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ABSTRACT 
In mobile wireless systems data on air can be accessed by a large 
number of  mobile users. Many of these applications such as 
wireless internets and traffic information systems are pull-based, 
that is, they respond to on-demand user requests. In this paper, we 
study the scheduling problems of  on-demand broadcast 
environments. Traditionally, the response time of  the requests has 
been used as a performance measure. In this paper we consider 
the performance as the average cost of  request composed of  three 
kinds of  costs--access time cost, tuning time cost, and cost of  
handling failure request. Our main contribution is a self-adaptive 
scheduling algorithm named LDFC , which computes the delay 
cost of data item as the priority for broadcast. It performs well 
compared with some previous algorithms in this context. 

Categories and Subject Descriptors 
C.2.1 [Wireless Communication]: Computer Systems 
Organization - Computer - Communication Networks - Network 
Architecture and Design. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Mobile Computing, Data Broadcast. 

1. I N T R O D U C T I O N  
In a client/server architecture with fixed networks, clients would 
send a request when it wants to retrieve data from the server. 
Then the server will respond to the request and send data to 
clients. Compared with fixed networks, wireless networks have 
low bandwidth and low communication quality [10]. To support 
numerous mobile users to access data in server concurrently, a 
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new method of  data-transmission is put forward, that is, the server 
broadcasts data on air and clients could acquire data that way, so- 
called data broadcasting. 

Data broadcast technology has many applications in the fields of  
public information dissemination, such as stock market quote or 
traffic and landmark information. One important issue in 
broadcast technology is to determine an optimal broadcast 
sequence according to the access probability distribution of 
mobile users, i.e. the data broadcast scheduling. To evaluate the 
effectiveness of  one broadcast scheduling strategy, we need to 
consider two basic aspects: 

(1) Access Time (shortened as AT): It indicates the time elapsed 
between the query submission and receipt of the response. AT 
determines the response time of query made by mobile users. We 
need to concentrate on the arrangement of  frequency and location 
of  data items in one broadcast period, so as to make the average 
AT least, according to various access probabilities of  data items. 
The study on this issue includes [1, 2, 3, 5,7, 9, 13, 15], etc. 

(2) Tuning Time (shortened as TT): It indicates the total time that 
mobile users spend actively listening on the channel in a complete 
access period. TT determines the power consumption of mobile 
users because they could slip into doze (stand by) mode when 
they are not actively listening on the channel. As most of  mobile 
users depend on limited battery supply, the reduction of TT would 
also be an important issue in data broadcast technology. A 
widespread method is to insert index segments into broadcast 
period in order to reduce TT. The study on this issue includes [11, 
12, 14], etc. 

In on-demand broadcasts, we cannot obtain the access profiles of  
mobile users, that is to say, their access pattern would have some 
unpredictable changes. Thus we need a kind of  new scheduling 
algorithm, to determine the contents and organization of  data 
broadcast on the basis of circumstance of  recent access and 
scheduling. 

The study of  on-demand broadcast scheduling problem includes 
[4, 8], etc. In this broadcast environment, mobile users 
communicate with server via wireless channels. These channels 
include an uplink channel and a downlink channel. Mobile users 
use this uplink channel to send data access request, and the 
contents of  broadcast will arrive at mobile users through downlink 
channel. First, mobile users make the access request; second, the 
server considers all pending request to decide the contents of next 
broadcast. One core issue is to determine the priorities of  data 
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items to broadcast, that is, which data items should be 
broadcasted in next period. [5] put forward a FCFS (First-Come- 
First-Served) scheduling algorithm, which sequences data items 
according to their requested time. Because of  its time sequencing 
principle, any access request would get responded after waiting a 
finite period. There doesn't exist any case of  endless waiting. But 
it has the deficiency of  low average performance, because it 
considers only the requested time, and doesn't take into account 
the difference of  access frequency of  various data items. MRF 
(Most-Request-First) scheduling algorithm will broadcast those 
data items with most requests priorly. As there are most- 
frequently data items in every broadcast, every broadcast will 
have the highest response ratio (number of requests 
responded~number of total requests), and we could get much 
lower AT. But it has its own shortcoming: If  some data items 
have few requests, they will always line up behind several most- 
frequently-requested items, so that the request on these data items 
could always be unsatisfied and get into endless waiting. [6] 
suggested LWF (Long- Wait-First) algorithm, which chooses the 
data item that has the largest wait time (the sum of  the total time 
that all pending requests for that item have been waiting) to 
broadcast. It considers both the number of  requests and the wait 
time, so as to reduce the occurrence of  endless waiting. [4] put 
forward LTSF (Longest-Total-Stretch-First) algorithm, which 
considers the factor of  variable-size data items. [8] proposed a set 
of  self-adaptive broadcast protocols---CBS/VBS protocols 
(including server broadcast protocol and client receipt protocol), 
and raised the idea of  dynamic adjusting in priority computing 
formula. 

