
SCIENTIFIC COMPUTING BY NUMERICAL METHODSChristina C. Christara and Kenneth R. Jackson,Computer Science Dept., University of Toronto, Toronto, Ontario, Canada, M5S 1A4.(ccc@cs.toronto.edu and krj@cs.toronto.edu)ContentsIntroduction 51 Floating-Point Arithmetic 51.1 The IEEE Standard : 51.2 Rounding Errors : 71.3 The E�ects of Inexact Arithmetic: Some Illustrative Examples : : : : : : : : : : : : : : : : : 82 The Direct Solution of Linear Algebraic Systems 112.1 Gaussian Elimination : 112.2 Back Substitution : 132.3 The LU Factorization : 132.4 Forward Elimination : 142.5 Scaling and Pivoting : 142.6 The Cholesky Factorization : 172.7 Banded and Sparse Matrices : 192.8 Rounding Errors, Condition Numbers and Error Bounds : 222.9 Iterative Improvement : 243 The Iterative Solution of Linear Algebraic Systems 243.1 Basic Iterative Methods : 253.2 The Conjugate Gradient Method : 304 Over-Determined and Under-Determined Linear Systems 334.1 The Normal Equations for Over-Determined Linear Systems : : : : : : : : : : : : : : : : : : : 334.2 The Normal Equations for Under-Determined Linear Systems : : : : : : : : : : : : : : : : : : 344.3 Householder Transformations and the QR Factorization : 344.4 Using the QR Factorization to Solve Over-Determined Linear Systems : : : : : : : : : : : : : 354.5 Using the QR Factorization to Solve Under-Determined Linear Systems : : : : : : : : : : : : 354.6 The Gram-Schmidt Orthogonalization Algorithm : 364.7 Using Gram-Schmidt to Solve Over-Determined Linear Systems : : : : : : : : : : : : : : : : : 364.8 Using Gram-Schmidt to Solve Under-Determined Linear Systems : : : : : : : : : : : : : : : : 361

5 Eigenvalues and Eigenvectors of Matrices 375.1 The Power Method : 385.2 The QR Method : 385.3 Transforming a Symmetric Matrix to Tridiagonal Form : 395.4 Inverse Iteration : 405.5 Other Methods : 406 Nonlinear Algebraic Equations and Systems 416.1 Fixed-Point Iteration : 416.2 Newton's Method for Nonlinear Equations : 426.3 The Secant Method : 426.4 The Bisection and Regula Falsi Methods : 426.5 Convergence : 436.6 Rate of Convergence : 446.7 Newton's Method for Systems of Nonlinear Equations : 446.8 Modi�cations and Alternatives to Newton's Method : 446.9 Polynomial Equations : 456.10 Horner's Rule : 467 Unconstrained Optimization 467.1 Some De�nitions and Properties : 477.2 The Fibonacci and Golden-Section Search Methods : 477.3 The Steepest Descent Method : 497.4 Conjugate Direction Methods : 497.5 The Conjugate Gradient Method : 507.6 Newton's Method : 507.7 Quasi-Newton methods : 508 Approximation 518.1 Polynomial Approximation : 518.2 Polynomial Interpolation : 528.2.1 Monomial Basis : 528.2.2 Lagrange Basis : 528.2.3 Newton Basis and Divided Di�erences : 538.3 Polynomial Interpolation with Derivative Data : 548.4 The Error in Polynomial Interpolation : 548.5 Piecewise Polynomials and Splines : 558.5.1 Constant Splines : 558.5.2 Linear Splines : 562

8.5.3 Quadratic Splines : 568.5.4 Quadratic Piecewise Polynomials : 568.5.5 Cubic Splines : 578.5.6 Cubic Hermite Piecewise Polynomials : 578.6 Piecewise Polynomial Interpolation : 588.6.1 Linear Spline Interpolation : 588.6.2 Quadratic Spline Interpolation : 598.6.3 Cubic Spline Interpolation : 598.6.4 Cubic Hermite Piecewise Polynomial Interpolation : 608.7 Least Squares Approximation : 608.7.1 Orthogonal Polynomials : 618.7.2 The Gram-Schmidt Orthogonalization Algorithm : 618.7.3 Constructing the Least Squares Polynomial Approximation : : : : : : : : : : : : : : : 629 Numerical Integration | Quadrature 629.1 Simple Quadrature Rules : 639.1.1 Some De�nitions : 639.1.2 Gaussian Quadrature Rules : 649.1.3 Translating the Interval of Integration : 649.1.4 Comparison of Gaussian and Newton-Cotes Quadrature Rules : : : : : : : : : : : : : 659.2 Composite (Compound) Quadrature Rules : 659.3 Adaptive Quadrature : 669.4 Romberg Integration and Error Estimation : 669.5 In�nite Integrals and Singularities : 679.6 Monte Carlo Methods : 6910Ordinary Di�erential Equations 6910.1 Initial Value Problems : 7010.1.1 Two Simple Formulas : 7010.1.2 Sti� IVPs : 7110.1.3 Solving Implicit Equations : 7210.1.4 Higher Order Formulas : 7410.1.5 Runge-Kutta Formulas : 7510.1.6 Linear Multistep Formulas : 7610.1.7 Adams Formulas : 7710.1.8 Backward Di�erentiation Formulas : 7710.1.9 Other Methods : 7810.1.10Adaptive Methods : 7810.2 Boundary Value Problems : 793

10.2.1 Shooting Methods : 7910.2.2 1-Step Methods : 8110.2.3 Other Methods : 8111Partial Di�erential Equations 8211.1 Classes of Problems and PDEs : 8211.1.1 Some De�nitions : 8311.1.2 Boundary Conditions : 8411.2 Classes of Numerical Methods for PDEs : 8411.2.1 Analysis of Numerical Methods for PDEs : 8511.3 Finite Di�erence Methods for BVPs : 8611.3.1 An Example of a Finite Di�erence Method in One Dimension : : : : : : : : : : : : : : 8811.3.2 An Example of a Finite Di�erence Method in Two Dimensions : : : : : : : : : : : : : 8911.4 Finite Element Methods for BVPs : 9111.4.1 The Galerkin Method : 9211.4.2 The Collocation Method : 9411.5 Finite Di�erence Methods for IVPs : 9611.5.1 An Example of an Explicit One-Step Method for a Parabolic IVP : : : : : : : : : : : 9711.5.2 An Example of an Implicit One-Step Method for a Parabolic IVP : : : : : : : : : : : 9811.5.3 An Example of an Explicit Two-Step Method for a Hyperbolic IVP : : : : : : : : : : 9911.6 The Method of Lines : 10011.7 Boundary Element Methods : 10111.8 The Multigrid Method : 10112Parallel Computation 10212.1 Cyclic Reduction : 10313Sources of Numerical Software 105Glossary 106Mathematical Symbols Used 109Abbreviations Used 109References 111Further Reading 114Tables 1154

IntroductionNumerical methods are an indispensable tool in solving many problems that arise in science and engineering.In this article, we brie
y survey a few of the most commonmathematical problems and review some numericalmethods to solve them.As can be seen from the table of contents, the topics covered in this survey are those that appear in mostintroductory numerical methods books. However, our discussion of each topic is more brief than is normallythe case in such texts and we frequently provide references to more advanced topics that are not usuallyconsidered in introductory books.De�nitions of some common mathematical terms used in this survey can be found in the glossary at theend of the article. We also list some common mathematical symbols and abbreviations used throughout thesurvey in the two sections following the glossary.1 Floating-Point ArithmeticIn this section, we consider the representation of
oating-point numbers,
oating-point arithmetic, roundingerrors, and the e�ects of inexact arithmetic in some simple examples. For a more detailed discussion of thesetopics, see (Wilkinson 1965; Goldberg 1991) or an introductory numerical methods text.1.1 The IEEE StandardThe approval of the IEEE1 Standard for Binary Floating-Point Arithmetic (IEEE 1985) was a signi�cantadvance for scienti�c computation. Not only has this led to cleaner
oating-point arithmetic than was com-monly available previously, thus greatly facilitating the development of reliable, robust numerical software,but, because many computer manufacturers have since adopted the standard, it has signi�cantly increasedthe portability of programs.The IEEE standard speci�es both single- and double-precision
oating-point numbers, each of the form(�1)s � b0 : b1 b2 � � � bp�1 � 2E (1)where s = 0 or 1, (�1)s is the sign of the number, bi = 0 or 1 for i = 0; : : : ; p � 1, b0 : b1 b2 � � � bp�1 isthe signi�cand (sometimes called the mantissa) of the number, and the exponent E is an integer satisfyingEmin � E � Emax. In single-precision, p = 24, Emin = �126 and Emax = +127, whereas, in double-precision,p = 53, Emin = �1022 and Emax = +1023. We emphasize that a number written in the form (1) is binary.So, for example, 1:100 � � �0� 20 written in the format (1) is equal to the decimal number 1.5.A normalized number is either 0 or a
oating-point number of the form (1) with b0 = 1 (and so it isnot necessary to store the leading bit). In single-precision, this provides the equivalent of 7 to 8 signi�cantdecimal digits with positive and negative numbers having magnitudes roughly in the range [1:2�10�38; 3:4�1Institute of Electrical and Electronics Engineers 5

10+38]. In double-precision, this is increased to about 16 signi�cant decimal digits and a range of roughly[2:2� 10�308; 1:8� 10+308].An under
ow occurs when an operation produces a nonzero result in the range (�2Emin;+2Emin). In theIEEE standard, the default is to raise an under
ow exception
ag and to continue the computation withthe result correctly rounded to the nearest denormalized number or zero. A denormalized
oating-pointnumber has the form (1) with E = Emin and b0 = 0. Because denormalized numbers use some of the leadingdigits from the signi�cand to represent the magnitude of the number, there are fewer digits available torepresent its signi�cant digits. Using denormalized numbers in this way for under
ows is sometimes referredto as gradual under
ow. Many older non-IEEE machines do not have denormalized numbers and, when anunder
ow occurs, they either abort the computation or replace the result by zero.An over
ow occurs when an operation produces a nonzero result outside the range of
oating-pointnumbers of the form (1). In the IEEE standard, the default is to raise an over
ow exception
ag and tocontinue the computation with the result replaced by either +1 or �1, depending on the sign of theover
ow value. Many older non-IEEE machines do not have +1 or �1 and, when an over
ow occurs, theyusually abort the computation.The IEEE standard also includes at least two NaNs (Not-a-Number) in both precisions, representingindeterminate values that may arise from invalid or inexact operations such as (+1) + (�1), 0 �1, 0=0,1=1 or px for x < 0. When a NaN arises in this way, the default is to raise an exception
ag and tocontinue the computation. This novel feature is not available on most older non-IEEE machines.It follows immediately from the format (1) that
oating-point numbers are discrete and �nite, whilereal numbers are dense and in�nite. As a result, an arithmetic operation performed on two
oating-pointnumbers may return a result that cannot be represented exactly in the form (1) in the same precision as theoperands.A key feature of the IEEE standard is that it requires that the basic arithmetic operations +, �, �, = andp return properly rounded results. That is, we may think of the operation as �rst being done exactly andthen properly rounded to the precision of the result. An operation with �1 is interpreted as the limitingcase of the operation with an arbitrary large value in place of the 1, when such an interpretation makessense; otherwise the result is a NaN. An operation involving one or more NaNs returns a NaN.The default rounding mode is round-to-nearest : that is, the exact result of the arithmetic operation isrounded to the nearest
oating-point number, where, in the case of a tie, the
oating-point number with theleast signi�cant bit equal to 0 is selected. The standard also provides for directed roundings (round-towards-+1, round-towards-�1 and round-towards-0), but these are not easily accessed from most programminglanguages.Another important feature of the IEEE standard is that comparisons are exact and never over
ow orunder
ow. The comparisons <, > and = work as expected with �nite
oating-point numbers of the form(1) and �1 < x < +1 for any �nite
oating-point number x. NaNs are unordered and the comparison ofa NaN with any other value | including itself | returns false.The IEEE standard also provides for extended single- and double-precision
oating-point numbers, but6

these are not easily accessed from most programming languages, so we do not discuss then here.As noted above, the IEEE standard has been widely adopted in the computer industry, but there areseveral important classes of machines that do not conform to it, including Crays, DEC Vaxes and IBMmainframes. Although their
oating-point numbers are similar to those described above, there are importantdi�erences. Space limitations, though, do not permit us to explore these systems here.1.2 Rounding ErrorsSince IEEE standard
oating-point arithmetic returns the correctly rounded result for the basic operations+, �, �, = and p , one might expect that rounding errors would never pose a problem, particularly in double-precision computations. Although rounding errors can be ignored in many cases, the examples in the nextsubsection show that they may be signi�cant even in simple calculations. Before considering these examples,though, we need to de�ne an important machine constant and describe its signi�cance in
oating-pointcomputation.Machine epsilon, often abbreviated mach-eps, is the distance from 1 to the next larger
oating-pointnumber. For numbers of the form (1), mach-eps = 21�p. So for IEEE single- and double-precision numbers,mach-eps is 2�23 � 1:19209� 10�7 and 2�52 � 2:22045� 10�16, respectively.A common alternate de�nition of machine epsilon is that it is the smallest positive
oating-point number� such that 1 + � > 1 in
oating-point arithmetic. We prefer the de�nition given in the previous paragraph,and use it throughout this section, because it is independent of the rounding mode and so is characteristicof the
oating-point number system itself, while the alternate de�nition given in this paragraph depends onthe rounding mode as well. We also assume throughout this section that round-to-nearest is in e�ect. Thediscussion below, though, can be modi�ed easily for the alternate de�nition of mach-eps and other roundingmodes.It follows immediately from the
oating-point format (1) that the absolute distance between
oating-point numbers is not uniform. Rather, from (1) and the de�nition of mach-eps above, we see that thespacing between
oating-point numbers in the intervals [2k; 2k+1) and (�2k+1;�2k] is mach-eps � 2k forEmin � k � Emax. Thus, the absolute distance between neighbouring nonzero normalized
oating-pointnumbers with the same exponent is uniform, but the
oating-point numbers near 2Emin are much closertogether in an absolute sense than those near 2Emax. However, the relative spacing between all nonzeronormalized
oating-point numbers does not vary signi�cantly. It is easy to see that, if x1 and x2 are anytwo neighbouring nonzero normalized
oating-point numbers, thenmach-eps2 � ����x1 � x2x1 ���� � mach-eps: (2)As a result, it is more natural to consider relative, rather than absolute, errors in arithmetic operations on
oating-point numbers, as is explained in more detail below.For x 2 R, let fl(x) be the
oating-point number nearest to x, where, in the case of a tie, the
oating-point number with the least signi�cant bit equal to 0 is selected. The importance of mach-eps stems largely7

from the observation that, if fl(x) does not over
ow or under
ow, thenfl(x) = x(1 + �) for some j�j � u; (3)where u, the relative roundo� error bound, satis�es u = mach-eps=2 for round-to-nearest and u = mach-epsfor the other IEEE rounding modes. Rewriting (3) as� = fl(x) � xxwe see that � is the relative error incurred in approximating x by fl(x), and so (3) is closely related to (2).If op is one of +, �, � or = and x and y are two
oating-point numbers, let fl(x op y) stand for theresult of performing the arithmetic operation x op y in
oating-point arithmetic. If no arithmetic exceptionarises in the
oating-point operation, thenfl(x op y) = (x op y)(1 + �) for some j�j � u; (4)where the (x op y) on the right side of (4) is the exact result of the arithmetic operation. Similarly, if x is anonnegative normalized
oating-point number, thenfl(px) = px (1 + �) for some j�j � u: (5)Again, the u in either (4) or (5) is the relative roundo� error bound and the � is the relative error incurredin approximating x op y by fl(x op y) or px by fl(px), respectively.Although the relations (4){(5) are not quite as tight as the requirement that the basic operations +, �,�, = and p return the correctly rounded result, they are very useful in deriving error bounds and explainingthe e�ects of rounding errors in computations.1.3 The E�ects of Inexact Arithmetic: Some Illustrative ExamplesAs noted at the start of the last subsection, since IEEE standard
oating-point arithmetic returns thecorrectly rounded result for the basic operations +, �, �, = and p , one might expect that rounding errorswould never pose a problem, particularly in double-precision computations. This, though, is not the case. Inthis subsection we consider a simple example that illustrates some of the pitfalls of numerical computation.Suppose that we compute the expression 1 + 1010 � 1010 (6)in single-precision from left to right. We �rst compute fl(1 + 1010) = 1010, the correctly rounded single-precision result. Then we use this value to compute fl(1010 � 1010) = 0, without committing an additionalrounding error. Thus, fl((1 + 1010) � 1010) = 0, whereas the true result is 1.The key point to note here is that fl(1 + 1010) = 1010 = (1 + 1010)(1 + �), where j�j = 1=(1 + 1010) <8

10�10 < u = 2�24. So the rounding error that we commit in computing 1+1010 is small relative to 1+1010,the true result of the �rst addition, but the absolute error of 1 associated with this addition is not smallcompared to the true �nal answer, 1, thus illustrating the Rule for Sums:Although a rounding error is always small relative to the result that gives rise to it, it might belarge relative to the true �nal answer if intermediate terms in a sum are large relative to the true�nal answer.The Rule for Sums is important to remember when computing more complex expressions such as thetruncated Taylor series Tk(x) = 1+ x+ x2=2 + � � �+ xk=k! � ex, where k is chosen large enough so that thetruncation error ex � Tk(x) = 1Xi=k+1xi=i!is insigni�cant relative to ex. It is easy to prove that, if x � 0 and k is large enough, then Tk(x) is a goodapproximation to ex. However, if x < 0 and of moderate magnitude, then the rounding error associated withsome of the intermediate terms xi=i! in Tk(x) might be much larger in magnitude than either the true value ofTk(x) or ex. As a result, fl(Tk(x)), the computed value of Tk(x), might be completely erroneous, no matterhow large we choose k. For example, e�15 � 3:05902�10�7, while we computed fl(Tk(x)) � 2:12335�10�2in IEEE single-precision arithmetic on a Sun Sparcstation.A similar problem is less likely to occur with multiplications, provided no over
ow or under
ow occurs,since from (4) fl(x1 � x2 � � �xn) = x1 � x2 � � �xn(1 + �1) � � � (1 + �n�1) (7)where j�ij � u for i = 1; : : : ; n� 1. Moreover, if nu � 0:1, then (1 + �1) � � � (1 + �n�1) = 1 + 1:1n � for some� 2 [�u; u]. Therefore, unless n is very large, fl(x1 � x2 � � �xn) is guaranteed to be a good approximationto x1 � x2 � � �xn. However, it is not hard to �nd examples for which nu � 1 and fl(x1 � x2 � � �xn) is a poorapproximation to x1 � x2 � � �xn.The example (6) also illustrates another important phenomenon commonly called catastrophic cance-lation: all the digits in the second sum, fl(1010 � 1010), cancel, signaling a catastrophic loss of precision.Catastrophic cancelation refers also to the case that many, but not all, of the digits cancel. This is often a signthat a disastrous loss of accuracy has occurred, but, as in this example when we compute fl(1+1010) = 1010and loose the 1, it is often the case that the accuracy is lost before the catastrophic cancelation occurs.For an example of catastrophic cancelation in a more realistic computation, consider calculating the rootsof the quadratic ax2 + bx+ c by the standard formular� = �b�pb2 � 4ac2a : (8)We used this formula to compute the roots of the quadratic x2�104x+1 in IEEE single-precision arithmeticon a Sun Sparcstation. The computed roots were 104 and 0, the larger of which is accurate, having a relativeerror of about 10�8, but the smaller one is completely wrong, the true root being about 10�4. A similarresult usually occurs whenever jacj=b2 � 1. The root of larger magnitude is usually computed precisely,9

but the smaller one is frequently very inaccurate due to catastrophic cancelation, since b2 � 4ac � b2 andso jbj � pb2 � 4ac � 0. Although the second of these relations signals catastrophic cancelation, the loss ofprecision occurs in the �rst.There is an easy remedy for the loss of precision due to catastrophic cancelation in this case. Use (8) tocompute, r1, the root of larger magnitude, and then use the alternate formula r2 = c=(a � r1) to compute thesmaller one. The relative error in r2 is at most (1 + u)2 times larger than the relative error in r1, providedthat no over
ows or under
ows occur in computing c=(a � r1).Another point to note is that, if we compute (6) from right to left, instead of left to right, thenfl(1 + (1010 � 1010)) = fl(1 + 0) = 1:It is not particularly signi�cant that this computation gives the correct answer, but what is important isthat it illustrates that
oating-point addition is not associative, although it is commutative, since fl(a + b)and fl(b + a) are both required to be the correctly rounded value for a+ b = b+ a. Similar results hold formultiplication and division.Many other fundamental mathematical relations that we take for granted do not hold for
oating-pointcomputations. For example, the result that sin(x) is strictly increasing for x 2 (0; �=2) cannot hold in any
oating-point system in which x and sin(x) are in the same precision, since there are more
oating-pointnumbers in the domain (0; �=2) than there are in (0; 1), the range of sin(x).Finally, we end this section by noting that over
ows and under
ows often cause problems in computations.After an over
ow, �1 or NaN frequently propagates through the computation. Although this can sometimesyield a useful result, it is more often a signal of an error in the program or its input. On the otherhand, continuing the computation with denormalized numbers of zero in place of an under
ow can oftenyield a useful numerical result. However, there are cases when this can be disastrous. For example, ifx2 under
ows, but y2 is not too close to the under
ow limit, then fl(px2 + y2), the computed value ofpx2 + y2, is still accurate. However, if both x2 and y2 under
ow to 0, then fl(px2 + y2) = 0, althoughpx2 + y2 � max(jxj; jyj) may be far from the under
ow limit.It is often possible to ensure that over
ows do not occur and that under
ows are harmless. For theexample considered above, note that px2 + y2 = sp(x=s)2 + (y=s)2 for any scaling factor s > 0. If wechoose s = 2k for an integer k � log2(max(jxj; jyj)), then neither (x=s)2 nor (y=s)2 can over
ow, and anyunder
ow that occurs is harmless, since one of (x=s)2 or (y=s)2 is close to 1. Moreover, in IEEE
oating-pointarithmetic, multiplying and dividing by s = 2k does not introduce any additional rounding error into thecomputation.A similar problem with over
ows and under
ows occurs in formula (8) and in many other numericalcomputations. Over
ows can be avoided and under
ows can be rendered harmless in computing pb2 � 4acin (8) by scaling in much the same way as described above for px2 + y2.10

2 The Direct Solution of Linear Algebraic SystemsIn this section, we consider the direct solution of linear algebraic systems of the formAx = b, where A 2 Rn�n(or Cn�n) is a nonsingular matrix and x and b 2 Rn (or Cn). A numerical method for solving Ax = b is directif it computes the exact solution of the system when implemented in exact arithmetic. Iterative methods fornonsingular linear systems and methods for over-determined and under-determined systems are consideredin x4 and x5, respectively.The standard direct methods for solving Ax = b are based on, or closely related to, Gaussian elimination(GE), the familiar variable elimination technique that reduces the original system Ax = b to an upper-triangular system, Ux = ~b, which has the same solution x. We present a simple form of GE in x2.1 andshow how Ux = ~b can be solved easily by back substitution in x2.2. We then explain how the simple formof GE presented in x2.1 for Ax = b relates to the LU factorization of the coe�cient matrix A in x2.3 and toforward elimination in x2.4. Enhancements to this simple form of GE to make it an e�cient, robust, reliablenumerical method for the solution of linear systems are outlined in x2.5. The closely related Choleskyfactorization for symmetric positive-de�nite matrices is presented in x2.6. We consider how to adapt thesemethods to banded and sparse linear systems in x2.7. We end with a discussion of the e�ects of roundingerrors on the direct methods in x2.8 and of iterative improvement , a technique to ameliorate these e�ects,in x2.9. See x13 for a discussion of sources of high-quality numerical software for solving systems of linearalgebraic equations.GE can also be applied to singular systems of linear equations or over-determined or under-determinedlinear systems of m equations in n unknowns. However, it is not as robust as the methods discussed inx5 for these problems, so we do not present these generalizations of GE here. In addition, we note thatthere are several mathematically equivalent, but computationally distinct, implementations of GE and thefactorizations discussed here. The reader interested in a more comprehensive treatment of these topics shouldconsult an advanced text, such as Golub and Van Loan (1989).Finally we note that it is generally inadvisable to solve a system Ax = b by �rst computing A�1 and thencalculating x = A�1b. The techniques discussed in this section are usually both more reliable and more coste�ective than methods using A�1. We also note that, although Cramer's rule is a useful theoretical tool, itis an extremely ine�ective computational scheme.2.1 Gaussian EliminationFirst we establish some notation used throughout this section. The linear algebraic system to be solved isAx = b, where A 2 Rn�n (or Cn�n) is a nonsingular matrix and x and b 2 Rn (or Cn) are vectors. To unifythe notation used below, let A0 = A and b0 = b.Gaussian elimination (GE) for Ax = b proceeds in n� 1 stages. For k = 1; : : : ; n� 1, we begin stage k ofGE with the reduced system Ak�1x = bk�1, where columns 1; : : : ; k� 1 of Ak�1 contain 0's below the maindiagonal. That is, for Ak�1 = [a(k�1)ij], a(k�1)ij = 0 for j = 1; : : : ; k� 1 and i = j+ 1; : : : ; n. This correspondsto the variables x1; : : : ; xi�1 having been eliminated from equation i of Ak�1x = bk�1 for i = 2; : : : ; k � 111

and the variables x1; : : : ; xk�1 having been eliminated from the remaining equations k; : : : ; n. Moreover, x isthe unique solution of both Ak�1x = bk�1 and Ax = b. Note that all the assumptions above hold vacuouslyfor k = 1, since, in this case, the \reduced" system A0x = b0 is just the original system Ax = b from whichno variables have yet been eliminated.During stage k of GE, we further the reduction process by eliminating the variable xk from row i ofAk�1x = bk�1 for i = k + 1; : : : ; n by multiplying row k of this system by mik = a(k�1)ik =a(k�1)kk andsubtracting it from row i.Note that the multipliers mik are not properly de�ned by mik = a(k�1)ik =a(k�1)kk if the pivot elementa(k�1)kk = 0. In exact arithmetic, this can happen only if the k � k leading principal minor of A is singular.We consider how to deal with zero (or nearly zero) pivots in x2.5. For now, though, we say that this simpleform of GE \breaks down" at stage k and we terminate the process.After the last stage of GE, the original system Ax = b has been reduced to Ux = ~b, where ~b = bn�1and U = An�1. Note that U = [uij] is an upper-triangular matrix (i.e., uij = 0 for 1 � j < i � n) withukk = a(k�1)kk for k = 1; : : : ; n. Therefore, if A and all its leading principal minors are nonsingular, thenukk = a(k�1)kk 6= 0 for k = 1; : : : ; n, so U is nonsingular too. Moreover, in this case, x is the unique solution ofboth Ax = b and Ux = ~b. The latter system can be solved easily by back substitution, as described in x2.2.The complete GE process can be written in pseudo-code as shown in Table 1. Note that at stage k ofGE, we know the elements a(k)ik = a(k�1)ik �mik �a(k�1)kk = 0 for i = k+1; : : : ; n, so we do not need to performthis calculation explicitly. Consequently, instead of j running for k; : : : ; n in Table 1, as might be expected,j runs from k + 1; : : : ; n instead.To reduce the storage needed for GE, the original matrix A and vector b are often overwritten by theintermediate matrices Ak and vectors bk, so that at the end of the GE process, the upper-triangular partof A contains U and b contains ~b. The only change required to the algorithm in Table 1 to implement thisreduced storage scheme is to remove the superscripts from the coe�cients aij and bi. As explained below,it is also important to store the multipliers mik. Fortunately, the n� k multipliers fmik : i = k + 1; : : : ; ng,created at stage k of GE can be stored in the n � k positions in column k of A below the main diagonalthat are eliminated in stage k. Thus, in many implementations of GE, the upper-triangular part of A isoverwritten by U and the strictly lower part of A is overwritten by the multipliers mik for 1 � k < i � n.A straightforward count of the operations in Table 1 shows that GE requires n(n�1)=2 � n2=2 divisionsto compute the multipliers mik, n(2n� 1)(n� 1)=6 � n3=3 multiplications and subtractions to compute thecoe�cients of U , and n(n � 1)=2 � n2=2 multiplications and subtractions to compute the coe�cients of ~b.Since multiplications and subtractions (or additions) occur in pairs so frequently in matrix calculations, werefer to this pair of operations as a
op, which is short for
oating point operation. Thus, the computationalwork required to reduce a system Ax = b of n equations in n unknowns to Ux = ~b is about n3=3
ops. Weshow in x2.2 that Ux = ~b can be solved by back substitution using n divisions and about n2=2
ops.12

2.2 Back SubstitutionLet U = [uij] be an n � n nonsingular upper-triangular matrix. That is, uij = 0 for 1 � j < i � n anduii 6= 0 for 1 � i � n. Then the linear algebraic system Ux = ~b can be solved easily by back substitution, asshown in Table 2.It is easy to see from Table 2 that back substitution requires n divisions and n(n � 1)=2 � n2=2 multi-plications and subtractions. So the computational work is about n2=2
ops.2.3 The LU FactorizationApplying Gaussian elimination (GE) as described in x2.1 to solve the linear algebraic system Ax = b ofn equations in n unknowns is closely related to computing the LU factorization of the matrix A, whereL1 = [l(1)ij] is a unit-lower-triangular matrix (i.e., l(1)ii = 1 for i = 1; : : : ; n and l(1)ij = 0 for 1 � i < j � n) andU1 = [u(1)ij] is an upper-triangular matrix (i.e., u(1)ij = 0 for 1 � j < i � n) satisfyingA = L1U1: (9)The factorization (9) exists and is unique if and only if all the leading principal minors of A are nonsingular.In this case, it can be shown that the matrix U1 in (9) is the same as the upper-triangular matrix U producedby GE, and the elements in the strictly lower-triangular part of L1 = [l(1)ij] satisfy l(1)ij = mij for 1 � j < i � n,where the mij are the multipliers used in GE. Moreover, the U1 in (9) is nonsingular if A is; L1 is alwaysnonsingular if the factorization exists.From the discussion in x2.1, it follows that computing the LU factorization of a n � n matrix A in thisway requires n(n� 1)=2 � n2=2 divisions and n(2n� 1)(n � 1)=6 � n3=3 multiplications and subtractions.Thus, the computational work required to calculate it is about n3=3
ops.If we need to solve m > 1 systems Axi = bi, i = 1; : : : ;m, (or AX = B, where X and B 2 Rn�m orCn�m), we may obtain signi�cant computational savings by computing the LU factorization of A once onlyand using the factors L1 and U1 to solve each system Axi = bi for i = 1; : : : ;m by �rst solving L1~bi = bifor ~bi by forward elimination, as described in x2.4, and then solving U1xi = ~bi for xi by back substitution,as outlined in x2.2. This procedure is essentially the same as performing GE to reduce A to U once only,saving the multipliers fmikg used in the process, and then, for each system Axi = bi, using the multipliersto perform the same transformation on bi to produce ~bi and solving Uxi = ~bi for xi by back substitution.With either of these procedures, the computational work required to solve all m systems Axi = bi is aboutn3=3+mn2
ops, whereas, if we apply GE as outlined in x2.1 to each system Axi = bi, recomputing U eachtime, the computational work required to solve all m systems Axi = bi is about m(n3=3 + n2)
ops, whichis much greater if m and/or n is large.Finally, note that we intentionally used the same symbol ~bi for the solution of L~bi = bi and the transformedright side vector produced by GE, since these vectors are identical.13

