Parallel Programming using the Iteration Space Visualizer

Yijun Yu and Erik H. D’Hollander
University of Ghent
Department of Electronics and Information Systems
Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
{Yijun. Yu, Erik. D'Hollander}@elis.rug.ac.be

Abstract

A 3D-iteration space visualizer (ISV) is presented to analyze the parallelism in loops and to unfold loop transformations which enhance the parallelism. Using automatic program instrumentation, the iteration space dependency graph (ISDG) is constructed, which shows the exact data dependencies of arbitrarily nested loops. Various graphical operations such as rotation, zooming, clipping, coloring and filtering, permit a detailed examination of the dependence relations. Furthermore an animated dataflow execution shows the maximal parallelism and the parallel loops are indicated automatically by an embedded data dependence analysis. In addition, the user may discover and indicate additional parallelism for which a suitable unimodular loop transformation is calculated and verified. The ISV has been applied to parallelize algorithmic kernel programs, a CFD (Computational Fluid Dynamics) simulation code, the detection of statement level parallelism and loop variable privatization. The applications show that the visualizer is a versatile and easy to use tool for the high performance application programmer.

Keywords: program visualization, dependence analysis, loop transformations, iteration space dependence graph, program instrumentation

1. Introduction

The extraction of parallelism from ordinary programs has been the topic of research for about three decades. In the majority of cases the techniques focus on two basic steps: dependence analysis and program transformations. Most useful parallelism comes from repetitive program tasks which can be assigned to different processors, e.g. the iterations of a loop nest. In this case, the basic task is one iteration of a parallel loop. Depending on the required granularity, the parallel iterations are selected from the outermost parallel loop, e.g. for multiprocessors, or from the innermost parallel loop, e.g. for vectorization and pipelined instruction-level parallelism.

Despite the great steps forward in this area, there still remain many loops with parallelism obvious to the programmer, but which is difficult to detect using algorithmic techniques. The contrary is also true: the sophisticated dependence techniques and the construction of loop transformations and statement mappings are beyond what the programmer is able to see at first glance. Consequently, both approaches are complementary and each have their own merits.

This paper focuses on the graphical support for an interactively parallel program development. Basically it assists the user by showing the exact dependence which prevents parallel loops and it allows the user to perform program transformations which enhance the parallelism. The visualization tool shows a three-dimensional iteration space, which can be freely rotated and zoomed. Dependencies are shown or hidden, for all or a few variables, and the parallel loops can be detected. If the user sees a specific progression in the iteration space which enhances significantly the parallelism, he/she can mark a progression plane. The corresponding loop transformation is calculated and the dependencies within a plane and between planes can be selectively highlighted. From this information the parallel code is constructed. In order to assist the search for parallelism, the Iteration Space Visualizer (ISV) indicates the dataflow execution which shows the minimal execution time and the maximal obtainable parallelism. The ISV has been used to interactively parallelize both common loops of standard algorithms as well as real-world CFD-code. The visualizer is written in Java, because it makes the tool platform independent, allows a web-based access and good graphics support.

The remainder of the paper is organized as follows. In the next section the definitions of the iteration space dependence graph and its construction are explained. In the third
section the graphical features of the iteration space visualizer aimed at dependence analysis and parallelism detection are shown. In the fourth section unimodular loop transformations and statement reordering are explored for enhancing parallelism. The results of the ISV for parallelizing a number of applications are given in section five and the related work is discussed in section six. Finally section seven concludes the paper.

2 Iteration Space Dependence Graph

In order to extract parallelism from the loops interactively, the dependencies among the loop iterations must be exposed to the programmer. The object to be visualized is called the Iteration Space Dependence Graph (ISDG).