But all these papers mentioned above didn't take into account the 
handling of a request waited for quite a long time. They only 
referred to some measures to reduce the probability of  occurrence. 
Being unable to deal with those requests that didn't get responded 
for quite a long time, i.e., the permission of  endless waiting, will 
lead to serious problems. For example, server would not receive 
the access request because of  transmission errors, in this case 
mobile user (the request sender) will wait for an impossible 
response; responding to an access request sent a long time ago 
would also lead to ineffectiveness of  the response, because the 
mobile user who sent this request could probably have left the 
broadcast covered area, or it would not listen to the channel for 
the reason of  saving power. 

Therefore, we should set up a Response Time Limit (RTL) for 
every access request. Mobile user sends one request and starts to 
listen to the contents of  broadcast. If  it doesn't get responded 
within the RTL, this request would be identified as a failure and 
mobile user would not continue to listen to. Similarly, after the 
broadcast server received the request sent by mobile user, if  it 
couldn't add corresponding data item to broadcast contents within 
the RTL, it would delete the request from the request sequence. 

Besides, in the determination of  which item should be added to 
broadcast, the priority computing formula seems unable to explain 
strongly why those data items with low priority should be delayed. 
And the significance of  those cost computing models is vague. 

In this paper, we put forward a self-adaptive scheduling algorithm 
of on-demand broadcast--LDCF (Largest-Delay- Cost-First). It 
computes the delay cost for every data item and uses it as the 
priority to schedule the data items, taking into account three kinds 
of  costs--AT, TT and request failure. The parameters of  delay 

cost computing formula will be adjusted automatically according 
to recent scheduling circumstances. 

The rest of  the paper is organized as follows. Section 2 shows the 
on-demand broadcast model and defines the problem of broadcast 
scheduling. We also make some basic assumptions here. Section 3 
shows the delay cost computing formula of  data items, which 
indicates the increased cost if  every data item wouldn't be 
broadcasted in next period, including access time cost, tuning 
time cost and request failure cost. On basis of this formula, we put 
forward LDCF scheduling algorithm. We describe the simulation 
experiments and discuss their results in Section 4. We make some 
conclusions in Section 5. 

2. PROBLEM DEFINITION AND 
PRELIMINARIES 
A typical on-demand broadcast system could be shown as figure 
1141. 

~'E"R ~,'ER 

"" a e i - n 

l~lt.t. REQ~=,~TS 

Figure 1. A typical on-demand broadcast system. 

The relationship between radio transmitter (base station) and 
mobile users could be seen as server and clients. Mobile users are 
clients, and radio transmitter is the server. To the convenience of  
our study, we make some restrictions on the broadcast 
environment. Our basic assumptions are as follows. 

