
Limiting Deviation Method for Coupling Codes with Adaptive

Window-Size Control using Digital Filters

by

Rohan Palaniappan

A research paper submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

c© Copyright 2015 by Rohan Palaniappan



Abstract
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Graduate Department of Computer Science
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2015

Multi-physics systems model multiple simultaneous physical phenomena that a�ect one another. Simu-

lating such systems can be done using the Operator Splitting (OS) method, wherein separate simulations

are run concurrently for each phenomenon and data is exchanged between the simulations periodically.

In this work, we explore, in the context of the OS method, what we call the Limiting Deviation (LD)

and Limiting Deviation with Interior Check (LDIC) methods, which indirectly limit the global solution

error in an unconventional way. We test the LD and LDIC methods using �canned data� for �ve test

cases using thirteen di�erent adaptive step-size controllers. We identify the best controllers for two

experiments, point out undesired behaviour in certain controllers and examine the e�ect of two key pa-

rameters. Finally, we discuss implementation options. While our results are quite positive, we consider

them preliminary, because the tests do not factor-in the coupling between the separate simulations.
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Chapter 1

Introduction

1.1 The Code-Coupling Problem

A mathematical model of a system, be it physical, �nancial, etc., allows one to predict the approximate

state of the system at some future time t, given the initial conditions at t0 < t and the boundary

conditions, if appropriate, assuming that the model is valid for the time period [t0, t]. For example,

Newton's law of universal gravitation allows one to predict approximate values for the position and

velocity of a planet that is in orbit around the Sun at some future time t, given the position and

velocity of the planet at some time t0 < t (there are no boundary conditions here). The solution of the

mathematical equations associated with a model of the state of a system over a period of time is referred

to as a simulation. Simulations are useful for a variety of reasons: for example, determining the safety

compliance of an engineering system, such as a nuclear reactor, or determining the compliance of an

engineering system to the functional and performance requirements, such as for an aeroplane.

Sometimes, the system that requires simulation consists of distinct components. For example,

in certain physical systems, known as multi-physics systems, there are multiple simultaneous physical

phenomena that a�ect one another. An example of a multi-physics system is thermo-mechanical coupling,

where there are heat transfer and structural deformation phenomena acting at the same time in a coupled

way [1]. Another example is electric �eld-structural coupling, a.k.a. a Piezoelectric system, where there

are electric �eld and mechanical deformation phenomena acting at the same time in a coupled way. To

be more precise, the coupling in a Piezoelectric system works as follows. Applying an electric �eld to a

Piezoelectric material causes it to deform, which in turn causes an electric �eld, which in turn causes

the material to deform and so on. (A Piezoelectric material is a type of material that exhibits this

behaviour.) [1]. For additional examples of multi-physics systems, see [1]. We refer to systems that

consist of distinct components, such as multi-physics systems, as multi-component systems (this is a

general term which covers di�erent types of systems, such as �nancial, biological, physical, etc.).

How are multi-component systems simulated? One approach is to run separate simulations for

each component concurrently, exchanging data between the simulations periodically. This is referred to

as the operator-splitting (OS) method [7]. Another possibility is to use a mono-block approach wherein

1
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the entire system is simulated as one large system. This document is concerned with the �rst of these

two approaches. (There are some drawbacks to the OS method but they can be mitigated using certain

remedies suggested in [7], which are brie�y discussed in �1.2, the Literature Review section). For the OS

method, the sizes of the intervals between the data exchanges are adaptively modi�ed so as to minimize

the number of data exchanges while at the same time meeting the accuracy requirements for the global

result. In this document, the separate programs used for the simulations are referred to as codes and

the periods of time between data transfers are referred to as windows. The data exchanged between the

codes are the values of state variables, which are quantities that describe the state of a dynamic system.

Examples of state variables are velocity and temperature. The term variable is used interchangeably

with state variable going forward.

This work was done, in part, to explore the viability of a particular approach to solve a problem

that Atomic Energy of Canada Limited (AECL) is looking to address. AECL, a Canadian crown

corporation that has been active for more than 60 years, does nuclear science and technology research

and development. They perform nuclear reactor simulations and have been doing so for several decades

now. Nuclear reactors are a classic example of a multi-physics system: inside a nuclear reactor are

thermodynamics and neutronics phenomena acting simultaneously in a coupled way.

For reasons that are not pertinent to this paper, AECL currently simulates its reactors using a

method based on waveform relaxation [3]. Their method works as follows. The simulation is run several

times to completion and, for all the runs, the codes do not exchange data at all during the run. For

the �rst simulation run, for the variables that each code needs from the other codes, it uses the initial

values of those variables as constants for the entire simulation time period. For the second run, for the

variables that each code needs, it uses the values determined in the �rst run by the other codes. In the

third run, it uses the values determined in the second run by the other codes, and so on. This is referred

to as an iterative approach: each simulation run is an iteration. The solution after the �nal iteration is

the �nal solution. The greater the number of iterations, the greater the accuracy of the �nal solution.

AECL intends to move from the waveform relaxation approach to an OS approach. In an OS

approach, a mechanism for achieving the desired accuracy in the global solution is required. AECL

is interested in using a particular unconventional mechanism. To understand it, one �rst needs to

understand a few prerequisite concepts, which are explained next. With many numerical methods, the

solution to a problem is discrete, i.e., solution values are obtained at discrete points in the problem

domain. For problems in the time domain, the spacing between the discrete time-points is referred to as

time-steps. Next, with many numerical methods, the solution obtained by the method should meet some

prescribed accuracy constraint. That is, the di�erence between the discrete solution obtained by the

numerical method and the true solution at the time-points of the discrete solution should be less than

some prescribed tolerance for all the time-points of the discrete solution. These di�erences are referred

to as the global error [4]. With many numerical methods, in order to achieve the prescribed global error

tolerance, the method limits a local error estimate at every time-step. Local error for a time-step is the

di�erence between the exact solution at the end of the time-step and the numerical solution at the end of

the time-step, given that the initial values at the beginning of the time-step are the same in both cases.

Local error estimates can be obtained in many ways. A commonly used technique in numerically solving

ordinary di�erential equations (ODEs) is the one-step-two-half-steps technique, which works as follows:

we compute the solution values at the time-step endpoint; then, we redo the time-step, now in two steps
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of equal size; �nally, we compute the di�erence in the values obtained using the full step and the values

obtained using the two half-steps. This di�erence can be used to estimate the local error at the time-step

endpoint. As mentioned before, controlling the local error indirectly controls the global error. For the

relationship between the local and global errors and an introduction to numerically solving ODEs, refer

to [4].

Just as with ODEs, we want to limit the global error of the solution of a multi-component system so

as to meet the prescribed accuracy tolerance by limiting a local error estimate over each window. That is

what is typically done in the OS method. AECL wants to explore the viability of using the OS coupling

method with an alternate way of limiting the global error: instead of limiting estimates of the local errors

of the state variables, the deviations of the values of the state variables from the start to the end of each

window is limited. We call this approach the limiting deviation (LD) method. Note that this method

has several signi�cant disadvantages. They are stated brie�y here and explained in full later in the

paper. First, it is not as e�cient in terms of the amount of data transferred and amount of computation

required. This is because deviations don't necessarily imply local error. Second, the tolerances for the

deviations that will limit the local errors to the desired values will have to be determined by running

the simulation multiple times and knowing the true solution (or having a very good approximation of

it). Third, the tolerances required to limit the local errors to the same desired values in a di�erent

simulation may be di�erent! So, one may have to redo the simulation runs to determine the correct

deviation tolerances for the new simulation. Despite these potential disadvantages, we have found that

this approach does work well for the simple test problems that we consider in this paper.

We test the LD method and an extension, the limiting deviation with internal checks (LDIC )

method, using canned data, which is AECL's preferred approach. By �canned data�, we mean that the

values of all the variables of all the codes are predetermined and so, the values exchanged between the

codes are also predetermined. As such, the codes do not actually a�ect one another. Note that this work

applies to multi-component systems in general, not just multi-physics systems or just nuclear reactors.

Our results for these tests are quite positive. However, we consider these results preliminary in

that they do not take into account the e�ects of coupling between the codes. Therefore, we strongly

recommend that further testing of the LD and LDIC methods be performed on test problems that exhibit

coupling between the variables in the codes.

Deviation can be measured using several di�erent extrapolation methods. We consider two in

this document: constant extrapolation (CE) and linear extrapolation (LE), which are explained in more

detail in Chapter 2. We test the LD and LDIC methods using many di�erent adaptive time-stepping

controllers for �ve test cases for both CE and LE. In particular, we determine if one or more of the

controllers provide better �performance� than the rest for the �ve test cases. By better performance,

we mean smaller overall computational work given that the controller only accepts windows for which

the deviation is less than or equal to the tolerance. As explained in Chapter 4, the larger (smaller)

the amount of overall computational work, the longer (shorter) the overall computing time. As is also

explained in Chapter 4, given certain reasonable assumptions, the di�erence in performance between

two controllers is determined primarily by the di�erence in their number of rejected windows (assuming

that the codes do not store the values computed for the most recent window in memory, as we explain

in Chapter 4; if they did, the di�erence in performance between two controllers is equally impacted by
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the di�erence in the number of accepted windows and the di�erence in the number of rejected windows;

we were not aware of this alternate implementation until late in our work and so, we assume the codes

do not store the values in memory).

1.2 Literature Overview

The OS technique is the traditional approach for simulating reactors in the nuclear industry [7]. The

reason for this is that, historically, the various components of the nuclear reactor multi-physics problem

have been simulated separately and, so, employing the OS technique allows for existing legacy codes to be

reused. That is bene�cial because adopting the mono-block approach instead would require developing

a new code and performing extensive code veri�cation and validation work, both of which are expensive,

both monetarily and in terms of time [7].

Coupling of the codes with the OS technique can be done in several ways. One approach is a

Gauss-Seidel type of coupling wherein, for a given window, one code computes a numerical solution for

its subsystem, then passes on some data to another code, which then computes a numerical solution

for its subsystem, then passes on its data to a third code and so on, until all codes have executed the

window [7]. Another approach is a block Jacobi type of coupling wherein all the codes execute the

window at the same time, then exchange data, then execute the next window at the same time, then

exchange data, and so on. In both cases, the steps for a window are not iterated. Ragusa and Mahadevan

show that regardless of the order of convergence of the methods used by the codes, the OS technique

reduces the global order of convergence to �rst order!

As Ragusa and Mahadevan point out in [7], there exist two �remedies� one can employ to overcome

the loss of accuracy inherent in the conventional OS technique. The �rst is to use �higher degree of

linearization� for the �treatment of the lagged nonlinear terms�. The second �remedy� is to iterate over

each window. That is, after the values of all the coupled variables are computed by all the codes for a

given window, the computation is repeated again on the same window. For the second iteration, each

code uses the values of the variables which it requires that are computed by the other codes in the �rst

iteration, in the case of the Jacobi iteration, or the most recently computed variables, in the case of

Gauss-Seidel. This step is repeated some �nite number of times. Then, the next window is executed

in the same way and then, the window after that and so on. Note that this is similar to the waveform

relaxation technique described in �1.1. Note also that the iterations can be accelerated, meaning the

rate of convergence of the solution to the �true� solution can be increased; the �true� solution here is the

exact solution for the same problem with the following di�erence: the initial time point is the window

starting point and the initial conditions are the window starting point's values (which are equal to the

previous window's endpoint values).

To test numerical methods for the nuclear reactor simulation application, many studies have used

simpli�ed models of nuclear reactors, which are usually systems of PDEs or ODEs [6], [7]. For example,

in [7], Ragusa and Mahadevan use the well-known PRKE model and a 1-D model to do their testing of

the OS technique with the above-mentioned remedies. Housiadas uses a lumped-parameters 1-D model

in [6] to simulate a small research nuclear reactor. On the other hand, sophisticated codes are used by

some studies too, for example in [10].
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There has been much work in the ODE area over the years on time-step controllers. In 1988,

Gustafsson et al. pioneered the use of control theory to analyse and develop step size controllers [5].

This proved to be successful and valuable. As a result, more work has been done over the years in

applying control theory to step-size controllers. A relatively recent paper in this area is by Soderlind [9].

In it, he analyses and develops an array of di�erent controllers, building on previous work. These

include controllers that provide smooth step-size sequences, have a high order of adaptivity (desired for

smooth problems) and suppress high order frequencies (for nonsmooth and stochastic problems). Note

that Soderlind also develops and analyses controllers that suppress high order frequencies in the error

sequence but we do not test these in our work.

1.3 Report Outline

In Chapter 2, the code-coupling problem is de�ned in mathematical terms and explained, with the help

of an example. In particular, the LD and the LDIC methods and constant and linear extrapolation

for measuring deviation are all de�ned mathematically and explained using a running example. Also,

several related terms are de�ned. Finally, the drawbacks of the LD and LDIC methods are discussed.

In Chapter 3, �rst, the elementary step-size controller is introduced. Then, the �general third-order

controller� formula, which encompasses a wide array of controllers, is described. Next, step-size limiters

are explained. Finally, the step-size controllers and limiters are adapted for the LD and LDIC methods,

thereby creating window-size controllers and limiters.

In Chapter 4, we �rst describe the canned data testing method, the test system, and the test cases.

Then we explain the plots used to visualize the results and the parameter values used for the tests. After

that, we discuss the computer programs developed and used for testing and plotting. Finally, the test

results are presented and analysed. The analysis includes, but is not limited to, a comparison of the

performance of the window-size controllers against each other, noting the di�erences in the results for

LD versus LDIC and CE versus LE and explaining the undesired behaviour of some controllers for some

of the test cases.

In Chapter 5, implementation options are discussed and compared. By �implementation option�,

we mean the following: a way of implementing the LD/LDIC methods for the code-coupling problem

given a choice of CE or LE and a choice of window-size controller. In particular, we focus on the degree

of centralization versus distribution of the required tasks between the codes and the central window-size

controller program, which is explained in Chapter 2.

In Chapter 6, we draw some conclusions from this paper and discuss possible future research

directions.

Finally, in the appendices, we include some technical material that was not included in the main

body of the paper. We end with a brief bibliography.



Chapter 2

Limiting Deviation Method

Before reading this chapter, recall the de�nitions for two terms from the Introduction: multi-component

system and code. A multi-component system is a system that consists of distinct components (e.g.,

multi-physics systems). In a simulation of a multi-component system using operator splitting (OS), the

separate, possibly concurrently running, computer programs (or program segments), each modelling a

di�erent component of the multi-component system, are referred to as codes.

Each code of a multi-component system has one or more state variables. In a physical system,

possible state variables are temperature, pressure and volume. A set of values for the state variables of

a code at a particular time constitutes the state of the subsystem corresponding to that simulation at

that time. The state at a future time is determined by the present state, the governing equations of the

subsystem's model and the present state of one or more of the other subsystems. State variables are

simply referred to as variables here onwards.