2.4 Forward EliminationLet L = [lij] be an n�n lower-triangular matrix (i.e., lij = 0 for 1 � i < j � n). If L is nonsingular too, thenlii 6= 0 for 1 � i � n and so the linear algebraic system L~b = b can be solved easily by forward elimination,as shown in Table 3.It is easy to see from Table 3 that forward elimination requires n divisions and n(n � 1)=2 � n2=2multiplications and subtractions. So the computational work is about n2=2
ops.If L = [lij] is unit-lower-triangular (i.e., lii = 1 for i = 1; : : : ; n as well as L being lower-triangular), asis the case for the L produced by the LU factorization described in x2.3, then the division by lii in Table 3is not required, reducing the operation count slightly to about n2=2
ops. However, we have presented theforward elimination procedure in Table 3 with general lii 6= 0, since other schemes, such as the Choleskyfactorization described in x2.6, produce a lower-triangular matrix that is typically not unit-lower-triangular.The name forward elimination for this procedure comes from the observation that it is mathematicallyequivalent to the forward elimination procedure used in GE to eliminate the variables x1; : : : ; xi�1 fromequation i of the original system Ax = b to produce the reduced system Ux = ~b.2.5 Scaling and PivotingAs noted in x2.1, the simple form of Gaussian elimination (GE) presented there may \break down" at stagek if the pivot a(k�1)kk = 0. Moreover, even if a(k�1)kk 6= 0, but ja(k�1)kk j � ja(k�1)ik j for some i 2 fk + 1; : : : ; ng,then jmikj = ja(k�1)ik =a(k�1)kk j � 1. So multiplying row k of Ak�1 by mik and subtracting it from row i mayproduce large elements in the resulting row i of Ak, which in turn may produce still larger elements duringlater stages of the GE process. Since, as noted in x2.8, the bound on the rounding errors in the GE process isproportional to the largest element that occurs in Ak for k = 0; : : : ; n�1, creating large elements during theGE reduction process may introduce excessive rounding error into the computation, resulting in an unstablenumerical process and destroying the accuracy of the LU factorization and the computed solution x of thelinear system Ax = b. We present in this section scaling and pivoting strategies that enhance GE to makeit an e�cient, robust, reliable numerical method for the solution of linear systems.Scaling, often called balancing or equilibration, is the process by which the equations and unknowns ofthe system Ax = b are scaled in an attempt to reduce the rounding errors incurred in solving the problemand improve its conditioning, as described in x2.8. The e�ects can be quite dramatic.Typically, scaling is done by choosing two n � n diagonal matrices D1 = [d(1)ij] and D2 = [d(2)ij] (i.e.,d(1)ij = d(2)ij = 0 for i 6= j) and forming the new system Âx̂ = b̂, where Â = D1AD�12 , x̂ = D2x and b̂ = D1b.Thus, D1 scales the rows and D2 scales the unknowns of Ax = b, or, equivalently, D1 scales the rows andD�12 scales the columns of A. Of course, the solution of Ax = b can be recovered easily from the solution ofÂx̂ = b̂, since x = D�12 x̂. Moreover, if the diagonal entries d(1)11 ; : : : ; d(1)nn of D1 and d(2)11 ; : : : ; d(2)nn of D2 arechosen to be powers of the base of the
oating-point number system (i.e., powers of 2 for IEEE
oating-pointarithmetic), then scaling introduces no rounding errors into the computation.One common technique is to scale the rows only by taking D2 = I and choosing D1 so that largest14

element in each row of the scaled matrix Â = D1A is about the same size. A slightly more complicatedprocedure is to scale the rows and columns of A so that the largest element in each row and column ofÂ = D1AD�12 is about the same size.These strategies, although usually helpful, are not fool proof: it is easy to �nd examples for which rowscaling or row and column scaling as described above makes the numerical solution worse. The best strategyis to scale on a problem-by-problem basis depending on what the source problem says about the signi�canceof each coe�cient aij in A = [aij]. See an advanced text such as (Golub and Van Loan 1989) for a moredetailed discussion of scaling.For the remainder of this section, we assume that scaling, if done at all, has already been performed.The most commonly used pivoting strategy is partial pivoting. The only modi�cation required to stagek of GE described in x2.1 to implement GE with partial pivoting is to �rst search column k of Ak�1 for thelargest element a(k�1)ik on or below the main diagonal. That is, �nd i 2 fk; : : : ; ng such that ja(k�1)ik j � ja(k�1)�k jfor � = k; : : : ; n. Then interchange equations i and k in the reduced system Ak�1x = bk�1 and proceed withstage k of GE as described in x2.1.After the equation interchange described above, the pivot element a(k�1)kk satis�es ja(k�1)kk j � ja(k�1)ik jfor i = k; : : : ; n. So, if a(k�1)kk 6= 0, then the multiplier mik = a(k�1)ik =a(k�1)kk must satisfy jmikj � 1 fori = k + 1; : : : ; n. Thus no large multipliers can occur in GE with partial pivoting.On the other hand, if the pivot element a(k�1)kk = 0, then a(k�1)ik = 0 for i = k; : : : ; n, whence Ak�1 issingular and so A must be too. Thus, GE with partial pivoting never \breaks down" (in exact arithmetic)if A is nonsingular.Partial pivoting adds a little overhead only to the GE process. At stage k, we must perform n � kcomparisons to determine the row i with ja(k�1)ik j � ja(k�1)jk j for j = k; : : : ; n. Thus, GE with partial pivotingrequires a total of n(n � 1)=2 � n2=2 comparisons. In addition, we must interchange rows i and k if i > k,or use some form of indirect addressing if the interchange is not performed explicitly. On the other hand,exactly the same number of arithmetic operations must be executed whether or not pivoting is performed.Therefore, if n is large, the added cost of pivoting is small compared to performing approximately n3=3
opsto reduce A to upper triangular form.Complete pivoting is similar to partial pivoting except that the search for the pivot at stage k of GE is notrestricted to column k of Ak�1. Instead, in GE with complete pivoting, we search the (n�k)� (n�k) lowerright block of Ak�1 for the largest element. That is, �nd i and j 2 fk; : : : ; ng such that ja(k�1)ij j � ja(k�1)�� jfor � = k; : : : ; n and � = k; : : : ; n. Then interchange equations i and k and variables j and k in the reducedsystem Ak�1xk�1 = bk�1 and proceed with stage k of GE as described in x2.1. Note that the vector xk�1 inthe reduced system above is a re-ordered version of the vector of unknowns x in the original system Ax = b,incorporating the variable interchanges that have occurred in stages 1; : : : ; k�1 of GE with complete pivoting.After the equation and variable interchanges described above, the pivot element a(k�1)kk satis�es ja(k�1)kk j �ja(k�1)ik j for i = k; : : : ; n. So, if a(k�1)kk 6= 0, the multiplier mik = a(k�1)ik =a(k�1)kk must satisfy jmikj � 1 fori = k+1; : : : ; n, as is the case with partial pivoting. However, with complete pivoting, the multipliers tend tobe even smaller than they are with partial pivoting, since the pivots tend to be larger, and so the numerical15

solution might su�er less loss of accuracy due to rounding errors, as discussed further in x2.8After the row and column interchanges in stage k, the pivot element a(k�1)kk = 0 only if a(k�1)ij = 0 fori = k; : : : ; n and j = k; : : : ; n in which case Ak�1 is singular and so A must be too. Thus, like GE withpartial pivoting, GE with complete pivoting never \breaks down" (in exact arithmetic) if A is nonsingular.Moreover, if A is singular and a(k�1)ij = 0 for i = k; : : : ; n and j = k; : : : ; n, then the GE process can beterminated at this stage and the factorization computed so far used to advantage in determining a solution(or approximate solution) to the singular system Ax = b. However, this is not as robust a technique as themethods discussed in x4 for over-determined problems, so we do not discuss this further here. The readerinterested in this application of GE should consult an advanced text such as (Golub and Van Loan 1989).Complete pivoting, unlike partial pivoting, adds signi�cantly to the cost of the GE process. At stage k,we must perform (n�k+1)2�1 comparisons to determine the row i and column j with ja(k�1)ij j � ja(k�1)�� j for� = k; : : : ; n and � = k; : : : ; n. Thus, GE with partial pivoting requires a total of n(n� 1)(2n+ 5)=6 � n3=3comparisons. On the other hand, exactly the same number of arithmetic operations must be executedwhether or not pivoting is performed. So the cost of determining the pivots is comparable to the cost ofperforming approximately n3=3
ops required to reduce A to upper-triangular form. In addition, we mustinterchange rows i and k if i > k and columns j and k if j > k or use some form of indirect addressing if theinterchange is not performed explicitly. Thus even though GE with complete pivoting has better roundo�error properties than GE with partial pivoting, GE with partial pivoting is used more often in practice.As is the case for the simple version of GE presented in x2.1, GE with partial or complete pivoting isclosely related to computing the LU factorization of the matrix A. However, in this case, we must accountfor the row or row and column interchanges by extending (9) toP2A = L2U2 (10)for partial pivoting and P3AQT3 = L3U3 (11)for complete pivoting, where P2 and P3 are permutation matrices that record the row interchanges performedin GE with partial and complete pivoting, respectively, QT3 is a permutation matrix that records the columninterchanges performed in GE with complete pivoting, L2 and L3 are unit-lower-triangular matrices withthe n�k multipliers from stage k of GE with partial and complete pivoting, respectively, in column k belowthe main diagonal, but permuted according to the row interchanges that occur in stages k + 1; : : : ; n� 1 ofGE with partial and complete pivoting, respectively, U2 and U3 are the upper-triangular matrices producedby GE with partial and complete pivoting, respectively.A permutation matrix P has exactly one 1 in each row and column and all other elements equal to 0.It is easy to check that PP T = I so P is nonsingular and P T = P�1. That is, P is an orthogonal matrix.Also note that we do not need a full n � n array to store P : the information required to form or multiplyby P = [Pij] can be stored in an n-vector p = [pi], where pi = j if and only if Pij = 1 and Pik = 0 for k 6= j.The factorizations (9), (10) and (11) are all called LU factorizations; (10) is also called a PLU factor-16

ization. Unlike (9), the LU factorizations (10) and (11) always exist. P2, P3, Q3 L2 and L3 are alwaysnonsingular; U2 and U3 are nonsingular if and only if A is nonsingular. Moreover, the factorizations (10)and (11) are unique if there is a well-de�ned choice for the pivot if more than one element of maximal sizeoccurs in the search for the pivot and if there is a well-de�ned choice for the multipliers in L if the pivot iszero.The LU factorization (10) can be used to solve the linear system Ax = b by �rst computing b̂2 = P2b, thensolving L2~b2 = b̂2 by forward elimination and �nally solving U2x = ~b2 by back substitution. The steps aresimilar if we use the LU factorization (11) instead of (10), except that the back substitution U3x̂3 = ~b3 yieldsthe permuted vector of unknowns x̂3. The original vector of unknowns x can be recovered by x = QT3 x̂3.We have used ~b2 and ~b3 for the intermediate results above to emphasize that this is the same as the vector~b that is obtained if we perform GE with partial and complete pivoting, respectively, on the original systemAx = b.As noted earlier for (9), if we need to solve m > 1 systems Axi = bi, i = 1; : : : ;m, (or AX = B,where X and B 2 Rn�m or Cn�m), we may obtain signi�cant computational savings by computing the LUfactorization of A once only. The same observation applies to the LU factorizations (10) and (11).We end by noting that not having to pivot to ensure numerical stability can be a great advantage insome cases | for example, when factoring a banded or sparse matrix, as described in x2.7. Moreover, thereare classes of matrices for which pivoting is not required to ensure numerical stability. Three such classesare complex Hermitian positive-de�nite matrices, real symmetric positive-de�nite matrices and diagonally-dominant matrices.2.6 The Cholesky FactorizationIn this subsection, we present the Cholesky factorization of a real symmetric positive-de�nite n � n matrixA. It is straightforward to modify the scheme for complex Hermitian positive-de�nite matrices.Recall that A 2 Rn�n is symmetric if A = AT , where AT is the transpose of A, and it is positive-de�niteif xTAx > 0 for all x 2 Rn, x 6= 0. The Cholesky factorization exploits these properties of A to compute alower-triangular matrix L satisfying A = LLT (12)The similar LDL factorization computes a unit-lower-triangular matrix ~L and a diagonal matrixD satisfyingA = ~LD~LT (13)We present the dot product form of the Cholesky factorization in Table 4. It is derived by equating theterms of A = [aij] to those of LLT in the order (1,1), (2,1),: : : ,(n,1), (2,2), (3,2),: : : ,(n,2),: : : ,(n,n) and usingthe lower-triangular structure of L = [lij] (i.e., lij = 0 for 1 � i < j � n). Other forms of the Choleskyfactorization are discussed in advanced texts such as (Golub and Van Loan 1989).17

It can be shown that, if A is symmetric positive-de�nite, thenajj � j�1Xk=1 l2jk > 0(in exact arithmetic) each time this expression is computed in the Cholesky factorization. Therefore, wemay take the associated square root to be positive, whence ljj > 0 for j = 1; : : : ; n. With this convention,the Cholesky factorization is unique.Moreover, it follows from ljj =vuutajj � j�1Xk=1 l2jkthat ajj = jXk=1 l2jk:So the elements in row j of the Cholesky factor L are bounded by pajj even if we don't pivot. Consequently,as noted in x2.5, it is customary to compute the Cholesky factorization without pivoting.Note that the method in Table 4 accesses the lower-triangular part of A only, so only those elements needto be stored. Moreover, if we replace ljj and lij by ajj and aij , respectively, in Table 4, then the modi�edalgorithm overwrites the lower-triangular part of A with the Cholesky factor L.A straightforward count of the operations in Table 4 shows that the Cholesky factorization requires nsquare roots, n(n�1)=2 � n2=2 divisions and n(n�1)(n+1)=6 � n3=6 multiplications and subtractions. Thisis approximately half the arithmetic operations required to compute the LU factorization of A. Of course,the storage required for the Cholesky factorization is also about half that required for the LU factorization.The Cholesky, LDL and LU factorizations are closely related. Let D1 = [d(1)ij] be the diagonal matrixwith the same diagonal elements as L = [lij] (i.e., d(1)jj = ljj for j = 1; : : : ; n and d(1)ij = 0 for i 6= j). D1 isnonsingular, since, as noted above, ljj > 0 for j = 1; : : : ; n. Moreover, ~L = LD�11 is unit lower triangular. Ifwe also let D = D1D1 = D1DT1 , thenA = LLT = (~LD1)(~LD1)T = ~LD1DT1 ~LT = ~LD~LT ;where ~LD~LT is the LDL factorization of A. Furthermore, if we let U = D~LT , then ~LU is the LU factorizationof A.The LDL factorization can be computed directly by equating the terms of A to those of ~LD~LT , justas we did above for the Cholesky factorization. This leads to a scheme similar to that shown in Table 4,but without any square roots, although it has n(n � 1)=2 � n2=2 more multiplications. Thus the cost ofcomputing the factorization remains about n3=6
ops and the storage requirement remains about n2=2.An advantage of the LDL factorization is that it can be applied to a symmetric inde�nite matrix. TheCholesky factorization is not applicable in this case, since LLT is always symmetric positive-semide�nite.However, since LDLT is always symmetric, pivoting must be restricted to ensure that the re-ordered matrix18

PAQT is symmetric. The simplest way to maintain symmetry is to use symmetric pivoting in which Q = P .This, though, restricts the choice of the pivot at stage k of the LDL factorization to ajj for j = k; : : : ; n. Asa result, in some cases, the LDL factorization may incur much more rounding error than GE with partial orcomplete pivoting.2.7 Banded and Sparse MatricesSigni�cant savings in both computational work and storage can often be obtained in solving Ax = b bytaking advantage of zeros in the coe�cient matrix A. We outline in this subsection how these savings maybe realized for banded and more general sparse matrices.To begin, note that an n � n matrix A is said to be sparse if the number of nonzero elements in A ismuch less than n2, the total number of elements in A. Banded matrices are an important subclass of sparsematrices in which the nonzero elements of the matrix are restricted to a band around the main diagonalof the matrix. The lower bandwidth of a matrix A = [aij] is the smallest integer p such that aij = 0 fori�j > p, the upper bandwidth of A is the smallest integer q such that aij = 0 for j� i > q, and the bandwidthof A is 1 + p+ q. Clearly, if p and q � n, then A is sparse, since A has at most (1 + p+ q)n� n2 nonzeroelements.Banded and more general sparse matrices arise in many important applications. For example, quadraticspline interpolation, as described in x8.6.2, requires the solution of a linear systems Tc = g, where T is atridiagonal matrix (i.e., banded with p = q = 1) and c is the vector of coe�cients for the quadratic splineinterpolant. Banded matrices also arise in the solution of boundary value problems for ordinary di�erentialequations. See x11.3.1 for an example of a system Tu = g, where T is a symmetric positive-de�nite tridiagonalmatrix. More general sparse matrices arise in the numerical solution of partial di�erential equations. Seex11.3.2 for an example of the matrix associated with the standard 5-point di�erence scheme for Poisson'sequation.If A is large and sparse, it is common to store only the nonzero elements of A, since this greatly reducesthe storage requirements. This is easy to do if A is banded, since we can map the elements from the bandof A to a (1 + p + q) � n array representing A in a packed format, several of which are commonly used inpractice. If A = [aij] is a general sparse matrix, then we require a more general sparse matrix data structurewhich stores each nonzero element aij of A along with some information used to recover the indices i and j.We consider Gaussian elimination (GE) for a banded matrix �rst. To begin, note that the reductionprocess described in x2.1 maintains the band structure of A. In particular, a(k�1)ik = 0 for i � k > p,whence the multipliers mik = a(k�1)ik =a(k�1)kk in Table 1 need to be calculated for i = k + 1; : : :min(k + p; n)only and the i loop can be changed accordingly. Similarly a(k�1)kj = 0 for j � k > q, so the reductiona(k)ij = a(k�1)ij �mij � a(k�1)kj in Table 1 needs to be calculated for j = k + 1; : : : ;min(k + q; n) only and thej loop can be changed accordingly. It therefore follows from a straightforward operation count that GEmodi�ed as described above for banded matrices requires np � p(p + 1)=2 � np divisions to compute themultipliersmik, either npq�p(3q2+3q+p2�1)=6 � npq if p � q or npq�q(3p2+3p+q2�1)=6 � npq if p � qmultiplications and subtractions to compute the coe�cients of U , and np� p(p+ 1)=2 � np multiplications19

and subtractions to compute the coe�cients of ~b. Furthermore, note that, if we use this modi�ed GEprocedure to compute the LU factorization of A, then the lower-triangular matrix L has lower bandwidth pand the upper-triangular matrix U has upper bandwidth q. As noted in x2.1, it is common to overwrite Awith L and U . This can be done even if A is stored in packed format, thereby achieving signi�cant reductionin storage requirements.The back substitution method shown in Table 2 and the forward eliminationmethod shown in Table 3 canbe modi�ed similarly so that each requires n divisions, the back substitution method requires nq�q(q+1)=2 �nq multiplications and subtractions while the forward elimination method requires np � p(p + 1)=2 � npmultiplications and subtractions. In addition, recall that the n divisions are not needed in forward eliminationif L is unit-lower-triangular, as is the case for the modi�ed LU factorization described here.A similar modi�cation of the Cholesky method shown in Table 4 results in a procedure that requires nsquare roots, np�p(p+1)=2 � np divisions and (n�p)p(p+1)=2+(p�1)p(p+1)=6 � np2=2 multiplicationsand subtractions. In deriving these operation counts, we used p = q, since the matrix A must be symmetricfor the Cholesky factorization to be applicable. Moreover, the Cholesky factor L has lower bandwidth p.Thus, as for the general case, the Cholesky factorization of a band matrix requires about half as manyarithmetic operations and about half as much storage as the LU factorization, since packed storage can alsobe used for the Cholesky factor L.If partial pivoting is used in the LU factorization of A, then the upper bandwidth of U may increase top + q. The associated matrix L is a permuted version of a lower triangular matrix with lower bandwidthp. Both factors L and U can be stored in packed format in a (1 + 2p+ q) � n array. The operation countfor the LU factorization, forward elimination and back solve is the same as though A were a banded matrixwith upper bandwidth p + q and lower bandwidth p. Thus, if p > q, both computational work and storagecan be saved by factoring AT instead of A and using the LU factors of AT to solve Ax = b.If complete pivoting is used in the LU factorization of A, then L and U may �ll-in so much that there islittle advantage to using a band solver.Consequently, it is advantageous not to pivot when factoring a band matrix, provided this does not leadto an unacceptable growth in rounding errors. As noted in x2.5, it is not necessary to pivot for numericalstability if A is complex Hermitian positive-de�nite, real symmetric positive-de�nite or column-diagonally-dominant. If pivoting is required, it is advantageous to use partial, rather than complete, pivoting, againprovided this does not lead to an unacceptable growth in rounding errors.Extending GE to take advantage of the zeros in a general sparse matrix is considerably more complicatedthan for banded matrices. The di�culty is that, when row k of Ak�1 is multiplied by mik and added to rowi of Ak�1 to eliminate a(k�1)ik in stage k of GE, as described in x2.1, some zero elements in row i of Ak�1 maybecome nonzero in the resulting row i of Ak. These elements are said to �ll in and are collectively referredto as �ll-in or �ll.However, pivoting can often greatly reduce the amount of �ll-in. To see how this comes about, the20

interested reader may wish to work through an example with the arrow-head matrixA = 0BBBBBBBB@ 5 1 1 1 11 1 0 0 01 0 1 0 01 0 0 1 01 0 0 0 1 1CCCCCCCCASince A is a real symmetric positive-de�nite matrix, there is no need to pivot for numerical stability. Itis easy to see that the Cholesky and LU factors of A completely �ll in. Interchanging the �rst and lastrows and the �rst and last columns of A corresponds to forming the permuted matrix B = PAPT , whereP = I � [1; 0; 0; 0;�1]T[1; 0; 0; 0;�1] is a permutation matrix. Since B is also a real symmetric positive-de�nite matrix, there is no need to pivot for numerical stability when factoring B. However, in this case,the Cholesky and LU factors of B su�er no �ll in at all. This small example can be generalized easily toarbitrarily large arrow-head matrices having the similar properties that the LU factors of A completely �ll-inwhile those of the permuted matrix B = PAPT su�er no �ll-in at all.If we use an appropriate sparse-matrix data structure to store only the nonzeros elements of a sparsematrix A and its LU factors, then reducing the �ll-in reduces both the storage needed for the LU factorsand the computational work required to calculate them. It also reduces the computational work requiredfor forward elimination and back substitution, since the methods shown in Table 2 and 3 can be modi�edeasily so that they use the nonzero elements in L and U only, thereby avoiding multiplications by zero andthe associated subtractions.Therefore, the goal in a sparse LU or Cholesky factorization is to re-order the rows and columns of A toreduce the amount of �ll-in. If we need to pivot to ensure numerical stability, then this might con
ict withpivoting to reduce �ll-in. Unfortunately, even without this complication, �nding the optimal re-ordering tominimize the �ll-in is computationally too expensive to be feasible in general. There are, though, many goodheuristic methods to re-order the rows and columns of A that greatly reduces the �ll-in and computationalwork in many important cases. The reader seeking a more complete description of sparse matrix factorizationsshould consult a text on this topic, such as (Du�, Erisman and Reid 1986) or (George and Liu 1981).We end this subsection with an example illustrating the importance of exploiting the zeros in a sparsematrix A. Consider the linear system derived in x11.3.2 by discretizing Poisson's equation on an m�m grid.A is an n�n symmetric positive-de�nite matrix with n = m2 and 5m2� 4m � 5m2 = 5n nonzero elements,out of a total of n2 elements in A. So, ifm is large, A is very sparse. Moreover, if we use the natural orderingfor the equations and variables in the system, then A, as shown in x11.3.2, is a banded matrix with lowerand upper bandwidth m = pn.The computational work and storage required to solve this linear system are shown in Table 5. Weconsider three cases: (1) dense, the zeros in A are not exploited at all; (2) banded, we use a band solverthat exploits the band structure of A; (3) sparse, we use a general sparse solver together with the the nesteddissection ordering (see (George and Liu 1981)) for the equations and variables in the system. The columns21

labeled factor and solve, respectively, give the approximate number of
ops needed to compute the Choleskyfactorization of the matrix A and to solve the linear system given the factors. The columns labeled storeA and store L, respectively, give the approximate number of storage locations needed to store A and itsCholesky factor L.2.8 Rounding Errors, Condition Numbers and Error BoundsIn this subsection, we consider the e�ects of rounding errors in solving Ax = b. In doing so, we use vectorand matrix norms extensively. Therefore, we recommend that, if you are not acquainted with norms, youfamiliarize yourself with this topic before reading this subsection. Most introductory numerical methodstexts or advanced books on numerical linear algebra contain a section on vector and matrix norms.The analysis of the e�ects of rounding errors in solving Ax = b usually proceeds in two stages. First weestablish that the computed solution ~x is the exact solution of a perturbed system(A+ E)~x = b+ r (14)with bounds on the size of E and r. Then we use (14) together with bounds on the size of A and A�1 tobound the error x� ~x.The �rst step is called a backward error analysis, since it casts the error in the solution back onto theproblem and allows us to relate the e�ects of rounding errors in the computed solution ~x to other errors inthe problem, such as measurement errors in determining the coe�cients of A and b. Another advantage ofproceeding in this two stage fashion is that, if ~x is not su�ciently accurate, it allows us to determine whetherthis is because the numerical method is faulty or whether the problem itself is unstable.Throughout this section we assume that A is an n � n nonsingular matrix and nu < 0:1, where u is therelative roundo� error bound for the machine arithmetic used in the computation (see x1.2).If we use Gaussian elimination (GE) with either partial or complete pivoting together with forwardelimination and back substitution to solve Ax = b, then it can be shown that the computed solution ~xsatis�es (14) with r = 0 and kEk1 � 8n3
kAk1u+O(u2); (15)where
 = maxi;j;k ja(k)ij jkAk1is the growth factor and Ak = [a(k)ij] for k = 0; : : : ; n � 1 are the intermediate reduced matrices producedduring the GE process (see x2.1 and x2.5). It can be shown that
 � 2n�1 for GE with partial pivotingand
 �pn(2 � 31=2 � 41=3 � � �n1=(n�1))� 2n�1 for GE with complete pivoting. Moreover, the former upperbound can be achieved. However, for GE with both partial and complete pivoting, the actual error incurredis usually much smaller than the bound (15) suggests: it is typically the case that kEk1 / kAk1u. Thus,GE with partial pivoting usually produces a computed solution with a small backward error, but, unlike GEwith complete pivoting, there is no guarantee that this will be the case.22

If A is column diagonally dominant, then applying GE without pivoting to solve Ax = b is e�ectively thesame as applying GE with partial pivoting to solve this system. Therefore, all the remarks above for GEwith partial pivoting apply in this special case.If we use the Cholesky factorization without pivoting together with forward elimination and back sub-stitution to solve Ax = b, where A is a symmetric positive-de�nite matrix, then it can be shown that thecomputed solution ~x satis�es (14) with r = 0 andkEk2 � cnkAk2u (16)where cn is a constant of moderate size that depends on n only. Thus the Cholesky factorization withoutpivoting produces a solution with a small backward error in all cases.Similar bounds on the backward error for other factorizations and matrices with special properties, suchas symmetric or band matrices, can be found in advanced texts, such as (Golub and Van Loan 1989).It is also worth noting that we can easily compute an a posteriori backward error estimate of the form(14) with E = 0 by calculating the residual r = A~x � b after computing ~x. Typically krk1 / kbk1u if GEwith partial or complete pivoting or the Cholesky factorization is used to compute ~x.Now we use (14) together with bounds on the size of A and A�1 to bound the error x � ~x. To do so,we �rst introduce the condition number �(A) = kAkkA�1k associated with the problem Ax = b. Although�(A) clearly depends on the matrix norm used, it is roughly of the same magnitude for all the commonlyused norms, and it is the magnitude only of �(A) that is important here. Moreover, for the result below tohold, we require only that the matrix norm associated with �(A) is sub-multiplicative (i.e., kABk � kAkkBkfor all A and B 2 Cn�n) and that it is consistent with the vector norm used (i.e., kAvk � kAkkvk for allA 2 Cn�n and v 2 Cn). It follows immediately from these two properties that �(A) � 1 for all A 2 Cn�n .More importantly, it can be shown that, if kEk=kAk � �, krk=kbk � � and ��(A) = r < 1, then A + E isnonsingular and kx� ~xkkxk � 2�1� r�(A): (17)Moreover, for any given A, there are some b, E and r for which kx� ~xk=kxk is as large as the right side of(17) suggests it might be, although this is not the case for all b, E and r. Thus we see that, if �(A) is not toolarge, then small relative errors kEk=kAk and krk=kbk ensure a small relative kx� ~xk=kxk, so the problem iswell-conditioned. On the other hand, if �(A) is large, then kx� ~xk=kxkmight be large even though kEk=kAkand krk=kbk are small, so the problem is ill-conditioned. Thus, as the name suggests, the condition number�(A) gives a good measure of the conditioning | or stability | of the problem Ax = b.Combining the discussion above with the earlier observation that typically krk1 / kbk1u if GE withpartial or complete pivoting or the Cholesky factorization is used to compute ~x, we get the general rule ofthumb that, if u � 10�d and �1 = kAk1kA�1k1 � 10q, then ~x contains about d� q correct digits.Many routines for solving linear systems provide an estimate of �(A), although most do not computekAkkA�1k directly, since they do not compute A�1.There are many other useful inequalities of the form (17). The interested reader should consult an23

advanced text, such as (Golub and Van Loan 1989).2.9 Iterative ImprovementThe basis of iterative improvement is the observation that, if x1 is an approximate solution to Ax = b, wecan form the residual r1 = b�Ax1, which satis�es r1 = A(x�x1), and then solve Ad1 = r1 for the di�erenced1 = x � x1 and �nally compute the improved solution x2 = x1 + d1. In exact arithmetic, x2 = x, but, in
oating-point arithmetic, x2 6= x normally. So we can repeat the process using x2 in place of x1 to formanother improved solution x3, and so on. Moreover, if we have factored A to compute x1, then, as notedin x2.3 and x2.5, there is relatively little extra computational work required to compute a few iterations ofiterative improvement.The catch here is that, as noted in x2.8, typically krk1 / kbk1u if GE with partial or complete pivotingor the Cholesky factorization is used to compute ~x. So, if we compute r1 = b� Ax1 in the same precision,then r1 will contain few if any correct digits. Consequently, using it in iterative improvement usually doesnot lead to a reduction of the error in x2, although it may lead to a smaller E in (14) in some cases.However, if we compute rk = b�Axk in double precision for k = 1; 2; : : :, then iterative improvement may bequite e�ective. Roughly speaking, if the relative roundo� error bound u � 10�d and the condition number�(A) = kAkkA�1k � 10q, then after k iterations of iterative improvement the computed solution xk typicallyhas about min(d; k(d�q)) correct digits. Thus, if �(A) is large, but not too large, and, as a result, the initialcomputed solution x1 is inaccurate, but not completely wrong, then iterative improvement can be used toobtain almost full single-precision accuracy in the solution.The discussion above can be made more rigorous by noting that iterative improvement is a basic iterativemethod of the form (19){(20) for solving Ax = b and applying the analysis in x3.1.3 The Iterative Solution of Linear Algebraic SystemsIn this section, we consider iterative methods for the numerical solution of linear algebraic systems of theform Ax = b, where A 2 Rn�n (or Cn�n) is a nonsingular matrix, x and b 2 Rn (or Cn). Such schemescompute a sequence of approximations x1; x2; : : : to x in the hope that xk ! x as k !1. Direct methodsfor solving Ax = b are considered in x2.Iterative methods are most frequently used when A is large and sparse, but not banded with a smallbandwidth. Such matrices arise frequently in the numerical solution of partial di�erential equations (PDEs).See, for example, the matrix shown in x11.3.2 that is associated with the standard 5-point di�erence schemefor Poisson's equation. In many such cases, iterative methods are more e�cient than direct methods forsolving Ax = b: they usually use far less storage and often require signi�cantly less computational work aswell.We discuss basic iterative methods in x3.1 and the conjugate gradient acceleration of these schemes inx3.2. A more complete description and analysis of these methods and other iterative schemes is provided in(Axelsson 1994; Golub and Van Loan 1989; Hageman and Young 1981; Young 1971; Varga 1962). See x13 for24

a discussion of sources of high-quality numerical software for solving systems of linear algebraic equations.We discuss multigrid methods in x11.8, because these iterative schemes are so closely tied to the PDEthat gives rise to the linear system Ax = b to which they are applied.3.1 Basic Iterative MethodsMany iterative methods for solving Ax = b are based on splitting the matrix A into two parts, M and N ,such that A = M � N with M nonsingular. M is frequently called the splitting matrix. Starting from aninitial guess x0 for x, we compute x1; x2; : : : recursively fromMxk+1 = Nxk + b: (18)We call such a scheme a basic iterative method, but it is often also referred to as a linear stationary methodof the �rst degree.Since N = M �A, (18) can be rewritten asMxk+1 = (M �A)xk + b = Mxk + (b �Axk)which is equivalent to Mdk = rk (19)xk+1 = xk + dk (20)where rk = b�Axk is the residual at iteration k. Although (18) and (19){(20) are mathematically equivalent,it might be computationally more e�ective to implement a method in one form than the other.Clearly, for either (18) or (19){(20) to be e�ective,(1) it must be much easier to solve systems with M than with A, and(2) the iterates x1; x2; : : : generated by (18) or (19){(20) must converge quickly to x, the solution ofAx = b.To address point (2), �rst note that, since Ax = b and A = M � N , Mx = Nx + b. So, if the sequencex1; x2; : : : converges, it must converge to x. To determine whether the sequence x1; x2; : : : converges and, ifso, how fast, subtract (18) from Mx = Nx+ b and note that the error ek = x � xk satis�es the recurrenceMek+1 = Nek, or equivalently ek+1 = Gek, whereG =M�1N = I �M�1Ais the associated iteration matrix . So ek = Gke0: (21)Using (21), we can show that, starting from any initial guess x0, the sequence x1; x2; : : : generated by (18)25

converges to x if and only if �(G) < 1, where�(G) = maxfj�j : � an eigenvalue of Ggis the spectral radius of G. Moreover, �(G) is the \asymptotically average" amount by which the error ekdecreases at each iteration. Consequently, (log �)=(log�(G)) is a rough estimate of the number of iterationsof (18) required to reduce the initial error e0 by a factor �. Thus, it is common to de�neR(G) = � log �(G) (22)to be the rate of convergence (sometimes called the asymptotic rate of convergence or the asymptotic averagerate of convergence) of the iteration (18).One useful general result is that, if A =M �N is Hermitian positive-de�nite and if the Hermitian matrixMH +N is positive-de�nite too, then �(G) < 1 and the associated iteration (18) converges.Possibly the simplest iterative scheme is the RF method (a variant of Richardson's method) for whichM = I and N = I � A, whence (18) reduces toxk+1 = xk + rkwhere rk = b � Axk is the residual at iteration k. From the general discussion above, it follows that thisscheme converges if and only if �(I�A) < 1. Because of this severe constraint on convergence, this scheme isnot often e�ective in its own right, but it can be used productively as the basis for polynomial acceleration,as discussed in x3.2.We describe the Jacobi, Gauss-Seidel, SOR and SSOR methods next, and then consider their convergence.In describing them, we use the notation A = D�L�U , where D is assumed to be nonsingular and consistsof the diagonal elements of A for the point variant of each method or the diagonal submatrices of A forthe block variant. L and U are the strictly lower and upper triangular parts of A, respectively, either pointor block, as the case may be. Typically, the block variant of each method converges faster than the pointversion, but requires more computational work per iteration. Thus, it is usually not clear without additionalanalysis which variant will be more e�ective.The Jacobi iteration takes MJ = D and NJ = L+ U , resulting in the recurrenceDxk+1 = (L + U)xk + b: (23)The associated iteration matrix is GJ = D�1(L+ U). The Gauss-Seidel iteration takes MGS = D � L andNGS = U , resulting in the recurrence (D � L)xk+1 = Uxk + b: (24)The associated iteration matrix is GGS = (D � L)�1U . Although (24) may at �rst appear a little more26

complicated than (23), it is in fact easier to implement in practice on a sequential machine, since one canoverwrite xk when computing xk+1 in (24), whereas this is generally not possible for (23). However, for theGauss-Seidel iteration, the jth component of xk+1 might depend on the ith component of xk+1 for i < j,because of the factor L on the left side of (24). This often inhibits vectorization and parallelization ofthe Gauss-Seidel iteration. Note that the Jacobi iteration has no such dependence, and so might be moree�ective on a vector or parallel machine.Relaxation methods for Ax = b can be written in the formxk+1 = xk + !(x̂k+1 � xk) (25)where ! 6= 0 is the relaxation parameter and x̂k+1 is computed from xk by some other iterative method.The best known of these schemes is successive over relaxation (SOR) for whichDx̂k+1 = Lxk+1 + Uxk + b: (26)Equations (25) and (26) can be combined to give� 1!D � L�xk+1 = �1� !! D + U�xk + b (27)which is an iteration of the form (18) with MSOR(!) = 1!D � L and NSOR(!) = 1�!! D + U . It followsimmediately from (24) and (27) that the SOR iteration reduces to the Gauss-Seidel method if ! = 1.Moreover, because of the similarity between (24) and (27), the SOR iteration shares with the Gauss-Seidelmethod the implementation advantages and disadvantages noted above.Over relaxation corresponds to choosing ! > 1 in (25) or (27), while under relaxation corresponds tochoosing ! 2 (0; 1). Historically, ! > 1 was used in SOR for the solution of elliptic PDEs | hence the namesuccessive over relaxation | but under relaxation is more e�ective for some problems. See for example(Young 1971) for a more complete discussion.The symmetric SOR (SSOR) method takes one half step of SOR with the equations solved in the standardorder followed by one half step of SOR with the equations solved in the reverse order:� 1!D � L�xk+1=2 = �1� !! D + U�xk + b (28)� 1!D � U�xk+1 = �1� !! D + L�xk+1=2 + b: (29)These two half steps can be combined into one step of the form (18) withMSSOR(!) = !2� ! � 1!D � L�D�1� 1!D � U�and NSSOR(!) = (! � 1)2!(2 � !)D + 1� !2� ! (L+ U) + !2� !LD�1U:27