Mobile users communicate with server via wireless information 
channels. These channels include an uplink channel and a 
downlink channel. Mobile users use this uplink channel to send 
data access request, and the contents of  broadcast will arrive at 
mobile users through downlink channel. After the broadcast 
server receives an access request, it will respond to this request 
within a pre-determined response time limit, and add the 
requested data item in broadcasting contents; otherwise this 
request would be regarded as a failure. (The disposal of  failed 
request could be in two ways: either the server would do nothing, 
waiting mobile user to send request again if mobile user still want 
to access the data item; or it could create a separate wireless link 
to send date item to mobile user.) 

Broadcast server doesn't know the probability distribution of  the 
access of  various data items by mobile users. Therefore, the 
server could determine suitable broadcast scheduling only after it 
received those requests. (That we say the server doesn't know the 
access pattern of  mobile users, isn't to mean that the access by 
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mobile user hasn ' t  any regular patterns; actually, the access by 
various mobile user do have some patterns.) 

The least unit of  broadcast is data item, and all data items are of  
identical size. 

Data broadcast uses a kind of  constant-period method, that is to 
say, no matter what changes taken place in the content of  
broadcast, the size of every broadcast is fixed. 

Mobile users access one data item in each request, and any two 
accesses are independent. 

The following are some definitions and notions that we may use 
in our further discussion. 

Unit Time: suppose the broadcast time of one data item is 1. 

Data: The number of  data items in one broadcast period. 

Index: The index length in one broadcast period. 

BP: Broadcast Period. BP=Data+Index. 

The structure of  data broadcast: see figure 2. The former is index 
segment Index, and the latter is data segment Data. The size of  
Index and Data is fixed. 

[ Index I Data [ 

Figure  2. The s t ruc ture  of data  broadcast .  

Di: data item, i=l..M. M indicates the total number of  all data 
items. 

Q<D, Tre q >: indicates one access request, D is the data item that 

Q requests to be broadcasted; Tre q is the time when that request 

is sent. 

RTL: Response Time Limit. It indicates the longest time elapsed 
between the time when mobile user sends an access request of  
data item and the time when the server responds to that request. I f  
the server could not add the requested data item to broadcast 
contents within this time limit, we should say that this request is 
failed. The server could create a separate wireless link and send 
data item to mobile user. If  one mobile user sends a request at To, 
and at T~ (Tl< = To+RTL) it finds in broadcast index that the 
requested data item would appear at 7"2 (Tz> To+RTL). In this case, 
we consider that the request gets valid response. 

CostAT : Access time cost for mobile user to obtain data item 

(on the basis of  unit time). If  one mobile user waits for 100 unit 
time to obtain his requested data item, then total access time cost 

would be 100 COStAr. 

COStTT : Tuning time cost for mobile user to search the location 

of one data item in the index segment. If  one mobile user wait for 
10 broadcast period to obtain one data item, and he searches the 
index for 10 times, then total tuning time cost would be 

lO Cost rr . 

In a pure push-based data dissemination scheduling, we have two 
main performance metrics: access time and tuning time. While in 
on-demand broadcast scheduling, we should consider not only AT 
and TT, but the cost of handling failed requests as well, because 
we have introduced the notion of  request failure. 

Costfailur e : Cost of  handling a failed request. If  the server could 

not i:espond to the access request within a determined response 

time RTL, we should use Costfailur e as the cost of creating a 

separate wireless link between server and mobile user to obtain 
data item. 

3. LDCF SELF-ADAPTIVE BROADCAST 
SCHEDULING ALGORITHM 
3.1 Delay Cost Computing Model 
The key of  LDCF (Largest-Delay-Cost- First) scheduling 
algorithm is its Delay-Cost computing model. We can compute 
the cost of  every request delayed one broadcast period, according 
to such parameters as the length of  broadcast period, tuning time 
cost for mobile user to search for needed data item in the index 
section of  broadcast, failure probability of  access request, and the 
cost of  handling failed request, etc. This cost is composed of three 
aspects: access time, tuning time, and request failure. 

Some description of  several notions would be given as below. 
Then we could illustrate the formulas of Delay Cost in our 
discussion. 