Some code variables are used internally only, whereas others are shared between codes. Variables

in the second category are referred to as coupled variables in this document. Speci�cally, the coupled

variables of a code c di�er from the other variables of c in that their values are provided, at each data

exchange time-point, to those other codes that require them. These other codes require the values of

one or more of c's coupled variables (and possibly the values of the coupled variables of other codes as

well) to compute the future state of their respective subsystems. We refer to the time interval between

the exchanging of the values of coupled variables as a window.

Concepts in the document are explained through a running example presented below. The example

uses the following system: there are two codes, Code A and Code B; two of Code A's variables, x and y,

are coupled with Code B and one of Code B's variables, z, is coupled with Code A. This is represented

pictorially in Figure 2.1 below.

Let [T0, T1], [T1, T2], · · · , [TM−1, TM ] be M windows over the interval Sstart to Send (with T0 =

Sstart and TM = Send), where Sstart and Send are the simulation start and end times respectively,

T0 < T1 < · · · < TM and T0, T1, · · · , TM are time-points that mark boundaries of windows. Then, at

the end of each window [Tm−1, Tm], i.e., at time Tm, Code A transfers to Code B the values of x(Tm)

and y(Tm) and likewise, Code B transfers to Code A the value of z(Tm).

6
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Code A
z

x
y

Code B
Figure 2.1: Example system consisting of two codes with three coupled variables in total.

All codes are discrete solvers, i.e., they compute the values of their variables for only a �nite

number of time-points in each window. These time-points include the window endpoint but not the

window starting point (the values at the window starting point don't need to be computed as they

are provided as the initial condition for the window). All time-points excluding the window endpoint

are referred to as internal time-points because they lie strictly inside the window. They are adaptively

determined in each code to meet code-speci�c accuracy constraints and, so, their spacing is not necessarily

even. Also, each code may have a di�erent set of internal time-points for the same window. To be more

precise, for the nth window, [Tm−1, Tm] (n may be greater than m as some windows may be �rejected�,

which is explained later), the internal time-points for code c are represented by tc1, t
c
2, · · · , tclcn−1, where

Tm−1 < tc1 < tc2 < · · · < tclcn−1 < Tm and lcn − 1 is the number of internal time-points in the nth

window, [Tm−1, Tm], for code c. Finally, the phrase �time-points of the window� refers to all lcn of code

c's time-points in the nth window, [Tm−1, Tm] (i.e., the internal time-points and the window endpoint,

tc1, t
c
2, · · · tclcn−1, t

c
lcn

= Tm). We sometimes also use tc0 = Tm−1, but, according to our de�nition above, tc0

is not counted as a time-point of window [Tm−1, Tm].

In addition to the codes described above, there is a controller program, whose job it is to accept

or reject windows as they are completed and to determine the next window's size after the completion

of each window. Note that the controller program is separate from the codes, but, of course, can

communicate with them. To be more speci�c, each window [Tm, Tm+1] may be accepted or rejected by

the controller program. If rejected, all codes return to time-point Tm and execute a smaller window

[Tm, T
′
m+1]. If accepted, all codes proceed to execute the next window [Tm+1, Tm+2]. We use n as the

index for the windows attempted (rejected and accepted) and m as the index for the accepted windows'

endpoints. Regardless of whether the last window was accepted or rejected, the size of the next window

is determined by the controller program in an adaptive fashion, as explained in Chapter 3.

In the simplest version of coupling, which we call constant extrapolation, a code uses the window-

endpoint value of a coupled variable from the previous window as constant throughout the next window

(we assume that the previous window was accepted by the controller program). So, in the running

example, the approximate values of x and y in Code B would be x̃(t) = x(Tm+1) and ỹ(t) = y(Tm+1),

respectively, for all t ∈ [Tm+1, Tm+2]. Likewise, the approximate value of z in Code A would be z̃(t) =

z(Tm+1) for all t ∈ [Tm+1, Tm+2]. This is represented pictorially in Figure 2.2 below, using just one

coupled variable, namely Code A's x.

A more sophisticated version of coupling is based on linear extrapolation. Suppose that the con-

troller program has accepted the window [Tm, Tm+1] and that the codes are about to execute window

[Tm+1, Tm+2]. Each code does linear extrapolation to approximate the values of the coupled variables of

other codes that it needs at its internal time-points for the window [Tm+1, Tm+2]. It does so using the

values of these coupled variables at Tm+1 that it received after the execution of the previous window, i.e.,

[Tm, Tm+1], the values at Tm that it received two windows back, i.e., after the execution of [Tm−1, Tm],
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... .........

Bfor  )(~ txAfor  )(tx

mT 1+mT 2+mTmT 1+mT

)( mTx )( mTx

)( 1+mTx )( 1+mTx

t t

Figure 2.2: In the simplest version of coupling, the window endpoint value of a coupled variable that
is transferred is used as a constant over the next window by the receiving codes. The above �gure
pictorially represents this for the running example using just coupled variable x: x̃(t) = x(Tm+1) is used
by Code B to approximate x(t) at its internal time-points in the window [Tm+1, Tm+2], where x(Tm+1)
is the value of Code A's x at the end of the window [Tm, Tm+1]. Similarly, x̃(t) = x(Tm) is used by Code
B to approximate x(t) at its internal time-points in the window [Tm, Tm+1]. Note: it is assumed that
windows [Tm−1, Tm] and [Tm, Tm+1] were accepted by the controller program.

and �nally, Tm+1−Tm. Put in terms of the running example and using only the coupled variable x, this

version of coupling works as follows: after the execution of [Tm, Tm+1] (assume it was accepted), Code

A transfers to Code B x(Tm+1); Code B then computes the slope

s =
x(Tm+1)− x(Tm)

Tm+1 − Tm
(2.1)

where x(Tm) is the value of x received by Code B after the execution of [Tm−1, Tm] (assume it was

accepted); Code B then uses the linear function

x̃(t) = x(Tm+1) + s(t− Tm+1) (2.2)

to approximate x(t) at all its internal time-points in the window [Tm+1, Tm+2]. This is depicted pictorially

in Figure 2.3 below. The same would be done by Code B for y and by Code A for z.

Note that linear extrapolation can be used for all the windows of the simulation, except for the

�rst window where the value x(Tm), the window endpoint value of the window two windows back, is not

available (the �window endpoint value� of the �previous window� is available in the form of the initial

value). If the problem's nature changes radically after window [Tm, Tm+1], it may be better to switch to

constant extrapolation at that point, since x(Tm) and x(Tm+1) may not be representative of the solution

in the window [Tm+1, Tm+2]. However, this point is not explored in this work.

The procedure described above is based on linear extrapolation. Higher-order polynomial extrap-

olation could also be used, although we do not pursue this option in this work.
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Figure 2.3: A more sophisticated version of coupling, linear extrapolation, is used by Code B to approx-
imate x at its internal time-points in the window [Tm+1, Tm+2] using x(Tm+1), x(Tm) and Tm+1 − Tm.
x̃(t) = x(Tm+1) + s(t − Tm+1) is used by Code B to approximate x(t) at all its internal time-points in

the window [Tm+1, Tm+2], where s =
x(Tm+1)−x(Tm)

Tm+1−Tm and x(Tm) and x(Tm+1) are the values of Code A's

x at the end of the windows [Tm−1, Tm] and [Tm, Tm+1], respectively. Note: it is assumed that windows
[Tm−1, Tm] and [Tm, Tm+1] were accepted by the controller program.

Since the coupled variables are updated only at window start/end points rather than at every

internal time-step, error is introduced into the computation due to using inaccurate values for the

coupled variables. This error is referred to as windowing error in this document. The purpose of the

controller program is twofold. First, it rejects/accepts windows as the simulation progresses to try to

ensure that the global result of the simulation is satisfactorily accurate. Second, it adaptively adjusts

the window-sizes so as to improve e�ciency (if a larger window meets the accuracy requirements, it is

preferred over a smaller window).

One of the strategies the controller program may use for controlling the windowing error is the

Limiting-Deviation (LD) method (name given by us). Given certain assumptions, the LD method can

indirectly control the windowing error. The basic idea of the method is to limit the deviation of every

coupled variable in the system over each window w so that the approximate values that were used by

other codes for w aren't too di�erent from the actual values. It rejects a window if any one of the

coupled variables' deviation is larger than what is deemed to be tolerable for that variable. There are

two possible variations of the LD method for the operator-splitting code-coupling problem. The �rst

limits the deviations of the coupled variables at the endpoint of each window and the second limits the

deviations throughout each window, i.e., at each of the internal time-points of the window as well as the

window endpoint. We call the �rst variation the LD method and the second, the LD with interior check

(or LDIC) method.

The deviation can be measured in terms of an absolute di�erence, a relative di�erence or some

combination of relative and absolute di�erence. In the examples below, the LD and LDIC methods use

absolute di�erence (as is explained below).

We illustrate the LD and LDIC methods in terms of the running example using only Code A's cou-
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pled variable x and constant extrapolation. In the LD method, code A checks1 if |x(Tm+1)− x̃(Tm+1)| =
|x(Tm+1) − x(Tm)| ≤ tolx (where |·| is the absolute value) for every window [Tm, Tm+1]. Remem-

ber that x̃(t) = x(Tm) is the constant value used by Code B to approximate x(t) over the window

[Tm, Tm+1]. This is pictured on the left side of Figure 2.4 below. In the LDIC method, Code A

checks, for every window [Tm, Tm+1], if |x(tj) − x̃(tj)| = |x(tj) − x(Tm)| ≤ tolx for all j, where

tj ∈ [Tm, Tm+1] are the internal time-points for which Code A generated values for x; it also checks

if |x(Tm+1) − x̃(Tm+1)| = |x(Tm+1) − x(Tm)| ≤ tolx. This is pictured on the right side of Figure 2.4

below.

......

mT 1+mT mT 1+mT

)( mTx)( mTx

)( 1+mTx)( 1+mTx

?  deviations all xtol<
t t

Afor  )(tx Bfor  )(~ tx

?1
x

T
x toldev m <+
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xdev 4
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Figure 2.4: The plot on the left illustrates the LD method with constant extrapolation applied to Code
A's coupled variable x in the window [Tm, Tm+1]. The plot on the right is the same except with the
LDIC method instead of LD. The LD method with constant extrapolation e�ectively requires that the
deviation across the window endpoints of every coupled variable be less than that variable's tolerance.
On the other hand, the LDIC method requires that the deviations with respect to the window starting
point of every coupled variable at all the internal time-points and the window endpoint be less than that
variable's tolerance.

If all the deviations checked are less than the corresponding tolerances, then the window is accepted

and the simulation continues from Tm+1. Otherwise, the window is rejected and a smaller new window

is attempted starting from Tm. In either case, the next window's size is determined as described in

Chapter 3.

The bene�t of doing internal checks in the LDIC method is that there may be a signi�cant change

in value within the window for one or more coupled variables. For example, a window may contain a

spike.

The LD and LDIC methods with linear extrapolation are similar to the LD and LDIC methods,

respectively, with constant extrapolation, which was described above. For the LD method, code A checks

that |x(Tm+2)− x̃(Tm+2)| = |x(Tm+2)− (x(Tm+1)+ s(Tm+2−Tm+1))| ≤ tolx, where s = x(Tm+1)−x(Tm)
Tm+1−Tm .

For the LDIC method, code A checks that |x(tj)− x̃(tj)| = |x(tj)− (x(Tm+1)+ s(tj −Tm+1))| ≤ tolx for
all the internal time-points tj in the window [Tm+1, Tm+2] as well as the endpoint Tm+2, where again

s = x(Tm+1)−x(Tm)
Tm+1−Tm .

1In this section, we assume the check is performed by code A, but the check could be performed in the controller

program, as discussed in Chapter 5.
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It has been assumed so far that all the coupled variables are one-dimensional quantities, but,

of course, they may be multi-dimensional. If a system has one or more multi-dimensional coupled

variables, simply replace |·| with ‖·‖ when computing deviations for these coupled variables, where ‖·‖
is an appropriate norm. Similarly, instead of bounding coupled variables, such as code A's x and y,

separately, we could concatenate them into one large vector (e.g., v = (x, y)) and bound some norm of

the deviation associated with that vector.

The LD and LDIC methods have several disadvantages. First, deviations don't necessarily imply

local windowing error. That is, supposing LD is used, it is possible for the endpoint deviation of a window

to be greater than the prescribed deviation tolerance while the local error of the window endpoint is

less than the local error tolerance that would achieve the desired accuracy. For LDIC, the same is true

and it applies to internal time-points too. As a result, the sizes of some windows may be smaller than

they need to be. This results in a greater number of windows, which increases the amount of data

transferred (the amount of data transferred increases linearly with the number of windows) and the

amount of computation (while this is true, this increase is small compared to the increase brought on by

extra rejected windows (provided a particular assumption holds, as explained in �4.6.3); however, with

enough windows, this increase also becomes signi�cant).

Second, the tolerances for the deviations that limit the local errors to the desired values must be

determined by running multiple simulations and knowing a su�ciently accurate approximation to the

true solution. Third, the deviation tolerances required to limit the local errors to the same desired values

in a di�erent simulation may be di�erent! So, one may have to redo the test simulations to determine

the correct deviation tolerances for the new simulation.

Despite these disadvantages, we evaluate the LD and LDIC methods in this paper, because they are

easily implemented strategies that the scientists at AECL believe will be e�ective for their application.



Chapter 3

Adaptive Window-Size Selection

We develop an adaptive window-size selection algorithm in this chapter. We begin by reviewing adaptive

step-size selection algorithms for initial value problems (IVPs) for ordinary di�erential equations (ODEs),

since these two problems are similar and step-size selection algorithms for IVPs of ODEs have been

studied intensively.

3.1 Step-Size Controllers for ODE Solvers

IVPs for ODEs can be solved numerically using one or more computers. A numerical solution of a

system of ODEs is discrete, i.e., the solution is approximated at a �nite number of points in the domain.

Supposing the domain of the problem is time, the solution is obtained by taking steps in time over the

domain starting from the domain starting point and progressing to the domain ending point. These

steps are called time-steps. The size of each time-step is adaptively determined so as to take as large a

step as possible while still meeting the local accuracy constraints. Solution values are computed for the

endpoint of each time-step by a numerical method. These solution values along with the corresponding

time-points make up the discrete approximation to the solution for the system of ODEs. Refer to [4],

for example, for the basics of numerically solving IVPs for ODEs.

The following is a description of the context in which step-size controllers are used in numerically

solving IVPs for ODEs. To simplify the discussion below, suppose that instead of a system of ODEs, we

have just a single ODE, i.e., the solution has just a single component. Then, for each time-step, after

the solution value at the end of the time-step is computed, an estimate of the error in the solution value

due to that step is compared to the local error tolerance. If the error estimate computed is less than

or equal to the tolerance, that step is accepted. On the other hand, if the error estimate computed is

greater than the tolerance, that step is rejected. If the step is rejected, the next step starts from where

the old step started. Regardless of whether the step is accepted or rejected, the size of the next time-step

is calculated using a step-size controller.

The simplest of the step-size controllers is the so-called elementary controller, which we outline in

�3.1.1 below. Following that, the general third-order controller is presented in �3.1.2.