Note that, if A = D � L � U is a real, symmetric, positive-de�nite matrix and ! 2 (0; 2), then MSSOR(!)is a real, symmetric, positive-de�nite matrix too, since, in this case, !=(2 � !) > 0, both D and D�1 aresymmetric positive-de�nite and � 1!D � L� = � 1!D � U�T is nonsingular. This property of MSSOR(!) playsan important role in the e�ective acceleration of the SSOR iteration, as discussed in x3.2.We now consider the convergence of the Jacobi, Gauss-Seidel, SOR and SSOR methods. It is easy toshow that the Jacobi iteration (23) converges if A is either row or column diagonally dominant. It can alsobe shown that the Gauss-Seidel iteration (24) converges if A is Hermitian positive-de�nite. Furthermore, ifA is consistently ordered , a property enjoyed by a large class of matrices, including many that arise fromthe discretization of PDEs (see for example (Young 1971) for details), it can be shown that the Gauss-Seideliteration converges twice as fast as the Jacobi iteration if either one converges.The iteration matrix associated with the SOR iteration (27) isGSOR(!) = (MSOR(!))�1NSOR(!) = � 1!D � L��1�1� !! D + U� :For any nonsingular A with nonsingularD, it can be shown that �(GSOR(!)) � j!�1jwith equality possibleif and only if all eigenvalues of GSOR(!) have magnitude j! � 1j. So, if ! 2 R, as is normally the case, anecessary condition for the convergence of SOR is ! 2 (0; 2). It can also be shown that, if A is Hermitian,D is positive-de�nite and ! 2 R, then the SOR iteration converges if and only if A is positive-de�nite and! 2 (0; 2). Furthermore, if A is consistently ordered and all the eigenvalues of GJ = D�1(L + U) are realand lie in (�1; 1), then the optimal choice of the SOR parameter ! is!0 = 21 +p1� (�(GJ))2 2 (1; 2)and �(GSOR(!0)) = !0 � 1 = �(GJ)1 +p1� (�(GJ))2!2 = min! �(GSOR(!))< �(G1) = �(GGS) = (�(GJ))2 < �(GJ): (30)(Recall GJ and GGS are the iteration matrices associated with the Jacobi and Gauss-Seidel iterations,respectively, de�ned above.) In many cases, though, it is not convenient to calculate the optimal !. Hagemanand Young (1981) discuss heuristics for choosing a \good" !.If A is a real, symmetric, positive-de�nite matrix, then the SSOR iteration (28){(29) converges for any! 2 (0; 2). Moreover, determining the precise value of the optimal ! is not nearly as critical for SSOR as itis for SOR, since, unlike SOR, the rate of convergence of SSOR is relatively insensitive to the choice of !.However, for SSOR to be e�ective, �(D�1LD�1U) � 1=4;should be satis�ed | or nearly so. If this is the case, then a good value for ! is!1 = 21 +p2(1� �(GJ))28

and �(GSSOR(!1)) � 1�q1��(GJ)21 +q1��(GJ)2 (31)where GSSOR(!) = (MSSOR(!))�1NSSOR(!) is the SSOR iteration matrix.For a large class of problems, including many that arise from the discretization of elliptic PDEs, �(GJ) =1 � � for some � satisfying 0 < �� 1. For such problems, if (30) is valid and (31) holds with = in place of�, then �(GJ) = 1� �;�(GGS) = (�(GJ))2 � 1� 2�;�(GSSOR(!1)) � 1� 2p�=2;�(GSOR(!0)) � 1� 2p2�;whence the rates of convergence for these schemes areR(GJ) � �;R(GGS) = 2R(GJ) � 2�;R(GSSOR(!1)) � 2p�=2;R(GSOR(!0)) � 2p2� � 2R(GSSOR(!1));showing that the Gauss-Seidel iteration converges twice as fast as the Jacobi iteration, the SOR iterationconverges about twice as fast as the SSOR iteration and the SOR and SSOR iterations converge much fasterthan either the Gauss-Seidel or Jacobi iteration. However, the SSOR iteration often has the advantage, notnormally shared by the SOR method, that it can be accelerated e�ectively, as discussed in x3.2.Another class of basic iterative methods is based on incomplete factorizations. For brevity, we describeonly the subclass of incomplete Cholesky factorizations (ICFs) here; the other schemes are similar. See anadvanced text, such as (Axelsson 1994), for details.For an ICF to be e�ective, A should be symmetric positive-de�nite (or nearly so), large and sparse. If Ais banded, then the band containing the nonzeros should also be sparse, as is the case for the discretizationof Poisson's equation shown in x11.3.2. The general idea behind the ICFs is to compute a lower triangularmatrix LICF such that MICF = LICFLTICF is in some sense close to A and LICF is much sparser than L,the true Cholesky factor of A. Then employ the iteration (19){(20) to compute a sequence of approximationsx1; x2; : : : to x, the solution of Ax = b. Note that (19) can be solved e�ciently by forward elimination andback substitution as described in x2.4 and x2.2, respectively, since the factorization MICF = LICFLTICF isknown. This scheme, or an accelerated variant of it, is often very e�ective if it converges rapidly and LICFis much sparser than L.A simple, but often e�ective, way of computing LICF = [lij] is to apply the Cholesky factorization29

described in Table 4, but to set lij = 0 whenever aij = 0, where A = [aij]. Thus, LICF has the same sparsitypattern as the lower triangular part of A, whereas the true Cholesky factor L of A might su�er signi�cant�llin, as described in x2.7. Unfortunately, this simple ICF is not always stable.As noted in x2.9, iterative improvement is a basic iterative method of this form, although, for iterativeimprovement, the error N = M � A is due entirely to rounding errors, whereas, for the incomplete factor-izations considered here, the error N = M �A is typically also due to dropping elements from the factors ofM to reduce �llin.For a more complete discussion of ICFs and other incomplete factorizations, their convergence properties,and their potential for acceleration, see an advanced text such as (Axelsson 1994).We end this section with a brief discussion of alternating direction implicit (ADI) methods. A typicalexample of a scheme of this class is the Peaceman-Rachford method(H + �nI)xn+1=2 = b� (V � �nI)xn (32)(V + �0nI)xn+1 = b� (H � �0nI)xn+1=2 (33)where A = H + V , �n > 0, �0n > 0 and A, H and V are real, symmetric, positive-de�nite matrices. Formany problems, it is possible to choose H, V and f�n; �0ng, so that the iteration (32){(33) converges rapidlyand it is much cheaper to solve (32) and (33) than it is to solve Ax = b. For example, for the standard5-point discretization of a separable two-dimensional elliptic PDE, H and V can be chosen to be essentiallytridiagonal and the rate of convergence of (32){(33) is proportional to 1= logh�1, where h is the meshsizeused in the discretization. In contrast, the rate of convergence for SOR with the optimal ! is proportionalto h. Note h � 1= logh�1 for 0 < h � 1, supporting the empirical evidence that ADI schemes convergemuch more rapidly than SOR for many problems. However, ADI schemes are not applicable to as wide aclass of problems as SOR is.For a more complete discussion of ADI schemes, see an advanced text such as (Varga 1962) or (Young1971).3.2 The Conjugate Gradient MethodThe conjugate gradient (CG) method for the solution of the linear system Ax = b is a member of a broaderclass of methods often called polynomial acceleration techniques or Krylov subspace methods. (The basis ofthese names is explained below.) Although many schemes in this broader class are very useful in practice, wediscuss CG only here, but note that several of these schemes, including Chebyshev acceleration and GMRES,apply to more general problems than CG. The interested reader should consult an advanced text such as(Axelsson 1994; Golub and Van Loan 1989; Hageman and Young 1981) for a more complete discussion ofpolynomial acceleration techniques and Krylov subspace methods. The close relationship between CG andthe Lanzcos method is discussed in (Golub and Van Loan 1989).The preconditioned conjugate gradient (PCG) method can be viewed either as an acceleration techniquefor the basic iterative method (18) or as a CG applied to the preconditioned system M�1Ax = M�1b, where30

the splitting matrix M of (18) is typically called a preconditioning matrix in this context. We adopt thesecond point of view in this subsection.An instructive way of deriving PCG is to exploit its relationship to the minimization technique of the samename described in x7.5. To this end, assume that the basic iterative method (18) is symmetrizable. That is,there exists a real, nonsingular matrixW such that S = WM�1AW�1 is a real, symmetric, positive-de�nite(SPD) matrix. Consider the quadratic functional F (y) = 12yTSy � yT b̂, where b̂ = WM�1b and y 2 Rn.It is easy to show that the unique minimum of F (y) is the solution x̂ of Sx̂ = b̂. It follows immediatelyfrom the relations for S and b̂ given above that x = W�1x̂ is the solution of both the preconditioned systemM�1Ax = M�1b and the original system Ax = b. If we take M = W = I, then S = W (M�1A)W�1 = Aand, assuming A is a real SPD matrix, PCG reduces to the standard (unpreconditioned) CG method.It is easy to show that, if both A and M are real SPD matrices, then M�1A is symmetrizable. Moreover,many important practical problems, such as the numerical solution of self-adjoint elliptic PDEs, give riseto matrices A that are real SPD. Furthermore, if A is a real SPD matrix, then the splitting matrix Massociated with the RF, Jacobi and SSOR (with ! 2 (0; 2)) iterations is a real SPD matrix too, as is theM given by an incomplete Cholesky factorization, provided it exists. Hence, these basic iterative methodsare symmetrizable in this case and so PCG can be used to accelerate their convergence. In contrast, theSOR iteration with the optimal ! is generally not symmetrizable. So PCG is not even applicable and moregeneral Krylov subspace methods normally do not accelerate its convergence.We assume throughout the rest of this subsection that A and M are real SPD matrices, because this casearises most frequently in practice and also because it simpli�es the discussion below. Using this assumptionand applying several mathematical identities, we get the computationally e�ective variant of PCG shown inTable 6. Note that W does not appear explicitly in this algorithm. Also note that, if we choose M = I, then~rk = rk and the PCG method reduces to the unpreconditioned CG method for Ax = b.Many other mathematically equivalent forms of PCG exist. Moreover, as noted above, a more generalform of PCG can be used if M�1A is symmetrizable, without either A or M being a real SPD matrix. Fora discussion of the points, see an advanced text such as (Hageman and Young 1981).Before considering the convergence of PCG, we introduce some notation. The energy norm of a vectory 2 Rn with respect to a real SPD matrix B is kykB1=2 = pyTBy. The Krylov subspace of degree k � 1generated by a vector v and a matrix W is Kk(v;W) = spanfv;Wv; : : : ;W k�1vg.It is easy to show that the rk that occurs in Table 6 is the residual rk = b � Axk associated with xkfor the system Ax = b and that ~rk = M�1rk = M�1b � M�1Axk is the residual associated with xk forthe preconditioned system M�1Ax = M�1b. Let ek = x � xk be the error associated with xk. It can beshown that the xk generated by PCG is a member of the shifted Krylov subspace x0 + Kk(~r0;M�1A) �fx0+ v : v 2 Kk(~r0;M�1A)g. Hence, PCG is in the broader class of Krylov subspace methods characterizedby this property. Moreover, it can be shown that the xk generated by PCG is the unique member ofx0 +Kk(~r0;M�1A) that minimizes the energy norm of the error kekkA1=2 =qeTkAek over all vectors of theform e0k = x� x0k, where x0k is any other member of x0 + Kk(~r0;M�1A). Equivalently, ek = P �k (M�1A)e0,where P �k (z) is the polynomial that minimizes kPk(M�1A)e0kA1=2 over all polynomials Pk(z) of degree k31

that satisfy Pk(0) = 1. This result is the basis of the characterization that PCG is the optimal polynomialacceleration scheme for the basic iterative method (18).In passing, note that the iterate xk generated by the basic iteration (18) is in the shifted Krylov subspacex0 + Kk(~r0;M�1A) also and that, by (21), the associated error satis�es ek = (I �M�1A)ke0. So (18) isa Krylov subspace method too and its error satis�es the polynomial relation described above with Pk(z) =(1�z)k. Thus, the associated PCG method is guaranteed to accelerate the convergence of the basic iteration(18) | at least when the errors are measured in the energy norm.The characterization of its error discussed above can be very useful in understanding the performanceof PCG. For example, it can be used to prove the �nite termination property of PCG. That is, if M�1Ahas m distinct eigenvalues, then xm = x, the exact solution of Ax = b. Since M�1A has n eigenvalues,m � n always and m� n sometimes. We caution the reader, though, that the argument used to prove thisproperty of PCG assumes exact arithmetic. In
oating-point arithmetic, we rarely get em = 0, although wefrequently get e ~m is small for some ~m possibly a little larger than m.The proof of the �nite termination property can be extended easily to explain the rapid convergence ofPCG when the eigenvalues of M�1A fall into a few small clusters. So a preconditioner M is good if theeigenvalues of M�1A are much more closely clustered than those of the unpreconditioned matrix A.Because of the �nite termination property, both CG and PCG can be considered direct methods. However,both are frequently used as iterative schemes, with the iteration terminated long before em = 0. Therefore,it is important to understand how the error decreases with k, the iteration count. To this end, �rst notethat the characterization of the error ensures that kek+1kA1=2 � kekkA1=2 with equality only if ek = 0. Thatis, PCG is a descent method in the sense that some norm of the error decreases on every iteration. Not alliterative methods enjoy this useful property.The characterization of the error can also be used to show thatkekkA1=2 � 2 p�n=�1 � 1p�n=�1 + 1!k ke0kA1=2 (34)where �n and �1 are the largest and smallest eigenvalues, respectively, of M�1A. (Note �n and �1 2 R and�n � �1 > 0 since M�1A is symmetrizable.) It follows easily from the de�nition of the energy norm and(34) that kekk2 � 2p�2(A) p�n=�1 � 1p�n=�1 + 1!k ke0k2 (35)where �2(A) = kAk2kA�1k2 is the condition number of A in the 2-norm (see x2.8). Although (35) is generallynot as tight as (34), it may be more relevant to the practitioner. It follows from either (34) or (35) that,in this context, a preconditioner M is good if �n=�1 is (much) closer to 1 than is the ratio of the largest tosmallest eigenvalues of A.Unlike many other iterative methods, such as SOR, PCG does not require an estimate of any parameters,although some stopping procedures for PCG require an estimate of the extreme eigenvalues of A or M�1A.See an advanced text such as (Axelsson 1994; Golub and Van Loan 1989; Hageman and Young 1981) for32

details.4 Over-Determined and Under-Determined Linear SystemsA linear system Ax = b, with A 2 Rm�n and b 2 Rm given and x 2 Rn unknown, is called over-determinedif m > n. Such a system typically has no solution. However, there is always an x that minimizes kb�Axk2.Such an x is called a least squares solution to the over-determined linear system Ax = b. Moreover, ifrank(A) = n, then the least squares solution is unique.A linear system Ax = b, as above, is called under-determined if m < n. Such a system typically hasin�nitely many solutions. If Ax = b has a solution, then there is an x of minimum Euclidean norm, kxk2,that satis�es Ax = b. Such an x is called a least squares solution to the under-determined linear systemAx = b. It can be shown that, if rank(A) = m, then the least squares solution is unique.In the following subsections, we describe methods to compute the least squares solution of over-determinedand under-determined linear systems, assuming that the matrix A has full rank, i.e., rank(A) = min(m;n).For the more general case of rank(A) < min(m;n), see an advanced text such as (Golub and Van Loan 1989).4.1 The Normal Equations for Over-Determined Linear SystemsLet Ax = b be an over-determined linear system with m equations in n unknowns and with rank(A) = n.The x that minimizes kb�Axk2 satis�es@(b �Ax)T (b�Ax)@xj = 0 for j = 1; : : : ; n.These relations can be rewritten in matrix form as AT (b �Ax) = 0 or equivalentlyATAx = AT b (36)which is called the system of normal equations for the over-determined linear system Ax = b. It can beshown that the matrix ATA is symmetric and positive de�nite if rank(A) = n. So the system (36) has aunique solution, which is the least squares solution to Ax = b.Note that the matrix ATA is n � n. Computing the matrix ATA requires about mn2=2
ops (
oating-point operations), while computing AT b requires about mn
ops, and solving (36) requires about n3=6
ops,assuming the Cholesky factorization (see x2.6) is used.The condition number of the matrix ATA is often large. More speci�cally, it can be shown that, if Ais square and nonsingular, then the condition number of ATA is the square of the condition number of A(see x2.8). As a result, the approach described above of forming and solving the normal equations (36) oftenleads to a serious loss of accuracy. Therefore, in x4.4 and x4.7, we discuss more stable alternatives for solvingleast squares problems. 33

4.2 The Normal Equations for Under-Determined Linear SystemsLet Ax = b be an under-determined linear system with m equations in n unknowns and with rank(A) = m.It can be shown that the least squares solution x to Ax = b can be written in the form ATy for some y 2 Rmwhich satis�es AAT y = b (37)This is a linear system of size m�m, called the system of normal equations for the under-determined linearsystem Ax = b. It can be shown that the matrix AAT is symmetric and positive de�nite if rank(A) = m.So the system (37) has a unique solution. The unique least squares solution to Ax = b is x = ATy.Computing the matrix AAT requires about nm2=2
ops, while computing AT y requires about mn
ops,and solving (37) requires about m3=6
ops, assuming the Cholesky factorization (see x2.6) is used.As is the case for over-determined systems, the method of forming and solving the normal equations (37)to compute the least squares solution to Ax = b is numerically unstable in some cases. In x4.5 and x4.8, wediscuss more stable alternatives.4.3 Householder Transformations and the QR FactorizationAn orthogonal transformation is a linear change of variables that preserves the length of vectors in theEuclidean norm. Examples are a rotation about an axis or a re
ection across a plane. The following is anexample of an orthogonal transformation y = (y1; y2) to x = (x1; x2):x1 = 0:6y1 + 0:8y2x2 = 0:8y1 � 0:6y2It is easy to see that kxk2 = kyk2.An orthogonal matrix is a m � n matrix Q with the property QTQ = I. Note that, if (and only if) Qis square, i.e., m = n, the relation QTQ = I is equivalent to QQT = I and so QT = Q�1. An orthogonaltransformation of y to x can be written as x = Qy, where Q is an orthogonal matrix. In the above example,the corresponding orthogonal matrix is Q = 0@ 0:6 0:80:8 �0:6 1AIf Q is an orthogonal matrix, thenkxk22 = kQyk22 = (Qy)T (Qy) = yT (QTQ)y = yT y = kyk22;whence kxk2 = kyk2. That is, orthogonal transformations preserve the Euclidean norm of a vector. Thisproperty is exploited in the methods described below to solve least squares problems. Moreover, the numericalstability of these schemes is due at least in part to the related observation that orthogonal transformations34

do not magnify rounding error.A Householder transformation or Householder re
ection is an orthogonal matrix of the form H = I �2wwT , where kwk2 = 1. Note that, when H is 2�2, the e�ect ofH on a vector x is equivalent to re
ecting thevector x across the plane perpendicular to w and passing through the origin of x. A Householder re
ectioncan be used to transform a non-zero vector into one containing mainly zeros.An m � n matrix R = [rij] is right triangular if rij = 0 for i > j. Note that if (and only if) R is square,i.e., m = n, the terms right triangular and upper triangular are equivalent.Let A be an m � n matrix with m � n. The QR factorization of A expresses A as the product of anm � m orthogonal matrix Q and an m � n right triangular matrix R. It can be computed by a sequenceH1;H2; : : : ;Hn of Householder transformations to reduce A to right triangular form R. More speci�cally,this variant of QR factorization proceeds in n steps (or n � 1 if n = m). Starting with A0 = A, at step kfor k = 1; : : : ; n, Hk is applied to the partially processed matrix Ak�1 to zero components k + 1 to m ofcolumn k of Ak�1. Q = H1H2 � � �Hn and R = An, the last matrix to be computed. For the details of the QRfactorization algorithm using Householder transformations or other elementary orthogonal transformations,see (Hager 1988; Golub and Van Loan 1989).4.4 Using the QR Factorization to Solve Over-Determined Linear SystemsAssume A is an m � n matrix, with m � n and rank(A) = n. Let Ax = b be the linear system to be solved(in the least squares sense, if m > n). Let A = QR be the QR factorization of A, where Q is an m � morthogonal matrix and R is an m � n right triangular matrix. Note thatkAx� bk2 = kQRx� bk2 = kQ(Rx�QT b)k2 = kRx�QT bk2:Therefore, we can use the QR factorization of A to reduce the problem of solving Ax = b to that of solvingRx = QT b, a much simpler task. We solve the latter by �rst computing y = QT b. Let ŷ be the vectorconsisting of the �rst n components of y and R̂ the upper triangular matrix consisting of the �rst n rows ofR. Now solve R̂x = ŷ by back substitution (see x2.2). Then x is the least squares solution to both Rx = QT band Ax = b.It can be shown that the QR factorization algorithm applied to an n � n linear system requires about2n3=3
ops, which is about twice as many as the LU factorization needs. However, QR is a more stablemethod than LU and it requires no pivoting. The QR factorization algorithm applied to an m � n linearsystem requires about twice as many
ops as forming and solving the normal equations. However, QR is amore stable method than solving the normal equations.4.5 Using the QR Factorization to Solve Under-Determined Linear SystemsAssume A is an m � n matrix, with m < n and rank(A) = m. Let Ax = b be the linear system to besolved (in the least squares sense). Obtain the QR factorization of AT by the QR factorization algorithm:AT = QR, where Q is an n � n orthogonal matrix and R is an n � m right triangular matrix. Let R̂ be35

the upper triangular matrix consisting of the �rst m rows of R. Solve R̂T ŷ = b by back substitution (seex2.2) and let y = (ŷT ; 0; : : : ; 0)T 2 Rn. Note that y is the vector of minimal Euclidean norm that satis�esRTy = b. Finally compute x = Qy and note that x is the vector of minimal Euclidean norm that satis�esRTQTx = b or equivalently Ax = b. That is, x is the least squares solution to Ax = b.4.6 The Gram-Schmidt Orthogonalization AlgorithmThe Gram-Schmidt orthogonalization algorithm is an alternative to QR. The modi�ed version of the al-gorithm presented below is approximately twice as fast as QR and more stable than solving the normalequations.Assume A 2 Rm�n with m � n and A having n linearly independent columns fajgnj=1. The Gram-Schmidt algorithm applied to A generates an m � n orthogonal matrix Q and an n � n upper triangularmatrix R satisfying A = QR. In Table 7, we present a stable version of the algorithm, often called themodi�ed Gram-Schmidt algorithm.4.7 Using Gram-Schmidt to Solve Over-Determined Linear SystemsAssume A is an m�n matrix, with m � n and rank(A) = n. Let Ax = b be the linear system to be solved (inthe least squares sense, if non-square). The method for solving Ax = b using the Gram-Schmidt algorithmis similar to that described in x4.4 for the QR factorization.First compute the QR factorization of A by the Gram-Schmidt algorithm, i.e., A = QR, where Q is anm � n orthogonal matrix and R is an n � n upper triangular matrix. Next compute y = QT b and solveRx = y by back substitution (see x2.2). Then x is the least squares solution to Ax = b.It can be shown that, the Gram-Schmidt algorithm applied to an n�n linear system requires about n3=3
ops, which is about the same number of arithmetic operations as the LU factorization algorithm needsand about half of what the QR factorization algorithm requires. Moreover, the modi�ed Gram-Schmidtalgorithm, as presented in Table 7, is relatively stable. The Gram-Schmidt algorithm applied to an m � nlinear system requires about the same number of
ops as that needed to form and to solve the normalequations, but the Gram-Schmidt algorithm is more stable.4.8 Using Gram-Schmidt to Solve Under-Determined Linear SystemsAssume A is an m� n matrix, with m < n and rank(A) = m. Let Ax = b be the linear system to be solved(in the least squares sense). The method for solving Ax = b using the Gram-Schmidt algorithm is similar tothat described in x4.5 for the QR factorization.First compute the QR factorization of AT by the Gram-Schmidt algorithm: AT = QR, where Q is ann�m orthogonal matrix and R an m�m upper triangular matrix. Next solve RTy = b by back substitution(see x2.2) and set x = Qy. Then x is the least squares solution to Ax = b.36

5 Eigenvalues and Eigenvectors of MatricesGiven an n � n matrix A, � 2 C and x 2 Cn satisfying Ax = �x, � is called an eigenvalue of A and x iscalled an eigenvector of A.The relation Ax = �x can be rewritten as (A��I)x = 0, emphasizing that � is an eigenvalue of A if andonly if A��I is singular and that an eigenvector x is a non-trivial solution to (A��I)x = 0. It also followsthat the eigenvalues of A are the roots of det(A� �I) = 0, the characteristic equation of A. The polynomialp(�) = det(A � �I) of degree n is called the characteristic polynomial of A and plays an important role inthe theory of eigenvalues.An n�n matrixA has precisely n eigenvalues, not necessarily distinct. It also has at least one eigenvectorfor each distinct eigenvalue. Note also that, if x is an eigenvector of A, then so is any (scalar) multiple of xand the corresponding eigenvalue is the same. We often choose an eigenvector of norm one in some vectornorm, often the Euclidean norm, as the representative.Two matrices A and B are similar if A = W�1BW for some non-singular matrix W . The matrix W isoften referred to as similarity transformation. It is easy to see that, ifAx = �x, then B(Wx) = �(Wx). Thus,similar matrices have the same eigenvalues and their eigenvectors are related by the similarity transformationW . Similarity transformations are often used in numerical methods for eigenvalues and eigenvectors totransform a matrix A into another one B that has the same eigenvalues and related eigenvectors, but theeigenvalues and eigenvectors of B are in some sense easier to compute than those of A.Eigenvalues play a major role in the study of convergence of iterative methods (see x3). Eigenvalues andeigenvectors are also of great importance in understanding the stability and other fundamental properties ofmany physical systems.The matrix A is often large, sparse and symmetric. These properties can be exploited to great advantagein numerical schemes for calculating the eigenvalues and eigenvectors of A.A common approach to calculate the eigenvalues (and possibly the eigenvectors) of a matrix A consists oftwo stages. First, the matrix A is transformed to a similar but simpler matrix B, usually tridiagonal, if A issymmetric (or Hermitian), or Hessenberg, if A is non-symmetric (or non-Hermitian). Then, the eigenvalues(and possibly the eigenvectors) of B are calculated. An exception to this approach is the power method (seex5.1).A standard procedure for computing the eigenvectors of a matrix A is to calculate the eigenvalues �rstthen use them to compute the eigenvectors by inverse iteration (see x5.4). Again, an exception to thisapproach is the power method (see x5.1).Before describing numerical methods for the eigenvalue problem, we comment brie
y on the sensitivityof the eigenvalues and eigenvectors to perturbations in the matrix A, since a backward error analysis canoften show that the computed eigenvalues and eigenvectors are the exact eigenvalues and eigenvectors of aslightly perturbed matrix Â = A+E, where E is usually small relative to A. In general, if A is symmetric,its eigenvalues are well-conditioned with respect to small perturbations E. That is, the eigenvalues of Â andA are very close. This, though, is not always true of the eigenvectors of A, particularly if the associatedeigenvalue is a multiple eigenvalue or close to another eigenvalue of A. If A is non-symmetric, then both its37

eigenvalues and eigenvectors may be poorly conditioned with respect to small perturbations E. Therefore,the user of a computer package for calculating the eigenvalues of a matrix should be cautious about theaccuracy of the numerical results. For a further discussion of the conditioning of the eigenvalue problem, see(Wilkinson 1965).5.1 The Power MethodThe power method is used to calculate the eigenvalue of largest magnitude of a matrix A and the associatedeigenvector. Since matrix-vector products are the dominant computational work required by the powermethod, this scheme can exploit the sparsity of the matrix to great advantage.Let � be the eigenvalue of A of largest magnitude and let x be an associated eigenvector. Also let z0 be aninitial guess for some multiple of x. The power method, shown in Table 8, is an iterative scheme that generatesa sequence of approximations z1; z2; : : : to some multiple of x and another sequence of approximations�1; �2; : : : to �. In the scheme shown in Table 8, zk is normalized so that the sequence z1; z2; : : : convergesto an eigenvector x of A satisfying kxk1 = 1. Normalizations of this sort are frequently used in eigenvectorcalculations.The power method is guaranteed to converge if A has a single eigenvalue � of largest magnitude. The rateof convergence depends on j�2j=j�j, where �2 is the eigenvalue of A of next largest magnitude. With somemodi�cations the power method can be used when A has more than one eigenvalue of largest magnitude.After the absolutely largest eigenvalue of A has been calculated, the power method can be applied to anappropriately de
ated matrix to calculate the next largest eigenvalue and the associated eigenvector of A,and so on. However, this approach is ine�cient if all or many eigenvalues are needed. The next sectionsdescribe more general purpose methods for eigenvalue and eigenvector computations. For an introductionto the power method, see (Atkinson 1989). For further reading, see (Golub and Van Loan 1989; Wilkinson1965).5.2 The QR MethodThe QR method is widely used to calculate all the eigenvalues of a matrixA. It employs the QR factorizationalgorithm presented brie
y in x4.4. Here, we recall that, given an n � n matrix A, there is a factorizationA = QR, where R an n� n upper triangular matrix and Q an n� n orthogonal matrix.The QR method, shown in Table 9, is an iterative scheme to compute the eigenvalues of A. It proceeds bygenerating a sequence A1; A2; : : : of matrices, all of which are similar to each other and to the starting matrixA0 = A. The sequence converges either to a triangular matrix with the eigenvalues of A on its diagonal orto an almost triangular matrix from which the eigenvalues can be calculated easily.For a real, nonsingular matrixA with no two (or more) eigenvalues of the same magnitude, the QR methodis guaranteed to converge. The iterates Ak converge to an upper triangular matrix with the eigenvalues ofA on its diagonal. If A is symmetric, the iterates converge to a diagonal matrix. The rate of convergencedepends on maxfj�i+1=�ij : i = 1; : : : ; n� 1g, where j�1j > j�2j > � � � > j�nj.38

If two or more eigenvalues of A have the same magnitude, the sequence A1; A2; : : : may not convergeto an upper triangular matrix. If A is symmetric, the sequence converges to a block diagonal matrix, withblocks of order 1 or 2, from which the eigenvalues of A can be calculated easily. If A is non-symmetric, theproblem is more complicated. See (Wilkinson 1965; Parlett 1968) for details.In many cases, the QR method is combined with a technique known as shifting to accelerate convergence.A discussion of this procedure can be found in (Atkinson 1989; Golub and Van Loan 1989; Parlett 1980;Wilkinson 1965).The QR method for eigenvalues requires the computation of the QR factorization of a matrix and amatrix-matrix multiplication at each iteration. For a large matrix A, this is an expensive computation,making the method ine�cient. To improve its e�ciency, the matrix A is normally preprocessed, reducing itto a simpler form. If A is symmetric, it is reduced to a similar tridiagonal matrix, as described in x5.3. IfA is non-symmetric, it is reduced to a similar upper Hessenberg matrix by a comparable algorithm. It canbe shown that, if A0 = A is in Hessenberg or tridiagonal form, then all the iterates Ak generated by the QRmethod will also be in Hessenberg or tridiagonal form, respectively. By using appropriate implementationtechniques, the QR factorization and the matrix-matrix products applied to matrices with these specialstructures require fewer operations than would be needed for arbitrary dense matrices.With the modi�cations discussed above, the QR method is an e�cient, general purpose scheme forcalculating the eigenvalues of a dense matrix. The eigenvectors can also be calculated if all the similaritytransformations employed in the QR process are stored. Alternatively, the eigenvectors can be calculated byinverse iterations, as described in x5.4.5.3 Transforming a Symmetric Matrix to Tridiagonal FormAs noted above, the eigenvalues of a symmetric (or Hermitian) matrix A are often calculated by �rst trans-forming A into a similar tridiagonal matrix T . Householder transformations (see x4.3) are usually employedto perform this task.The algorithm to obtain the matrix T , given A, resembles the QR factorization algorithmdescribed brie
yin x4.3. It proceeds in n�2 steps and generates a sequence H1;H2; : : : ;Hn�2 of Householder transformationsto reduce A to tridiagonal form T . Starting with A(0) = A, at step k for k = 1; : : : ; n � 2, we formAk = HkAk�1Hk, where Hk is chosen to zero components k + 2 to n of both row k and column k of Ak�1.T is An�2, the last matrix computed by this process. Note that T = Hn�2 � � �H1AH1 � � �Hn�2 is similar toA because each Hk is symmetric and orthogonal.It can be shown that the reduction to tridiagonal form by Householder transformations is a stablecomputation in the sense that the computed T is the exact T for a slightly perturbed matrix Â = A + E,where E is usually small relative to A. As a result, it can be shown that the eigenvalues of A and T di�ervery little. For a brief introduction to tridiagonal reduction, see (Atkinson 1989). For further reading, see(Golub and Van Loan 1989; Wilkinson 1965). For other methods to reduce A to tridiagonal form, such asplanar rotation orthogonal matrices, see (Golub and Van Loan 1989).Similar schemes can be used to reduce a non-symmetric (or non-Hermitian) matrix to Hessenberg form.39