PF r : The popularity factor of  data item D at time T, which 

indicates there are PE r number of  mobile users requesting to 

access data item D. The initial value of  P F  r is zero; every time 

when a new request for data item D arrives, PF r will increase 

by 1; when one request isn ' t  satisfied within one RTL, pFro will 

decrease by 1; i f  the data item D appears in the broadcast line, 

P F  r will be set as zero again. 

S F ~ :  safety factor, expressed by remaining The broadcast 

which indicates there are S F ~  number of periods, opportunities 

(excluding the next one) to satisfy request Q by broadcast at time 

T. The formula of  SF~  is 

Sf~=[Treq +RTL-TJ,Bp 

Zre q stands for the sending time of  request Q. One thing that we 

need mention is, when we discuss the safety factor, T stands for 
the time next broadcast begins. I f  the safety factor is zero, it 
means that if server doesn' t  broadcast the data item Q needs in the 
next period, then request Q would fail. We name it as safety 
factor, because we want to use it to express the "distance" of  
request Q to the failure. Obviously, in order to minimize failed 
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requests, server should respond to those requests with lower 

sr . 
Re quest_ NoSr: it indicates the total number of pending 

requests whose safety factor equals to S F .  

R e  m a i n e d  R e  ques t  _ N o  SF _ : it indicates the total 

number of requests that could not be satisfied in next broadcast 
period, whose safety factor equals to SF. 

B r o a d c a s t e d  R e  ques t  _ N o  se _ : it indicates the total 

number of requests that could be satisfied in next broadcast period, 
whose safety factor equals to SF. Obviously, 

Re quest _ No sr = Re mained _ Re quest _ No sr 

+ B r o a d c a s t e d  _ Re q u e s t  _ N o  sr . 

R e  main  R a t e  sF : it indicates the ratio of requests that 

could not be satisfied in next broadcast period, whose safety 
factor equals to SF. 

Re main _ Rate se = Re mained _ Re quest _ No sr / Re quest _ No st.  

Fai l  Ra teS~:  it indicates the failure probability of the 

requests whose safety factor equals to SF, if they could not be 
satisfied in next broadcast period. 

Apparently, if one request Q<T,D> with SF=O could not be 
satisfied in next period, then Q will fail, i.e., 

Fai l  R a t e  ° = 1. 

When SF>0, for request Q<T,D>, if D could not be satisfied in 
next broadcast period, the SF  of Q will decrease by 1; the 
probability of those requests (safety factor=SF-1) that could not 

be satisfied immediately is Fai l  R a t e  sF , the probability of 

those requests that could not be satisfied immediately and finally 

get failed is Fai l  R a t e  se-~ , thus 

Fai l  RateSF = Re  main RateSr-I . Fai l  Rate sr-~ . 

D e l a y _  Cost  o : The increased cost if request Q be delayed 

and could not be satisfied in the next broadcast period. 

L e m m a  1: The cost of request Q if it would be delayed 

Delay _ Cost o "~ B P .  Cost~ r + C°strr + F a i l _  Rate  . Cost/oit,, ~ • 

D e l a y _  Cost  a is composed of three parts: the first part 

indicates the access time cost increased because of delay, the 
second part indicates the tuning time cost increased because of 
delay, and the third part indicates the estimated cost of request 
failure because of delay. 

PD ( D e l a y  _ Cost  D ): The increased cost if data item D be 

delayed and not appear in the next broadcast period, i.e. the 
priority of data item D. Data numbers of data items with highest 
priority would be broadcasted in the next period. 

T h e o r e m  1: The cost of data item D if it would be delayed 

PD = ~ Delay_  CostQ = 
Q<D,T~q > 

P F  r . ( B P .  C o s t  Ar ) + P F r  " C ° s t r r  

SFQ<D,Trcq> 
+ ~ F a i l  _ R a t e  C o s t  failure " 

I 

Q<O,T~q> 

Both PD ( D e l a y _  C o s t  D ) and D e l a y  _ Cos t  o include 

three parts: Access Time Cost, Tuning Time Cost, and Request 
Failure Cost. 