12
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Note that the controller formulae presented below apply only when the ODE problem has one

solution component, since our window-size controllers are described for single-component coupled vari-

ables. However, the techniques described below for the step-size controller can be generalized to multi-

component variables (i.e., vectors) by replacing the absolute value of the error by a suitable norm.

3.1.1 Elementary Controller

The elementary controller is given by the formula

hn+1 =

(
γ · tol
errn

) 1
k

hn (3.1)

where

hn+1 is the new step-size

hn is the previous step-size

errn is the absolute value of the error estimate for the previous step

tol is the error tolerance (note tol > 0)

γ is the safety factor, typically greater than or equal to 0.9 and always less than 1

k controls the degree of adaptive change (note k > 0).

Formula (3.1) works as follows. Let α =
(
tol
errn

) 1
k

and assume for now that γ = 1. The new step-size,

hn+1, will be larger than the previous step-size, hn, if errn, the error estimate for the previous step,

is less than the tolerance, since α in this case is greater than 1. Moreover, for a �xed tolerance, α is

larger for a smaller error estimate. Thus, the degree to which the new step-size becomes larger than the

previous one depends on how much smaller the error estimate is than the tolerance. Likewise, the new

step-size, hn+1, will be smaller than the previous step-size, hn, if the error estimate is greater than the

tolerance, since α in this case is less than 1. Moreover, for a �xed tolerance, α is smaller for a larger error

estimate. Thus, the degree to which the new step-size becomes smaller than the previous one depends

on how much larger the error estimate is than the tolerance. The safety factor γ, which is always less

than 1 and usually greater than or equal to 0.9, makes the new step-size, hn+1, conservative by making

the multiplicative factor
(
γ·tol
errn

) 1
k

in (3.1) smaller than α.

Please refer to Appendix A.1 for the derivation of (3.1), the elementary step-size controller formula.

In the context of ODEs, it is usual to take k = p or k = p+1, where p is the order of the underlying

ODE method. Whether k = p or k = p+1 depends on whether the controller is attempting to satisfy an

error per unit step or error per step criterion, respectively. In the case of ODEs, the underlying method

could be a Runge-Kutta, Taylor Series or linear multistep method, to name just a few possible methods.
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3.1.2 General Third-Order Controller

The elementary step-size controller (3.1) uses only the previous step's information to compute the next

step's size. However, one may also use information from the steps before the previous step. Indeed,

there are many well-known controllers, such as the PI and PID controllers, that use more information

from the past than just the previous step's. Formula (3.2) below is the general form of a wide class of

controllers that use information from three prior steps.

hn+1 =

(
γ · tol
errn

)β1
(

tol

errn−1

)β2
(

tol

errn−2

)β3
(

hn
hn−1

)−α2
(
hn−1
hn−2

)−α3

hn (3.2)

where β1, β2, β3, α2 and α3 are parameters, the values of which must be chosen, and

tol is the error tolerance (note tol > 0)

γ is the safety factor, typically greater than or equal to 0.9 and always less than 1

hn is the size of the nth step

errn is the absolute value of the error estimate for the nth step.

Formula (3.2) encompasses controllers that use fewer than three prior steps, e.g., the elementary

controller and the well-known PI and PID controllers. That is, it can be reduced to the formulae for these

controllers by choosing appropriate α and β parameter values (e.g., choosing β2 = β3 = α2 = α3 = 0

and β1 = 1/k reduces (3.2) to the elementary controller, (3.1)).

Formula (3.2) is said to have third-order dynamics, hence the name ascribed to it in this document:

the general third-order controller. The meaning of order of dynamics is rooted in control theory. A

discussion of the control theoretic di�erences between the controllers is omitted in this document. Rather,

just the behavioural di�erences between the various controllers is discussed. One may refer to [2] for

an introduction to control theory and [8] for an introduction to the control theoretic analysis of step-

size controllers. As well, one may refer to [9] for a complete control theoretic analysis of the various

controllers presented and tested here.

The order of dynamics of a controller, denoted pD, is equal to the number of past steps used by

the controller. So, pD = 1 for (3.1). If β3 = α3 = 0 in (3.2) and all other α and β parameters are

non-zero, except possibly for one of β2 and α2, then pD = 2. One of β2 and α2 can be zero because

information from the step immediately before the previous step is still used. Likewise, for a pD = 3

controller, β1 6= 0, both β2 and α2 cannot be 0 and both β3 and α3 cannot be 0.

All controllers are characterized by three values: pD, pA and pF . The value pD has already been

explained. The value pA is the order of adaptivity. It is a measure of the rate at which the local error

estimate is adapted to the tolerance. The value pF is the �lter order. It is a measure of the regularization

e�ect that the controller has on the step-size sequence. A sequence A is more regular than a sequence

B if A is smoother than B. A more complete discussion of the order of adaptivity and the �lter order is

given in [9].
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Note that the following must always hold (see [9] for an explanation based on control theory):

pA + pF ≤ pD (3.3)

The controllers are divided into two categories: deadbeat controllers and non-deadbeat controllers.

Deadbeat controllers, to quote Söderlind [9], are �suitable only for very smooth problems, and also put

stringent demands on how supporting algorithms, such as equation solvers, are implemented.� The

supporting algorithms are numerical methods such as linear or non-linear equation solvers, used within

the ODE solving method. Non-deadbeat controllers, on the other hand, can better handle problems that

aren't smooth and are less demanding of the supporting algorithms. Following the labelling system used

in [9], controllers are denoted by HpDpApF for non-deadbeat controllers (e.g., H110) and H0pDpApF

for deadbeat controllers (e.g., H0110). See [8, 9] for a more complete discussion of deadbeat and non-

deadbeat controllers (refer to [2] for an introduction to control theory if needed).

For each of the various combinations of pD, pA and pF (with pD ≤ 3) that satisfy (3.3), the values

of the α and β parameters that make the controller a deadbeat controller are provided in Table 3.1

below (values obtained from [9]). Note that, instead of providing values for β1, β2 and β3, Söderlind [9]

provides values for kβ1, kβ2 and kβ3, where k = p or k = p + 1 and p is the order of the underlying

numerical ODE method. Also note that, in Table 3.1, a �-� is used for a parameter that is necessarily

zero. For example, for all second-order controllers, β3 and α3 are necessarily zero. (The reason for not

simply using 0 is to distinguish parameters that are necessarily zero from those that are zero by choice.

For deadbeat controllers, there is no choice in the parameter values, so the convention is not useful here.

However, for non-deadbeat controllers, presented later, there is and, so, this convention is useful there.

The convention is used here also for consistency with the corresponding non-deadbeat controllers listed

in Table 3.2.)

Table 3.1: Parameters of pD ≤ 3 Deadbeat Controllers

kβ1 kβ2 kβ3 α2 α3 pD pA pF Name

1 - - - - 1 1 - H0110

2 -1 - -1 - 2 2 0 H0220

1/2 1/2 - 1/2 - 2 1 1 H0211

3 -3 1 -2 1 3 3 0 H0330

5/4 1/2 -3/4 -1/4 -3/4 3 2 1 H0321

1/4 1/2 1/4 3/4 1/4 3 1 2 H0312

For the non-deadbeat controllers, Söderlind [9] suggests values for the α and β parameters that

are desirable. Again, he provides values for kβ1, kβ2 and kβ3, instead of β1, β2 and β3. The parameter

values for the various non-deadbeat controllers are provided in Table 3.2 below. Also, in Table 3.2, a �-�

is used for a parameter that is necessarily zero and 0 is used for a parameter that is made zero by choice.

For example, for H211PI, β3 and α3 are necessarily zero since it is a second-order controller and β2 is

0 by choice in order to make the controller PI.
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Table 3.2: Parameters of pD ≤ 3 Non-Deadbeat Controllers

kβ1 kβ2 kβ3 α2 α3 Name

1/b 1/b - 1/b - H211b

1/6 1/6 - 0 - H211 PI

1/b 2/b 1/b 3/b 1/b H312b

1/18 1/9 1/18 0 0 H312 PID

1/3 1/18 -5/18 -5/6 -1/6 H321

3/10 1/20 -1/4 -1 0 H321 Predictive PID

Note that, for two of the controllers in Table 3.2, a single variable b determines the parameter

values instead of them all being �xed. For these, Söderlind [9] suggests using values from a certain range

and explains the bene�ts/drawbacks of choosing a particular value in that range. For H211b, b ∈ [2, 8]

is suggested for practical use, with the larger values in the range providing increased smoothness in the

step-size and error sequences, but, also, larger low-frequency errors. The particular value of b = 4 is

recommended based on numerical experiments. ForH312b, the situation is similar, except that b ∈ [4, 16]

is suggested and b = 8 is recommended.

Also note that, for three of the controllers in Table 3.2, the controller name has an extra word

or words appended. The reason is as follows. If, in (3.2), α2 = α3 = 0 and βi 6= 0 for i = 1, 2, 3, the

resulting controller is a member of the special, well-known class of PID controllers. If, β3 = α2 = α3 = 0

and β1 and β2 are non-zero, the resulting controller is a member of the special, well-known class of PI

controllers. Finally, a PI controller with α2 = −1 is referred to as a predictive PI controller and a PID

controller with α2 = −1 is referred to as a predictive PID controller. Predictive PI and PID controllers

achieve pA = 2, whereas the other PI and PID controllers do not.

3.1.3 Step-Size Limiters

It is common in numerical methods for ODEs to place limits on the increase and decrease of the step-size

over a single step [8]. As well, there may be both relative and absolute limits. The relative limits are

based on the previous step's size. The relative limits are imposed �rst and then the absolute limits. The

formula for imposing the relative limits is

h′n+1 = min {max {hn+1, 0.5hn}, 2hn} (3.4)

where

hn is the previous step's size

hn+1 is the step-size computed by the step-size controller

0.5 and 2 are the lower and upper relative limit factors respectively - they can be changed to any other

appropriate values

h′n+1 is the step-size after the relative step-size limits are imposed
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The formula for imposing the absolute limits is

h′′n+1 = min {max (h′n+1, hmin), hmax} (3.5)

where

h′n+1 is the step-size after the relative step-size limits are imposed

hmin and hmax are the absolute lower and upper bounds respectively on the step-size that are reasonable

to use for the problem on the particular computing system

h′′n+1 is the step-size after the absolute step-size limits are imposed

3.2 Modi�cations to the Standard Use of Step-Size Controllers

3.2.1 Window-Size Selection after Rejected Windows

For certain values of the α and β parameters, the general third-order controller (3.2) has the following

undesirable property: the next step's size may be larger than the previous step's size even if the previous

step was rejected. However, the size of the next step should always be reduced if the previous step was

rejected (assuming that the same underlying ODE method is used on both steps). So, in our use of

the general controller, (3.2), i.e., for the coupling-codes problem, after the �rst rejected window, Hn,

following one or more accepted windows, we determine the size of the next window, Hn+1, using

Hn+1 = min{ output of X, output of H0110, 0.9Hn } (3.6)

where X is the controller being used.

With (3.6), the next window's size is guaranteed to be reduced (by a factor of at least 0.9) even

if the output of controller X is greater than the size of the previous window, Hn. Note that we could

have chosen another way to compute Hn+1 that guarantees that Hn+1 < Hn after a rejected window.

However, we chose (3.6) for the following reasons. Controller X may provide a good new window-size. If

there had been multiple successive rejections prior to this rejection, one should abandon the controller,

since the asymptotic error model may not be valid in this region. However, there has been just one so

far. Hence, we do not abandon the controller yet. The term 0.9Hn is included in (3.6) to guarantee a

reduction in the window-size by at least a factor of 0.9. Finally, we include the elementary controller as

an added measure of conservativeness: if it's prediction is smaller than that of controller X (and 0.9Hn),

it is used, even though controller X's prediction may be better.

If Hn+1 is also rejected, we use Hn+1

2 for the size of the next attempted window. The reason we

abandon controller X and H0110 is that the asymptotic error model may not be valid in this region. The

sizes of all the windows that follow subsequent rejections will also be obtained by halving the previous

window's size. That is, we use the following:
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Hi =
Hi−1

2
for i ≥ n+ 2 (3.7)

Note that we could have chosen another way to compute Hi for i ≥ n+2. We chose (3.7) because

controller X is clearly not working well at this point and (3.7) is a simple way to reduce the window-size

fairly quickly.

3.2.2 Window-Size Selection after the First Accepted Window following One

or More Rejections

Another modi�cation to the standard use of step-size controllers for windowing systems is we do not use

the sizes of previous rejected windows to compute the next window's size, after an accepted window.

The reason is that the rejection(s) may be due to a rapid change in one or more of the variables of the

system, and as such, information from the previous rejected windows will not be useful in making a

good prediction for the size of the next window. So, after the �rst accepted window after one or more

consecutive rejected windows, the following should be done:

• if pD = 1, nothing special is required: just continue to use the chosen pD = 1 controller;

• if pD = 2, use a pD = 1 controller to compute the next window's size. If that window is accepted,

continue with the pD = 2 controller that was being used before;

• if pD = 3, use a pD = 1 controller to compute the next window's size. If that window is accepted,

use either a pD = 1 or a pD = 2 controller to compute the next window's size (a pD = 2 controller

is preferred as it will likely provide a better prediction than a pD = 1 controller). If that is accepted

as well, continue with the pD = 3 controller that was being used before.

For all three cases, if there is a rejection, apply the computing-window-sizes-after-rejections policy

described in �3.2.1 until a window is accepted. Then, repeat the instructions for that case.

3.3 Adaptive Window-Size Selection for the LD Method

We now extend the adaptive step-size selection algorithms described in �3.1 to adaptive window-size

selection algorithms. We begin by considering the LD method, which is based on the formula

H ′n+1 = min

{(
γ · toli,c

dev
i,lcn,c
n

)β1
(

toli,c

dev
i,lcn−1,c

n−1

)β2
(

toli,c

dev
i,lcn−2,c

n−2

)β3 (
Hn

Hn−1

)−α2
(
Hn−1

Hn−2

)−α3

Hn

: i = 1, ..., rc and c = 1, ..., C

} (3.8)

H ′′n+1 = min {max {H ′n+1, 0.5Hn}, 2Hn} (3.9)
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Hn+1 = min (max (H ′′n+1, Hmin), Hmax) (3.10)

where

Hn is the previous window-size

rc is the number of coupled variables computed by code c

i is the index for the ith coupled variable computed by code c

C is the number of codes in the system

dev
i,lcn,c
n is the deviation of the nth window's lcn

th time-point (i.e., the endpoint) for the ith coupled

variable computed by code c

toli,c is the deviation tolerance for the ith coupled variable computed by code c

γ is the safety factor, typically greater than or equal to 0.9 and always less than 1

H ′n+1 is the minimum among the window-sizes adaptively determined for all the coupled variables

H ′′n+1 is the result of applying the relative limits on H ′n+1. That is, H ′′n+1 is H ′n+1 unless H ′n+1 <

0.5Hn or H ′n+1 > 2Hn. In the former case H ′′n+1 is set to 0.5Hn and in the latter case H ′′n+1

is set to 2Hn

Hmin is the window-size absolute minimum limit

Hmax is the window-size absolute maximum limit

Hn+1 is the �nal value for the new window-size, obtained by imposing a second set of limits, which

are absolute

The curly braces in (3.8) contain the results of applying the step-size controller formula (3.2) to all the

coupled variables in the system for the endpoint of the window under consideration. The right side

of (3.8) then evaluates to the minimum among these values. The reason that the new window-size is

determined in this way is as follows. For each coupled variable, the controller formula predicts, using the

window(s) just completed, the size for the next window that is as large as possible while still satisfying the

deviation constraint. So, assuming that the controller's predictions are correct, choosing the minimum

among these values implies that all the coupled variables will satisfy their deviation constraints in the

next window and consequently, the next window will be accepted. (Remember however that the step-size

controller formula produces predictions, not accurate forecasts. So, it is possible that the next window

will be rejected even if we choose the minimum value for the next window-size. Likewise, it is possible

that the next window will be accepted even if we choose a window-size larger than the minimum.)