Consider a m-fold nested loop, \(l = 1 \ldots m \) with index variables \(\mathbf{i} = (i_1, \ldots, i_m) \), lower and upper bounds \(L_l \) and \(U_l \).

\[
\begin{align*}
\text{DO } \mathbf{i} \in \mathcal{N} & \\
A(f(\mathbf{i})) = \ldots & \quad (1) \\
\ldots & = A(g(\mathbf{i})) \\
\text{ENDDO}
\end{align*}
\]

The iteration set \(\mathcal{N} \) is given by:

\[
\mathcal{N} = \{ \mathbf{i} = (i_1, \ldots, i_m) | 1 \leq l \leq m : L_l \leq i_l \leq U_l \} \quad (2)
\]

In sequential loops, iteration \(\mathbf{i} \) executes before iteration \(\mathbf{j} \) if \(\mathbf{i} \) is lexicographically less than \(\mathbf{j} \), denoted as \(\mathbf{i} \prec \mathbf{j} \), i.e., there is a \(k \in [1, m] \) such that \(i_k = j_k, l = 1 \ldots k - 1 \) and \(i_k < j_k \).

The lexicographical order of two dependent iterations \(\mathbf{i} \prec \mathbf{j} \) also defines a lexicographical positive distance vector \(\mathbf{d} = \mathbf{j} - \mathbf{i} \).

If two iterations \(\mathbf{i}_1 \prec \mathbf{i}_2 \) access the same array element and at least one iteration performs a write, there is a loop carried dependence between the iterations \(\mathbf{i}_1 \) and \(\mathbf{i}_2 \), denoted as \(\mathbf{i}_1 \delta \mathbf{i}_2 \).

The dependence set is defined as:

\[
\mathcal{E} = \{ (\mathbf{i}_1, \mathbf{i}_2) | \mathbf{i}_1, \mathbf{i}_2 \in \mathcal{N} \land \mathbf{i}_1 \delta \mathbf{i}_2 \} \quad (3)
\]

The directed dependence edge is classified as:

- A low dependence: a write in \(\mathbf{i}_1 \) followed by a read in \(\mathbf{i}_2 \);
- output dependence: a write in \(\mathbf{i}_1 \) followed by a write in \(\mathbf{i}_2 \);
- anti dependence: a read in \(\mathbf{i}_1 \) followed by a write in \(\mathbf{i}_2 \);

parameter \(n=4 \)
real \(a(0: n+1, 0: n+1, 2) \)
do \(i = 1, n \)
do \(j = 1, n \)
do \(k = 1, 2 \)
if (k, eq. 1) then
\(a(i, j, k) = (a(i-1, j, k) + a(i+1, j, k)) / 2 \)
else
\(a(i, j, k) = (a(i, j-1, k) + a(i, j+1, k)) / 2 \)
endfi
enddo enddo enddo

Figure 1. The example program

Figure 2. The ISDG of program in Figure 1, from which one can easily recognize that the range of the iteration space is \(4 \times 4 \times 2 \). The 32 iterations belong to 8 independent partitions.

For example, in Loop (1), there is a low dependence if \(f(\mathbf{i}_1) = g(\mathbf{i}_2) \), an output dependence if \(f(\mathbf{i}_1) = f(\mathbf{i}_2) \); and an anti-dependence if \(f(\mathbf{i}_2) = g(\mathbf{i}_1) \).

The iteration space dependence graph is now defined as the directed acyclic graph \(\langle \mathcal{N}, \mathcal{E} \rangle \) with nodes \(\mathcal{N} \) representing iterations and edges \(\mathcal{E} \) representing the dependencies.

First let us use a simple example program in Figure 1 to see its iteration space dependence graph, as depicted in Figure 2.

The ISDG is extracted from the program in three steps,
1. instrumenting the program;
2. executing the instrumented program;
3. constructing the ISDG from the trace of the execution.

The program is instrumented to generate the following output:
• at the start of an iteration: the iteration counter, i d., and the loop indices, i nd e c s;
• at a read or write access: the iteration counter, i d., the type of reference, r e f = R or W, the variable name: v a r i a b l e, and the subscript values: s u b s c r i p t s.