BP, C O S t A T ,  C O S t T T ,  Cos t fa i tur  e are pre-determined 

SF~< D,Treq> 
constants, while P F  r , F a i l _ R a t e  will change 

along with recent circumstances of access and broadcast. When 
the failure rate rises, those requests with low SF  will be satisfied 
first; when the failure rate goes down, those data items with high 
P F  will be broadcasted priorly. 

If CoStfai lur  e =0, LDCF will degenerate to MRF, and the priority 

of data item D, P D ,  is in direct proportion to the number of 

pending requests for data item D, e F  o . 

3.2 LDCF Scheduling Algorithm 
We describe LDCF scheduling algorithm as follows: 

Algorithm 1: LDCF 
Input: request sequence; 
Output: a broadcast scheduling; 
Proceeding: 
main() 
{ 

failed_rate[]:=[ 1,0,0 ..... 0] 
time=O; 
while true do 
{ 

for i:= 1 to B P  
{time=time+ l ; 

receive the new requests {req<Di, time>}, and add them to 
RequestSequence; 

} 
LDCF(time);  

} 
} 

procedure LDCF(  time) 
{ 

for each data item Di 
Data l  tem[ Di  ].priority:=O; 

for each pending request req<Di, r e q t i m e >  
in RequestSequence 

{ 

SF:= | r e q _ t i m e +  RTL - time ; 

L BP J 
Dataltem[ Di  ].priority:= 
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Dataltem[Di].priority+BP* C o s t  A r + 

COStTT +fail_rate[SF]* C o s t  failur e ; 

} 
select Data number of data items with largest priority from 

Dataltem[]; 
add these data items into broadcast period sorted by the value 

of  PF (in descending order), and make the index; 
computefail_rate[] once again; 
delete those requests that have been responded or failed in 

RequestSequence; 

In above description of process, we mainly focus on the 
illustration of  LDCF algorithm, therefore some implementation 
details have been omitted. For example, when one request req<Di, 
req_time> would not get responded and fail because of  time out, 
we didn't make a concrete analysis on creating direct wireless 
link between server and mobile user to send requested data items. 
Also, we will not fully explain how to select data items with 
largest priority, how to add broadcast contents and make index, 
etc. 

4. EXPERIMENTS AND COMPARISONS 
We intend to use simulation method to compare LDCF scheduling 
algorithm with MRF, FCFS and LWF algorithms, so as to 
evaluate the performance of  LDCF scheduling algorithm. 

At each time, the server will receive access requests from mobile 
users, compute the priority of every data item on the basis of  all 
pending requests, then select Data number of data items with 
largest priority and add them to broadcast contents. 

4.1 Experimental Data 
The numerical distribution of new arrived requests during one 
time period: suppose the probability that every mobile user will 
send request during one time period is p, the number of mobile 
user is MU_no, then the probability that number of new requests 
equals to new_request_no is: 

pnew_ request _ no . (~neW~ Mu ___ nprequest_ no 

• ( 1  - -  p ) M U  _no-new_request _no . c M U  _ n . . . . . . .  equest _no 
MU _np 

The numerical distribution of  data items required by new requests 
during one time period: we use function Zipf(k) to describe the 
skewed distribution of data access. In generating the distribution 
of data access with Zipf(k), we suppose the skewness k at any 
time could change randomly in one interval. Besides, we would 
randomly select 10% data items, multiply their distribution results 
by a random number between 0 to 10. 

We use the randomizer provided by http://www.randomizer.org to 
generate bench- mark random numbers for our experiments. 

