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Figure 2 Homogeneous population code. (A) Bell-shaped tuning functions fa(s) as a function of angle s for a collection of model V1 neurons (and at a given stimulus contrast). The thick line shows the cells with preferred value s = 180 o and is a Gaussian with a standard deviation of σ =15o [AU: again, why two symbols for degrees? removed]plus a baseline activity of 5 Hz. (B) Weights for each neuron as a function of the preferred value of that neuron for an optimal linear test to discriminate s*--δs from s* + δs for s* = 180o. Note that under the Poisson noise model, the weights would be monotonic if the baseline activity in (A) was 0 Hz.
Figure 3 (A) Noise removal with a recurrent network using population codes for a variable s (the lateral connections are not shown for visual clarity). The network is initialized with a noisy hill of activity (left panel, denoted r in main text) and stabilizes over time to a smooth hill of activity (right panel). With proper values of the lateral weights, the smooth hill of activity peaks near, or at the location of the maximum likelihood estimate 
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.  In essence, the network performs maximum likelihood decoding and represents the estimate with a population code. (B) Recurrent basis function network for optimal computation in the presence of noise. The three input layers (two below and one on top) encode the eye-centered and head-centered location of an object and the current position of the eyes. These variables satisfy the relationship: sh = sr + se. In the case of function approximation, two noisy population codes are provided as initial inputs. Then, the network stabilizes over time on three smooth hills peaking at locations 
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 and a two-dimensional hill in the basis function layer. Due to the processing in the basis function layer, these peak positions verify 
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. Moreover, with proper weights, these three positions lie near, or at, the maximum likelihood estimates 
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. In the case of cue combination, the network is initialized with three hills of activity, which it combines optimally over time to recover once again the maximum likelihood estimates.
Figure 6 Population patterns of activity corrupted by Poisson noise and associated posterior probability distributions obtained with a Bayesian decoder. When the pattern of activity is simply translated (blue arrow), the peak of the distribution translates by the same amount and the width remains the same (green versus blue curve in lower panel). When the gain of the population activity decreases (red arrow), the posterior distribution widens (green versus red curves in bottom panel).
Figure 7 Bayes rule implementation for Ernst & Banks’ experiment. (A) A function proportional to the posterior distribution over the width of the bar, P(w|V,H), can be obtained by taking the product of the two likelihood functions (in red) and the prior (in green). (B) Same as in (A) but with population codes for all distributions.  Each layer of neurons encodes one distribution. Patterns of activity are obtained by filtering the encoded distributions with Gaussian kernels. To compute the posterior distribution, each unit in the output layer takes the products of three input units with the same preferred width.

_1096311148.unknown

_1096311169.unknown

_1096311197.unknown

_1096311157.unknown

_1096311088.unknown

_1096311115.unknown

_1096311136.unknown

_1096309340.unknown