Scalar variables are treated as one-dimensional arrays with a single element. Non-perfectly nested loops are converted to perfectly-nested loops similar to the approach in [20].

After executing the instrumented program, the ISDG graph is constructed. First, an empty list of read or write references is created for each memory location. Then the trace records are processed as follows:

1. Every read or write reference is appended to the reference list of the memory location addressed by the subscripts.
2. Dependence edges are constructed according to the following rules:
 • a read reference creates a Aow-dependence with the preceding write into the same location;
 • a write reference creates an output-dependence with the preceding write into the same location;
 • a write reference creates an anti-dependence with all the reads since the preceding write into the same location.

3 Dependence analysis

Having constructed the iteration space dependence graph, this section first explains the graphical features of the ISDG and then shows how to use them effectively to analyze data dependencies.

3.1 Loop visualization

Consider an m-level deep nested loop.
• If \(m = 3 \), the iteration space dependence graph is displayed in 3D corresponding to the iteration indices of the three loops.
• If \(m < 3 \), a 2D view is available.
• If \(m > 3 \), three loop indices must be selected from the hyper-dimensional iteration space and the ISDG is projected onto a 3D space.

The size of the iteration spheres are proportional to the distance from the viewer so that the programmer can recognize the spatial relationship between the adjacent iterations.

Furthermore, the programmer can arbitrarily choose the size of spheres either to clearly indicate the iterations or to emphasize the dependence edges.

The graph can be zoomed in or out easily by resizing the window. It can be clipped by changing the visible index range. This helps the programmer to examine the regularity of the dependence patterns.

Optionally, the iteration indices can be displayed next to the iteration nodes. Grid lines are available to show the shape and structure of the iteration space.

The graph can be rotated freely in three directions by changing the viewpoint angle. The rotation can be done by dragging the mouse, by selecting an animated rotation, or by directly specifying the X-Y-Z angles. The index-axes show the direction of the three loops. The axes can also be dragged anywhere in the canvas.

Each directed edge represents the dependence between the connected iterations. Three colors (red, green and blue) classify the edges into Aow-, output- and anti-dependencies respectively. The programmer can click on any visible edge to find out the source and target loop indices of the selected edges.

Dependencies can be selectively hidden by the dependence type and/or loop variable names. The filter feature is useful to focus on the individual variables, to study the algorithmic data dependencies, i.e., the Aow dependencies; or the shared-memory originated dependencies, i.e., the anti- and output-dependencies. Memory originated dependencies can be eliminated by variable privatization or scalar expansion [16]. Similarly, filtering variables from the ISDG can clarify the cause of the loop dependencies.

To allow the high-resolution print of the graphics implemented in the visualizer, a color Postscript interface is defined.

3.2 Detecting and enhancing program parallelism

The runtime behavior of the loops is shown by simulating the program execution in different kinds of iteration order. The traversal of the iteration space can be driven by sequential loop execution, dataflow execution, parallel loop execution and plane execution. During the simulated execution, the color of the nodes distinguishes the past, present and future iterations. The following subsection explains the difference between these execution orders and discusses the use of these features.

3.2.1 Sequential execution:
the lexicographical order

The trace from the program execution is ordered lexicographically. In the ISDG, the iteration nodes are highlighted one-by-one by clicking the mouse and the total number of the iterations is reported.
3.2.2 DataFlow execution:
the maximal parallelism

In a dataFlow execution, each iteration is executed as soon as its data are ready, i.e., after the dependent iterations are all carried out. By clicking at an empty area of the canvas, the highlighted nodes show the parallel executable iterations in each time step when every iteration is assigned to different processor. This corresponds to a minimal execution time with the maximum parallelism exploited. Although the dataFlow execution normally does not follow the iteration order expressed by parallel DOALL loops, it reveals the maximum speedup obtainable within this loop nest. This maximum speedup is shown to the programmer.

3.2.3 Parallel loop execution:
the automatic parallelization

When one or several loops are executed in parallel, the iterations in the parallelized loops can run in one step and the iterations in the sequential loops must run one-by-one.