4.2 Experiment Results and Analysis 
(1) Parameter settings 

The following are some common parameters: 

Parameter 

M 

Data 

Index 

Request number 
per unit time 

Meaning 
The number of  data items that Server 
could be used to broadcast. Suppose it 
is 1000 in the following experiments. 
The number of  data items in one 
broadcast period 
The length of  index section in one 
broadcast period. Suppose it is 6 in the 
following experiments. 
The number of  requests that server 
would receive at each time 
Parameter of  function Zipf, indicating 

k 
the skewness of  data access distribution 

RTL Response time limit 

C o s t  Ar 

C o s t r r  

C o s t  failure 

Cost of  AT per unit time. Suppose it is 1 
in the following experiments. 
Cost of  TT per seeking index. Suppose 
it is 20 in the following experiments. 
Cost of  handling a failed request. 
Suppose it is 2000 in the following 
experiments. 

(2) Experiment 1: Performance when fail rate of  request is low 

First, we will discuss the performance comparison of  LDCF 
algorithm with other three algorithms in the situation of low 
workloads. The setting of  parameters is shown as follows. We 
will consider the effect of  various RTL on Average Cost of  
request. The result is shown in figure 3. 

Parameter Value 
Data 100 
Request number per 10.10 
unit time 
k 0 
RTL 1500-3500 

As RTL increases, Average Cost of  request will decrease. When 
RTL>=2500, there aren't any failed requests and all requests are 
satisfied in MRF scheduling, that is, all data items whose SF=0 
are belonged to those data items with largest PF. In LDCF 
scheduling, all data items with SF=0 are belonged to those data 

items with largest D e l a y  _ C o s t  o , too. Therefore, at this time 

LDCF and MRF are identical, both of  them are optimal 
scheduling algorithm, which have least average AT and TT. The 
performance of  LWF is a little worse than LDCF and MRF, while 
FCFS is the worst. 

In short, LDCF and MRF occupy the first place, LWF comes 
second, and FCFS is the worst. 
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Figure 3. Performance for various algorithms when fail rate 
of request is low 

(3) Experiment 2: Performance when fail rate of  request is high 

In this experiment, we will discuss the performance comparison 
between LDCF and other three algorithms when fail rate of  
request is high. The setting of  parameters is shown as follows. 
The result is shown in figure 4. 

Parameter Value 
Data 120 
Request number per 247.15 
unit time 
k -1.5-1.5 
RTL 1500 

If the skewness k of  data access randomly changes between [-1.5, 
1.5], lots of  requests will be failed when there are many requests 
at each unit time. 

The fail rate of  LDCF scheduling is the lowest, and its average 
cost lowest too. The performance of LWF scheduling is a little 
worse than that of  LDCF. 

FCFS scheduling has much higher fail rate and larger average cost. 
It shows that the average performance of FCFS scheduling is 
unsatisfactory, because it only considers time factor, not the 
number of  requests. 

The performance of MRF scheduling still lags behind of  LDCF 
and LWF. It also shows that it is insufficient to consider only the 
number of  requests, not the time factor. 

We won' t  compare FCFS and MRF with our algorithm in further 
discussion. 

In short, LDCF could efficiently reduce the number of  failed 
requests, and it has least average cost. Consideration of  only one 
factor (request number or time, as in the case of  MRF and FCFS) 
will lead to lots of  request failure. 

90% F 79.34% 

60% 

30% 

0% 

5.36% 7.00% 
14.05% 

LDCF LWF FCFS MRF 

3500.00 

3000.00 

2500.00 

2000.00 

E 1500.00 

1000.00 

500.00 

0.00 

;85.06 600.24 

2898.32 

LDCF LWF FCFS MRF 

Figure 4. Performance for various algorithms when fail rate 
of request is high 

(4) Experiment 3: Effect of  Data 

In this experiment, we will discuss the effect of  length of  data 
segment in one broadcast period. The setting of  parameters is 
shown as follows. The result is shown in figure 5. 

