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Many numerical algorithms for the solution of Boundary Value Problems (BVPs) for Ordinary
Differential Equations (ODESs) contain significant components that can be parallelized eas-
ily, and recent investigations have shown that substantial speedups are attainable on machines
with a modest number of processors. An important step in most of these algorithms—and
often the most computationally-intensive step—is the numerical solution of an Almost Block
Diagonal (ABD) system of linear algebraic equations. The parallelization of this step is not
so straightforward as certain characteristics of the problem make it difficult to apply standard
divide-and-conquer techniques in order to arrive at a stable parallel algorithm. In the past, sev-
eral algorithms have been proposed for the parallel solution of the ABD system, but many are
potentially unstable or offer only limited parallelism. The proper treatment of the ABD system
has proven to be a challenge in the design of parallel BVP codes.

In this thesis we present three parallel algorithms for the numerical solution of ABD sys-
tems. A parallel algorithm for this problem can be up to M/ log M times faster than the fastest
sequential algorithm, where the fastest sequential algorithm requires M steps. Each parallel
algorithm we present attains this theoretically optimal speedup if enough processors are avail-
able, and each can be adapted for use on architectures with fewer than the required number of
processors. Two of the algorithms, SLF-QR and SLF-LU, were discovered independently by us
and by S.J. Wright in the 1990s. Wright presented these algorithms and analyzed their stability
in two papers in the 1990s, proving SLF-QR is stable and showing that SLF-LU is stable un-

der certain assumptions. We provide some additional insight into the stability of SLF-LU, and



extend the basic algorithms to make better use of available processors during the factorization
stage in order to increase parallelism in the solution stage.

The third algorithm we propose, RSCALE, is based on a notably different numerical tech-
nique: eigenvalue rescaling. RSCALE uses fewer local operations and produces less fill-in
than either of the other two algorithms. In addition, RSCALE is proven to be stable for a rea-
sonable class of problems, and has been observed to be stable for a wide class of problems
through extensive numerical testing.

RSCALE is approximately 2.2 times faster than SLF-QR. The efficiency of SLF-LU is
dependent on its solution strategy and its speed can vary from problem to problem, but for
most problems RSCALE is approximately 1.2 times faster than SLF-LU. Moreover, we show
that a variant of SLF-LU is potentially unstable on a surprising number of randomly-generated,
yet well-posed, linear problems, as well as on certain nonlinear problems commonly used to
test BVP codes. Since these problems pose no difficulty for either of the other two algorithms,
we believe that SLF-QR, not SLF-LU, may be RSCALE’s nearest competitor in terms of both

speed and reliability.
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Chapter 1
I ntroduction and Background

The linear systems considered in this thesis inevitably arise in the numerical solution of Bound-
ary Value Problems (BVPs) for Ordinary Differential Equations (ODES) of the form

y'(t) = ft,y(), t€ [ta, to], (1.1)

subject to the boundary conditions

g(y(ta)vy(tb)) =0, (1.2)

where y, f, g € R™. If the boundary conditions are separable, (1.2) can be written as

o(y(ta), y(ts)) = [ 9a(y(e)) ] o, L3)

where g, € R™ and g, € R™ with n, + ny = n.

In §1.1 a general framework for the numerical solution of (1.1) with separable or non-
separable boundary conditions is outlined. Although there exists a variety of different numeri-
cal methods for solving this problem, most adhere to this general framework. Also in §1.1 the
primary topic of this thesis—the Almost Block Diagonal (ABD) or Bordered Almost Block
Diagonal (BABD) linear system ([Asch 88, Chapter 7])—is introduced, along with an expla-
nation of where this system arises in the context of solving a BVP and a description of the
various forms in which it can appear. There is much potential for parallelism in the numerical
solution of BVPs for ODEs. This has been observed by several authors ([Benn 90], [Wrig 90],
[Asch 91], [Papr 91], etc.), as has the fact that the solution to the ABD system can easily be-
come the bottleneck in the execution time of a parallel BVP code. These issues are discussed
further in §1.2. Two popular sequential codes for solving ABD systems are described in §1.3.
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In §1.4 a brief history of the early attempts at developing a parallel code for solving ABD sys-
tems is given, and the first stable parallel codes are discussed in §1.5. An overview of the thesis
is given in §1.6.

1.1 TheNumerical Solution of BVPsfor ODEs

When solving (1.1) with (1.2) or (1.3) numerically, a discrete approximation to the true contin-
uous solution y(t) is often sought. First, the interval [¢,, ] is subdivided into a mesh:

o=t <t1 <---<tlp=tp.

Many techniques then proceed to compute a discrete approximation of the form

Yo

Y = yl E R(M+1)7L

Ym

where y; =~ y(t;), y; € R™, i = 0,..., M. (We refer to y; as the i-th mesh variable of the
discrete approximation.) The vector Y is obtained by solving a discrete system ®(Y) = 0
that depends on the system of ODEs, the boundary conditions, and the underlying numerical
method used to discretize the continuous problem. Although the residual function ® may be
written in many forms, it usually has only one component, ¢;, per subinterval, and often each
component depends only on the unknowns local to its subinterval. If, in addition, the boundary
conditions are separable, ®(Y") = 0 can be written as

ga(yo)
¢0(y0, yl)
o (ylla y2) —0, (1.4)
drvr—1 (yM_1, yM)
gb(yM)

where ¢; € R", i =0,1,...,M — 1, and thus & € RM+In_ A variant of Newton’s method
is often used to solve (1.4), yielding an iteration of the form

JO Y@y =ov@), ¢=0,1,... (1.5)
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where J@ =~ 9®(Y (@) /aY’, the Jacobian of ®.

During each iteration, 7@ is recomputed and the linear system (1.5) is solved. Because of
the structure of ® shown in (1.4), the Jacobian of ® has a “staircase” or Almost Block Diagonal
(ABD) form

B,
So T
2B(Y o h
8; ) — SQ T, c R(M—H)nx(M—H)n (16)
Sy-1 Ty
By
where
S = 00 (Yi; Yiv1) e RV T = 06 (Yi, Yiy1) ER™™ i=0,1,...,M—1,
0y; 5yi+1

and

09 0
Ba — g (yo) e Rnaxn’ Bb — gb(yM) e RMXn
(9y() 8yM
The main objective of this thesis is to develop parallel algorithms for the numerical solution of

ABD linear systems.

Each iteration of (1.5) requires the evaluation and factorization of 7(9, the evaluation
of ®(Y(9), and a forward elimination and back-solve. In practice, 7@ may be held fixed
for several iterations provided an acceptable rate of convergence is achieved. In this case,
assuming the factors of 7@ are stored, several linear systems may be solved at a substantially
reduced cost with only a forward elimination and back-solve on subsequent right-hand sides
SY®) k=q+1,qg+2,....

If the BVP is posed with non-separable boundary conditions, ®(Y’) = 0 may be written as

9(Yo, Yur)
¢0(y0, y1)
oY) = é1(y1,Y2) =0, (1.7)

| ¢M—1(yM—1, ?JM) i

where g(yo, yar) € R™ and ¢;, @ = 0,1,..., M — 1 are as defined in (1.4). In this case, the
Jacobian of @ has a slightly modified form. Augmented with its right-hand side, the linear
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system that must be solved at each iteration of (1.5) appears as
B, By g |
SO TO ¢0
Sl T1 ¢1
[T2|®] = (1.8)
SQ T2 ¢2
Sv-1 Tu-1 | Gu-1 J

where [S;, T3], i = 0,1,..., M — 1 are as defined in (1.6), and

B, = 29Wo M) pun g 0900 YM)  pan
Yo OYm
Although 7 is not, by precise definition, an ABD matrix, it is referred to as such through-

’

out this thesis so as to avoid having to maintain a distinction between the two Jacobian struc-
tures. This second form of Jacobian—often called a Bordered Almost Block Diagonal (BABD)
matrix—normally will be used when describing parallel algorithms for solving ABD systems
since none of the new algorithms we present require separable boundary conditions. Note that
if the BVP is posed with separable boundary conditions, (1.6) can be transformed easily to
(1.8) using an appropriate row permutation.

Finally, some algorithms described later are slightly more efficient in terms of both storage
and speedwhenT; =1,i=0,...,M —1:

B, By| g

VW 1 oo

i 1 o1
[T5|®] = (1.9)

’ V, I s

I Vieer I | éarr |
This third form of Jacobian arises when

¢i(yivyi+l) Eyi+1+0i(yi)7 7’: 0717"':M_ 1 (110)

in (1.7), with g; € R" depending only on y;. This form of residual occurs, for example, in
multiple shooting and codes based on implicit Runge-Kutta formulas (see [Asch 88]).

There are several other issues that need be addressed in the numerical solution of BVPs,
including selecting an appropriate mesh, choosing a specific formula for the residual function,
and determining a convergence criteria for (1.5). See [Asch 88] for details.
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1.2 ThePotential for Parallelismin a BVP Code

Much parallelism is inherent and obvious in the approach outlined in §1.1. For example, the
residual components of ®(Y(9)) can be evaluated independently, and the block-pairs [S;, T;] of
J@ can be constructed independently each time 7@ is re-evaluated in (1.5). In [Benn 90],
a parallel version of COLNEW [Bade 87] is implemented and the speed-up achievable by
parallelizing the Jacobian set-up phase is investigated. A high percentage (60-80%) of the
total execution time in COLNEW is spent during set-up where large blocks are “condensed” to
form (1.6). Condensing in parallel, therefore, is very effective and in fact shifts the most time-
consuming phase of the code: run-time profiling in [Benn 90] shows that the factorization and
solution of the condensed ABD system becomes the bottleneck in the parallel implementation.
In codes that do not use condensation the resulting ABD system can be much larger, and its
factorization and solution an even bigger bottleneck. In COLSYS [Asch 81], for example, the
ABD factorization often accounts for more than 50% of the total execution time [Muir 91].
These statistics emphasize the importance of developing a parallel ABD system solver.

A detailed history of the development of parallel software for BVPs for ODEs (BVODES)
is given in [Muir 03]. The focus of that paper is the parallel BVODE code PMirkDC which
incorporates, as its parallel ABD system solver, the RSCALE algorithm presented in this thesis.
Further experiments with PMirkDC are included in Chapter 4 of this thesis.

1.3 Sequential Codesfor Solving ABD Systems

Efficient sequential codes for solving ABD systems have been available for several years—
two examples are SOLVEBLOK [deBo 80] and COLROW [Diaz 83]. Both codes perform
the factorization in O(Mn?) time. SOLVEBLOK eliminates by rows and COLROW uses a
variation of alternate row and column elimination to avoid fill-in. Stability is achieved by a
pivoting strategy which controls element growth during the factorization. The pivoting results
in an implicit decoupling of the underlying increasing and decreasing fundamental solution
modes, an essential process for the stable solution of a BVP ([Asch 88, Chapter 6]).

The potential for parallelism in these codes is not obvious. Most are essentially variations
of Gaussian elimination with row partial-pivoting, and hence are inherently sequential. It is
sometimes possible, however, to first partition (1.6) and then factor each partition indepen-
dently using one of these sequential codes. This approach has met with limited success, and is
discussed further in the next section.
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1.4 Early Attemptsat Parallel Codes

The greatest potential for speed-up in the parallel solution of ABD linear systems exists across
the blocks (i.e. in M), since typically M > n in a BVP. Parallelism within the blocks is
complementary, and could be exploited also if n is sufficiently large, but this possibility is
not pursued here. Suppressing the dependence on n, therefore, the theoretically best parallel
complexity is O(log M) block-steps! since block-rows must be processed pairwise during the
factorization. Most parallel algorithms proposed in the past, however, either do not achieve the
optimal speed-up or suffer from poor stability properties. Following is a brief history of some
of the more noteworthy contributions:

1989 Lentini [Lent 89] suggests performing Gaussian elimination with pivoting simultane-
ously from both ends of the matrix. This leads to a stable algorithm that effectively uses
two processors, but it cannot be generalized for greater parallelism.

1990 Wright and Pereyra [Wrig 90] present a block factorization algorithm which is essen-
tially equivalent to compactification—an algorithm known to be potentially unstable
([Asch 88, page 153]). They propose using the parallel algorithm initially, and when
instability is detected, switching to a more stable sequential method.

1991 Paprzycki and Gladwell [Papr 91] describe a “tearing” algorithm in which the origi-
nal ABD matrix is partitioned into several smaller matrices, each of which is ABD.
These represent sub-BVPs which can be solved independently using an existing sequen-
tial code, after which the solutions are combined. Unfortunately, although it is always
possible to select intermediate boundary conditions and construct the smaller ABD sys-
tems, there is no guarantee that the sub-problems will be well-conditioned. In addition,
the authors found that even when a problem could be solved stably with this method, the
speed-up achieved was less than expected.

1991 Ascher and Chan [Asch 91] propose solving the ABD system by first forming the normal
equations. The resulting system is symmetric, positive-definite, block-tridiagonal and
can be solved stably in O(log M) block-steps using a variation of block cyclic reduction.
(See [Hell 76]; we also describe the block cyclic reduction algorithm in this thesis.)
The drawback here, of course, is that by forming the normal equations explicitly the

Hog M =log, M.
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2-norm condition number of the original system is squared. Also, a block of fill-in is
introduced in each block-row which potentially leads to higher operation counts.

1.5 TheFirst Stable Parallel Code and Thesis Goals

Wright was the first to publish a stable parallel algorithm that attains the theoretically optimal
speed-up for this problem. In [Wrig 92] a “structured orthogonal factorization” is described
which—when embedded in a cyclic reduction algorithm—solves the ABD system stably in
O(log M) block-steps with as few as M/ log M processors. Stability is assured since the algo-
rithm (Structured QR) is essentially a Q R-factorization applied to a row and column permuted
version of the original ABD matrix. In [Wrig 94], Wright replaces the local orthogonal trans-
formations used in [Wrig 92] with Gauss transformations with row partial-pivoting resulting
in a substantial speed-up even though the number of block-steps is the same. The algorithm
(Structured LU) is equivalent to Gaussian elimination with restricted row partial-pivoting ap-
plied to the original ABD matrix, and is stable for a wide range of problems, although rapid
error growth can arise in some cases [Wrig 93].

Since Wright published his Structured QR and Structured LU papers, several authors have
proposed minor modifications to the basic algorithms to help improve speedup and/or stability.
The local operation count per block-step, however, remains the same in all variations. A review
of recent parallel (and sequential) solution techniques for solving ABD linear systems is given
in [Amod 00].

The algorithms SLF-QR and SLF-LU described in §2.2 of this thesis were discovered inde-
pendently by us [Panc 92], and are similar to those of Wright. Unfortunately, before we could
complete our analysis of the algorithms, Wright published Structured QR along with a proof of
its stability. Once this happened, the focus of the thesis changed somewhat from our original
goal of discovering the first optimally parallel stable algorithm, and the following additional
goals were set:

e Extend SLF-QR and SLF-LU to increase parallelism to O(1) block-steps in the back-
solve stage (i.e., constant complexity, independent of M) by making better use of avail-
able processors during the decomposition stage.

e Further analyze the potential for instability in SLF-LU, which was initially addressed in
[Wrig 93] and [Wrig 94], and attempt to measure the reliability of this algorithm when
used in a production code for solving nonlinear BVPs for ODEs.
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e Develop a new algorithm—RSCALE—Dbased on a different numerical technique, which
does not exhibit the instability inherent in SLF-LU, and which is significantly faster than
SLF-QR due to reduced local operation counts.

e Implement arobust parallel FORTRAN code for each of SLF-QR, SLF-LU and RSCALE
using state-of-the-art mathematical software (level-3 BLAS), show that each code speeds
up linearly with the number of processors on a parallel machine, and show that the rela-
tive execution times of the three codes agree with what one would expect from the local
operation counts.

e Assess the relative performance of the three codes, in terms of both accuracy and speed,
when they are incorporated in MirkDC [Enri 96], a software package for solving nonlin-
ear BVPs for ODEs.

These additional goals were met by the completion of the thesis.

1.6 Overview of the Thesis

An overview of the remainder of the thesis is given below.

Chapter 2: Several variations of SLF-QR, SLF-LU and RSCALE are described. Each algo-
rithm is presented as a modified form of block cyclic reduction (BIKCR), a generalization
of the well-known cyclic reduction algorithm for solving tridiagonal linear systems.

Chapter 3: The stability of the three algorithms is discussed. A thorough stability analysis
of SLF-QR and SLF-LU is given in [Wrig 92] and [Wrig 94]—only the key points are
reviewed here. However, the potential for instability in SLF-LU, which was initially
addressed in [Wrig 93] and [Wrig 94], is investigated in greater depth. The chapter closes
with a stability analysis of RSCALE, applicable when the algorithm is used to solve a
certain class of ABD system.

Chapter 4: The three algorithms are compared with respect to ease of implementation, stor-
age requirements, accuracy and speed. Detailed operation counts are derived for the local
operations performed at each block step. Numerical tests run on a sequential machine
show that the relative execution times of the three algorithms agree well with what one
would expect from the local operation counts. Numerical tests run on a parallel ma-
chine show that all three algorithms exhibit close to linear speedup when used to solve
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sufficiently large ABD systems. The relative performance of the algorithms is assessed
when the codes are incorporated in MirkDC [Enri 96], a software package for solving
nonlinear BVPs for ODEs.

Chapter 5: The thesis concludes with a summary and discussion of future work.
The appendices contain:
e additional RSCALE stability results from the analysis in Chapter 3,

e additional experiments demonstrating the relative performance of the three solvers on a
sequential machine,

e additional experiments demonstrating the relative performance of the three solvers on a
parallel machine,

e additional experiments with the solvers incorporated in MirkDC, and

e a complete source listing of the SLF-QR, SLF-LU and RSCALE parallel codes.



Chapter 2
Description of the Algorithms

In this chapter we describe several variations of three parallel algorithms for solving ABD
linear systems. Each variation is based on a generalization of cyclic reduction, an algorithm
originally proposed for solving tridiagonal linear systems. In §2.1, the basic (and unstable)
cyclic reduction algorithm is outlined. In §2.2 the block multiplications used in the basic algo-
rithm are replaced by Stable Local Factorization (SLF) transformations. These transformations
give rise to two similar parallel algorithms for solving the ABD system: SLF-QR and SLF-LU.
In §2.3 a third algorithm based on a different numerical technique is presented. RSCALE uses
eigenvalue rescaling to first transform the ABD matrix so that block cyclic reduction as de-
scribed in §2.1 can be performed stably. Although the number of block-steps is the same as
that of the algorithms in §2.2, RSCALE requires fewer local operations within each block-
step and therefore potentially is faster than either of the SLF-based algorithms. We provide a
detailed complexity analysis of the algorithms later in the thesis.

2.1 Block Cyclic Reduction

Cyclic reduction was originally proposed as a stable sequential algorithm for solving sym-
metric positive-definite tridiagonal linear systems ([Hock 65], [Hock 70], [Golu 83]). It does,
however, possess considerable inherent parallelism and can be readily adapted to solve ABD
systems. To this end, consider the third form of the ABD system (1.9). If this form does not
arise naturally from the discretization, it can be computed by multiplying the i-th block-row
of (1.8) through by 7! (providing 7! exists and is not too badly conditioned)—a process
which is obviously highly parallel. Now assuming M /2 processors are available initially, the
first step or “sweep” of the reduction assigns each pair of block-rows 2; and 2; + 1 to a proces-

10
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sor, multiplies row i by V;; and subtracts it from row 7 + 1, giving?

B, By g
Ww 1 oo
-V 1 ¢1 — Vido
% I
? % 2.1)
212 1 3 — Vaoo
Vir—o 1 Or—2
| _VM—IVM—Q -I ¢M—1 - VM—1¢M—2 _

This effectively uncouples the odd-indexed unknowns from (1.9). Once yg;,¢ = 0...M/2,
have been computed, y9;11,7 = 0...M/2 — 1, can be obtained from (2.1) by

Yoir1 = ¢Poi — Vailai, 1=0,...,M/2 —1. (2.2)

The even-indexed unknowns are computed during the second sweep by solving a reduced or
compacted ABD system constructed from the odd rows and columns of (2.1):

B, By g
-ivs I 1 — Vido

—ViVy I ¢3 — Va2 (2.3)

_VM—IVM—Z I ¢M—1 - VM—1¢M—2 _

The algorithm proceeds recursively for log M sweeps—each sweep utilizing half the proces-
sors of the previous one—resulting in a final 2n x 2n compacted system. This small system is
solved sequentially by a stable method, such as Gaussian elimination, to obtain y, and y,,, and
then log M back-solve sweeps of the form (2.2) are used to recover the remaining unknowns.
During the back-solve, the number of active processors doubles with each sweep.

Other variants of this algorithm are possible. The need for log M back-solve sweeps can
be eliminated by continuously using M /2 processors during the reduction. This results in a

!Block-elements of the ABD matrix appearing as white-space, such as the element between —V; V5 and T in
block-row 1 of (2.1), are understood to be the n x n zero matrix. This convention is used throughout the thesis.
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system of the form

Ba Bb g
Vo I o
-V I b1
VoVl I b9 (2.4)
V3LVl I b3
G 126" Var-1-i I | $ar— |
where g = bo, d; = ¢ — Vidi_1,i = 1...M — 1. Then y, and y,, are computed by solving
B, B
M-1TpM-1 ’ e (2.5)
(DY T2 VMo 1 Ym dm-1

the same 2n x 2n compacted system that arises in the first version. The back-solve for (2.4) is
completely parallel: the remaining unknowns can be computed in 1 step on M processors or 2
steps on M /2 processors.

If only P < M/2 processors are available, each processor can be assigned M /2P pairs of
block-rows to process in the first sweep, with the number of pairs of block-rows decreasing by
a factor of 2 with each sweep until there are more processors than pairs of block-rows. Alterna-
tively, the system could first be partitioned into P blocks of M /P block-rows. Each partition
is assigned to a single processor, where it is reduced using a sequential algorithm. This re-
sults in a compacted system of order P that can be solved using cyclic reduction as shown
above. Using this technique, O(log M) complexity is attainable with as few as P = M/ log M
processors. See [Asch 91] for more details.

Unfortunately, none of these algorithms is appropriate for solving ABD systems aris-
ing from numerical methods for BVPs. As pointed out in [Asch 91], they are equivalent to
compactification—an algorithm that is known to be unstable because it fails to decouple the
fast increasing and decreasing fundamental solution modes. Fundamental solution modes are
characteristic of the underlying dichotomy of the differential equation. Well posed BVPs ex-
hibit such a dichotomy. The increasing solution modes are controlled by the right boundary
conditions and the decreasing solution modes are controlled by the left boundary conditions.
These concepts are defined more formally in [Asch 88, Chapter 6], and in Chapter 3 of this
thesis where we discuss the stability of the algorithms.

In the following sections, we propose several modifications to the basic cyclic reduction
algorithm in order to improve its stability when used to solve the ABD system.
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2.2 Stable L ocal Factorization

The cyclic reduction algorithm described in §2.1 uses the elementary transformation

v, I
C ViV T

I 0
—Vip I

o8 bi
Git1 — Vi1 Git1

The algorithm is potentially unstable if, for example, some eigenvalues of V; and/or V;,, are

VI
Vi 1+

X (2.6)

greater than one in magnitude, which is typical of ABD matrices arising from the discretization
of BVPs—the larger eigenvalues correspond to increasing fundamental solution modes. As the
reduction progresses, || [] V|| can grow rapidly resulting in the loss of all significant digits to
machine round-off.

In this section, we propose two alternative transformations which can be adapted for use
in a variation of the cyclic reduction algorithm. These Stable Local Factorization (SLF) trans-
formations give rise to stable parallel algorithms for solving ABD systems. Each avoids the
instability inherent in the block multiplications of (2.6) by controlling the growth of elements
during the reduction. One uses orthogonal factorization, the other Gaussian elimination with
row partial-pivoting. The stability of the new algorithms is analyzed in [Wrig 92], [Wrig 94]
and Chapter 3 of this thesis. (As is shown in [Wrig 94] and §3.2, the prefix “SLF” is perhaps
a bit of a misnomer for the Gaussian elimination variant, as this variant can be unstable on
certain classes of problems. Nevertheless, we find it convenient to label the orthogonal factor-
ization and Gaussian elimination variants of the new algorithm with the same prefix in order to
be consistent with Wright’s presentation, and also because they are structurally equivalent.)

Since SLF-transformations do not exploit the identity matrix, the second form of the ABD
system (1.8) is used throughout this section; the i-th slice appears as

S T, | o
S'H—l ﬂ+1 ¢i—|—1

The notation S is used to indicate that the matrix .S; has been transformed during the &-th
step of an algorithm.

2.2.1 Orthogonal Factorization

This transformation requires the QR-factorization of part of the i-th slice:
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where Q; € R?"*?" is orthogonal and R; € R™ " is upper-triangular. Conceptually, once Q;
is obtained the i-th slice is multiplied through by Q7" giving
- S® R® T® L p® e S T |
fm Z Z(k) (Zk) — Qi x
. Sz'—l—l Tz’+1"' ¢i+1 Siv1 Tig1 -+ |Gigs

However, in practice, the QR-factorization is computed in place with Householder reflections

] (2.7)

which are stored in the lower triangle of R{*’ and in the space formerly occupied by the ele-
ments in the n x n block immediately below R{*. Thus, in the context of a modified Newton
iteration (1.5), it is possible to perform several iterations (i.e. transform several subsequent
right-hand sides) without recomputing the QR-factorization.

The SLF-QR transformation is structurally different than (2.6); in particular, there is fill-
in at 7\®. Therefore, the algorithms in §2.1 must be modified for use with SLF-QR. This is
discussed further in §2.2.3 and §2.2.4.

2.2.2 Gaussian Elimination with Row Partial-Pivoting

This transformation is similar to SLF-QR, but instead uses an LU-factorization:
T;
Sit1

where L; ' = L, P, --- LyP,L, P, € R**?", L; is an elementary Gauss transformation, P; is
a permutation matrix, and U; € R™ " is upper-triangular. Conceptually, once L; ' is obtained
the 4-th slice is multiplied through by L; ! giving

. S’Z(k) Ui(’“) Ti(k) .. &Ek) . e S, T | B
S k) 7 (k) «— L; " x g T (2.8)
e S 1 | Pid .. ir1 Lir1 - ¢i+1

However, in practice, the factorization is computed in place with Gauss transformations which
are stored in the space formerly occupied by the elements below U, and the permutation
matrices are stored in a single integer vector of length n. As with SLF-QR, several modified
Newton iterations (1.5) can be computed using the same SLF-LU factorization.

SLF-LU is obviously structurally equivalent to SLF-QR. Either can be used with the algo-
rithms in §2.2.3 and §2.2.4.

2.2.3 The SLF Partitioning Algorithm

SLF-transformations can be incorporated in a partitioning algorithm which generalizes cyclic
reduction for use on architectures with P < M processors. The ABD system is first partitioned
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into P blocks of M/ P block-rows each; the first partition appears as

So

Sme Tme

o
b1
P2
b3

Prmq

15

(2.9)

where mq + 1 is the number of block-rows in the first partition. The reduction steps shown

below for the first partition can be carried out simultaneously on all P partitions. The reduction

starts at the top and works down. In the first step a factorization is computed for [T ST] and

(2.9) is transformed to

[07] (2577
7] [P
S2 T2
S3 T

Smo Lme

]
0

(1)
1

b2
b3

Py

In the second step [77"7 ST]T is factored and (2.10) is transformed to

[ o) 1) (1) @ ]
S 0 RO TO 0
2 @) 2) 2)
S 1 Rl Tl 1
(2 (2) (2)
S 2 T2 2
SS T3 ¢3
B S mo Tmo ¢m0 i
After my steps the partition has the form
[ o 1) (D) )
S 0 RO TO 0
(2) @) () @)
S 1 Rl Tl 1
3) (3) (3) 3)
S 2 R2 T2 2
(mg) (m (mg) (mg)
Smoo— 1 Rmoo— 1 Tmoo— 1 ¢m00_ 1
57(7%0) T'r(nTgO) ’E;fboo)

(2.10)

(2.11)

(2.12)
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Once yo and y,,,+1, the end mesh variables of this partition, are known, the interior mesh
variables are computed by back-substitution; each step requires solving the triangular system

RY yi = ¢ — S yo — T i1, i=mo,mo—1,...,1. (2.13)

As with the reduction, this can be done simultaneously on all P partitions.

The end mesh variables for each partition are computed by solving a compacted system of
order P constructed from the last block-row of each partition. Letting [S{"), T, pimi)] =
[Sp;> Tpis Op;], @ = 0... P — 1, this compacted system has the form

'R

B, By g
SPO TPO ¢P0
Spl Tpl ¢P1 (2 14)
SP? Tp2 ¢P2
| SPP—1 TPP—l ¢PP—1 |

which has the same structure as (1.8). It could therefore be solved in O(P) block-steps using
a stable sequential code, but since P processors are available it is possible to apply cyclic
reduction to solve it in O(log P) block-steps. Two versions of cyclic reduction using SLF-
transformations are described below. To simplify the figures, P is set to 8 and the right-hand
sides are omitted. Generalizing the algorithms for more processors is straightforward.