According to the selected dependencies in the ISDG, the visualizer checks all the combinations of loops to find the coarsest grain of DOALL loop parallelism automatically. When the DOALL loops are found, the speedup is reported by calculating the ratio between the sequential time and the parallel execution time.

The automatic loop parallelization feature relieves the programmer of further analysis when enough parallelism is obtained, e.g., compared with the dataFlow execution.

The programmer may also interactively specify which loops are to be checked for parallel execution. In that case, blinking edges warn for critical dependencies that prevent the attempted loop parallelization.

After being verified by the parallel check, the DOALL loops will be enabled for parallel traversal of the ISDG. By clicking at the empty area of the canvas, the programmer can see what happens after the parallelization: how much parallelism or speedup can be obtained by the automatic parallelization.

When the automatic parallelization shows less parallelism than the dataFlow execution, some transformations of the loop should be considered to enhance the parallelism. Therefore the plane traversal is provided to find such a suitable loop transformation.

3.2.4 Plane execution:
adding more loop parallelism

It is possible to specify any cutting plane by clicking on three nodes that are not on one line. The cutting plane $Ax + By + Cz = D$ is calculated and highlighted in the ISDG as a polygon, bounded by the iteration space.

Alternatively, an experienced user can specify the plane by giving the four integer parameters A, B, C and D.

When the cutting plane is defined, a mouse click starts the execution of the loop such that all iteration nodes in the plane are executed in parallel. At each click, the cutting plane progresses sequentially through the iteration space in a number of steps corresponding to the parallel execution time.

Plane parallelization requires that there are no dependencies between the iterations in the plane. This can be checked

- by hiding the dependencies between the planes, or
- by projecting the 3D iteration space onto a 2D execution plane.

In summary, the programmer may apply the following procedure to interactively find and enhance the parallelism of a program:

1. detect the maximal parallelism possible, by watching a dataFlow execution;
2. apply automatic parallelization to parallelize as much loops as possible;
3. hide the false dependencies and the dependencies caused by private variables such that the pruned ISDG allows for more loops parallelization;
4. do a plane execution if the loop parallelism is still less than the dataFlow parallelism; if a suitable plane traversal is found, calculate the corresponding loop transformation.

4 Program transformations

In this section the unimodular loop transformations and statement reordering to amplify the parallelism are discussed.

4.1 Unimodular loop transformations

A unimodular matrix T specifies a one-to-one mapping between two loop iteration spaces. Consequently, a unimodular transformation can be applied to re-orient the ISDG in such a way that more parallelism can be extracted.

A unimodular matrix T has $|\text{det}(T)| = 1$ and the mapping between the loop indices i and \tilde{i} is described by

$$\tilde{i} = iT$$ \hspace{1cm} (4)

Generally, the loop boundaries are changed after a unimodular transformation, and need to be recalculated. Furthermore, the transformation may change the lexicographical ordering of the dependent iterations. For example, if
i ≤ j and i' > j' then the data flow dependence becomes an anti-dependence, and therefore the loop transformation is invalid. However, the correctness of a proposed loop transformation is checked.

To find the unimodular loop transformation which engenders a plane execution in the outermost loop, the normal vector \((A, B, C)\) of the plane is placed into the \(i\)th column of the 3D unimodular transformation matrix \(\mathbf{T}\). The other two columns need to be chosen such that 1) the matrix is unimodular and 2) the inner loops of the transformed loop nest execute the dependent iterations in lexicographical order. Different unimodular solutions are possible, and the viewer will indicate the valid loop transformations. After the unimodular transformation, the new independent loop (either outermost or innermost) can be parallelized. The loop corresponding boundaries can be calculated using integer programming tools like the Omega calculator [15].

In the case of linear array subscripts, a suitable loop transformation can be found automatically, based on the pseudo distance vectors as described in [22]. This method is also implemented in the viewer and calculates the unimodular transformation and associated loop boundaries.