Formula (3.9) places relative limits on the next window's size based on the previous window's size

Hn. The factors 0.5 and 2 can be changed to any other appropriate values. Formula (3.10) places

absolute limits on the next window-size. The relative limits based on Hn are useful since they prevent

a drastic change in the window-size from one window to the next, which would prevent certain possible

misses of deviance beyond tolerance in the values of the coupled variables. Not using absolute limits,

i.e., just using relative limits, posses the following problem: it is possible for the window-sizes to steadily

increase or decrease without bound.
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When using constant extrapolation, one should use k = 1, and when using linear extrapolation,

one should use k ∈ [1, 2], as explained in Appendix A.2 and A.3, respectively (for example, to determine

the values of α and β of a particular controller given the values of kα and kβ for that controller in Table

3.1 or Table 3.2). We experimented with k = 1, k = 2 and some k ∈ (1, 2) in the elementary controller

formula with LE and found that the choice of k in that range does not make a signi�cant di�erence.

It is important to note that the choice of k does not a�ect the reliability of the windowing system!

No matter what k we use, if the deviation is larger than tol, the window will be rejected and we will

attempt a smaller window starting again from Ti. However, the choice of k may a�ect the e�ciency

of the method, but, as noted above, we found that the e�ciency is fairly insensitive to the choice of

k ∈ [1, 2].

Also note that the parameter k only a�ects the rate of change of the window-size selector, not

whether the window-sizes will be increasing or decreasing. However, the rate of change does a�ect the

e�ciency of the windowing system.

Note that it is possible that, when attempting the next window at some point in the simulation, any

window of size greater than or equal to the absolute minimum window-size, Hmin, will be rejected. That

is, it is possible that the deviations of one or more coupled variables will be larger than the corresponding

tolerances for any window of size greater than or equal to Hmin. In this case, the LD/LDIC method

cannot proceed any further and the computation terminates.

Note that the LD and LDIC methods will likely reject any window that contains a discontinuity of

size greater than the corresponding coupled variable's tolerance (by discontinuity, we mean an instanta-

neous jump/drop in value, not a steep climb/drop). There are two possibilities here, which are explained

next.

In the �rst case, despite there being a discontinuity larger than the corresponding coupled variable's

tolerance in the window, the window is accepted. This can happen with the LD method if the discon-

tinuity lies in the interior of the window and the endpoint deviation is within the tolerance. In other

words, the discontinuity is �missed� by the method (just as spikes are missed, as discussed before). For

the LDIC method, this can happen if the discontinuity lies within the window, the endpoint deviation

is within the tolerance and the interior point deviations of the top and bottom of the discontinuity are

less than the tolerance.

In the second case, if there is a discontinuity larger than the corresponding coupled variable's

tolerance in the window, the window will be rejected, regardless of its size. This can happen with the

LD and LDIC methods if the window endpoint deviation exceeds the tolerance due to the discontinuity

(e.g., a step drop in a coupled variable's value occurs within the window). After the �rst attempt on such

a window is rejected, the window-size will of course be reduced. The second attempt may be accepted

since the window could end before the discontinuity. However, all that does is move the next window's

starting point closer to the discontinuity. Then, the same situation arises again. In this scenario, the

simulation will eventually terminate since the window-size will be reduced repeatedly until �rst, the

absolute lower limit, Hmin, is reached and then, even the window of that size fails. If the window

endpoint deviation does not exceed the tolerance (which is unlikely if there is a discontinuity within

the window that is larger than the tolerance), then the LD method will accept the window (i.e., it will
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�miss� the discontinuity). However, the LDIC method will still reject the window so long as the interior

point deviations of the top and/or bottom of the discontinuity exceed the tolerance (in the step drop

example, the deviation of the point at the bottom of the discontinuity would exceed the tolerance).

The second possibility is far more likely. That is why we say that the methods will likely reject

any window with a discontinuity larger than the tolerance. Therefore, if discontinuities in the coupled

variables are expected, a more sophisticated deviation control strategy must be used.

3.4 Adaptive Window-Size Selection for the LDIC Method

Consider the formula

H ′n+1 = min

{ γ · toli,c

max
j=1...lcn

{devi,j,cn }


β1
 toli,c

max
j=1...lcn−1

{devi,j,cn−1}


β2
 toli,c

max
j=1...lcn−2

{devi,j,cn−2}


β3

×
(

Hn

Hn−1

)−α2
(
Hn−1

Hn−2

)−α3

Hn : i = 1, ..., rc and c = 1, ..., C

}
(3.11)

H ′′n+1 = min(max(H ′n+1, 0.5Hn), 2Hn)

Hn+1 = min (max (H ′′n+1, Hmin), Hmax)

where all terms are the same as the corresponding ones in (3.8), (3.9) and (3.10) except lcn, j and dev
i,j,c
n :

lcn is the number of time-points in the current window for code c

j is the index for the jth time-point in the current window for code c

devi,j,cn is the deviation of the ith coupled variable computed by code c for code c's jth time-point in

the current window

The curly braces in (3.11) contain the results of applying the controller formula for each of the

time-points of each of the coupled variables in the system for the window under consideration. The right

side of (3.11) then evaluates to the minimum among these values. The two equations after (3.11) are

similar to (3.9) and (3.10) in �3.3 respectively. They are restated here for convenience. The reason for

their use here with LDIC is the same as that given in �3.3 for the LD method.
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Testing and Analysis of Results

4.1 Testing Methodology

The various step-size controllers in Tables 3.1 and 3.2 were tested against each other using a particular

testing method, referred to by us as canned data testing (CDT ). With CDT, each code's coupled vari-

ables' values as a function of time are predetermined, i.e., before the coupled �simulation� is run. So, the

coupled variables of any one code do not a�ect the coupled variables of the other codes. To determine

the values of its coupled variables at a given time point, each code uses linear interpolation on its table

of predetermined values.

Note that instead of using CDT, one could use a multi-component system consisting of ODEs or

PDEs. That is, each component of the multi-component problem would be a system of ODEs or PDEs

and each code would include an ODE/PDE solver, which numerically solves the ODE/PDE subsystem

associated with that code. The codes would actually exchange values of coupled variables at window

endpoints and use them to compute future values for the coupled variables. This approach is preferred

over CDT since it takes the coupling of components into account whereas CDT does not. However, as

stated in Chapter 1, CDT is AECL's preferred approach, for this preliminary study. That is the reason

for it's use in this work.

4.2 Test System

The test system employed consists of two codes: code A and code B. Code A has two coupled variables

and code B has one. For this system, each controller was tested against �ve di�erent test cases, once

using constant extrapolation and once using linear extrapolation. The �ve test cases are as follows:

1. all coupled variables in the system are smoothly varying sinusoids with di�ering frequencies

2. coupled variable #1 of code A has a spike, while the other two coupled variables in the system are

linear functions of time

22
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3. coupled variable #1 of code A has a narrow spike, while the other two coupled variables in the

system are linear functions of time

4. coupled variable #2 of code A has a steep drop, while the other two coupled variables in the system

are slowly varying functions of time

5. coupled variable #1 of code A has a spike, coupled variable #2 of code A has a steep rise and

coupled variable #1 of code B has a steep drop. So, this test case has a combination of features.

4.3 Plotting of Results

For each run of a test case,

• the following are plotted together (these plots are referred to as transferred values of coupled

variables versus time plots in this paper)

� the values of coupled variables #1 and #2 of code A that were �used� by code B versus time

� the values of coupled variable #1 of code B that were �used� by code A versus time

• the window-sizes are plotted against time

The plots above are generated for both the LD and LDIC methods. Thus, there are four plots in total

per test case, all of which are put in one frame (in a 2×2 grid) for convenient comparison. So, there are

10 2×2 plots for each controller (5 for constant extrapolation and 5 for linear extrapolation).

As explained in �4.6.3, the di�erence in �performance� (term de�ned in �4.6.3) between two con-

trollers is determined primarily by the di�erence in their number of rejected windows, assuming that the

codes do not store the values computed for the most recent window in memory (if they did, the di�erence

in performance between two controllers is equally impacted by the di�erence in the number of accepted

windows and the di�erence in the number of rejected windows). The number of accepted windows and

the number of rejected windows are displayed in the window-size versus time plots described above.

The following is an explanation of the labels of the legend in the LDIC window-sizes versus time

plots (the legend labels are abbreviated; so, one may need to refer to this explanation to clarify their

meaning)

• �Acptd; no intr pnt/s� - the window did not contain any interior points and was accepted

• �Acptd; intr pnt/s exist� - the window did contain interior points and was accepted

• �Extr Rjctd� - the window was rejected due to the exterior point, i.e., the window endpoint, only

• �Intr Rjctd� - the window was rejected due to one or more interior time points only

• �Extr and Intr Rjctd� - the window was rejected due to both the exterior point (window endpoint)

and one or more interior time points
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4.4 Testing Parameter Values and Corner Cases

For all the test cases,

• the deviation tolerance is the same for all the coupled variables, which is displayed on the trans-

ferred values of coupled variables versus time plots

• the initial window-size is 0.1

• the relative window-size limits are 0.5Hn and 2Hn, whereHn is the size of the window just executed

• the absolute window-size limits Hmin and Hmax are 10−6 and 1 respectively.

For all the tests, if the next window ends past the simulation endpoint, the window-size is reduced

so that the window ends exactly at the simulation endpoint. That is, if Tm+1 > Send for the next window

[Tm, Tm+1], then [Tm, T
′
m+1] is used instead, where T ′m+1 = Send.

4.5 Testing Environment and Computer Programs for Testing

and Plotting

The canned data used for testing, the programs for testing and plotting and the results are all available as

a .zip �le: http://www.cs.toronto.edu/pub/reports/na/Rohan.MSc.Supp.2015.zip. The .zip �le contains

a folder called cdt (which is an acronym for canned data testing). The sub-folders of the cdt/ folder are

• cdt/canned_covars_data/

• cdt/results/

• cdt/plotting/

• cdt/CannedDataTesting/

• cdt/scripts/

Next, the the contents of each of the above sub-folders are explained. Note that all the source code

authored by us and all the binaries provided by us are free software under the GNU General Public

License (GPL) version 3.

4.5.1 cdt/canned_covars_data/

This folder contains the canned data for the coupled variables for the �ve test cases used for testing

(covar is short for coupled variable). Speci�cally, for each test case, the values of each of the three

coupled variables of the test system are stored in a single �le (.csv) for t ∈ [0, 3.5] with about 40 time

points. The folder also contains copies of the aforementioned .csv �les. Do not delete these copies. They

are required by the program that executes the tests, which is discussed in �4.5.5. Finally, the folder

contains a sub-folder called canned_covars_plotted in which there are �ve Microsoft Excel �les, one for
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each test case. Each of these Excel �les contains the canned data for the corresponding test case as well

as a plot of that data.

4.5.2 cdt/results/

This is the folder where the results of testing are automatically stored. There are three sub-folders:

�rst_order, second_order and third_order, which contain the results of the pD = 1, pD = 2 and pD = 3

controllers, respectively. Within each of these folders, there are sub-folders for each controller of the

corresponding pD. The folders of non-deadbeat controllers are named H<pD><pA><pF>. The folders

of deadbeat controllers, on the other hand, follow the same naming system except that _d is appended

to the end of the name (so, H<pD><pA><pF>_d is used instead). So, for example, within the folder

second_order, there are sub-folders H211, H220_d and H211_d.

Within each non-deadbeat controller folder, there are sub-folders for each α, β parameter combina-

tion tested. For example, in the folder H211, there are sub-folders b1_0.12500_b2_0.12500_a2_0.12500

(which corresponds to H211b with b = 8), b1_0.16667_b2_0.16667_a2_0.00000 (which corresponds

to H211 PI), among others. Within each of these particular non-deadbeat controller folders, there are

two sub-folders, CE and LE, which contain the raw results (.csv �les) and plots (MATLAB .�g and PDF

�les) for all the test cases for both the LD and LDIC methods using constant and linear extrapolation,

respectively.

Since there is only one deadbeat controller for any combination of pD, pA and pF , there is no

intermediate layer of sub-folders for deadbeat controllers. That is, immediately within a deadbeat

controller folder lie the CE and LE sub-folders.

4.5.3 cdt/plotting/

This folder contains the MATLAB programs required to plot the results of tests and save them (in

MATLAB .�g and PDF formats) and a Licenses.txt (explained below). The �le CdtResultsPlot.m is

the main �le. It makes use of the export_�g package of scripts and suptitle.m, which are free soft-

ware released under a BSD-like License and the MIT License respectively. Both these licenses can be

found in Licenses.txt. Note that the program suptitle.m has been modi�ed. See the header of the �le

CdtResultsPlot.m for information on how to use it.

4.5.4 cdt/CannedDataTesting/

This folder is an Eclipse CDT C project. Its sources are in /src (main.c, CannedDataTesting.c and

CannedDataTesting.h) and its executable is in /Release, named CannedDataTesting.exe. CannedDataT-

esting.exe executes a single test case for either the LD or the LDIC method with either CE or LE (these

choices are made via the arguments). See the header of the �le main.c for information on how to use

the program. Note that GNU GCC was used as the compiler.
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4.5.5 cdt/scripts/

This folder contains a number of Perl programs (for each program, see the header of the �le for infor-

mation on how to use it):

• doController.pl � for a single controller, which is identi�ed using the arguments, this program

executes the C program CannedDataTesting.exe for each test case, once for each combination

(a, b), where a ∈ {LD,LDIC} and b ∈ {CE,LE}.

• doAllControllers.pl � calls doController.pl for each and every controller, one after the other. The

controllerH110 is run �ve times, each time with a di�erent β1 value from the set {0.2, 0.4, 0.6, 0.8, 1.0}.
The controllers H211b and H321b are run four times each, each time with a di�erent b value from

the sets {2, 4, 6, 8} and {4, 8, 12, 16} respectively.