The first version (Figure 2.1) requires log P reduction sweeps and log P back-solve sweeps.
During the first reduction sweep 4 processors are active computing SLF-transformations si-
multaneously on block-rows 0-1, 2-3, 4-5, and 6-7. During the second sweep, 2 processors are
active transforming block-rows 1-3 and 5-7, and during the final sweep 1 processor is active
transforming block-rows 3-7. y,, and y,,1 are then computed by solving a 2n x 2n system

Ypo ]:[ g ] (2.15)
Ypr+1 ;)37)

The back-solve works in a reverse fashion. During the first sweep 1 processor is active solving

constructed from the first and last block-rows:

Ba Bb

(3) (3)
SP? TP?

the triangular system in block-row 3 for y,,. During the second sweep 2 processors are active
solving systems in block-rows 1 and 5 for y,, and y,,, and during the final sweep 4 processors
are active solving systems in block-rows 0, 2, 4, and 6 for y,,, Yps, Yps, aNd yp,.

Several subsequent right-hand sides can be transformed during a modified Newton iteration
(1.5) without recomputing the local factorizations. If the Householder or Gauss transformations
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Figure 2.1: Cyclic reduction using stable local factorization
Sweep #1
Ba Bb Ba Bb
Sro Tho S5y BS) T3
Sp, Ty, Spy T
Sp, Ty S RS T
2 2
Sps Tps S5y T<”
Sps Tps S R T
Sps Tps S5y T“)
Spe Tp SO RY T
6 6
Sp7 Tp7 S(l) T(l)
Sweep #2 Swveep #3
Bd Bb Ba Bb
SO RY T SO RY T
Sé21) R(2) T[Ef) 8(2) R(2) T]S?)
S RY T SO R T
Sp3 Ty Sps Ry Ty
SO RS TEY S&RY T
5% R T S RY T
SO RYW TV SO RW TV
2 3)
Sp7 757 | | |5 Ty
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Figure 2.2: Cyclic reduction to N-shape Jacobian using stable local factorization

Sweep #1 Sweep #2
B, By B,
S RW T Spo Rpo Tpo
S& b Spr Ry, Ty,
S R T Sp? Ryl Ty
Sps T Sps Ty
Spi Rpi Ty Spi Ryl Ty
Sps Ty Spy Ry,
Sps Rpe Ty Sps Rpg
S8 T 557
Sweep #3 Sweep #4
B, B, B., By
Sw] B} 73 559 | R 730
Spy Ry Ty, Spr Ry} Ty,
Sp Ry, | Ty Spe Ry, Ty,
Sps Ry || Sw Ry Ty
552 R RIRER Ry 15)
se R T | (SR R T
S m [m2]| [s0 R [
S ]| s 77

are stored as explained in §2.2.1 or §2.2.2, the reduction sweeps simply involve applying the
stored transformations to the new right-hand side at a cost per block-row pair of 3n? flops? for
a Householder transformation or gnQ flops for a Gauss transformation.

In the second version (Figure 2.2) the need for log P back-solve sweeps is eliminated by
making better use of processors during the reduction. Processors that were idle in Figure 2.1
are now used to “push” S and 7" blocks outwards resulting in an N-shaped Jacobian. Clearly,
once y,, and y,. 1 are known, the back-solve on this Jacobian can be accomplished in 1 sweep
using P processors. The push begins at sweep #3 and requires an additional sweep at the end.
The savings of a completely parallel back-solve, however, can easily outweigh the overhead of

2We define a flop, or floating-point operation, formally in §4.1.
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the additional reduction sweep when the Jacobian is kept fixed for several iterations in (1.5).

The usual SLF-transformation keeps P/2* processors active during sweep k. The S and T
block pushes keep an additional P — 4P/2* processors active during sweeps k = 3,...,1 +
log P. Therefore, for this version,

P/2F 1<k<2
total # of active processors = ¢ P —3P/2% 3 <k <logP
P-2 k=1+logP.

Thus, in contrast to the first version, the number of active processors increases during the
reduction to a maximum of P — 2.

In order for the second version to be efficient each processor must push its blocks in the
same time required for the SLF-transformation (or less). For example, in sweep #3 of Fig-
ure 2.2 one processor computes the usual SLF-transformation on block-rows 3-7. Simultane-
ously, 4 other processors push S and 7" blocks outwards in rows 0, 2, 4, and 6. As shown below
for block-row 0, a “push” requires 4 steps:

1. V= (R®)"'S®
2. W= (R®)'T»

3. 5® = SO Ty

Po
(3) — @)
4. TO = ~TOW

Since R{Y is upper-triangular, steps 1 and 2 require n?/2 flops each. The total for all four
steps is therefore 3n® + O(n?) which, fortunately, is less than the flop count for the fastest
SLF-transformation (see Chapter 4).

One possible way of optimizing this process stems from the observation that often in a BVP
the boundary conditions have little influence on the solution at interior mesh points. As a result,
in many problems the interior S and T blocks *“vanish” long before they reach their respective
left and right boundaries. Numerical experiments show that these blocks can be dropped when
their norm falls below a threshold tolerance (close to machine epsilon) without affecting the
solution. Of course the overhead of monitoring the norm must be taken into consideration
when evaluating the cost effectiveness of such a scheme.
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2.2.4 An Alternative Partitioning Algorithm

20

Instead of applying SLF-transformations as shown in (2.9)-(2.12), cyclic reduction can be used

in a sequential fashion on each partition. To illustrate, let my = 7 in (2.9), so the first partition

appears as

So To

Se Tt
St

Po
o1
b2
?3
N
?s
b6
17 | ¢7

(2.16)

Since only one processor is available for this partition, the reduction requires 7 steps as opposed

to 3 sweeps in Figure 2.1. After 4 steps (2.16) is transformed to

(1) (1) (1)
SO RO TO

After 2 more steps (2.17) is transformed to

(1)
0

) ) 1)
Sl Tl 1
@  p@ e (2)

SQ R2 T2 2

S§2) T3(2) :(32)

SiS) Rf) T4(3) 513)

(3) 3) 3)

S5 T; 5

@ p@ @ | @

Se’ Rg' T 6

(4) @ | 4@

S7 17 7

[ S(()l) Rél) Tél) 61)
(5) (5) (5) )
S R; T 1
@ p@ e )

SQ R2 T2 2

G T6) (5)
3 3 3
51(13) RELS) T4(3) 513)

Séﬁ) Ré6) T5(6) (56)

@ p@ @ | @

S¢ Ry’ Tg 6

(6) © [|[ 1

Sq 17 7

(2.17)

(2.18)
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After the final step the partition has the form

[ Q) (1) (1) @ 7]
SO RO TO 0
5'{5) Rf) Tl(s) (15)
(2) (2) (2) (2)
SQ RZ T2 2
S(7) R(7) T(7) (7
3 3 3 3
2.19
5(3) R(3) T(3) (3) ( )
4 4 4 4
(6) (6) (6) (6)
S5 R5 T5 5
(4) (4) (4) (4)
56 RG T6 6
(7) [¢o) ¢
|57 ;" ||| o7 | ]

The end mesh variables of this partition, y, and ys, are computed by solving a compacted
system constructed from the last block-row of each partition as before (Figures 2.1 and 2.2).
Once the end variables are known, the interior variables are computed in 7 back-substitution
steps similar to (2.13), except that here the sequence is block-row 3,1,5,0,2,4,6.

The cost of applying cyclic reduction to each partition is the same as that of the algorithm
in §2.2.3. Which algorithm is better in terms of stability, however, is currently not known.
As first pointed out in [Wrig 93] and as shown by several additional numerical experiments
in Chapter 3 of this thesis, SLF-LU when implemented as described in §2.2.3 is potentially
unstable on certain problems when the partitions become large. Whether or not cyclic reduction
is a more stable alternative for these problems is an open question.

2.3 Global Stability Control

As shown in the previous section, SLF-transformations can be used with partitioning and cyclic
reduction to provide a stable algorithm for solving ABD systems. With as few as M/ log M
processors, a parallel complexity of O(log M) block-steps is attainable. Theoretically this is
the optimal speed-up with respect to M. Nevertheless, this algorithm can still be improved by
reducing the local operation counts (with respect to n) and storage requirements. In this sec-
tion we propose a new algorithm, RSCALE, based on a new technique: eigenvalue rescaling.
As will be shown in §4.1, RSCALE requires fewer local operations than either of the SLF-
based algorithms. When used to solve ABD systems of the form (1.9), RSCALE can be up to
twice as fast as SLF-LU—the fastest of the two SLF-based algorithms. When used to solve
ABD systems of the form (1.8), RSCALE is marginally faster than SLF-LU on most problems,
and often has better stability properties (Chapter 3).
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2.3.1 Improving SLF Transformations

Three ways in which SLF-transformations differ from the elementary transformation used in
block cyclic reduction (2.6) are:

1. the n x n block T.* in (2.7) and (2.8) fills-in requiring extra storage and resulting in a
more costly back-solve,

2. a 2n x n matrix factorization followed by four n x n matrix products is required, as
opposed to a single n x n matrix product, and

3. the identity matrix that appears in the third form of the Jacobian (1.9) is destroyed, re-
sulting in additional fill-in if this form arises naturally from the discretization.

Indeed, the first two differences also hold when comparing SLF-transformations to the block-
step used in state-of-the-art sequential codes such as COLROW, except that the local operation
cost in COLROW is not due to matrix multiplication.

So the advantages of block cyclic reduction are obvious—it is faster and requires less stor-
age than SLF-transformations. The drawback, of course, is that it is not necessarily stable
when used to solve ABD systems arising from numerical methods for BVPs. The algorithms
discussed in §2.1 are stable, though, when used to solve certain classes of linear recurrence
relations. In particular, consider the two-term recurrence

Yo=0, Y1 =Viyi+¢; 1=0,1,... (2.20)

where ||V;||2 < 1 for all 5. This recurrence is stable and can be computed in parallel using
cyclic reduction ([Sche 84]). In fact, this is precisely the recurrence that arises when solving
a stable linear IVP. As noted in [Gear 88], fast methods for the solution of linear 1\VPs can be
constructed from fast algorithms for solving (2.20).

Now, if the ABD system (1.9) could be transformed and the equations recast as (2.20), the
analysis in [Sche 84] and [Gear 88] would apply and block cyclic reduction as described in
§2.1 could be used on this problem. In order to be competitive with SLF the transformation
cannot be expensive, and it should not have an adverse effect on the condition of the system
(c.f. the normal equations method in [Asch 91]). The RSCALE algorithm described below
is based on such a transformation. Since the mesh variables are changed globally to control
stability during the reduction, we refer to this technique as global stability control.



CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 23
2.3.2 Sequential Rescaling

This form of the algorithm uses a sequential mesh variable transformation to produce an ABD
system that can be solved stably using block cyclic reduction. Instead of solving 7Y = & for
Y, (JO)Y = & issolved for Y = C~'Y’, where

I —ol (I oI 021 6°1 --- o™MI
I —ol I ol o --- oM-1]
I —ol I ol --- oM72]
O = , Ol = (2.21)
I —ol I ol
I I I I

For ease of notation, o = 1 is assumed throughout most of this section.

The optimal choice

of o is currently an open question. Numerical experiments show that o = 1 is appropriate for

most test problems. Varying o, though, can affect the accuracy of the solution, as is discussed
further in [Panc 92] and Chapter 3.

Once Y has been computed, the original mesh variables can be recovered easily:

(2.22)

The algorithm proceeds as follows—first, the system is transformed (the right-hand side is not

affected by the mesh variable transformation):

Vo I

I

Var-3

Var_o I

By

Virer T

b0
é1

dm-3

dr—2

I dv—1
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(2.23)

This requires no extra storage and only minimal computation in the actual implementation due
to the simple form of C. Now (2.23) is no longer ABD, but it can be transformed back to that

form by a sequential process starting at the bottom block-row and working up. First, block-row

M — 1 is multiplied through by (I — Vi,_;) ! giving

B, —B,
W I-Vy
|4

-1
I-V;

-1

V-3 I-Vy—3

Vm—o I-Vay_o —1

-1

®o
é1

drM-3

dr—2

Vi

(1)
M-1

(2.24)

Next, block-row M — 1 is added to block-row M — 2 to annihilate the —I in block-row M — 2.

Then block-row M — 2 is multiplied through by (I — Vo + V3 )1 giving

B, —-B,
Vo I-Vy —1
vy I-V; -1
Var—3z I-Vyr—3
Vii s

$o
b1

drm-3

(2)
M-2

(1)
M-1

(2.25)
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Block-rows M — 3,...,0 are transformed similarly giving

B, -B, By g

i B

(M-1) (M-1)
Vl I 1

: (2.26)
Vi, T s

o) 2)
VM—2 I M-2

(1) (1)
Ve 1 M—-1 ]

Finally, —B, in the top block-row is annihilated:

B By

() ()
Vo 1 0

(M-1) (M-1)
Vi I i

(2.27)

(3) (3)
Vi—s 1 M-3

) 2)
VM—2 I M-2

M M
VM—l I M-1

This last system is once again ABD. More importantly, numerical experiments in [Panc 92]
and Chapter 4 and a preliminary analysis in Chapter 3 indicate that it can be solved stably
using the algorithms in §2.1 because, for well-conditioned problems, the above transformation
effectively rescales the eigenvalues A and the norm of each V; so that

1. [\ € (0,14 ¢),and
2. ||V;||2 S (1 - 62,1 +€3)

where €1, €, and e3 can be made arbitrarily small with a suitable choice for ¢ in (2.21). For the
test problems considered in [Panc 92] and Chapter 4, the choice of o = 1 has been sufficient
for stability. In addition, even though theoretically the transformation may fail for any given
o if (I — o(V; + V;{})) becomes numerically singular for some i, numerical experiments have
shown that a dynamic shift in o at this stage can redistribute the eigenvalues and allow the
algorithm to continue. At the time of writing this thesis, the only ABD matrices known to
require this dynamic shift are themselves very poorly conditioned. These issues are discussed
further in Chapter 3.

The total operation count for this algorithm—including operations required for the mesh
variable transformation, cyclic reduction, back-solve and mesh variable recovery (2.22)—is
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approximately half that of SLF-LU. Multiple right-hand sides can be handled in O(Mn?) time
if the local factorizations of (I — o(V; + V{})) are stored. In fact, once the Jacobian has been
reduced, the time required to solve with a different right-hand side is comparable to that of
algorithms based on alternate row and column pivoting. See Chapter 4 for details.

RSCALE requires 2Mn? storage if the local factorizations are kept—the same as COL-
ROW and half that of SLF-based algorithms. Since RSCALE is indifferent to the separability
of the boundary conditions, systems with coupled BCs can be solved without fill-in.

2.3.3 Parallel Rescaling

Although (2.27) can be solved in parallel, constructing it as shown in (2.24)-(2.27) is a sequen-
tial process. This section explains how the mesh variable transformation can be integrated with
partitioning and cyclic reduction to provide a parallel RSCALE algorithm.

As in §2.2.3, the ABD system is first partitioned into P blocks of M /P block-rows each.
The transformation C' is modified slightly by omitting the —7 at the boundary between each
partition. For example, the transformation across the first partition has the form

Vino—2 1 I —I Dmo—2
Vino—1 1 I I brmo—1
Vine 1 X 1 Dmo
Vino+1 1 I -1 Pmo+1
Ving+2 1 I —-I Pmo+2
Vino—2 I=-Vime—2 —I Drmo—2
Vino—1  I-Ving—1 Dmo—1
= Vino I —I bmo (2.28)
Vimo+1 I-Vimgr1  —1 Pmo+1
Vino+2 IT-Ving+2 —1 Dmo+2

The steps shown below on the first partition can be carried out simultaneously on all P parti-
tions. Processing starts at block-row mq — 1 and works up. The partition is changed back to
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ABD form as in the sequential algorithm, but now V,,,, is “dragged” to the left as well; i.e. the
reduction phase is interleaved with the rescaling. (This also could be done in the sequential
algorithm.) So the first step consists of

1 Vrgblo)fl = (I - Vmo—l)_lvmo—la gbsl)ofl = (I - Vmo—l)_lquo—l:

2. Vrgalg) = _Vmo 75110)—1’ %)0 = ¢m0 - Vmo 2:0—1'

After the first step the partition is

Vino—2 I-Vimg—2 —1 Dmo—2
Vi1 Prnn—1
Vi I —I OF (2.29)
Vino+1 I—Vimg+1 —I Drmo+1
Vino+2 I-Vmg+2 —1 Dmo+2

Next, the —1I in block-row mg — 2 is annihilated, block-row mgy — 2 is multiplied through by
(I = Ving—2 + V) _1)™", and V< is dragged one block-column to the left:

mo—1
Vi3 -2
Vie1 1 Prn—1

|74 I —I @ (2.30)
Vinot1 I=Vimg11 —1 Pmo+1
Vinot2  I=Ving+2 —1 Prmo+2

Block-rows my — 3, . .., 0 are transformed similarly. Assuming m, = m;, the second partition
will have been transformed by this time as well:

Ba _Ba g

‘/E)(mo) émo)

V(l) I ¢(1) B
— ' ot (2.31)
Vimo? I -1 me

(m1) (m1)
Vmoil ¢m01+1

(m1-1) (m1-1)
Vo2 1 Prng+2




CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 28

Finally, — B, in the top block-row is annihilated, as is the —I appearing in the bottom block-row
of each partition (except the last):

(mp) (mg)
Yo I 0

(2.32)

V7§Ln;0) Wr(nn(z)l +1) (my+1)

(m1) (m1)
Vm0+1 I ¢

(my—1) (m1-1)
Vm0—|—2 I mo+2

where WimtD = [ 4+ V,im, | gt = glmo) 4 gimi)
Jo and ,,,+1 are the end mesh variables of the first partition. Once they are known, the
interior variables can be computed by a forward recurrence and the original mesh variables can

be restored:

Jis1 = 0 = Vi, vi =0 — Gip1, 1=0,...,mg—1 (2.33)

Ymo = Ymo — Ymo+1> Ymo+1 = Ymo+1

As with (2.27), numerical experiments show that the eigenvalues and norm of each V,*’ are
rescaled by the above transformation allowing (2.33) to be computed stably.

The end mesh variables for each partition are computed by solving a compacted system of
order P constructed from the last block-row of each partition. Letting

[Brotgmot) = (B gl [V Wit g0t = [V, W, 6], i=0... P —1,

this compacted system has the form

B, By| g
Voo W Pro

Vl W 1 1
p P ¢p (2.34)

‘/;)P—Q WpP—‘Z ¢pP—2

I/;)P—l I ¢pp—1 |

This system has a slightly different structure than (1.9)—the identity is replaced by W, in rows

0...P —2. Unlike (1.8), (2.34) cannot be transformed by multiplying each block-row through
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by ijl, because W, is not necessarily well-conditioned.® Nevertheless, mesh variable trans-

formation can still be used in combination with cyclic reduction to solve this system stably in

O(log P) block-steps. Two versions of the algorithm are described below (again, P = 8 is

used to simplify the figures).

The first version requires log P reduction sweeps and log P back-solve sweeps. During the

first reduction sweep, (2.34) is transformed as follows:

»
Vo Wre
Vo Wy,
Voo Wy,
Vo
(6. A,
Voo Woo—Vo
Vo

This transformation reconditions (W),
multiplied through by (W,

2

the first sweep computing

S

By

SIS

Wpl _Wm
Vzvz sz_sz

V;’S W;Ds _Wm
%4 Wp4_VED4

Vs

Wps - Wp5
VZDG Wpe_Vzbe
Vo

1 Vp(,-l) = (Wpi - Vpi)_lva ¢;)ll) = (Wpi - V;%)_lqspi'

2. VW =V YO pw

Pit1 Pit+1 " p;

st = Ppips — Voira 0p; -

3The same is true for T}, in (2.14).

By

I

g
Pro
Pp
Pps
Pps
Ppa
Pps
o
¢p 7

@

o
o1
s
s
Ppa
Pps
Pre
¢p 7

(2.35)

—V,.),1 = 0,2,4,6, so these block-rows can now be
— V)7t Fori = 0,2,4,6, each of 4 processors is active during
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In addition, —, and —W,,,1 =1, 3,5, are annihilated, resulting in a system of the form

N

B By | §©
v g B

Po

(1) (1) (1)
V. w, Py

P1 P1

Vo T P

p2 P2

148 wo PL (2.36)

p3 pP3 p3

Voo P

P4 Pa

140 W P

Ps Ps Ps

VT P

Ps Ps

14D I |e®

p7 pr

This uncouples the odd-indexed variables from the system. Once §,,,7 = 0,2,4,6,8 are
known, 4,,.,,% = 0, 2,4, 6 can be computed and the transformation in (2.35) reversed by

gpi+1 = [()11) - V;)(;)gpia ypi = gpi - ng—l? ypH—l = ng_l, 7/ == 07 2: 47 6 (237)

The even-indexed variables are computed during the second sweep by solving a reduced sys-
tem constructed from the odd rows and columns of (2.36). This system together with the
transformation that is applied during the second sweep is shown below:

35 B, I-I g
v Wi 1
v Wi |1 ||
v W ||
VT )] o
[ B _BW By| g™ T
Vo' Wi V3 by
= Ve Wiy W b (2.38)
Vo' Woi' Vs’ |6ps
| Vo' I |dp ]

The algorithm continues recursively for log P sweeps resulting in a final 2n x 2n compacted
system. This system is solved sequentially by a stable method, such as Gaussian elimination,
followed by log P back-solve/transformation reversal sweeps of the form (2.37).
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Figure 2.3: Cyclic reduction to A-shape Jacobian using rescaling
Sweep #1
B. —B. B B 5 |
VEDO Wpo_%o VZD((;) I
V}Jl Wpl _Wpl V}o(f) WISP
V;ﬁz sz_Vm ‘/;21) I
Vzﬂs Wps _Wps V;@(;) Wp(;)
%4 Wp4_V}J4 VEDE) I
‘/205 Wps _Wp5 V;sl ) WIS?
‘/206 Wpﬁ_%ﬁ VI',(;) I
Vor 1 | VED(;) I
Sweep #2
B0 B B, | [ B B, |
Vi I =V Voo 1
Ver' W=V, Ve 1
Vi) 23
Ve W Wy — Vs Wps
Ve I =V Vor I
Vo' W —Vas) VeI
W W
Z Z
Sweep #3
[ By B B | [ B By |
Vso 1 ~Vpo Voo I
7 S iy Ve 1
S R Vw1
Via Wi —Vps — Vs I
Vi Vi I
Ve I Vis I
Vro I Vre I
V) I Vi I
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Figure 2.4: Mesh variable transformation used prior to each sweep in Figure 2.3

Sweep #1 Sweep #2
(1 -1 ] 1 1 ]
I I
I -1 I
T 1
Cr = T -1 Oy = I -
T T
T -1 T
T T
T bj
Sweep #3
[ 1 1 ] (1 -1 -1 -1
I T
T I -1
T bj
Cy = I C1CoC5 = I -1 -1
I I
I I —I
I I
I I
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In the second version (Figures 2.3 and 2.4) the need for log P back-solve sweeps is elim-
inated by continuously utilizing P processors during the reduction phase. In contrast to the
first version where every other block-row and column is skipped, the complete system is now
considered at each sweep. As shown in Figure 2.3, the reconditioning transformation cre-
ates upward-pointing spikes, which can be annihilated concurrently as the downward-pointing
spikes are “pushed” to the left.

During the first sweep the compacted system (2.34) is transformed by C; in Figure 2.4
which reconditions (W,, — V},),7 = 0,2, 4,6, and then 4 processors are used as explained in
(2.35)-(2.36) resulting in the system depicted on the right in Sweep #1 of Figure 2.3. During the
second sweep the system is transformed by C’ in Figure 2.4, reconditioning (W, — V"), =
1,5. As shown in Sweep #2 of Figure 2.3, this creates 2 upward-pointing spikes of 2 blocks
each—one above block-row 1 and the other above block-row 5. The upward-pointing spikes are
annihilated simultaneously on 4 processors by subtracting appropriate multiples of block-row
1 or 5, while concurrently the downward-pointing spikes are pushed to the left by subtract-
ing appropriate multiples of block-row 1 or 5 on 4 other processors. Finally, during the third
sweep the system is transformed by C in Figure 2.4, reconditioning W2 — V.. As shown in
Sweep #3 of Figure 2.3, this creates an upward spike of 4 blocks which is annihilated simultane-
ously on 4 processors by subtracting appropriate multiples of block-row 3, while concurrently
the spike below W» — V) is pushed to the left by subtracting appropriate multiples of block-
row 3 on 4 other processors. In general, this version keeps P processors active during each
sweep of the reduction after the first.

The final system is depicted on the right in Sweep #3 of Figure 2.3—a A-shaped Jacobian
requiring a single-sweep back-solve once y,, has been computed. As in Figure 2.2, y,, and
Up,+1 are computed by solving a 2n x 2n system constructed from the first and last block-rows.
Finally, the mesh variable transformation is reversed: Y = C,C,C5Y where C,C,Cs is shown
in the last frame of Figure 2.4. This, of course, is a highly parallel operation and requires as
few as log(log P) vector subtractions.



Chapter 3

Stability of the Algorithms

Wright analyzed the stability of SLF-QR (his Structured QR or SQR) and SLF-LU (his Struc-
tured LU or SLU) in [Wrig 92] and [Wrig 94], respectively. We touch on these topics only
briefly in §3.1 and §3.2 of this chapter, referring the reader to Wright’s papers for further de-
tails. Wright also published some negative results on the stability of SLF-LU. We now have
additional insight on this topic which we discuss in §3.2.

The focus of this chapter is the third algorithm, RSCALE. In §3.3, we present a detailed
analysis of the stability of a variant of RSCALE applicable when the algorithm is used to solve
ABD systems arising from the discretization of a model linear problem. We are able to prove
that RSCALE is stable on this problem, under certain assumptions. These assumptions in turn
point out some possible shortcomings of RSCALE, which we address with a few simple mod-
ifications to the prototype algorithm. Several numerical examples are included to demonstrate
that the modifications have the desired effect, and also to test the sharpness of some of the error
bounds arising in the stability analysis.

3.1 SLF-QR

In [Wrig 92], Wright observes that Structured QR is simply QR-factorization applied to a row
and column permuted version of the ABD matrix, and uses this fact in his stability analysis of
the algorithm. The permutations are not shown explicitly. Below we show a possible structure
for these row and column permutations, applicable to the single-partition variant of SLF-QR.
Similar structures may be shown for other variants of the algorithm.

34
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Consider transforming the ABD matrix

35

Sm-1 Ty |

using SLF-QR as shown in §2.2.3. Conceptually, the orthogonal transformation @, € R?***?"
used in the first stage of the reduction may be embedded in the (M + 1)n x (M + 1)n identity

matrix to form Q, € R(M+)nx(M+1)n and the first stage may be written

[ B, B, ]
S(()l) Rél) TO(I)
; SO T
hJ =
Sy Ty
| Sm-1 T ]
Similarly, the first M — 1 stages of the reduction may be written
B, By
S(()l) R(()l) T(;l)
S{Z) R:(LZ) T1(2)
QM—IQM—Q"'QIJZ . .
Svi— Ry | | T’
| Sht T ||

The 2n x 2n compacted matrix involving By, By, S§y 1’ and T3y ” extracted during the last
stage of the reduction may instead by relocated to the upper-left corner of the ABD matrix by

swapping the appropriate block rows and columns:

Pcompact [QM*IQM*Q e Qlj]Pcompact -

Ba Bb
(M-1) (M-1)
SM—I TM—I
(1) (1) (1)
SO RO TO
(M—-2) (M—2) (M—2)
SM—3 RM—3 TM—S
(M=1) (M=1) (M=1)
B SM—Q TM—2 RM—Z _
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where P, .., € RMHImx(M+1n js the permutation matrix that “bubbles” the last block-row
(block-column) to the second block-row (block-column) position. (This permutation actually
requires M block-row swaps.) The final orthogonal transformation Q,;, € R?**?" used to
reduce the compacted matrix may be embedded as before in Q) € RM+Dnx(M+1)n and the
complete single-partition SLF-QR reduction may be written

R = QMPcampact[QNM—IQM—Q e Qlj]Pcompact'

For an embedded matrix @Q;, it can easily be shown that, if @, is orthogonal, Q; is orthogonal.
Since P.,,,,... is orthogonal, and since the product of orthogonal matrices is itself orthogonal,
the overall reduction may be written simply as

R = QAchompact

With Q = QuPopeci@ri—1Qni—2 - - - Q1 orthogonal. R is not upper-triangular, but closer
examination of its structure

RéM) Tb(M)
Ry,
L Sg” Ry TgY
R= Qj-Pcompact - . )
Sys Ry Ty
| S Tu Ry=y |

shows that it can be made upper-triangular by swapping the appropriate block rows and columns:

[ p) (1) (1)
Ry’ Ty S

(M—2) (M-2) (M-2)
» » RM73 TM*S SM73

R=P,RP, = (M-1)  Q(M-1)  m(M-1)
Ry2 Sy Ty
(M) (M)
Ra Tb
()
Ry’ |

where P, € RM+Unx(M+1)n jg the permutation matrix that “bubbles” the first two block-rows
(block-columns) to the last two block-row (block-column) positions. Therefore, the factoriza-
tion stage in single-partition SLF-QR or Structured QR is indeed a QR-factorization of a row
and column permuted version of the ABD matrix:

PAR = QjRompactPA'
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(P, and P.,,,.... could have been combined into a single permutation earlier in this discussion,
but we chose to separate them in order to follow the original reduction algorithm as presented
in §2.2.3 as closely as possible.)

Similar embeddings and permutations may be used to show that each variant of SLF-QR is
equivalent to a QR-factorization of a unique row and column permuted version of the original
ABD matrix, and hence is stable. We do not pursue this here. The accuracy of SLF-QR is not
in question. The shortcoming of SLF-QR is its comparatively high computational cost relative
to the other solvers, not its stability.