5.4 Inverse IterationInverse iteration is the standard method to calculate the eigenvectors of a matrix A, once its eigenvalueshave been calculated. This scheme can be viewed as the power method (see x5.1) applied to the matrix(A � ~�I)�1 instead of A, where ~� is an (approximate) eigenvalue of A.To see how inverse iteration works, let ~� be an approximation to a simple eigenvalue � of A and let xbe the associated eigenvector. Also let z0 be an initial guess to some multiple of x. Inverse iteration, shownin Table 10, is an iterative method that generates a sequence of approximations z1; z2; : : : to some multipleof x. In the scheme shown in Table 10, zk is normalized so that the sequence z1; z2; : : : converges to aneigenvector x of A satisfying kxk1 = 1. As noted already in x5.1, normalizations of this sort are frequentlyused in eigenvector calculations.Note that, if ~� = �, then A� ~�I is singular. Moreover, if ~� � �, then A � ~�I is \nearly" singular. As aresult, we can expect the system (A � ~�I)wk = zk�1 to be very poorly conditioned (see x2.8). This thoughis not a problem in this context, since any large perturbation in the solution of the ill-conditioned system isin the direction of the desired eigenvector x.The sequence of approximate eigenvectors z1; z2; : : : is typically calculated by �rst performing an LUdecomposition of A � ~�I, often with pivoting, before the start of the iteration and then using the same LUfactorization to perform a forward elimination followed by a back substitution to solve (A � ~�I)wk = zk�1for k = 1; 2; : : : (see x2). We emphasize that only one LU factorization of A � ~�I is needed to solve all(A � ~�I)wk = zk�1, k = 1; 2; : : :For a brief discussion of the inverse iteration, including its stability and rate of convergence, see (Atkinson1989). For further reading, see (Wilkinson 1965).5.5 Other MethodsAnother way to calculate the eigenvalues of A is to compute the roots of the characteristic polynomialp(�) = det(A � �I). The techniques discussed in x6.9 can be used for this purpose. However, this approachis often less stable that the techniques described above and it is usually not more e�cient. Therefore, it isnot normally recommended.An obvious method for calculating an eigenvector x, once the corresponding eigenvalue � is known, isto solve the system (A � �I)x = 0. Since this system is singular, one approach is to delete one equationfrom (A� �I)x = 0 and replace it by another linear constraint, such as xj = 1 for some component j of x.However, it can be shown (see (Wilkinson 1965)) that this method is not always stable and can lead to verypoor numerical results in some cases. Thus, it is not recommended either.Several other methods for calculating the eigenvalues and eigenvectors of a matrix have been omittedfrom our discussion due to space limitations. We should, though, at least mention one of them, the Jacobimethod, a simple, rapidly convergent iterative scheme, applicable to symmetric matrices, including sparseones.The eigenvalue problem for large sparse matrices is a very active area of research. Although the QR40

method described in x5.2 is e�ective for small to medium sized dense matrices, it is computationally veryexpensive for large matrices, in part because it does not exploit sparsity e�ectively. The Lanczos and Arnoldimethods are much better suited for large sparse problems. For a discussion of these methods, see (Cullumand Willoughby 1985; Parlett 1980; Saad 1992; Scott 1981).6 Nonlinear Algebraic Equations and SystemsConsider a nonlinear algebraic equation or system f(x) = 0, where f : Rn! Rn, n � 1. A root of f(x) is avalue � 2 Rn satisfying f(�) = 0. A nonlinear function may have one, many or no roots.Most numerical methods for computing approximations to roots of a nonlinear equation or system areiterative in nature. That is, the scheme starts with some initial guess x0 and computes new successiveapproximation xk, k = 1; 2; : : :, by some formula until a stopping criterion such askf(xk)k � �;kf(xk)k � �kf(x0)k;kxk � xk�1k � �;kxk � xk�1k � �kxkk; ork > maxitis satis�ed, where � is the error tolerance and maxit is the maximum number of iterations allowed.6.1 Fixed-Point IterationA �xed point of a function g(x) is a value � satisfying � = g(�). A �xed-point iteration is a scheme of theform xk = g(xk�1) that uses the most recent approximation xk�1 to the �xed-point � to compute a newapproximation xk to �. In this context, the function g is also called the iteration function.One reason for studying �xed-point iterations is that, given a function f(x), it is easy to �nd anotherfunction g(x) such that � is a root of f(x) if and only if it is a �xed-point of g(x). For example, takeg(x) = x� f(x). Many root-�nding methods can be viewed as �xed-point iterations.Given an iteration function g, a �xed-point scheme starts with an initial guess x0 and proceeds with theiteration as follows: for k = 1; 2; : : : doxk = g(xk�1)test stopping criterionend 41

6.2 Newton's Method for Nonlinear EquationsWe consider scalar equations (i.e., n = 1) �rst, and extend the results to systems of equations (i.e., n > 1)in x6.7.Newton's method is a �xed-point iteration based on the iteration function g(x) = x� f(x)=f 0(x), wheref 0(x) is the �rst derivative of f . More speci�cally, the new approximation xk to the root � of f is computedby the formula xk = xk�1 � f(xk�1)f 0(xk�1)which uses the previous approximation xk�1 to �. Geometrically, Newton's method approximates the non-linear function f(x) by its tangent (a straight line) at the current approximation xk�1 and takes xk to bethe intersection of the tangent with the x axis. That is, xk is the root of the local linear approximationto f(x). Newton's method is applicable if and only if f is di�erentiable and f 0 is non-zero at the point ofapproximation.6.3 The Secant MethodThe secant method is applicable to scalar equations only and is not a �xed-point iteration. The newapproximation xk to the root � of f is computed using two previous approximations xk�1 and xk�2 by theformula xk = xk�1 � f(xk�1) xk�1� xk�2f(xk�1)� f(xk�2) :The secant method can be viewed as a variant of Newton's method in which f 0(xk�1) is approximated by[f(xk�1) � f(xk�2)]=[xk�1 � xk�2]. Geometrically, the secant method approximates the nonlinear functionf(x) by the chord subtending the graph of f at the two most recently computed points of approximationxk�1 and xk�2 and takes xk to be the intersection of the chord with the x axis. That is, xk is the root ofthe local linear approximation to f(x). The secant method is applicable if and only if f(x) is continuousand takes di�erent values at xk�1 and xk�2. To start, the secant method requires initial guesses for x0 andx1. These are usually chosen close to each other and must satisfy f(x0) 6= f(x1).6.4 The Bisection and Regula Falsi MethodsThe bisection method is not a �xed-point iteration. It is applicable to a scalar equation f(x) = 0 if and onlyif f(x) is continuous and there are two points L and R for which f(L) �f(R) � 0. These conditions guaranteethe existence of at least one root of f(x) in the interval [L;R]. Without loss of generality, let L < R. Tostart, the bisection method approximates the root by the mid-pointM = (L+R)=2 of [L;R] and halves theinterval at each iteration as follows.forever doM = (L +R)=2if f(L) � f(M) � 0 then R = Melse L = M 42

test stopping criterionendNote that this iteration maintains the property f(L) � f(R) � 0, as L and R are changed. So, when thealgorithm terminates, a root of f is guaranteed to be in [L;R]. M = (L + R)=2 is often taken as theapproximation to the root.Several root-�nding methods are similar to bisection. For example, regula falsi choosesM = f(R)L � f(L)Rf(R) � f(L) (38)but is otherwise the same as bisection. Note that the M computed from (38) is the intersection of the chordsubtending the graph of f(x) at L and R with the x-axis and so is guaranteed to lie in [L;R], since theproperty f(L) � f(R) � 0 is maintained throughout the iteration even though L and R are changed.6.5 ConvergenceIterative methods for nonlinear equations can be guaranteed to converge under certain conditions, althoughthey may diverge in some cases.The bisection method converges whenever it is applicable, but, if f(x) has more than one root in theinterval of application, there is no guarantee which of the roots the method will converge to.The convergence of a �xed-point iteration depends critically on the properties of the iteration functiong(x). If g is smooth in an interval containing a �xed-point � and jg0(�)j < 1, then there is an m 2 [0; 1)and a neighbourhood I around the �xed-point � in which jg0(x)j � m < 1. In this case, the �xed-pointiteration xk = g(xk�1) converges to � if x0 2 I. To give an intuitive understanding why this is so, we assumex0; : : : ; xk�1 2 I and note that xk � � = g(xk�1) � g(�) = g0(�k)(xk�1 � �)where we have used xk = g(xk�1), � = g(�) and, by the mean value theorem, �k is some point in I betweenxk�1 and �. Thus, jg0(�k)j � m < 1 and so jxk � �j � mjxk�1 � �j � mkjx0 � �j, whence xk 2 I too andxk ! � as k !1.A more formal statement of this theorem and other similar results giving su�cient conditions for theconvergence of �xed-point iterations can be found in many introductory numerical methods textbooks. Seefor example (Conte and de Boor 1980; Dahlquist and Bj�orck 1974; Johnson and Riess 1982; Stoer andBulirsch 1980).Newton's method converges if the conditions for convergence of a �xed-point iteration are met. (ForNewton's method, the iteration function is g(x) = x� f(x)=f 0(x).) However, it can be shown that Newton'smethod converges quadratically (see x6.6) to the root � of f if the initial guess x0 is chosen su�ciently closeto �, f is smooth and f 0(x) 6= 0 close to �. It can also be shown that Newton's method converges from anystarting guess in some cases. A more formal statement of these and other similar results can be found in43

many introductory numerical methods textbooks. See for example (Conte and de Boor 1980; Dahlquist andBj�orck 1974; Johnson and Riess 1982; Stoer and Bulirsch 1980). For a deeper discussion of this topic, see(Dennis and Schnabel 1983).6.6 Rate of ConvergenceThe rate of convergence of a sequence x1; x2; : : : to � is the largest number p � 1 satisfyingkxk+1 � �k � C kxk � �kp as k!1for some constant C > 0. If p = 1, we also require that C < 1. The larger the value of p the faster theconvergence, at least asymptotically. Between two converging sequences with the same rate p, the faster isthe one with the smaller C.A �xed-point iteration with iteration function g converges at a rate p with C = jg(p)(�)j=p! if g 2 Cp,g(i)(�) = 0, for i = 0; 1; 2; : : : ; p� 1, and g(p)(�) 6= 0, where g(i)(x) is the ith derivative of g(x).Thus, Newton's method usually converges quadratically, i.e., p = 2 with C = jg00(�)j=2, where g(x) =x � f(x)=f 0(x). If f 0(�) = 0, Newton's method typically converges linearly. If f 0(�) 6= 0 and f 00(�) = 0,Newton's method converges at least cubicly, i.e., p � 3.The secant method converges at a superlinear rate of p = (1+p5)=2 � 1:618, i.e., faster than linear butslower than quadratic.Bisection converges linearly, i.e., p = 1 and C = 1=2,6.7 Newton's Method for Systems of Nonlinear EquationsNewton's method for a scalar nonlinear equation (see x6.2) can be extended to a system of nonlinear equationswith f : Rn! Rn, for n > 1. In this case, the new iterate xk is computed byxk = xk�1 � [J(xk�1)]�1f(xk�1)where J(x) is the Jacobian of f , an n � n matrix with its (i; j) entry equal to @fi(x)=@xj. To implementthis scheme e�ectively, the matrix-vector product z = [J(xk�1)]�1f(xk�1) should NOT be calculated by�rst computing the inverse of the Jacobian and then performing the matrix-vector multiplication, but ratherby �rst solving the linear system [J(xk�1)]zk = f(xk�1) by Gaussian elimination (see x2.1) or some othere�ective method for solving linear equations (see x2 and x3) and then setting xk = xk�1 � zk.6.8 Modi�cations and Alternatives to Newton's MethodSolving the linear system [J(xk�1)]zk = f(xk�1) requires �rst evaluating all the partial derivatives of allcomponents of f at the point xk�1 and then solving the linear system by performing Gaussian elimination (seex2.1) or some other e�ective method for solving linear equations (see x2 and x3). In the unmodi�ed Newton'smethod, this procedure is repeated at every iteration, requiring O(n3)
ops (
oating-point operations) if44

Gaussian elimination is used. There exist variants of Newton's method which reduce the computational loadper iteration signi�cantly. Even though these schemes typically converge more slowly, they often dramaticallyreduce the cost of solving a nonlinear system, particularly if n� 1.The chord Newton method, often called the simpli�ed Newton method, holds J(xk�1) �xed for severalsteps, thus avoiding many Jacobian evaluations and LU factorizations. However, it still requires one fevaluation and both a forward elimination and a back substitution (see x2.4 and x2.2, respectively) at eachiteration.Some other variants approximate the Jacobian by matrices that are easier to compute and simpler tosolve. For example, the Jacobian may be approximated by its diagonal, giving rise to a Jacobi-like Newton'siteration, or by its lower triangular part, giving rise to a Gauss-Seidel-like Newton's scheme. (See x3 for adiscussion of Jacobi and Gauss-Seidel iterations for linear equations.)Quasi-Newton schemes, which avoid the computation of partial derivatives, are alternatives to Newton'smethod. Some quasi-Newton schemes approximate partial derivatives by �nite di�erences. For example,[J(x)]ij = @fi@xj (x) � fi(x+ �ej) � fi(x)� ;where � is a small non-zero number and ej 2 Rn is the jth unit vector with a 1 in component j and 0's inall other entries.Possibly the best-known quasi-Newton scheme is Broyden's method. It does not require the computationof any partial derivatives nor the solution of any linear systems. Rather, it uses one evaluation only of f anda matrix-vector multiply, requiring O(n2)
ops, per iteration. Starting with an initial guess for the inverseof the Jacobian, J(x0), it updates its approximation to the inverse Jacobian at every iteration. Broyden'smethod can be viewed as an extension of the secant method to n > 1 dimensions. For a brief description ofthe algorithm, see (Hager 1988).6.9 Polynomial EquationsPolynomial equations are a special case of nonlinear equations. A polynomial of degree k has exactly kroots, counting multiplicity. One may wish to compute all roots of a polynomial or only a few select ones.The methods for nonlinear equations described above can be used in either case, although more e�ectiveschemes exist for this special class of problems. The e�cient evaluation of the polynomial and its derivativeis discussed below in x6.10.De
ation is often used to compute roots of polynomials. It starts by locating one root r1 of p(x) and thenproceeds recursively to compute the roots of p̂(x), where p(x) = (x�r1)p̂(x). Note that, by the fundamentaltheorem of algebra, given a root r1 of p(x), p̂(x) is uniquely de�ned and is a polynomial of degree k � 1.However, de
ation may be unstable unless implemented carefully. See an introductory numerical methodstextbook for details.Localization techniques can be used to identify regions of the complex plane which contain zeros. Suchtechniques include the Lehmer-Schur method, Laguerre's method and methods based on Sturm sequences45

(see (Householder 1970)). Localization can be very helpful, for example, when searching for a particular rootof a polynomial or when implementing de
ation, since in the latter case, the roots should be computed inincreasing order of magnitude to ensure numerical stability.The roots of a polynomial p(x) can also be found by �rst forming the companion matrix A of thepolynomial p(x) | the eigenvalues f�i : i = 1; : : : ; ng of A are the roots of p(x) | and then �nding all,or a select few, of the eigenvalues of A. See x5 for a discussion of the computation of eigenvalues and anintroductory numerical methods book, such as (Hager 1988), for a further discussion of this root-�ndingtechnique.6.10 Horner's RuleHorner's rule, also called nested multiplication or synthetic division, is an e�cient method to evaluate apolynomial and its derivative. Let p(x) = a0 + a1x+ a2x2+ � � �+ anxn be the polynomial of interest, and �the point of evaluation. The following algorithm computes p(�) in z0 and p0(�) in y1 e�ciently.zn = anyn = anfor j = n� 1; : : : ; 1 dozj = � zj+1 + ajyj = �yj+1 + zjendz0 = z1�+ a07 Unconstrained OptimizationThe optimization problem is to �nd a value x� 2 Rn that either minimizes or maximizes a function f : Rn!R. We consider only the minimization problem here, since maximizing f(x) is equivalent to minimizing�f(x).Sometimes the minimizer must satisfy constraints such as gi(x) = 0, i = 1; : : : ;m1, or hj(x) � 0,j = 1; : : : ;m2, where gi and hj : Rn! R. Thus, the general minimization problem can be written asminx2Rn f(x)subject to gi(x) = 0; i = 1; : : : ;m1hj(x) � 0; j = 1; : : : ;m2If any of the functions f , gi or hj are nonlinear, then the minimization problem is nonlinear ; otherwise,it is called a linear programming problem. If there are no constraints, the minimization problem is called46

unconstrained ; otherwise, it is called constrained.In this section, we present numericalmethods for nonlinear unconstrained minimizationproblems (NLUMPs)only. For a more detailed discussion of these schemes, see an advanced text such as (Dennis and Schnabel1983).7.1 Some De�nitions and PropertiesLet x = (x1; x2; : : : ; xn)T 2 Rn and f : Rn! R. The gradient rf of the function f is the vector of the n�rst partial derivatives of f : rf(x) = � @f@x1 ; @f@x2 ; : : : ; @f@xn�T :Note rf(x) : Rn! Rn.A point x� is a critical point of f if rf(x�) = 0. A point x� is a global minimum of f if f(x�) � f(x)for all x 2 Rn. A point x� is a local minimum of f if f(x�) � f(x) for all x in a neighbourhood of x�. If x�is a local minimum of f , then it is also a critical point of f , assuming rf(x�) exists, but the converse is notnecessarily true.The Hessian r2f(x) = H(x) of f is an n� n matrix with entriesHij(x) = @2f@xi@xj (x):If f is smooth, then @2f@xi@xj = @2f@xj@xiand so the Hessian is symmetric. A critical point x� is a local minimum of f if H(x�) is symmetric positive-de�nite.Numerical methods for solving NLUMPs are all iterative in character. Some try to compute roots of thegradient, i.e., critical points of f , which are also local minima. These methods are related to schemes usedto solve nonlinear equations described in x6.Minimization methods can be classi�ed into three main categories:� direct search methods, which make use of function values only,� gradient methods, which make use of function and derivative values, and� Hessian methods, which make use of function, derivative and second derivative values.Methods from each class are discussed below.7.2 The Fibonacci and Golden-Section Search MethodsThe Fibonacci and golden-section search methods belong to the class of direct search methods. They aresimilar to the bisection method for nonlinear equations described in x6.4, although important di�erencesexist. They are used in one-dimensional minimization only.47

The Fibonacci and golden-section search methods are applicable if f(x) is continuous and unimodal inthe interval of interest [a; b], where by unimodal we mean that f(x) has exactly one local minimumx� 2 [a; b]and f(x) strictly decreases for x 2 [a; x�] and strictly increases for x 2 [x�; b].The main idea behind these methods is the following. Let x1 and x2 be two points satisfying a < x1 <x2 < b. If f(x1) � f(x2), then x� must lie in [x1; b]. On the other hand, if f(x1) � f(x2) then x� must liein [a; x2]. Thus, by evaluating f at a sequence of test points x1; x2; : : : ; xk, we can successively reduce thelength of the interval in which we know the local minimum lies, called the interval of uncertainty.The Fibonacci and golden-section search methods di�er only in the way the sequence of test points ischosen. Before describing the two methods, we give two more de�nitions.The coordinate � of a point x relative to an interval [a; b] is � = (x� a)=(b� a).The Fibonacci numbers are de�ned by the initial condition F0 = F1 = 1 and the recurrence Fk =Fk�1 + Fk�2 for k � 2.The Fibonacci search method applied to a function f on an interval [a; b] starts with two points xk andxk�1 satisfying (xk � a)=(b � a) = Fk�1=Fk and (xk�1 � a)=(b � a) = Fk�2=Fk = 1 � Fk�1=Fk, whencea < xk�1 < xk < b. It then computes the sequence xk�2; xk�3; : : : ; x1 as follows. After evaluating f(xk) andf(xk�1), the interval of uncertainty is either [a; xk] or [xk�1; b].� If the interval of uncertainty is [a; xk], then xk�1 belongs to it and (xk�1 � a)=(xk � a) = Fk�2=Fk�1.In this case, xk�2 is chosen to satisfy (xk�2 � a)=(xk � a) = Fk�3=Fk�1. The method proceeds tothe next iteration with the two points xk�1 and xk�2 in the interval [a; xk], with relative coordinatesFk�2=Fk�1 and Fk�3=Fk�1, respectively. Note that f(xk�1) is already computed, so f(xk�2) onlyneeds to be evaluated in the next iteration.� If the interval of uncertainty is [xk�1; b], then xk belongs to it and (xk�xk�1)=(b�xk�1) = Fk�3=Fk�1.In this case, xk�2 is chosen to satisfy (xk�2�xk�1)=(b�xk�1) = Fk�2=Fk�1. The method proceeds tothe next iteration with the two points xk and xk�2 in the interval [xk�1; b], with relative coordinatesFk�3=Fk�1 and Fk�2=Fk�1, respectively. Note that f(xk) is already computed, so f(xk�2) only needsto be evaluated in the next iteration.Thus, at the start of the second iteration, the situation is similar to that at the start of the �rst iteration,except that the length of interval of uncertainty has been reduced. Therefore, the process described abovecan be repeated.Before the last iteration, the interval of uncertainty is [c; d] and x1 is chosen to be (c+ d)=2+ �, for somesmall positive number �.As noted above, the Fibonacci search method requires one function evaluation per iteration. The maindisadvantage of the method is that the number of iterations k must be chosen at the start of the method.However, it can be proved that, given k, the length of the �nal interval of uncertainty is the shortest possible.Thus, in a sense, it is an optimal method.The golden-section search method also requires one function evaluation per iteration, but the number ofiterations k does not need to be chosen at the start of the method. It produces a sequence of test points48

x1; x2; : : : and stops when a predetermined accuracy is reached.Let r = (p5�1)=2 � 0:618 be the positive root of the quadratic x2+x�1. Note that 1=r = (p5+1)=2 �1:618 is the famous golden ratio. For the Fibonacci search method, it can be proved that, for large k,the coordinates of the two initial points xk and xk�1 relative to [a, b] are approximately r and 1 � r,respectively. Thus, if, at each iteration, the two points are chosen with these coordinates relative to theinterval of uncertainty, the resulting method, called the golden-section search method, is an approximationto the Fibonacci search. Moreover, if a point has coordinate 1� r relative to [a, b], then it has coordinate rrelative to [a; a+(b�a)r]. Similarly, if a point has coordinate r relative to [a, b], then it has coordinate 1�rrelative to [a+ (b� a)(1� r); b]. This property is exploited in the golden-section search method, enabling itto use one function evaluation only per iteration.Both methods described above are guaranteed to converge whenever they are applicable and both havea linear rate of convergence (see x6.6). On the average, the length of the interval of uncertainty is multipliedby r at each iteration. For a further discussion of these methods, see an introductory numerical methodstext such as (Kahaner, Moler and Nash 1989).7.3 The Steepest Descent MethodThe steepest descent (SD) method belongs to the class of gradient schemes. It is applicable whenever thepartial derivatives of f exist and f has at least one local minimum. Whenever it is applicable, it is guaranteedto converge to some local minimum if the partial derivatives of f are continuous. However, it may convergeslowly for multidimensional problems. Moreover, if f possesses more than one local minima, there is noguarantee to which minimum SD will converge.At iteration k, the SD method performs a search for the minimum of f along the line xk � �rf(xk),where � is a scalar variable and �rf(xk) is the direction of the steepest descent of f at xk. Note that, since� is scalar, minimizing f(xk � �rf(xk)) w.r.t. � is a one dimensional minimization problem. If �� is theminimizer, xk+1 is taken to be xk � ��rf(xk). A brief outline of SD is given in Table 11. See (Buchananand Turner 1992; Johnson and Riess 1982; Ortega 1988) for further details.7.4 Conjugate Direction MethodsThe de�nition of conjugate directions is given with respect to (w.r.t.) a symmetric positive-de�nite (SPD)matrix A: the vectors (directions) u and v are A-conjugate if uTAv = 0. Thus, conjugate directionsare orthogonal or perpendicular directions w.r.t. an inner product (u; v) = uTAv and, as such, are oftenassociated with some shortest distance property.The conjugate direction (CD) methods form a large class of minimization schemes. Their common char-acteristic is that the search direction at every iteration is conjugate to previous search directions. Proceedingalong conjugate search directions guarantees, in some sense, �nding the shortest path to the minimum.The CD methods are guaranteed to converge in at most n iterations for the SPD quadratic functionf(x) = c+ bTx� 12xTAx, where A is an n� n SPD matrix.49

There are several techniques to construct conjugate directions, each one giving rise to a di�erent CDmethod. The best-known is Powell's method (see (Buchanan and Turner 1992; Ortega 1988)).7.5 The Conjugate Gradient MethodAs the name implies, at each iteration, the conjugate gradient (CG) method takes information from thegradient of f to construct conjugate directions. Its search direction is a linear combination of the directionof steepest descent and the search direction of the previous iteration. A brief outline of CG is given inTable 12.The CG method is guaranteed to converge in at most n iterations for the SPD quadratic functionf(x) = c+ bTx� 12xTAx, where A is a n � n SPD matrix. See x3.2 or (Golub and Van Loan 1989; Ortega1988)) for a more detailed discussion of this minimization technique applied to solve linear algebraic systems.There exist several variants of the CG method, most of which are based on slightly di�erent ways ofcomputing the stepsize �.7.6 Newton's MethodNewton's method for minimizing f is just Newton's method for nonlinear systems applied to solverf(x) = 0.The new iterate xk is computed by xk = xk�1 � [H(xk�1)]�1rf(xk�1), where H(xk�1) is the Hessian of fat xk�1. See x6.7 for further details.If f is convex, then the Hessian is SPD and the search direction generated by Newton's method at eachiteration is a descent (downhill) direction. Thus, for any initial guess x0, Newton's method is guaranteed toconverge quadratically, provided f is su�ciently smooth.For a general function f , there is no guarantee that Newton's method will converge for an arbitrary initialguess x0. However, if started close enough to the minimum of a su�ciently smooth function f , Newton'smethod normally converges quadratically, as noted in x6.6. There exist several variants of Newton's methodthat improve upon the reliability of the standard scheme.7.7 Quasi-Newton methodsAt every iteration, Newton's method requires the evaluation of the Hessian and the solution of a linear system[H(xk�1)]sk = �rf(xk�1) for the search direction sk. Quasi-Newton methods update an approximationto the inverse Hessian at every iteration, thus reducing the task of solving a linear system to a simplematrix-vector multiply. The best-known of these schemes are the Davidon-Fletcher-Powell (DFP) and theBroyden-Fletcher-Goldfarb-Shanno (BFGS) methods. See (Buchanan and Turner 1992; Dennis and Schnabel1983) for further details. 50

8 ApproximationIt is often desirable to �nd a function f(x) in some class which approximates the data f(xi; yi) : i = 1; : : : ; ng.That is, f(xi) � yi, i = 1; : : : ; n. If f matches the data exactly, that is, f satis�es the interpolation relationsor interpolation conditions f(xi) = yi, i = 1; : : : ; n, then f is called the interpolating function or theinterpolant of the given data.Similarly, it is often desirable to �nd a simple function f(x) in some class which approximates a morecomplex function y(x). We say that f interpolates y, or f is the interpolant of y, at the points xi, i = 1; : : : ; n,if f(xi) = y(xi), i = 1; : : : ; n. The problem of computing the interpolant f of y at the points xi, i = 1; : : : ; n,reduces to the problem of computing the interpolant f of the data f(xi; yi) : i = 1; : : : ; ng, where yi = y(xi).An interpolant does not always exist and, when it does, it is not necessarily unique. However, a uniqueinterpolant does exist in many important cases, as discussed below.A standard approach for constructing an interpolant is to choose a set of basis functions fb1(x); b2(x); : : : ; bn(x)gand form a model f(x) = nXj=1 ajbj(x);where the numbers aj are unknown coe�cients. For f to be an interpolant, it must satisfy f(xi) = yi,i = 1; : : : ; n, which is equivalent to nXj=1 ajbj(xi) = yi; i = 1; : : : ; n:These n conditions form a system B~a = ~y of n linear equations in n unknowns, where ~a = (a1; a2; : : : ; an)T ,~y = (y1; y2; : : : ; yn)T and Bij = bj(xi), i; j = 1; : : : ; n. If B is non-singular, then the interpolant of thedata f(xi; yi) : i = 1; : : : ; ng w.r.t. the basis functions b1(x); b2(x); : : : ; bn(x) exists and is unique. On theother hand, if B is singular, then either the interpolant may fail to exist or there may be in�nitely manyinterpolants.8.1 Polynomial ApproximationPolynomial approximation is the foundation for many numerical procedures. The basic idea is that, if wewant to apply some procedure to a function, such as integration (see x9), we approximate the function bya polynomial and apply the procedure to the approximating polynomial. Polynomials are often chosen asapproximating functions because they are easy to evaluate (see x6.10), to integrate and to di�erentiate.Moreover, polynomials approximate well more complicated functions, provided the latter are su�cientlysmooth. The following mathematical result ensures that arbitrarily accurate polynomial approximationsexist for a broad class of functions.Weierstrass Theorem: If g(x) 2 C[a; b], then, for every � > 0, there exists a polynomial pn(x) of degreen = n(�) such that maxfjg(x)� pn(x)j : x 2 [a; b]g � �.51

8.2 Polynomial InterpolationTechniques to construct a polynomial interpolant for a set of data f(xi; yi) : i = 1; : : : ; ng are discussedbelow. Here we state only the following key result.Theorem: If the points fxi : i = 1; : : : ; ng are distinct, then there exists a unique polynomial of degree atmost n� 1 that interpolates the data f(xi; yi) : i = 1; : : : ; ng. (There are no restrictions on the yi's.)8.2.1 Monomial BasisOne way to construct a polynomial that interpolates the data f(xi; yi) : i = 1; : : : ; ng is to choose as basisfunctions the monomials bj(x) = xj�1, j = 1; : : : ; n, giving rise to the model pn�1(x) = a1 + a2x + a3x2 +� � �+ anxn�1. As noted above, the interpolation conditions take the form B~a = ~y. In this case, B is theVandermonde matrix for which Bij = xj�1i , i; j = 1; : : : ; n, where we use the convention that x0 = 1 for allx. It can be shown that the Vandermonde matrixB is non-singular if and only if the points fxi : i = 1; : : : ; ngare distinct. If B is non-singular, then, of course, we can solve the system B~a = ~y to obtain the coe�cientsaj, j = 1; : : : ; n, for the unique interpolant of the data.It can also be shown that, although the Vandermonde matrix is non-singular for distinct points, it can beill-conditioned, particularly for large n. As a result, the methods described below are often computationallymuch more e�ective than the scheme described here.8.2.2 Lagrange BasisAn alternative to the monomial basis functions discussed above is the Lagrange basis polynomialsbj(x) = lj(x) = nYi=1i 6=j x� xixj � xi j = 1; : : : ; n;which are of degree n� 1 and satisfy bj(xi) = 8<: 1 if i = j0 if i 6= jHence B = I and the system B~a = ~y of interpolation conditions has the obvious unique solution aj = yj,j = 1; : : : ; n.Note that changing the basis from monomials to Lagrange polynomials does not change the resultinginterpolating polynomial pn�1(x), since the interpolant is unique. It only a�ects the representation ofpn�1(x). 52

8.2.3 Newton Basis and Divided Di�erencesAnother useful basis is the set of Newton polynomialsbj(x) = j�1Yi=1(x � xi) j = 1; : : : ; n:The coe�cients aj of the interpolating polynomial written with the Newton basis are relatively easy tocompute by a recursive algorithm using divided di�erences. Before describing this form of the interpolatingpolynomial, though, we must introduce divided di�erences.Given a function f with f(xi) = yi, i = 1; : : : ; n, de�ne the divided di�erence with one point byf [xi] = yi i = 1; : : : ; n:If xi+1 6= xi, de�ne the divided di�erence with two points byf [xi; xi+1] = yi+1 � yixi+1 � xi i = 1; : : : ; n� 1:If xi 6= xi+k, de�ne the divided di�erence with k + 1 points byf [xi; xi+1; : : : ; xi+k] = f [xi+1; xi+2; : : : ; xi+k]� f [xi; xi+1; : : : ; xi+k�1]xi+k � xi i = 1; : : : ; n� k:We can extend this de�nition of divided di�erences to sets fxi : i = 1; : : : ; ng with repeated values bynoting that limxi+1!xi f [xi+1; xi] = limxi+1!xi yi+1 � yixi+1 � xi = f 0(xi)So, if xi = xi+1, we de�ne f [xi; xi+1] = f 0(xi). Similarly, it can be shown thatlimxi+1!xi...xi+k!xi f [xi; xi+1; : : : ; xi+k] = f (k)(xi)k!So, if xi = xi+1 = � � � = xi+k, we de�ne f [xi; xi+1; : : : ; xi+k] = f (k)(xi)=k!.Using divided di�erences, the coe�cients aj can be computed as aj = f [x1; : : : ; xj]. An advantage of thedivided di�erence form is that it extends easily to the interpolation of derivatives as well as function values,as discussed below. Another advantage is that, if the coe�cients aj, j = 1; : : : ; n, are computed from n datapoints, it is easy to add more data points and construct a higher degree interpolating polynomial withoutredoing the whole computation, since the new data can be added easily to the existing divided di�erencetable and the interpolating polynomial extended. 53

8.3 Polynomial Interpolation with Derivative DataIn this section, we consider Hermite or osculatory interpolation which requires that a function and its �rstderivative be interpolated at the points fxi : i = 1; : : : ; ng. The key result is stated below.Theorem: Given the data f(xi; yi; y0i) : i = 1; : : : ; ng, where the points fxi : i = 1; : : : ; ng are distinct,there exists a unique polynomial interpolant p2n�1(x) of degree at most 2n� 1 that satis�es p2n�1(xi) = yi,i = 1; : : : ; n, and p02n�1(xi) = y0i, i = 1; : : : ; n.The techniques used to construct such a polynomial are similar to those described in x8.2. The followingchoices of basis functions are often used.� Monomials: bj(x) = xj�1, j = 1; : : : ; 2n� 1.� Generalized Lagrange basis polynomials: bj(x) = [1�2(x�xj)l0j(xj)][lj(x)]2, j = 1; : : : ; n and bn+j(x) =(x� xj)[lj(x)]2, j = 1; : : : ; n,� Newton basis polynomials: bj(x) = j�1Yi=1(x� xi)2; j = 1; : : : ; nand bn+j(x) = j�1Yi=1(x � xi)2! (x� xj); j = 1; : : : ; n:More general forms of polynomial interpolants are discussed in some numerical methods books. See forexample (Davis 1975).8.4 The Error in Polynomial InterpolationTwo key results for the error in polynomial interpolation are given in the following two theorems. For theirproofs, see an introductory numerical methods text such as (Dahlquist and Bj�orck 1974; Johnson and Riess1982; Stoer and Bulirsch 1980). Before stating the results, though, we must de�ne spr[x; x1; x2; : : : ; xn] tobe the smallest interval containing x; x1; x2; : : : ; xn.Theorem: Let g(x) 2 Cn and pn�1(x) be the polynomial of degree at most n � 1 that interpolates g(x) atthe n distinct points x1; x2; : : : ; xn. Then, for any x,g(x)� pn�1(x) = g(n)(�)n! nYi=1(x� xi)where g(n)(x) is the nth derivative of g(x) and � is some point in spr[x; x1; x2; : : : ; xn].Theorem: Let g(x) 2 C2n and p2n�1(x) be the polynomial of degree at most 2n � 1 that interpolates g(x)and g0(x) at the n distinct points x1; x2; : : : ; xn. Then, for any x,g(x)� p2n�1(x) = g(2n)(�)(2n)! nYi=1(x� xi)254

where g(2n)(x) is the 2nth derivative of g(x) and � is some point in spr[x; x1; x2; : : : ; xn].Note that there is a close relationship between the error in polynomial interpolation and the error in aTaylor series. As a result, polynomial interpolation is normally e�ective if and only if g can be approximatedwell by a Taylor series.More speci�cally, the polynomial interpolation error can be large if the derivative appearing in the errorformula is big or if spr[x; x1; x2; : : : ; xn] is big, particularly if the point x of evaluation is close to an end-pointof spr[x1; x2; : : : ; xn] or outside this interval.8.5 Piecewise Polynomials and SplinesGiven a set of knots or grid points fxi : i = 1; : : : ; ng satisfying a = x0 < x1 < � � � < xn = b, s(x) is apiecewise polynomial (PP) of degree N w.r.t. the knots fxi, i = 0; : : : ; ng if s(x) is a polynomial of degreeN on each interval (xi�1; xi), i = 1; : : : ; n. A polynomial of degree N is always a PP of degree N , but theconverse is not necessarily true.A spline s(x) of degree N is a PP of degree N . The term spline usually implies the continuity ofs(x); s0(x); : : : ; s(N�1)(x) at the knots fx0; x1; : : : ; xng. In this case, s 2 CN�1, the space of continuousfunctions with N � 1 continuous derivatives. Sometimes, though, the terms PP and spline are used inter-changeably.Let s(x) be a PP of degree N and assume s(x); s0(x); : : : ; s(K)(x) are continuous at the knots fx0; x1; : : : ; xng.Since s(x) is a polynomial of degree N on each of the n subintervals, (xi; xi�1), i = 1; : : : ; n, it is de�nedby D = n(N + 1) coe�cients. To determine these coe�cients, we take into account the continuity con-ditions that s and its K derivatives must satisfy at the n � 1 interior knots fx1; : : : ; xn�1g. There areK + 1 such conditions at each interior knot, giving rise to C = (n � 1)(K + 1) conditions. Thus, we needM = D �C = n(N �K) +K + 1 properly-chosen additional conditions to determine the coe�cients of s.In the following we give examples of PPs and splines and their associated basis functions.8.5.1 Constant SplinesThe constant PP model function �(x) =8<: 1 for 0 � x � 10 elsewhereis a constant spline w.r.t. the knots f0; 1g. Note that it is not continuous at the knots, so � 2 C�1.The constant PP functions �i(x) = �((x� a)=h� i+ 1); i = 1; : : : ; nare constant splines w.r.t. the evenly-spaced knots fxi = a + ih : i = 0; : : : ; ng, where h = (b � a)=n, andform a set of basis functions for the space of constant splines w.r.t. these knots.55