• compareResults.pl � generates clustered bar graphs to compare the number of rejected windows

and the total number of windows across controllers for every test case, once for every combination

(a, b), where a ∈ {LD,LDIC} and b ∈ {CE,LE}. One can choose, via the argument, to compare all

the controllers, all the deadbeat controllers, all the non-deadbeat controllers, H110 controllers with

β1 = 0.2, 0.4, 0.6, 0.8 and 1.0, H211b controllers with b = 2, 4, 6 and 8 or H312b controllers with

b = 4, 8, 12 and 16. When all the controllers are compared, H110 with β1 = 0.2 is used, H211b

with b = 8 is used and �nally, H312b with b = 12 is used (the reasoning for this is given in �4.6.3.1,

but, to understand it, you need to have read the text before �4.6.3.1 in �4.6.3). This program

makes use of bargraph.pl, which is free software under the GNU GPL License, and indirectly uses

gnuplot and the transig package, which are also free software, the licenses for which can be found

in Licenses.txt.

• compareResultsAcrossImpl.pl � generates clustered bar graphs of the di�erences in the number of

rejected windows and the total number of windows between two sets of results for a given set of

controllers and for every test case, once for every combination (a, b), where a ∈ {LD,LDIC} and
b ∈ {CE,LE}. In addition to the graphs of the raw di�erences, it generates graphs of the percentage

di�erences. Each set of results, i.e., the folders �rst_order, second_order and third_order, need

be placed inside a folder. The names of the two folders should be supplied as the second and third

program arguments (the graphs plot the change going from the �rst set of results to the second).

The �rst argument speci�es the group of controllers that the comparison should be done for. Refer

to the program header for a list of valid controller group arguments (examples are �all� for all

the controllers, �db� for the deadbeat controllers and �pDeq3� for the controllers with pD = 3).

This program can be used to determine the e�ect that a change in the implementation has in the

results. For example, one could compare the results obtained using a absolute maximum Hmax

with the results obtained using a di�erent absolute maximum H ′max. Finally, this program also

makes use of bargraph.pl, gnuplot and the trans�g package which, once again, are free software

(see compareResults.pl paragraph above for licenses information). Note that if the number of

rejected windows or the total number of windows of a test from the �rst result set is 0, then for

the percentage di�erence for that test, we use the raw di�erence, since otherwise we would have

to divide by zero. This does not happen though (for non-trivial problems) since the number of

rejected windows and the total number of windows are always greater than 0.
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4.6 Analysis of Results

Code A's coupled variables were "captured" successfully by Code B, i.e., the values Code B used for

Code A's coupled variables were within the respective coupled variables' deviation tolerances, and vice

versa, when the LDIC method was used (regardless of the controller, the test case or whether CE or

LE was used). On the other hand, when the LD method was used, sometimes spikes were missed. An

example of this is the narrow spike test for H211 PI with CE, the plots of which are shown in Figure

4.1. This is an expected drawback of the LD method. It is always possible that a spike will be missed

when the LD method is used because the window could step over the spike or end near the end of the

spike such that the window endpoint deviation is less than the tolerance. In contrast, the LDIC method

will never miss a spike (at least for these simple tests) since it computes and checks the deviations for all

the internal time-points and since, there must be at least one internal time-point if there exists a spike

inside the window. This shortcoming of the LD method makes it less reliable than the LDIC method.

Note that the 2×2 plots (e.g., Figure 4.1) of all the controllers cannot be included in this document

as there are too many plots (22 unique controllers were tested and there are 10 plots for each controller;

thus, there are 220 2×2 plots). Some of these plots are included in this report to explain various

points (e.g., Figure 4.1 illustrates how the LD method can miss spikes). Also, all the plots for the

elementary controller, H0110, can be found in Appendix B. As stated previously, the plots of all the

controllers tested can be found in the folder cdt/results/. As noted earlier, the folder cdt/ is contained

in http://www.cs.toronto.edu/pub/reports/na/Rohan.MSc.Supp.2015.zip.

4.6.1 Comparison of LD and LDIC Results

The LD and LDIC results are either very similar or identical for all our tests, except for those where a

spike is missed by the LD method, as discussed before. We explain why that is below.

First, let's consider CE. For all the tests, in almost all the windows, all the coupled variables are

monotonic. For example, the spike and narrow spike cases have just one non-monotonic window (the

window that encompasses the tip of the spike) and the sinusoids case has just six non-monotonic windows

(the windows that encompass the peaks/troughs of the sinusoids).

For monotonic windows, meaning windows where all the coupled variables are monotonic, when

CE is used, the window endpoint deviation will be larger than all interior point deviations for all the

coupled variables. This is because the absolute di�erence between a monotonically varying coupled

variable's value and its window starting point value grows monotonically over time, over the course of

the window. Consequently, for LDIC and pD = 1, the size of the window following a monotonic window

is determined by the monotonic window's endpoint (and not by its interior points). As a result, the LD

and LDIC methods produce the same result for the size of the next window, if the previous window's

size is the same in both cases. For pD > 1, the previous pD windows' sizes and deviations need to be

the same between LD and LDIC (the later will be true if the previous pD windows are monotonic). So,

for example, if all windows starting from the �rst to the mth window are monotonic, then the LD and

LDIC results will be identical in that period (assuming the initial window-sizes are the same for both

tests, which is true for all our tests). If a non-monotonic window is encountered, the LD and LDIC
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methods may still produce the same window-size, as explained below. If they don't produce the same

window-size, the �nal window-sizes plot could still be very similar because the controllers are adaptive

and there are only a few non-monotonic windows, at most.

The LD and LDIC methods may produce the same window-size for the next window even if

the previous window was non-monotonic (assuming that, for pD > 1, the pD − 1 windows before the

previous window are monotonic and that the window-sizes of the pD previous windows are the same).

For example, suppose that CE and LDIC are used and one of the coupled variables of one of the codes

has just one interior point in some window. Suppose also that the value of the coupled variable at the

interior time-point is greater than its window starting point value and that its window endpoint value is

lower than its window starting point value by more than the amount by which its starting point value

is lower than the interior point's value. Then, even though this window is non-monotonic, the endpoint

deviation for the coupled variable is larger than the interior point's deviation and so, the next window's

size will be determined by the window endpoint. As a result, the LD and LDIC methods will produce

the same result for the next window, even though the previous window is non-monotonic.

Now, consider LE. For LE, unlike for CE, it is not necessarily true that the window endpoint

deviation will be larger than all interior point deviations for monotonic windows: if two successive

monotonic windows contain an in�ection point, it is possible, with LE, for the window endpoint deviation

of the second window to be smaller than the deviations of one or more internal time-points. However,

three of the �ve test cases (spike, narrow spike and combination) don't have any in�ection points! So,

for these cases, the arguments above for CE apply directly. Now, consider the remaining two cases.

The steep drop case has just one in�ection point and the sinusoids case has only a few. Given that the

number of in�ection points is very small compared to the total number of accepted windows, the �nal

window-sizes plot will be the same (the presence of an in�ection point does not necessarily mean that

the window endpoint deviation will not be the largest) or be very similar (the controllers are adaptive).

4.6.2 Comparison of CE and LE Results

4.6.2.1 Window-Size Sequences

It is observed in the results that in regions where all the coupled variables are varying linearly, for both

the LD and LDIC methods,

• if LE is used, the window-size continually grows until it becomes as large as the absolute window-

size limit (e.g., see regions t = [0, 1.5] and t = [1.8, 3.5] in Figure 4.2). This behaviour is expected,

since, when linear extrapolation is used and all the coupled variables are varying linearly, the

deviation for every coupled variable will be zero. So, the window-size will, at every step, be

increased by the relative upper limit, until it reaches the absolute upper limit.

• if CE is used, the window-size remains constant, after an initial rise or decline to the constant

value. In a region where the coupled variables are all varying linearly, the window-size is limited

by the steepest slope. This is because the deviation varies linearly and positively with the window-

size when CE is used. When the coupled variables enter a linear region, the window-size grows

or shrinks, depending on the starting window-size, until that steepest-slope-determined largest
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possible window-size is reached. Then, the window-size remains constant until the linear region

ends. For an example, see Figure 4.1.

It is observed in the results that in regions where all coupled variables are changing slowly, for

both the LD and LDIC methods,

• if LE is used, the window-size grows until the deviation becomes larger than tolerated or the

window-size computed for the next window is larger than the absolute upper limit. For an example,

see the bottom plot of Figure 4.8. This is expected, since, over su�ciently short windows, the linear-

extrapolation-determined deviation of a slowly varying coupled variable will be smaller than the

tolerance and so, the window-size, at every step, will be increased (the increase may be limited by

the relative upper limit of course). However, eventually one of two things will happen, depending

on which one comes �rst. First, the deviation could grow to be larger than the tolerance (over a

su�ciently large window, the slowly changing coupled variable will have a large deviation) and so,

the window-size will be reduced. Second, the window-size could be constrained by the absolute

upper limit.

• if CE is used, the window-size changes gradually. Over su�ciently short windows, the variables

will be varying close to linearly. Then, the window cannot exceed a certain size that is determined

by the steepest slope among the coupled variables for that window. This slope slowly changes as

time progresses since the coupled variables are changing slowly. So, the window-size also slowly

changes.

4.6.2.2 Number of Accepted and Rejected Windows

For our test cases, it is observed that, when LE is used, as opposed to CE, the number of accepted

windows is signi�cantly smaller. For most of the simulation time period, in all the test cases, all coupled

variables vary linearly or close to linearly, even over fairly large windows. As a result, the deviation/s for

these windows are signi�cantly smaller when LE is used as opposed to CE. Consequently, signi�cantly

larger window-sizes are used for LE compared to CE (these sizes may be limited by the relative or

absolute limits), which in turn means that there are signi�cantly fewer accepted windows for LE than

for CE.

On the other hand, when LE is used, there are many more rejected windows for most of the test

cases with most of the controllers. One can see this visually by comparing the top plot (CE) and bottom

plot (LE) of Figure 4.4. When LE is used and when a kink is encountered during the simulation (such

as at the start of a spike, at the peak of a spike or at the start of a steep drop), the window-size needs

to decrease much more for LE than for CE in order for the next window to be accepted, because the

window-size starts o� at a much larger value for LE compared to CE. If the window-size reduction

required is large, the controller logic cannot achieve the required decrease in one step but rather, it

requires many attempts. Each failed attempt reduces the window-size further until a su�ciently small

window-size is reached. So, there are more rejected windows when LE is used, especially when the

simulation has many kinks (for example, the combination case has more kinks than the narrow spike

case).
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However, the decrease in the number of accepted windows going from CE to LE is signi�cantly

greater than the increase in the number of rejected windows. So, for all our test cases and for all the

controllers, the total number of windows is signi�cantly smaller when LE is used. This can be seen

readily from the bar graphs in Figure 4.3 (left corresponds to LDIC with CE and right to LDIC with

LE). Note that this subsection applies to both the LD and LDIC methods.
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Figure 4.3: The total number of windows for all the test cases and all the controllers. The left graph
corresponds to LDIC with CE and the right to LDIC with LE. Note that across all the controllers and
all the test cases, the total number of windows for CE is signi�cantly larger than that for LE.

4.6.3 Comparison of Controllers

The total number of windows, i.e., the number of accepted windows plus the number of rejected windows,

determines the amount of data transferred: the greater the number of windows, the greater the number

of values transferred.

Computational work increases when the number of accepted windows for the simulation increases because

of the two following reasons (assuming that the internal time-steps used by the codes are about the same

for the windows):

1. each code will have to use linear interpolation (or some higher-order interpolation) to determine

the values of its coupled variables at the window endpoint of each extra window. This is because,

most likely, the last internal step will step over the window endpoint. Note that while it is possible

for each code to compute the values of its coupled variables at the window endpoint by altering the

last internal step's size so that it ends at the window endpoint, that is an inferior choice to using

interpolation. There are two reasons for this. First, the cost for a code to compute the window

endpoint values using it's solver (e.g., solver for a system of PDEs) is normally much higher than

that of interpolation. Second, the internal time-stepping process would be interrupted by altering

the size of some of the time-steps, i.e., the last time-step of each window.

2. the controller formula (along with associated logic) will have to be executed for each extra window

to determine the next window's size.

On the other hand, computational work increases when the number of rejected windows for the
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simulation increases because of the two reasons listed above as well as a third additional reason: for

each extra rejected window, each code will have to compute the values of its coupled variables at all its

internal time-points and the window endpoint, assuming that it did not save the values at its internal

time-points from the previous (rejected) window. The internal time-points for the new window, i.e.,

after the rejection, and the values at those time-points, will be the same as those of the rejected window

since the initial conditions for both windows are the same! So, if, throughout the simulation, the values

at the internal time-points of the most recent window are saved by each code, then, additional rejected

windows are not more expensive then additional accepted windows. We were not aware of this alternate

implementation until late in our work and so, in this document, we assume the codes do not store the

values in memory.

Now, assume that

1. the sizes of the windows is normally much greater than the sizes of the internal time-steps. That

is, assume that all windows contain many internal time-steps.

2. most of the computational work is done by the codes, i.e., the controller and interpolation costs

are small compared to the cost of the codes' solvers. This assumption is reasonable for complex

codes that solve large non-linear systems of PDEs, such as those of AECL.

3. the time required for data to be transferred between codes, for the controller overhead and for

interpolation is small compared to the time required for all the codes to execute a window. This

assumption is reasonable for complex codes, such as those of AECL.

If assumptions 1-2 are true, then, the increase in computational work due to an increase in the

number of accepted windows is small compared to the increase in computational work due to rejected

windows. If assumption 3 is also true, then the same is true for computing time, not just computa-

tional work. Thus, the di�erence in the overall computational work or computing time, between two

controllers, is determined primarily by the di�erence in the number of rejected windows and not by the

di�erence in the total number of windows. In the rest of the document, we use the term �performance�

in the context of comparing controllers to mean the following: better performance means smaller over-

all computational work or equivalently, shorter computing time and poorer performance means greater

overall computational work or equivalently, longer computing time. So, using the term performance,

the sentence two sentences back becomes: the di�erence in the performance between two controllers is

determined primarily by the di�erence in the number of rejected windows and not by the di�erence in

the total number of windows.

One may think that using very small windows is a good choice since that will drastically reduce

the number of rejected windows and, thereby, minimize the computational work or equivalently, the

overall computing time. However, that is not so. The smaller the windows (equivalently, the greater the

number of windows), the greater the controller and interpolation costs, due to the reasons given earlier

in this section. If the number of windows is su�ciently large, the controller and interpolation costs will

become signi�cant compared to (or possibly even exceed) the cost of the codes. Further, the greater the

number of windows, the greater the time required for data transfer and, so, if the number of windows

is su�ciently large, the data transfer time will also become signi�cant compared to (or possibly even

exceed) the time taken by the codes to execute all the windows.
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Some windows may have more internal time-steps than others. Indeed, some windows may have

signi�cantly more internal time-steps. So, some rejected windows may be more expensive than others.

So, one might ask whether a particular controller or set of controllers has fewer rejected windows in

regions where the density of internal time-steps is high. While for a particular system and test case, one

controller or some controllers may do better than others in this respect, we believe they cannot do so in

general. This is because controllers have no way of predicting whether an upcoming window will require

many internal time-steps for one or more codes. So, if a controller has fewer rejected windows relative

to other controllers in regions with high-density of internal time-steps, we believe that is merely due to

chance.