32 SLF-LU

Wright gives a detailed analysis of Structured LU in [Wrig 94], specifying certain conditions
that must be satisfied in order to ensure stability of the algorithm. Essentially, at each step of
the reduction as shown in (2.10)-(2.12) of §2.2.3, the number of row pivots used during the LU
factorization of [7;7 S}, ;|” must match the number of rapidly increasing fundamental solution
modes represented in the underlying DE at that step ([Matt 85]). More precisely, the number
of cross-block pivots must match, where a cross-block pivot is defined as the exchange of rows
between two distinct block-rows as opposed to the exchange of rows within a single block-row.
(For example, the exchange of rows between the block-row containing 7; and the block-row
containing S; 1 is a cross-block pivot.) We refer to [Wrig 94] for further details.

In [Wrig 93], Wright gives examples of linear systems for which Gaussian elimination with
row partial pivoting is unstable. These are ABD linear systems arising from the discretization
of well-posed linear BVODEs. The Gaussian elimination algorithm discussed in [Wrig 93]
is not exactly Structured LU, as the boundary blocks in the ABD matrix are involved in the
reduction from the start of the algorithm. However, the cause of the instability applies to
both Structured LU and SLF-LU: the pivoting strategy at each stage of the reduction is not
sufficient to control the rapidly increasing fundamental solution modes in the underlying DE.
Wright conjectures that, although it is easy to construct such problems, they likely do not arise
frequently in practice. Some random testing is included to support the conjecture.

We have done similar random testing on the partitioned variant of SLF-LU, and found
that instability often occurs when solving certain classes of ABD linear system. Moreover,
we incorporated the parallel partitioned variant of SLF-LU in software for solving nonlinear
BVODEs (§4.4), and found several examples for which SLF-LU instability adversely affects
the behaviour of the code (§4.4.3).
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In §3.2.1, we give a short analysis suggesting where to look for problems that could cause
difficulty for SLF-LU. In §3.2.2, we show the results of random testing on these problems,
confirming that SLF-LU instability does indeed occur frequently in some cases. The potential
for instability in other variants of SLF-LU is addressed in §3.2.3.

3.2.1 Where to Look for SLF-LU Instability

In general, it is difficult to determine if the pivoting strategy used in the LU factorization is
sufficient to control stability, especially when the ABD system arises from the discretization
of a nonlinear BVODE. Systems arising from the discretization of linear, constant-coefficient
BVODEs are somewhat easier to analyze. In these problems, however, we have found exam-
ples where SLF-LU exhibits instability even when the correct number of pivots is used. Thus, it
seems that even in simple problems, it is not sufficient to simply match the number of row piv-
ots to the number of increasing solution modes. The position of the pivoted rows is important
as well; in particular, the pivots must be cross-block as defined above.

One scenario is certain, though. If SLF-LU does not pivot, it cannot possibly control the
increasing solution modes. In fact, when SLF-LU does not pivot, it is equivalent to compacti-
fication (§2.1). With no pivoting, there is no fill-in at 7, in (2.8), and with 7"’ = 0, (2.8) is
equivalent to (2.6) other than for the difference in Jacobian form ((1.8) versus (1.9)).

We focus our attention on the no-pivot scenario in this section. To this end, consider the
linear, constant-coefficient equation

y'(t) = Ay(t) + q(t), (3.1)

where y, ¢, € R3, A € R3*3, and let A have the structure

0
A=10 1
a c

This structure arises, for example, from the standard technique of converting a single 3rd.
order differential equation into system of three 15t-order equations. Assume that (3.1) appears
in a well-posed BVODE (we are not concerned with the boundary conditions or interval of
integration in this discussion), and assume that we solve the BVODE using a trapezoidal finite-
difference discretization over a mesh of equally-spaced subintervals of size A. In this case,

Si= —[I+ (h/2)A], T,=[I — (h/2)A], ¥Vi=0,...,M —1
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and in (2.8) we have:

Sit1

1 —h)2 0
0 1 —h/2
—ah/2 —bh/2 1—ch/2
1 —h/2 0
0 ~1 —h/2
| —ah/2 —bh/2 —1—ch/2 |
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Three stages of Gaussian elimination are required to transform the i-th slice of the ABD matrix

as shown in (2.8). No pivoting is required during the first stage if

lah/2] < 1

and when the first stage is completed without pivoting, we have

T!

i
!
Si—|—1

1 —h/2 0

0 1 —h/2
0 —bh/2—ah?/4 1—ch/2
0 —h 0

0 -1 —h/2

0 —bh/2 —ah®/4 —1—ch/2 |

No pivoting is required during the second stage if

h

VAN

1

Y

\bh/2 +ah?/4] < 1,

and when the second stage is completed without pivoting, we have

"
T;

"
Si+1

1 —h/2 0

0 1 —h/2

0 0  1—-ch/2— (bh/2+ ah?/4)h/2
0 0 —h2/2

0 0 —h

0

0 —1—ch/2— (bh/2+ah/4)h/2 |

Finally, no pivoting is required during the third stage if

h2/2 < |1—Oé|,

h < |1-a,

|—1-al < [1-a

(3.2)

(3.3)
(3.4)

(3.5)
(3.6)
(3.7)
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where o = ch/2 + bh*/4 + ah?/8.
Therefore, if A is sufficiently small, (3.2)-(3.6) will hold and no pivoting will occur during
any stage of the factorization if

a = ch/2+bh*/4+ah®/8 < 0.

In other words, if A is sufficiently small, and if a, b and ¢ are similar in magnitude, there is a
good chance no pivoting will occur during any stage of the factorization if ¢ < 0.

This is somewhat surprising. There is a 50% chance that ¢ will be negative if the elements
in the bottom row of A are randomly generated in any interval centered at 0. The remaining
question is whether the resulting differential equations (3.1) exhibit a strong enough dichotomy
for the lack of pivoting to cause stability problems. We investigate this further in §3.2.2.

Finally, we note than when the ABD system arises from the discretization of a linear,
constant-coefficient equation, S; = S,7; =T Vi = 0,..., M — 1, and if no pivoting occurs
when transforming the i-th slice of the ABD matrix, no pivoting will occur when transforming
(7 + 1)-st slice either. The result of (2.8) without pivoting is:

fbi](—L_lx[“'Si T,
Piy1 ' Siv1 Tigr -

When processing the (i + 1)-st slice, we then factor

S, U
c =S T 'S Ty -

bi
Git1

] (3.8)

T T,

Sit1

T
S

Sit2
In other words, we compute exactly the same factorization and the no-pivot scenario repeats.

Thus, when reducing on a single partition, if SLF-LU does not pivot when transforming the
first block-row pair in the partition, it will never pivot.

3.2.2 Random Tests

The analysis in the previous section can be extended to single equations of higher order, and to
systems of higher-order equations. In general, we claim that when the Jacobian [0 f /0y] of the
differential equation arises from the standard technique of converting a system of higher-order
equations into a system of first-order equations, there is a greater probability of SLF-LU failure
due to no pivoting if the elements in the dense row or rows of the Jacobian are negative and
close in magnitude. (The nonzero in each sparse row is 1; see Figure 4.1 in §4.2.1 for more
examples.) We now show the results of several random tests to substantiate this claim.
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Each test ABD system arises from the trapezoidal finite difference discretization of a linear,
constant-coefficient differential equation. We divide the test DEs into three classes:

Class 1: [0f/dy],; € (=, 0]U[1] V4, 4,
Class 2: [9f/dy];; € [0, A] Vi, j,
Class 3: [0f/dy],; € (—A, Al Vi, j,

where )\ is a specified constant. If our conjecture is correct, there should be more instances of
potential SLF-LU instability when factoring ABD matrices arising from the discretization of
structured Class 1 problems with A not too large. (There is a higher probability of the elements
being close in magnitude when they are randomly generated in a smaller interval.)

We measure SLF-LU stability by monitoring the growth of ||S{*"|| as the reduction pro-
ceeds down the partition in (2.10)-(2.12). We flag the reduction as potentially unstable if

15211 > 10° x {155 (3.9)

for some 7 > 1.

In each set of experiments, we generate and factor several hundred ABD matrices. In order
to save on computing time, in most cases we do not proceed with a reduction once it has been
flagged as unstable. We only complete the factorization for problems where we analyze the
accuracy of the solution (Figures 3.3 and 3.4). As we are interested only in problems with a
strong dichotomy in these tests, if a differential equation is generated with a weak dichotomy
or with no dichotomy, it is discarded and not counted in the total.

Figure 3.1 shows the results of four sets of experiments on randomly generated structured
linear problems, where the Jacobian structure arises from converting two 5t_order equations
into a system of ten 15t-order equations. The resulting Jacobian is of order n = 10 and is
approximately p = 28% nonzero. In each set of experiment, 300 ABD matrices are generated
on each of eight meshes. In the two sets of experiments with larger A (A = 100 and A = 10),
we see few instances of instability. In the two sets of experiments with smaller A (A = 5
and A = 1), we see many more instances, especially with A = 1. We also note there are
more instances of instability when factoring ABD matrices arising from the discretization of
structured Class 1 problems. (In fact, nearly all Class 1 problem reductions are flagged as
potentially unstable in the set of experiments with A = 1.) All of these results support our
conjecture above.
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Figure 3.1: Effect of Jacobian scale (A) on SLF-LU stability when solving 100 randomly-
generated class 1, 2 and 3 structured linear problems with n = 10 and p = 28% nonzero,
on meshes ranging from A = 0.2 to A = 0.9. The structure arises when a system of 2 fifth-
order equations is converted into a system of 10 first-order equations.
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Figure 3.2 shows the results of four sets of experiments similar to those in Figure 3.1, ex-
cept that the Jacobians are not structured—the nonzeros are randomly distributed. All other
experiment parameters, including Jacobian sparsity, are the same as above. Here we see a
dramatic drop in the number of potentially unstable SLF-LU reductions. This shows the im-
portance of the analysis in §3.2.1. Random testing can sometimes be misleading without some
insight into where to look.

Figures B.1-B.4 of Appendix B show the results of several other sets of experiments on ran-
domly generated linear problems where the Jacobians are either dense, or sparse with nonzeros
randomly distributed. The meshes used in the experiments in Figures B.1 and B.2 are an order
of magnitude smaller than in other experiments. The effect of Jacobian order and sparsity on
stability is investigated in Figures B.1 and B.2, respectively. The effect of Jacobian scale with
dense Jacobians is investigated in Figure B.3, and the effect of Jacobian scale with sparser
(p = 50% nonzero) Jacobians is investigated in Figure B.4. At the time of writing, we do not
have enough insight into the reasons for the SLF-LU instability observed in these experiments
to comment further on the results.

Although the measure we use to flag potential instability (3.9) is a reasonably good indi-
cator that something has gone awry in SLF-LU, it does not necessarily mean the computed
solution to the ABD system will be inaccurate. As a further test, we extract selected Class 3
problems from some of the experiments in Figures 3.1 and 3.2 and solve them to completion
using each of the three ABD system solvers (RSCALE, SLF-QR and SLF-LU). The results
are shown in Figures 3.3 and 3.4. The graphs on the right show accuracy statistics for each
of the three solvers when used to solve a selected problem. The accuracy of a computed so-
lution is measured as the algebraic error—the difference between the computed solution and
the solution obtained with a trusted band solver. We also plot the reciprocal condition of the
extracted ABD matrix, and the discretization error—the difference between the true solution
and the band solver solution. (The problems are constructed in such a way that the true solution
is known.) In the context of solving a BVODE, a computed solution is acceptable if its alge-
braic error is smaller in magnitude than the discretization error. These measures are explained
further in Chapter 4 where we discuss the results of many more numerical tests.

The accuracy results in Figures 3.3 and 3.4 clearly show that SLF-LU—and only SLF-LU—
fails to compute an acceptable solution to each problem. Note that each extracted ABD matrix
is well-conditioned. Several other examples of SLF-LU instability appear in the numerical
testing in Chapter 4, when solving both linear and nonlinear BVODEs.
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Figure 3.2: Effect of Jacobian scale (A\) on SLF-LU stability when solving 100 randomly-
generated class 1, 2 and 3 unstructured linear problems with n = 10 and p = 28% nonzero,
on meshes ranging from h = 0.2 to A = 0.9. Jacobian nonzeros are randomly distributed.
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Figure 3.3: Accuracy of SLF-QR, SLF-LU and RSCALE when used to solve selected class 3
problems from the fourth set of random tests (A = 1) in Figure 3.1.
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Figure 3.4: Accuracy of SLF-QR, SLF-LU and RSCALE when used to solve selected class 3
problems from the fourth set of random tests (A = 1) in Figure 3.2.
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3.2.3 Stability of Other Variants of SLF-LU

The analysis, random testing, and accuracy comparisons in §3.2.1 and §3.2.2 all apply to the
single-partition variant of SLF-LU. In this variant, the ABD matrix is processed in a sequen-
tial fashion from top to bottom as shown in (2.10)-(2.12). This algorithm has some features
that make it easy to analyze. In particular, if the ABD system arises from the discretization
of a constant-coefficient differential equation and the first factorization computed during the
reduction does not require pivoting, SLF-LU never pivots.

As suggested in §2.2.4, other variants of SLF-LU may have different numerical properties.
Some experiments in Chapter 4 show instability in a multi-partition variant of SLF-LU, where
the degree of instability changes as the number of partitions changes. (Surprisingly, the single-
partition variant is sometimes stable in these experiments.) Preliminary testing on a cyclic
reduction variant of SLF-LU shows that most of the problems we have identified in §3.2.1
and §3.2.2 are solved stably using a cyclic reduction approach. This is not surprising, since
even in a constant-coefficient problem the blocks S;, T; change at each sweep of the reduction
regardless of whether pivoting is used (See 2.16-2.19 in §2.2.4.) We leave a more complete
analysis of the cyclic reduction variant of SLF-LU to future work.

3.3 0-RSCALE

We now present a stability analysis for a sequential variant of RSCALE described in §2.3,
applicable when the algorithm is used to solve ABD systems arising from a constant-stepsize
discretization of the model problem

y'(t) = Ay(t) + q(t), t € [ta,ts], Bay(ta) + Byy(ts) = g, (3.10)

where y,q,9 € R", and A, B,, B, € R"*™. We show conditions under which an algebraic
equivalent to the rescaling and compactification transformation used in RSCALE does not ex-
hibit instability attributable to the growth of rapidly increasing fundamental solution modes
in (3.10); instability which is inherent in BIKCR, and which may occur in SLF-LU if the pivot-
ing strategy fails.

In §3.3.1 we first give an outline of the variant of RSCALE we analyze, and then derive
algebraically equivalent expressions for the various recurrences appearing in the algorithm.
These expressions, which are more readily analyzed for stability than the original recurrences,
lead to theoretical bounds for the propagation of error at each stage of the algorithm. Our anal-
ysis indicates that the prototype algorithm described in §2.3—and included as a FORTRAN
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implementation in Appendix E.1—can sometimes fail. We construct some numerical exam-
ples in §3.3.2 illustrating this potential instability, and show how adjusting the algorithm as
suggested by the analysis corrects the situation. In §3.3.3 we discuss the expected frequency
of occurrences of instability. Finally, in order to address some of the shortcomings pointed out
by our analysis, in §3.3.4 we suggest a modification to the prototype algorithm which makes it
better-suited for variable-coefficient problems.

3.3.1 Stability Analysis

In the analysis that follows we assume little about the underlying constant-stepsize numerical
method used to discretize the continuous problem; we require only that the discretization of
(3.10) over a mesh of M subintervals results in an ABD system of the form

B, By Yo g
i 1 W o1
Vo 1 Yo = 0B ) (3-11)
| Vu I | | ym | | O

where V, =V € R"™" ¢ € R k=1,...,M,and y, € R",k = 0,..., M. In fact, the
intrinsic characteristics of dichotomy and boundary condition rank, which are closely related
to the conditioning of a BVODE, need not be addressed until quite late in the analysis.

The shifted RSCALE algorithm, o-RSCALE, is briefly introduced in §2.3.2. For ease of
notation, o = 1 is assumed throughout most of that section, and indeed this choice of o seems
appropriate for most test problems. In this section, however, we show that well-posed BVPs
exist for which ¢ = 1 is not an appropriate choice. It is therefore necessary to retain ¢ as a
parameter in the discussion that follows.

The steps used to solve (3.11) with o-RSCALE are listed in Figure 3.5. The system is
rescaled in step 1 as shown in (2.23)-(2.27) of §2.3.2, except that here rescaling starts at the
second-last, rather than the last, block-row. The rescaled system is compacted in step 2 using
a sequential variant of block reduction similar to (2.4) in §2.1. The transformed unknowns
are computed in step 3, and the original unknowns are recovered in step 4. Since o remains
constant at each rescaling iteration, we will sometimes refer to the algorithm in Figure 3.5 as
static 0-RSCALE. A dynamic variant, o,-RSCALE, is presented in §3.3.4.

We now proceed toward finding algebraically equivalent expressions for the recurrences
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Figure 3.5: Static c-RSCALE applied to the model ABD system (3.11).

1. Rescaling.

(a) WMA =[I—-dV], ‘A/M—l = Wz\}l,lva </3M—1 = WA}1,1</5M—1-
Wi =[I = o(V = Vi)
(b) V=W,V k=M-—2,M—3,...,1.
& = Wi (6 + 0ri1)
(©) Bo=Bu(I+0V1), §=g+0B.dr.
2. Compactification.
@ Vi=WVi, 61 =d.
Vi = =ViVion
qzk = (Elc - Vkﬁgkq
©) Ve = =VVi1, dwr=én—Véu_i.

(b) }k:l&an—L

3. Computation of transformed unknowns.

@ 7o = [Ba - BbVM]il(g - BquM)-
(b) gk :&k_f/kg()a k= 1727"'7M'

4. Recovery of original unknowns.
@) ye1=TUp1—0Gk, k=1,2,...,M — 1.

®) yap—1 =Um-1, ym = Yu-

48
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appearing in Figure 3.5 which are more readily analyzed for stability. First, we expand the
recurrences for gBk in step 1, & in step 2, and g in step 3 as follows.

Lemma 1 The recurrence
é . Wk_1¢k k = M - ]_
k — ~ A
Wk_l(¢k+0_¢k+1) k:M_QaM_?)’al

can be written equivalently as

M-1 %
b= 3o 17 o 312

i=k j=k

fork=M-1,M—-2,...,1.

Proof (by inductiononk) Fork = M — 1,

~ A

b1 = Wit om-1

M-1 1
= o L H Wj_l drv—1
i—M—1

M—1 r
= Y ] Wj1] &

i=M-1 lj=M—1

and (3.12) holds. Assume now that (3.12) holds for an arbitrary £k = s < M — 1:
R M-1 %
$y=) o [H W].—ll ;. (3.13)
=S j=s
Fork =s—1, g,_1 = W, Y (¢s—1 + 06,). Substituting (3.13) for ¢,,
R R M—-1 i
P51 = Wsill ((/53_1 to {Z o'’ [H Wj_1] ¢z})
1=S$ j=s
) M-1 g
- (o oo [T o)
1=S$ j=s
R M-1 r 4
= Whée 1+ o] Wﬁ] &

Lj=s—1

M-1 i 1
= Z ot (1) ['H Wj_l i

1=s—1 =s—1

Thus (3.12) holds forall k = M — 1, M —2,...,1. O
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Lemma 2 The recurrence

?

) b k=1
br — Vidpr k=2,3... M—1
can be written equivalently as

k—

H gt

k-1
O = I + Z(— & (3.14)
i=1

fork=1,2,..., M — 1.

Proof (by inductiononk) For k =1,

¢ = o
. 1-1 . 1—3 R
= 6+ Y (=) T Vizysr| 6
=1 j=1

and (3.14) holds. Assume now that (3.14) holds for an arbitrary £ = s > 1:
~ s—1 s—1
¢ = s+ > (=17 [ [ Vecjsr | 6. (3.15)
i=1 j=1
Fork =s+1, dsi1 = psi1 — Vsi10s. Substituting (3.15) for
~ s—1 . s—1 R
¢s+1 = ¢s+1 - s+1 { Z 8+Z H V:sfj+1 ¢z}
=1 j=1
HV;’ —j+1
(s+1)—
H V(s+1 —j+1 0

i

N

A

i

= ¢A55+1 - Vs+1¢§s + Z(— SH)H
i=1

s—1
= ¢sp1— Vip10s + Z(_l)(sﬂ)H
i=1

s (s+1)—1
= Ge+ ) (1O [ 11 V(s+1)j+1] i
i=1 j=1

Thus (3.14) holds forall k = 1,2,..., M — 1. O
Lemma 3 The recurrence

gk:&c—‘?]ﬂgo k=1,2,...,. M —1
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can be written equivalently as

k
Gk = &k — (=1 | T Vs | 9o (3.16)
j=1
fork=1,2,...,M — 1.
Proof (by induction on k) We first show that
~ k ~
Vi= ()" LH Vs (3.17)
=1

fork=1,2,..., M — 1; (3.16) follows immediately from (3.17). For k = 1,

~ A~

i =W

= ()™

1
H Vicj
j=1

and (3.17) holds. Assume now that (3.17) holds for an arbitrary £ = s > 1:

Vo= (=0 ][ Vasgin | - (3.18)
j=1
Fork = s+ 1, V,41 = —V,.1V,. Substituting (3.18) for V;,
Viii = —Vin {(—1)5+1 H ‘A/:s’qutl }
j=1
s+1
= (—1)(s+1)+1 HV(s+1)—j+1] .
j=1
Thus (3.17) and (3.16) both hold forall k. =1,2,..., M — 1. O

Next, we derive three identities that will allow us to express the matrix products appearing
in (3.12), (3.14) and (3.16) explicitly in terms of V and o

Lemma 4 The recurrence

. [u-ov1v k=M-1
I—o(V-Vie)] 'V k=M-2M-3,...,1

can be written equivalently as
Ve = [I = (—oV)M TV 4 oM H (V) MR (3.19)

fork=M-1,M—-2,...,1.



CHAPTER 3. STABILITY OF THE ALGORITHMS 52
Proof (by inductiononk) Fork = M —1, Vyy_y = [ —oV] V. If [ + V] is non-singular
(the issue of singularity in (3.19) is addressed later), then

Vier = I —oV] ' I+oV] I +oV]V
= (I+oV][I—oV])'[V+aV?
= [[=(oV)] 'V +oV7]

and (3.19) holds. Assume now that (3.19) holds for an arbitrary £ = i < M — 1:
Vim [T = (V)Y M), (3.20)
Fork=1i—1,Viy = [I — o(V — V;)]"'V. Substituting (3.20) for V,

Vit = [ =0V~ I~ (~oV)" =7V 4 oM ()Mt
= ([T = (o) = (—o V)M -
o[l — (—oeV)M=" NV + o[V + oM (- V)M~V
— ([I _ (_Uv)M—H—l]—l{I _ (_Uv)M—H—Q})—lV
- [I- (_O_V)M—z'+2]—1[v + O,M—i+1(_v)M—i+2]'

Thus (3.19) holds forall k = M — 1, M —2,...,1. O
Lemmas Vi, = H?;j Vi_j+1 can be written equivalently as

Vii = [I — (—oV)M 7 [VET — (—o)M Ry M=) (3.21)
fori<k<M-1,0<:i<k-1.

Proof (by inductiononi) Fori =k — 1, Vk,k_1 = V,. Referring to (3.19), clearly (3.21)
holds. Assume now that (3.21) holds for an arbitrary i = s < k — 1:

Vis = [I — (—aV)M=3]7 1 [VE=S — (—o)M Ry M=), (3.22)

Fori;=s5—1,
k—s+1 k-

Vis 1= H Vi jo1 = [T Vi in]Vi = Vis Vi
=1 i=1
Substituting (3.22) for f/k,s and (3.19) for V;, we have

V}c,sfl — [I . (_O_V)M—S]—I[Vk—s o (_U)M—kVM—s]
% [I _ (_O_V)M—s—f—l]—l[v 4 OM_S(—V)M_S_H].
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Assuming that V' is diagonalizable, the four matrices enclosed by square braces in the above
expression commute. After two interchanges,

Vhsot = 1= (=oV)M 4T = (=g V)Mot
X [VE = (= MRV MY o oMo (M)

Simplifying,

Thor = (1= (moV)M= ] T — (o)A Vhost (g Mkybisns
VRS gM=s (LY )Mot _ (g )M—ky M=spM—s(_y)M=s+1]
[T — (V)T = (oW M VA () My
— (—oV)Msyk=stl L (oY )M=s(_g) M-k M=stl)
[T — (o V)M = (o V)M =e] 7t
X [I = (=aV)M=*[VEstt — (=
[T — (mo V)Mot yhmstt — (-

O')M kVM s+1]

O’)M kVM s—|—1]
Thus (3.21) holds foralli =k — 1,k — 2,...,0. O
Lemma6 Wi, = [];_, W; ' can be written equivalently as

Wi = [I = (=oV)" 7T = (=oV)¥ ] (3.23)
fori1<k<M-1 k<i<M-1.
Proof (by inductiononi) Fori =k, Wk,k = Wk‘l. Referring to (3.19),

Wl o= B!

= [ = (=oeV)MF7Y 4 oMK (—y)MAH 2

= [I— (=oV)" 7L = (—oV)M7H
and (3.23) holds. Assume now that (3.23) holds for an arbitrary i = s > k:

Wiy = [I = (=o V)T = (=oV)M77]. (3.24)

Fori=s+1,
s+1

Wk,sﬂ HW t= H ]Ws—|—11 Wk,sVsHV_l-
ji=k
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Substituting (3.24) for W, and (3.19) for V., we have

Wk,s—l—l = [I = (—oV)MF=T - (—gV)M9]
X [I = (—oV)M=] YV 4 oM=L (— )Moy
= [I = (—oV)M=F+1T — (—gV)M—s—1),

Thus (3.23) holds forall i = k, k+1,..., M — 1. O
Considering (3.12) and Lemmas 4-6, there appears to be at least three potential sources of
instability in o-RSCALE; namely, forsome k,1 < k < M,

e % grows too large or too small, and/or
e [I — (—oV)¥] is exactly or nearly singular.

If o* grows too large, there is potential for instability in the computation of (3.12). If o* grows
too small, Vi, & V and V;; & V¥, i.e. 0-RSCALE suffers from the same instability as BIKCR
(note that if o = 0, the algorithms are identical). The identities derived in Lemmas 4-6 clearly
show why [I — (=o' V)¥] must remain non-singular. In order to address these instabilities in
our analysis, we require that the following two criterion are met by o.

Criterion1 o0 € R, o > 0 and 39, < oo such that
1<ofF<Q, o>1
1/9, < of <1 o<1

forall k£, 1 < k < M. Clearly,

oM oc>1
Wy = o
1/o™ o<1

is the smallest such €2,

Criterion 2 32, > 0 suchthat 0 < Q) < |1 — ||| for all eigenvalues \; = ov; of (cV).
Clearly, wy = min; |1 — ||| is the largest such ;.

Exact or near singularity in [T — (—o'V)¥] is thus avoided by selecting o to shift the eigenvalues
of V in such a way that w, is sufficiently greater than zero. Numerical examples presented
in §3.3.2 illustrate that when o-RSCALE is used to solve an ABD system of reasonable size,
usually it is possible to choose o so that w, is not too small while at the same time w, is not
too large, and often o = 1 is an appropriate choice. See §3.3.2 for further details.

In the proof of Lemma 5 we assumed that V' is diagonalizable. This property is also re-
quired in the analysis that follows; we now state it formerly:
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Criterion 3 V € R™ " is diagonalizable (nondefective); i.e. 3 a nonsingular S € C™*" such
that V = Sdiag{v1,...,v,}S™ !, wherev; €C,j =1,...,n.

We now derive bounds for ||V || in Lemma 5 and ||} ;|2 in Lemma 6.

Lemma 7 If w,, wy and S are defined as stated in Criteria 1-3, then

- Ka2(S) [(2 > 1
||V;c,z||2 < 2( ) [( + Ld)\)/w)\] gz (325)
Ko(S) [(2 4+ wa)(we/wr)] o<1
for1<k<M-—1,0<i<k—1,where Ko(S) = [|S]l2 |72
Proof From Lemma 5, and noting that o # 0 (Criterion 1),
Vk,i — [I . (_O_V)M—i]—l[vk—i . (_O_)M—lcVM—i]
= [I = (=oV)" =0 {(=oV)* " = (=oV)"7}].
Let ;,j = 1,...,n represent the eigenvalues of f/k,z-. Given that S diagonalizes V, clearly it
also diagonalizes f/k,,-. Therefore,
0y = =0 H{(=0) T = ()M (= (A M)
and
L (P VI S PV s VAV PV e (3.26)

where \; = ov; is the j-th eigenvalue of (oV'). We now derive bounds for |«;| in terms of w,
and wy, which cover all possible A;. Given Criterion 2, two cases need be considered:

1. |\l <1=|Aj| <1 —w,. (Thisalso implies that w, € (0, 1].) Substituting into (3.26),
and notingthat M — i > k — i > 0,

o] < oI —w) + (1 - w)}/ (1= (1 —w))
= ZUi_k(l — wA)/w)\.
2. |Ajl > 1= |\;| > 1+ wy. Since || # 0, we can divide numerator and denominator in
(3.26) through by |),;|M~* giving
o] < oML/ IN[MTE 1Y/ 1L/ =1 (3.27)
Substituting [A;| > 1 + wy into (3.27), and noting that M — i > M — k > 0,

o] < o1/ (1 +wi) + 11/[1/(1+ wa) = 1]

= "2+ wy)/wx.
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Combining the two cases, |a;| < 0" 7% (2 4 wj)/wx. Now,

||S diag{a1, ..., a,} S_1||2
1512 IIdiag{cx1, - . ., an }|2 [|S 7|2
= K(9) ||/diag{as, ..., an}|

Viill2

IN

and since ||diag{ a1, - .., @, }||2 = max; |a;l,
[Viilla < Ka(S) [077F(2 + wy) fwa)- (3.28)

Finally, o'~ = 1/0%~* with 1 < k — 4 < M, and, given Criterion 1,

) 1 >1
1/o% 7 < 7= (3.29)
wy o<1
Substituting (3.29) for *=* in (3.28) gives (3.25). O

Lemma 8 If wy and S are defined as stated in Criteria 2-3, then

Wil

2 < Ka(S) [(2 + wh)/wi] (3.30)
fori<k<M-1k<i<M-1.
Proof From Lemma 6,

Wi = [I — (—oV)M 7T — (—gV)M™).