4.2 Loop projections

The scheme discussed in the last section applies to 3-fold nested loops. The scheme can be extended to non-perfectly nested loops and statement reordering transformations such as the affine mappings proposed by Kelly and Pugh [9], which includes loop fusion, loop omission, etc.

Regarding dimensionality, there are three kinds of index mappings: from 3D to 3D is a 1-1 mapping, used for unimodular and non-singular loop transformations; from >3D to 3D is a projection useful to analyze higher-dimension loops; from <3D to 3D is a dimension expansion, useful for treating the parallel execution by statement reordering transformations.

For statement reordering, the statements in the loop body are given an additional dummy index which lexicographically iterates through all the statements in the loop body. Treating non-perfectly nested loops using dummy loop indices makes this a seamless approach to visualize a statement-level program dependence graph (PDG) within the framework of the ISDG.

Extending the ISDG with statements dependencies, a suitable affine mapping like unimodular transformation on non-perfectly nested loops can be found [20]. In the next section it is shown that for two examples in Lim and Lam’s recent paper [12], the extended loop iteration space allows to use unimodular transformations to find statement level parallelism.

5 Applications and results

To apply the visualizer, the instrumentation can be done by adapting front-end compilers, such as FPT [6] for Fortran programs and in SUIF [18] for C programs. The ISV instrumentation has been carried out for both compilers.

A pragma \(\text{CS} \text{do i in Fortran or pragma } \text{do i in } \text{C} \) before the selected innermost loop is the only required modification to the source program to obtain the trace-generating code.

The visualization itself is written in Java so that it is portable and web-ready. All the above instrumentation and visualization tools have been integrated into a web-based environment that takes the source program as input and yields an applet, visualizing the iteration space dependence graph [21].

The applet has been applied to several application programs and kernel loops. The parallelism has been detected visually and the suitable program transformations were found interactively. Note that the applet applies to the submitted program; it is the programmer’s responsibility to verify the extensibility of the results found by the applet in particular to a different size of the loop region.

5.1 Non perfectly nested loop

Figure 3 shows the well-known Gauss Jordan (GJ) elimination to explain the approach to finding parallelism in programs. GJ is an example of a 3D non-perfectly nested loop, since there is an assignment statement out of the \(k\) loop body.

The program instrumented by FPT writes trace records into an ASCII file serving as the input for the ISDG construction.

The ISDG (Figure 4) displays all types of dependence. By running the viewer, the user can verify that the highlighted plane along the \(i\) axis cuts through exactly the same iterations as the dataflow execution. This confirms that both \(j\) and \(k\) loop are maximally parallelizable.

5.2 Statement reordering

In Lim and Lam [12], an example of double-nested loop with statement reordering is illustrated, as shown in Figure 5. We use the statement number as an additional loop index \(i_0\), such that, with the extra dimension, a 3D iteration space is obtained. The planes \(l_1 - l_2 + l_3 = D\) in Figure 8 traverse the iteration space in the same way as the dataflow execution. Using a unimodular matrix
\[
\begin{pmatrix}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\]
the same plane traversal can be obtained, leading to a parallel \(i_1\) loop (see the transformed ISDG in Figure 9). When
do i = 1, n
 do j = 1, n
 if (i .ne. j) then
 f = a(j, i) / a(i, i)
 end if
 end do
end do

C$do i = 1, n
 a(j, k) = a(j, k) - f*a(i, k)
end do
end do

Figure 3. Gauss Jordan elimination: the directive comment before the innermost loop indicates the loop iteration space to be visualized.

Figure 4. The ISDG of the Gauss Jordan elimination indicating the dependencies and the plane with parallel iterations. The sequential time shows 30 sequential iterations while the data flow time shows 4 data flow steps. Therefore the potential speedup is 7.5. Since executing the loops J,K in parallel is valid, the DOALL execution yields the same speedup as the data flow execution.

the constraint of Lim’s mapping and the unimodular mapping are given to the Omega calculator [8], the same optimized code as in [12] was obtained. Both the unimodular transformed code and the optimized code are listed in Figure 7.