The extra computational work done due to rejected windows is roughly x
yW , where x is the total

number of internal time-points of all the rejected windows, y is the total number of internal time-points

of all the accepted windows and W is the work that would be done if there were no rejected windows.

This of course assumes that the work required to compute values for all internal time-points is the same.

That is reasonable, since the same solver will be used by a code across all its internal time-points and

the work done by a solver is usually about the same for all internal time-points.

For the reasons explained above, we believe that the best window-size controllers are those that

have the fewest number of rejected windows, assuming that they don't have an unreasonably large total

number of windows.

4.6.3.1 Comparing the Number of Rejected Windows of Controllers

As mentioned previously, all controllers were tested using the �ve test cases. For each controller, each

test case was run once for each combination (a, b), where a ∈ {LD,LDIC} and b ∈ {CE,LE}.

The two graphs in Figure 4.4 are clustered bar graphs that allow for easy comparison of the number

of rejected windows of the various controllers for each test case; the top graph corresponds to the LDIC

method with CE and the bottom one, to the LDIC method with LE. As stated in the legend, for the

controllers H110, H211b and H312b, we use β1 = 0.2, b = 8 and b = 12 respectively. These values

were determined via testing to be the best, or at least as good as any others, in terms of the number of

rejected windows for the respective controllers. The total number of windows for these parameter values

was not much larger than that of the other values.

When CE is used, the H321 controller is the best choice for our test cases. Refer to the top graph

in Figure 4.4 for the following discussion. In both the sinusoids and the steep drop test cases, it is the

best and does signi�cantly better than most other controllers. In the spike and narrow spike test cases,

it ties for best and is just a little worse than the best, respectively. Note however that the di�erences

in the number of rejected windows for these two cases aren't signi�cant for many of the controllers as

explained at the end of this section. Finally, in the combination case, it is just a little worse than the

best. So, overall, H321 is de�nitely the best choice for CE for our test cases.

When LE is used, on the other hand, no one controller stands out as the best choice for our tests,

but there are a few that perform signi�cantly worse than the others for the sinusoids test case. Refer

to the bottom graph in Figure 4.4 for the following discussion. For the sinusoids case, H0110, H0211
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Figure 4.4: The number of rejected windows of all the controllers are compared against each other for
each test case, for the LDIC method with CE (top) and for the LDIC method with LE (bottom). Note
that across all the controllers and all the test cases, the number of rejected windows for LE is greater
than that for CE.
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and H312 PID are signi�cantly worse than most of the others. The remainder are not signi�cantly

di�erent from one another. So, based on our test cases, when LE is used, the controllers H0110, H0211

and H312 PID should be avoided and any one of the remaining controllers could be used as they all

provide roughly the same performance.

Note that, for most cases and most controllers, the number of rejected windows when LE is used

is signi�cantly larger than that when CE is used. This is expected as explained in �4.6.2.2. In addition,

note that we do not perform the number-of-rejected-windows comparison for the LD method also because

the LD method is unreliable in some cases, as explained in the beginning of 4.6, and because, for the

remaining cases, the LD method's results are similar to or identical to those of the LDIC method for

our test cases, as explained in 4.6.1.

Suppose that, for the same test case, e.g., combination or steep drop, two tests are carried out with

a di�erence in the choice of γ and/or the choice of controller and/or the choices for one or more of the

other parameters. Then, a di�erence of a few rejected windows between the two tests is not necessarily

due to a di�erence in the choices referenced above. It may instead be due to chance. We illustrate this

with the following example. Suppose that

1. CE and LDIC are used

2. there exists a coupled variable x in code c

3. for code c, the window [Tm, Tm+1] has one and only one internal time-point tp where Tm < tp <

Tm+1

4. x(tp) > x(Tm) and x(Tm) = x(Tm+1)

5. dev
tp
x =| x(tp)− x(Tm) |> tolx
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Figure 4.5: This �gure illustrates that a di�erence of a few rejected windows between two runs of the
same test case, e.g., combination or steep drop, with a di�erence in the choice of controller, γ, etc. could
be due to chance and chance alone, i.e., not due to the di�erence(s) in the choice of controller, γ, etc.

The scenario described above is illustrated in the left plot of Figure 4.5. Since dev
tp
x = | x(tp) −
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x(Tm) | > tolx, the window will be rejected. Now, consider a second scenario: suppose that the window

from the scenario described above started at the midpoint between Tm and tp, instead of Tm, but that

the window-size remains the same. Let T̃m = Tm +
tp−Tm

2 . Then, the new window is [T̃m, T̃m+1],

where T̃m+1 = Tm+1 +
tp−Tm

2 . Assume that there exists a canned data point at ta < Tm, which

is true for all windows except the �rst, and that ta is the closest canned data point to Tm that is

also less than Tm. Then, x(T̃m) = x(ta) +
x(tp)−x(ta)

tp−ta (T̃m − ta) since linear interpolation is used to

compute values between canned data points. Suppose that d̃ev
tp

x = | x(tp) − x(T̃m) | < tolx and

d̃ev
T̃m+1

x = | x(T̃m+1) − x(T̃m) | < tolx (while | devtpx = x(tp) − x(Tm) | > tolx is still true). Then, the

window will pass! This second scenario is illustrated in the right plot of Figure 4.5. So, whether or not

there is a rejected window here is determined simply by the starting point of the window, i.e., chance. In

general, the start and end points of windows in a region that has a peak or trough can alter the number

of rejected windows by at least one for this reason. This situation applies to all the test cases since they

all have at least one concave or convex region.

4.6.3.2 Inability of Some Controllers to Gradually Change Window-Size Without Any

Rejections

It is observed in the results that many controllers successfully capture slowly varying coupled variables

with some rejected windows, while others do so without any rejected windows. The latter is of course

the preferred behaviour. For example, see the window-size versus time plots of H211 PI and H0321

using LDIC and CE for the steep drop test case in Figure 4.6 (H211 PI is in the middle and H0321 is on

the bottom). The corresponding transferred values versus time plot of H211 PI is at the top of Figure

4.6. Consider the t ∈ [2.5, 3.5] portion of the window-size versus time plots. One can readily observe

that the slow decrease over time of the window-size in this region occurs with no rejected windows in the

case of H0321, whereas the decrease occurs with rejected windows in the case of H211 PI (the asterisk

marks indicate rejected windows).

4.6.3.3 Undesired Behaviour in Some pD = 2 and pD = 3 Controllers

The larger the value of pD, the less intuitive the behaviour of the controllers. It is possible for controllers

with high order-of-dynamics to exhibit undesirable and seemingly strange behaviour. We observed two

types of such behaviour in our numerical results.

The �rst type is a dip in the window-size in a region where a monotonic increase in the window-size

is expected. This is observed for the narrow spike test case for one pD = 2 controller and a few pD = 3

controllers. See Figure 4.7 for the plots of one of these tests: the narrow spike test case using H321 with

LDIC and CE. Refer to this �gure for the following discussion. Due to the narrow spike, the window-size

is reduced signi�cantly. Following the narrow spike, the window-size should increase steadily, since all

the coupled variables vary slowly (compared to the spike), as can be seen in the top plot in Figure

4.7. H321 does increase the window-size, as expected, but the increase is not monotonic or even close

to being monotonic. Instead, the window-size increases after the spike, then decreases, then increases

again. The reason that a monotonic increase is preferred is that the dip makes the average window-size

smaller and as a result, the controller overhead and the data transfer time is larger.
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Figure 4.6: The transferred values versus time and window-size versus time plots of H211 PI with LDIC
and CE for the steep drop test case are the top and middle sub-�gures respectively. The window-size
versus time plot of H0321 with LDIC and CE for the steep drop test case is the bottom sub-�gure. Notice
that the necessary decrease in the window-size in the region t ∈ [2.5, 3.5] is accomplished successfully
by both controllers. However, H0321 does so without any rejected windows, whereas H211 PI does so
with �ve rejected windows (the asterisk marks indicate rejected windows).
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Figure 4.7: The plots for the narrow spike test case for H321 using LDIC and CE. Note that there is a
dip in the window-size following the spike. It is possible and preferred for the window-size increase to
be monotonic after the spike. Some controllers exhibit the undesired behaviour seen above, while most
do not.
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The second type of undesired behaviour observed in the results is oscillatory behaviour in the

window-size sequence. This is observed for two tests only: the �rst is the steep drop test for the

H321 PID Predictive controller with LE and LDIC and the second is the same except with LD instead

of LDIC. In a region where one would expect an increase followed by a decrease in the window-size, the

window-size in these cases oscillates! Of the other controllers, two have two or three oscillations and

then recover and the remainder do not exhibit oscillatory behaviour at all. Refer to Figure 4.8 for the

following discussion. The transferred values versus time and window-size versus time plots for the LDIC

pathological case are shown in the top and middle plots respectively of Figure 4.8. Also included in the

�gure in the bottom plot is the window-size versus time plot for the H312 PID controller (also with

LE and LDIC) for which there are no oscillations. Note that in the case of the H321 PI Predictive

controller, in the region t ∈ [1.7, 3.5], the oscillations continue all the way to the end of the simulation,

whereas, in the case of the H312 PID controller, there is one small oscillation in the beginning of this

region and then there is a monotonic increase followed by a monotonic decrease, as expected. Note that

oscillatory behaviour in these pathological cases makes the average window-size signi�cantly smaller and

as a result, the controller overhead and the data transfer time become larger.

4.6.4 E�ect of the Safety Factor in the Performance of Controllers

4.6.4.1 Explaining Safety Factor E�ect for CE

The top two bar graphs in Figure 4.9 show the raw change and percentage change in the number of

rejected windows when γ is changed from γ = 0.9 to γ = 0.7 for all the controllers with LDIC and CE.

The bottom two bar graphs in Figure 4.9 show the same for the total number of windows.

The number of rejected windows is smaller for γ = 0.7 than for γ = 0.9 in most cases. This is

expected since every window-size is reduced if γ is smaller and consequently, the number of rejections

may be reduced. Note that, for the spike and narrow spike cases, if the number of rejected windows is

only a few, it cannot be reduced further to 0 since a few rejections may be unavoidable as explained in

�4.6.3.1.

One can see that the total number of windows increases in all cases, but the increase is much larger

for a few controllers than for the others and, for one (H0220), it is somewhere in between. Also, the

increase in the total number of windows in these particular controllers is smaller in the combination test

case than in the other test cases. Next, we explain these observations.

First, we derive the approximate relationship between window-size and gamma for the n+ 1st

window assuming that in the previous pD accepted windows, all the coupled variables are linear or

approximately linear and that all coupled variables are monotonic (needed only for LDIC, not LD).

Second, we show that, for all the test cases, there are many windows for which these assumptions hold

and that, in fact, together, they constitute the majority of the domain. Finally, given that the derived

approximate relationship applies to our tests, we explain how it explains the observed behaviour for the

total number of windows.

For CE, as shown in �A.2,

devn = cnHn (4.1)
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Figure 4.8: The window-size oscillates after about t = 1.7 for the H321 PID Predictive controller for
the steep drop test case with LDIC and LE. This can be seen easily in the corresponding window-size
versus time plot (middle). It is also observable in the corresponding transferred values plot (top) by
the spacing in time of the transfers. The corresponding window-size versus time plot of the H312 PID
controller is included in the bottom plot of the �gure. H312 PID does not exhibit oscillatory behaviour
in the window-size.
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where Hn is the size of some window [Tm, Tm+1] and cn = x′(θt) for some θt ∈ [Tm, Tm+1].

If cn ≈ c, for some constant c, over several windows, then, in that region,

devn ≈ cHn (4.2)

Using (4.2) and the fact that the controller tries to make devn ≈ tol,

Hn ≈ H∗ (4.3)

Then, using (4.2), (4.3) and (3.8), the equation of the general third order controller for the LD method

(considering just a single coupled variable),

H∗ =

(
γ · tol
cH∗

)β1
(
tol

cH∗

)β2
(
tol

cH∗

)β3

H∗

= γβ1

(
tol

c

)β1+β2+β3 H∗

H∗β1+β2+β3

= γβ1

(
tol

c

)β1+β2+β3

H∗1−(β1+β2+β3) (4.4)

H∗β1+β2+β3 = γβ1

(
tol

c

)β1+β2+β3

(4.5)

Therefore,

H∗ = γ
β1

β1+β2+β3

(
tol

c

)
(4.6)

A few things to note:

1. although we used the general third-order controller formula for the LD method (3.8) above, this

applies to all controllers: for second-order controllers, simply set β3 = 0, and for �rst-order con-

trollers, simply set β2 = 0 and β3 = 0.

2. in the derivation, we consider one coupled variable only, but, if all the coupled variables in the

system were considered, the relationship between window-size and γ would be the same. Since

the window-sizes are small compared to the variations of the coupled variables (the deviations

are limited by the LD/LDIC method), for the majority of the domain, over a stretch of pD ≤ 3

windows, the same coupled variable will normally have the largest deviation. This coupled variable

will determine the next window's size as per (3.8), and so, if its cn is roughly constant over the

previous pD windows, the same relationship, i.e., (4.6), will hold.

3. we did not consider internal time-points in the derivation. However, including them will produce

the same result, i.e., (4.6), if the window endpoint deviation is greater than all interior time-point

deviations for the previous pD windows, which in turn will be true if all the coupled variables were

monotonic in those windows.
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So, if (4.2) is true for the previous pD windows, then (4.6) follows. Eq. (4.2) is true for the

previous pD windows if, for the LD method, all the coupled variables are linear or approximately linear

in those windows and, for the LDIC method, the same is true, and in addition, all coupled variables are

monotonic in those windows.

Next, we consider each of the test cases to show that they meet the above conditions for the

majority of the time domain:

1. for the spike, narrow spike and combination test cases, all coupled variables vary exactly linearly

for the entire time domain, except for a few kinks (three for the spike and the narrow spike test

cases and seven for the combination test case),

2. for the sinusoids case, one can see visually from the transferred values versus time and the window-

sizes versus time plots (see the plots for H1100 in Appendix B and the plots of the other controllers

available in http://www.cs.toronto.edu/pub/reports/na/Rohan.MSc.Supp.2015.zip), that, for the

majority of the domain, all couple variables are approximately linear and monotonic,

3. for the steep drop test case, for the vast majority of the domain, all coupled variables are ex-

actly linear or approximately linear and monotonic (refer to the steep drop test case plots for

con�rmation).

Given that (4.6) applies to the majority of the domain for all the test cases, the smaller the value

of H∗ in (4.6), the greater the number of accepted windows, which in turn means, the greater the total

number of windows (the number of rejected windows is usually smaller when a smaller γ is used, as

explained above, but the increase in the number of accepted windows is greater than the decrease in the

number of rejected windows).