8.5.2 Linear SplinesThe linear PP model function �(x) = 8>><>>: x for 0 � x � 12� x for 1 � x � 20 elsewhereis a linear spline w.r.t. the knots f0; 1; 2g. Note that � is continuous, but �0 does not exist at the knots, so� 2 C0.The linear PP functions �i(x) = �((x� a)=h� i+ 1); i = 0; : : : ; n (39)are linear splines w.r.t. the evenly-spaced knots fxi = a + ih : i = 0; : : : ; ng, where h = (b� a)=n, and forma set of basis functions for the space of linear splines w.r.t. these knots.8.5.3 Quadratic SplinesThe quadratic PP model function�(x) = 8>>>>><>>>>>: x2=2 for 0 � x � 1(x2 � 3(x� 1)2)=2 for 1 � x � 2(x2 � 3(x� 1)2 + 3(x� 2)2)=2 for 2 � x � 30 elsewhereis a quadratic spline w.r.t. the knots f0; 1; 2; 3g. Note that � and �0 are continuous, but �00 does not existat the knots, so � 2 C1.The quadratic PP functions�i(x) = �((x� a)=h� i+ 2); i = 0; : : : ; n+ 1 (40)are quadratic splines w.r.t. the evenly-spaced knots fxi = a + ih : i = 0; : : : ; ng, where h = (b � a)=n, andform a set of basis functions for the space of quadratic splines w.r.t. these knots.8.5.4 Quadratic Piecewise PolynomialsThe quadratic PP model functions�(x) = 8>><>>: x(2x� 1) for 0 � x � 1(x� 2)(2x� 3) for 1 � x � 20 elsewhere (x) = 8<: �4x(x� 1) for 0 � x � 10 elsewhere56

are continuous, but neither �0 nor 0 exist at their knots f0; 1; 2g and f0; 1g, respectively. So � and 2 C0.The functions�i(x) = 8<: �((x� a)=h� i=2 + 1) for i even ((x � a)=h� (i+ 1)=2 + 1) for i odd 9=; i = 0; : : : ; 2nare quadratic PPs w.r.t. the evenly-spaced knots fxi = a+ ih : i = 0; : : : ; ng, where h = (b� a)=n. Note �iis continuous, but �0i does not exist at the knots, so �i 2 C0. These functions form a basis for the space ofquadratic PPs in C0 w.r.t. these knots.8.5.5 Cubic SplinesThe cubic PP model function�(x) =8>>>>>>>><>>>>>>>>: x3=6 for 0 � x � 1(x3 � 4(x� 1)3)=6 for 1 � x � 2(x3 � 4(x� 1)3 + 6(x� 2)3)=6 for 2 � x � 3(x3 � 4(x� 1)3 + 6(x� 2)3 � 4(x� 3)3)=6 for 3 � x � 40 elsewhereis a cubic spline w.r.t. the knots f0; 1; 2; 3; 4g. Note that �, �0 and �00 are continuous, but �000 does notexist at the knots, so � 2 C2.The cubic PP functions �i(x) = �((x� a)=h� i+ 2); i = �1; : : : ; n+ 1 (41)are cubic splines w.r.t. the evenly-spaced knots fxi = a+ ih : i = 0; : : : ; ng, where h = (b� a)=n, and forma set of basis functions for the space of cubic splines w.r.t. these knots.8.5.6 Cubic Hermite Piecewise PolynomialsThe cubic PP model functions �(x) = 8>><>>: x2(3� 2x) for 0 � x � 1(2� x)2(2x� 1) for 1 � x � 20 elsewhere (x) = 8>><>>: x2(x� 1) for 0 � x � 1(2� x)2(x� 1) for 1 � x � 20 elsewhereare in C1 since �, �0, and 0 are all continuous at the knots f0; 1; 2g, but neither �00 nor 00 exist at theknots. 57

The functions�i(x) =8<: �((x� a)=h� i=2 + 1) for i even ((x � a)=h� (i � 1)=2 + 1) for i odd 9=; i = 0; : : : ; 2n+ 1 (42)are cubic PPs w.r.t. the evenly-spaced knots fxi = a+ ih : i = 0; : : : ; ng, where h = (b� a)=n. Note �i and�0 are continuous, but �00i does not exist at the knots, so �i 2 C1. These functions form a basis for the spaceof cubic PPs in C1 w.r.t. these knots.8.6 Piecewise Polynomial InterpolationPiecewise polynomials, including splines, are often used for interpolation, especially for large data sets. Themain advantage in using PPs, instead of polynomials, to interpolate a function g(x) at n points, where n� 1,is that the error of a PP interpolant does not depend on the nth derivative of g(x), but rather on a low-orderderivative of g(x). Usually, if g(x) 2 CN+1[a; b] and sN (x) is a PP of degree N in CK that interpolates g(x)at n(N �K) +K + 1 properly chosen points, then the interpolation error at any point x 2 [a; b] satis�esjg(x)� sN (x)j � C hN+1 maxa���b jg(N+1)(�)jfor some constant C independent of h = maxfxi � xi�1 : i = 1; : : : ; ng.Another advantage of PP interpolation is that it leads either to simple relations that de�ne the PPinterpolant or gives rise to banded systems which can be solved easily for the coe�cients of the PP interpolantby the techniques described in x2.7.In the following subsections, we give examples of PP interpolation. We assume throughout that h =(b� a)=n and xi = a+ i h for i = 0; : : : ; n, but these restrictions can be removed easily.An introduction to PP interpolation is presented in many introductory numerical analysis textbooks,such as (Johnson and Riess 1982). For a more detailed discussion, see an advanced text such as (Prenter1975) or (de Boor 1978).8.6.1 Linear Spline InterpolationLet �i(x) be de�ned by (39). The function s1(x) = nXi=0 ci�i(x)with ci = g(xi) is the unique linear spline that interpolates g(x) at the knots fxi : i = 0; : : : ; ng.58

8.6.2 Quadratic Spline InterpolationLet �i(x) be de�ned by (40). The function s2(x) = n+1Xi=0 ci�i(x)is the unique quadratic spline that interpolates g(x) at the n+ 2 points x0, (xi�1 + xi)=2, i = 1; : : : ; n, andxn, if the coe�cients ci, i = 0; : : : ; n+1, are chosen so that they satisfy the n+ 2 conditions s2(x0) = g(x0),s2((xi�1 + xi)=2) = g((xi�1 + xi)=2), i = 1; : : : ; n, and s2(xn) = g(xn). These conditions give rise to atridiagonal linear system of n+ 2 equations in the n + 2 unknowns ci, i = 0; : : : ; n+ 1:0BBBBBBBBBBB@ 0:5 0:50:125 0:75 0:1250:125 0:75 0:125..0:125 0:75 0:1250:5 0:5 1CCCCCCCCCCCA0BBBBBBBBBBB@ c0c1c2...cncn+1 1CCCCCCCCCCCA = 0BBBBBBBBBBB@ g(x0)g((x0 + x1)=2)g((x1 + x2)=2)...g((xn�1 + xn)=2)g(xn) 1CCCCCCCCCCCASince this system is diagonally dominant in all rows and strictly diagonally dominant in all rows expectthe �rst and last, it is nonsingular and has a unique solution. Moreover, if the �rst and last equationsare multiplied by :25, the resulting system is symmetric positive-de�nite. So the coe�cients fcig of theassociated quadratic spline interpolant can be computed easily by the techniques described in x2.7.8.6.3 Cubic Spline InterpolationLet �i(x) be de�ned by (41). The function s32(x) = n+1Xi=�1 ci�i(x)is a cubic spline that interpolates g(x) at the n + 1 points xi, i = 0; : : : ; n, if the coe�cients ci, i =�1; : : : ; n + 1, are chosen so that they satisfy the n + 1 conditions s32(xi) = g(xi), i = 0; : : : ; n. Theseconditions give rise to a linear system of n + 1 equations in the n + 3 unknowns ci, i = �1; : : : ; n + 1.To determine the unknown coe�cients uniquely, two more appropriately chosen conditions (equations) areneeded. The standard choices are:(a) s0032(x0) = 0 and s0032(xn) = 0, giving rise to the natural or minimum curvature cubic spline interpolant,(b) s032(x0) = g0(x0) and s032(xn) = g0(xn), giving rise to a more accurate cubic spline interpolant, but onewhich requires knowledge of g0(x) (or a good approximation to it) at both endpoints,(c) the not-a-knot conditions which force s32(x) to have a continuous third derivative at the knots x1 andxn�1. 59

In all three cases, the resulting linear system of n + 3 equations in n + 3 unknowns is almost tridiagonal.More speci�cally, it is tridiagonal with the exception of the two rows corresponding to the extra conditions.So the coe�cients fcig of the associated cubic spline interpolant can be computed easily by the techniquesdescribed in x2.7.8.6.4 Cubic Hermite Piecewise Polynomial InterpolationLet �i(x) be de�ned by (42). The function s31(x) = 2n+1Xi=0 ci�i(x)with c2i = g(xi), i = 0; : : : ; n, and c2i+1 = g0(xi), i = 0; : : : ; n, is the unique Hermite PP that interpolatesg(x) and its derivative at the n+ 1 points xi, i = 0; : : : ; n.8.7 Least Squares ApproximationIt is possible to construct a function f(x) which approximates the data f(xi; yi) : i = 0; : : : ;mg in the sensethat f(xi)� yi is \small" for i = 0; : : : ;m, but f(xi) 6= yi in general. One way is to construct an f in someclass of functions that minimizes mXi=0wi(f(xi)� yi)2for some positive weights wi, i = 0; : : : ;m. Such an f is called a discrete least squares approximation to thedata.Similarly, it is possible to construct a function f(x) which approximates a continuous function y(x) onan interval [a; b] in the sense that jf(x) � y(x)j is \small" for all x 2 [a; b]. One way is to construct an f insome class of functions that minimizes Z ba w(x)(f(x) � y(x))2 dxfor some positive and continuous weight function w(x) on (a; b). Such an f is called a continuous leastsquares approximation to y.Often, f is chosen to be a polynomial of degree n < m. (For the discrete least squares problem, if f is apolynomial of degree n = m, then f interpolates the data.)Let f and g 2 C[a; b]. We denote the discrete inner product of f and g at distinct points xi, i = 0; : : : ;m,w.r.t. the weights wi, i = 0; : : : ;m, by (f; g) = mXi=0 wif(xi)g(xi)60

and the continuous inner product of f and g on [a; b] w.r.t. weight function w(x) by(f; g) = Z ba w(x)f(x)g(x) dxGiven an inner product (�; �), as above, we denote the norm of f by kfk = p(f; f). Thus we have thediscrete norm kfk =vuut mXi=0 wif(xi)2and the continuous norm kfk =sZ ba w(x)f(x)2 dxTherefore, the problem of constructing a least squares approximation f(x) to a given set of data f(xi; yi)g orto a given function y(x) is to construct an f(x) that minimizes the norm, discrete or continuous, respectively,of the error kf � yk.We note that the \discrete inner product" is not strictly speaking an inner product in all cases, since itmay fail to satisfy the property that (f; f) = 0 implies f(x) = 0 for all x. However, if we restrict the classof functions to which f belongs appropriately, then (�; �) is a true inner product. For example, if we restrictf to the class of polynomials of degree at most n and if n < m, then (f; f) = 0 implies f(x) = 0 for all x.Similar remarks apply to the discrete norm.Before giving the main theorem on how to construct the least squares polynomial approximation to agiven set of data or to a given function, we introduce orthogonal polynomials and the Gram-Schmidt processto construct them.8.7.1 Orthogonal PolynomialsA set of n+ 1 polynomials fqi(x) : i = 0; : : : ; ng is orthogonal w.r.t. the inner product (�; �) if (qi; qj) = 0 fori 6= j. A set of n + 1 orthogonal polynomials fqi(x) : i = 0; : : : ; ng is orthonormal w.r.t. the inner product(�; �) if in addition (qi; qi) = 1 for i = 0; : : : ; n.8.7.2 The Gram-Schmidt Orthogonalization AlgorithmThe Gram-Schmidt algorithm applied to a set of n+ 1 linearly independent polynomials fpj : j = 0; : : : ; nggenerates a set of n + 1 orthonormal polynomials fqi(x) : i = 0; : : : ; ng and a set of n + 1 orthogonalpolynomials fsi(x) : i = 0; : : : ; ng. Often, the set of n+1 linearly independent polynomials fpj : j = 0; : : : ; ngis chosen to be the set of monomials fxj : j = 0; : : : ; ng.The Gram-Schmidt algorithm for polynomials is similar to the Gram-Schmidt algorithm for matricesdescribed in x4.6. The reader may refer to an introductory numerical methods text such as (Johnson andRiess 1982) for more details. Here we note only that the role of inner product of vectors in the algorithm inx4.6 is replaced by the inner product, discrete or continuous, of functions as de�ned in x8.7.1.61

8.7.3 Constructing the Least Squares Polynomial ApproximationThe following result is proved in many introductory numerical methods books. See for example (Johnsonand Riess 1982).Theorem: Assume that we are given either a continuous function y(x) on [a; b] or a data set f(xi; yi) :i = 0; : : : ;mg. Let fqj : j = 0; : : : ; ng be a set of orthonormal polynomials w.r.t. an inner product (�; �)appropriate for the given data and assume fqj : j = 0; : : : ; ng spans fxi : i = 0; : : : ; ng, where n < m for thediscrete problem. Then p�(x) = nXj=0(y; qj) qj(x)is the least squares polynomial of degree at most n. It is optimal in the sense that, if p(x) is any otherpolynomial of degree at most n, then ky � p�k < ky � pk, where k � k is the norm associated with the innerproduct (�; �).As noted in x8.7.2, a set of orthonormal polynomials fqj : j = 0; : : : ; ng that spans fxi : i = 0; : : : ; ngcan be constructed by the Gram-Schmidt algorithm applied to the monomial basis polynomials fxi : i =0; : : : ; ng.9 Numerical Integration | QuadratureIn this section, we consider formulas for approximating integrals of the formI(f) = Z ba f(x) dx:Such formulas are often called quadrature rules. We assume a and b are �nite and f is smooth in most cases,but we brie
y discuss in�nite integrals and singularities in x9.5.In many practical problems, f(x) is given either as a set of values f(x1); : : : ; f(xn) or f(x) is hard orimpossible to integrate exactly. In these cases, the integral may be approximated by numerical techniques,which often take the form Q(f) = nXi=1 wif(xi):Such a formula is called a quadrature rule, the fwig are called weights and the fxig are called abscissae ornodes.Most quadrature rules are derived by �rst approximating f by a simpler function, frequently a polynomial,and then integrating the simpler function. Thus, the area under the curve f , which is the exact value ofI(f), is approximated by the area under the curve of the simpler function.For a more detailed discussion of the topics in this section, see an introductory numerical methods textsuch as (Conte and de Boor 1980; Dahlquist and Bj�orck 1974; Johnson and Riess 1982; Stoer and Bulirsch1980). 62

9.1 Simple Quadrature RulesSeveral simple quadrature rules are listed below.� The rectangle rule approximates I(f) by the area under the constant y = f(a) or y = f(b).� The midpoint rule approximates I(f) by the area under the constant y = f((a + b)=2).� The trapezoidal rule approximates I(f) by the area under the straight line joining the points (a; f(a))and (b; f(b)).� Simpson's rule approximates I(f) by the area under the quadratic that interpolates (a; f(a)), (m; f(m))and (b; f(b)), where m = (a+ b)=2.� The corrected trapezoidal rule approximates I(f) by the area under the cubic Hermite that interpolates(a; f(a); f 0(a)) and (b; f(b); f 0(b)).� Newton-Cotes rules are discussed in x9.1.1 below.� Gaussian rules are discussed in x9.1.2 below.The formula Q(f) and the associated error I(f) � Q(f) for each quadrature rule listed above are givenin Table 13, where n is the number of function and derivative evaluations, d is the polynomial degree ofthe quadrature rule (see x9.1.1 below), � is an unknown point in [a; b] (generally di�erent for each rule),m = (a+ b)=2 is the midpoint of the interval [a; b], C and K are some constants. For the derivation of thesequadrature rules and their associated error formulas, see an introductory numerical methods text such as(Conte and de Boor 1980; Dahlquist and Bj�orck 1974; Johnson and Riess 1982; Stoer and Bulirsch 1980).9.1.1 Some De�nitionsA quadrature rule which is based on integrating a polynomial interpolant is called an interpolatory rule.All the simple quadrature rules listed in Table 13 are interpolatory. Writing the polynomial interpolant inLagrange form and integrating it, we see immediately that the weights wi do not depend on the function f ,but only on the abscissae fxi : i = 1; : : : ; ng.Quadrature rules are, in general, not exact. An error formula for an interpolatory rule can often be derivedby integrating the associated polynomial interpolant error. Error formulas for some simple quadrature rulesare listed in Table 13.A quadrature rule which is exact for all polynomials of degree d or less, but is not exact for all polynomialsof degree d+1, is said to have polynomial degree d. An interpolatory rule based on n function and derivativevalues has polynomial degree at least n� 1.Quadrature rules that include the end-points of the interval of integration [a; b] as abscissae are calledclosed rules, while those that do not include the end-points are called open rules. An advantage of open rulesis that they can be applied to integrals with singularities at the end-points, whereas closed rules usually cannot. 63

Interpolatory rules based on equidistant abscissae are called Newton-Cotes rules. This class includes therectangle, midpoint, trapezoidal, corrected trapezoidal and Simpson's rules. Both open and closed Newton-Cotes quadrature rules exist.9.1.2 Gaussian Quadrature RulesA quadrature rule Q(f) = nXi=1 wif(xi)is fully determined by n, the abscissae fxi : i = 1; : : : ; ng and the weights fwi : i = 1; : : : ; ng. Gauss showedthat, given n and the end-points a and b of the integral,1. there exists a unique set of abscissae fxig and weights fwig which give a quadrature rule | called theGaussian quadrature rule | that is exact for all polynomials of degree 2n� 1 or less,2. no quadrature rule with n abscissae and n weights is exact for all polynomials of degree 2n,3. the weights fwig of the Gaussian quadrature rule are all positive,4. the Gaussian quadrature rule is open,5. the abscissae fxig of the Gaussian quadrature rule are the roots of the shifted Legendre polynomialqn(x) of degree n, which is the unique monic polynomial of degree n that is orthogonal to all polynomialsof degree n� 1 or less w.r.t. the continuous inner product(f; g) = Z ba f(x)g(x) dx(see x8.7.1),6. the Gaussian quadrature rule is interpolatory, i.e., it can be derived by integrating the polynomial ofdegree n� 1 that interpolates f at the abscissae fxig.Thus, Gauss derived the class of open interpolatory quadrature rules of maximum polynomial degreed = 2n�1. As noted above, these formulas are calledGaussian quadrature rules orGauss-Legendre quadraturerules.9.1.3 Translating the Interval of IntegrationThe weights and abscissae of simple quadrature rules are usually given w.r.t. a speci�c interval of integration,such as [0; 1] or [�1; 1]. However, the weights and abscissae can be transformed easily to obtain a relatedquadrature rule appropriate for some other interval.One simple way to do this is based on the linear change of variables x̂ = �(x�a)=(b�a)+�(b�x)=(b�a)which leads to the relation Z �� f(x̂) dx̂ = Z ba f �� x� ab� a + �b� xb� a� � � �b� a dx (43)64

So, if we are given a quadrature rule on [a; b] with weights fwi : i = 1; : : : ; ng and abscissae fxi : i = 1; : : : ; ng,but we want to compute Z �� f(x̂) dx̂;we can apply the quadrature rule to the integral on the right side of (43). An equivalent way of viewing thisis that we have developed a related quadrature rule for the interval of integration [�; �] with weights andabscissae ŵi = � � �b� a wi and x̂i = �xi � ab� a + �b� xib� afor i = 1; : : : ; n. Note that, because we have used a linear change of variables, the original rule for [a; b] andthe related one for [�; �] have the same polynomial degree.9.1.4 Comparison of Gaussian and Newton-Cotes Quadrature RulesWe list some similarities and di�erences between Gaussian and Newton-Cotes quadrature rules below.1. The weights of a Gaussian rule are all positive, which contributes to the stability of the formula. Highorder Newton-Cotes rules typically have both positive and negative weights, which is less desirable,since it leads to poorer stability properties.2. Gaussian rules are open, whereas there are both open Newton-Cotes rules and closed Newton-Cotesrules.3. Gaussian rules attain the maximum possible polynomial degree 2n � 1 for a formula with n weightsand abscissae, whereas the polynomial degree d of a Newton-Cotes rule satis�es n � 1 � d � 2n � 1and the upper bound can be obtained for n = 1 only.4. The abscissae and weights of Gaussian rules are often irrational numbers and hard to remember, butthey are not di�cult to compute. The abscissae of a Newton-Cotes rule are easy to remember and theweights are simple to compute.5. The set of abscissae for a n-point Gaussian rule and for a m-point Gaussian rule are almost disjointfor all n 6= m. Thus we can not reuse function evaluations performed for one Gaussian rule in an-other Gaussian rule. Appropriately chosen pairs of Newton-Cotes rules can share function evaluationse�ectively.6. Both Gaussian and Newton-Cotes rules are interpolatory.9.2 Composite (Compound) Quadrature RulesTo increase the accuracy of a numerical approximation to an integral, we could use a rule with more weightsand abscissae. This often works with Gaussian rules, if f is su�ciently smooth, but it is not advisable withNewton-Cotes rules, for example, because of stability problems associated with high-order formulas in thisclass. 65

Another e�ective way to achieve high accuracy is to use composite quadrature rules, often also calledcompound quadrature rules. In these schemes, the interval of integration [a; b] is subdivided into panels(or subintervals) and on each panel the same simple quadrature rule is applied. If the associated simplequadrature rule is interpolatory, then this approach leads to the integration of a piecewise polynomial (PP)interpolant. Thus, using a composite quadrature rule, instead of a simple one with high polynomial degree,leads to many of the same bene�ts that are obtained in using PP interpolants compared to high-degreepolynomial interpolants (see x8.5).Table 14 summarizes the composite quadrature rules and the associated error formulas. In the table, nis the number of function and derivative evaluations, d is the polynomial degree of the quadrature rule, �is an unknown point in [a; b] (in general di�erent for each rule), h = (b� a)=s is the stepsize of each panel,s is the number of panels and PP stands for piecewise polynomial. Composite quadrature rules based onGaussian or Newton-Cotes rules can also be used, although they are not listed in Table 14.9.3 Adaptive QuadratureWe see from Table 14 of composite quadrature rules that the smaller the stepsize h of a panel the smallerthe expected error. It is often the case that an approximation to the integralI(f) = Z ba f(x) dxis needed to within a speci�ed accuracy �. In this case, adaptive quadrature is often used. Such schemesre�ne the grid (or collection of panels) until an estimate of the total error in the integration is within thedesired precision �. Adaptive quadrature is particularly useful when the behaviour of the function f variessigni�cantly in the interval of integration [a; b], since the scheme can use a �ne grid where f is hard tointegrate and a coarse grid where it is easy, leading to an e�cient and accurate quadrature procedure.Table 15 gives a simple general recursive procedure for adaptive quadrature. We assume that we canmake use of a routine LQM (Local Quadrature Module) which implements a quadrature rule in some interval[a; b] and returns Q, an approximation to the integral, and E, an estimate of the error. In the next section,we discuss how an error estimate may be obtained.We note that the adaptive quadrature procedure shown in Table 15 does not illustrate how to reusefunction evaluations where possible. An e�ective adaptive quadrature routine should do this, since functionevaluations are often the most computationally expensive part of the procedure.9.4 Romberg Integration and Error EstimationAs discussed in the last subsection, adaptive quadrature requires an error estimate. As an illustration, weconsider how one may be obtained for the composite trapezoidal rule.66

Let Ts(f) denote the composite trapezoidal rule approximation toI(f) = Z ba f(x) dxusing s panels and let Es = I(f) � Ts(f) be the associated error. Based on the error formula in Table 13,we expect E2s to be about 4 times smaller than Es, assuming that f 00(x) does not vary too much. That is,I(f) � Ts(f) = EsI(f) � T2s(f) = E2s � 14Es:Subtracting these two equations, we getT2s(f) � Ts(f) = Es �E2s � 34Es:So Es � 4(T2s(f) � Ts(f))=3 and E2s � (T2s(f) � Ts(f))=3. Thus, by applying the composite trapezoidalrule �rst with s and then with 2s panels, we obtain estimates of the error in both Ts(f) and T2s(f).If we add the estimate of the error Es = I(f) � Ts(f) to Ts(f) we often obtain a better approximationto I(f) than either Ts(f) or T2s(f). That is, T̂s(f) = Ts(f) + 4(T2s(f) � Ts(f))=3 = (4T2s(f) � Ts(f))=3 isoften a better approximation to I(f) than either Ts(f) or T2s(f), particularly if the function f is smoothand the grid is �ne. Thus, by applying the compound trapezoidal rule with s and 2s panels and taking anappropriate linear combination of the two approximations, we construct a better approximation to I(f). Tobe more speci�c, it can be shown that this eliminates the lowest order term in the error Es or E2s. Thisprocess can be repeated to eliminate the next higher-order term in the error and so on. In addition, it canbe generalized easily to other quadrature rules.This is the basic idea behind Romberg integration. By applying a quadrature rule repeatedly with morepanels each time, we can eliminate the leading terms of the error expansion, and thereby obtain better andbetter approximations to I(f).9.5 In�nite Integrals and SingularitiesIf one or both end-points of the interval of integration [a; b] are in�nite, the integral is called in�nite. Werestrict the discussion of in�nite integrals to the caseI(f) = Z 1a f(x) dx;sometimes called a semi-in�nite integral, since only one end-point is in�nite. Other cases can be handledsimilarly.Assuming I(f) = Z 1a f(x) dx67

exists, one way to approximate the integral is to truncate I(f), and compute insteadÎ(f) = Z ba f(x) dx;for some su�ciently large b, by a standard quadrature rule Q(f). The error in this approach is I(f)�Q(f) =[I(f) � Î(f)] + [Î(f) � Q(f)]. It is often possible to choose b so thatI(f) � Î(f) = Z 1b f(x) dxis small and to choose Q so that Î(f) �Q(f) is also small.I(f) can also be approximated by �rst performing a change of variables to transform the in�nite integralto a standard one. More speci�cally, let x = g(t). ThenI(f) = Z 1a f(x) dx = Z g�1(1)g�1(a) f(g(t)) � g0(t)dt;where g�1(x) is the inverse of g(x). If we can choose g so that g�1(a) and g�1(1) are both �nite, thenI(f) is transformed to a �nite integral which can be evaluated by a standard quadrature rule. However, thisprocedure may introduce singularities (discussed below). If so, it might not lead to a computationally easierproblem to solve.In�nite integrals can also be approximated by special quadrature formulas that are directly applicable toin�nite intervals of integration. For further details concerning this approach, see an introductory numericalmethods text such as (Conte and de Boor 1980; Dahlquist and Bj�orck 1974; Johnson and Riess 1982; Stoerand Bulirsch 1980).A singular integral I(f) = Z ba f(x) dxis one in which f is singular (i.e., becomes in�nite) at some point in [a; b]. Singular and in�nite integrals areclosely related: a change of variables often transforms one into the other.When computing singular integrals by a quadrature rule, the value of f might be required at or close toa point of singularity, and so the quadrature rule may be either inapplicable or inaccurate. It often happensthat the singularity in f occurs at the end-point a or b, in which case, an open formula, such as a Gaussianrule, may be e�ective.The performance of a quadrature rule applied to a singular integral might be improved by a change ofvariables. A transformation x = g(t) which often helps to remove or lessen the e�ect of a singularity isg(t) = b� (b � a)u2(2u+ 3) for u = (t � b)=(b� a). 68

9.6 Monte Carlo MethodsMonte Carlo methods are of a statistical nature. For the sake of simplicity, we brie
y present them forone-dimensional integrals only, but they can be extended easily to multidimensional integrals and are mostuseful in this context.To begin, choose n random points fUi : i = 1; : : : ; ng � [0; 1] and scale each Ui to [a; b] by ui = a+Ui(b�a).Then, Qn(f) = (b � a)=n nXi=1 f(ui)is a Monte Carlo approximation to I(f) = Z ba f(x) dx:If we consider Qn(f) to be a random variable, then it can be shown that its mean is I(f) and itsstandard deviation is jb�aj�(f)=pn, where �(f) is a constant that depends on f , but not n. Assuming thatQn(f) is close to being normally distributed, we are led to statistical statements about the error, such asjQn(f) � I(f)j � 2jb� aj�(f)=pn nineteen times out of twenty.Note the error bound above decreases like 1=pn, much more slowly than the bounds for the standardcompound quadrature rules given in Table 14. This suggests that Monte Carlo methods are not very e�ectivefor one-dimensional integrals of smooth functions. However, an error formula similar to that given abovecontinues to hold for multi-dimensional integrals, while extensions of standard methods become increasinglyless e�cient as the dimension of the integral to be approximated increases. As a result, Monte Carlo methodsare among the best schemes available for approximating high-dimensional integrals.10 Ordinary Di�erential EquationsIn this section, we consider numerical methods for the solution of ordinary di�erential equations (ODEs).We begin by introducing some simple schemes for the initial-value problem (IVP)y0(x) = f(x; y(x)) x 2 [a; b]y(a) = y0 (44)where y : R! Rm and f : R�Rm! Rm. We assume throughout that the IVP (44) has a unique solutionfor x 2 [a; b]. We also discuss more sophisticated adaptive methods and explain the terms sti� and nonsti�problems and how to choose methods appropriate for these two classes of problems. We then brie
y considerthe boundary-value problem (BVP) y0(x) = f(x; y(x)) x 2 [a; b]g(y(a); y(b)) = 0 (45)which we assume has a locally unique solution.For both IVPs and BVPs, we consider systems of �rst-order ODEs only, since most commonly available69

codes are for �rst-order systems and any higher-order ODE can be reduced to a system of �rst-order equa-tions. However, using a method designed for higher-order equations directly may lead to a more e�cientsolution of the problem.Because of space constraints, we do not discuss many important related problems such as di�erential-algebraic equations or delay di�erential equations. For a more comprehensive discussion of these and otherrelated topics, see an advanced text such as (Ascher, Mattheij and Russell 1988; Butcher 1987; Hairer,N�rsett and Wanner 1987; Hairer and Wanner 1991; Lambert 1991; Shampine 1994).10.1 Initial Value Problems10.1.1 Two Simple FormulasMost standard numerical methods for the IVP (44) start with the initial value y0 at x0 = a and then computeapproximations yn � y(xn) for n = 1; : : : ; N on a discrete grid a = x0 < x1 < � � � < xN = b. The distancebetween adjacent gridpoints, hn = xn+1 � xn, n = 0; : : : ; N � 1, is referred to as the stepsize at step n+ 1.Schemes are often presented with a constant stepsize h = hn for all n, but this is generally not required.Moreover, as discussed below, variable-stepsize methods are often much more e�cient.Possibly the simplest numerical scheme for (44) is Euler's method, sometimes called the forward Eulermethod : yn+1 = yn + hnf(xn; yn): (46)This formula is motivated from the observation that the true solution of a scalar IVP of the form (44) satis�esy(xn+1) = y(xn) + hny0(xn) + h2n2 y00(�n)= y(xn) + hnf(xn; y(xn)) + h2n2 y00(�n) (47)for some point �n 2 [xn; xn+1], which follows from standard Taylor series theory. Thus, the true solutionof the IVP (44) satis�es an equation that is very similar to (46). This argument can be extended easily tosystems.The approximations yn � y(xn) are computed in the order n = 1; : : : ; N using the formula (46). To bemore speci�c, on the �rst step of Euler's method from x0 to x1 = x0 + h0, we substitute the initial value(x0; y0) into the right side of (46) to compute y1 � y(x1). Thus, at the end of the �rst step, we have (x1; y1).On the second step of Euler's method from x1 to x2 = x1 + h1, we substitute (x1; y1) into the right sideof (46) to compute y2 � y(x2). The procedure continues in a similar way for n = 2; : : : ; N . Note that thisevaluation process applies equally well to systems of equations (i.e., m > 1). In this case, hn is a scalar, butyn+1, yn and f(xn; yn) are all m-vectors.Euler's method is an explicit formula in the sense that the evaluation process described above does notrequire the solution of any linear or nonlinear algebraic equations. The backward Euler formulayn+1 = yn + hnf(xn+1; yn+1) (48)70

is a typical example of an implicit formula. It can be motivated from a Taylor series expansion of the truesolution y(x) of the IVP (44) about xn+1 similar to the expansion (47) above for y(x) about xn. Moreover,we again compute the approximations yn � y(xn) in the order n = 1; : : : ; N . However, note that, on stepn+ 1 from xn to xn+1 = xn + hn, we start with (xn; yn) and must solve the equation (48) for yn+1.We will return to the question of how to solve for yn+1 shortly, but �rst we explain brie
y in the nextsubsection why we may wish to use an implicit scheme (such as the backward Euler formula) rather than anexplicit one (such as the forward Euler formula) even though the former clearly requires more work per stepthan the latter.10.1.2 Sti� IVPsRoughly speaking, a sti� IVP is one in which some terms in the solution decay rapidly with respect to thelength of the integration, while others vary slowly on this time scale. To illustrate this concept, consider thelinear constant coe�cient problem y0 = Ay, y(0) = y0 for x 2 [0; 1], whereA = 12 0@ �106 � 1 106 � 1106 � 1 �106 � 1 1A ; y0 = 0@ 20 1A :If we let z = Py, whereP = 12 0@ 1 �11 1 1A ; P�1 = 0@ 1 1�1 1 1A ; D = PAP�1 = 0@ �106 00 �1 1A ;then z0 = Py0 = PAy = PAP�1z = Dz and z(0) = Py(0) = (1; 1)T . Therefore, z(x) = (e�106x; e�x)T andso y(x) = P�1z(x) = (e�x + e�106x; e�x � e�106x)T . The term e�106x that occurs in both z(x) and y(x)gives rise to an initial transient that decays rapidly with respect to the interval of integration [0; 1], whilethe term e�x is associated with a slowly varying smooth term on this scale. The fast and slow terms occurin di�erent components of z(x), but they are mixed in y(x), which is often the case in practice. After thee�106x term dies out, both components of y(x) vary smoothly like e�x.If we apply the forward Euler formula to y0 = Ay, we get yn+1 = yn+hnAyn = (I+hnA)yn. If we multiplythe last equation through by P and perform the change of variables zn = Pyn, we get zn+1 = (I + hnD)zn.The two components of zn satisfy z(1)n+1 = (1 � hn106)z(1)n and z(2)n+1 = (1 � hn)z(2)n . If we let hn > 2 � 10�6at any point during the integration, then (1 � hn106) < �1 and z(1)n will grow in magnitude and oscillatein sign as n increases. Since yn = P�1zn, this will cause both components of yn to oscillate about e�xnwith growing amplitude as n increases. Since this instability is undesirable, we must restrict hn < 2 � 10�6throughout the integration, even though, after the initial transient, this is likely a much smaller stepsizethan would be required to integrate the slowly varying e�x component of the solution accurately.On the other hand, if we apply the backward Euler formula to y0 = Ay, we get yn+1 = yn + hnAyn+1and so yn+1 = (I�hA)�1yn. If we multiply this equation through by P and perform the change of variableszn = Pyn, we get zn+1 = (I � hnD)�1zn. Therefore, z(1)n+1 = z(1)n =(1 + hn106) and z(2)n+1 = z(2)n =(1 + hn).71

