaussians. 

CONVOLUTION ENCODING For non-Gaussian distributions P[s|I] (strictly densities) that cannot be characterized by a few parameters such as their means and variances, more complicated solutions must be devised.  One possibility inspired by the encoding of nonlinear functions is to represent the distribution using a convolution code, obtained by convolving the distribution with a particular set of kernel functions. 

The canonical kernel is the sine, as used in Fourier transforms. Most nonlinear functions of interest can be recovered from their Fourier transforms, which implies that they can be characterized by their Fourier coefficients.  To specify a function with infinite accuracy one needs an infinite number of coefficients, but for most practical applications a few coefficients suffice (say, 50 or so). One could therefore use a large neuronal population of neurons to encode any function by devoting each neuron to the encoding of one particular coefficient. With N neurons, ignoring noise and negative firing rates, one can encode N coefficients. The activity of neuron a is computed by taking the dot product between a sine function assigned to that neuron and the function being encoded (as is done in a Fourier transform):
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Many other kernel functions may be used for convolution codes.  For instance, one could use Gaussian kernels, in which case the activity of the neurons is obtained through 
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Gaussian kernels are usually better than sine kernels for learning and computation when the distributions are concentrated around one or a small number of values. 

If a large population of neurons is used, and their Gaussian kernels are translated copies of one another, Equation 7 becomes a discrete convolution. In other words, the pattern of activity across the neuronal population is simply the original distribution, filtered by a Gaussian kernel. 

Note that when there is no uncertainty associated with the encoded variable, i.e., the encoded probability distribution is a Dirac function, P[s|I] = (s,s*), Equation 7 reduces to 
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This is simply the equation for the response to orientation s* of a neuron with a Gaussian tuning curve centered on sa.  In other words, the classical framework we review in the first half of this paper is a subcase of this more general approach. 

With the convolution code, one solution to decoding is to use deconvolution, a linear filtering operation that reverses the application of the kernel functions. There is no exact solution to this problem; however, a close approximation to the original function can be obtained by applying a band pass filter, which typically takes the form of a Mexican hat kernel. The problem with this approach is that it fails miserably when the original distribution is sharply peaked, such as a Dirac function. Indeed, a band pass filter cannot recover the high frequencies, which are critical for sharply peaked functions. Moreover, linear filters do not perform well in the realistic case of noisy encoding neurons. 

Anderson (1994) took this approach a step further, making the seminal suggestion of convolutional decoding rather than convolutional encoding. In one version of this scheme (which bears an interesting relationship to the population vector), activity ra of neuron a is considered to be a vote for a particular (usually probabilistic) decoding basis function Pa[s]. Then, the overall distribution decoded from r is
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The advantage of this scheme is the straightforward decoding model; one disadvantage is the concomitant difficulty of encoding. A second disadvantage of this scheme is shared with the linear deconvolution approach: It cannot readily recover the high frequencies that are important for sharply peaked distributions P[s|I], which arise in the case of ample information in I. 

An alternative to these linear decoding schemes for convolution codes, which is consistent with the theme of this review, is to adopt a probabilistic approach. For instance, given the noisy activity of a population of neurons, one should not try to recover the most likely value of s but rather the most likely distribution over s, P[s|I] (Zemel et al. 1998). This can be achieved using a nonlinear regression method such as the Expectation-Maximization altgorithm[AU: Is it standard for this to be capitalized? Yes - it's often called just EM] (Dempster et al. 1977).

In the decoding schemes of both Anderson and Zemel et al., the key concept is to treat a population pattern of activity as a representation of a probability distribution, as opposed to a single value (as is done in the standard approach reviewed in the first section). To see the difference, consider a situation in which the neurons are noise free. If the population code is encoding a single value, we can now recover the value of s with absolute certainty.  In the case of Anderson and Zemel et al, we can now recover the distribution, P[s|I], with absolute certainty. As discussed earlier, in many real-world situations P[s|I] is not a Dirac function; so optimal decoding recovers the distribution P[s|I] with absolute certainty, but the inherent uncertainty about s remains. 