Let 3;,7 = 1,...,n represent the eigenvalues of Wk,i. Given that S diagonalizes V/, clearly it
also diagonalizes Wk, Therefore,

Bi= (1= (=2)")/(1 = (=)

and
1Bi] < (14 [\ M) /11— [ M+ (3.31)

where \; = ov; is the j-th eigenvalue of (¢V"). We now derive bounds for |5;| in terms of w)
which cover all possible A;. Given Criterion 2, two cases need be considered:

1. |Aj| <1=|Aj| <1—w,. (Thisalso implies that w, € (0, 1].) Substituting into (3.31),
and notingthat M — k+1> M —i >0,
B < (1+(1—wx)/(1=(1=w))
= (2 — w,\)/w,\.
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2. |\j| > 1= |X;| > 1+ w,. Since |A;| # 0, we can divide numerator and denominator in
(3.31) through by |);|"~* giving
1B < (/1M + 1) /1L /A1 = Iy (3.32)
Substituting |A;| > 1 + wy into (3.32), and noting that M — 7 >0and¢— &k +1 > 0,

16 < (1/(14wx) +1)/1/(1 +wx) = (1 +wy)|
= 24+ w\)/[(1+wy)?—1]
= (2+w)/(2wr +w))
= 1/wx.

Combining the two cases, |5;| < (2 + wy)/wx With wy € (0, 00). Now,

||Wk,i|2 ||Sdiag{ﬁ1,...,6n}5—1||2
1S|l2 [|diag{B1, - - -, Batll2 1572

and since ||diag{/1, . .., Bn}||2 = max; |5;], (3.30) holds. O

Lemma 7 illustrates a key strength of o-RSCALE. With a suitable o, |
sufficiently small thus preventing excessive block growth during compactification, which is the

IN

Vi.ill2 can be made

primary reason both BIKCR and SLF-LU sometimes fail on problems with a strong dichotomy.
In fact, ||V4||2 can be made arbitrarily small with o sufficiently large. (Note that the bound for
o > 1 is conservative when o is large.) Unfortunately, however, this property of o-RSCALE
rarely can be exploited since other stages of the algorithm—in particular the computation of
5, in (3.12)—restrict the size of o.

Using the bounds derived in Lemmas 7 and 8, we can now begin to analyze the propagation
of error in the computation of ¢, in step 1(b), & in step 2(b) and g, in step 3(b) of --RSCALE.

Lemma9 Let ® = [g7,¢, ..., |T € RO+ denote the computed (approximate)
right-hand-side of (3.11), and let ns, = || — ¢ |2 represent the absolute error in ¢y, 1 < k <
M —1. (ng, includes both round-off and propagated error.) Let g, denote the computed solution
to the compacted system in step 3(a) of o-RSCALE (Figure 3.5), and let 3, = ||go— 5o l|2 repre-
sent the absolute error in 7. Let a E and 7, denote the computed values for qbk in step 1(b),
by in step 2(b) and § in step 3(b) of o-RSCALE, respectively, and let Mg, = ||<Z>,c — EHQ,
N3, = |6 — ¢xll2 and ng, = ||k — Jxl|2 represent the absolute error in ¢, ¢, and gy, respec-
tively. Let ng = [1g,,- -, Mpn_,) € RM ™ and ng = (Mg, 77¢;M_1]T € RM-1,



CHAPTER 3. STABILITY OF THE ALGORITHMS 58

If w,, wy and S are defined as stated in Criteria 1-3, then the propagation of error through
the £-th iteration of steps 1(b), 2(b) and 3(b) of -RSCALE is bound as follows:

Mo, < wka(S)[(2+wn)/w] [mgll (3:33)

< {%+mwmmemwmh ol >1 .3

k g, + Ka(8) [+ wr)(wo/wn)] [mglly o] <1

%fg{%+mwmmmemo ol >1 0.35)
g, + Ka(8) (24 wa) (wo/wi)] o o] <1

Proof Writing the recurrences in steps 1(b), 2(b) and 3(b) of 0-RSCALE in the form of
expansions (3.12), (3.14) and (3.16), respectively, we may derive (3.33), (3.34) and (3.35)
using the absolute error propagation formula for a linear function of several variables; namely,
ifr; e RM, X =2, 2l]T e RF", X = X and " : R*¥* — R", then

k
IP) = POz < 31107 /0zilloll2: = Zill>- (3.36)

First, applying (3.36) to (3.12) we have

Mg, = ”dA)k_QASkHZ
M-—1 %
< D> e FTW e — dilles
i=k j=k 9

Substituting w, for o*=* (Criterion 1), (3.30) for || T[;_, W, '[l> (Lemma 8), and ||n,||; for
SMU(6s — i) llos gives (3.33). Similarly, applying (3.36) to (3.14) we have
Mg, = Ik — dkllo

_ k—1 _
< k=l + 16s — illa-
=1

2

L for S Idi — il gives

k—1i
(—1)F* H Vi—j+1
i=1

Substituting (3.25) for || [[;=; Vi—j+1/l> (Lemma 7) and |||
(3.34). Finally, applying (3.36) to (3.16) we have

N5 = |19k — Ukll2

< bk — Brll2 + 150 — ol

N

k
(_1)k+1 H Vk—j+1

j=1

2

Substituting (3.25) for || [T;_; Vi—j+1ll> (Lemma 7) gives (3.35). O
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A suitable combination of (3.33)-(3.35) will enable us to measure how small perturbations
in the right-hand-side ® of (3.11) affect the accuracy of the computed solution Y. First, how-
ever, we must bound n;, in (3.35), and this requires an estimate for the condition number of
the compacted matrix C' = [Ba — Bbf/M] arising in step 3(a) of 0-RSCALE. The condition
number of C' is related to the condition number of the full ABD matrix 7 in (3.11), which in
turn is related to the system of ODEs, boundary conditions (3.10) and underlying numerical
method used to discretize the continuous problem. When a BVODE is well-posed, the left
and right boundary conditions sufficiently “control” the decaying and growing fundamental
solution modes, respectively, and an ABD matrix 7 arising from a reasonable discretization
usually is well-conditioned. The extent to which the boundary conditions must control the so-
lution modes depends largely on the rate of decay and growth of the modes (i.e. the strength
of the dichotomy) and on the length of the interval of integration. For example, if each so-
lution mode decays or grows only slowly over the entire problem interval, and the interval is
short, most likely any set of boundary conditions of sufficient rank will lead to a well-posed
BVODE. If, on the other hand, one or more solution mode decays or grows rapidly, sufficient
rank is no longer enough as the span of the basis of the boundary equations becomes increas-
ingly relevant. (These issues are discussed more fully in [Asch 88].) The characteristics of
dichotomy and interval length in the continuous problem are manifest in the ABD matrix J
as the magnitude of the eigenvalues of the variational matrix V' and the number of block-rows
M, respectively. A precise measurement of how the boundary conditions affect the condition
number of 7, and hence the condition number of C, would necessitate the derivation of a con-
dition number estimate incorporating, among other parameters, B,, By, ||V|| and M. This is a
non-trivial task and is not pursued here. Instead, we choose to derive a bound for the condition
number of C' by comparing it to that of the compacted matrix arising during decoupling—a
proven stable sequential algorithm for solving ABD linear systems.

We first outline a simple variant of the decoupling algorithm; other variants and additional
details may be found in [Asch 88]. Initially, we assume that the boundary conditions in (3.10)
satisfy the following criterion.

Criterion 4 Let V be diagonalizable (nondefective); i.e. 3 a nonsingular S € C™*" such that
V = Sdiag{vi,...,v,}S !, with eigenvalues v;,7 = 1,...,n appearing in non-decreasing
order of magnitude

il <o < | <1< | < -+ < o
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and partition S—! € C™*" as follows?

S-1
@ , Sa‘1 e Cnaxn, Sb‘1 e Cmxn,
St
b

St =

where n, = n — n,. Then B,, B, € R™™ must be separable, of rank n, and n,, respectively,
with S, ' € row-span{53,} and S, ! ¢ row-span{B,;}; i.e. B, and B, are of the form

S—l
Ba:Z ¢ ,Bb:Z

0
3.3
o ] , (3.37)

b

where Z € C™*™ is nonsingular.

We begin this variant of the algorithm by diagonalizing each Vi, k = 1,..., M in (3.11).
Given S as defined in Criterion 4, this may be accomplished by multiplying each block-row
(except the first) through by S—! and each block-column through by S, giving

[ B,S BST1T | [ g ]
D, I i b1
D, 1 | = 6 |, (3.38)
| Dy I 4L le J B ¢\5M A

where Dy, = diag{v1, ..., vy Vnyit, - Vn bk =1,... ., M, ¢y = S ¢k =1,..., M and
U = S 'y, k=0, ..., M. Two points are worth noting here:

e Although this step is obviously parallelizable in the constant-coefficient case, it is inher-
ently sequential in the variable-coefficient case since, in general, the diagonalization of
V11 cannot proceed until the diagonalization of V}, is complete.

e In a practical algorithm, diagonalization is unnecessarily costly. As shown in [Asch 88],
decoupling can be implemented just as effectively using triangular factorization.

Now if B, and B, are of the form shown in (3.37), the top block-row of (3.38) may be written

-1

S
Z 0 ]ngo+z St = g. (3.39)

Syt

1571 and Sy ! denote the first n, and last n; rows of S—1, respectively. These two partitioned matrices are
neither square nor invertible.
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Multiplying (3.39) through by Z 1 gives

I,

v

Yo +

0
] UM =g (3.40)
I,

where I,, € R"*™ and I,, € R™*" represent the first n, and last n, rows of I, respectively,
and § = Z~1g. Thus, by transforming (3.11) as shown in (3.38)-(3.40), and assuming that Z
is nonsingular, the boundary equations now explicitly give

1701 él
g=1 : | =] : |eRrw (3.41)
gjOna gna
and
UMy, 11 Gna+1
U= : = : eR™. (3.42)

The remaining unknowns may be computed by using (3.41) as the initial value in a forward
recurrence for the decaying solution modes,

=3 - Dhg L k=120 (243

and (3.42) as the initial value in a backward recurrence for the growing solution modes,

=0 ot —Ul) k=M—-1,M-2,...,0, (3.44)
where
glﬂ ¢k1 ijna+1 ¢kna+1
=t |.dk=1] | eR™, yi= |, = € R™,
Tk, Pk Tkn Pt
and

D = diag{v1,...,vp,} € R™*™, D' = diag{vp, 41, .., v} € R™*™.

Since ||D*|]z < 1 and [|(DT)7Y|2 < 1, recurrences (3.43) and (3.44) are stable and neu-
trally stable, respectively. Finally, the original unknowns are recovered with y, = S, k =
0,...,M.

Although it is possible to fabricate an ODE system where the boundary conditions must
satisfy Criterion 4 in order for problem to be well-posed, this criterion is rarely met in practice.
The usual minimum criterion for general non-separated boundary conditions in (3.10) is:
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Criterion 5 Let V' be diagonalizable (nondefective); i.e. 3 a nonsingular S € C™*" such that
V = Sdiag{vi,...,v,}S™, with eigenvalues v;,7 = 1,...,n appearing in non-decreasing
order of magnitude:

] < eve S| <1< g <o <l
Then B,, B, € R™*™ must be of rank n, and n,, respectively, where n, = n — n,.

When the decoupling algorithm is used to solve an ABD system with boundary conditions
satisfying this more general criterion only, it may no longer be possible to compute gjé and yj}l
as shown in (3.39)-(3.42). Instead, initial values for recurrences (3.43) and (3.44) typically are
computed by solving the compacted system

B.,S B,S 7]
b Uyo _ |9 (3.45)
D, Dy Ymr Y
where B,, B; are as specified in Criterion 5, D,, D, € R™*™ are of the form
—1)M+L(DHM I 0
p_ | CoE@y o)
0 1 0 (—=1)M+y(DhH-M

and v € R™ is an appropriately transformed subvector of &.

A closer examination of (3.45) sheds some light on the intricate relationship between the
boundary conditions and dichotomy, and how they contribute to the condition number of both
the compacted and full ABD matrix. For example, let [X]; ), [X].;), and [X]; ;) denote the
i-th row, j-th column, and (7, j)-th element, respectively, of X € R™*", and let ¢ represent
machine epsilon. If, in (3.45),

[Da]i.jy| < € for some j, 1 < j < n,, and one or both of the
following conditions hold:

L AlBaSlepll <€
2. [[[BaS]a,nll < eand ||[ByS] i,y — ], < € forsomed, 1 <i <n,

then the compacted matrix is either poorly-conditioned or numerically singular, whereas if
I[Da](j,5)] > e, neither of these conditions is likely to adversely affect the condition number.
The magnitude of each of the first n, elements on the diagonal of D, and last n, elements on
the diagonal of D, is uniquely determined by the strength of the dichotomy and length of the
interval of integration. For instance, in the above example we can easily have |[D,]; )| < €
when the j-th fundamental solution mode decreases rapidly over a long interval. It therefore



CHAPTER 3. STABILITY OF THE ALGORITHMS 63

follows that the contribution of general B, and B, (i.e. B, and B, which satisfy Criterion 5
only) to the condition number of the compacted matrix depends also on the strength of the
dichotomy and length of the interval of integration. If, on the other hand, B, and B, satisfy
Criterion 4, the compacted system (3.45) reduces to (3.41), (3.42),

Y0py 41 Ynat1 UMy 41
= : = : — (=1)M+(phHM (3.46)
Yo, Tn U,
and
Yny gi! Yo,
gt = : =| | = (=)MHY(DhHM (3.47)
UM, Yna Yorg

Clearly, in this case, the contribution of B, and B, to the condition number of the compacted
matrix may be measured solely in terms of the condition number of Z. (Recall that Z is inverted
when computing 7} in (3.41) and 31, in (3.42).)

We close this discussion on the decoupling algorithm by showing that when B, and B,
satisfy Criterion 5, the compacted system (3.45) may be further reduced to an n x n system
involving gjé and gjL only. To this end, consider partitioning 3,, B, and S as follows:

B, Bs,

b

7Bb:

],S:[Sa S |

a2

where B,,, By, € R™*", B,,, By, € R™*", S, € R™" and S, € R"*™. Rewriting (3.45)
using this partitioning gives

B., S, B, Sy By, S, By, S i gt

BoySa  BuSy BySa By, Sy wo|_|9 (3.48)
(=DM (DM 0 I 0 s o
0 I 0 (=M (DhH)M i ol

where, as before, we denote subvectors consisting of the first n, and last n, elements of z € R”
as z+ € R™ and z € R™, respectively. Now interchanging ¢ and §/3, in (3.48) gives

[ B,,5,
By, S,
I
0

B, Sp
B.,S,
0
I

B, S,
B,,S.
(~1)M 1 (DM
0

By, Sp
By, Sy
0
(~1)¥ (D)

(3.49)



CHAPTER 3. STABILITY OF THE ALGORITHMS 64

With the n x n identity matrix appearing in the lower-left corner of (3.49), we can clearly
eliminate gg and gjb from the first n equations by subtracting an appropriate multiple of the
last n equations. This leads to the compacted system

o v B, S, B,S '
ol B I R I B I (3.50)
Ymr gT BbQSa BGQSb ’)/r
where
. [ BuS. ByS, By,Sa B Sy | [ (m1)M+1(DY)M 0
Bu,S. By,S, By,Sa BaySy 0 (—1)M+ (DM |

Once (3.50) is solved giving 3 and ¥/}, 710 and 473, may be computed either as shown in (3.46)
and (3.47), or as the last step of recurrences (3.44) and (3.43), respectively.

In the next lemma we bound the condition number of the compacted matrix arising in o-
RSCALE by comparing it to that of C. Note that since the variant of decoupling outlined
above is theoretically stable, the condition number of C is closely related to the conditioning
of the BVODE. For example, if the continuous problem is well-conditioned, and the full ABD
matrix 7 arises from a reasonable discretization, then both 7 and C are guaranteed to be well-
conditioned. A thorough analysis of the connection between the conditioning of the continuous
and discrete problems is given in [Asch 88].

We now derive an upper bound for the condition number of the compacted matrix C' arising
in step 3(a) of o-RSCALE:

Lemma 10 If w,, wy, A; and S are defined as stated in Criteria 1, 2 and 5, then the 2-norm
condition number of the compacted matrix C' = B, — 1B,V}, arising in step 3(a) of o-RSCALE
is bound above by

K2(C) < 4K5(C) Ka(S) (we/w?) max(l + Ay, wo] (3.51)

where C is the compacted matrix arising in the decoupling algorithm (3.50).

Proof Expanding B, and V,, as computed in steps 1(c) and 2(c) of Figure 3.5, C can be
written equivalently as B,C, — B,C}, where

Cazl—l—af/l

and
M-1

Cb - (—1)M+1V H ‘A/M_j.

i=1
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Substituting (3.19) (Lemma 4) for V; in C, gives

Co = I+oll = (=oV)M]7'[V + o™ (=V)"]
= = (=oV)"] H{lI = (=oV)¥] + o[V + o H(=V)"]}
= [I=(=oV)M] I +0oV]

and substituting (3.21) (Lemma 5) for Viy_1 0 = [];"7" Vir—; in C; gives

Cy = (D)MW — (—oV)M]HVML 4 oV M]
— (_1)M+1[I _ (_O_V)M]—I[VM 4 0'VM+1].

A fundamental relationship between C, and C, follows immediately; namely
GOt = (—1)MHIy M, (3.52)

This relationship is exploited later in the proof.
Letojand 5;, j = 1, ..., n, represent the eigenvalues of C, and C,, respectively. Given that S
diagonalizes V' (Criterion 5), clearly it also diagonalizes both C, and Cj,. Therefore,

C = B,C,— B,
= [B,SD, — BySDy)S *
or, multiplying through by S,
CS =B,SD, — B,SD, (3.53)
where D, = diag{«y, ..., a,} and D, = diag{f, . .., B.}. We now partition (3.53) to reflect

the dichotomy specified in Criterion 5. Let

Ba,
B,

By,

bo

3 b —

B, =

) S = [ Sa Sb ] 3
where B,,, By, € R"*" B,,, By, € R™*" S, € R"*" S, € R™™, and let

D, =

p =

D,, 0
0 D, |’

Dy, O
0 Dy, |

where D,,, Dy, € R™*" and D,,, Dy, € R™*™. Then (3.53) may be written

Bo,Sa BaSy | | Pay 0
0 D,

Bag Sa Bag Sb

By, Sa By, Sp
By, Sa By, Sh

CS =

[Dbl 0

. DJ. (3.54)
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Let
D, 0
X = € RM™. (3.55)
0 —Dy,
Multiplying (3.54) through by X —! and simplifying gives
BaySa By, S By, Sa B, S Dy, D! 0
cSXt=|"" O I s b b1 % . (3.56)
BazSa Bb2Sb Bb2Sa BaZSb 0 Da2Db_21
Now by diagonalizing (3.52), we have
DyD, ' = (—1)M DM, (3.57)
Taking the first n, equations of (3.57) gives
D, D, = (~1)M* (DY (3.59)

where DV = diag{vi, ..., vy, }. Similarly, inverting both sides of (3.57) and then taking the
last n;, equations of the result gives

D,,D;; = (~1)"+ (D) (359)

where D' = diag{v,,, 11, . .., s }. Substituting (3.58) and (3.59) into (3.56), we see that (3.56)
is identical to C' in (3.50); i.e. when B, and B, satisfy Criterion 5, the compacted matrix C
arising in step 3(a) of 0-RSCALE—when transformed with S X ~!—is algebraically equivalent
to the compacted matrix C' arising in the decoupling algorithm. It therefore follows that

15(C) < K (C)a(S)Ks(X). (3.60)
We now derive a bound for Ky (X). From above, we have C' = B,C, — B,C}, where
Co=[I - (=aV)M]7YI + oV] (3.61)

and
Cy = ()M — (=oeV)M]7HVM 4 oV MH, (3.62)

Since o # 0 (Criterion 1), (3.62) may be written equivalently as
Cy = (-=1)MMT — (= V)M H(oVIM + (aV) M. (3.63)

Given that S diagonalizes each of V', C, and C, expressions for the eigenvalues «; of C,, and
B; of Cy follow directly from (3.61) and (3.63), respectively:

aj = (1+X)/(1 = (=A)") (3.64)
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Bi = (=DM + X /(0" {1 = (=)} (3.65)

for j = 1,...,n where \; = ov; is the j-th eigenvalue of (¢1"). From (3.55), we see that a
subset of these o; and 3; make up the diagonal of X'; namely

X = diag{ala -eey Oy, _/Bna+1’ e _5n}

We next derive bounds, in terms of w, (Criterion 1) and w, (Criterion 2), for the magnitude of
each diagonal element in X . Taking absolute values in (3.64) and (3.65), we have

11— Al 1+ [
T P 1 (3.66)
T XM= 07 1 — Ay
A = P 8] < XY I (3.67)
oM(14[N[M) = T oML =AM '

Given the order imposed on the eigenvalues of V' as specified in Criterion 5, it follows that
each o in X arises from an eigenvalue v; of V with |v;| < 1, and each g; in X arises from
an eigenvalue v; of V' with |v;| > 1. We handle these cases separately below, taking into
consideration all possible \; arising from different combinations of o and v;.

1. Bounds for ||, j =1,...,n,. Each a; is computed from v; with |v;| < 1.
@ o <1IAy <1=|)\|=|oyvj <1-w,and
0<INM <IN <T—wy <1 (3.68)

Substituting (3.68) into (3.66),

1—(1—w)l 1+ (1—wy)
T N = =y
Simplifying,
wx/(2 = wx) < aj| < (2 —wa)/wa (3.69)

b)) o > 1Ayl <1= )| =]ov;| <1—wy\V|Aj| =]|ov;| > 1+ wy. The former
case is handled in 1(a). In the latter case, 1 + wy < |\;| < o and

L+wy < N < MM < oM = w,. (3.70)

Substituting (3.70) into (3.66),
- +w)l _ 1+o

Simplifying,
wa/(1+w,) <oyl < (14 0)/wh. (3.71)
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2. Bounds for |8;|,j = n, + 1, ..., n. Each j; is computed from v; with |v;| > 1.
@ o >1Ay| > 1= )| =|ovj] > 14w, and
1< T+wy <A< |NM < oo (3.72)

Noting that |\;|™ # 0 in this case, we divide numerator and denominator of each
side of (3.67) through by |\;|* giving

11— Al 1+ [
< < . .
M ) < S G pr o 373)
Substituting (3.72) into (3.73),
11— (1 +wy) 1+ |)
< < .
S0 ) + 1) = S G ) 1]
Simplifying,
C(.))\(1+CL))\) < ‘ﬁ‘< (1+‘)\]|)(1+W)\) (374)
We(2+wy) — " T Wel . .

) o <1A|y| >1= )| =|ov| > 14wV |Aj| =]|ov;| <1—wy. The former
case is handled in 2(a). In the latter case, o < |A;| <1 — w, and
0<1/wy=0" <INM <N <T—wy<1. (3.75)

Noting that |\;|* # 0 again in this case, we substitute (3.75) into (3.73),
11— (1—w))| 1+ (1—wy)
< 1B8:| < )
oM(1foM +1) ~ 1Bil = oM|1/(1 —wy) — 1|

Simplifying,

wWe(2 —wy)(1 — wy)
Tt <165 < o ) (3.76)

Relaxing the upper and lower limits in (3.69), (3.71), (3.74) and (3.76), we have

Wy

wyr/2 < |oy| < 2/wa, (3.77)

wx/(1+ ws) < laj| < (1 +ws)/wy, (3.78)
wa/(2w5) < |8 < 2(1+ [N])fun, (3.79)
wa/2 < |B4] < 2wy wy. (3.80)

Considering (3.77)—(3.80), each diagonal element [X]; ;,j = 1,...,n of X must satisfy
wx/(2wy) < [[X]pl < Qm;fﬂ[l + | Ajl; wel/wa
and hence, since X is diagonal,
Ko (X) = max|[X] )|/ min [[X]| < 4 (@o/w3) max{l + X1, wel- (3.81)
Substituting (3.81) into (3.60) gives (3.51). O
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3.3.2 Some Examples Where 1.0-RSCALE Fails

We now present several numerical examples illustrating the potential instability in the prototype
algorithm 1.0-RSCALE, the effect of a small shift in ¢ on problems where 1.0-RSCALE fails,
and the sharpness of the bounds derived in Lemmas 7, 8 and 10.

Given the identities derived in Lemmas 4, 5 and 6, it is not difficult to construct well-posed
problems that cannot be solved stably with 1.0-RSCALE. For example, if any eigenvalue v; of
V' in (3.11) is a root of the equation

(—r)M=FH —1 =0, (3.82)

then, considering (3.19), (3.21) and (3.23), clearly there will be an exact singularity at the
computation of V-, Vk,k*—1 and Wk*ﬂ-, respectively. In fact, potentially there are many such
singularities. Any v; satisfying (3.82) always satisfies

(—r)s M=K+ _ 120, ¢c=2,...,[M/(M -k +1)], (3.83)

leading to additional singularities in the computation of VM_C(M_,C*+1)+1, f/k,M_c(M_k*H) and
War—e(m—ke41)414 @t ¢ = 2,..., [M/(M — k* + 1)]. Also, when (3.82) is of high degree
(i.e. k* < M), av; satisfying (3.82) may satisfy

(=r)M=K4) _1 =0, c<1, ¢(M—k +1) €N, (3.84)

leading to singularities in the computation of Vi+, V;, x+_; and Wj; ,, at one or more &t > k*.
There are M — k* + 1 roots in (3.82), most of which are complex. If one of these roots
appears in the spectrum of a real matrix V/, so must its complex conjugate. Thus, a strategy for
constructing a problem that cannot be solved stably with 1.0-RSCALE is to work “backwards”:
First choose a £*, then determine the roots of (3.82), and then select an appropriate number
of conjugate pairs of these roots as eigenvalues for V. The test problems in Table 3.1 are

constructed in this manner. Once eigenvalues [vy, ..., v;, T, Ty, - - | have

3 Tjn—iy/2> fj(n—i)/?
been selected, V € R™*" is formed as

V = Sdiag{vl, .. .,Vi,le, A aRj(n,i)/z}S_la

where
real{r;} —imag{r;}
imag{r;,}  real{r;}

and S € R™" is randomly generated. Note that the rows of S—! are a purely real linear

Jl=1,...,(n—1d)/2

=

combination of the left eigenvectors of V. B, and B, in (3.11) are then formed from the rows
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Table 3.1: Seven test problems for o-RSCALE

Selected eigenvalues for V are [v1, . .., Vi, Ty, Tiys - 5 T i 195 Tigusyj2)s WHETe 75,
is the j;-th root of (—r)M=*"+1 — 1 = 0, and 7, is the complex conjugate of 7.

Problem # | (n, M) Selected eigenvalues for V k*
A (6,64) | [-2.7,—-1.7,—1.4,-0.7,—-0.4,-0.2] | -
B (6, 64) [—2.7,—1.7,—0.4,—0.2, 75, 73] 50
C (6, 64) [—2.7, 0.2, 79, T2, 717, T17] 42
D (8,32) | [-2.7,—0.2,79,To, 717, T17,T27, T27] | 2
E (4, 128) [—2.7,-0.2, 7107, T107] 4
F (6, 64) [—2.7,—1.7,—0.4, —0.2, 147, T47] 1
G (5, 64) [—2.7,-1.0,—1.0,—1.0, —0.2] -

of S~! corresponding to decreasing (|;| < 1) and increasing or neutral (|v;| > 1, r;, and 7;,)
solution modes, respectively. Assuming that ||V'||, is not too large, an ABD matrix constructed
in this manner is always well-conditioned [Asch 88].

The right-hand-side of each test problem is set up in such a way that the resulting linear
system represents the trapezoidal finite-difference discretization of (3.10) with

t

e
q(t) =[1 - A]| i
et
and
e? e
g=B, | i | +By
e? e’

With this particular choice for ¢(¢) and g, the analytic solution to (3.10) is

y(t)=1: |. (3.85)

Again, the strategy for constructing such a right-hand-side is to work backwards; first choose an
appropriate interval of integration [¢t,, ¢, and then compute A from V' by applying the inverse
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of the trapezoidal formula:
A= (%) V41V -1

We now present the results of several numerical experiments run under Matlab 5.1 on a
167MHz Sun SPARCstation Ultra 2. The test problems in Table 3.1 are each solved using
o0-RSCALE, with various choices for o, and the results of each experiment are summarized in
a figure containing a table and four plots. The table at the top of the figure gives some statistics
specific to that experiment; namely w, and w, from Criteria 1 and 2, the theoretical bounds for
1 Vi.ill2s [[We.ill2, and Ko (C) derived in Lemmas 7, 8 and 10, respectively, and the analytic and
algebraic error in the computed solution Y. The analytic error is measured as ||Y — Yanal|oo»
where yaa; = y(t;) is the analytic solution (3.85) evaluated at mesh point ¢;. The algebraic
error is measured as ||Y — Yag||oo, Where Yaq is a solution to (3.11) obtained using Matlab’s
implementation of Gaussian elimination. To help assess the accuracy of the computed solution,
h? and K (J)—the 1-norm condition number estimate of the full matrix in (3.11)—are listed
beside the analytic and algebraic errors. The four plots show the true ||V;||, along with the
eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
dri—1 in (3.14) (top right), §5 in (3.16) (bottom left), and ¢; in (3.12) (bottom right). These
plots of sample norms arising in the actual algorithm are included to help gauge the accuracy
of the theoretical bounds, and to illustrate exactly where the algorithm fails when singularities
occur. Note that the eigenvalue-shift plot is rather trivial in the static variant of the algorithm
since o remains constant across the problem domain. This plot is more enlightening in the
dynamic variant of the algorithm presented in §3.3.4.