Hence, no matter how large hn > 0 is, z(1)n decays as n increases. Consequently, after the initial transient,we can choose hn > 0 to integrate z(2)n accurately without fear of z(1)n becoming unstable. Since yn = P�1zn,the same conclusion applies to yn.The example above can be generalized to larger systems of equations y0 = Ay. If A is diagonalizable,then the performance of the method on y0 = Ay can be deduced from its performance on the scalar testproblems y0 = �y, where the �'s range over the eigenvalues of A. If the real part of each � is negative, theny(x) ! 0 as x ! 1. We would like the numerical solution to have the same behaviour without having torestrict hn outside the transient region. Methods with this property are called A-stable. Generalizing theexample above, it is easy to see that the backward Euler formula is A-stable, while the forward Euler formulais not.The importance of the example above and the scalar test problem y0 = �y in particular is that theperformance of methods on these simple problems is indicative of their behaviour on more general nonlinearsti� problems. A nonrigourous, but intuitive, justi�cation of this follows from the local linearization ofy0 = f(x; y) at (xn; yn): y0(x) � f(xn; yn) + fx(xn; yn)(x� xn) + fy(xn; yn)(y � yn)where fy(x; y) = @f(x; y)=@y 2 Rm�m is the Jacobian of f . This problem is usually sti� if� some eigenvalue of fy(xn; yn) has a large negative real part with respect to the interval of integration,� no eigenvalue of fy(xn; yn) has a large positive real part with respect to the interval of integration, and� no eigenvalue of fy(xn; yn) has a large imaginary part unless it also has a relatively large negative realpart.An IVP which is not sti� is called nonsti�.Sti� IVPs arise in many applications, such as chemical kinetics and electrical circuits. As noted earlier,they are characterized by components that vary on vastly di�erent time scales: some terms in the solutiondecay rapidly to steady state while others vary slowly.The observation above that the explicit forward Euler formula is not appropriate for a sti� problem, whilethe implicit backward Euler formula is, can be generalized. All commonly used formulas that are suitablefor sti� problems are implicit in some sense.See the survey article of Shampine and Gear (1979) or an advanced text such as (Butcher 1987; Hairerand Wanner 1991; Lambert 1991; Shampine 1994) for a more detailed discussion of sti�ness.10.1.3 Solving Implicit EquationsWe return now to methods for solving for yn+1 in an implicit formula such as (48). One common approach isthe predictor-corrector technique, which is just a �xed point iteration as described in x6.1. For this scheme(and most others), we need in initial approximation y(0)n+1 to yn+1. This could be computed, for example,from the forward Euler formula or some other explicit scheme, or simply by taking y(0)n+1 = yn. In the72

terminology of predictor-corrector techniques, the formula for computing y(0)n+1 is referred to as the predictorformula. For a predictor-corrector method based on the backward Euler formula (48), the corrector formulawould be y(l+1)n+1 = yn + hnf(xn+1; y(l)n+1); l = 0; 1; : : : (49)We substitute y(0)n+1 into the right side of (49) to compute y(1)n+1, which we in turn substitute into the rightside of (49) to compute y(2)n+1, and so on. It is easy to show that y(l)n+1 ! yn+1 as l ! 1 if f satis�es theLipschitz condition kf(xn+1; y) � f(xn+1; z)k � Lky � zkfor some constant L and all y, z in a convex domain containing yn+1 and y(l)n+1 for l = 0; 1; : : : and hnL < 1.In most codes, one or two corrections only are needed, since the initial guess y(0)n+1 is normally a goodapproximation to yn+1. Consequently, this scheme is not much more expensive to implement than theexplicit forward Euler formula. However, a predictor-corrector implementation of an A-stable method (suchas the backward Euler formula) is not A-stable. On the contrary, because of the requirement hnL < 1, itwill su�er a stepsize restriction on a sti� problem similar to that of an explicit formula.Alternatively, we could rewrite the backward Euler formula (48) asF (y) = y � yn � hnf(xn+1; y) = 0; (50)where we have replaced the unknown yn+1 by y, and then apply one of the other techniques described inx6 for �nding roots of equations to compute the solution y = yn+1 of (50). The most commonly used root�nding technique in this context is Newton's method | or a variant of it. As noted in x6.7, for systems ofequations, Newton's method takes the form�I � hnfy(xn+1; y(l)n+1)��l = yn + hnf(xn+1; y(l)n+1)� y(l)n+1 (51)y(l+1)n+1 = y(l)n+1 +�l (52)where fy(x; y) = @f(x; y)=@y 2 Rm�m is the Jacobian of f . Note that we must solve a linear system of mequations in m unknowns to compute the Newton update vector �l in (51). Typically, Gaussian eliminationwith partial pivoting (see x2.5) is used to solve such linear systems. A band or sparse solver (see x2.7) maydramatically decrease the cost of solving (51) if I �hnfy(xn+1; y(l)n+1) is large and sparse. Similarly, iterativemethods, such as the preconditioned conjugate gradient method (see x3.2) may signi�cantly reduce the costof solving some large sparse problems. See x13 for a discussion of sources of high-quality numerical software,including sti� ODE solvers that incorporate sparse and iterative linear equation solvers.The computational work required to solve (51) can be decreased signi�cantly by using a chord Newtonmethod, often called a simpli�ed Newton method, that holds the Newton iteration matrix I�hnfy(xn+1; y(l)n+1)constant over several iterations and possibly several steps of the integration, thus avoiding the necessity tofactor the Newton iteration matrix on each iteration (see x6.8). However, even with this savings, the costper step of the Newton iteration may be much larger than a predictor-corrector method. However, it has73

the advantage for formulas appropriate for sti� problems that it avoids the stepsize restriction associatedwith the predictor-corrector technique or explicit formulas. Thus, even though the Newton iteration mightmake the scheme much more expensive per step, the stepsizes that can be used might be so much larger thatthe total cost of the integration is signi�cantly less. Finally note that, like predictor-corrector methods, aninitial guess for y(0)n+1 is required. It can be computed by the techniques described above.10.1.4 Higher Order FormulasA numerical method for ODEs is said to be of order p or pth order or pth order convergent if yn = y(xn) +O(hp) for some integer p � 1, where O(hp) is any quantity (in this case, the global error) that can bebounded by hp times a constant that is independent of h, but which may depend on the IVP and thenumerical method. Most standard texts on the numerical solution of ODEs show that both the forward andbackward Euler methods are �rst order convergent.Higher order methods are frequently used in practice because they o�er the potential of signi�cantlyreducing the computational work required to generate an accurate solution to the IVP (44). To get anintuitive feeling for this, suppose that the length of integration b � a = 1, we use a constant stepsize hthroughout the numerical integration, the global error for a pth order method satis�es yn � y(xn) = hp, andwe require that this error be of size 10�10. Under these assumptions, the optimal stepsize for the method ish = 10�10=p and the resulting number of steps needed to integrate from a to b is N = 10+10=p. To be morespeci�c, for p = 1; 2; 5; 10, the number of steps required is N = 1010; 105; 102; 101, respectively. Thus, eventhough a higher order method may require more work per step than a lower order scheme, the dramaticreduction in the number of steps required frequently makes a higher order method much more e�cient thana lower order one | particularly for problems with stringent error tolerances.Two common second-order formulas are the trapezoidal ruleyn+1 = yn + hn2 [f(xn; yn) + f(xn+1; yn+1)] (53)and the implicit midpoint rule yn+1 = yn + f(xn + hn=2; [yn+ yn+1]=2) (54)each of which is implicit, since one clearly needs to solve for yn+1. Note that neither formula requires muchmore work per step than the backward Euler formula. Moreover, both formulas are A-stable and e�ectivefor solving sti� problems at relaxed error tolerances.
74

10.1.5 Runge-Kutta FormulasRunge-Kutta (RK) formulas are a general class of methods containing many higher-order schemes. Thegeneral form of an s-stage RK formula iski = f(xn + cihn; yn + hnPsj=1 aijkj); i = 1; : : : ; s;yn+1 = yn + hnPsi=1 biki: (55)That is, we must �rst compute the s function values ki and then form a weighted average of the ki's tocompute yn+1 from yn.RK formulas are 1-step schemes in the sense that all the information required to compute yn+1 from ynis generated on the current step from xn to xn+1. That is, unlike multistep formulas discussed in the nextsubsection, a RK formula does not require any information from past steps.If the stages of the RK formula can be ordered so that aij = 0 for all j � i, then the formula (55) isexplicit in the sense that the ki's can be computed in the order i = 1; : : : ; s without having to solve anylinear or nonlinear equations. In what follows, we assume that the formula has been so ordered if possible.If the RK formula (55) is not explicit, then it is implicit and at least one linear or nonlinear equation mustbe solved to compute the ki's.The coe�cients of a RK formula are frequently displayed in a tableau asc1 a11 a12 � � � a1sc2 a21 a22 � � � a2s...cs as1 as2 � � � assb1 b2 � � � bsIf all the elements in the tableau on the diagonal and above it are zero, then the associated formula is explicit.All the methods considered so far are in fact RK formulas. The RK tableaux for the forward Eulerformula, backward Euler formula, implicit midpoint rule and trapezoidal rule are listed below from left toright, respectively. 0 01 1 11 1/2 1/21 0 0 01 1/2 1/21/2 1/2Note that the �rst three are 1-stage RK formulas and the �nal one, the trapezoidal rule, is a 2-stage RKformula. The tableau for the classical 4-stage 4th-order explicit RK formula is0 0 0 0 01/2 1/2 0 0 01/2 0 1/2 0 01 0 0 1 01/6 1/3 1/3 1/675

This formula has been widely used since it was published by Kutta in 1901. In the days of hand calculation,the zero coe�cients below the diagonal were a distinct bene�t, but this is no longer a signi�cant advantageon a modern computer. Moreover, there are now many better formulas, both of order 4 and of higher order.The interested reader should consult an advanced text such as (Butcher 1987; Hairer, N�rsett and Wanner1987; Hairer and Wanner 1991; Lambert 1991; Shampine 1994) for further details.As the sample formulas above suggest, a high-order RK formula requires more stages than a low-orderone. The minimum number of stages that an explicit RK formula requires to attain orders 1 to 8 are listedbelow. Order 1 2 3 4 5 6 7 8Stages 1 2 3 4 6 7 9 11On the other hand, implicit s-stage RK formulas of order 2s exist for all s � 1. Moreover, it can be shownthat this is the maximal order possible.Explicit RK formulas are frequently used to solve non-sti� IVPs. Some implicit RK formulas are A-stable(or nearly so) and are suitable for solving sti� IVPs. Formulas with four or fewer stages are quite e�ectivefor problems with relaxed error tolerances, while formulas with �ve or more stages are suitable for problemswith more stringent accuracy requirements. Since RK formulas are 1-step schemes, unlike linear multistepformulas (LMFs) discussed in the next subsection, RK formulas are more suitable than LMFs for problemsthat require rapid changes in stepsize, such as problems with discontinuities. See x13 for a discussion ofsources of high-quality numerical software, including routines based on RK formulas.10.1.6 Linear Multistep FormulasLinear multistep formulas (LMFs) can be written in the formyn+1 = kXi=1 �iyn+1�i + h kXi=0 �if(xn+1�i; yn+1�i) (56)where we assume at least one of �k or �k is nonzero (otherwise we can reduce k in (56)). Formula (56) is infact a k-step method, since it uses values over k steps to compute yn+1. Therefore, we assume that, at thestart of step n+ 1, we have yn+1�k; : : : ; yn and our task is to compute yn+1 by (56). In this case, if �0 = 0,then the f(xn+1; yn+1) term can be dropped from the right side of (56), and so we can evaluate the rightside of (56) to compute yn+1 without having to solve any linear or nonlinear equations. That is, if �0 = 0,the formula is explicit. On the other hand, if �0 6= 0, then yn+1 occurs on both sides of (56), and so a linearor nonlinear equation must be solved to compute yn+1. Therefore, the formula is implicit. Depending onthe context, a predictor-corrector method or some variant of Newton's method is typically used to solve foryn+1.Of course, at the start of the integration, n = 0 and y1�k; : : : ; y�1 are typically not available for k > 1.One solution to this problem is to compute y1; : : : ; yk�1 by a 1-step method (such as a RK formula) of thesame order as the k-step LMF and then start using the k-step LMF at step k. Alternatively, we could use a1-step LMF on step 1, a 2-step LMF on step 2, and so on, until we reach step k, after which we can use (56)76

on that step and all subsequent steps. Most LMF codes employ the latter strategy and adjust the stepsizeso that the accuracy obtained by the formulas with smaller k is comparable to that obtained by formulaswith larger k.If we ignore stability, then it is possible to obtain a k-step LMF of order 2k for any k � 1. Moreover, itis easy to show that this is the maximal order possible. However, these maximal order formulas are unstablefor k � 3 and so are not useful in practice. It can be shown that, for any k � 1, the maximal order of astable k-step LMF is k + 1 if k is odd and k + 2 if k is even.We have presented the LMFs in this section for �xed stepsize only, since variable-stepsize formulasare considerably more complicated. However, a variable-stepsize variable-order scheme may be far moree�cient in practice. Such schemes are discussed in advanced texts on the numerical solution of ODEs, suchas (Hairer, N�rsett and Wanner 1987; Hairer and Wanner 1991; Lambert 1991; Shampine 1994), but notusually in introductory numerical methods books.10.1.7 Adams FormulasAdams formulas are a subclass of LMFs that have the formyn+1 = yn + h kXi=0 �if(xn+1�i; yn+1�i): (57)In the explicit Adams-Bashforth formulas, �0 = 0 and the remaining k �i's are chosen to obtain the maximalpossible order k. In the implicit Adams-Moulton formulas, �0 6= 0 and the k+1 �i's are chosen to obtain themaximal possible order k+ 1. These coe�cients are listed in most advanced texts on numerical methods forODEs and in many introductory numerical methods books. It turns out that the forward Euler formula is the1-step Adams-Bashforth formula and the trapezoidal rule is the 1-step Adams-Moulton formula. Moreover,note that the order of the Adams-Moulton formulas is optimal for k odd and nearly optimal for k even.The implicit Adams-Moulton formulas have somewhat better numerical characteristics than the explicitAdams-Bashforth formulas. Consequently, Adams formulas are usually implemented in a predictor-correctorfashion, with the k or k+1 step Adams-Bashforth formula used for the predictor and a k step Adams-Moultonformula used for the corrector. Adams predictor-corrector schemes are the basis for several very e�ectivevariable-stepsize variable-order codes for nonsti� IVPs. See x13 for a discussion of sources of high-qualitynumerical software, including routines based on Adams formulas.10.1.8 Backward Di�erentiation FormulasBackward Di�erentiation Formulas (BDFs), sometimes called Gear formulas, are another subclass of LMFsthat have the form yn+1 = kXi=1 �iyn+1�i + h�0f(xn+1; yn+1) (58)where �0 6= 0 and so the BDFs are implicit. The k+ 1 coe�cients of a k-step BDF are chosen to obtain themaximal possibly order k. However, the BDFs are stable for 1 � k � 6 only. They are A-stable for k = 177

and 2 and nearly A-stable for k = 3, 4 and 5, with the loss of A-stability increasing with k. For k = 6 theloss of A-stability increases to such an extent that this formula is frequently excluded from use.The coe�cients for the BDFs are listed in most advanced texts on numerical methods for ODEs and inmany introductory numerical methods books. It turns out that the backward Euler formula is the 1-stepBDF.Because the BDFs are usually used to solve sti� problems, the implicit equation is normally solved byNewton's method or some variant of this root �nding scheme.BDFs are the basis for several very e�ective variable-stepsize variable-order codes for sti� IVPs. See x13for a discussion of sources of high-quality numerical software, including routines based on BDFs.10.1.9 Other MethodsTaylor series methods and extrapolation schemes are two other classes of formulas that are sometimes usedin practice, but much less frequently than Runge-Kutta or linear multistep formulas. See an advanced textsuch as (Butcher 1987; Hairer, N�rsett and Wanner 1987; Hairer and Wanner 1991; Lambert 1991; Shampine1994) for a discussion of these and other classes of methods.10.1.10 Adaptive MethodsMost good programs for the numerical solution of ODEs vary their stepsize | and possibly their order |in an attempt to solve the problem as e�ciently as possible subject to a user speci�ed error tolerance, tol.The error that is controlled is usually the local error on each step, rather than the global error yn � y(xn)that the user might at �rst expect. However, in most good programs the global error is at least roughlyproportional to tol, so reducing tol usually reduces the global error. A few codes report an estimate of theglobal error as well. If such an estimate is available, it is often optional, since estimating the global errorfrequently increases the cost of the integration signi�cantly.A useful way to interpret tol and the associated local error is in the backward error sense. (See x2.8 fora discussion of backward error analysis in the context of solving linear algebraic systems Ax = b.) Whencalled to solve the IVP (44), many good programs generate a numerical solution that is the exact solutionof the slightly perturbed problemz0(x) = f(x; z(x)) + �(x); z(a) = y0; (59)where k�(x)k / tol. A few codes compute �(x) explicitly and attempt to ensure that it is bounded by tol,but most satisfy (59) indirectly (some less reliably than others) by controlling some measure of the localerror. For a more complete discussion of global errors, local errors and their relationship to the perturbedequation (59), see an advanced text such as (Butcher 1987; Hairer, N�rsett and Wanner 1987; Hairer andWanner 1991; Lambert 1991; Shampine 1994).We believe that this backward error approach is often the most natural way to view the error in thenumerical integration of an IVP. In many practical problems, we know f(x; y) approximately only, possibly78

because of measurement errors or neglected terms in the model. Therefore, the true solution of the systemsatis�es an equation of the form (59), where in this case �(x) is the error in the model. So, any solution toan IVP of the form (59) may be equally good provided k�(x)k is less than the error in the model.Programs for the numerical solution of ODEs often contain many other useful features. For example,some routines for nonsti� IVPs warn the user if the problem is sti�, while others automatically switchbetween sti� and nonsti� methods depending on the characteristics of the problem. Some programs containsophisticated strategies to integrate problems with discontinuities in f or its derivatives much more e�cientlyand reliably than programs that do not attempt to detect discontinuities. Also, some programs return aninterpolant for the numerical solution or allow the user to evaluate the numerical solution at very closelyspaced points more e�ciently than if the integration method itself produced all these output points. Thiscan greatly increase the e�ciency of codes when used to produce graphical output or to detect when thenumerical solution satis�es some condition (such as y(x) = c for some constant c).See x13 for a discussion of sources of high-quality numerical software, including routines for the numericalsolution of IVPs for ODEs.10.2 Boundary Value Problems10.2.1 Shooting MethodsShooting is conceptionally one of the simplest numerical techniques for solving the boundary-value problem(BVP) (45). In its simplest form, often called simple shooting, we guess an initial condition y(a) = y0 for theIVP (44) for the same ODE as the BVP (45), solve the IVP (44), and test whether the boundary conditiong(y0; y(b; a; y0)) = 0 is satis�ed, or nearly so, where y(b; a; y0) is the solution at x = b of the IVP (44) withthe initial condition y(a) = y0. In most cases, the �rst guess for the initial condition y(a) = y0 does notyield a g(y0; y(b; a; y0)) that is close enough to 0. So we must apply some root �nding technique to adjustthe initial condition y(a) = y0 until g(y0; y(b; a; y0)) = 0 is satis�ed, or nearly so, assuming that there is asolution to the BVP.Each time we adjust the initial condition, we must solve the IVP (44) again with the new initial conditiony(a) = y(l)0 to compute y(b; a; y(l)0) and then g(y(l)0 ; y(b; a; y(l)0)). For a scalar ODE (m = 1), we could trya simple technique such as bisection (see x6.4) to solve g(y0; y(b; a; y0)) = 0, but this converges slowly andso requires many solutions of the IVP (44) with di�erent initial conditions y(l)0 . Moreover, bisection is notapplicable to systems of ODEs (m > 1).The usual approach is to apply a variant of Newton's method (see x6.7) to solve g(y0; y(b; a; y0)) = 0.However, this requires that we compute an approximation to the Newton iteration matrixdg(y(l)0 ; y(b; a; y(l)0))dy0 = @g(y(l)0 ; y(b; a; y(l)0))@ya + @g(y(l)0 ; y(b; a; y(l)0))@yb @y(b; a; y(l)0)@y0where @g(y(l)0 ; y(b; a; y(l)0))=@ya is the partial derivative of g with respect to its �rst argument, @g(y(l)0 ; y(b; a; y(l)0))=@ybis the partial derivative of g with respect to its second argument, and @y(b; a; y(l)0)=@y0 is the partial derivation79

of y(b; a; y(l)0) with respect to the initial condition y(a) = y(l)0 . It can be shown that @y(b; a; y(l)0)=@y0 = Yl(b)for Yl : R! Rm�m the solution of the variational equationY 0l (x) = fy(x; yl(x))Yl(x); Yl(a) = I; (60)where yl(x) is the solution of the associated IVP (44) with initial condition y(a) = y(l)0 and fy(x; y) =@f(x; y)=@y 2 Rm�m is the Jacobian of f . Therefore, on each iteration of Newton's method, we must solvethe IVP (44) with initial condition y(a) = y(l)0 for yl(x) as well as the variational equation (60) associatedwith yl(x). Since it may take many iterations before we �nd a y(l)0 for which g(y(l)0 ; y(b; a; y(l)0) is su�cientlyclose to 0, this is often a computationally expensive process.Moreover, the associated IVP (44) may be unstable even though the BVP (45) is stable. As a result,simple shooting may break down or perform poorly. One way around this di�culty is to employ multipleshooting. In this scheme, we choose N +1 shooting points fx0 : i = 0; : : : ; Ng satisfying a = x0 < x1 < � � � <xN�1 < xN = b, guess at N initial conditions si, i = 0; : : : ; N � 1, and solve the N IVPsy0i = f(x; yi); x 2 [xi; xi+1] i = 0; : : : ; N � 1yi(xi) = si: (61)These IVPs are completely independent and so could be integrated simultaneously. Hence, this scheme isoften called parallel shooting.We need to adjust the initial conditions si, i = 0; : : : ; N � 1, so thatyi(xi+1) = si+1; i = 0; : : : ; N � 2 (62)g(s0; yN (b)) = 0 (63)where the �rst set of conditions (62) ensures yi(xi+1) = yi+1(xi+1) at the N � 1 interior shooting pointsx1; : : : ; xN�1, thus allowing us to patch the functions yi(x) together into a continuous function y(x) on [a; b],and the second condition (63) enforces the boundary condition for the BVP (45).A variant of Newton's method (see x6.7) is usually used to solve (62){(63). The solution process is similarto, but somewhat more complicated than, that described above for simple shooting. It should be noted thatthe linear systems associated with Newton's method for (62){(63) have a very special structure than can beexploited to great computational advantage. See an advanced text such as (Ascher, Mattheij and Russell1988) for details.Both simple and multiple shooting simplify signi�cantly when applied to a linear ODE y0 = A(x)y+b(x).Newton's method converges in one iteration and the resulting scheme is equivalent to what is frequentlycalled the method of superposition. If the boundary conditions are separated, this scheme simpli�es stillfurther. See an advanced text such as (Ascher, Mattheij and Russell 1988) for details.Good shooting programs contain heuristics for choosing the shooting points and adjusting the tolerancefor the IVP solver in an attempt to solve the BVP to within a user speci�ed tolerance. They also contain80

many other components, similar to those described in x10.1.10 for IVPs. See an advanced text such as(Ascher, Mattheij and Russell 1988) for a discussion of these features and x13 for a discussion of sources ofhigh-quality numerical software, including methods for the numerical solution of BVPs for ODEs.10.2.2 1-Step MethodsIt is common to apply a 1-step method, such as a Runge-Kutta (RK) formula, to solve the BVP (45). Sincea collocation method applied to an ODE often reduces to a RK formula, this class of methods is broaderthan it might at �rst appear.To simplify the discussion, assume that the 1-step method can be written in the formyn+1 = yn + hn�(xn; yn; hn) (64)where yn � y(xn), hn = xn+1 � xn and a = x0 < x1 < � � � < xN = b. Note that the RK formula (55) is ofthis form with �(xn; yn; hn) = Psi=1 bikiki = f(xn + cihn; yn + hnPsj=1 aijkj) (65)To apply the 1-step formula (64) to the BVP (45), we simply combine the equations (64) together with theboundary conditions to get a large systems of equations�(y0; : : : ; yN) = 8<: yn+1 � yn � hn�(xn; yn; hn); n = 0; : : : ; N � 1;g(y0; yN) 9=; = 0: (66)It is usual to apply a variant of Newton's method (see x6.7) to solve (66). As for shooting, the main di�cultyhere is to compute the (N + 1)m � (N + 1)m Newton iteration matrix @�(y0; : : : ; yN)=@(y0; : : : ; yN) andsolve the associated linear system for the update to the approximate solution y(l)0 ; : : : ; y(l)N to (66). See anadvanced text such as (Ascher, Mattheij and Russell 1988) for a more complete discussion of this importantpoint.Good BVP codes contain heuristics for choosing the gridpoints to solve the BVP to within a user speci�edtolerance. They also contain many other components, similar to those described in x10.1.10 for IVPs. Seean advanced text such as (Ascher, Mattheij and Russell 1988) for a discussion of these features and x13 fora discussion of sources of high-quality numerical software, including methods for the numerical solution ofBVPs for ODEs.10.2.3 Other MethodsThere are several other classes of numerical methods for BVPs for ODEs. Some of these are discussed inx11 as numerical methods for BVPs for partial di�erential equations. An important class of methods, notdiscussed there, are defect correction schemes, including deferred correction as a special case. The basic ideabehind these schemes is to apply a simple technique, possibly in the class discussed in the last subsection,and then estimate the defect or truncation error in the discretization and solve a related problem again with81

the same simple technique in an attempt to eliminate the error. See an advanced text such as (Ascher,Mattheij and Russell 1988) for further details.11 Partial Di�erential EquationsA partial di�erential equation (PDE) is an equation in which the partial derivative of some order of theunknown function w.r.t. some independent variable occurs. For example,@2u@x2 + @2u@y2 = g(x; y) (67)is a PDE, where u(x; y) is an unknown function, @2u=@x2 and @2u=@y2 denote the partial second derivativesof u w.r.t. x and y, respectively, (often denoted by uxx and uyy, respectively), and g(x; y) is a given function.The terms that involve u and its derivatives de�ne the (partial di�erential) operator L, where, for example,L = @2=@x2 + @2=@y2 in (67), and the rest of the terms (usually the right side of the equation) form thesource term.11.1 Classes of Problems and PDEsPDEs describe many important physical and technological phenomena. These phenomena can be dividedinto two basic types, which in turn are associated with two basic classes of problems for PDEs.1. Equilibrium phenomena, elliptic PDEs, boundary value problems. In steady state phenom-ena, the equilibrium con�guration u often satis�esLu = g in
 (68)Bu =
 on @
 (69)where
 is a spatial N -dimensional domain, @
 is the boundary of
, u is the unknown function of Nvariables, g and
 are known functions of N variables and L and B are partial di�erential operators.Such problems are called boundary value problems (BVPs). Often L is an elliptic operator. Equation(69) is frequently referred to as the boundary condition (BC). The de�nition of an elliptic operator inthe general case is beyond the scope of this article, but some typical examples are given below.2. Propagation phenomena, parabolic and hyperbolic PDEs, initial value problems. In phe-nomena of a transient nature, the initial state is often given and we wish to predict the subsequentbehaviour. The function u at some point t 2 (0; T) frequently satis�esLu = g in
� (0; T) (70)Bu =
 on @
 � (0; T) (71)82

while the initial con�guration satis�es Iu = g0 in
 [@
 (72)where (0; T) is the time interval of interest,
 is a spatial N -dimensional domain, @
 is the boundaryof
, u is the unknown function of N spatial variables and one time variable t, g and
 are knownfunctions of N spatial variables and t, g0 is a known function of N spatial variables, and L, B and Iare partial di�erential operators. Such problems are called initial value problems (IVPs). L is ofteneither a parabolic or a hyperbolic operator (see below). Equation (72) is often referred to as an initialcondition (IC).11.1.1 Some De�nitionsThe dimension of a PDE is the number of independent variables in the PDE. The order of a PDE is theorder of the highest derivative of the unknown function occurring in the PDE. A PDE is called linear ifthere are no nonlinear terms in the equation involving the unknown function or its derivatives; otherwise itis called nonlinear.For example, NXi=1 NXj=1 aij(x) @2u@xi@xj + NXj=1 bj(x) @u@xj + c(x)u = d(x) (73)is N -dimensional, second order and linear, where x = (x1; : : : ; xN) is an N -dimensional vector of independentvariables, u(x) is the unknown function and faij : i = 1; : : : ; N; j = 1; : : : ; Ng, fbj : j = 1; : : : ; Ng, c and dare given functions of x. If any of the functions aij, bj or c depend on u or its derivatives, of if d is nonlinearin u or its derivatives, then the PDE is nonlinear.A linear operator L is called positive de�nite if (Lu; u) > 0 for all u 6= 0, where (�; �) denotes an innerproduct (see x8.7). In addition, L is called self-adjoint if (Lu; v) = (u; Lv) for all u and v in the associatedfunction space. For example, the two-dimensional second-order linear PDEauxx + buxy + cuyy + dux + euy + fu = g (74)is self-adjoint if d(x; y) = @a=@x, e(x; y) = @c=@y and b(x; y) = 0.Consider the linear di�erential equation Lu = g, with L self-adjoint and positive de�nite. Consider alsothe quadratic functional F (u) de�ned by F (u) = (Lu; u)� 2(u; g). The minimum functional theorem statesthat the solution of the di�erential equation Lu = g coincides with the function u that minimizes F (u).In general, when a solution to a di�erential equation corresponds to an extremum of a related functional,we have a variational principle. Numerical methods that construct approximations to the solution of adi�erential equation by using such a relationship are called variational methods, Ritz methods, Rayleigh-Ritzmethods or energy methods. The latter term comes from the observation that many variational methods arebased on the physical principle of energy minimization.The two-dimensional second-order linear PDE (74) is elliptic, parabolic or hyperbolic if D = b2�4ac < 0,83

= 0 or > 0, respectively. For the de�nitions of these terms in the general case, the reader is referred toany introductory PDE book, such as (Ames 1992; Celia and Gray 1992; Hall and Porsching 1990). Typicalexamples of elliptic, parabolic and hyperbolic PDEs are� Laplace's equation, ux1x1 + ux2x2 + � � �+ uxN�1xN�1 + uxNxN = 0, which is elliptic,� the heat equation, ux1x1 + ux2x2 + � � �+ uxN�1xN�1 � uxN = 0, which is parabolic, and� the wave equation, ux1x1 + ux2x2 + � � �+ uxN�1xN�1 � uxNxN = 0, which is hyperbolic.Two other classical elliptic PDEs (given in two dimensions) are� Poisson's equation, uxx + uyy = f(x; y), and� the Helmholtz equation, uxx + uyy + �u = f(x; y), where � is a constant.The normal derivative of a surface u(x; y) is the rate of change of u along the direction of the outwardnormal (i.e., the direction perpendicular to the surface). Let � be the angle which the direction of theoutward normal makes with the x-axis at a point (x; y) on u. Then the normal derivative @u=@n of u (oftendenoted by un) at the point (x; y) is un = ux cos�+ uy sin�. The normal derivative can also be written asthe inner product of the gradient of u, ru, with the unit outward normal vector, n. That is, un = ru � n.This de�nition of the normal derivative for two dimensions can be generalized easily to N dimensions.11.1.2 Boundary ConditionsWe now list some common types of boundary conditions (BCs) corresponding to the partial di�erentialoperator B in (69) or (71).� Dirichlet : Bu = u.� Neumann: Bu = un.� General (for second order PDEs): Bu = �(x)u+ �(x)un.� Mixed (for second order PDEs): often, on parts of the boundary we have Dirichlet BCs and on theother parts Neumann ones. (Also, the term \mixed" may sometimes refer to more general types ofBCs.)� Essential : for PDEs of order 2m, essential BCs involve u and its derivatives of order up to m � 1.� Natural : for PDEs of order 2m,, natural BCs involve the derivatives of u from order m to 2m� 1.For further reading on the classi�cation of PDE problems, operators and boundary conditions, see (Ames1992; Celia and Gray 1992; Hall and Porsching 1990).11.2 Classes of Numerical Methods for PDEsThe two most commonly used methods for approximating the solution of PDEs are described brie
y below.84