From (4.6) we get,

H∗γ2
H∗γ1

=

(
γ2
γ1

) β1
β1+β2+β3

(4.7)

where

H∗γ1 is the window-size of the n+ 1st window when γ1 is used

H∗γ2 is the window-size of the n+ 1st window when γ2 is used

For about half of the controllers tested, all β values are positive, and, for the others, one and

only one of β2 and β3 is negative (β1 is positive for all controllers; see Table 3.1 and Table 3.2). First,

consider the controllers for which all β values are positive. For these, the exponent in the right side of

(4.7) is positive and less than 1. Consequently, for γ2 < γ1, H
∗
γ2 < H∗γ1 , which in turn means that the

total number of windows is larger when γ2 is used than when γ1 is used, as explained previously. This

is exactly what we observe in Figure 4.9 for controllers with all positive β values: all these controllers

have a positive change in the total number of windows going from γ = 0.9 to γ = 0.7.

Next, for the controllers with a negative β2 or β3, the exponent in the right side of (4.7) is greater

than 1 for the controllers we tested, and consequently, for γ2 < γ1, H
∗
γ2 < H∗γ1 . While this is also true

for the case where all β values are positive, there is a di�erence:
(
γ2
γ1

) β1
β1+β2+β3

here, because, in (4.7),
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γ2
γ1

< 1, and because β1

β1+β2+β3
< 1 in the case where all β values are positive and β1

β1+β2+β3
> 1 in

the case where one β value is negative. Of course, for the controllers with one negative β, the degree

to which H∗γ2 is smaller than H∗γ1 depends on the relative size of β1

β1+β2+β3
, i.e. the larger β1

β1+β2+β3
,

the smaller
H∗
γ2

H∗
γ1

. This is exactly what we observe in the bottom plots of Figure 4.9 for the controllers

with one negative β (remember that the smaller H∗ is, the greater the total number of windows, as

explained previously): all these controllers have a positive change in the total number of windows going

from γ = 0.9 to γ = 0.7, the positive changes in the total number of windows for these controllers is

much greater than that of the controllers with all positive β values, and �nally, the relative sizes of the

increase in the total number of windows among the one-negative-β controllers re�ects the relative sizes of

v := β1

β1+β2+β3
: H220 with v = 2, H330 with v = 3, H321 with v = 5

4 and �nally, H321 Predictive PID

with v = 3.

For the controllers with one negative β, we observe that the increase in the total number of windows

is smaller in the combination test case than in the other test cases (refer to the bottom plots of Figure

4.9). This is because the analysis does not apply in the regions where the window-size drops or grows

signi�cantly over several windows due to a sudden increase or a sudden decrease in variation, respectively,

in one or more of the coupled variables, and because the combination case has a greater number of such

regions than the other test cases. The reason that the analysis does not apply in these regions is that

successive window-sizes are not roughly equal, i.e., (4.3) does not hold.

4.6.4.2 Explaining Safety Factor E�ect for LE

The top two bar graphs in Figure 4.10 show the raw change and percentage change in the number of

rejected windows when γ is changed from γ = 0.9 to γ = 0.7 for all the controllers with LDIC and

LE. The middle two and bottom two bar graphs in Figure 4.10 show the same for the total number of

windows and the number of accepted windows, respectively. (The graphs for the number of accepted

windows are included to explain something later in this section.)

Just as with CE, the number of rejected windows is smaller for γ = 0.7 than for γ = 0.9 in most

cases. The reason for this is exactly the same as that given for CE in �4.6.4.1.

For the total number of windows, one can see that the values don't change signi�cantly. For most,

the change is less than 10%, while for a few, it is between 10% and around 20%. Next, we explain these

observations. (Note: the steep drop cases for the H321 PID Predictive and H321 controllers should

be disregarded, since the large di�erence in the total number of windows is due to the pathological case,

described above in �4.6.3.3, occurring in the γ = 0.9 case or the γ = 0.7 case, but not both.)

For LE, as shown in A.3, if

Hn−1 ≈ Hn (4.8)

then,

devn = cnH
k
n (4.9)

where Hn is the size of some window [Tm, Tm+1], k ∈ [1, 2] and cn = x′′(θt) for some θt ∈ [Tm, Tm+1].
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If, for some constant c,

cn ≈ c (4.10)

over several windows, then in that region,

devn ≈ cHk
n (4.11)

Using (4.11) and the fact that the controller tries to make devn ≈ tol,

Hn ≈ H∗ (4.12)

Then, using (4.11), (4.12) and (3.8), the equation of the general third order controller for the LD method

(considering just a single coupled variable) reduces to

H∗ =

(
γ · tol
cH∗k

)β1
(

tol

cH∗k

)β2
(

tol

cH∗k

)β3

H∗

= γβ1

(
tol

c

)β1+β2+β3 H∗

H∗k(β1+β2+β3)

= γβ1

(
tol

c

)β1+β2+β3

H∗1−k(β1+β2+β3) (4.13)

H∗k(β1+β2+β3) = γβ1

(
tol

c

)β1+β2+β3

(4.14)

Therefore,

H∗ = γ
β1

k(β1+β2+β3)

(
tol

c

) 1
k

(4.15)

Of the notes that follow the derivation for CE in �4.6.4.1, notes 1 and 2 apply to LE as well. Note 3

does not apply as-is because, as we explained previously, for LE, if two successive windows contain an

in�ection point, it is possible for the endpoint deviation of the second window to be smaller than the

deviations of one or more of its internal time-points, even if both windows are monotonic. However, as

was also explained previously, there are no in�ection points for three of the �ve test cases and there are

only a few for each of the other two. As such, for all or the vast majority of the monotonic windows

(which, remember, are the vast majority of all windows), the endpoint deviation is largest, and so, the

same result, i.e., (4.15), will be obtained if internal points are included too.

From (4.15) we get,

H∗γ2
H∗γ1

=

(
γ2
γ1

) β1
2(β1+β2+β3)

(4.16)

where k = 2 is used since that's the value we used for all tests with LE and

H∗γ1 is the window-size of the n+ 1st window when γ1 is used

H∗γ2 is the window-size of the n+ 1st window when γ2 is used
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As stated previously, for about half of the controllers tested, all the β values are positive, and for

the others, one and only one of β2 and β3 is negative (β1 is positive for all controllers; see Table 3.1 and

Table 3.2). For controllers of both these categories, β1

2(β1+β2+β3)
< 1 in (4.16). That is necessarily true

for the all-positive-βs case but not so for the one-negative-β case. However, for the particular β values

for the controllers with one negative β value, β1

2(β1+β2+β3)
is still less than 1. As a result, with respect

to (4.16), for all the controllers and for γ2 < γ1, when LE is used, the window-size is smaller when γ2

is used than when γ1 is used. In turn, that means that, for all the controllers, when LE is used, the

number of accepted windows is larger when γ2 is used than when γ1 is used.

The results for the number of accepted windows as captured by the bottom two plots of Fig-

ure 4.10, however, do not match well with the model's predictions given above: the model predicts

that the controllers H0330, H321, H321 Predictive PID and H0220 (to a lesser extent) will have a

signi�cantly greater number of accepted windows than the other controllers (3 to 15 times larger for

the �rst three and 2 to 10 for H0220) but this is not what we observe (somewhat true for two of the

four controllers for the Sinusoids case only). The reason for this is that the model does not apply

well for LE, unlike for CE. For example, for (4.15) to be true for the n+ 1st window, (4.8) needs to

be true for the previous pD windows but this is not the case for the majority of the windows for the

LE tests (see the plots for H1100 in Appendix B and the plots of the other controllers available via

http://www.cs.toronto.edu/pub/reports/na/Rohan.MSc.Supp.2015.zip). The required model is more

complicated.

4.6.5 Choice of Controller after Two Successively Accepted Windows follow-

ing Rejected Window(s) for a pD = 3 Controller

Suppose that pD = 3 and that there are one or more consecutive rejections followed by an accepted

window (to compute the next window's size in the rejections phase, one would use the window-size-

selection-after-rejections policy detailed in �3.2.1). Then, as explained in �3.2.2, for pD = 2 and pD = 3

controllers, the next window's size should be computed using a pD = 1 controller. Which pD = 1

controller provides best performance? We did not carry out tests to determine this and simply chose

the elementary controller, H0110. One may carry out additional tests using other pD = 1 controllers to

determine which pD = 1 controller/s, if any, provides the best performance.

As was also explained in �3.2.2, for pD = 3 controllers, after two accepted windows following one or

more consecutive rejected windows, one should use a pD = 1 or pD = 2 controller to compute the next

window's size. Tests were run to determine if using H0110 or a particular pD = 2 controller provides

better controller performance. Note that we did not consider pD = 1 controllers other than H0110 (one

may want to carry out additional tests to determine which pD = 1 controller/s, if any, provides the

best performance.) For our test cases, no one controller provides signi�cantly better performance for

CE and H211b with b = 8 provides the best performance for LE. This was determined by assessing the

percentage change in the number of rejected windows for all test cases and all pD = 3 controllers going

from H211b with b = 8 to each of the other pD = 2 controllers and H0110. Just the percentage changes

aren't su�cient however. One also needs the raw change in the number of rejected windows because, for

example, a 50% change could be due to 1 rejected window changing to 2 rejected windows. A di�erence
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Figure 4.9: The top left and right plots are the percentage and raw di�erences, respectively, in the
number of rejected windows when γ is decreased from γ = 0.9 to γ = 0.7 for all the test cases and all
the controllers and for LDIC with CE. The bottom plots are the same except with the total number of
windows instead of the number of rejected windows.
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Figure 4.10: The top left and right plots are the percentage and raw di�erences, respectively, in the
number of rejected windows when γ is decreased from γ = 0.9 to γ = 0.7 for all the test cases and all
the controllers and for LDIC with LE. The middle and bottom plots are the same except with the total
number of windows and number of accepted windows, respectively, instead of the number of rejected
windows.
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of a few in the number of rejected windows is not signi�cant, as explained in �4.6.3.1, since that may be

due to chance.

Clustered bar graphs of the percentage changes and the raw di�erences going from H211b with

b = 8 to H0110 for LDIC with CE are shown in the top row of Figure 4.11. The same for LDIC with LE

are shown in the bottom row of Figure 4.11. As can be seen in the top row of Figure 4.11, in the case of

CE, there is no signi�cant di�erence in the number of rejected windows going from H211b with b = 8 to

H0110: the vast majority of cases have a raw di�erence less than or equal to 4 (the two exceptions are

di�erences of only 5 and 6). In the case of LE, as one can see in the bottom row of Figure 4.11, there

is a signi�cant increase in the number of rejected windows going from H211b with b = 8 to H0110 for

the sinusoids and combination test cases (for the combination test problem, an increase is seen only in

some controllers), which means that H211b with b = 8 provides better performance than H0110.
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Chapter 5

Implementation Options

For the LD and LDIC methods, there are two main implementation options - fully-distributed and fully-

centralized - with a range of possibilities in between. The distinction between these two implementation

options is in the way in which the work is shared between the controller program and the codes, the

work being the deviation estimation, window acceptability determination and window-size prediction.

With the fully-distributed implementation, the work is shared whereas with the fully-centralized im-

plementation, all of the work is done in the controller program. Note that it is possible to modify the

fully-distributed implementation to make it less distributed and more centralized. Likewise, it is possible

to modify the fully-centralized implementation to make it less centralized and more distributed. Note as

well that the word controller will be used in this chapter to mean controller program and not window-size

controller. Finally, note that, as stated previously in this document, we assume that, throughout the

simulation, the values at the internal time-points of the most recent window are not saved by the codes.

5.1 Fully-Centralized LD and LDIC Implementation

The following three steps are repeated for each window until the end of the simulation is reached.

1. After executing a window, in the case of the LD method, each code sends the window endpoint

values of all its coupled variables to the controller. In the case of the LDIC method, each code

sends the values of all its coupled variables at all its time-points for the window. Then, all the

codes wait.

2. Upon receiving the values of all the coupled variables of all the codes,

(a) the controller computes the deviations of all the coupled variables using the values received

from the codes and

i. in the case of constant extrapolation, the values from the previous successful window's

endpoint, which the controller needs to have stored throughout the simulation (for the

�rst window it would use the initial values)

50
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ii. in the case of linear extrapolation, the values from the endpoint of the previous two

successful windows and the size of the previous window, which it needs to have stored

throughout the simulation (for the �rst window, constant extrapolation will be used since

there are no windows before it).

In the case of LD, the deviations are computed at just the window endpoint, whereas, in

the case of LDIC, the deviations are computed at all the time-points. Then, the controller

determines whether every deviation is less than or equal to the corresponding tolerance (the

controller needs to have all the tolerances stored in its memory). If so, it sets the acptsys

Boolean to 1 (meaning the window is acceptable for the system of codes), else, it sets it to 0

(meaning the window is unacceptable for the system of codes).

(b) if acptsys = 1, the controller sends to each code the window endpoint values of the coupled

variables that the code requires.

(c) the controller determines Hn+1, the next window's size, using formulas (3.8), (3.9) and (3.10)

in the case of LD or (3.11), (3.9) and (3.10) in the case of LDIC.

(d) the controller sends acptsys and Hn+1 to all of the codes.

3. Upon receiving acptsys and Hn+1 from the controller, each code resumes the simulation in one

of two ways. If the window was deemed unacceptable (acptsys = 0), it returns to the window's

starting point and executes a window of size Hn+1 (using the same values for the coupled variables

at the window starting point that it used for the rejected window). On the other hand, if the

window was deemed acceptable (acptsys = 1), it resumes execution from its current position over

a window of size Hn+1. (In doing so, it will use the window endpoint values sent in step 2b. We

are assuming that these window endpoint values arrive at all the codes before acptsys does since

the window endpoint values are sent before acptsys (steps 2b and 2d respectively). If this cannot

be gauranteed, each code should check that it has received the window endpoint values of all the

coupled variables it needs before proceeding to execute the next window.)

5.2 Fully Distributed LD and LDIC Implementations

The following four steps are repeated until the end of the simulation is reached.

1. After executing each window, each code performs the following three steps.

(a) Each code c computes the deviations of all its coupled variables at the window endpoint (LD)

or at all the time-points (LDIC) using

i. in the case of constant extrapolation, the values from the previous successful window's

endpoint, which c needs to have stored throughout the simulation (for the �rst window

it would use the initial values)

ii. in the case of linear extrapolation, the values from the endpoint of the previous two

successful windows and the size of the previous window, which c needs to have stored
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throughout the simulation (for the �rst window, constant extrapolation will be used since

there are no windows before it).

(b) Each code applies the controller formula to all its coupled variables (for LD, at the window

endpoint only and for LDIC, at all its time-points) and then, determines the minimum among

the resulting numbers. It then imposes the relative and absolute limits to compute the size

of the next window that is best for it. That is, each code c, for c = 1, . . . , C, where C is the

number of codes in the system, computes Hc
n+1 as follows.