Figure 3.6 summarizes the 1.0-RSCALE solution to Problem A of Table 3.1. With w, =
0.3, each eigenvalue v; of V' is sufficiently greater than 1 in magnitude, so we expect 1.0-
RSCALE to be stable on this problem and give an accurate solution. The analytic and algebraic
errors listed in the table show this indeed is the case. The plots show that the theoretical bounds
on the norms are each about an order of magnitude greater than the actual values; the same is
true for the theoretical bound on KCo(C).

Figure 3.7 summarizes the 1.0-RSCALE solution to Problem B of Table 3.1. This problem
is constructed in such a way that the algorithm fails due to a singularity at the computation
of rescaled Vio. The plot of |[V4]|» confirms this singularity, and uncovers three others at the
computation of Vs, Vo and Vs. These additional singularities arise because eigenvalues v and
vg Of V' (i.e. ro and 75) not only satisfy (3.82), but also (3.83) for ¢ = 2, 3 and 4. Corresponding
singularities in the computation of Vas_1 49, Var—1.34, Var—1.19, and Vas_; 4 are shown in the plot
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Figure 3.6: The static 1.0-RSCALE solution to Table 3.1/A.

Theoretical bounds. Accuracy of Y.
Wy W | Vaillz  Weallz  K2(C) h?  ana.err. | Ki(J) alg.err
1, 0.3 | 2.6e+02 2.6e+02 1.5e+03 | 0.00098 0.00029 | 9.9e+02 3.9e-13

The true value of K5(C) is 49. The following plots show the true || V|2 along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), gy, in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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of || Var_1.ll2- These last four singularities are precisely the source of instability in the compu-
tation of ¢,,_1 in (3.14). Similar singularities arise in the computation of ¢, k = 1,..., M —2
in (3.14), and o, 35, Poo and s in (3.12). The effect is a loss of accuracy sufficient to ren-
der the computed solution Y worthless, even though in this problem the compacted matrix C
happens to be well-conditioned, and, as shown in the plot of f/,c,o, expansion (3.16) is stable for
all 7.

Figure 3.8 summarizes the 1.02-RSCALE solution to Problem B of Table 3.1. A small shift
in o of +0.02 is sufficient to evade the singularities arising in 1.0-RSCALE, and as indicated
by the algebraic and analytic errors, the computed solution is now acceptably accurate. Note
that since w, does not grow too large, instabilities attributable to large w, do not occur. The
danger of over-shifting when evading singularities is addressed in §3.3.4.

The 1.0, 0.98 and 1.02-RSCALE solutions to Problems C-F of Table 3.1 are summarized
in Appendix A. In all cases, singularities which arise in 1.0-RSCALE as predicted by the
above analysis do not occur in either 0.98 or 1.02-RSCALE. Other details specific to these
experiments are given in the introduction to the appendix.

A final comment concerning Table 3.1: Each problem in this table possesses a dichotomy
sufficiently “strong” to cause instability in unmodified compactification (i.e. compactification
without rescaling, or BIKCR). For example, consider the 0.0-RSCALE (BIKCR) solution to
Problem B summarized in Figure 3.9. When o = 0, {W,C =ILVi=Vk=1,..., M}, result-
ing in constant plots for ||V ||2 and || 17 4|2 across the problem domain. The plots for || Va1 4|2
and || Vx 0|2, on the other hand, clearly show the instability of the unmodified algorithm on this
problem.

3.3.3 How Often Does 1.0-RSCALE Fail?

Whether or not 1.0-RSCALE is stable on a given BVP depends both on the system of ODEs
and the underlying numerical method used to discretize the continuous problem, making it
difficult to predict just how often the algorithm will fail in practice. It is possible, however, to
roughly predict the frequency of instability in specific cases. To this end, we now look more
closely at ABD systems arising from the trapezoidal finite-difference discretization of (3.10).

When (3.11) is constructed using the trapezoidal scheme, eigenvalues v; of V" are given by

-1
yj:—[l—g%} [1+gaj:|aj:1a---a"a (3.86)
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Figure 3.7: The static 1.0-RSCALE solution to Table 3.1/B.

Theoretical bounds. Accuracy of Y.
Wor Wr | IVeillz Weallz  K2(C) K> ana.err. | Ki(J) alg.err.
1, 2e-15 | 3.4e+16 3.4e+16 3.4e+31 | 0.00098 6.2e+13 | 2.8e+04 6.2e+13

The true value of K5(C) is 50. The following plots show the true ||V||» along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), gy, in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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Figure 3.8: The static 1.02-RSCALE solution to Table 3.1/B.

Theoretical bounds. Accuracy of Y.
Wor Wa | Vaillz Wil Ka(O) R>  ana.err. | Ki(J) alg.err.
3.6, 0.02 | 3.4e+03 3.4e+03 4.3e+06 | 0.00098 0.00033 | 2.8e+04 2.2e-11

The true value of K,(C) is 72. The following plots show the true || V||, along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), g in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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Figure 3.9: The static 0.0-RSCALE (BIKCR) solution to Table 3.1/B.

Theoretical bounds. Accuracy of V.
Wor W | [Viilla [Weallz K2(C) | h*  anacer. | Ky (J) alg.err.
oo, 1 00 00 oo | 0.00098 6.9e+11 | 2.8e+04 6.9e+11

The true value of K5(C) is oo. The following plots show the true || V|2 along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), gy, in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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where o is the j-th eigenvalue of A. If a; = a§’) + z’ag-i) is complex,

h r . 1 - h' r . [
v, = —{1—5(04;)—1-2045-))} {1-1—5(045-)4-1045-))]
h ooy . ho@]™ NG
= —{(1—5045-))—25045-)] [(1—}-5&5-))—1-15&;)]
and
h T h % - T h %
lv;I* = [(1 — 507+ (§a§>)2] [(1 +507) + (§a§))2]
Clearly,
vjl=1<=0a"=0V a;=0 (3.87)
and
vlele=ad? 20 v a0V ho (3.88)

(We omit h = 0 in (3.87) since A > 0 in every finite discretization. Also, we choose to omit
(h/2)a; — oo in (3.88), since this is not likely to occur in any “reasonable” discretization.)

Now referring to Criterion 2 and Lemmas 7, 8 and 10, we may expect instability in o-
RSCALE when wy = 0 or wy & 0, which, in 1.0-RSCALE, occurs when |v;| = 1 or |y;| = 1.
Given (3.87) and (3.88), this occurs in the trapezoidal scheme when any eigenvalue «; of A
has real part exactly or nearly 0, both real and imaginary parts exactly or nearly 0, or when A is
nearly 0. This prediction, however, is somewhat pessimistic. There are at least two reasons why
the algorithm itself may remain stable even though the theoretical bounds “blow up” due to a
small wy. First, an eigenvalue v; of V' of magnitude 1 is not necessarily a root of (3.82) for some
k* < M; i.e. such an eigenvalue will not necessarily cause a singularity in the computation of
Vi, Vi and W, ; within the problem domain 1 < k£ < M — 1, 0 < i < k — 1. Given that there
are infinitely many complex numbers of magnitude 1, the likelihood of one satisfying (3.82)
is not great. Second, and perhaps more importantly, the eigenvalue v; = —1 or v; & —1,
which arises in the trapezoidal scheme when a; = 0, o; = 0, or h is small, is not a source
of instability in 1.0-RSCALE. This is an extraneous singularity introduced in the derivation
of (3.19) in Lemma 4. (The term [I + oV|7'[I 4+ oV] was inserted during the “base” step
of the induction to simplify the algebra.) Figure 3.10 summarizes the 1.0-RSCALE solution
to Problem G of Table 3.1, in which three of five eigenvalues of V" are —1. The theoretical
bounds “blow up”, but as shown by the analytic and algebraic errors and plots, 1.0-RSCALE
is stable and the computed solution is accurate. This is fortunate, since v; & —1 arises in every
reasonable discretization when A is sufficiently small.
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Figure 3.10: The static 1.0-RSCALE solution to Table 3.1/G.

Theoretical bounds. Accuracy of Y.
Wor Wa | Vkillz [[Wailla K2(C) | A2 ana.er. | Ki(J) alg. err.
1,0 00 00 oo | 0.00098 0.00027 | 6e+03 5.5e-13

The true value of ICo(C') is 8.8e+02. The following plots show the true ||f/k||2 along with the
eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
dar—1 in (3.14) (top right), g in (3.16) (bottom left), and él in (3.12) (bottom right):
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Therefore, more precisely, we may expect instability in 1.0-RSCALE if any eigenvalue o
of A is exactly or nearly purely imaginary, and the corresponding v; satisfies or nearly satisfies
(3.82) for some k* < M. With this more accurate prediction, it is not surprising that in the
hundreds of random tests on ABD systems arising from the trapezoidal discretization reported
in Chapter 4, the prototype algorithm 1.0-RSCALE did not once fail.

3.3.4 Dynamic 0,-RSCALE

Although the static 0-RSCALE algorithm is simple enough to analyze, its implementation
suffers from at least two shortcomings. First, in general it is impossible to determine a priori a
suitable value for o when solving an ABD system arising from the discretization of a variable-
coefficient BVODE. In an implementation of -RSCALE designed to solve such a problem,
it is necessary to initially “guess” a value for o (likely o = 1), attempt to rescale with this
value, and, if rescaling fails, start over again with a new o. Although failure is not likely with
o = 1, this approach has the potential to prove costly. Second, it is not always possible—even
in the constant-coefficient case—to choose a o that guarantees stability. Consider a problem
in which both n. and M are large, and all or most eigenvalues of V' are complex and clustered
around the unit-circle. Although it is always possible to choose a o to shift these eigenvalues
a “safe” distance from the unit-circle, the required o could easily result in a prohibitively large
w, = oM (especially if M is large), causing instability in the computation of (3.12) and a
poorly conditioned compacted matrix C' (Lemma 10). To illustrate the negative effects of a
large w,, consider Problem B of Table 3.1. Since neither n nor M is particularly large in
this problem, and only 2 eigenvalues of V" are clustered on the unit-circle, it is possible to
compute an accurate solution with a modest value for o (Figure 3.8). When the same problem
is solved with o = 1.7, however, accuracy is lost (Figure 3.11). Comparing the plots in the
two Figures, it is evident that ||f/,c,i||2 is significantly damped by the larger . This by itself
is a positive effect, in that it could only improve stability in the computation of recurrences
(3.14) and (3.16). Unfortunately, however, any improvement is usually far outweighed by the
negative effects of a large w, on other stages of the algorithm; namely recurrence (3.12) and
the solution of the compacted linear system in step 3(a) of Figure 3.5.

These weaknesses in static o-RSCALE are addressed in the design of the dynamic variant
of the algorithm presented in Figure 3.12. In 0,-RSCALE, the eigenvalue shifts are continually
adjusted during rescaling. The frequency and magnitude of the adjustments is determined by
bounding the growth of ||V}]|:. Specifically, the following criterion is met in o,-RSCALE:
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Figure 3.11: The static 1.7-RSCALE solution to Table 3.1/B.

Theoretical bounds. Accuracy of Y.
Wer Wy IViilla Wiallz  K2(C) R?>  ana.err. | Ky(J) alg.err.
5.6e+14, 0.32 | 2.5e+02 2.5e+02 4.2e+32 | 0.00098 24 2.8e+04 24

The true value of ICo(C') is 1.9e+15. The following plots show the true ||f/k||2 along with the
eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
dar—1 in (3.14) (top right), g in (3.16) (bottom left), and él in (3.12) (bottom right):
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Figure 3.12: Dynamic o,-RSCALE applied to the model ABD system (3.11).
0. Initialization. o, =1, k=1,2,..., M — 1.
1. Rescaling.

@ Wiy =[I —om_1V], Vs = Wi, V.
while ||VM_1||1 > Tyt Op—1 = Opm-1+ €,
Wyt = [I — on_1V], Vo = WitV end while.
(iM—l = WA}1,1¢M—1-
(b) fork=M—-2,M—3,...,1:
Wi =[I -0V +op1 Vi), Vi =Wy,
while ||Vi|l1 > 1y 1 0% = 0k + €5,
Wi = [I — 0%V + 0k 41Vis1], Vi = W, 'V end while,
o = W, (b + Tk 10k41)s

end for.
©) By =Bo(I+0.V1), §=g+ 018.6:.
2. Compactification.
(a) ‘71 = ‘71, q31 = </§1-
‘7k = _Vkvk:—l
Or = Ok — Vi1
©) Var=—VVir1, omr= by — Va1

(b) }k:2,3,...,M—1.

3. Computation of transformed unknowns.

@ o = [Ba — BoV] "1 (9 — Boos)-
(b) gk :ék—vkgoa k= 1a2a"'aM'

4. Recovery of original unknowns.

(a) ykflzgkfl_o-kgka k:1,2,,M—1

®) yp—1 =Ym-1, Ym = Yu-
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Criterion 6 37, > 0 such that ||Vi|, < 7y forall k,1 <k < M —1.

(The 1-normis used in lieu of the 2-norm to reduce overhead.) Initially, each eigenvalue shift o,
is set to 1. In order to satisfy Criterion 6 in steps 1(a) and 1(b) of Figure 3.12, however, it may
be necessary to adjust one or more 0. The adjustment could be determined exactly given the
eigenvalues of V' and f/,m, but this is unnecessarily costly. Instead, o is simply incremented
by ¢, until Criterion 6 is met. Numerical experiments show that, if ¢, is large enough, usually
only one increment is necessary. Note that the “while” loops in steps 1(a) and 1(b) will always
terminate if ¢, > 0 and 7y, > 0, since W, has only a finite number of eigenvalues. Whether
or not there are optimal values for these parameters, however, is currently an open question.
Preliminary analysis indicates that 7y, = ||Vi|1, €, = ||Vk||1/n are effective choices.

We believe that Criterion 6 is analogous to Criterion 2 in o-RSCALE, in that singularities
will not arise during rescaling if | Vi|l. = ||Vill1, ¥ = 1,..., M — 1. A further analysis of
exactly how Criterion 6 affects the stability of 0,-RSCALE is left for future work.

Figure 3.13 summarizes the 0,-RSCALE solution to Problem B of Table 3.1. Note that
Criterion 6 (7, = 10) is satisfied with only 3 adjusted eigenvalue shifts. Many other numerical
experiments show this is typical—when singularities occur in static 1.0-RSCALE, usually only
a few adjusted shifts are required to avoid them. The 0,-RSCALE solutions to Problems C-F
of Table 3.1 are summarized in Appendix A.

The expansions for ¢, in step 2 and g, in step 3 of o,-RSCALE are identical to (3.14) and
(3.16) of 0-RSCALE, respectively. The expansion for qsk in step 1 is a generalization of (3.12):

M—1 i i
d=> LH aj] [H VV;I] 2 (3.89)
i=k Lj=k+1 =k

In 0,-RSCALE, w, = HkM:_ll o Will not grow too large when o, = 1 for most &, and hence
the instability in (3.89) attributable to large w, is avoided. In addition, identities corresponding
to Lemmas 4, 5, and 6 exist for o,-RSCALE, albeit more complex. We can therefore derive
bounds for ||V ill2, ||[W.ill2 and KCo(C) similar to those in Lemmas 7, 8, and 10; this, however,
is left for future work.
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Figure 3.13: The 0,-RSCALE solution (ry, = 10.0, ¢, = 0.25) to Table 3.1/B.

Theoretical bounds. Accuracy of V.
Woy W | Vaillz [[Wiillz K2(C) h? ana.err. | K,(J) alg.err.
3.5, ? ? ? ? 0.00098 0.00033 | 2.8e+04 1.6e-11

The true value of K5(C) is 51. The following plots show the true || V||, along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), g in (3.16) (bottom left), and ¢; in (3.89) (bottom right):
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Chapter 4
Performance of the Algorithms

In this chapter we discuss and assess the performance of the three parallel ABD system solvers
SLF-QR, SLF-LU, and RSCALE, looking not only at their relative performance but also how
they compare to some state-of-the-art sequential solvers. Each of the parallel solvers has been
implemented in FORTRAN 77, with extensive use of level-3 BLAS. The code is included in
Appendix E. Both the accuracy and speed of the implementations are assessed.

In §4.1 we derive operation counts for the computationally-intensive stages of each algo-
rithm: factorization and reduction. Operation counts for other ABD system solvers, such as
COLROW [Diaz 83], are cited from the literature. Ratios of the high-order coefficients of these
operation counts are used to verify timing measurements reported in numerical experiments
throughout the chapter. In §4.2 we assess the performance of the single-partition sequential
variant of each algorithm by testing the codes on a single-processor machine. In §4.3 we assess
the parallel variants by testing on a shared-memory multi-processor machine. We conclude
in §4.4 by assessing the relative performance of the algorithms when the codes are incorpo-
rated in MirkDC [Enri 96], a software package for solving nonlinear boundary value ordinary
differential equations.

We note that the tests in §4.2 were run several years after the tests run in §4.3 and §4.4.
Computer architecture has of course evolved over the years, and processing speed is now con-
siderably faster. The problems in §4.2 have been scaled appropriately so that absolute execution
times are similar to those in earlier tests. In other words, we have solved more computationally-
intensive problems in recent tests. Detailed architecture specifications are given at the begin-
ning of each section.

84
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4.1 Operation Counts

In Chapter 2, we propose different variants of each of the ABD system solvers. Some variants
make better use of idle processors in order to more fully exploit parallelism (e.g., Figure 2.2 in
§2.2.3, Figure 2.3 in §2.3.3); some variants may exhibit better stability properties (e.g., (2.16)-
(2.19) in §2.2.4). In most cases, the basic computations performed during a block-step of a
given solver are the same for all variants of that solver. In this section, we analyze the com-
plexity of SLF-QR, SLF-LU and RSCALE by deriving operation counts for the factorization
and reduction components of their respective block-steps. Ratios of the high-order coefficients
of these operation counts are used to verify some of the timing measurements collected when
assessing the performance of the solvers in §4.2, §4.3 and §4.4. As the forward and back-solve
components of a block-step do not contribute to the high-order coefficients, we do not include
these components in our analysis.

We count floating-point operations (flops) in our analysis throughout this section. As is
commonly done, we define a flop to be a multiplication-addition pair.

411 SLF-OR

As discussed in §2.2.1, the computations performed during a block-step of SLF-QR include a
QR-factorization

T;
Sit1
where @ € R**?" is orthogonal and R; € R™*" is upper-triangular, followed by a reduction

applied across the i-th slice of the ABD matrix:
B A ~ A LI e S T
(Zk) Z Z(lc) — Q" x
oo S Y - .. Sivt Tipq -
The above is conceptual only. In practice—and, in particular, in the code included in Ap-
pendix E—Q@ is never explicitly computed. Instead, Householder reflections are applied di-

Si-l—lT;-I-l"'

in order to compute the triangularization and reduction. We now analyze the cost of applying

rectly to each of the 3n columns of

these reflections.
First, we triangularize [T} S}, ,]" using n reflections, computed and applied as follows:
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Stage 1: Letc, € R?" represent the first column of [77'SL |7, and let v = ¢, — (v/cTc)) e
with e, the first column of the 2n x 2n identity matrix. The Householder reflection
Q1 =1—-2(vv")/ (v v) € R* 2" annihilates the first column of [T;"'S7,]" below its
first element:

Qier = [I—-2(wv")/@w"v)]e
= ¢ - [20"g)/( )
= |leillos-
Q; is not explicitly formed. Only v is computed and stored at a cost of 2n flops for ¢I'c; .
In addition, v”v is computed at negligible extra cost and stored for future use.

The remaining n — 1 columns of [TF'S%, ,]* are also transformed with Q:

Qie; = [I=2(vv")/(w )
= ¢ —[2("¢g)/ (@ V)

fori = 2,...,n. The cost is 2 (2n) flops per column—2n flops for vT¢;, and 2n flops
for the vector subtraction and scalar-vector multiplication. v” v is not recomputed.

The total cost for stage 1 is therefore 2n flops for computing v, and 2 (2n) (n — 1) flops
for applying the reflection to columns 2, ..., n of [T}7' ST, ,]7.

Stage 2: The first column of [T;7'ST,|]" has been annihilated. We now repeat the steps in
stage 1, but this time on the (2n — 1) x (n — 1) submatrix starting at row 2, column 2.
Letc, € R*"! represent the first column of this submatrix, and let v = ¢, — (1/clc,) €;
with e, the first column of the (2n — 1) x (2n — 1) identity matrix. The reflection
Q2 =T —2(vov")/(v"v) € R*~1*2n=1 annihilates the first column of the submatrix:

Qocy = [I—2(we")/(v"v)]ey
= &~ [2("e)/( )l
= lcallo€;-
Again, @, is not explicitly formed—uv is computed at a cost of (2n — 1) flops for clc,,
and vTv is computed at negligible extra cost and stored for future use.
The remaining n — 2 columns of the submatrix are also transformed with Q)5:
Qoc; = [I—2(vw")/(w"v)]g
= ¢—[20"¢)/ (W )l
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fori =3,...,n. The costis 2 (2n — 1) flops per column—(2n — 1) flops for v*'¢;, and
(2n — 1) flops for the vector subtraction and scalar-vector multiplication.

The total cost for stage 2 is (2n — 1) flops for computing v and 2 (2n — 1) (n — 2) flops
for applying the reflection to columns 3, .. ., n of the submatrix.

Stage j: Forj=3,...,n—1, weprocessthe (2n — j+1) x (n — j 4+ 1) submatrix starting at
row j column j. The Householder reflection is computed at a cost of (2n — j + 1) flops,
and the last (n — j) columns of the submatrix are transformed at a cost of 2 (2n — j + 1)
flops per column. The total cost for stage jis (2n—j+1)+2(2n—j+1) (n—j) flops.

Stage n: The n-th column, starting at row n, is annihilated below its first element. The House-
holder reflection is computed at a cost of (n + 1) flops. As this is the last column to be
processed, no other columns are transformed with this reflection.

Thus, the total operation count for computing the reflections is

2n n
I+ (2n—1) 4 +Cn—j+1)+-+n+1) = Y i) i
=1 =1

= 2n)2n+1)/2 —n(n+1)/2
= (3/2)n* + (1/2)n flops

and the total operation count for applying the reflections is

22n)(n—1)+22n—-1)(n—2)+---+22n—j+ 1)(n—j) +---+2(n+2)(1)

= 2[(n—-1+Mn+1)n-1]+2[(n—-2)°+®n+1)(n—2)]

= 2[(n—-1)(n)(2n —1)/6 4 (n+ 1)(n — 1)(n)/2]
= (5/3)n* —n®— (2/3)n flops
for a grand total of
(5/3)n® + (1/2)n* — (1/6)n flops.

Once the triangularization is complete, we use the n reflections to transform

Si 0
[ 0 and [ T ] ) (4.1)




CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 88

Stage 1: Application of the stage 1 reflector across the columns ¢; of (4.1):

Qe = [I=2(vv")/(w )l
= ¢ —[2("¢)/ (W)

requires 3n flops per column, for a total of (3n) (2n) flops. The computation of v”c;
requires only n flops instead of 2n flops because of the sparsity inherent in the 0 blocks.
This savings is not realized in subsequent stages, however, as the structural sparsity is
destroyed by the stage 1 reflector—the 0 blocks fill-in immediately. (When structural
sparsity is preserved, operation counts are reduced. This is an important factor in the
analysis of SLF-LU in §4.1.2.)

Stage j: Forj = 2,...,n,application of the stage j reflector across (4.1) requires 2 (2n—j+1)
flops per column, for a total of 2 (2n — j + 1) (2n) flops.

Thus, the total operation count for applying the reflections to transform (4.1) is

(Bn)(2n) +2(2n—1)(2n) +---+22n—j+1)(2n) + - -+ 2(n + 1)(2n)

= 2(2n)(2n) = n(2n) +2(2n —-1)(2n) +---+22n —j+1)(2n) + --- +2(n 4+ 1)(2n)

2n n
= 4n [Zz—Zz] — 2n?
=1 =1

= 4n[(2n)(2n+1)/2 — n(n+1)/2] — 2n?
= 6n> flops

Finally, the total cost of all computations performed during a block-step of SLF-QR, including
both triangularization and reduction, is (23/3)n® + (1/2)n* — (1/6)n flops.

412 SLF-LU

The SLF-LU block-step is similar to that of SLF-QR, except that instead of a QR-factorization

we use an LU-factorization
T;

Sit1

=L

0

where L=' = L, P, --- LyP,L P, € R**?", L; is an elementary Gauss transformation, P; is
a permutation matrix, and U; € R™*" is upper-triangular. Conceptually, once L~! is obtained,
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it is used to reduce the 7-th slice of the ABD matrix:

Q(k) (k) (k)
S«(k) [ S'+ i+
i1 Zzl . lezl"'

SLF-LU is obviously structurally equivalent to SLF-QR. We have accented the transformed
blocks (S{* versus S{*, etc.) to emphasize that the underlying transformation is not equivalent.

As with the orthogonal matrix @ in SLF-QR, the Gaussian matrix L in SLF-LU is never
explicitly computed. Instead, the individual permutations (row interchanges) and Gauss trans-
formations (row combinations) are applied directly to each of the 3n columns of

e S T
Sisr Tigr -+

in order to compute the triangularization and reduction. We now analyze the cost of applying
these transformations.

First, we triangularize [7;7 S}, ,]* using n permutations (possibly) and n Gauss transforma-
tions, computed and applied as follows:

Stage 1: Before eliminating, we interchange rows if necessary to ensure that the element in
row 1, column 1, is the largest in magnitude of all elements in column 1. We then
eliminate all elements in the first column below the first element by subtracting multiples
of row 1 from each of the other (2n — 1) rows. The cost is (2n — 1) divisions to form
the multipliers and (2n — 1)(n — 1) flops to process all elements below row 1 and to the
right of column 1.

Stage 2: The first column of [7;"S;,,]” has been eliminated. We now repeat the steps in
stage 1, but this time on the (2n — 1) x (n — 1) submatrix starting at row 2, column 2.
If necessary, we interchange rows to ensure that the element in row 2, column 2, is the
largest in magnitude of all elements in column 2. Elimination requires (2n — 2) divisions
to form the multipliers and (2n — 2)(n — 2) flops to process all elements below row 2
and to the right of column 2.

Stage j: Forj =3,...,n—1,weprocessthe (2n —j+1) x (n — j + 1) submatrix starting at
row j column j. If necessary, we interchange rows to ensure that the element in row 7,
column j, is the largest in magnitude of all elements in column j. Elimination requires
(2n—7) divisions to form the multipliers and (2n— j)(n—7) flops to process all elements
below row j and to the right of column j.
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Stage n: If necessary, we interchange rows to ensure that the element in row n, column n, is
the largest in magnitude of all elements in column n. Elimination of the n-th column,
starting at row (n + 1), requires n divisions to form the multipliers. As this is the last
column to be processed, no other computations are necessary.

Thus, the total operation count for forming the multipliers is

2n—1 n—1
@n—1)+@n—2)+ -+ 2n—j)+-4n = > i—Y i
=1 =1

= (2n-1)(2n)/2 - (n-1)(n)/2
= (3/2)n* — (1/2)n divisions

and the total operation count for applying the Gauss transformations (i.e., subtracting multiples
of one row from another) is

Cn—1)n-1)+2n—-2)n—2)+-+2n—j)(n—j)+---+(n+1)(1)

= (2n—-1-n2n—-1)+ (2n —2)> —n(2n — 2)

++2n=5)2-n2n—3j)+--+(n+1)>=n(n+1)
2n—1 2n—1 n

= ;ﬁ—;ﬁ—n[;i—;i
= 2n—-1)2n)dn—-1)/6 — (n)(n+1)(2n+1)/6 —n[(2n —1)(2n)/2 — n(n + 1) /2]
= (5/6)n> —n® + (1/6)n flops

for a grand total of
(5/6)n* —n* + (1/6)n flops and (3/2)n* — (1/2)n divisions.

Once the triangularization is complete, we use the n permutations and n Gauss transformations

Si
and
[ 0 ] Tia

We must analyze this step carefully, as the row interchanges used during the LU-factorization

to transform

(4.2)

could have a significant impact on the efficiency of the transformation. We look at the trans-
formation on [ST0"T first, considering a best and worst case scenario.

Best Case: At each stage of the factorization, a row below row n is pivoted up, and never the
same row twice. This results in a null row pivoted up in [SF0T]T at each stage of its
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transformation, and the associated Gauss transformation at each stage, when applied to
[ST0T]", would require no flops. (In level-3 BLAS, subtracting a multiple of zero does
not require work.) The total flops required is therefore 0.