Finite Di�erence Methods (FDMs). The main steps of a FDM are the following.1. Choose a �nite di�erence (FD) approximation of the derivatives involved in the PDE, BCs and ICs.The result is a discretized PDE, BCs and ICs.2. Choose a set of n data points in the domain and on the boundary, on which the discretized PDE, BCsand ICs must be satis�ed. The result is a set of n equations w.r.t. the approximate values of u at then data points.3. Write the n equations of step 2 as a system and solve the system (discrete model). (If the PDE islinear, the system will usually be linear.) The solution is the approximate value of u at each of the ndata points.4. Evaluate the approximation to u at some point(s) of the domain (if needed).Finite Element Methods (FEMs). The main steps of a FEM are the following.1. Choose a �nite element (FE) space, say n-dimensional, which the approximation u� is constrained tobelong to, and a set of basis functions that span the space, say f�i : i = 1; : : : ; ng. Then writeu�(x) = nXi=1 �i�i(x):The unknown scalars �i, i = 1; : : : ; n, are often called the degrees of freedom (DOF), or coe�cients, ofthe FE representation of u�.2. Choose a set of n conditions that the approximation u� must satisfy. The result is a set of n equationsw.r.t. the n coe�cients of u�.3. Write the n equations of step 2 as a system and solve the system (discrete model). (If the PDE islinear, the system will usually be linear.) The solution is the vector of coe�cients of u�.4. Evaluate the approximation to u at some point(s) of the domain.11.2.1 Analysis of Numerical Methods for PDEsSome common techniques used to analyze numerical methods for PDEs are discussed below. The analysiscan be used to evaluate a method w.r.t. some chosen criteria or measures. In the discussion below, we useu� to denote the approximation to u computed by the method.Convergence analysis (for BVPs and IVPs). We study the behaviour of the error u� u� as n increases.Assuming ku� u�k ! 0 as n !1, we can write ku� u�k � C(1=n)� for some constants C and �.The largest constant � for which this inequality holds is called the order of convergence of the method.As a �rst rough measure, the larger the � the better the method, as (1=n)� will converge to 0 faster asn!1 for larger �. To estimate the order of convergence of a method experimentally, we often devise85

PDE problems with known solutions and then solve them using the PDE method under investigation,�rst using n DOF, then 2n DOF, etc. We then plot ku� u�k versus n on a log-log scale. The slopeof the plotted line is an approximation to the order of convergence of the method.Stability analysis (for IVPs). We study the behaviour of the error u�u� as a function of t for increasingt. We often say that a method is stable if ku�u�k remains bounded as t!1. Otherwise, it is calledunstable. Or, we study how the error at some point in time propagates to the next point in time. In astable method, the error is not ampli�ed.Time (computational) complexity analysis. We study the time that the method takes to compute theapproximate solution to the PDE as a function of the n DOF. The time is usually proportional to thenumber of
oating-point operations, although it also depends on the implementation and the hardware(computer) used. The most time consuming part of a FDM or FEM is usually the third step (solutionof the system), while the second most time consuming part is usually the second step (generationof the system). For FDMs, the fourth step can also be time consuming, particularly if the valueof the approximation at arbitrary points of the domain is required, since this computation requiresinterpolation, often using piecewise polynomials (PPs) or splines. The data to be interpolated are theapproximate values of u at the gridpoints. Interpolation is not required in step 4 of a FEM, since theapproximate solution can be evaluated at any point of the domain by the formulau�(x) = nXi=1 �i�i(x):By studying the particular implementation of a method, we are usually able to derive an approximateformula, such as time � Kn� , for some constant K, or time = O(n�), relating the computationalcomplexity to n. The smaller the �, the faster the method, and, among methods with the same �, thesmaller the K, the faster the method.Memory complexity analysis. We study the memory (storage) requirements of a method as a functionof the n DOF. These requirements depend on the storage scheme used for the matrix arising in step 2and the solver used in step 3.Overall e�ciency analysis. Often, the most practical way of comparing two methods is to ask1. if the methods were to run for the same length of time, which one would give the least error, or2. given a certain error tolerance, which method satis�es that tolerance faster.To test the overall e�ciency of methods, we usually plot the error versus the time required to computethe approximate solution on a log-log scale. The method with the steepest slope is the most e�cient.11.3 Finite Di�erence Methods for BVPsA FD approximation to a derivative of a function u at a point x is a linear combination of values of u atpoints near x (often including x). Usually, a FD approximation is �rst derived for some derivative of a86

function of one variable, and then it is extended to partial derivatives of functions of several variables.Let x be the point of interest and h, hE , hW small stepsizes. The following are several examples of FDapproximations in one-dimension.ux(x) = u(x+ h)� u(x)h +O(h) (75)ux(x) = u(x)� u(x� h)h +O(h) (76)ux(x) = u(x+ h)� u(x� h)2h + O(h2) (77)ux(x) = h2Wu(x+ hE) + (h2E � h2W)u(x)� h2Eu(x� hW)hE(hE + hW)hW +O(hE � hW) (78)uxx(x) = u(x+ h)� 2u(x) + u(x� h)h2 +O(h2) (79)uxx(x) = 2hWu(x+ hE) � 2(hE + hW)u(x) + 2hEu(x� hW)hE(hE + hW)hW (80)+O(hE � hW) + O([max(hE ; hW)]2)Let (x; y) be the point of interest and h, hE , hW , hN , hS small stepsizes. The following are several examplesof FD approximations in two-dimensions.uxx(x; y) = u(x+ h; y)� 2u(x; y) + u(x� h; y)h2 + O(h2) (81)uxx(x; y) + uyy(x; y)= u(x+ h; y) + u(x; y + h) � 4u(x; y) + u(x; y � h) + u(x� h; y)h2 (82)+O(h2)uxy(x) = u(x+ h; y + h) � u(x� h; y + h)� u(x+ h; y � h) + u(x� h; y � h)4h2 (83)+O(h2)uxy(x) = u(x+ hE ; y + hN)� u(x� hW ; y + hN)� u(x+ hE ; y � hS) + u(x� hW ; y � hS)(hE + hW)(hS + hN) (84)+O(max(hE ; hW ; hS; hN))Note the following.� Each FD approximation listed above includes an error term. The actual FD approximation is the rightside of the equation excluding the error term.� Approximations (75){(79) and (81){(83) use uniform stepsizes, while the rest use non-uniform step-sizes. 87

� Approximations (75), (76), (80) and (84) are of �rst order, while the rest are of second order. Theorder refers to the (lowest) exponent of the stepsize(s) in the error term.� All FD approximation formulas are derived by using appropriate Taylor series expansions around thepoint of approximation.� Approximations (81){(84) are derived by using combinations of one-dimensional Taylor series and makeuse of values of u at points on a rectangular grid.� It is possible to derive two-dimensional FD approximations which make use of values of u at pointson a triangular, quadrilateral (but not rectangular), polygonal, or irregular grid with points positionedarbitrarily. Such approximations can be derived by using two-dimensional Taylor's series.11.3.1 An Example of a Finite Di�erence Method in One DimensionConsider the problem uxx = g(x) in (0; 1) (85)u =
(x) at x = 0 and x = 1 (86)Using the FD approximation (79), we transform (85) tou(x+ h) � 2u(x) + u(x� h)h2 = g(x) +O(h2) (87)Let fxi = ih : i = 0; : : : ; ng with h = 1=n be the set of gridpoints and let Ui � u(xi) for i = 1; : : : ; n.Without the O(h2) error term, the discretized PDE (87) at the gridpoint xi becomesUi+1 � 2Ui + Ui�1h2 = g(xi) (88)From (86), we have for the point x1 U2 � 2U1h2 = g(x1)�
(x0)h2 (89)By writing equation (89) �rst, then (88) for i = 2; : : : ; n � 2, and �nally a relation similar to (89) for thepoint xn�1, and then multiplying each equation by h2, we get the following linear system.0BBBBBBBBBBB@ �2 11 �2 11 �2 1..1 �2 11 �2 1CCCCCCCCCCCA0BBBBBBBBBBB@ U1U2U3...Un�2Un�1 1CCCCCCCCCCCA = h20BBBBBBBBBBB@ g(x1)g(x2)g(x3)...g(xn�2)g(xn�1) 1CCCCCCCCCCCA �0BBBBBBBBBBB@
(x0)00...0
(xn) 1CCCCCCCCCCCA (90)88

Note that this system is symmetric, diagonally dominant in all rows and strictly diagonally dominant in the�rst and last rows. Therefore it is also positive de�nite and has a unique solution. By solving it, we obtainUi � u(xi), i = 1; : : : ; n� 1. Using interpolation, we can approximate u at any other point of the domain.It can be proved that maxfju(xi)�Uij : i = 1; : : : ; n� 1g = O(h2). That is, the approximation is secondorder at the gridpoints.The computational complexity of the method described is O(n), since the linear system (90) is tridiagonaland of size n� 1 (see x2.7).11.3.2 An Example of a Finite Di�erence Method in Two DimensionsConsider the problem uxx + uyy = g(x; y) in (0; 1)� (0; 1) (91)u =
(x; y) on x = 0; x = 1; y = 0; y = 1 (92)Using the FD approximation (82), we transform (91) tou(x+ h; y) + u(x; y + h)� 4u(x; y) + u(x; y � h) + u(x� h; y)h2 = g(x; y) +O(h2) (93)Let f(xi; yj) : xi = ih; yj = jh; i; j = 0; : : : ; ng with h = 1=n be the set of gridpoints and let Uij �u(xi; yj). Without the O(h2) error term, the discretized PDE (93) at the gridpoint (xi; yj), i = 1; : : : ; n� 1,j = 1; : : : ; n� 1, becomes Ui+1;j + Ui;j+1 � 4Ui;j + Ui;j�1 + Ui�1;jh2 = g(xi; yj) (94)From (92), we have for the point (x1; y1)U1;2 + U2;1 � 4U1;1h2 = g(x1; y1)�
(x0; y1) +
(x1; y0)h2 (95)Similar relations hold at the three other corners of the domain. Also, for the points (x1; yj), j = 2; : : : ; n�2,we have U1;j+1 � 4U1;j + U1;j�1 + U2;jh2 = g(x1; yj)�
(x0; yj)h2 (96)Similar relations hold for other gridpoints one grid line away from the boundary.One way to number the gridpoints, and also the equations and unknowns, is bottom-up then left-to-right:(1; 1); (1; 2); (1; 3); : : :; (1; n� 2); (1; n� 1), (2; 1); (2; 2); (2; 3); : : : ; (2; n� 2); (2; n� 1); : : : That is, �rst (95),then (96) for j = 2; : : : ; n� 2, then relations similar to (95) for the points (x1; yn�1), (x2; y1), then (94) fori = 2, j = 2; : : : ; n � 2, etc. Using this ordering, we get a linear system AU = ~g, where, after multiplying89

each equation by h2, the matrix A has the form0BBB@
�4 1 11 �4 1 1..1 �4 1 11 �4 11 �4 1 11 1 �4 1 1..1 1 �4 1 11 1 �4 11 �4 11 1 �4 1..1 1 �4 11 1 �4

1CCCAThis can be rewritten as 0BBBBBBBB@ T II T I.I T II T 1CCCCCCCCAwhere T is a tridiagonal matrix of size n�1 with -4's on the diagonal and 1's on the super- and sub-diagonaland I is the identity matrix of size n� 1. Thus the matrix is block tridiagonal of size (n � 1)2. The vectorof unknowns is U = (U1;1; U1;2; : : : ; U1;n�2; U1;n�1;U2;1; U2;2; : : : ; U2;n�2; U2;n�1; : : :Un�2;1; Un�2;2; : : : ; Un�2;n�2; Un�2;n�1;Un�1;1; Un�1;2; : : : ; Un�1;n�2; Un�1;n�1)TThe right-side vector is~g = (h2g1;1 �
0;1 �
1;0; h2g1;2 �
0;2; : : : ; h2g1;n�2�
0;n�2; h2g1;n�1�
0;n�1 �
1;n;h2g2;1 �
2;0; h2g2;2; : : : ; h2g2;n�2; h2g2;n�1 �
2;n; : : : ;90

h2gn�2;1 �
n�2;0; h2gn�2;2; : : : ; h2gn�2;n�2; h2gn�2;n�1�
n�2;n;h2gn�1;1 �
n;1 �
n�1;0; h2gn�1;2 �
n;2; : : : ;h2gn�1;n�2�
n;n�2; h2gn�1;n�1�
n;n�1 �
n�1;n)Twhere gij = g(xi; yj) and
ij =
(xi; yj). Note that this system is symmetric, diagonally dominant in allrows and strictly diagonally dominant in all rows corresponding to gridpoints one grid line away from theboundary. Therefore, it is positive de�nite and has a unique solution. By solving the system AU = ~g, weobtain Uij � u(xi; yj) for i = 1; : : : ; n� 1 and j = 1; : : : ; n� 1. Using interpolation, we can approximate thevalue of u at any other point of the domain.It can be proved that maxfju(xi; yj)�Ui;jj : i; j = 1; : : : ; n� 1g = O(h2). That is, the approximation issecond order at the gridpoints.The computational complexity of the method described above depends on the method used to solve thelinear system AU = ~g. Note that A has at most 5 non-zero entries per row, it is banded with lower andupper bandwidth n � 1, and its size is (n � 1)2. If a direct band solver is used to solve AU = ~g, then thecomputational complexity of the method is O(n4), but sparse direct solvers are more e�cient (see x2.7). Inaddition, there exist iterative methods (e.g., multigrid, see x11.8 and (Briggs 1987)) which can solve thissystem much more e�ciently, reducing the computational complexity of the method to almost O(n2).Note that the properties of the matrix A, such as symmetry, diagonal dominance, positive-de�nitenessand the sparsity pattern (block tridiagonal with at most 5 non-zero entries per row), are highly dependenton the simplicity of the di�erential operator associated with (91) and boundary conditions (92), the choiceof uniform and rectangular grid and the FD approximation (93). For a di�erential operator with �rst orderderivative terms and/or Neumann BCs, symmetry is lost. Symmetry may also be lost if a non-uniform grid ischosen, even if it is rectangular. Diagonal dominance depends on the coe�cients of the di�erential operatorand on the absence of �rst order derivative terms. The block tridiagonal form will most likely be a�ected, ifan irregular grid is chosen. Fast linear solvers, such as multigrid and FFT (fast Fourier transform) solvers,work well on the matrix A, but may not perform as well on more general systems. The development of fastlinear solvers for such matrices is an open and active area of research. See, for example, (Van Loan 1992;Hackbusch 1994) and the references therein. For further reading on FDMs, see (Strikwerda 1989).11.4 Finite Element Methods for BVPsThe �rst step in a FEM is to choose a FE approximation space and a basis for it. The most commonly usedspaces are piecewise polynomials (PPs) or splines (see x8.5). Let n be the dimension of the approximationspace and let f�j(x) : j = 1; : : : ; ng be a set of basis functions for the space.Consider the problem (68){(69). Let u�(x) = nXj=1�j�j(x)91

be the approximation to u. The next step in a FEM is to choose n conditions that the approximation mustsatisfy. A FEM is characterized by these conditions. The most common FEMs are the Galerkin method andthe collocation method.11.4.1 The Galerkin MethodGiven an inner product (�; �), usually de�ned by(f; g) = Z
 f(x)g(x) dx;we require that u� satis�es (�i; Lu� � g) = 0; i = 1; : : : ; n; (97)forcing the residual Lu� � g to be orthogonal to the approximation space, and making it, in a sense, as\small" as possible. If L is a linear operator, then the relations (97) are equivalent tonXj=1�j(�i; L�j) = (�i; g); i = 1; : : : ; n; (98)which can be written in the form A~� = ~g, where A is an n � n matrix with entries Aij = (�i; L�j),i = 1; : : : ; n, j = 1; : : : ; n, ~� = (�1; : : : ; �n)T is the vector of coe�cients and ~g is a vector with entries~gi = (�i; g), i = 1; : : : ; n. We usually use numerical integration to compute the entries of A and ~g (see x9).As an example of the Galerkin method in one dimension, consider the problem (85){(86) and the set ofgridpoints fxi = ih : i = 0; : : : ; ng with h = 1=n. Let f�i : i = 0; : : : ; ng be the set of linear spline basisfunctions w.r.t. the knots (gridpoints) fxig, as de�ned by (39). Thenu�(x) = nXi=0 �i�i(x)is the linear spline approximation to u. From the BC (86), we get u�(x0) =
(x0), which implies �0 =
(x0).Similarly, �n =
(xn). The remaining unknowns f�i : i = 1; : : : ; n�1g are determined by the n�1 Galerkinconditions nXj=0�j(�i; L�j) = (�i; g); i = 1; : : : ; n� 1which, for the particular L associated with (85), are equivalent tonXj=0�j(�i; �00j) = (�i; g); i = 1; : : : ; n� 1:Writing the inner product (�i; �00j) as an integral and applying integration by parts, these conditions reduce92

to n�1Xj=1 �j Z 10 �0i�0j dx = 24�i nXj=0�j�0j3510 � Z 10 �ig dx� �0 Z 10 �0i�00 dx� �n Z 10 �0i�0n dx; (99)i = 1; : : : ; n� 1:Note that the term 24�i nXj=0�j�0j3510 = 0;since �i(0) = �i(1) = 0 for i = 1; : : : ; n� 1. Relations (99) form a linear system of size n� 1; the associatedmatrix A has elements Ai;j = Z 10 �0i�0j dx:Since the basis functions f�ig are non-zero on at most 2 subintervals, A is tridiagonal with elementsAi;i = Z xi+1xi�1 �0i�0i dx; i = 1; : : : ; n� 1;Ai;i�1 = Z xixi�1 �0i�0i�1 dx; i = 2; : : : ; n� 1;Ai;i+1 = Z xi+1xi �0i�0i+1 dx; i = 1; : : : ; n� 2:It can be proved that this matrix is also symmetric positive-de�nite. Thus, the associated system has aunique solution. By solving the system, we obtain the coe�cients f�i : i = 0; : : : ; ng of u�, which we canevaluate at any point of the domain (0; 1).It can be proved that maxfju(x)� u�(x)j : x 2 [0; 1]g = O(h2). That is, the approximation is secondorder on the whole domain.The computational complexity of the method described is O(n), since the linear system that has to besolved is tridiagonal and of size n� 1 (see x2.7).Relations (99) can also be derived using a variational method (see x11.1.1). Thus, for problem (85){(86),there is a variational method equivalent to the Galerkin method. This is true for all di�erential equationproblems with a self-adjoint positive-de�nite operator. There exist di�erential equation problems, though,which are not characterized by variational principles. In such cases, the Galerkin method is applicable, whilethe variational method is not.As an example in two dimensions, consider problem (91){(92) with the gridpoints f(xi; yj) : xi = ih; yj =jh; i; j = 0; : : : ; ng for h = 1=n. A common way to de�ne an approximation space for two-dimensionalproblems is to choose a tensor product of approximation spaces in each dimension. Let f�i(x) : i = 0; : : : ; ngbe the linear spline basis functions w.r.t. the knots fxi : i = 0; : : : ; ng and let f�j(y) : j = 0; : : : ; ng be the93

linear spline basis functions w.r.t. the knots fyj : j = 0; : : : ; ng, as de�ned in (39). Thenu�(x; y) = nXi=0 nXj=0�ij�i(x)�j(y)is the bilinear spline approximation to u. Continuing as in the one-dimensional case, we derive a systemof (n + 1)2 equations in (n + 1)2 unknowns. The associated matrix A is block-tridiagonal, with at most 9non-zero entries per row and bandwidth n + 2. It is also symmetric positive-de�nite. Thus, the associatedsystem has a unique solution. Moreover, it can be proved that the approximation u� is second order.Note that, if instead of a rectangular subdivision of the domain and bilinear elements, we choose atriangular subdivision and linear elements (w.r.t x and y), we would get a system similar to that of x11.3.2.An important property of the Galerkin method is that, for any self-adjoint positive-de�nite di�erentialoperator, the resulting matrix is symmetric positive-de�nite, even if the grid is irregular. As stated before,for all di�erential equation problems with a self-adjoint and positive-de�nite operator, there is a variationalmethod equivalent to the Galerkin method. This holds for higher dimension problems too. Thus, large,sparse, symmetric, positive-de�nite matrices arise from the application of variational methods.For an introduction to the FEM, including its computer implementation, see (Becker, Carey and Oden1981). An error analysis is carried out in (Strang and Fix 1973).11.4.2 The Collocation MethodWe �rst pick n collocation points fti : i = 1; : : : ; ng in
 and on @
. We then require that u� satis�esLu�(ti) � g(ti) = 0; if ti 2
 (100)Bu�(ti)�
(ti) = 0; if ti 2 @
 (101)forcing the residuals Lu��g and Bu��
 to be zero at the collocation points, and making them, in a sense,as \small" as possible. If L and B are linear, relations (100){(101) are equivalent tonXj=1�jL�j(ti) = g(ti); if ti 2
 (102)nXj=1�jB�j(ti) =
(ti); if ti 2 @
 (103)which can be written in the formA~� = ~g, where A is an n�n matrix with entries Aij = L�j(ti), j = 1; : : : ; n,for all ti 2
 and Aij = B�j(ti), j = 1; : : : ; n, for all ti 2 @
, ~� = (�1; : : : ; �n)T is the vector of coe�cientsand ~g is a vector with entries ~gi = g(ti) for all ti 2
 and ~gi =
(ti) for all ti 2 @
.The choice of collocation points is critical to the success of the method. It a�ects not only the solvabilityand other properties (such as symmetry, diagonal dominance, bandedness) of the matrix A but also theaccuracy of the approximation u�. Depending on the FE approximation space which u� belongs to, somestandard choices of collocation points in one dimension are listed below.94

� If the FE approximation space is the space of quadratic splines (quadratic PPs in C1), the collocationpoints are chosen to be the midpoints of the subintervals (xi�1; xi), i = 1; : : : ; n and the two boundarypoints. The same choice of collocation points is e�ective if the FE approximation space is composedof any other even degree splines, with the exception that some additional collocation conditions maybe required at boundary points or points close to the boundary.� If the FE approximation space is the space of cubic splines (cubic PPs in C2), the collocation pointsare chosen to be the gridpoints fxi : i = 0; : : : ; ng. At each of the boundary points, x0 and xn,both conditions (100) and (101) are imposed. The same choice of collocation points is e�ective if theFE approximation space is composed of any other odd degree splines, with the exception that someadditional collocation conditions may be required at boundary points or points close to the boundary.� If the FE approximation space is the space of cubic PPs in C1 (cubic Hermite PPs), the collocationpoints are chosen to be the two Gauss points xi�1+(3�p3)(xi�xi�1)=6 in each subinterval (xi�1; xi),i = 1; : : : ; n, and the two boundary gridpoints.As an example in one dimension, consider problem (85){(86) and the set of gridpoints fxi = ih : i =0; : : : ; ng with h = 1=n. Let the collocation points be the midpoints ti = (xi�1+xi)=2, i = 1; : : : ; n, and theend-points t0 = x0 and tn+1 = xn. Let f�i : i = 0; : : : ; n+ 1g be the quadratic spline basis functions w.r.t.the knots (gridpoints) fxig, as de�ned in (40). Thenu�(x) = n+1Xi=0 �i�i(x)is the quadratic spline approximation to u. Relation (100) for the PDE (85) becomes u00�(ti) = g(ti), sorelation (102) becomes �i�1�00i�1(ti) + �i�00i (ti) + �i+1�00i+1(ti) = g(ti)which reduces to �i�1 � 2�i + �i+1h2 = g(ti); i = 1; : : : ; n: (104)Relation (101) for the BC (86) becomes u�(t0) =
(t0), so relation (103) becomes�0�0(t0) + �1�1(t0) =
(t0)which reduces to �0 + �12 =
(t0) (105)Similarly, the collocation condition at tn+1 = 1 reduces to�n + �n+12 =
(tn+1) (106)Writing (105) �rst, then (104) for i = 1; : : : ; n and �nally (106), we get a tridiagonal system of equations95

w.r.t. the coe�cients f�i : i = 0; : : : ; n+ 1g. The system is diagonally dominant and it can be proved thatit has a unique solution. It can also be scaled so that it is symmetric positive-de�nite.It can be proved that maxfju(x)� u�(x)j : x 2 [0; 1]g = O(h2). That is, the approximation is secondorder on the whole domain. There exists a variant of this method, though, which is fourth order at thegridpoints and midpoints and third order on the whole domain (Houstis, Christara and Rice 1988).The computational complexity of the method described above is O(n), since the linear system that mustbe solved is tridiagonal and of size n+ 1 (see x2.7).As an example in two dimensions, consider problem (91){(92) and the set of gridpoints, f(xi; yj) : xi =ih; yj = jh; i; j = 0; : : : ; ng with h = 1=n. A common approximation space for two-dimensional problems isa tensor product of approximation spaces in each dimension. Let f�i(x) : i = 0; : : : ; n+ 1g be the quadraticspline basis functions w.r.t. the knots (gridpoints) fxi : i = 0; : : : ; ng and let f�j(y) : j = 0; : : : ; n + 1g bethe quadratic spline basis functions w.r.t. the knots fyj : j = 0; : : : ; ng, as de�ned in (40). Thenu�(x; y) = n+1Xi=0 n+1Xj=0�ij�i(x)�j(y)is the bi-quadratic spline approximation to u. Continuing as in the one-dimensional case, we derive a systemof (n + 2)2 equations and unknowns. The associated matrix is block-tridiagonal, with at most 9 non-zeroentries per row, and has bandwidth n+ 3. It can be proved that this system has a unique solution and thatthe approximation u� is second order. With appropriate modi�cations, though, the order can be improvedas in the one-dimensional case (Christara 1994).For a general introduction to collocation methods, see (Prenter 1975).11.5 Finite Di�erence Methods for IVPsConsider the problem (70){(72). Let the temporal gridpoints be ftj = jht : j = 0; : : : ;mg with ht = T=m.Starting with the initial values of u at t0, given by (72), most FDMs for IVPs compute approximate valuesof u at each subsequent temporal gridpoint tj , in the order j = 1; : : : ;m, using previous and/or currentapproximate values of u at neighbouring space points.If, at each temporal gridpoint tj , a method uses only approximations from previous temporal gridpoints,it is called explicit, as it does not require the solution of a system of equations to proceed from one temporalgridpoint to the next. If, at some temporal gridpoint tj, a method uses approximations from the currenttemporal gridpoint tj , it is called implicit, as it requires the solution of a system of equations to proceedfrom one temporal gridpoint to the next. If, at the time step from tj�1 to tj, a method uses approximationsfrom tj�1 and tj only, it is called one-step. Likewise, we can de�ne two-step methods, etc. These de�nitionsfor PDEs are similar to those given in x10 for ODEs.96

11.5.1 An Example of an Explicit One-Step Method for a Parabolic IVPConsider the problem ut = uxx in (0; 1)� (0; T) (107)u =
0(t) on x = 0; t 2 (0; T) (108)u =
1(t) on x = 1; t 2 (0; T) (109)u = g(x) on t = 0; x 2 [0; 1] (110)Using the FD approximations (79) for uxx and (75) for ut, we transform (107) tou(x; t+ ht)� u(x; t)ht = u(x+ h; t)� 2u(x; t) + u(x� h; t)h2 +O(ht + h2) (111)Let fxi = ih : i = 0; : : : ; ng with h = 1=n be the set of spatial gridpoints and ftj = jht : j = 0; : : : ;mg withht = T=m be the set of temporal gridpoints. Also let Ui;j � u(xi; tj) for i = 0; : : : ; n and j = 0; : : : ;m. Thenthe discretized PDE (111) at the point (xi; tj), i = 1; : : : ; n� 1, j = 1; : : : ;m, becomesUi;j+1 � Ui;jht = Ui+1;j � 2Ui;j + Ui�1;jh2Letting r = ht=h2, we can rewrite this relation asUi;j+1 = rUi+1;j + (1� 2r)Ui;j + rUi�1;j (112)for i = 2; : : : ; n� 2. For i = 1, we have from (108)U1;j+1 = rU2;j + (1� 2r)U1;j + r
0(tj) (113)Similarly, for i = n� 1, we have from (109)Un�1;j+1 = r
1(tj) + (1� 2r)Un�1;j + rUn�2;j (114)For j = 1, we have from (110) Ui;1 = rg(xi+1) + (1� 2r)g(xi) + rg(xi�1) (115)Thus, we can compute Ui;j � u(xi; tj) from a linear combination of three neighbouring spatial approximationsat tj�1.It can be proved that, if r < 1=2, then maxfju(xi; tj) � Ui;jj : i = 1; : : : ; n; j = 1; : : : ;mg = O(h2 + ht),thus the order of convergence is one w.r.t. to ht and two w.r.t. h. It can also be proved that, if r < 1=2,then the method is stable. However, the restriction r < 1=2 may be impractical for many problems, since itforces ht to be very small if h is small and so the method must take many steps to integrate the problem.97

The computational complexity of the method is O(nm), since for each gridpoint (xi; tj) a constant numberof
oating-point operations must be performed.11.5.2 An Example of an Implicit One-Step Method for a Parabolic IVPConsider the problem (107){(110) once more. Using the FD approximations (79) for uxx and (76) for ut, wetransform (107) tou(x; t+ ht) � u(x; t)ht = u(x+ h; t+ ht)� 2u(x; t+ ht) + u(x� h; t+ ht)h2 +O(ht + h2) (116)Again let fxi = ih : i = 0; : : : ; ng with h = 1=n be the set of spatial gridpoints and ftj = jht : j = 0; : : : ;mgwith ht = T=m be the set of temporal gridpoints. Also let Ui;j � u(xi; tj) for i = 0; : : : ; n and j = 0; : : : ;m.Then, the discretized PDE (116) at the point (xi; tj), i = 1; : : : ; n� 1, j = 1; : : : ;m, becomesUi;j+1 � Ui;jht = Ui+1;j+1 � 2Ui;j+1 + Ui�1;j+1h2Letting r = ht=h2 again, we can rewrite this relation as� rUi�1;j+1 + (1 + 2r)Ui;j+1 � rUi+1;j+1 = Ui;j (117)for i = 2; : : : ; n� 2. For i = 1, we have from (108)(1 + 2r)U1;j+1 � rU2;j+1 = U1;j + r
0(tj+1) (118)Similarly, for i = n� 1, we have from (109)� rUn�2;j+1 + (1 + 2r)Un�1;j+1 = Un�1;j + r
1(tj+1) (119)For j = 1, we have from (110) � rUi�1;1 + (1 + 2r)Ui;1 � rUi+1;1 = g(xi) (120)Thus, at the j-th time step, a tridiagonal linear system must be solved to compute Ui;j � u(xi; tj). Thediagonal entries of the associated matrix are all equal to (1 + 2r), while the o�-diagonal entries are all equalto �r. The system is symmetric positive-de�nite and strictly diagonally dominant, thus it has a uniquesolution.It can be proved that maxfju(xi; tj)� Ui;jj : i = 1; : : : ; n; j = 1; : : : ;mg = O(h2 + ht), thus the order ofconvergence is one w.r.t. to ht and two w.r.t. h. It can also be proved that the method is stable without anyrestrictions on r (except r > 0).The computational complexity of the method is O(nm), since at each time step we must solve a tridiagonallinear system of size n� 1 (see x2.7). 98

Note that, for the problem (107){(110), which is one-dimensional w.r.t. to space, both the explicit andimplicit methods have the same computational complexity. This is not true for problems in more spacedimensions. For such problems, the solution of a linear system at each time step can be very time consuming,making an implicit method much more expensive per step than an explicit one. However, because there isno restriction on r for some implicit schemes, while there always is for an explicit one, some implicit schemesmay be able to take far fewer timesteps than an implicit one. As a result, an implicit method may becomputationally more e�cient than an explicit one.11.5.3 An Example of an Explicit Two-Step Method for a Hyperbolic IVPConsider the problem utt = uxx in (0; 1)� (0; T) (121)u =
0(t) on x = 0; t 2 (0; T) (122)u =
1(t) on x = 1; t 2 (0; T) (123)u = g0(x) on t = 0; x 2 [0; 1] (124)ut = g1(x) on t = 0; x 2 [0; 1] (125)Using the FD approximation (79) for uxx and utt, we transform (121) tou(x; t+ ht)� 2u(x; t) + u(x; t� ht)h2t = u(x+ h; t)� 2u(x; t) + u(x� h; t)h2 +O(h2t + h2) (126)Again let fxi = ih : i = 0; : : : ; ng with h = 1=n be the set of spatial gridpoints and ftj = jht : j = 0; : : : ;mgwith ht = T=m be the set of temporal gridpoints. Also let Ui;j � u(xi; tj) for i = 0; : : : ; n and j = 0; : : : ;m.Then, the discretized PDE (126) at the point (xi; tj), i = 1; : : : ; n� 1, j = 1; : : : ;m, becomesUi;j+1 � 2Ui;j + Ui;j�1h2t = Ui+1;j � 2Ui;j + Ui�1;jh2Letting r = ht=h, we can rewrite this relation asUi;j+1 = r2Ui�1;j + 2(1� r2)Ui;j + r2Ui+1;j � Ui;j�1 (127)for i = 2; : : : ; n� 1. For gridpoints close to the boundary, the approximate values of U are replaced by thevalues of the functions
0 and
1 at the appropriate points, as in x11.5.1 and x11.5.2. Thus, we can computeUi;j+1 � u(xi; tj+1) from a linear combination of three neighbouring spatial approximations at time tj andone approximation at time tj�1.Since (127) is a two-step formula, at the initial time-point t0 it cannot be applied as is. At that point,we use the ICs (124){(125) and the FD approximation (75) to getUi;1 = g0(xi) + htg1(xi) (128)99