5.3 High level nested loop

Cholesky is one of the seven kernel subroutines in the NASA7 program of the SPECfp92 benchmarks. It contains two 4-level nested non-perfectly nested loops.

After fusing the loops into one single 4-level perfectly nested loop as shown in Figure 10, the trace is generated. The ISDG obtained from the trace contains 4 loop indices, which can be projected to any 3-D view of the four combinations \((i_1, i_2, i_3), (i_1, i_2, i_4), (i_1, i_3, i_4)\) and \((i_2, i_3, i_4)\). The projection \((i_1, i_2, i_3)\) of the ISDG is shown in Figure 11.

In this projection, no parallel loops can be detected. However, when \(i_1, i_2, i_4\) is picked to be viewed in another 3D projection, as shown in Figure 12, the ISV shows that the \(i_4\) loop always iterates through parallel partitions and thus can be permuted to the outermost loop. (Permutation is a special case of the unimodular transformation on non-perfectly nested loops [20].) This is true also for other 3D projections. Thus, a parallel program like the one in Lim et al. [11] is obtained.
The affine functions T_1, T_2 map two statements S_1, S_2 to their processor ids. They are input to the Omega calculator [15], where S_1, S_2 are the iteration space constraint for S_1, S_2 respectively. The statement reordering mappings found by Lim [12] is on a 2 dimensional iteration space (i, j), while the unimodular mappings found by the ISV is on a 3 dimensional iteration space (i, j, k) which has a dimension k for the statements.

C The unimodular transformed code
DO i1=1-n, n
 DO i2=MN(i1, 1), MN(n, i1+n)
 Cdo sv
 DO i3=MN(-i1+2, 1), MN(-i1+2+n, n)
 11 = i2
 12 = i1
 13 = i1 - i2 + i3
 if (13. eq. 1)*a(11, l2) = a(11, l2) * b(11-1, l2)
 if (13. eq. 2)*b(11, l2) = a(11, l2-1) * b(11, l2)
 ENDO
 ENDO
ENDO

The optimized code by Omega calculator
DO p = 1-n, n
 if (p. ge. 1) b(p, 1) = a(p, 0) * b(p, 1)
 do l1 = max(p+1, 1), n(p+n-1, n)
 a(11, l1-p) = a(11, l1-p) + b(11-1, l1-p)
 a(11, l1+1) = a(11, l1+1) * b(11, l1+1)
 enddo
 if (p. le. 0)a(n, p+n, n) = a(n, p+n, n) + b(p+n-1, n)
ENDO

The unimodular transformed code has parallel i_1 loop. Having the branch statements removed, the optimized code has parallel p loop.

Figure 7. From the plane coefficients $(1, -1, 1)$, a unimodular matrix is found. The ISDG after the unimodular transformation is shown. The transformed outermost loop i_1 is DOALL whose parallel execution takes 7 steps. Thus the 4.57 speedup of the dataflow execution is obtained.
DO i = 0, nrhs
DO k = 0, 2*n+1
 IF (k .le. n) THEN
 i0 = ni n(m n-k)
 ELSE
 i0 = ni n(2 n-k+1)
 END IF
DO j = 0, i0
ENDO
ENDO
ENDO
ENDO

Figure 10. The 4 level perfectly nested loop converted from the standard Cholesky program

Figure 11. The 4D ISDG of the Cholesky loop shows the projected 3D view of the (i1, i2, i3) loops. The dependencies between the left and right part of the combined iteration space along i1, i2, i3 directions prevent the parallelization of these three loops.

Figure 12. The same 4D Cholesky ISDG is projected to 3D space: (i1, i2, i4) where dimension i1 is vertical onto the (i2, i4) plane. Here loop i4 iterates through independent partitions.