Worst Case: At the first stage of the factorization, no pivoting occurs or a row above row n
is pivoted up. The associated Gauss transformation at the first stage, when applied to
[ST0"1T, would completely fill in its lower n x n block and the fill-in would persist
throughout the remaining stages of the transformation. (There is no elimination here;
the Gauss transformations are designed to eliminate in [7;7'ST ,]* only.) When there is
complete fill-in, the total operation count for transforming [ST07]T is

Cn—1Mn)+2n—-2)(n)+---+2n—75)(n)+---+ (n+1)(n) + (n)(n)

= n[@2n—-1)(2n)/2 = (n - 1)(n)/2]
= (3/2)n® — (1/2)n* flops

Next, we look at the transformation on [07 T}, ,]” in (4.2), again considering a best and worst

case scenario.

Best Case: At each stage of the factorization, there is either no pivoting or a row above row n
is pivoted up. This results in a null pivot row in [077/; | ]” at each stage of its transforma-
tion, and the associated Gauss transformation at each stage, when applied to 077", ]",
would require no flops. The total flops required is therefore 0.

Worst Case: At the first stage of the factorization, a row below row n is pivoted up. This re-
sults in a dense row pivoted up in [0"T}; ,]. The associated Gauss transformation at the
first stage, when applied to [07'T}.,]", would completely fill in its upper n x n block and
the fill-in would persist throughout the remaining stages of the transformation. The total
operation count for transforming [07 77 |7 is

@2n—1)(n)+2n—2)(n)+---+ 2n —j)(n) + - -+ (n+ 1)(n) + (n)(n)

= n[2n-1)(2n)/2 - (n—1)(n)/2]
= (3/2)n® — (1/2)n* flops
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Note that we cannot have a best case scenario for both [S707]" and [07 T} ,]7, as

best case for [S707]" = worst case for [0 T}, ,]”
best case for [0 7% ,]7 = worst case for [S{07]"

We could have a “near” worst case scenario for both, though. For example, at the first stage a
dense row is pivoted up in [0777},]" and at the second stage no pivoting occurs. This would
result in both [S{07]" and [0" T} ,]* being dense from the second stage onward, except for the
first row in the former. The transformation costs are then

7T (3/2)n — (1/2)n* flops
[STOT)T: (3/2)n3 — (1/2)n? — (2n — 1)n flops

In summary, the total cost of all computations performed during a block-step of SLF-LU,
including both triangularization and reduction, is

Kn®+ O(n?) flops,

where K € [7/3,23/6], and its exact value depends on the pivoting strategy employed during
the LU-factorization.

An interesting question now arises: In a “typical” block-step of SLF-LU, does K tend
toward its lower or upper bound? Considering the analysis in §3.2.1, we see immediately that
KC achieves its lower bound only in problems where SLF-LU is potentially unstable; i.e., when
there is no pivoting, no cross-block pivoting, or maximum pivoting causing the block-rows to
be flipped. In the experiments in §4.2, §4.3 and §4.4, we see that IC tends toward its upper
bound in most problems where SLF-LU is stable.

413 RSCALE

In §2.3.2 and §2.3.3, we introduced RSCALE by showing how its transformations are applied
to the right-block-identity form of the ABD system (1.9). In this section, we analyze the com-
plexity of RSCALE when its transformations are applied directly to the more general form
of the ABD system (1.8). We begin by stepping through the initial few stages of the algo-
rithm (the first block-step is slightly different than subsequent block-steps), and then specify
the general block-step and analyze its complexity. Again, since we are concerned only with
transformations that contribute to the high-order coefficient in the operation count, we do not
consider the right-hand side in this discussion.
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Given the general form of the ABD matrix

B, By
So To
S T

Sav3 T3

SM72 TM72

SM—l TM—I i

RSCALE first performs a column-differencing transformation:

B, —B.
So To—=50 —To
S, 15 T

Smv—z Try—3—=Sm—3  —Th-3

Shrr—2 Thar—o—Sm—2

The bottom block-row is then transformed by multiplying through by [T, 1 — Sar1]™!

_TM—Z

SM—I TM—I_SM—I ]

B, —B, B,
So To—So —To
Sy -5 T
Sm-3 Tvw—3—Su-3 —Tu-s
Sm—2 Tyv2-Su-—2 —Tu-2
S I

93

(4.3)

(4.4)

(4.5)

where S, = [Tw_1 — Sm—1]"'Sm_1. The inverse is not formed explicitly; this transfor-

mation is implemented by computing the LU-factorization of [Th;_1 — Sar_1], followed by

n-solves. The same is true for all subsequent matrix inversions appearing in this discussion.
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Next, we eliminate T,_» from block row M — 2:

B, —B,
S() TO—S()
S

_ TO
T—S:

B,
-T,
Sm—3 Tayr—3—Sm—3 —Tp—3
Sm—2 Tz(vll)—2
S T ]
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(4.6)

where TS, 5 = Tar—o — Spr—o + Tar—2S} | = Tar—o(I + S5} 1) — Sar—2, and multiply block-
row M — 2 through by [T}} ,]7*:

Ba _Ba
S() T()—S()
S1

_ TO
T1—5

By
-T
Sm—3 Tar-—3—=Sm—3 —Ta-3
S5, I
SO I

(4.7)

where S5, = [T} 5] Sm—o. We then “drag” SY;_, over by one block-column by subtract-

ing a multiple of block-row M — 2 from block-row M — 1:

B, —B,
So To—So
S

~Tp
T,—5,

By

~T

Suv-3 Tar 3=Sm3 =T
S5, I
S, I

(4.8)
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B, —B,
So To—So —To

Sl Tl—Sl

© S . Next, we eliminate T},_3 from block row M — 3:

By
_’I’1
Sw-s |Th7-s
Sii_s 1
Sy T ]
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(4.9)

where T\ s = Tar—3 — Sar—s + Tar—3S5 o = Tar3(I +S5,)_,) — Sar3, and multiply block-

row M — 3 through by [T} 5]

B, —B,

So To—So —Tp
Sl Tl—Sl

B, |
-T
SG oL T
S, I
Siia I ]

(4.10)

where S5/, = [T\7 5] 1Sm—3. We then drag S§;_, over another block-column by subtracting

a multiple of block-row M — 3 from block-row M — 1:

[ B, —B, By
So To—So
Sy =S -1
: : (4.11)
SO . I
SG o T

S, I

where Sy} , = —S\} ;S\ 5. We continue in this fashion, working upward toward the top

block-row of the matrix. In the final stage, the left boundary block is transformed

B = B, + B, S Y = B, (I + 5§"7Y)
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In general, at stage k£ the RSCALE block-step involves three transformations:

" +— TI+5%7") -8 (4.12)
SO — TS (4.13)
Spr — —Su1Si (4.14)

(4.12) requires n additions for (I + S;%7"), n® flops for the matrix multiplication, and n?
additions for the matrix difference. (4.13) is implemented with an LU-factorization followed
by n solves, for a total cost of (4/3)n® + O(n?) flops. (We include the cost of computing the
Gauss transformation multipliers in the O(n?) term, although strictly speaking a division is not
aflop.) (4.14) requires n® flops for the matrix multiplication. The total cost of all computations
performed during a general block-step of RSCALE is therefore (10/3)n® + O(n?) flops.

If the right-block-identity form of the ABD system (1.9) arises naturally in the discretiza-
tion, the cost drops to (7/3)n® + O(n?) flops since when T; = I V ¢ there is no need for the
matrix multiplication in (4.12). It is interesting to note that the overall cost to first transform
(1.8) to (1.9), and then apply RSCALE to the transformed system, is slightly greater than the
cost of applying RSCALE directly to (1.8) as shown above. In order to transform (1.8) to
(1.9) we must compute [T;]7'S;,7 = 0,...,M — 1 at a cost of (4/3)n® + O(n?) flops per
block-row. Comparing high-order coefficients of the complexity of the two approaches, we
see (4/3)n® + (7/3)n > (10/3)n3. In addition, the transformation may not even be possible
if one or more of the blocks 7; is poorly-conditioned. (Recall that we are able to control the
condition of [T"] in (4.13) with a suitable choice of relaxation parameter o (§3.3). We do not
include o in our complexity analysis as it affects the O(n) term of the operation count only.)
The code included in Appendix E is designed to handle the general form of the ABD system
directly, as shown in (4.4)-(4.11).

Table 4.1 summarizes the operation counts for the three ABD system solvers. We include
operation counts for COLROW [Diaz 83] for comparison. In the remaining sections of this
chapter, we discuss the results of several experiments in which we assess the performance of
the three parallel ABD system solvers. We expect that for problems of suitable dimension (i.e.,
n suitably large), the relative execution time of the solvers should approximate the ratio of the
high-order coefficients of their respective operation counts. Given the coefficients just derived,
we predict the RSCALE/SLF-QR and RSCALE/SLF-LU relative execution times to be ap-
proximately 43% and 87%, respectively. These predicted ratios—43% and 87%—are included
as benchmarks in timing experiments throughout this chapter. (We set the SLF-LU coefficient
at its upper bound in this predicted ratio so that any improvement in SLF-LU execution time
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Table 4.1: Complexity of the factorization and reduction component of a block-step in each of
the parallel ABD system solvers, and COLROW. Operations are counted in terms of flops—
multiplication/addition pairs.

ABD System Solver Complexity
SLF-QR (23/3)n® + O(n?)
SLF-LU Kn®+0(n?), K €[7/3,23/6]
RSCALE (10/3)n® + O(n?)
COLROW (5/6)n + O(n?)

Table 4.2: Architecture specification for sequential tests.

Specificiations

Architecture
processors

acronym model vendor # | speed type memory

BLA | SunBlade 1000 | Sun Microsystems | 2 | 600 MHZ | USPARC3 | 5 Gigabytes

due to reduced fill-in is immediately apparent. Our experiments show that the coefficient tends
toward its upper bound in most problems where SLF-LU is stable.)

4.2 Sequential Tests

Each of the experiments discussed in this section was run on the SunBlade 1000. Architecture
specifications are given in Table 4.2. All code was compiled using the level 3 (extensive) opti-
mization options available with Sun’s Fortran 77 compiler. The objective of the experiments is
to measure the relative performance of the three ABD system solvers SLF-QR, SLF-LU, and
RSCALE, when run in sequential mode, on a sequential machine.

We consider linear problems only in this section—problems of the form

y'(t) = A@)y(t) +q(t), t € [ta,ts], Bay(ta) + Boy(ts) = g, (4.15)

where y,q,g € R™, A € R"™", B, € R™*™ and B, € R™*™. In most cases, we use separable
boundary conditions so that the ABD system arising from the discretization may be solved
with a band solver, providing an additional means for checking solution accuracy.



CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 98

Each problem is constructed in such a way that the analytic (or true) solution is known in
advance. In particular, if we set

the analytic solution is

y(t) =[e, ... e"N".
Once constructed, a problem is discretized using a trapezoidal or mid-point finite-difference
discretization on meshes of varying size, and the ABD linear systems that arise are solved with
each of the ABD system solvers to yield discrete computed solutions Y.

The accuracy of a computed solution Y is measured as the algebraic error ||Y — Yj||oo,
where Y} is the solution obtained with LAPACK’s band-solver routines DGBTRF/DGBTRS.
A condition number estimate for the ABD matrix is computed with DGBCON. The condition
number is used to gauge the expected number of correct digits in the band-solver solution,
which must be known in order to correctly interpret the algebraic error. The discretization
error is estimated as ||Y, — Y;||, Where Y; is the discrete analytic solution. In the context
of solving a BVODE, a computed solution Y is acceptable if its algebraic error is smaller in
magnitude than the discretization error. In most experiments in this section, algebraic errors
are several orders of magnitude smaller than the discretization error. Thus, small variations in
the algebraic error among the solvers likely are of no concern. Also, since the algebraic error is
measured with respect to LAPACK’s DGBTRF-DGBTRS, the ABD solver with the “smallest”
algebraic error simply agrees best with that particular code. While this is reassuring, it does not
imply that the band-solver computes the true algebraic solution. In other words, the algebraic
errors listed may not be completely accurate.

Execution time is measured in two ways—absolute and relative. The absolute execution
time required to compute a given solution Y is the time required to complete a call to the ABD
system solver as measured by Fortran 77’s DTIME. (A call to DTIME is placed immediately
before and after the call to the ABD system solver.) In order to avoid possible timing inconsis-
tencies due to swapping in a time-sharing environment, experiments either were run when the
machine was quiet (no other users), or results were averaged over several runs. The relative
execution time is measured as the ratio of the RSCALE/SLF-LU and RSCALE/SLF-QR ab-
solute execution times. In each experiment, the relative execution times are compared to their
expected values as predicted by the ratios of the high-order (n?) coefficients of the algorithm
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Table 4.3: Nine constant-coefficient linear problem classes to test the sequential performance
of SLF-QR, SLF-LU and RSCALE.

Problems are randomly-generated in each class. Each problem is discretized using
trapezoidal finite differences and solved on a single partition. Longer execution
time is induced by increasing M, the number of mesh subintervals. The length
of the interval of integration [t,, t;] is adjusted accordingly in order to maintain a
uniform mesh spacing of A = 20/512.

Class | n Structure of A | Ao
A 10 | two 5th order egns. | <100
B |10 five2Nd order eqns. | < 100 Meshes used for each problem
C 12 | two 6t order eqns. | <120 M [ta, tb] h
D |12 six2" orderegns. | < 120 512 | [~10.0,10.0] | 20/512
E |14 two7M orderegns. | < 140 1024 | [—20.0,20.0] | 20/512
F | 14 | seven 2"d order egns. | < 140 2048 | [—40.0,40.0] | 20/512
K |10 random sparsity <100 4096 | [—80.0,80.0] | 20/512
L 12 random sparsity <120
M |14 random sparsity < 140

operation counts (§4.1). We use the worst-case coefficient for SLF-LU in these ratios, so that
any improvement in SLF-LU execution time due to reduced fill-in is immediately apparent.

4.2.1 Constant-Coefficient Linear Problems

Table 4.3 lists nine problem classes. Several problems are generated from each class and solved
with the ABD system solvers. The problems in classes A-M are all constant-coefficient; i.e.,
they are of the form (4.15) but with A(t) = A V t. Variable-coefficient linear problems are
considered in §4.2.2, and nonlinear problems are considered in §4.4.

The problems in classes A-F of Table 4.3 are structured. The structure of the Jacobian
df /0y arises from the standard technique of converting a system of higher-order equations
into a system of first-order equations. Such a conversion is often necessary before interfacing
to mathematical software for solving systems of differential equations. Figure 4.1 shows the
Jacobian sparsity pattern. We note that problems in classes A, C, and E have sparse Jacobians,
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Figure 4.1: Jacobian structures of the test problems in Table 4.3.

For problems in classes A-F, the structure of A = [%} depicted below arises
from converting a system of k£ p-order equations into a system of n = kp first-
order equations. In each structure, when row i is sparse the only non-zero entry is
aii+1 = 1. When row i is dense, |a; ;| < 10,1 < j < n.

A C E
(k=2p=5) (k=2p=6) (k=2p=T)
B D F
(k=5p=2) (k=6p=2) (k=Tp=2)

whereas problems in classes B, D, and F have denser Jacobians. Problems in classes K, L and
M have random structure—the nonzeros of the Jacobian are randomly-distributed throughout
the matrix, with at least one nonzero in each row and column.

A given problem in a class is constructed by randomly-generating the nonzeros of the Jaco-
bian. For the structured problems in classes A-F, only elements in the dense rows are randomly-
generated. The nonzero in each sparse row is 1. For problems in classes K, L and M, all
nonzeros are randomly generated (random in both value and position). Problems generated are
of sufficient order (n = 10, 12 or 14) that the random generation of Jacobian elements usually
results in a strong dichotomy with at least one rapidly increasing and one rapidly decreasing
fundamental solution mode. The separable boundary conditions are set up in such a way as to
control the solution modes, so that the resulting problem is well-posed. Once constructed, a
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Figure 4.2: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class A problems of Table 4.3. Jacobian structure arises from the
conversion of two 5 order equations.
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problem is discretized using a trapezoidal finite-difference discretization and the ABD linear
system that arises is solved with each of the ABD system solvers.

We now discuss the results of several experiments run on test problems from Table 4.3.
These results are summarized in Figures 4.2-4.7 of this section, and in Figures B.5-B.10 of
Appendix B. Figure 4.2 shows the execution time and accuracy of the three ABD solvers when
solving eight randomly-generated Class A problems. The graph on the right shows that each
solver is acceptably accurate on all problems, given that the algebraic errors are all several
orders of magnitude less than the discretization error. The algebraic error in the SLF-LU solu-
tions is smallest, indicating that SLF-LU agrees best with the band-solver in these experiments.
The graph on the left shows that RSCALE is approximately 1.2 and 2.2 times faster than SLF-
LU and SLF-QR, respectively, which is in close agreement with the ratios predicted by the
operation counts (dotted line). We see slight fluctuations in the RSCALE/SLF-LU execution
time ratio—in particular, in problem #4. This is an example of reduced SLF-LU execution time
due to reduced fill-in.

Figure 4.3 shows the execution time and accuracy of the three ABD solvers when solving
eight randomly-generated Class B problems. The Jacobians in Class A and Class B problems
are of the same dimension (n = 10)—they differ only in structure. More precisely, Class B
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Figure 4.3: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class B problems of Table 4.3. Jacobian structure arises from the
conversion of five 219 order equations.
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problems have denser Jacobians (Figure 4.1). We expect SLF-LU execution time to tend toward
its upper bound in these problems, and indeed the RSCALE/SLF-LU execution time ratios tend
to be smaller in the problems in Figure 4.3. This trend is also reflected in a slight increase in
displacement between the SLF-LU and RSCALE absolute execution times. Again, each solver
is acceptably accurate on all problems. Note that the SLF-LU solution does not exhibit the
smallest algebraic error in problem #4. We will see more examples of the degradation in SLF-
LU accuracy in subsequent experiments.

Figures 4.4 and 4.5 show experimental results for randomly-generated Class C and Class D
problems, respectively. Jacobians are all of dimension n = 12—sparse in Class C and dense in
Class D. We see the same trend as before; namely, the SLF-LU execution time tends toward its
upper bound when the Jacobian is denser. There are also more instances of reduced SLF-LU
accuracy in these problems.

Figures 4.6 and 4.7 show experimental results for randomly-generated Class E and Class F
problems, respectively. Jacobians are all of dimension n = 14—sparse in Class E and dense in
Class F. We see more evidence of the sensitivity of SLF-LU execution time to Jacobian density,
and two dramatic examples of SLF-LU instability. In the problems where SLF-LU fails (#4
and #8 of Figure 4.6) the RSCALE/SLF-LU execution time ratio is close to 100%. In fact, the
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Figure 4.4: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class C problems of Table 4.3. Jacobian structure arises from the
conversion of two 60 order equations.
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Figure 4.5: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class D problems of Table 4.3. Jacobian structure arises from the
conversion of six 2N order equations.
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Figure 4.6: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class E problems of Table 4.3. Jacobian structure arises from the
conversion of two 7t order equations.
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ratio is actually slightly greater than 100% indicating that SLF-LU is faster on these problems
than RSCALE. Closer investigation shows that SLF-LU does not pivot at all on these problems,
explaining both its improved speed and degraded stability. (When SLF-LU does not pivot, it is
equivalent to unstable compactification. See §2.1 and §3.2.)

Problems in classes K, L and M exhibit random Jacobian structure. While these prob-
lems are not likely to arise in practice, they are somewhat useful for investigating the pivoting
and fill-in behaviour of SLF-LU. Experimental results for sixteen randomly-generated Class K
problems (n = 10) are shown in Figures B.5 and B.6 of Appendix B. As Jacobian density is
increased from 20% to 90% nonzero, we see a notable trend toward increased SLF-LU execu-
tion time. Similar trends are evident in Figures B.7 and B.8 (Class L problems, n = 12) and
Figures B.9 and B.10 (Class M problems, n = 14). Note the problems where SLF-LU exhibits
instability in Figures B.6, B.7, B.8 and B.9.

4.2.2 Variable-Coefficient Linear Problems

Several model variable-coefficient linear problems have appeared in the literature for testing
BVODE codes and ABD solvers. We have selected four of these problems for the experiments
in this section. For each problem, we perform two experiments. In the first, we solve the
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Figure 4.7: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class F problems of Table 4.3. Jacobian structure arises from the

conversion of seven 2"d order equations.
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problem on meshes of increasing number of subintervals, using the single partition variant of

each solver. In the second, we solve the problem on a fixed mesh and vary the number of

partitions used by each solver. The second experiment is intended to gauge the sensitivity of

the solvers to the partitioning strategy. ldeally the partitioning strategy should have no effect

on the computed solution, but this is not always the case. (See, for example, Figures 4.61 and

4.62 in §4.4.3.) In all experiments, the accuracy and efficiency of the computed solutions is
analyzed and compared as in §4.2.1, using the criteria outlined at the beginning of §4.2.

Problem R (Ascher and Chan [Asch 91]) a = 0,b=1,n = 2,

A(t) =

—w + Asin 2wt A cos 2wt

—)cos 2wt w + Asin 2wt

] , () = (I = A(?))

(&

subject to the boundary conditions y; (0) = 1, y;(1) = e. The true solution is y(t) = e*(1,1)”.

A fundamental solution matrix is

Y(t) = [

coswt sinwt

—sinwt coswt

e M 0
0 6/\t ’

so the dichotomy is clear: there is one decaying and one growing mode. The problem is first
solved with A = 10,w = 1 (Figures 4.8 and 4.9), and then with A = 200, w = 1 (Figures 4.10
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Figure 4.8: Execution time and accuracy of the three sequential ABD solvers when solving

Problem R (Ascher-Chan) with A = 10,w = 1. Solved on one partition, with M varying from

32 to 4096 block-rows.
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and 4.11). With A = 10 the fundamental solution modes are “slow” and the problem is not

difficult numerically. SLF-LU likely does not pivot at all on this problem which should result

in reduced execution time. However, the order of the Jacobian is too small for this effect to

be noticeable. With A = 200 the modes are “fast” and the problem is difficult numerically.

This case was one of the earliest problems for testing parallel ABD solvers. We see that in

all four experiments with Problem R, each solver is acceptably accurate on all problems and

the relative execution times are in close agreement with the predicted ratios. Partitioning in

Figures 4.9 and 4.11 has little effect on either accuracy or execution time.

Problem S (Mattheij [Matt 85]) a = 0,b = m,n = 3,

1—19cos2t 0 14 19sin2t et
A(t) = 0 19 0 , q(t) =T —-A@) | ¢
—1+19sin2t 0 1+ 19cos?2t et

subject to the boundary conditions

=)

yi(0) = 1
yo(m) = €

yi1(m) + 3ys(m) = 4e".



CHAPTER 4. PERFORMANCE OF THE ALGORITHMS

107

Figure 4.9: Execution time and accuracy of the three sequential ABD solvers when solving
Problem R (Ascher-Chan) with A = 10, w = 1, M = 2048. The number of partitions is varied.
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Figure 4.10: Execution time and accuracy of the three sequential ABD solvers when solving

Problem R (Ascher-Chan) with A = 200, w = 1. Solved on one partition, with M varying from
32 to 4096 block-rows.
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Figure 4.11: Execution time and accuracy of the three sequential ABD solvers when solving
Problem R (Ascher-Chan) with A = 200,w = 1, M = 2048. The number of partitions is

varied.
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The true solution is y(¢) = e?(1,1,1)”. A fundamental solution matrix is

sint 0
Y(t) = 0 1

cost O

—cost

620t 0 0
0 61975 0
0 0 6718?5

u :suoneayoads we|qoid

=N‘C

'8¥0¢

There is one decaying and two growing solution modes, and the modes are fast enough to

make the problem difficult numerically. Figures 4.12 and 4.13 show the results of the exper-

iments on this problem. Each solver is acceptably accurate on all problems and the relative

execution times are in close agreement with the predicted ratios. (The large fluctuation in the

RSCALE/SLF-LU execution time ratio in Figure 4.12 is likely an anomaly, although precau-

tions were taken to avoid timing inconsistencies.) Figure 4.13 shows that partitioning has only

a minor effect on the accuracy of the solvers.

Problem T (Wright [Wrig 94]) a = 0,b=1,n = 5,

— A1 cos 2wyt
0 — Ao €OS 2wot
—wy + Aqsin 2wt
0 —Wy + Ay sin 2woyt
0

wi + Ajsin 2wyt 0
0 W + Ag Sin 2wot
A1 €OS 2wt 0
0 Mg COS 2wot
0 0
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Figure 4.12: Execution time and accuracy of the three sequential ABD solvers when solving

Problem S (Mattheij). Solved on one partition, with A7 varying from 32 to 4096 block-rows.
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Figure 4.13: Execution time and accuracy of the three sequential ABD solvers when solving
Problem S (Mattheij) with A = 2048. The number of partitions is varied.
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g(t) = (I - A@D)) [, ¢!, e e e']
subject to the boundary conditions
y2(0) +4ys(0) = 5
yl(l) = €
—y3(1) +ya(1) = 0
—4ys(1) +5y5(1) = e.

The true solution is y(t) = e’(1,1,1,1,1)". The problem is solved with A; = 200, \, =
50, A3 = 10, w; = 1, and w, = 25. A fundamental solution is
[ cost 0 sint 0 O0][e® 0o 0 0 0 |
0 cos25t 0 sin25t 0 0 e 0 0 0
Y(t)=| —sint 0 cost 0 0 0 0 e o0 0
0 —sin25t 0 cos25t 0 0 0 0 €% 0
|0 0 0 o 1] o 0 0 0 €]

There are two decaying and three growing solution modes, and the modes are fast enough to
make the problem difficult numerically. Figures 4.14 and 4.15 show the results of the exper-
iments on this problem. Each solver is acceptably accurate on all problems and the relative
execution times are in close agreement with the predicted ratios. Figure 4.15 shows that parti-
tioning has only a minor effect on the accuracy of the solvers.

Problem U (Jackson [Asch 91]) a = 0,b = 10,n = 2,

aw=vrw | 7 o, a0 = -10am) | <
- 0 -2 T o |’
where
cos 2wt —sin 27t
U(t) = :
sin 2wt cos 27t
subject to the boundary conditions
y1(0) = 10
y1(10) = 10e.

The true solution is y(t) = 10e/°(1, 1)7.
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Figure 4.14: Execution time and accuracy of the three sequential ABD solvers when solving

Problem T (Wright). Solved on one partition, with M varying from 32 to 4096 block-rows.
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Figure 4.15: Execution time and accuracy of the three sequential ABD solvers when solving
Problem T (Wright) with M = 2048. The number of partitions is varied.
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Figure 4.16: Execution time and accuracy of the three sequential ABD solvers when solving
Problem U (Jackson). Solved on one partition, with M varying from 32 to 4096 block-rows.
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Since U(t) is orthonormal, the eigenvalues of A(t) are [—1, —2] for all ¢. This problem was
chosen as a test case because, in a boundary-value problem, it is not typical for the spectrum
of A(t) to be negative for all ¢. However, the kinematic eigenvalues are 3.3583 and —6.3583,
so this ODE has an exponential dichotomy and the problem is well-posed. (See [Asch 88] for
a discussion of these concepts.)

Figures 4.16 and 4.17 show the results of the experiments on this problem. Each solver
is acceptably accurate on all problems and the relative execution times are in close agreement
with the predicted ratios. Figure 4.17 shows that partitioning has little effect on either accuracy
or execution time.

4.3 Paralle Tests

Each of the experiments discussed in this section was run on the Origin 2000. Architecture
specifications are given in Table 4.4. The Origin 2000 is a tightly-coupled, shared-memory
machine. All code was compiled using the level 3 (extensive) optimization options available
with the Silicon Graphics Fortran 77 compiler. The objective of the experiments is to measure
the relative performance of the three ABD system solvers SLF-QR, SLF-LU, and RSCALE,
when run in parallel mode, on a parallel machine.
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Figure 4.17: Execution time and accuracy of the three sequential ABD solvers when solving
Problem U (Jackson) with M = 2048. The number of partitions is varied.

LEGEND: g - SLF-QR, u - SLF-LU, r - RSCALE.
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Table 4.4: Architecture specification for parallel tests.
) Specificiations
Architecture
processors
memor
acronym model vendor #| speed type y
ORG | Origin 2000 | Silcon Graphics | 8 | 250 MHZ | R10000 | 2 Gigabytes
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4.3.1 Compiler Directives

Parallelism and memory partitioning on the Origin 2000 is achieved by using shared-memory
parallel compiler directives provided by the Silicon Graphics Fortran 77 compiler. The parti-
tioning algorithms discussed in §2.2 and §2.3 readily translate into code with loop iterations
that can be performed independently, and it is straightforward to prepare such loops for parallel
execution.

As an example, consider the following simple loop for processing a one-dimensional array:

integer j, M
real Y(1024)

M= 1024
do 10 =1, M
Y(j) = 0.0dO0

10 conti nue

Clearly, each iteration of this loop could be performed independently and in random order
without affecting the outcome. We could also group the iterations into num partiti on
slices of M num partiti on iterations each:

integer j, k, M numpartition, partition_size
real Y(1024)

M= 1024
num partition = 16
partition_size = Mnumpartition
do 20 k = 1, numpartition
do 10 j = (k-1)*partition_size + 1, k*partition_size
Y(j) = 0.0d0
10 conti nue
20 continue

and each group of iterations could be performed independently and in random order without
affecting the outcome. (This, of course, is the partitioning strategy used in all partitioning
algorithms discussed in §2.2 and §2.3.) The partitioned loop is designated for parallel execution
by inserting a $DOACRCSS compiler directive as follows:
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integer j, k, M numpartition, partition_size
real Y(1024)

M= 1024
num partition = 16
partition_size = Mnumpartition
C$DOACRCSS SHARE (Y, num partition, partition_size),
C$& LOCAL (j, k)
do 20 k = 1, numpartition
do 10 j = (k-1)*partition_size + 1, k*partition_size
Y(j) = 0.0d0
10 conti nue
20 continue

Variables (memory locations) specified in the SHARE list may be accessed concurrently by all
processors; variables in the LOCAL list are private to each processor. The directive allows each
iteration of the outer loop to be performed independently and concurrently on its own processor
if enough processors are available.