Parameter Value 
Data 60-200 
Request number per 98.86 
unit time 
k 0 
RTL 1500 

In this experiment, our conclusion is: the number of  data items 
contained in one broadcast period should be moderate. Too small 
a value will drastically increase the average cost, but once its 
value increase above one certain point, average cost will rise 
instead. Still, the performance of  LDCF is better than that of LWF. 
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' . . . . . . . . . . . . . . . . . . .  P a r a m e t e r  Va lue  
i 690 Data 100 
i 670 Request number per 98.86 

unit time 
. ~ 650 k 0-1.5 
'. o ~- RTL 1000 
i ~ 630 r I " LDCF 

i ~ 610 I - - I I - -  LWF I . . . . . . . . . .  i 

590 900 r . . . .  

i 570 . . . . . . . . . .  I 800 

I ¢o 500 [ ' ~  + L D C F  

I >~ 300 ~- 

Fi u~ 5 E f f e c t ~  : t a  " .  o g e D i / 1 0 0 "  ' ' ' ' ' 

l 0 0.3 0.6 0.9 1.2 1.5 
(5) Experiment 4: Effect o f  RTL k 

In this experiment, we will discuss the effect of Response Time . . . .  
Limit. The setting of parameters is shown as follows. The result is 
shown in figure 6. 

P a r a m e t e r  Va lue  
Data 1 O0 
Request number per 98.86 
unit time 
k -1.5-1.5 
RTL 800-2000 

7°I  1 700 
r~ ¢ LDCF 

650 / ~ L w F  

< 600 

550 

RTL 

F i g u r e  6. Ef fec t  of RTL 

In this experiment, we conclude that RTL the larger, average cost 
the lower. When RTL>I200,  the performance gap between two 
algorithms is very little. Again, LDCF shows some advantages 
over LWF. 

(6) Experiment 5: Effect of skewness of data access distribution 

In this experiment, we will discuss the effect of skewness k of 
data access distribution. 

First, we will consider the cases when skewness k is a certain 
value. The setting of parameters is shown as follows. The result is 
shown in figure 7. 

F i g u r e  7. Ef fec t  o f  s k e w n e s s  k w i th  a cer ta in  va lue  

Second, we consider the cases when skewness k is a random 
number in a certain interval centered on zero. ( The skewness k 
might be different at any time) 

The setting of parameters is shown as follows. The result is shown 
in figure 8. 

P a r a m e t e r  Va lue  
Data I00 
Request number per 
unit time 
k 

RTL 

98.86 

[0, 0], [-0,3, 0,3] ... 
[-15, 15] 
1000 

8°°I  1 780 
760 
740 # LDCF 
720 L--tt--LWF 

>~ 700 
< 680 

660 r 

¢b ¢o % % % 
% % o~ % % 

F i g u r e  8. Ef fec t  o f  s k e w n e s s  k w i t h  a certa in  interval  

In this experiment, our conclusion is: when skewness k holds one 
certain value, the average cost of LDCF will decrease as k 
increases. Its overall performance is superior to that of LWF. 
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When skewness k is a random number in a certain interval 
centered on zero, the average cost of LDCF shows little influence 
of interval size. 

5. C O N C L U S I O N  
In this paper, we have studied the problem of scheduling on- 
demand broadcasts. Compared with pure push-based data 
dissemination scheduling, we need uplink channel to send data 
access request in an on-demand broadcast-based environment. 
The server would not know the access profiles of mobile users, 
and it should take into account the situation when request fails 
because of time out. 

Previous works in this context mainly discuss how to reduce the 
average AT of mobile users. In practical applications, the 
handling of a request waited for quite a long time must be 
considered and so we introduce the notion request failure. When 
discussing the performance of a scheduling algorithm of on- 
demand broadcasts, we take into account not only AT, but also 
TT and request failure. We put forward a self-adaptive scheduling 
algorithm --LDCF, It computes the delay cost for every data item 
and uses it as the priority to schedule the data items, the 
parameters of delay cost computing formula will be adjusted 
automatically according to recent scheduling circumstances. 

Our work raises the open algorithmic problem of determining a 
schedule that minimizes the average cost of request considering 
all kinds of cost--AT, TT and failure. We compare LDCF with 
LWF, FCFS and MRF via several experiments, which indicate the 
average cost of LDCF scheduling was the least. 
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