For LD,

H ′c = min

{ (
γ · toli,c

dev
i,lcn,c
n

)β1
(

toli,c

dev
i,lcn−1,c

n−1

)β2
(

toli,c

dev
i,lcn−2,c

n−2

)β3 (
Hn

Hn−1

)−α2

(
Hn−1

Hn−2

)−α3

Hn : i = 1, ..., rc

} (5.1)

H ′′c = min {max {H ′c, 0.5Hn}, 2Hn} (5.2)

Hc
n+1 = min (max (H ′′c , Hmin), Hmax) (5.3)

where all terms, except the new ones H ′c, H
′′
c and Hc

n+1, are the same as the corresponding

ones in (3.8), (3.9) and (3.10); the new terms are explained below

H ′c is the minimum among the next window-size values computed for all the coupled

variables of code c only

H ′′c is the result of applying the relative limits on H ′c

Hc
n+1 is the �nal value for the next window-size for code c, obtained by imposing a second

set of limits, which are absolute.

For LDIC,

H ′c = min

{ γ · toli,c

max
j=1...lcn

{devi,j,cn }


β1
 toli,c

max
j=1...lcn−1

{devi,j,cn−1}


β2

×

 toli,c

max
j=1...lcn−2

{devi,j,cn−2}


β3 (

Hn

Hn−1

)−α2
(
Hn−1

Hn−2

)−α3

Hn : i = 1, ..., rc

}
(5.4)

and (5.2) and (5.3) are used to compute Hc
n+1, where all terms are the same as those in

(3.11), (3.9) and (3.10), except for the new terms H ′c, H
′′
c and Hc

n+1, which are explained

above (under the LD equations)

(c) Each code c checks if the deviations of all its coupled variables at the window endpoint (LD)

or at all the time-points (LDIC) are less than or equal to the corresponding tolerances. If so,

c sets the Boolean acptc to 1 (meaning the window is acceptable for code c), else, it sets it to

0 (meaning the window is unacceptable for code c)
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(d) Each code c sends acptc and H
c
n+1 to the controller.

2. (a) Upon receiving acptc from all the codes, the controller checks if each and every acptc is equal

to 1. If they are, it sets the Boolean acptsys to 1 (meaning the window is acceptable for all

the codes in the system), else, it sets it to 0 (meaning the window is unacceptable for one or

more codes in the system).

(b) Upon receiving Hc
n+1 from all the codes, the controller determines the next window's size by

taking the minimum among all the Hc
n+1 values, i.e., it computes the following

Hn+1 = min
c
{ Hc

n+1 : c = 1, ..., C } (5.5)

(c) The controller sends acptsys and Hn+1 to all the codes.

3. Upon receiving acptsys from the controller, if acptsys = 1, each code c1 sends to every other code

c2 the window endpoint values of those coupled variables computed by c1 that c2 requires, if any.

(If acptsys = 0, the codes do not need to send the values of their coupled variables to the other

codes.)

4. Upon receiving acptsys and Hn+1 from the controller, each code resumes the simulation in one

of two ways. If the window was deemed unacceptable (acptsys = 0), it returns to the window's

starting point and executes a window of size Hn+1 (using the same values for the coupled variables

at the window starting point that it used for the rejected window). On the other hand, if the

window was deemed acceptable (acptsys = 1), it �rst checks if it has received the window endpoint

values for all the coupled variables it requires (which were sent in step 3). If it has not, it waits.

Once it has received all these values, it resumes execution from its current position over a window

of size Hn+1.

5.3 Centralized versus Distributed Implementations

As mentioned above, it is possible to make the fully centralized implementation less centralized and

more distributed. This can be done to varying degrees. For example, assuming the LD method is

used, instead of the codes sending the window endpoint values to the controller and the controller

computing the deviations, the codes could compute the deviations themselves and send the deviations to

the controller. One could make the implementation even more distributed by having each code check if

all its deviations are less than the corresponding tolerances and send the Boolean result to the controller

(which will then have to determine if all the codes sent a Boolean 1) instead of the controller checking

the deviations of all the coupled variables of all the codes. In this way, i.e., incrementally, the centralized

implementation can be modi�ed to make it more and more distributed. Similarly, the fully distributed

implementation can be made less distributed and more centralized, to varying degrees.

The more centralized the implementation, the lesser the degree of code modi�cation required and

the greater the ease of maintenance. On the other hand, the more centralized the implementation,

the greater the data transfer time and the time to compute the deviations, acptsys and Hn+1. These
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di�erences in the data transfer and computing time will not be signi�cant for systems that have one or

more complex codes, such as those of AECL. These points are explained below.

First, consider the degree of code modi�cation required. The centralized and distributed imple-

mentations both require modi�cations to enforce pausing the execution after completion of a window,

responding appropriately depending on the value of acptsys (step 3 in �5.1 and steps 3 and 4 in �5.2), etc.

However, the distributed implementation requires some extra additions/modi�cations. First, it requires

the codes to compute Hc
n+1 and acptc (steps 1b and 1c, respectively, in �5.2). Second, it requires the

codes to know to which codes to send which of its coupled variables and when to send them (step 3

in �5.2). So, the centralized implementation requires signi�cantly less code modi�cation. For nuclear

simulation codes, minimal or no change to the codes is preferred because of the signi�cant veri�cation

and validation (V&V) work that must be performed after any changes made. That will be expensive

both monetarily (equivalently, man-hours) and in the length of time required.

Second, consider ease of maintenance. With the distributed implementation, if any changes are

made to the coupling method employed (LD or LDIC), it would have to be duplicated in all the codes.

With the centralized implementation on the other hand, the changes need to be made only in the

controller. This is a signi�cant advantage of the centralized implementation.

Third, consider the length of time required for data transfer, which a�ects the simulation completion

time (the greater the data transfer time, the greater the simulation completion time). In the centralized

implementation case, for the LD method, all the codes need to send the window endpoint values of

their coupled variables to the controller for all the windows, i.e., regardless of whether the window was

rejected or accepted; likewise, for the LDIC method, all the codes need to send the values of their

coupled variables for all the time-points to the controller for all the windows. With the distributed

implementation on the other hand, for both the LD and LDIC methods, the codes need to send only the

window endpoint values and only if the window was accepted! So, the amount of data transferred in the

centralized implementation case is larger and so, the time taken for the transfer is greater. In addition,

the centralized implementation has the disadvantage that all the data transfers are to and from a single

point, i.e., the controller, instead of many to many, as is the case for the distributed approach. This

makes the data transfer take longer for the centralized approach than the distributed approach. Note

that this increase in simulation completion time due to the longer data transfer time may be insigni�cant:

the time taken by one or more codes to execute a window may be far greater than the data transfer time

saved by using the distributed implementation; this is true for systems that contain complex codes, such

as those of AECL.

Fourth and �nally, consider the time required to compute the deviations, acptsys and Hn+1. In the

case of the centralized implementation, all the work is done by the controller whereas in the distributed

case, the work is done in parallel by the codes and then, the global result is determined by the con-

troller. So, the computing time for the quantities stated above is shorter in the case of the distributed

implementation. Note that this di�erence may not be signi�cant: the time taken by one or more codes

to execute a window may be far greater than the time saved in computing the quantities stated above

using the distributed implementation; this is true for systems that contain complex codes, such as those

of AECL.
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Conclusion and Future Work

6.1 Conclusion

Regardless of the controller, when LE is used, as opposed to CE, the average window-size is signi�cantly

larger. On the other hand, when LE is used, the number of rejected windows is signi�cantly larger.

Overall, the total number of windows is signi�cantly smaller when LE is used.

The LD method is unreliable, unlike the LDIC method. For example, it may miss spikes of size

greater than the deviation tolerance within a window. Otherwise, the LD and LDIC methods produce

similar results for our simple test cases (all variables are mostly monotonic and have few in�ection

points).

When the operator splitting method is used to simulate a multi-component system, the di�erence

in the overall computational work required or in the simulation computing time, between two controllers,

is determined primarily by the the di�erence in their number of rejected windows, provided that the

three assumptions stated in �4.6.3 hold (and assuming that each code does not store its coupled variables'

values from the most recent window in memory).

When CE is used with LDIC, H321 does better than the other controllers in terms of minimizing

the number of rejected windows over the �ve test cases. When LE is used with LDIC, no one controller

is best, but three controllers (H0110, H0211 and H312 PID) perform signi�cantly worse than the others

for the sinusoids test case.

Some controllers fail to capture slowly varying coupled variables without rejected windows (e.g.,

H211PI). Some pD = 3 controllers exhibit pathological oscillatory behaviour in the window-size and

others exhibit a signi�cant dip in the window-size followed by a monotonic increase in regions where a

monotonic increase throughout is expected and preferred.

We consider these results preliminary in that they do not fully take into account the e�ects of

coupling between the codes. Therefore, we strongly recommend that further testing of the LD and

LDIC methods be performed on test problems that exhibit the coupling expected of the systems that

the reader wishes to simulate.
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Implementation options were described in detail. There are two main options, fully distributed and

fully centralized, and a range of possibilities in between. The right choice depends on the characteristics

of the particular multi-component system and the emphasis placed on ease of code maintenance, etc.

6.2 Future Work

As mentioned previously, we strongly recommend that further testing be done on problems that include

coupling between the variables. Also, we recommend that further testing be done with problems that are

similar to the system the reader wishes to simulate. For nuclear reactor simulations, to accomplish both

these suggestions simultaneously, simpli�ed reactor models, such as those in [7], can be used. Simpli�ed

reactor models are of course simpler than real reactor systems. As such, while the simpli�ed models

option is signi�cantly better than using arbitrary elementary test problems, like we did in this work, it

does not capture all the characteristics and di�culties of the real reactor simulation problem.

One may want to carry out tests to determine the e�ect of the following on the results:

1. extrapolation methods of higher-order than CE and LE,

2. controllers not considered in this work.



Appendix A

Proofs

A.1 Derivation of the Elementary Controller Formula

For a k-th order numerical method for ODEs, it is standard to assume the error per unit step estimate

for the nth step satis�es

estn = cnh
k
n (A.1)

Now suppose that we've completed the nth step and we know both estn and hn. Thus, we also know

cn =
estn
hkn

(A.2)

Before taking the next step, we don't know estn+1, hn+1 or cn+1. However, these three variables should

be related by

estn+1 = cn+1h
k
n+1 (A.3)

Our goal is to choose hn+1 so that estn+1 ≈ tol. The term cn depends on the problem and should change

slowly if we are taking small steps. So, it is reasonable to assume

cn+1 ≈ cn (A.4)

Using (A.2) and (A.4), we get

cn+1 ≈
estn
hkn

(A.5)

Substituting (A.5) into (A.3), we get

estn+1 ≈
estn
hkn

hkn+1 (A.6)

Since as noted above, we want estn+1 ≈ tol, (A.6) suggests choosing hn+1 so that

tol ≈ estn
hkn

hkn+1 (A.7)
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Re-arranging (A.7), we get

hn+1 ≈
(
tol

estn

) 1
k

hn (A.8)

Note that we've been using ≈ throughout the derivation. So, it is not reasonable to expect (A.8)

to hold exactly. Therefore, it is common to introduce a safety factor γ < 1 to avoid too many failed

steps and use the formula

hn+1 =

(
γ · tol
estn

) 1
k

hn (A.9)

instead of (A.8). This is the classical step-size selection algorithm for ODE solvers, known as the

elementary controller.

A.2 Choice of k for Constant Extrapolation

Assume that a coupled variable x(t) is smooth enough that x′(t) exists and is continuous for t ∈ [Ti, Ti+1].

Then,

x(t) = x(Ti) + x′(θt)(t− Ti) (A.10)

for some θt ∈ [Ti, t]. θt changes as t changes in (A.10), hence the subscript t in θt.

Now, for constant extrapolation,

x̃(t) = x(Ti) (A.11)

for all t ∈ [Ti, Ti+1]. Therefore, the deviation satis�es

x(t)− x̃(t) = x′(θt)(t− Ti) (A.12)

Hence, if x′(θt) does not vary too much for t ∈ [Ti, Ti+1], we see that the deviation grows approxi-

mately linearly with t. Therefore, in particular, if we let Hi = Ti+1 − Ti, we see that

devi ≈ ciHi (A.13)

where ci = x′(θt) for some θt ∈ [Ti, Ti+1]. Equation (A.13) is similar to (A.1) with k = 1. Therefore, for

constant extrapolation, we use k = 1 in the step-size controller formulae.

A.3 Choice of k for Linear Extrapolation

Assume that a coupled variable x(t) is smooth enough that x′′(t) exists and is continuous for t ∈
[Ti−1, Ti+1]. Then,

x(t) = x(Ti) + x′(Ti)(t− Ti) +
x′′(θt)

2
(t− Ti)2 (A.14)

for some θt ∈ [Ti, t]. θt changes as t changes in (A.14), hence the subscript t in θt.
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For linear extrapolation,

x̃(t) = x(Ti) + s(t− Ti) (A.15)

s =
x(Ti)− x(Ti−1)

Ti − Ti−1
(A.16)

for t ∈ [Ti, Ti+1]. Therefore, the deviation satis�es

x(t)− x̃(t) = (x′(Ti)− s)(t− Ti) +
x′′(θt)

2
(t− Ti)2 (A.17)

Now, note that

s =
x(Ti)− x(Ti−1)

Ti − Ti−1
= x′(T̂ ) (A.18)

for some T̂ ∈ [Ti−1, Ti] and

x′(Ti)− x′(T̂ ) = x′′(T̃ )(Ti − T̂ ) (A.19)

for some T̃ ∈ [T̂ , Ti] ⊂ [Ti−1, Ti]. Thus, from (A.17), (A.18) and (A.19), we see that

x(t)− x̃(t) = x′′(T̃ )(Ti − T̂ )(t− Ti) +
x′′(θt)

2
(t− Ti)2 (A.20)

If we let Hi−1 = Ti − Ti−1, ρHi−1 = Ti − T̂ and Hi = Ti+1 − Ti, we see from (A.20) that the

deviation over the next step from Ti to Ti+1 satis�es

devi ≈ c(1)i ρHi−1Hi + c
(2)
i H2

i (A.21)

Hence, if Hi−1 ≈ Hi (as is usually the case) and ρc
(1)
i � c

(2)
i , then the deviation will vary

approximately quadratically with Hi. On the other hand, if Hi−1 ≈ Hi and c
(2)
i � ρc

(1)
i , then the

deviation will vary approximately linearly with Hi. For most steps, we should have ρc
(1)
i ≈ c

(2)
i , in which

case the deviation will vary as Hk
i for some k between 1 and 2. So, when using linear extrapolation, one

should use k ∈ [1, 2].



Appendix B

Plots of H0110, the Elementary

Controller

The 2×2 plots (see 4.3 for an explanation of the term) of all the controllers cannot be included in this

document as there are too many plots (22 unique controllers were tested and there are 10 plots for each

controller; thus, there are 220 2×2 plots). However, some plots are included in Chapter 4 to explain

various points. The plots of all the controllers tested can be found in the folder cdt/results/, where

the folder cdt/ is zipped up inside http://www.cs.toronto.edu/pub/reports/na/Rohan.MSc.Supp.2015.zip.

For a description of how the results are structured in the cdt/results/ folder, see �4.5.2.

Here we provide the plots for H0110, the Elementary Controller (corresponding to (3.1)), as an

illustration.
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