The original simple loop could also have been parallelized with a $DOACROSS directive,
but the random concurrent access of single elements in Y by several processors would result
in a degradation of parallel performance. In the partitioned approach, each processor accesses
a contiguous slice of Y of size parti ti on_si ze, which permits more efficient memory
management when input and output is buffered. For similar reasons, care must be taken to avoid
memory access collisions when sharing small arrays (such as workspace arrays). Partitions
must be spread apart sufficiently so that a processor does not lock (or rarely locks) memory
locations in adjacent partitions during buffered output.

Many more examples of the use of the $DOACRGCSS directive may be found in the code
included in Appendix E.

4.3.2 Test Problems and Numerical Results

Six test problems are specified in Table 4.5. Each problem is linear and constant-coefficient—
as defined in §4.2.1—with a structured Jacobian. Figure 4.18 shows the Jacobian sparsity pat-
terns. The elements in the dense rows of the Jacobian are randomly-generated, and the nonzero
in each sparse row is 1. Further details about this type of Jacobian structure are given in §4.2.1.
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Table 4.5: Six constant-coefficient linear problems to test the parallel performance of SLF-QR,
SLF-LU and RSCALE.

Each problem is discretized using trapezoidal finite differences. Longer execution
time is induced by increasing M, the number of mesh subintervals. The length
of the interval of integration [t,, ¢;] is adjusted accordingly in order to maintain a
uniform mesh spacing of h = 25/512.

Problem # | n Structure of A | Al] o

A 6 | two 3™ orderegns. | < 600
four 2" order eqns. | < 800
10 | two 5t order egns. | <1000
12 | six 2" order egns. | < 1200
14 | seven 2N order egns. | < 1400
16 | four 41N order egns. | < 1600

Meshes used for each problem

M [ta, to] h

512 | [—12.5,12.5] | 25/512
1024 | [-25.0,25.0] | 25/512
2048 | [-50.0,50.0] | 25/512
4096 | [—100.0,100.0] | 25/512

m m O O W

Once constructed, a problem is discretized using a trapezoidal finite-difference discretization
on meshes of varying size, and the ABD linear systems that arise are solved with each of the
parallel ABD system solvers.

As with the sequential tests in §4.2, we measure both absolute and relative execution time
in the parallel tests, showing the RSCALE/SLF-LU and RSCALE/SLF-QR relative times and
comparing them to their expected values as predicted by the ratios of the high-order coefficients
of the algorithm operation counts. In each experiment, a given problem is solved and re-solved
on an increasing number of processors (1, 2, ..., 8), using an increasing number of partitions
(the number of partitions is set to match the number of processors), and the execution times are
plotted. We expect to see a decrease in execution time as the number of processors increases.
We say that optimal speedup is achieved if the execution time on p processors is p times faster
than the execution time on 1 processor. As it is not immediately obvious if a code is achieving
optimal (or close to optimal) speedup by looking only at its absolute execution time, we use
a speedup graph to determine this measure. A speedup graph is simply a plot of ¢, /¢, versus
p, Where ¢; and ¢, are the absolute execution times on 1 and p processors, respectively. As p
increases, the closer ¢, /t, is to p, the closer we are to achieving optimal speedup.

Another useful measure of the gain of parallelism is the number of processors required
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Figure 4.18: Jacobian structures of the test problems in Table 4.5.

The structures of A = [%] depicted below arise from converting a system of k
p-order equations into a system of n = kp first-order equations. In each structure,
when row ¢ is sparse the only non-zero entry is a; ;11 = 1. When row ¢ is dense,
la; ;] <100,1 < j < n.

A B C
(k=2p=3) (k=4p=2) (k=2p=5)

(k=6p=2) (k=Tp=2) (k=4p=4)
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Figure 4.19: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem A of Table 4.5, with M = 4096. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU each payoff at 7 processors; there is no payoff when using SLF-QR.

LEGEND: g - SLF-QR, u - SLF-LU, r - RSCALE, c - COLROW.
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before a parallel code outperforms the best sequential code for the problem. To this end, we
solve each of the problems with COLROW [Diaz 83], and plot the absolute execution time of
the COLROW solution along with the times of the parallel solver solutions. As p increases and
the parallel solver times decrease, the COLROW time remains constant. The point at which
the times cross is defined as the payoff—the number of processors required before the parallel
solver can solve the problem faster than COLROW.

We do not report on the accuracy of computed solutions in these experiments. Each solver is
acceptably accurate on all problems, with all partitionings. (The algebraic error in a computed
solution is always several orders of magnitude less than the discretization error; see §4.2.)

Figure 4.19 shows the execution time and speedup of the three ABD solvers when solving
Problem A of Table 4.5, with M = 4096. Absolute execution times decrease as the number
of processors increases, and the speedup graphs on the right show that good—nbut less than
optimal—speedup is achieved. (Better speedups are achieved in subsequent experiments when
the Jacobian is of greater dimension.) The RSCALE/SLF-QR execution time ratio is in close
agreement with the predicted ratio. The RSCALE/SLF-LU ratio is slightly greater than pre-
dicted, which is to be expected as the Jacobian in this problem is sparse. RSCALE and SLF-LU
each payoff at 7 processors; there is no payoff when using SLF-QR.
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Figure 4.20: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem B of Table 4.5, with M = 4096. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU each payoff at 5 processors; there is no payoff when using SLF-QR.
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Figures 4.20-4.24 show execution times and speedups when solving Problem B-F of Ta-

ble 4.5. M = 4096 in all experiments. As the Jacobian dimension increases from n = 8 to

n = 16, we see two trends:

e Speedups become closer to optimal, and

e payoffs occur with fewer processors.

Both of these trends can be attributed to the fact that the local operations performed during the

solution process (in particular, the local factorizations) become more computationally intensive

as n increases. When execution time is dominated by the cost of these local operations, any

time lost to overhead—such as non-parallelizable tasks related to resolving memory access

contention—becomes less significant. As overhead becomes less significant, speedup becomes

more optimal. And since COLROW is approximately 4 times faster than sequential RSCALE

and SLF-LU, and approximately 7 times faster than sequential SLF-QR, we would expect

payoffs to occur at 4 and 7 processors, respectively. When local operations dominate execution

time, these payoffs are realized.

Appendix C contains some additional experiments with problems A-F of Table 4.5.
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Figure 4.21: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem C of Table 4.5, with A = 4096. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU each payoff at 4 processors; there is no payoff when using SLF-QR.
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Figure 4.22: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem D of Table 4.5, with M = 4096. Architecture is the SGI Origin 2000.
RSCALE, SLF-LU and SLF-QR payoff at 4, 4 and 8 processors, respectively.
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Figure 4.23: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem E of Table 4.5, with M = 4096. Architecture is the SGI Origin 2000.
RSCALE, SLF-LU and SLF-QR payoff at 3, 4 and 7 processors, respectively.
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Figure 4.24: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem F of Table 4.5, with M = 4096. Architecture is the SGI Origin 2000.
RSCALE, SLF-LU and SLF-QR payoff at 3, 4 and 7 processors, respectively.
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4.4 Performancewithin MirkDC

We now assess the relative performance of the three algorithms—in terms of both accuracy and
speed—when the codes are incorporated in MirkDC [Enri 96], a software package for solving
nonlinear boundary value ordinary differential equations (BVODES).

The MirkDC package is designed to solve a system of first-order nonlinear BVODEs,
y'(t) = f(t,y(t)), with separated boundary conditions. Starting with an initial mesh of M,
subintervals which partitions the problem interval [¢,, ¢,], and an initial guess for the solution,
MirkDC proceeds to discretize the continuous problem using one of several mono-implicit
Runge-Kutta (MIRK) schemes. The resulting system of nonlinear algebraic equations, or
residual, is solved using a hybrid damped Newton and fixed Jacobian iteration. As described in
§1.1, each Newton iteration involves the evaluation of the residual, (possibly) the construction
and factorization an almost block diagonal (ABD) system of linear algebraic equations, and
the backsolve of the factored system. Once the Newton iteration has converged, a continuous
mono-implicit Runge-Kutta scheme is used to interpolate the computed discrete solution with
a C! continuous polynomial, u(¢), which in turn is used to compute an estimate of the solution
defect ||u'(t) — f(t,u(t))||- The final convergence test compares this defect estimate to a user
defined tolerance, Tqeect. 1T this test fails, MirkDC uses the defect estimates on each subinterval
of the current mesh to design a new mesh which equidistributes the defect estimates. A new
initial guess for the solution on the new mesh is computed with «(t), and the process repeats.
See [Enri 96] for a more detailed description of the code.

The primary computational costs associated with MirkDC may be attributed to the program
segments responsible for the following five tasks:

1. residual evaluation

2. defect estimation

3. ABD matrix construction
4. ABD matrix factorization
5. ABD system backsolve

Other costs, such as those attributable to mesh selection or redistribution, are less significant
([Muir 91], [Muir 03]). In the following sections we assess the overall and task-specific per-
formance of four variants of MirkDC:
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¢ MirkDC/COLROW
e MirkDC/SLF-QR
e MirkDC/SLF-LU
e MirkDC/RSCALE

As indicated by their names, these variants differ only in how the tasks of ABD matrix fac-
torization and system backsolve are handled. In MirkDC/COLROW, each ABD system so-
lution is computed with COLROW [Diaz 83]; in MirkDC/SLF-QR, MirkDC/SLF-LU and
MirkDC/RSCALE, each ABD system solution is computed with the SLF-QR, SLF-LU and
RSCALE parallel solvers, respectively. All MirkDC experiments below involve the numer-
ical solution of the nonlinear problem Swirling Flow 111 (SWF-I11) [Asch 88], which, when
transformed into a first-order system, may be written as

Y1 Yo
Ya (1/€) (194 — y312)
!
B vi (4.16)
Y Ys
Ys Ys
L vs | | —(1/€)(ysys + viye) |
subject to the boundary conditions
yi(ta) = =1, vi(ts) =1, ys(ta) = valta) =0, wys(ts) = yalty) = 0. (4.17)

These equations model the “swirling” flow of a viscous incompressible fluid between two
counter-rotating coaxial disks located at ¢ = ¢, and ¢ = t;,. The degree of viscosity is specified
by ¢,0 < e < 1. The problem is more difficult numerically for less viscous fluids; i.e. for small
values of € which correspond to large Reynolds numbers. No closed form solution exists.
Experiments are run on three different computer architectures, as specified in Table 4.6.
Of particular interest in the experiments is the convergence pattern of each MirkDC variant.
This concept will be defined formerly below; simply stated it refers to the sequence of meshes
chosen by MirkDC as the computation proceeds, and the number of full Newton iterations
associated with each of the meshes. In §4.4.1 and §4.4.2, we assess the sequential and parallel
performance, respectively, of the four variants of MirkDC using experiments in which the
convergence patterns (1) are identical among variants, and (2) are not affected by partitioning.
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Table 4.6: Architecture specifications. The Sun Ultra 2 is used as a sequential machine.

Specificiations

Architecture
processors

memory

acronym model vendor speed type

#

CHA | Challenge L | Silcon Graphics | 8 | 150 MHZ | R4400 | 512 Megabytes
8
2

ORG Origin 2000 | Silcon Graphics 250 MHZ | R10000 | 2 Gigabytes
ULT Ultra 2/2170 | Sun Microsystems 150 MHZ | SPARC | 256 Megabytes

This second point is especially important when illustrating speedups in §4.4.2. In §4.4.3 and
64.4.4, we assess the sequential performance of the four variants of MirkDC using experiments
in which the convergence patterns differ among variants and/or are affected by partitioning. In
§4.4.3, we analyze problems where an unusual convergence pattern in MirkDC/SLF-LU leads
to poor MirkDC/SLF-LU performance. We suspect the cause of this performance degradation
is SLF-LU instability and show that this indeed is the case by extracting selected ABD systems
from the MirkDC/SLF-LU solution sequence and showing that SLF-LU—and only SLF-LU—
exhibits instability when solving these systems. In §4.4.4 we analyze experiments in which the
convergence pattern of MirkDC/RSCALE is shorter than that of the other variants, including
that of MirkDC/COLROW. These results suggest that on a sequential machine it sometimes
may prove beneficial to choose RSCALE over other state-of-the-art sequential ABD system
solvers such as COLROW.

4.4.1 Sequential MirkDC

Each of the experiments discussed in this section was run on the Sun Ultra 2, and involved
a sequential single-partition variant of the ABD system solvers. All code was compiled us-
ing the level 3 (extensive) optimization options available with Sun’s Fortran 77 compiler, and
most timing results are averaged over 4-8 runs. The objective of the experiments is to mea-
sure the relative performance of the four variants of MirkDC on a sequential machine, and to
demonstrate how sequential performance is affected by certain problem and solution strategy
parameters. Specifically, we are interested in how the SWF-111 problem parameters of

e Viscosity ¢, and

o disk spacing |t, — ts],



CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 125

Table 4.7: Eight MirkDC/SWF-I11 experiments to measure the relative performance of the four
MirkDC variants on a sequential machine and to demonstrate how sequential performance is
affected by problem and solution strategy parameters. A SWF-II1 problem is defined by e and
the interval of integration [¢,, t,]. A MirkDC solution strategy is specified by a MIRK scheme,
defect tolerance 74erect, NUMber of initial mesh subintervals M, and number of partitions.

SWEF-111 parameters MirkDC solution strategy
exp. # € [tq, to)] MIRK scheme Taetect | Mo | # part.
1 0.002 [0, 1] trapezoidal, 2N order | 1075 | 10 1
2 0.002 [0, 1] Lobatto, 4N order | 10-° | 10 1
3 |0.002 [0, 1] Lobatto, 4N order | 10-7 | 10 1
4 10002] [0,1] 6t order 1077 | 10| 1
5 ]0.002 [—1,1] trapezoidal, 2N order | 1075 | 10 1
6 |0.002 [—1,1] Lobatto, 4N order | 10-° | 10 1
7 0.002 [—1,1] Lobatto, 4N order | 10-7 | 10 1
8 0002 [~1,1] 6t order 107 | 10| 1

and MirkDC solution strategy parameters of
e MIRK discretization scheme order,
e defect tolerance Tgefect,
e number of initial mesh subintervals M, and
e number of partitions

affect MirkDC performance.

Table 4.7 lists eight experiments in which the SWF-111 problems solved are not difficult
numerically—at least not compared to other experiments presented later in this section. These
experiments demonstrate some effects of disk spacing, MIRK scheme order and defect toler-
ance on MirkDC performance. Figure 4.25 shows the absolute overall execution time of the
four variants of MirkDC in each experiment. Note that the execution times of experiments #1
and #5, shown separately in the bar graph on the left, are at least an order of magnitude greater
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Figure 4.25: Overall execution time of the four variants of MirkDC when run on the exper-
iments specified in Table 4.7. The relative performance of the variants reflects that of the
underlying ABD system solvers. Note the execution times of experiments #1 and #5 are an
order of magnitude greater than those of the other experiments.

LEGEND: & - MirkDC/COLROW, ¢ — MirkDC/SLF-QR, # — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE.

Overall time Overall time
0.8
8 k3 k3
0.6
6 .
3 B 8 . X3 R
c L% c
8 4 g 0.4} .
% LX) % sy & =
» 3 ¢+ oy &)
2 * 0.2f sy AL
( .
0 0
1 5 2 3 4 6 7 8
experiment # experiment #

than those of the other six experiments. This illustrates a consequence of choosing an inade-
quate discretization scheme (2nOI order) for the required defect tolerance 7gegeer = 1075, The
graphs for experiments #(3,4) and #(7,8) illustrate this as well, but to a lesser extent. Com-
paring the graphs for experiments #(2,3) and #(6,7), we see an effect of decreasing the defect
tolerance. Comparing the graphs for experiments #(1,5), #(2,6), #(3,7) and #(4,8), we see an
effect of increasing the disk spacing.

Figure 4.25 also shows that the relative performance of the four variants of MirkDC in each
experiment is consistent with what one would expect given the relative performance of the un-
derlying ABD system solvers (§4.1 and §4.2); i.e. ranking from fastest to slowest we have (1)
MirkDC/COLROW, (2) MirkDC/RSCALE, (3) MirkDC/SLF-LU and (4) MirkDC/SLF-QR.
This is true in part because, in each experiment, the MirkDC variants exhibit identical con-
vergence patterns. We define the convergence pattern of a MirkDC experiment in terms of
its subroutine call and call-per-mesh profile. The subroutine call profile summarizes the total
number of calls to the program segments responsible for residual evaluation, defect estimation,
ABD matrix construction, ABD matrix factorization and ABD system backsolve; i.e. the five
tasks comprising the primary computational costs associated with MirkDC. The call-per-mesh
profile summarizes the number of ABD matrix factorizations and ABD system backsolves per-
formed on each mesh selected by MirkDC as the computation proceeds, and thus also discloses



CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 127

Figure 4.26: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in
experiment #1 of Table 4.7. Each variant succeeds in satisfying the specified 7geget. Profiles
are identical among variants.

LEGEND: # — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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the mesh selection strategy.

Figure 4.26 shows the convergence pattern of the four variants of MirkDC in experiment #1
of Table 4.7. From the call-per-mesh profiles, we see that MirkDC selects meshes of size 10
to 3790 subintervals. The initial uniform mesh of M, = 10 subintervals is specified in the
solution strategy; subsequent meshes are, in general, non-uniform. The pie charts give the
number of factorizations and backsolves on each mesh. For example, on the mesh of size 160
there were 17% of 29 or 5 factorizations and 19% of 129 or 25 backsolves. (The percentages
in the pie charts are rounded to two figures.) From the call profile we see that, as is always the
case, there are exactly the same number of ABD matrix constructions and factorizations. There
are relatively few defect estimations, as these are computed during the the final convergence
test only. Finally, the number of residual evaluations is close to—but not exactly the same as—
the number of ABD system backsolves. See [Enri 96] for an explanation of why these totals
sometimes differ.

Figure 4.27 shows a breakdown of the execution times of the five tasks profiled in Fig-
ure 4.26. Also shown is the cumulative execution time of all other program segments. From
this figure, it is clear that the differences in the overall execution time of the four variants of
MirkDC is attributable solely to the differences in factorization and backsolve times of the
four underlying ABD system solvers. This is always the case when the MirkDC variants ex-
hibit identical convergence patterns. In §4.4.3 and §4.4.4, we consider experiments where the
overall execution time of the variants differs for other reasons.



CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 128

Figure 4.27: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #1 of Table 4.7. The differences in overall execution time are at-
tributable solely to the differences in factorization and backsolve times of the four underlying
ABD system solvers.
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Figures 4.28 and 4.29 show the task execution times and convergence patterns, respec-
tively, in experiment #2 of Table 4.7. Comparing Figures 4.28 and 4.27, we see that switching
to a 4! order MIRK scheme in experiment #2 results in a substantial reduction in all task
execution times. Comparing Figures 4.29 and 4.26, it is clear that this reduction in execu-
tion times is due in part to fewer subroutine calls overall, but primarily can be attributed to
working with smaller ABD systems built on meshes of fewer subintervals—the largest ABD
system arising in experiment #2 consists of only 103 block-rows. Note also when comparing
Figures 4.28 and 4.27, that the ratio of ABD matrix construction to factorization time increases
in experiment #2. (Recall that there is always the same number of ABD matrix constructions
and factorizations in a given experiment.) This increase is due to the higher computational cost
associated with a 4 order discretization.

Figures 4.30 and 4.31 show the task execution times and convergence patterns, respec-
tively, in experiment #3 of Table 4.7. Comparing Figures 4.30 and 4.28, we see that switching
to a stricter defect tolerance in experiment #3 results in a moderate increase in all task execu-
tion times. Comparing Figures 4.31 and 4.29, it is clear that this increase in execution times
primarily can be attributed to working with moderately larger ABD systems.

Finally, Figures 4.32 and 4.33 show the task execution times and convergence patterns,
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Figure 4.28: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #2 of Table 4.7. Switching to a 4™ order MIRK scheme results in a
substantial reduction in execution times. Compare to Figure 4.27, and compare the profiles in
Figures 4.26 and 4.29.
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Figure 4.29: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in
experiment #2 of Table 4.7. Each variant succeeds in satisfying the specified 7yeerr. Profiles
are identical among variants.
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Figure 4.30: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #3 of Table 4.7. Switching to a stricter defect tolerance results in a
moderate increase in execution times. Compare to Figure 4.28, and compare the profiles in
Figures 4.29 and 4.31.
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Figure 4.31: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in
experiment #3 of Table 4.7. Each variant succeeds in satisfying the specified 7yee. Profiles
are identical among variants.
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f — ABD matrix factorization, s — ABD system backsolve.
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Figure 4.32: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #4 of Table 4.7. Switching to a 6t order MIRK scheme results in a

moderate reduction in execution times. Compare to Figure 4.30, and compare the profiles in

Figures 4.31 and 4.33.
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f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure 4.33: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in

experiment #4 of Table 4.7. Each variant succeeds in satisfying the specified 7yee. Profiles

are identical among variants.
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Table 4.8: Eight MirkDC/SWF-I11 experiments to measure the relative performance of the four
MirkDC variants on a sequential machine and to demonstrate how sequential performance is
affected by problem and solution strategy parameters. The problems in these experiments are
difficult numerically and must be solved using parameter continuation. A SWF-II1 problem is
defined by e and the interval of integration [¢,, t,]. A MirkDC solution strategy is specified by
a MIRK scheme, defect tolerance 7qegeet, NUMber of initial mesh subintervals A, number of
partitions, and parameter continuation strategy.

SWE-111 parameters MirkDC solution strategy
exp. # € [ta, tb] scheme | 7gefect | My | # part. € continuation
1 ]00015| [0,2] |2"9ord.| 1075 | 20 1 {10,4,1.5} x 1073
2 10.0015 [0, 2] 4Mord. | 1077 | 20 1 {10,4,1.5} x 1073
3 10.0015| [0,2] ahord. | 10710 | 20 1 {10,4,1.5} x 1073
4 10.0015| [0,2] 6t ord. | 10710 | 20 1 {10,4,1.5} x 1073
5 0.0015| [-1,3] |2"ord. | 1075 | 20 1 {100, 50,1.5} x 1073
6 |00015| [-1,3] |4Mord | 1077 | 20 1 |{100,50,1.5} x 1073
7 00015 | [-1,3] |4Mord. | 107 20 1 |{100,50,1.5} x 1073
8 |00015| [-1,3] |6Mord. | 101 | 20 1 | {100,50,1.5} x 1073

respectively, in experiment #4 of Table 4.7. Here we see many of the same effects as in ex-
periment #2; namely that switching to a 6t order MIRK scheme in experiment #4 results in a
moderate reduction in all task execution times, and the ratio of ABD matrix construction to fac-
torization time increases over that in experiment #3. Figures summarizing the task execution
times and convergence patterns in experiments #5-#8 are included in Appendix D.1.

While we are able to demonstrate some sequential performance characteristics of the four
MirkDC variants with the experiments listed in Table 4.7, these experiments are not suitable
for measuring parallel performance because they are not computationally intensive; the overall
execution time in most is less than a second. Thus, in preparation for the discussion of parallel
performance in the next section, we present eight additional MirkDC/SWEF-I11 experiments in
Table 4.8. Each of these new experiments is more computationally intensive than any of those
listed in Table 4.7, for one or more of the following reasons:

e cissmaller,
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Figure 4.34: Overall execution time of the four variants of MirkDC when run on the exper-
iments specified in Table 4.8. The relative performance of the variants reflects that of the
underlying ABD system solvers. Note the execution times of experiments #1, #3 and #5 are
displayed on a different time scale than those of the other experiments.
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e the disk spacing is wider,
e the defect tolerance is stricter.

Figure 4.34 shows the absolute overall execution time of the four variants of MirkDC in each
experiment listed in Table 4.8. As in Figure 4.25, we see that the relative performance of the
four variants of MirkDC is consistent with what one would expect given the relative perfor-
mance of the underlying ABD system solvers. Also, as desired, the experiments in Table 4.8
are clearly more computationally intensive than those in Table 4.7.

Designing more computationally intensive MirkDC experiments is not as straightforward
as it may seem. Adjusting problem and/or solution strategy parameters as suggested above
does increase execution time to a point, however before times increase sufficiently MirkDC
often begins to exhibit converge difficulties. When this happens, parameter continuation can
be used to help MirkDC converge. Each of the experiments listed in Table 4.8 incorporates a
form of parameter continuation—involving e—as part of its solution strategy; the continuation
sequence is specified in the column titled “e continuation”. For example, in experiment #1 we
begin with a uniform mesh of M, = 20 subintervals and then proceed to solve the specified
SWEF-III problem (e = 0.0015) using three continuation iterations. During the first iteration,
we solve a comparatively easy SWF-II1 problem with e = 0.01. We then use the solution and
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Figure 4.35: Subroutine call and call-per-mesh profiles, accumulated over all three continuation
iterations, of the four variants of MirkDC in experiment #1 of Table 4.8. The first, second and
third continuation iteration terminates with a final mesh of 2556, 4632 and 5604 subintervals,
respectively. Each variant succeeds in satisfying the specified 7qeet at each iteration. Profiles
are identical among variants.
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f — ABD matrix factorization, s — ABD system backsolve.
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final mesh from the first iteration as the initial solution and mesh for a second SWF-I11 problem
with e = 0.004. Finally, we use the solution and final mesh from the second iteration as the
initial solution and mesh for a third SWF-111 problem with e = 0.0015.

Figure 4.35 shows the convergence pattern of the four variants of MirkDC in experiment #1
of Table 4.8. The profiles shown represent subroutine calls counted over all three continuation
iterations. The first, second and third continuation iteration terminates with a final mesh of
2556, 4632 and 5604 subintervals, respectively. (This information is extracted from a more
detailed profile not shown in the figure.) Figure 4.36 shows a breakdown of the execution
times of the five tasks profiled in Figure 4.35. These times are accumulated over all three
continuation iterations. Again, this figure shows that the differences in the overall execution
time of the four variants of MirkDC is attributable solely to the differences in factorization and
backsolve times of the four underlying ABD system solvers.

It should be noted that parameter continuation is not just an option in the experiments listed
in Table 4.8; it is necessary for convergence. For example, if we try to solve the specified
SWEF-III problem in experiment #1 using MirkDC/COLROW without continuation, the con-
vergence pattern shown in Figure 4.37 arises. MirkDC/COLROW no longer converges in this
experiment; instead it proceeds through a sequence of failed Newton iterations followed by
mesh doubling until the maximum number of subintervals (12000 in this implementation) is
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Figure 4.36: Overall and selected program segment execution times, accumulated over all three
continuation iterations, of the four variants of MirkDC in experiment #1 of Table 4.8. The
differences in overall execution time are attributable solely to the differences in factorization

and backsolve times of the four underlying ABD system solvers.
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Figure 4.37: Subroutine call and call-per-mesh profiles of MirkDC/COLROW in experi-
ment #1 of Table 4.8, when parameter continuation is not used. Without continuation,
MirkDC/COLROW does not converge. The code proceeds through a sequence of failed New-
ton iterations followed by mesh doubling until the maximum number of subintervals is ex-
ceeded; the defect estimation stage is never reached.
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Figure 4.38: Overall and selected program segment execution times, accumulated over all
three continuation iterations, of the four variants of MirkDC in experiment #2 of Table 4.8.
Switching to a 4t order MIRK scheme results in a substantial reduction in execution times,
even with the stricter defect tolerance. Compare to Figure 4.36, and compare the profiles in
Figures 4.35 and 4.39.
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exceeded. As indicated by the 0 count in the subroutine call profile, the defect estimation
stage is never reached. Similar behaviour is observed in each experiment in Table 4.8 when
parameter continuation is not used.

Figures 4.38, 4.40, 4.42 and 4.39, 4.41, 4.43 show the task execution times and convergence
patterns, respectively, in experiments #2, #3, #4 of Table 4.8. These experiments demonstrate
many of the same performance effects as the experiments in Table 4.7, but with greater ex-
ecution time. Of particular interest is experiment #4, where the third continuation iteration
terminates with a mesh of fewer subintervals than the second. In this experiment, MirkDC
designed a new mesh with fewer subintervals than the preceding mesh when equidistributing
the defect estimate during the third continuation iteration. This is not so uncommon in difficult
problems—the number of subintervals does not always strictly increases in the mesh sequence
of a MirkDC convergence pattern. Figures summarizing the task execution times and con-
vergence patterns in experiments #5-#8 are included in Appendix D.1. Note that the wider
disk spacing in experiments #5-#8 does not necessarily lead to greater execution time since a
different continuation sequence must be used in order to achieve convergence.
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Figure 4.39: Subroutine call and call-per-mesh profiles, accumulated over all three continuation
iterations, of the four variants of MirkDC in experiment #2 of Table 4.8. The first, second and
third continuation iteration terminates with a final mesh of 244, 349 and 399 subintervals,
respectively. Each variant succeeds in satisfying the specified 7qeet at each iteration. Profiles
are identical among variants.