It can be proved that, if r < 1, then the method is stable. It can also be shown that maxfju(xi; tj)�Ui;j j :i = 1; : : : ; n; j = 1; : : : ;mg = O(h2+h2t), thus the order of convergence is two w.r.t. to both ht and h. Notethat the restriction r < 1 is not impractical in this case, since it requires only that ht < h.The computational complexity of the method is O(nm), since for each gridpoint (xi; tj) we apply aformula with a constant number of
oating-point operations.11.6 The Method of LinesThe general idea behind the method of lines (MOL) is to use an ODE solver along one of the dimensions ofthe PDE, while using a PDE discretization across the other dimensions. In its most common form for thesolution of IVPs for PDEs, an ODE solver is used along the temporal dimension, while a PDE discretizationis employed across the spatial dimensions, transforming an IVP for a PDE into a system of IVPs for ODEs.To see how this is done, consider the problem (107){(110) again. Letu�(x; t) = nXj=1�j(t)�j(x)be a FE approximation to the true solution u(x; t). Now apply a FEM condition to u� to discretize thePDE (107) w.r.t. the spatial dimension. For example, collocation at the points xi, i = 1; : : : ; n, yieldsnXj=1�0j(t)�j(xi) = nXj=1�j(t)�00j (xi)Let ~�(t) = (�1(t); : : : ; �n(t))T , � be the matrix with entries �ij = �j(xi), and A be the matrix with entriesAij = �00j (xi). Then the PDE (107) is approximated by the system of ODEs �~�0(t) = A~�(t).To obtain an IC for the ODE, we construct an interpolant g� of g in the same space as that spanned byf�j : j = 1; : : : ; ng. Let g�(x) = nXj=1 �i�i(x)be the FE representation of g� in that space and set ~� = (�1; : : : ; �n)T . Then�~�0(t) = A~�(t) (129)~�(0) = ~� (130)is a well de�ned IVP for ODEs. Thus, the PDE problem (107){(110) is converted to an IVP for a system ofn ODEs. The latter can be solved by the techniques described in x10.Note that applying an ODE method to discretize the IVP (129){(130) results in a discretization for thePDE (107){(110). That is, the MOL produces a discretization for a PDE. However, it is generally agreedthat standard software for ODEs is more highly developed than for PDEs. Thus, using the MOL to decouplethe discretization of the spatial and temporal variables allows us to exploit easily sophisticated time-stepping100

techniques. As a result, the MOL is often the simplest e�ective method to solve a PDE.11.7 Boundary Element MethodsThe general idea behind boundary element methods (BEMs) is to transform the PDE to an integral equationin which the integrations take place along the boundary only of the PDE domain, thus eliminating the needfor domain discretization and reducing the dimension of the PDE by one. For example, a one-dimensionalintegral equation is solved instead of an equivalent two-dimensional PDE. The BEM is applicable to BVPsfor Laplace's or Poisson's equation, and many other simple PDEs. If applicable, this approach is often verye�ective, especially when the PDE domain is highly irregular.11.8 The Multigrid MethodThe multigrid method (MM) exploits the connection between a physical problem and its matrix analogueto accelerate the convergence of an iterative method (see x3). For simplicity, we describe the MM for theone-dimensional problem (85){(86), although the merits of the scheme become apparent for two- and higher-dimensional problems (see x11.3.2). Also, we illustrate the technique using Jacobi's method as the basiciterative scheme. The MM, though, can be used with many other iterative methods as a preconditioningtechnique.Let A be the matrix in (90). Apply Jacobi's method (see x3.1) with an extra damping-factor of 2 to thelinear system (90). The associated iteration matrix is G = I �A=4. It can be shown that the eigenvalues ofG are �i = cos2(i�=(2n)), i = 1; : : : ; n� 1, and that the components of the eigenvector vi associated with �iare sin(i�(j=n)), j = 1; : : : ; n� 1. These are also the eigenvectors of A. Since fvi : i = 1; : : : ; n� 1g spansRn�1, we can write the error e0 associated with the initial guess for the damped Jacobi iteration ase0 = n�1Xi=1 �ivifor some scalars f�i : i = 1; : : : ; n� 1g. It then follows easily from the discussion in x3.1 that the error atiteration k is ek = n�1Xi=1 �i�ki vi:The terms of the sum corresponding to small values of i are called low-frequency components, while thosecorresponding to large values of i are called high-frequency components. Note that 0 < �n�1 < �n�2 < � � � <�2 < �1 < 1. Moreover, �1 � 1� (�=(2n))2, while �n�1 � (�=(2n))2. Consequently, ek ! 0 as k!1, butthe low-frequency components of the error converge slowly, while the high-frequency components convergerapidly.To accelerate the convergence of the low frequency components of the error, consider solving the problem(90) on a coarse grid with n̂ = n=2 subintervals and n̂+ 1 gridpoints, assuming for simplicity that n is even.Although the coarse grid has about half the gridpoints of the �ne one, the n̂� 1 eigenvectors of the matrix101

Â for the coarse grid provide a good representation of the low to middle frequency eigenvectors of A. Asa result, the solution to the problem (90) on the coarse grid provides a good approximation to the low tomiddle frequency components of the �ne-grid solution. This suggests that the coarse-grid solution can beused to provide good approximations to the low to middle frequency components of the �ne-grid solution,while the damped Jacobi iteration on the �ne grid can be used to provide good approximations to the middleto high frequency components of the �ne-grid solution.This is the motivation behind the MM. The term \multigrid" refers to the use of several levels of grids(possibly a �ne grid, several intermediate level grids and a coarse grid), so that each level damps certaincomponents of the error fast.To view the MM as a preconditioning technique, consider the linear system Au = g corresponding to thediscretization of problem (85){(86) on some �ne grid. Apply one (or a few) damped Jacobi iteration(s) toAu = g to obtain an approximate solution vector ~u. Let r = g � A~u be the residual vector. Project r toa coarse grid to obtain the coarse-grid residual vector r̂. This can be done by appropriately interpolatingthe components of r and evaluating the interpolant at the points of the coarse grid (see x8). Let Â be thematrix corresponding to the discretization of problem (85){(86) on the coarse grid. Solve (or approximatelysolve) Â~r = r̂. This can be done by applying a few damped Jacobi iterations, or by recursively applyingthe MM to Â~r = r̂, or by using a direct solver (see x2), since Â is a smaller matrix than A. Now ~r is thepreconditioned coarse-grid residual vector. Extend ~r to the �ne grid to obtain the preconditioned �ne-gridresidual vector �r. This can be done by appropriately interpolating the components of ~r and evaluating theinterpolant at the points of the �ne grid. Add �r to ~u to obtain a new approximate solution vector. Repeatthe process until convergence. Usually, only a few iterations are needed. Note that this scheme has somesimilarities to iterative improvement, as described in x2.9.The power of the MM lies in the fact that the coarse grid, which acts as a preconditioner, allows theinformation to pass from a point of the problem domain to another point in a few steps, while the �ne gridmaintains the accuracy required. Note that the interpolation and the evaluation of the interpolant neededfor the projection of a �ne-grid vector to a coarse-grid vector and for the extension of a coarse-grid vectorto a �ne-grid vector often reduce to simple relations, such as averaging neighbouring vector components. Apractical introduction to the MM, including an error analysis, can be found in (Briggs 1987).12 Parallel ComputationThe increasing demand by scientists and engineers to solve larger and larger problems constitutes the primarymotivation for parallel computation. Another impetus is the cost e�ectiveness of computers consisting ofmany standard CPUs compared to those based on one very fast CPU.A parallel computer has the ability to execute simultaneously many di�erent processes by having severalindependent processors concurrently perform operations on di�erent data. A parallel computer in which allprocessors perform the same operation on di�erent data is called a Single-Instruction-Multiple-Data (SIMD)machine, while one in which each processor has the ability to perform di�erent operation(s) on data is called102

a Multiple-Instruction-Multiple-Data (MIMD) machine. Sometimes a processor may use data computed byanother processor, either by exchanging messages with it or by sharing some common memory area. Theformer is characteristic of distributed memory or message passing machines, while the latter is characteristicof shared memory machines.A vector computer may be viewed as a restricted form of a parallel machine. On such a computer,one arithmetic operation is performed by several (usually a few) processors, which cooperate in a pipelinedmanner. Each processor receives an input operand from another processor, performs a part of the operationon it, and passes the result on to the next processor. While a processor performs its part of the operationon an operand, the next processor performs its part of the operation on the previous operand, etc. Thispipelining technique is very e�ective when the same operation is performed on many data | for example,on each component of a long vector.To utilize parallel computers e�ectively, we must be able to split the computation into parallel processesto be assigned to di�erent processors. To this end, it is desirable to have fully independent computationsin each process. For many problems, though, this is impossible, but there are techniques to minimize thedependence of the computation of one process on another. It is also desirable to have almost equal amountsof computation in each process for load-balancing. This is also hard to accomplish in many cases, but againthere exist techniques to achieve reasonable load-balancing.Many computational scientists study the parallelization of existing numerical methods, as well as thedevelopment of new methods appropriate for parallel machines. In the next subsection, we discuss, as asimple example, a numerical method which is e�ective for solving tridiagonal linear systems on parallelcomputers.12.1 Cyclic ReductionConsider solving the tridiagonal system0BBBBBBBBBBB@ a1 c1b2 a2 c2b3 a3 c3.bn�1 an�1 cn�1bn an 1CCCCCCCCCCCA0BBBBBBBBBBB@ x1x2x3...xn�1xn 1CCCCCCCCCCCA = 0BBBBBBBBBBB@ d1d2d3...dn�1dn 1CCCCCCCCCCCAby the following LU factorization algorithm for tridiagonal matrices.for k = 1; : : : ; n� 1 dobk+1 = bk+1=akak+1 = ak+1 � bk+1ckend 103

At the end of the computation, the modi�ed b's form the sub-diagonal of the unit lower triangular matrixL and the modi�ed a's and c's form the diagonal and super-diagonal, respectively, of the upper triangularmatrix U (see x2.3 and x2.7).Note that the computation proceeds in the order b2; a2; b3; a3; : : : Each value computed depends on theprevious one. Therefore, it seems that the computation is purely sequential and that there is no easy wayto parallelize it. However, there are other ways to solve tridiagonal linear systems, and some of them can beimplemented e�ectively on a parallel machine.Assume, for simplicity, that n = 2q � 1, where q is a positive integer. Multiply row 1 by b2=a1 andsubtract it from row 2, eliminating x1 from row 2. Also multiply row 3 by c2=a3 and subtract it from row 2,eliminating x3 from row 2. The new row 2 involves variables x2 and x4 only.Repeat the process described above for the (n�1)=2 groups of rows (3, 4, 5), (5, 6, 7), etc. This eliminatesthe odd unknowns from the even equations. The even equations form a new tridiagonal linear system ofabout half the size, (n� 1)=2 = 2q�1� 1, called the reduced system. This technique is often called odd-evenreduction.Now apply odd-even reduction to the reduced system to obtain another reduced system that is againabout half as big as the �rst reduced system. The recursive application of odd-even reduction continues forq = log2(n + 1) steps. At each step, the even equations of the previous step form a reduced tridiagonalsystem of about half the size of the system from the previous step. At the end of step q, one equation in oneunknown remains, so that unknown can be computed easily. This recursive technique is often called cyclicreduction.Then the computation continues in the reverse order with a process called back substitution. At eachstep of back substitution, the even variables are known from the solution of the associated reduced systemof about half the size. Substituting these values back into the odd equations of the larger system, we caneasily compute all the odd variables.Both the cyclic reduction algorithm and the back substitution algorithm require q = log2(n + 1) stepseach. In cyclic reduction, the number of
oating-point operations is divided by 2 at each step, starting withO(n)
oating-point operations in the �rst step. Thus, it requires O(n logn) arithmetic operations. Similarly,back substitution also requires O(n logn) arithmetic operations. Therefore, the computational complexityof the full solve is O(n logn).Observe that the algorithm described above is highly parallel. The elimination operations applied to agroup of three rows to obtain the reduced system at each step are independent of the elimination operationsapplied to any other group of three rows, and so can be carried out in parallel. Similarly, the substitutionoperations to compute the odd unknowns in a reduced system given the even ones are independent of eachother. Thus, the unknowns of each back substitution step can also be computed in parallel.Assume that we have p = (n�1)=2 processors. Initially, processor 1 is assigned rows (1, 2, 3), processor 2is assigned rows (3, 4, 5), processor 3 is assigned rows (5, 6, 7), and so on. After the �rst odd-even reductionstep, processor 2 will use equation 2 from processor 1, equation 4 from itself and equation 6 from processor 3.Similarly, processor 4 will use equation 6 from processor 3, equation 8 from itself and equation 10 from104

processor 5, and so on. Only the even processors will continue. The procedure is repeated. The �nalreduced system is solved by one processor. For the back substitution, 1 processor works �rst, then 2, then4, and so on.Thus, the algorithm requires 2 log2(n � 1) steps with a constant amount of computation done on eachprocessor per step, So the parallel computational complexity of the algorithm is O(logn), which is a factorof O(n) = O(p) improvement over the O(n logn) computational complexity of the serial version of the algo-rithm, and a little less than O(n) improvement over the O(n) serial computational complexity of the standardLU factorization algorithm for tridiagonal systems. So we can say that, asymptotically, the algorithm hasperfect speedup.Note that, when a processor uses rows computed by another processor, some communication and/orsynchronization must take place between processors. This may degrade the parallel performance of the algo-rithm from the perfect asymptotic performance. The time spent in communication and/or synchronizationdepends heavily on the way the processors cooperate. More speci�cally, it depends on the interconnectionnetwork between processors and on the implementation of speci�c hardware instructions.For an introduction to parallel numerical methods, see (Bertsekas and Tsitsiklis 1989; Ortega 1988;Van de Velde 1994).13 Sources of Numerical SoftwareAlthough most of this article has dealt with elementary numerical methods, we strongly recommend thatreaders do not program these schemes themselves. High-quality software incorporating these | or moresophisticated numerical methods | is readily available. In addition, good library routines often containmany additional strategies and heuristics (not discussed here) to improve their e�ciency and reliability.Using such routines, rather than attempting to re-program them, will likely save readers a signi�cant amountof time as well as produce superior numerical results.We highly recommend that readers familiarize themselves with the Guide to Available Mathematical Soft-ware (GAMS) recently developed by the National Institute of Standards and Technology (NIST). GAMS isboth an on-line cross-index of available mathematical software as well as a repository of some 9,000 high-quality problem-solving modules from more than 80 software packages. It provides centralized access to suchitems as abstracts, documentation and source code of the software modules that it catalogues. Most of thissoftware represents Fortran subprograms for mathematical problems which commonly occur in computa-tional science and engineering, such as solution of systems of linear algebraic equations, computing matrixeigenvalues, solving nonlinear systems of di�erential equations, �nding minima of nonlinear functions of sev-eral variables, evaluating the special functions of applied mathematics, and performing nonlinear regression.Among the packages catalogued in GAMS are:� the IMSL, NAG, PORT, and SLATEC libraries;� the BLAS, EISPACK, FISHPAK, FNLIB, FFTPACK, LAPACK, LINPACK and STARPAC packages;105

� the DATAPLOT and SAS statistical analysis systems;� the netlib routines, including the Collected Algorithms of the ACM (see below).Note that although GAMS catalogues both public-domain and proprietary software, source code of propri-etary software is not available through GAMS, although related items such as documentation and exampleprograms often are. Software can be found either by browsing through a decision tree or performing akey-word search. GAMS can be accessed in several ways:� telnet gams.nist.gov� gopher gams.nist.gov� <www browser> http://gams.nist.gov, where <www browser> is a World Wide Web browser such asMosaic or netscape.Report any questions or problems to gams@cam.nist.gov. For more details, login to the system or see(Boisvert, Howe and Kahaner 1985; Boisvert 1990).Included in the software catalogued by GAMS are many high-quality public-domain routines availableby electronic mail (e-mail) from netlib. These routines are now also available through Xnetlib, a moresophisticated X interface to netlib and the NA-Net Whitepages, or through the World Wide Web at theaddress http://www.netlib.org/index.html. For more information on netlib, see (Dongarra and Grosse 1987;Dongarra, Rowan and Wade 1995), send the message \send index" by e-mail to either netlib@ornl.gov ornetlib@research.att.com, or access http://www.netlib.org/index.html through the World Wide Web.The ACM Transactions on Mathematical Software publishes refereed public-domain software. Thesehigh-quality routines, covering a broad range of problem areas, are included in the Collected Algorithms ofthe ACM, available through both GAMS and netlib.Not mentioned above are the commercial interactive packages MATLAB2, Maple3 and Mathematica4.MATLAB is built upon a foundation of sophisticated matrix software and includes routines for solving manystandard mathematical and statistical problems. In addition, \toolboxes" for several application areas, suchas control theory, are available. Both Maple and Mathematica are primarily symbolic algebra packages, butcontain many high-quality numerical routines as well.GlossaryAn m� n matrix is banded if all its nonzero elements occur in a band around its main diagonal.2For more information on MATLAB, contact The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760; Phone: (508)653{1415; Fax: (508) 653{2997; e-mail: info@mathworks.com.3For more information on Maple, contact Waterloo Maple Software, 450 Phillip St., Waterloo, Ontario, Canada, N2L 5J2;Phone: (519) 747{2373; Fax: (519) 747{5284; e-mail: info@maplesoft.on.ca.4For more information on Mathematica, contact Wolfram Research Inc., 100 Trade Center Dr., Champaign, IL 61820{7237;Phone: (217) 398{0700; Fax: (217) 398-0747; e-mail: info@wri.com.106

Given a n� n matrix A, det(A� �I) = 0 is called the characteristic equation of A and the polynomialp(�) = det(A � �I) of degree n is called the characteristic polynomial of A.A matrix A is column diagonally dominant if AT is row-diagonally dominant.The complex-conjugate transpose of an m � n matrix A = [aij] is the n�m matrix AH = [ahij] whereahij = �aji for i = 1; : : : ; n and j = 1; : : : ;m. The complex-conjugate transpose of a column (row)n-vector x = [xi] is the row (column) vector xH = [xhi] with xhi = �xi for i = 1; : : : ; n.An m � n matrix D = [dij] is diagonal if dij = 0 for i 6= j. D is block diagonal if each dij in thede�nition above is a submatrix rather than a single number.A matrix A is diagonally dominant if either A or AT is row-diagonally dominant.Given a n � n matrix A, the (possibly complex) number � is called an eigenvalue of A and the nonzerovector x is called the associated eigenvector of A if Ax = �x.The Euclidean norm of a vector x is kxk2 = pxHx. The Euclidean norm is often called the 2-norm.A
op, short for
oating-point operation, is a multiplication and either an addition or a subtraction.An n� n matrix A is Hermitian if A = AH , where AH is the complex-conjugate transpose of A.An n�nmatrixA isHermitian positive (negative) de�nite ifA is Hermitian and zHAz > 0 (zHAz < 0)for all complex n-vectors z 6= 0.A matrix A is Hessenberg if it is either upper or lower Hessenberg. Note that a symmetric Hessenbergmatrix is tridiagonal.The k � k leading principal minor of a matrix A is the k � k submatrix in the top left corner of A.A matrix A is lower Hessenberg if aij = 0 for i < j� 1. That is, it is lower triangular except for a singlenon-zero super-diagonal.An n� n matrix L = [lij] is lower triangular if lij = 0 for 1 � i < j � n and strictly lower triangularif lij = 0 for 1 � i � j � n. L is block lower triangular or block strictly lower triangular,respectively, if each lij in the de�nitions above is a submatrix rather than a single number.An m� n matrix Q is orthogonal if QTQ = I.A permutationmatrix is an n�n matrix with exactly one 1 in each row and column and all other elementsequal to 0.The rank of a matrix is the maximal number of independent rows (or columns) of the matrix.An m � n matrix R = [rij] is right triangular if rij = 0 for i > j. If m = n, the terms right triangularand upper triangular are equivalent. 107

An m� n matrix A with m � n is row diagonally dominant ifnXj=1j 6=i jaijj < jaiij for i = 1; : : : ;m.Two matrices A and B are similar if B = WAW�1 for some non-singular matrix W . The matrix W isthe associated similarity transformation.An m � n matrix A is sparse if the number of nonzeros in A is much less than mn, the total number ofelements in A.The spectral radius of a square matrix A is �(A) = maxfj�j : � an eigenvalue of Ag.For strictly lower triangular, see lower triangular.For strictly upper triangular, see upper triangular.An n� n matrix A is symmetric if A = AT , where AT is the transpose of A.A real n� n matrix A is symmetric inde�nite if A is symmetric and xTAx > 0 for some real n-vector xand yTAy < 0 for some real n-vector y.A real n � n matrix A is symmetric positive (negative) de�nite if A is symmetric and xTAx > 0(xTAx < 0) for all real n-vectors x 6= 0.A real n� n matrix A is symmetric positive (negative) semide�nite if A is symmetric and xTAx � 0(xTAx � 0) for all real n-vectors x 6= 0.The transpose of an m�n matrix A = [aij] is the n�m matrix AT = [atij] where atij = aji for i = 1; : : : ; nand j = 1; : : : ;m. The transpose of a column (row) n-vector x = [xi] is the row (column) vectorxT = [xti] with xti = xi for i = 1; : : : ; n.An n� n matrix L = [lij] is unit lower triangular if L is lower triangular and lii = 1 for i = 1; : : : ; n.A matrix A is upper Hessenberg if aij = 0 for i > j + 1. That is, it is upper triangular except for asingle non-zero sub-diagonal.An n�n matrixU = [uij] is upper triangular if uij = 0 for 1 � j < i � n and strictly upper triangularif uij = 0 for 1 � j � i � n. U is block upper triangular or block strictly upper triangular,respectively, if each uij in the de�nitions above is a submatrix rather than a single number.An m� n matrix A = [aij] is tridiagonal if aij = 0 for ji� jj > 1.For 2-norm, see Euclidean norm. 108

Mathematical Symbols UsedAH : the complex-conjugate transpose of the matrix A.AT : the transpose of the matrix A.C : the set of complex numbers.Cn : the set of complex vectors with n components.Cm�n : the set of complex m � n matrices.C: the set of continuous functions.C[a; b]: the set of continuous functions on the interval [a; b].Cp: the set of continuous functions with p continuous derivatives.Cp[a; b]: the set of continuous functions with p continuous derivatives on the interval [a; b].O(hp) is any quantity that depends on h that can be bounded above by C � hp for some constant C and allh 2 (0;H] for some H > 0.O(np) is any quantity that depends on n that can be bounded above by C �np for some constant C and allpositive integers n.R: the set of real numbers.Rn: the set of real vectors with n components.Rm�n: the set of real m � n matrices.xT : the transpose of the vector x.kxk and kAk are norms of the vector x and the matrix A, respectively.kxk2 and kAk2 are Euclidean norms (also called two-norms) of the vector x and the matrix A, respectively.zH : the complex-conjugate transpose of the vector z.�(A) is the spectral radius of a square matrix A.Abbreviations UsedACM: Association for Computing Machinery.ADI: alternating direction implicit.BC: boundary condition. 109

BVP: boundary-value problem.CD: conjugate direction.CG: conjugate gradient.DOF: degrees of freedom.FD: �nite di�erence.FDM: �nite di�erence method.FE: �nite element.FEM: �nite element method.GAMS: Guide to Available Mathematical Software.GE: Gaussian elimination.IC: initial condition.ICF: incomplete Cholesky factorization.IEEE: Institute of Electrical and Electronics Engineers.IVP: initial-value problem.LMF: linear multistep formula.MM: multigrid method.ODE: ordinary di�erential equation.PCG: preconditioned conjugate gradient.PDE: partial di�erential equation.PP: piecewise polynomial.RK: Runge-Kutta.SD: steepest descent.SOR: successive over relaxation.SPD: symmetric positive-de�nite.SSOR: symmetric successive over relaxation.w.r.t.: with respect to. 110

ReferencesAmes, W. F. 1992. Numerical Methods for Partial Di�erential Equations. Academic Press, New York.Ascher, U. M., Mattheij, R. M. M., and Russell, R. D. 1988. Numerical Solution of Boundary Value Problemsfor Ordinary Di�erential Equations. Prentice-Hall, Englewood Cli�s, NJ.Atkinson, K. E. 1989. An Introduction to Numerical Analysis. John Wiley & Sons, New York, secondedition.Axelsson, O. 1994. Iterative Solution Methods. Cambridge University Press, Cambridge.Becker, E. B., Carey, G. F., and Oden, J. T. 1981. Finite Elements, volume I. Prentice Hall, EnglewoodCli�s, NJ.Bertsekas, D. P. and Tsitsiklis, J. N. 1989. Parallel and Distributed Computation: Numerical Methods.Prentice Hall, Englewood Cli�s, NJ.Boisvert, R. 1990. The guide to available mathematical software advisory system. In Houstis, E., Rice,J., and Vichnevetsky, R., editors, Intelligent Mathematical Software Systems, pages 167{178. North-Holland, Amsterdam.Boisvert, R. F., Howe, S. E., and Kahaner, D. K. 1985. GAMS: A framework for the management of scienti�csoftware. ACM Transactions on Mathematical Software, 11(4):313{355.Briggs, W. L. 1987. A Multigrid Tutorial. SIAM, Philadelphia.Buchanan, J. L. and Turner, P. R. 1992. Numerical Methods and Analysis. McGraw-Hill, New York.Butcher, J. C. 1987. The Numerical Analysis of Ordinary Di�erential Equations. John Wiley & Sons, NewYork.Celia, M. A. and Gray, W. G. 1992. Numerical Methods for Di�erential Equations. Prentice Hall, EnglewoodCli�s, NJ.Christara, C. C. 1994. Quadratic spline collocation methods for elliptic partial di�erential equations. BIT,34(1):33{61.Conte, S. D. and de Boor, C. 1980. Elementary Numerical Analysis. McGraw-Hill, New York, third edition.Cullum, J. and Willoughby, R. 1985. Lanczos Algorithms for Large Symmetric Eigenvalue Computations.Birkha�user, Boston. Vol. 1 Theory and Vol. 2 Programs.Dahlquist, G. and Bj�orck, �A. 1974. Numerical Methods. Prentice Hall, Englewood Cli�s, NJ.Davis, P. J. 1975. Interpolation and Approximation. Dover, New York.de Boor, C. 1978. A Practical Guide to Splines. Springer-Verlag, New York.111

Dennis, J. E. and Schnabel, R. B. 1983. Numerical Methods for Unconstrained Optimisation and NonlinearEquations. Prentice Hall, Englewood Cli�s, NJ.Dongarra, J. and Grosse, E. 1987. Distribution of mathematical software via electronic mail. Communica-tions of the ACM, 30(5):403{407.Dongarra, J., Rowan, T., and Wade, R. 1995. Software distribution using XNETLIB. ACM Transactionson Mathematical Software, 21(1):79{88.Du�, I., Erisman, A., and Reid, J. 1986. Direct Methods for Sparse Matrices. Oxford University Press,Oxford.George, A. and Liu, J. 1981. Computer Solution of Large Sparse Positive De�nite Systems. Prentice-Hall,Englewood Cli�s, NJ.Goldberg, D. 1991. What every computer scientist should know about
oating-point arithmetic. ACMComputing Surveys, 23:5{48.Golub, G. H. and Van Loan, C. F. 1989. Matrix Computations. John Hopkins University Press, Baltimore,second edition.Hackbusch, W. 1994. Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag, New York.Hageman, L. A. and Young, D. M. 1981. Applied Iterative Methods. Academic Press, New York.Hager, W. W. 1988. Applied Numerical Linear Algebra. Prentice Hall, Englewood Cli�s, NJ.Hairer, E., N�rsett, S. P., andWanner, G. 1987. Solving Ordinary Di�erential Equations I: Nonsti� Problems.Springer-Verlag, New York.Hairer, E. and Wanner, G. 1991. Solving Ordinary Di�erential Equations II: Sti� and Di�erential-AlgebraicProblems. Springer-Verlag, New York.Hall, C. A. and Porsching, T. A. 1990. Numerical Analysis of Partial Di�erential Equations. Prentice Hall,Englewood Cli�s, NJ.Householder, A. 1970. The Numerical Treatment of a Single Nonlinear Equation. McGraw-Hill, New York.Houstis, E. N., Christara, C. C., and Rice, J. R. 1988. Quadratic spline collocation methods for two-pointboundary value problems. Internat. J. Numer. Methods Engrg., 26:935{952.IEEE 1985. IEEE Standard for Binary Floating-Point Arithmetic. American National Standards Institute,New York. ANSI/IEEE Std. 754{1985.Johnson, L. W. and Riess, R. D. 1982. Numerical Analysis. Addison Wesley, Reading, Mass.Kahaner, D., Moler, C., and Nash, S. 1989. Numerical Methods and Software. Prentice Hall, EnglewoodCli�s, NJ. 112

Lambert, J. D. 1991. Numerical Methods for Ordinary Di�erential Equations. John Wiley & Sons, NewYork.Ortega, J. M. 1988. Introduction to Parallel and Vector Solution of Linear Systems. Plenum Press, NewYork.Parlett, B. N. 1968. Global convergence of the basic QR algorithm on Hessenberg matrices. Math. Comput.,22:803{817.Parlett, B. N. 1980. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cli�s, NJ.Prenter, P. M. 1975. Splines and Variational Methods. John Wiley & Sons, New York.Saad, Y. 1992. Numerical Methods for Large Eigenvalue Problems. Manchester University Press (John Wiley& Sons), New York.Scott, D. 1981. The Lanczos algorithm. In Du�, I. S., editor, Sparse Matrices and Their Uses, pages 139{160.Academic Press, London.Shampine, L. F. 1994. Numerical Solution of Ordinary Di�erential Equations. Chapman & Hall, New York.Shampine, L. F. and Gear, C. W. 1979. A user's view of solving sti� ordinary di�erential equations. SIAMRev., 21:1{17.Stoer, J. and Bulirsch, R. 1980. Introduction to Numerical Analysis. Springer-Verlag, New York.Strang, G. and Fix, G. J. 1973. An Analysis of the Finite Element Method. Prentice Hall, Englewood Cli�s,NJ.Strikwerda, J. C. 1989. Finite Di�erence schemes and Partial Di�erential Equations. Wadsworth andBrooks/Cole, Paci�c Grove, Calif.Van de Velde, E. F. 1994. Concurrent Scienti�c Computing. Springer-Verlag, New York.Van Loan, C. F. 1992. Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia.Varga, R. S. 1962. Matrix Iterative Analysis. Prentice-Hall, Englewood Cli�s, NJ.Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford.Young, D. M. 1971. Iterative Solution of Large Linear Systems. Academic Press, New York.
113

Further ReadingCiarlet, P. G. 1989. Introduction to Numerical Linear Algebra and Optimization. Cambridge UniversityPress, Cambridge.Forsythe, G. E., Malcolm,M. A. and Moler, C. B. 1977. Computer Methods for Mathematical Computations.Prentice-Hall, Englewood Cli�s, NJ.Forsythe, G. E. and Moler, C. B. 1967. Computer Solution of Linear Algebraic Systems. Prentice-Hall,Englewood Cli�s, NJ.Golub, G. H. and Ortega, J. M. 1992. Scienti�c Computing and Di�erential Equations. Academic Press,New York.Golub, G. H. and Ortega, J. M. 1993. Scienti�c Computing: An Introduction with Parallel Computing.Academic Press, New York.Isaacson, E. and Keller, H. B. 1966. Analysis of Numerical Methods. John Wiley & Sons, New York.Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. 1986. Numerical Recipes: The Artof Scienti�c Computing. Cambridge University Press, Cambridge.Schultz, M. H. 1973. Spline Analysis. Prentice Hall, Englewood Cli�s, NJ.Stewart, G. W. 1973. Introduction to Matrix Computations. Academic Press, New York.Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cli�s, NJ.

114

TablesTable 1: Gaussian elimination (GE) for the system Ax = b.Table 2: Back substitution to solve Ux = ~b.Table 3: Forward elimination to solve L~b = b.Table 4: The Cholesky factorization of a symmetric positive-de�nite matrix A.Table 5: Computational work and storage required to solve the linear system Ax = b derived from discretizingPoisson's equation on an m�m grid.Table 6: The preconditioned conjugate gradient (PCG) method for solving Ax = b.Table 7: The modi�ed Gram-Schmidt algorithm.Table 8: The power method.Table 9: The QR method.Table 10: Inverse iteration.Table 11: The steepest descent method.Table 12: The conjugate gradient (CG) method.Table 13: Simple quadrature rules.Table 14: Composite quadrature rules.Table 15: Adaptive quadrature procedure.
115

for k = 1; : : : ; n� 1 dofor i = k + 1; : : : ; n domik = a(k�1)ik =a(k�1)kkfor j = k + 1; : : : ; n doa(k)ij = a(k�1)ij �mik � a(k�1)kjendb(k)i = b(k�1)i �mik � b(k�1)kendend Table 1:
for i = n; : : : ; 1 doxi = 0@~bi � nXj=i+1uijxj1A =uiiend Table 2:
for i = 1; : : : ; n do~bi = 0@bi � i�1Xj=1 lij~bj1A =liiend Table 3:116

for j = 1; : : : ; n doljj =vuutajj � j�1Xk=1 l2jkfor i = j + 1; : : : ; n dolij = aij � j�1Xk=1 likljk! =ljjendend Table 4:factor solve store A store Ldense m6=6 m4 m4=2 m4=2banded m4=2 2m3 m3 m3sparse O(m3) O(m2 logm) 5m2 O(m2 logm)Table 5:
choose an initial guess x0compute r0 = b� Ax0solve M~r0 = r0set p0 = ~r0for k = 0; 1; : : : until convergence do�k = rTk ~rk=pTkApkxk+1 = xk + �kpkrk+1 = rk � �kApksolve M~rk+1 = rk+1�k = rTk+1~rk+1=rTk ~rkpk+1 = ~rk+1 + �kpkend Table 6:117

for j = 1; : : : ; n do (qj and aj are columns jqj = aj of Q and A, respectively)for i = 1; : : : ; j � 1 dorij = qTi qjqj = qj � rijqiendrjj = kqjk2qj = qj=rjjend Table 7:
Pick z0for k = 1; 2; : : : dowk = Azk�1Choose m 2 f1; : : : ; ng such thatj(wk)m)j � j(wk)i)j for i = 1; : : : ; nzk = wk=(wk)m�k = (wk)m=(zk�1)mtest stopping criterionend Table 8:
Set A0 = Afor k = 1; 2; : : : doCompute the QR factorization of Ak�1 = QkRkSet Ak = RkQktest stopping criterionend Table 9:118

Pick z0for k = 1; 2; : : : doSolve (A� ~�I)wk = zk�1zk = wk=kwkk1test stopping criterionend Table 10:
Pick an initial guess x0 and a tolerance �for k = 1; : : : ;maxit dosk�1 = �rf(xk�1)if ksk�1k � � exit loop�nd �� 2 R that minimizes f(xk�1 + �sk�1)xk = xk�1 + ��sk�1end Table 11:
Pick an initial guess x0 and a tolerance �Initialize s0 = 0 and � = 1for k = 1; : : : ;maxit doif krf(xk�1)k � � exit loopsk = �rf(xk�1) + �sk�1�nd �� 2 R that minimizes f(xk�1 + �sk)xk = xk�1 + ��sk� = krf(xk)k2=krf(xk�1)k2end Table 12:119

Quad. Rule n d Interpolant Q(f) I(f) � Q(f)rectangle 1 0 constant (b� a)f(a) (b�a)22 f 0(�)midpoint 1 1 constant (b� a)f(m) (b�a)324 f 00(�)trapezoidal 2 1 linear b�a2 [f(a) + f(b)] � (b�a)312 f 00(�)Simpson's 3 3 quadratic b�a6 [f(a) + 4f(m) � (b�a)52880 f (4)(�)+f(b)]corrected trap. 4 3 cubic b�a2 [f(a) + f(b)] (b�a)5720 f (4)(�)+ (b�a)212 [f 0(a)� f 0(b)]Newton-Cotes n � n� 1 deg. n� 1 see x9.1.1 (b�a)d+2K f (d+1)(�)Gaussian n 2n� 1 deg. n� 1 see x9.1.2 (b�a)d+2C f (d+1)(�)Table 13:
120

Quad. Rule n d PP Interp. Formula Errorrectangle s 0 constant h s�1Xi=0 f(a + ih) h2 (b � a)f 0(�)midpoint s 1 constant h sXi=1 f(a + (i � 1=2)h) h224(b� a)f 00(�)trapezoidal s+ 1 1 linear h2 [f(a) + f(b) �h212(b� a)f 00(�)+2 s�1Xi=1 f(a + ih)]Simpson's 2s + 1 3 quadratic h6 [f(a) + f(b) � h42880(b� a)f (4)(�)+2 s�1Xi=1 f(a + ih)+4 sXi=1 f(a + (i� 1=2)h)]corrected trap. s+ 3 3 cubic Hermite h2 �f(a) + f(b) h4720(b� a)f (4)(�)+2 s�1Xi=1 f(a + ih)#+h212 [f 0(a)� f 0(b)]Table 14:subroutine AQ(a, b, �)(Q;E) = LQM(a, b)if (E � �) thenreturn (Q;E)elsem = (a+b)/2return AQ(a, m, �=2) + AQ(m, b, �=2)endend Table 15:121