One problem with the convolutional encoding (and indeed the other encodings that we have described) is that there is no systematic way of representing multiple values as well as uncertainty. For instance, a wealth of experiments on population coding is based on random dot kinematograms, for which some fraction of the dots move in randomly selected directions and the rest (the correlated dots) move in one particular direction, which is treated as the stimulus s*. It is not obviously reasonable to treat this stimulus as a probability distribution P[s|I] over a single direction s (with a peak at s*), since, in fact, there is actual motion in many directions. Rather, the population should be thought of encoding a weighting or multiplicity function (s), which indicates the strength of direction s in the stimulus. We consider below a particularly interesting case of this (Treue et al. 2000), in which multiplicity functions were used to probe motion metamers. 

In some situations both multiple values and uncertainty apply.  Consider viewing a random grating kinematogram through an aperture: What should be encoded is actually a distribution P[(s)|I] over possible functions (s), given the image sequence I. [AU: first initials?] M. Sahani and  P. Dayan (manuscript in submission) noted this problem and suggested a variant of the convolution code, called the doubly distributional population code (DDPC), to cope with this. In their scheme, the mean activity of neuron a (to be compared with that of Equation 7) comes from averaging the convolutional encoding of the multiplicity functions (s) over the distribution P[(s)|I] 



[image: image33.wmf](

)

(

)

(

)

(

)

(

)

(

)

2

2

||exp

2

a

aa

s

a

s

ss

fPsPsgdss

r

rrr

s

æö

æö

-

ç÷

=-

éùéù

ç÷

ëûëû

ç÷

ç÷

èø

èø

å

ò

II

.

 MACROBUTTON MTPlaceRef \* MERGEFORMAT (8)

Here, ga() is an activation function that must be nonlinear in order for the scheme to work correctly. Decoding is more complex still but demonstrably effective at least in simple cases.
Examples in Neurophysiology

In this section we review some neurophysiological studies that pertain to the hypothesis that neurons encode probability distributions.  The case of the log likelihood encoding scheme is particularly straightforward because it amounts to a probabilistic interpretation of motion-energy filters, and there is ample evidence that such filters offer at least a close approximation to the responses of neurons in area V1 and MT (Adelson & Bergen 1985, Emerson et al. 1992). 

Because it is only fairly recently that neurophysiologists have started testing whether neurons encode probability distributions, evidence relating to other coding schemes is limited. In almost all cases, the tests have been limited to probability distributions over a set of discrete possibilities such as two particular directions of motion rather than a probability density function over a continuous variable like motion velocity. We thus treat this case first. 

UNCERTAINTY IN 2-AFC EXPERIMENTS Gold & Shadlen (2001) have trained monkeys to indicate whether a visual stimulus is moving in one of two possible directions, e.g., up or down. In this 2-alternative forced choice (2-AFC) experiment, the stimulus was composed of a set of moving dots, some moving randomly and the rest moving either up or down, depending on the trial. The difficulty of the task can be controlled by changing the percentage of the dots moving coherently upward or downward. 

The optimal strategy for the nervous system is to pick the motion with the highest probability given the activity r of the motion-sensitive neurons in early visual areas, that is, to decide that motion is upward if 
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The term (above) on the right-hand side is a constant that depends on the conditions of the experiment; in Shadlen's experiment, the two motions were equally likely, so this term was 0.  This equation shows that a Bayesian decision process only requires comparing the term on the left-hand side, the log likelihood ratio, against a fixed threshold.  The exact relationship between single-cell responses and the log likelihood ratio remains to be precisely established, but Shadlen's data suggest that neurons in parietal and frontal “association cortex”, in particular in areas LIP (lateral intra parietal) or FEF (frontal eye field) [AU: please spell out these terms once], may represent the log likelihood ratio (see Gold & Shadlen 2001 for an overview). This is some of the first experimental evidence suggesting that association areas are indeed representing and manipulating probabilities. 

A second set of experiments also pertains to this hypothesis. Anastasio et al. (2000) recently proposed that superior colliculus neurons compute the probability that a stimulus is present in their receptive field given the image 
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, where xi and yi are the eye-centered coordinates of the cell's receptive field.  Note that this probability distribution is defined over a binary variable, which can take only the value “present” or “absent.” Therefore, a neuron only needs to encode one number, say 
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. Anastasio et al. suggested that this is indeed what collicular neurons do: Their activity is proportional to 
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. Evidence for their hypothesis derives from the responses of multimodal collicular neurons, which appear to be using Bayes rule when combining visual and auditory inputs.  This is indeed the optimal strategy for multimodal integration if the neurons are representing probability distributions. 