5.4 A CFD application

In the CFD code of mould filling simulation code of the WTCM company [19], the majority of the computation is spent on an iterative solver of Navier-Stokes equations on 3-dimensional geometry. At each iterative step is a 3-level kernel loop, which performs Successive Over Relaxation to solve a system of linear equations. The complexity of the iteration reference patterns (average 172 references per iteration spread over 33 if-branches together with index arrays) makes it hard if not impossible for automatic parallelizing compilers to find a parallel loop. The ISDG of the kernel loop is shown in Figure 13. A parallel plane is obtained by shift-clicking on three nodes in one of the dataflow execution steps. This plane cuts through the iteration space with exactly the same iterations as the dataflow execution, yielding the maximal iteration-level parallelism (as shown in Figure 13). The plane execution shows that there are 19 parallel planes going through the 19 dataflow steps. Projecting the ISDG to 2D, a cutting plane 3i1 + 2i2 + i3 = 15 is shown in Figure 14. Independence between the iterations within each of the 19 planes allows two parallel innermost loops. However the dependencies between the iterations of different planes requires the outermost loop to be sequential.

Therefore, a unimodular transformation
\[
\begin{pmatrix}
3 & 0 & 1 \\
2 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
\]
is obtained from the plane direction vector (3, 2, 1).

By the regularity of the calculations, we can draw the conclusion that the inner two loops are parallelized while the outermost loop has 6n – 5 steps. Therefore a O(n^3 / 6) speedup is found when executing the n^3 iterations.
Figure 13. The ISDG of the original CFD loop with $n=4$ is shown. The sequential execution has 64 steps while the dataflow execution has 19 steps. This picture shows the 4th step has three parallel iterations. Shift clicking at the three dataflow parallel iterations, a cutting plane is found as $3i_1 + 2i_2 + i_3 = 9$.

Figure 14. The "largest" cutting plane intersects the iteration space with six iterations, i.e., $(1,4,4)$, $(2,3,3)$, $(2,4,1)$, $(3,1,4)$, $(3,2,2)$, $(4,1,1)$. The 2D projection shows that the iterations in the plane are independent.

Figure 15. Performing the unimodular transformation, the new ISDG is calculated without reordering the trace. It shows that the i_2, i_3 loops can run in parallel while the sequential i_1 loop goes through the planes $i_1 = 6 \ldots 24$.

6 Related work

Experience of using a parallel programming environment shows that scientists and engineers require an interactive programming tool to study data dependence and program transformations [7].

During the past decades, many techniques in the area of data dependence analysis [1, 4, 13] and program transformations have provided the programmer with much useful material, e.g., the Banerjee, Range [3, 4] and Omega [15, 13] tests, the unimodular [1, 5, 20] and non-singular [16] loop transformations and recently statement reordering transformations [9, 12, 11] for non-perfectly nested loops. Most techniques are illustrated by dependence graphs, such as the program dependence graph (PDG) and the iteration space dependence graph (ISDG). The difference between the PDG and the ISDG is that the PDG emphasizes the statement-level dependencies and ISDG emphasizes the iteration-level dependencies. The ISDG makes it easier to see the effects of unimodular and non-singular loop transformations.

Most examples in the published papers use two-dimensional graphs in order to explain techniques which can be extended to multiple dimensions. However, 2D graphs can not easily reveal the details of real programs with deeper than doubly-nested loops. Therefore 3D assisting tools have entered the parallel programming scene.

For instance, in the recent paper of Sasaki et al [17], a 3D visualization tool NaView is presented for studying data dependence. The visualizing approach of the authors is to linearize the iterations into a single time dimension and to
7 Conclusion

A 3D iteration space visualizer (ISV) is presented, which shows the exact loop dependencies and allows programmers to discover parallelism in an interactive way. The approach complements the analytical methods in the traditional automatic parallelizing compilers. The dependence analysis and program transformation tools integrated in the visualizer assist the development of parallel programs when the dependencies are too complex for the compiler to analyze or the dependence patterns show more parallelism than the compiler has exploited.

References