Platt & Glimcher (1999) have made a related proposal in the case of LIP neurons. They trained monkeys to saccade to one of two possible locations while manipulating the prior probabilities of those locations. They found that responses of sensory and motor LIP neurons are proportional to the prior probability of making a saccade to the location of the particular cell's receptive field. In addition, they manipulated the probability of reward for each saccade and found that neuronal responses are proportional to the reward probability. 

None of these examples deals with continuous variables. However, they offer preliminary evidence that neurons represent probability distributions or related quantities, such as log likelihood ratios. Is there any evidence that neurons go the extra step and actually encode continuous distributions at the population level using any of the schemes reviewed above? Is representing probability distributions a general feature of all cortical areas? As far as we know, these questions have not been directly addressed with experimental techniques.  However, as we review below, some data are already strongly supporting a probabilistic interpretation of cortical activity in all areas. 

EXPERIMENTS SUPPORTING GAIN ENCODING Does the brain use the gain of the responses of population codes to represent certainty?  In other words, as the reliability of a stimulus is increased, is it the case that the gain of its population code in the brain increases as well? The answer appears to be yes in some cases. For instance, as the contrast of an image increases, visual features, such as orientation direction of motion or color, can be estimated with higher certainty. This higher certainty is reflected in the cortex by the fact that the gain of neurons increases with contrast. This is true in particular in the case of orientation, or direction of motion, for which contrast is known to have a purely multiplicative effect (Dean 1981, McAdams & Maunsell 1999, Sclar & Freeman 1982, Skottun et al. 1987). Loudness of sounds plays a similar role to contrast in audition and also controls the gain of auditory neurons. It is important to keep in mind that an increase in gain implies an increase in reliability only for certain noise distributions. For instance, it is true for independent noise following a Poisson distribution (or the near-Poisson distribution typically found in cortex).  In the case of contrast, the noise does remain near-Poisson regardless of the contrast in the image (McAdams & Maunsell 1999). Unfortunately, the noise is certainly not independent (Lee et al. 1998, Zohary et al. 1994), and, worse, we do not know how the correlations are affected by contrast. It is also not clear how the neural mechanisms interpreting the population activity treat the increased gain. It is therefore too early to tell for sure whether gain is used to encode reliability; but given the improvement in performance on perceptual tasks as contrast is increased (e.g. Regan & Beverley 1985), it seems a reasonable hypothesis. 

EXPERIMENTS SUPPORTING CONVOLUTION CODES According to the convolution code scheme, the profile of activity across the neuronal population should closely mimic the profile of the encoded distribution, since it is simply a filtered version of the distribution.  Therefore, as a stimulus becomes more unreliable, that is, as its probability distribution widens, the population pattern of activity should also widen.  We saw that this was not the case with contrast: As contrast decreases, the gain of the population patterns of activity decreases but the width remains identical (at least in the case in which it has been measured, like orientation). 

However, in other cases, this scheme might be at work. For instance, it is known that humans are much better at localizing visual targets than auditory ones, which indicates that vision is more reliable than audition (at least in broad daylight). Spatial receptive fields of visual neurons tend to be much smaller than the spatial receptive field of auditory neurons. This tendency implies that population patterns of activity for visual stimuli are sharper than those for sounds. If these patterns are low pass versions of the underlying distributions, the posterior distribution for visual stimuli is narrower than the one for auditory stimuli (Equation 7), which would account for the fact that visual stimuli are more reliably localized.

A number of physiological studies on transparent motion also provide support for the convolution code hypothesis. Stimuli composed of two patterns sliding across each other can create the impression of two separate surfaces moving in different directions.  The general neurophysiological finding is that an MT cell's response to these stimuli can be characterized as the average of its responses to the individual components (Recanzone et al. 1997, van Wezel et al. 1996). This is consistent with the convolution of the cell's tuning function with a multimodal distribution, with peaks corresponding to the two underlying directions of motion. 

EXPERIMENTS SUPPORTING DDPC Transparent motion experiments not only provide support for convolution coding but also for doubly distributional population codes (DDPC).  In a recent experiment, Treue et al. (2000) monitored the response of motionsensitive neurons while manipulating the distribution of motion in random kinematograms. For instance, they tested neurons with a display in which half of the dots move coherently in one direction and the other half move coherently in another direction. In this case, the motion multiplicity function is simply the sum of two Dirac functions peaking at the two positions, respectively.  They also employed more complicated multiplicities in other experiments, including up to five separate motions.  In each case, they found that the responses of MT neurons could be roughly approximated as following a relationship of the form of Equation 8, albeit with a hint that the activity across the whole population may be normalized rather than involving individual nonlinearities. 

In other cases such as binocular rivalry (Blake 2001), multiplicity in input stimuli leads to (alternating) perceptual selection rather than transparency. However, there is neurophysiological evidence (Blake & Logothetis 2002, Leopold & Logothetis 1996) that an equivalent of transparency may be operating at early stages of visual processing, an account of which would require a theory of the form of DDPC. 

Computations Using Probabilistic Population Codes

The psychophysical evidence we have reviewed earlier, such as the effect of contrast on velocity perception, suggests that the brain not only represents probability distributions but also manipulates and combines these distributions according to Bayes rule (or a reasonably close approximation). A few models have examined how neural networks could implement Bayes rule for the various encoding schemes that have been proposed. As an example, we once again use the experiment performed by Ernst & Banks (2002).  Recall that this experiment required subjects to judge the width of a bar. The optimal strategy in this case consists of recovering the posterior distribution over the width, w, given the image (V) and haptic (H) information. As usual this is done using Bayes rule: 
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This simple example shows that we need two critical ingredients to perform Bayesian inferences in cortical networks:  a representation of the prior and likelihood functions and a mechanism to multiply the distributions together. 

If we use a convolution code for all distributions, we can simply multiply all the population codes together term by term. This calculation automatically leads to a pattern of activity corresponding to a convolved version of the posterior (Figure 7, see color insert). This solution requires neurons that can multiply their inputs, a readily achievable neural operation (Chance et al. 2002, Salinas & Abbott 1996). If we consider neurons as representing the logarithm of the probability distributions, as suggested by Weiss & Fleet (2002), then Bayes rule only requires adding the distributions together (because the logarithm of a product is simply the sum of the individual logarithms). Addition is another basic operation that neurons can easily perform. 

When the probability distributions are encoded using the position and gain of population codes, the only solution that has been proposed so far is that of Deneve et al. (2001), which we reviewed in the first half of this paper. This approach has three major limitations. First, it does not currently incorporate prior probabilities; second, it works only with Gaussian distributions; and third, the network only computes the peak of the posterior but not the posterior itself. This last limitation comes from the fact that the stable hills in this model are noise-free and have fixed amplitudes (Figure 3, see color insert). As such they can only encode the mean of the posterior distribution but not its variance. This makes it hard to use the network to represent uncertainty in intermediate computations. 

On the other hand, this solution has several advantages. First, it performs a Bayesian inference using noisy population codes, whereas in the previous schemes it remains to be seen whether multiplication or addition of distributions can be performed robustly in the presence of noise. In fact, the assumption of variability in the Deneve et al. (2001) approach is key: It is used to encode the certainty associated with each variable. In other words, in this network, noise is a feature allowing the system to perform Bayesian inferences. 

The other advantage of this network is that it can deal with more general inferences than those investigated by Ernst & Banks (2002). In their experiment, touch and vision are assumed to provide evidence for the same variable, namely, the width of the bar. In the coordinate transform problem investigated by Deneve et al. the evidence comes in different frames of reference: eye-centered for vision and head-centered for audition. Therefore, the various sources of evidence must be remapped into a common format before they can be combined. This is a very general problem in cue integration: Evidence rarely comes commonly encoded and must be remapped first. A classical example is depth perception, which relies on widely different cues such as shading, stereopsis, and shape from motion, each involving its own representational scheme. In Deneve et al.'s network, remapping is performed through the basis function layer.  Whether, and how, such remappings could be performed using convolution or log codes is presently unknown. 

CONCLUSION

Population codes are coming of age as representational devices in that there is a widely accepted standard encoding and decoding model together with a mature understanding of its properties. However, there remain many areas of active investigation. One in particular that we have highlighed is the way that continuous attractor networks are ideally suited to implement important computations with population codes, including noise removal, basis function approximations, and statistically sound cue integration. Another focus has been population codes for more general aspects of stimulus representations, including computational uncertainty and multiplicity. With the notable exception of the log likelihood model of Weiss & Fleet (2002), which shows how motion-energy filters provide an appropriate substrate for statistical computations, these proposals are more computational than mechanistic. However, the inexorable inundation of psychophysical results showing the sophisticated ways that observers extract, learn, and manipulate uncertainty acts as a significant spur to the further refinement and development of such models. 
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