LEGEND: # — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, v — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Figure 4.40: Overall and selected program segment execution times, accumulated over all three
continuation iterations, of the four variants of MirkDC in experiment #3 of Table 4.8. Switch-
ing to a stricter defect tolerance results in a moderate increase in execution times. Compare to
Figure 4.38, and compare the profiles in Figures 4.39 and 4.41.
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Figure 4.41: Subroutine call and call-per-mesh profiles, accumulated over all three continuation
iterations, of the four variants of MirkDC in experiment #3 of Table 4.8. The first, second and
third continuation iteration terminates with a final mesh of 1350, 1947 and 2448 subintervals,
respectively. Each variant succeeds in satisfying the specified 7qeet at each iteration. Profiles
are identical among variants.
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r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Figure 4.42: Overall and selected program segment execution times, accumulated over all
three continuation iterations, of the four variants of MirkDC in experiment #4 of Table 4.8.
Switching to a 6t order MIRK scheme results in a moderate reduction in execution times.
Compare to Figure 4.40, and compare the profiles in Figures 4.41 and 4.43.
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Figure 4.43: Subroutine call and call-per-mesh profiles, accumulated over all three continuation
iterations, of the four variants of MirkDC in experiment #4 of Table 4.8. The first, second and
third continuation iteration terminates with a final mesh of 277, 554 and 487 subintervals,
respectively. Each variant succeeds in satisfying the specified 7qeet at each iteration. Profiles
are identical among variants.

LEGEND: # — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, # — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, ¢ = ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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4.4.2 Parallel MirkDC

The experiments in the previous section—especially those in Table 4.8—clearly show that
ABD matrix construction, factorization and backsolve dominate the computational costs as-
sociated with MirkDC. The costs associated with residual evaluation, defect estimation, and
the sum total of all other program segments are not negligible, but they are far less significant.
Hence, the greatest gain from parallelism in MirkDC should be realized by parallelizing the
three tasks associated with the ABD matrix.

For the experiments in this section, we have developed and tested code on two parallel
computer architectures: the Challenge L and Origin 2000. Both are a tightly-coupled, shared-
memory machines; the latter is faster and has more memory. Complete architecture specifica-
tions are given in Table 4.6. Parallelism and memory partitioning on both machines is achieved
by using shared-memory parallel compiler directives provided by the Silicon Graphics Fortran
77 compiler. The MirkDC tasks of ABD matrix construction, residual evaluation and defect
estimation may be parallelized in a straightforward manner with these directives, using the
loop partitioning strategy discussed in §4.3. The parallelization of ABD matrix factorization
and backsolve is, of course, the main goal of our work in this thesis, and in theory could be
handled by any one of the parallel ABD system solvers. Since we have developed three par-
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Table 4.9: Five SWF-III problems. Each problem is specified by e and the left and right end-
points of the interval of integration (i.e. the distance between the rotating disks). The problems
are listed in increasing order of difficulty.

SWE-I1II parameters
Problem #
€ [ta, tb]
A .002 [0,1]
.000125 [0,1]
C .000125 | [—1,1]
D .0001 [—1,1]
E .00275 [0, 10]

allel ABD system solvers, we have three possibilities for a parallel variant of MirkDC. We
discuss and present numerical results for only one of these variants in this section—parallel
MirkDC/RSCALE.

Parallel MirkDC/RSCALE has already appeared in the literature. It was first published as a
technical report, and then appeared in Parallel Computing [Muir 03]. In this paper, the accuracy
and speed of parallel MirkDC/RSCALE is compared to that of sequential MirkDC/COLROW.
The experiments and numerical results discussed in [Muir 03] were prepared during the writing
of this thesis. We review these results in this section. In order to be consistent with the nomen-
clature used in the paper, throughout this section we refer to sequential MirkDC/COLROW as
simply MirkDC, and parallel MirkDC/RSCALE as PMirkDC.

Table 4.9 specifies parameters for five SWF-111 problems. The problems are listed in in-
creasing order of difficulty. A problem becomes more difficult as the magnitude of ¢ decreases
and/or the length of the interval of integration increases. Table 4.10 lists specifications for ten
experiments used to compare the performance of MirkDC and PMirkDC. A MirkDC solution
strategy is as defined in §4.4.1. Experiments are actually run on three different architectures:
the two parallel machines mentioned above and the sequential Sun Ultra 2. We use a sequen-
tial machine for experiments #9 and #10 because the convergence patterns of PMirkDC and
MirkDC differ significantly in these experiments. As the convergence pattern has a major ef-
fect on performance, it does not make sense to test on a parallel machine. In other words,
speedup is not the issue in these experiments. We discuss this further at the end of the section.
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Table 4.10: Ten MirkDC vs. PMirkDC experiments. Each experiment is specified by a host
architecture (Table 4.6), a SWF-III problem (Table 4.9), and a MirkDC solution strategy.
A MirkDC solution strategy is given by a MIRK scheme, defect tolerance 7geet, NUmMber of

initial mesh subintervals M,, and parameter continuation strategy.

MirkDC solution strategy
exp. # | arch. | prb. scheme | Tgeet | Mo € continuation

1 |CHA| A [4Mord. [ 107 | 7000 | none; solve directly for ¢ = .002

2 CHA| A |4Mord. [ 1071 | 10 none; solve directly for e = .002
3 |ORG| A |4tMord. | 107 | 7000 | none: solve directly for e = .002
4 |ORG| A |4hord |10 10 none; solve directly for e = .002
5 |ORG| B |4MMord. | 10-® | 10 | {.002,.001,.0005,.00025,.000125}
6 |ORG| C |4thord. | 1076 | 10 | {.002,.001,.0005,.00025,.000125}
7 |orRG| D |4tMord. | 1077 | 10 | {.002,.001,.0004,.0002,.0001}
8 |ORG| E |4thord. | 1077 | 10 {1,.1,.01,.005,.00275}

9 ULt | ¢ |4ord. | 107 | 10 none; solve directly for e = .000125
10 ULt | D |4Mord. | 1077 | 10 none; solve directly for e = .0001
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Figure 4.44: Overall speedup and execution time of MirkDC and PMirkDC in experiment #2
of Table 4.10. Parallelism begins to pay-off at 2 processors.
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Problem A is not difficult numerically. When we start with an initial mesh of M, = 10
subintervals in experiment #2, both MirkDC and PMirkDC choose the mesh selection sequence
shown in Figure 4.46 and convergence is achieved on a final mesh of 2970 subintervals. Fig-
ure 4.44 shows the overall speedup and execution time of MirkDC and PMirkDC in this exper-
iment, and Figure 4.45 shows the speedup and execution time of each of the five parallelized
computational tasks. The experiment is run on the Challenge L. Parallelism begins to pay off
with 2 processors, as is reflected in both the overall execution time and individual task execu-
tion times.

In experiment #4, we solve the same problem on the Origin 2000, starting with the same ini-
tial mesh and using the same defect tolerance. The results are shown in Figures 4.47 and 4.48.
Execution times are nearly 5 times as fast. Comparing Figures 4.47 and 4.44, we see less
optimal speedup on the Origin 2000, and parallelism does not begin to pay off until 3 proces-
sors. The reason for the apparent degradation in speedup is that the problem is too easy, and is
solved too quickly. As a result, non-parallelized overhead tasks become a noticeable contrib-
utor to overall execution time. Similar parallel performance degradation was observed in the
experiments in §4.3.

In experiments #1 and #3, we have substantially increased the execution time required to
solve Problem A by selecting an initial mesh of M, = 7000 subintervals. The results are shown
in Figures D.19, D.20, D.21 and D.22 of Appendix D.2. In these experiments, we see much
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Figure 4.45: Speedup and execution time of selected program segments of MirkDC and
PMirkDC in experiment #2 of Table 4.10.
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Figure 4.46: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-
ment #2 of Table 4.10.
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Figure 4.47: Overall speedup and execution time of MirkDC and PMirkDC in experiment #4 of
Table 4.10. The same problem is solved as in experiment #2, using the same solution strategy,
but this time on the Origin 2000 instead of the Challenge L. Execution times are nearly 5 times

faster (compare to Figure 4.44). Parallelism begins to pay-off at 3 processors.
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Figure 4.48: Speedup and execution time
PMirkDC in experiment #4 of Table 4.10. Compare to Challenge L results shown in Fig-

ure 4.45.
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Figure 4.49: Overall speedup and execution time of MirkDC and PMirkDC in experiment #8
of Table 4.10. Results are shown for the final continuation step only. Parallelism begins to
pay-off at 3 processors.
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better speedups. In fact, Figure D.20 shows nearly perfect linear speedup in each task execution
time when we run on the Challenge L, a phenomenon rarely seen in our experiments. These
experiments, however, are not realistic. My, = 7000 is much too fine of an initial mesh for this
problem. MirkDC immediately redistributes the mesh and computes an acceptable solution on
a mesh of only 3744 subintervals.

We can create more realistic computationally intensive experiments by solving more dif-
ficult SWF-II1 problems, such as problems B, C, D and E of Table 4.9. We solve these in
experiments #5, #6, #7 and #8, respectively. In each experiment, a parameter continuation
strategy is adopted as discussed in §4.4.1. The results of experiments #5, #6 and #7 are shown
in Figures D.23- D.31 of Appendix D.2. The results of experiment #8, the most computation-
ally intensive of the four, are shown here in Figures 4.49-4.52.

Figure 4.52 shows the subroutine call and call-per-mesh profiles of MirkDC and PMirkDC
accumulated over all five continuation iterations in experiment #8. Figure 4.51 shows the
profiles for the final, most expensive, continuation step only. We see many more meshes,
finer meshes, and many more task calls than in the experiments with Problem A. Figures 4.49
and 4.50 show overall and individual task execution times significantly greater—and speedups
are closer to optimal—than in previous experiments run on the Origin 2000 (experiments #3
and #4).
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Figure 4.50: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #8 of Table 4.10. Results are shown for the final continuation step

only.
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Figure 4.51: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-

ment #8 of Table 4.10. Results are shown for the final continuation step only, which is the most

computationally intensive.
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Figure 4.52: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-
ment #8 of Table 4.10. Results are accumulated over all five continuation steps.
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When a difficult SWF-I11 problem is solved without using parameter continuation, MirkDC
convergence may be slower, or it may not occur at all. We have also found that for some diffi-
cult problems, the MirkDC convergence pattern is affected by the choice ABD system solver.
For the purposes of the experiments in this section, the convergence patterns of MirkDC and
PMirkDC must be identical on a given problem in order to obtain a fair and accurate mea-
sure of the gains of parallelism. In particular, a longer, more expensive convergence pattern in
PMirkDC could easily overshadow any improvement in execution time gained through paral-
lelism.

What we have found, however, is the opposite. We have identified difficult problems for
which the convergence pattern of PMirkDC is shorter than that of MirkDC when parameter
continuation is not used. For example, in experiments #9 and #10 of Table 4.10 we attempt
to solve Problems D and E directly for the given value of ¢, without using parameter contin-
uation. These experiments are run on the Sun Ultra 2, with PMirkDC in sequential, single-
partition mode. The resulting convergence patterns of MirkDC/PMirkDC are shown in Fig-
ures D.34/D.35 and D.36/D.37 of Appendix D.2, respectively. In both experiments, PMirkDC
converges on fewer, coarser meshes, with fewer task calls than MirkDC, which explains the
improvement in performance reflected in both the overall execution time and individual task
execution times shown in Figures D.32 and D.33. At the time of writing, the reason for the
shorter convergence patterns is unknown. It is also unknown if problems exist where the re-
verse occurs; i.e., where the convergence pattern of PMirkDC is longer than that of MirkDC.
Preliminary analysis, though, indicates that RSCALE may be acting as a mild preconditioner
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on some of the poorly-conditioned ABD systems that typically arise when solving these dif-
ficult problems. More experiments comparing the behaviour of all four variants of MirkDC
on difficult SWF-I11 problems (i.e., MirkDC/COLROW, MirkDC/RSCALE, MirkDC/SLF-QR
and MirkDC/SLF-LU) are discussed in §4.4.4.

4.4.3 Problems Where MirkDC/SLF-LU Fails

The analysis in §3.2 suggests that there may be a higher probability of SLF-LU failure when
solving an ABD system arising from a discretization over a mesh with several wide subinter-
vals. Such a system can arise in the discretization of SWF-I11 when the coaxial disks are spread
far apart. In the resulting physical system, most of the fluid motion occurs close to either disk
and there is little if any motion throughout much of the interior. In this case, an adaptive mesh
selection strategy—such as the one used in MirkDC—-often leads to a discretization over a mesh
with many wide subintervals covering the interior of the interval of integration.

To this end, we have designed the eight MirkDC/SWF-111 experiments shown in Table 4.11.
Each experiment uses a wide interval of integration and large viscosity parameter e. (e cannot
be too small in these problems if the solution is to be obtained in a reasonable amount of time.)
Many of the ABD systems generated by MirkDC in these experiments have the characteristic
mentioned above, and as a result could cause problems for SLF-LU. Note that some of the
experiments differ only in the number of partitions used—this turns out to be a key factor in
determining SLF-LU stability.

Figure 4.53 shows the absolute overall execution time of the four variants of MirkDC
in each experiment listed in Table 4.11. We see immediately that in all but experiment #6,
MirkDC/SLF-LU uses significantly more execution time than the other variants of MirkDC.
More importantly, MirkDC/SLF-LU does not converge in experiments #2, #4, #5 and #8.

In order to determine the cause of performance degradation in MirkDC/SLF-LU, we now
look closely at experiments #1 and #2. (These experiments differ only in the number of par-
titions used.) Figure 4.54 shows the task execution times in experiment #1. The degradation
in MirkDC/SLF-LU overall execution time is reflected in each of the five task execution times.
The cause of the degradation is made clear by examining the convergence pattern in experi-
ment #1. More precisely, we must examine two convergence patterns: one for the stable vari-
ants of MirkDC—MIirkDC/COLROW, MirkDC/SLF-QR and MirkDC/RSCALE—and one for
the unstable variant—MirkDC/SLF-LU. These convergence patterns are shown in Figures 4.55
and 4.56, respectively.
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Table 4.11: Eight MirkDC/SWF-I111 experiments to show how SLF-LU instability can affect
MirkDC performance. A SWF-III problem is defined by e and the interval of integration [¢,, t,).
A MirkDC solution strategy is specified by a MIRK scheme, defect tolerance 7qefect, NUMber of
initial mesh subintervals M, and number of partitions.

SWE-I111 parameters MirkDC solution strategy
exp. # € [ta, to)] MIRK scheme | Tqeect | My | # part.
1 | 1 | [=100,100] | Lobatto, 4™ order | 105 | 10 | 1
2 | 1| [~100,100] | Lobatto, 4" order | 10-3 | 10 | 2
3 06| [-100,100] | Lobatto, 4" order | 10-° | 10 | 1
4 06| [-100,100] | Lobatto, 4" order | 10-3 | 10 | 2
5 0.6 | [—100,100] | Lobatto, 4™ order | 1075 | 10 3
6 |04 [-90,90] 6t order 10710 | 1
7 04| [-90,90] 6t order 10710 | 2
8 04| [-90,90] 6t order 10710 | 3

Figure 4.53: Overall execution time of the four variants of MirkDC when run on the exper-
iments specified in Table 4.11. In all but experiment #6, MirkDC/SLF-LU performance is
degraded by SLF-LU instability. Note that MirkDC/SLF-LU does not converge (i.e. Tqefect IS
not satisfied) in experiments #2, #4, #5, and #8.
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Figure 4.54: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #1 of Table 4.11. The poor performance of MirkDC/SLF-LU relative
to the other variants of MirkDC is explained by comparing the subroutine call and call-per-
mesh profiles in Figures 4.55 and 4.56.
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Figure 4.55: Profiles of the stable variants of MirkDC (MirkDC/COLROW, MirkDC/SLF-
QR and MirkDC/RSCALE) in experiments #1 and #2 of Table 4.11. Each of these variants
converges in both experiments. Profiles are identical among variants and between experiments.
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Figure 4.56: Profiles of MirkDC/SLF-LU in experiment #1 of Table 4.11. This variant of
MirkDC converges in this experiment, albeit less efficiently than the other three variants (Fig-
ure 4.55). Instability was detected in the SLF-LU factorization of one or more ABD systems
built on meshes of size 320 and 640. This instability is investigated further in Figure 4.57.
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Figure 4.55 shows that MirkDC/COLROW, MirkDC/SLF-QR and MirkDC/RSCALE ex-
hibit identical convergence patterns in experiment #1, and that the convergence pattern does
not change in experiment #2 when two partitions are used instead of one when solving the
ABD systems. There are 49 factorizations in total, and the largest ABD system that arises
consists of 321 block-rows. Figure 4.56 shows a notably different convergence pattern for
MirkDC/SLF-LU. There are 81 factorizations in total, and the largest ABD system consists of
1281 block-rows. In fact, a significant number of such 1281 block-row systems arise—17% of
81 or 14 of them. It is clear why MirkDC/SLF-LU takes more time than the other variants of
MirkDC in this experiment.

But why does MirkDC/SLF-LU exhibit a different convergence pattern? The reason lies in
the stability of SLF-LU. To illustrate, we extract selected systems from the MirkDC/SLF-LU
solution process in experiment #1, and solve these systems directly with each of the parallel
ABD system solvers. The results are shown in Figure 4.57. We see that only SLF-LU exhibits
instability when solving the 7th, 8th, 9th, 10t and 11t ABD system built on a mesh of 320
subintervals. All systems are well-conditioned. (Note that the systems analyzed in Figure 4.57
are just an example. Several others arise during the solution process in experiment #1 that
cause problems for SLF-LU.)

The accuracy of the ABD system solver inside of MirkDC has a direct effect on all other
MirkDC tasks (defect estimation, mesh selection, etc.). Simply stated, the instability of SLF-
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Figure 4.57: Execution time and accuracy of the three parallel ABD solvers when solving
selected systems extracted from the MirkDC/SLF-LU solution in experiment #1 (Figure 4.56).
Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU
exhibits instability when solving ABD systems 7-11@mesh 320 (selection # 2-6).
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LU in experiment #1 causes MirkDC to work harder in order to find an acceptable solution.

Figure 4.58 shows the task execution times in experiment #2. Again we see degradation
in MirkDC/SLF-LU performance in each task, except for defect estimation (more on that be-
low). Figure 4.59 shows the convergence pattern for MirkDC/SLF-LU in this experiment.
(Recall that the convergence pattern for the other variants of MirkDC, shown in Figure 4.55,
is unchanged from experiment #1.) MirkDC/SLF-LU computes 79 factorizations in total in
experiment #2, and the largest ABD system consists of 10241 block-rows. ABD systems of
5121, 2561 and 1281 block-rows also arise, all much larger than in Figure 4.55. It is clear
why MirkDC/SLF-LU takes more time than the other variants of MirkDC. We also note that
MirkDC/SLF-LU does not converge. The code proceeds through a sequence of failed Newton
iterations followed by mesh doubling until the maximum number of subintervals (12000 in this
implementation) is exceeded. The defect estimation stage is never reached.

The only difference between experiments #1 and #2 is the number of partitions used by the
ABD system solvers. Comparing Figures 4.56 and 4.59, we see this had a notable effect on the
convergence pattern of MirkDC/SLF-LU. As discussed in §4.4.2, one would hope that parti-
tioning does not adversely affect convergence, because when it does any gain from parallelism
could easily be negated.
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Figure 4.58: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #2 of Table 4.11. The poor performance of MirkDC/SLF-LU relative
to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures 4.55 and 4.59.
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Figure 4.59: Profiles of MirkDC/SLF-LU in experiment #2 of Table 4.11. This variant of
MirkDC does not converge in this experiment (i.e. T4t 1S NOt satisfied). Instability was de-
tected in the SLF-LU factorization of one or more ABD systems built on meshes of size 320,
640, 1280, 2560, 5120 and 10240. This instability is investigated further in Figures 4.60, 4.61
and 4.62.
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The failure of MirkDC/SLF-LU in experiment #2 again may be attributed to the instability
of SLF-LU. In Figure 4.60, we extract selected systems from the MirkDC/SLF-LU solution
process in experiment #2, and solve these systems directly with each of the parallel ABD sys-
tem solvers. Only SLF-LU exhibits instability when solving ABD systems 6-9@mesh 320,
6@mesh 640, 5@mesh 1280, 3-4@mesh 2560 and 1@mesh 5120. All of these systems are
well-conditioned, and there are several others that arise during the solution process in experi-
ment #2 that cause problems for SLF-LU.

The effect of partitioning on the accuracy of SLF-LU is investigated further in Figures 4.61
and 4.62. In Figure 4.61, we extract ABD system 5@mesh 1280 and solve it directly, using
1-8 partitions, with each of the parallel ABD system solvers. Only SLF-LU exhibits instability
when using 2-8 partitions. Note that non-partitioned SLF-LU is stable on this problem. This
is somewhat surprising given the analysis in §3.2 which suggests that SLF-LU instability is
likely to worsen as the size of the partition increases. In Figure 4.62, we extract ABD system
4@mesh 1280 and solve it directly using 1-8 partitions. Only SLF-LU exhibits mild instability
when using 2, 4, 6 and 8 partitions, and yet is stable using 1, 3, 5 and 7 partitions. We note that
an ABD matrix arising in the MirkDC solution process typically has variable block-rows (i.e.,
the blocks change from row to row). It seems that for these types of systems, SLF-LU stability
may depend not only on partition size, but also on breakpoint positioning.

The remaining experiments in Table 4.11 (#3-#8) are discussed in Appendix D.3.

4.4.4 Problems Where Sequential MirkDC/RSCALE
Outperforms MirkDC/COLROW

When comparing the performance of parallel MirkDC/RSCALE (PMirkDC) and sequential
MirkDC/COLROW (MirkDC) in §4.4.2 and [Muir 03], we found that for some difficult SWF-
I11 problems the convergence patterns of the two codes differed. In particular, in experiments #9
and #10 in §4.4.2 the convergence pattern of PMirkDC was shorter than that of MirkDC, re-
sulting in a substantial improvement in execution time even on a sequential machine. In this
section we investigate other difficult SWF-11I problems that cause differences in convergence
patterns, this time comparing the performance of all four sequential variants of MirkDC on the
problems—MirkDC/COLROW, MirkDC/RSCALE, MirkDC/SLF-QR and MirkDC/SLF-LU.

Table 4.12 lists eight experiments on difficult SWF-111 problems. Each of these problems is
difficult because of the magnitude of ¢, not because of the length of the interval of integration.
In each experiment, the convergence pattern of at least one variant of MirkDC differs from
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Figure 4.60: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #2 (Figure 4.59).
Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU
exhibits instability when solving ABD systems 6-9@mesh 320, 6@mesh 640, 5@mesh 1280,
3-4@mesh 2560 and 1@mesh 5120.
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Figure 4.61: Execution time and accuracy of the three parallel ABD solvers when solving,
using 1-8 partitions, ABD system 5@mesh 1280 extracted from the MirkDC/SLF-LU solution
in experiment #2 (Figure 4.59). Of the three ABD solvers, only SLF-LU exhibits instability

when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.
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Figure 4.62: Execution time and accuracy of the three parallel ABD solvers when solving, us-
ing 1-8 partitions, ABD system 4@mesh 1280 extracted from the MirkDC/SLF-LU solution in
experiment #2 (Figure 4.59). Of the three ABD solvers, only SLF-LU exhibits mild instability
when using 2,4,6 and 8 partitions. Surprisingly, SLF-LU is stable—and also the most accurate

of the three solvers—when using 1, 3, 5 and 7 paritions.
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Table 4.12: Eight MirkDC/SWEF-111 experiments in which sequential MirkDC/RSCALE out-
performs MirkDC/COLROW in terms of overall execution time and/or storage requirements.
A SWEF-I1I1 problem is defined by e and the interval of integration [¢,,%,]. A MirkDC solu-
tion strategy is specified by a MIRK scheme, defect tolerance 7gerect, NUMber of initial mesh

subintervals Mg, and number of partitions.

SWE-I111 parameters MirkDC solution strategy
exp. # € [ta, to) MIRK scheme Tafect | Mo | # part.
1 | 0.0012 | [-2,2] | trapezoidal, 2" order | 10~* | 10 | 1
2 | 00007 | [-2,2] | Lobatto, 4" order | 107 | 10 | 1
3 | 0.00045 | [-2,2] | Lobatto,4Morder | 1077 | 10| 1
4 | 0.0003 | [-2,2] 6t order 1079 10| 1
5 0.00025 | [~1,1] | trapezoidal, 2" order | 10~* | 10 1
6 |0.000125 | [-1,1] | Lobatto, 4" order | 106 | 10 | 1
7 | 00001 | [-1,1] | Lobatto,4Morder | 107 | 10 | 1
8 |0.000060 | [—1,1] 6t order 10910 1




CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 158

Figure 4.63: Overall execution time of the four variants of MirkDC when run on the ex-
periments specified in Table 4.12. Convergence is achieved by each variant in each ex-
periment except for MirkDC/SLF-LU in experiment #4. In all but experiments #5 and #8,
MirkDC/RSCALE converges faster than the other variants, including MirkDC/COLROW.
In experiments #5 and #8, MirkDC/COLROW is marginally faster.

LEGEND: & - MirkDC/COLROW, ¢ — MirkDC/SLF-QR, # — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE.
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the others. There are also cases where all four patterns differ, or match pairwise. As in the
experiments in §4.4.2, the differences in convergence patterns are substantial enough to result
in significant differences in performance among the variants.

Figure 4.63 shows the overall execution time of each of the four variants of MirkDC when
run on the experiments specified in Table 4.12. Convergence is achieved by each variant in
each experiment except for MirkDC/SLF-LU in experiment #4. In all experiments, we see
a significant difference in overall execution time among the variants. In most experiments,
MirkDC/RSCALE converges faster than the other variants, including MirkDC/COLROW.

These performance differences are explained by examining the convergence patterns and
individual task execution times in each experiment. Figure 4.64 shows the overall and selected
program segment execution times of the four variants of MirkDC in experiment #1 of Ta-
ble 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW in all program segments except
ABD matrix factorization. Comparing the subroutine call and call-per-mesh profiles in Fig-
ures 4.65 and 4.66, we see that MirkDC/RSCALE converges on fewer, coarser meshes, with
fewer task calls, than any of the other variants.

Figure 4.67 shows the overall and selected program segment execution times of the four
variants of MirkDC in experiment #2. MirkDC/RSCALE outperforms MirkDC/COLROW
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Figure 4.64: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #1 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW
in all program segments except ABD matrix factorization. Compare the subroutine call and

call-per-mesh profiles in Figures 4.65 and 4.66.

LEGEND: & — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, v — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure 4.65: Profiles of MirkDC/COLROW and MirkDC/SLF-LU in experiment #1 of Ta-
ble 4.12. Profiles of MirkDC/SLF-QR differ only slightly. These three variants of MirkDC
converge in this experiment, but less efficiently than MirkDC/RSCALE (Figure 4.66).

LEGEND: & - MirkDC/COLROW, ¢ — MirkDC/SLF-QR, # — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.

&, & call profile

600

500

400

300

200

total number of calls

100

|

r d c f s
program segment

(IITTTTTITT T

#, & call-per-mesh profiles (€ < 2.5%)
5% 9%

9% 9%

f (182 calls total)

6660
3330
1665
1514
1341
2560
1280 %
640

320
160
80
40
20

9% 9%

s (593 calls total)

(IITTTTTTT T



CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 160

Figure 4.66: Profiles of MirkDC/RSCALE in experiment #1 of Table 4.12. This variant of
MirkDC converges in this experiment, with a final mesh of size 1831. Compare these profiles
to those of the other variants shown in Figure 4.65.
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r — residual evaluation, d — defect estimation, ¢ = ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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in all program segments except ABD matrix factorization and backsolve. In this experi-
ment, MirkDC/RSCALE and MirkDC/SLF-QR have very similar convergence patterns, as do
MirkDC/COLROW and MirkDC/SLF-LU. Comparing the subroutine call and call-per-mesh
profiles in Figures 4.68 (MirkDC/COLROW, MirkDC/SLF-LU) and 4.69 (MirkDC/RSCALE,
MirkDC/SLF-QR), we see that MirkDC/RSCALE and MirkDC/SLF-QR converge on fewer,
coarser meshes, with fewer task calls, than both MirkDC/COLROW and MirkDC/SLF-LU.
Since RSCALE is faster than SLF-QR, MirkDC/RSCALE outperforms MirkDC/SLF-QR in
this experiment with respect to overall execution time.

The results for experiments #3-#8 of Table 4.12 are shown in Appendix D.4.

At the time of writing, the reason for the differences in convergence patterns among the
variants of MirkDC is unknown. It is also unknown if problems exist where MirkDC/SLF-QR
or MirkDC/SLF-LU outperform MirkDC/RSCALE. Preliminary analysis, though, indicates
that RSCALE may be acting as a mild preconditioner on some of the poorly-conditioned ABD
systems that typically arise when solving these difficult problems. We will pursue this possi-
bility in future work.
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Figure 4.67: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #2 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW
in all program segments except ABD matrix factorization and backsolve (backsolve times are

nearly equal). Compare the subroutine call and call-per-mesh profiles in Figures 4.68 and 4.69.

LEGEND: # - MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, v — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure 4.68: Profiles of MirkDC/COLROW and MirkDC/SLF-LU in experiment #2 of Ta-
ble 4.12. These two variants of MirkDC converge in this experiment, but less efficiently than
either MirkDC/RSCALE or MirkDC/SLF-QR (Figure 4.69).

LEGEND: & — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.

&, & call profile

500
M 1136
400 s68

284 19%
300 259
186

80

200

100 H H
0

r d ¢ f s

program segment

40

[T TTTTT]

total number of calls

20 12%

=
o

3
D
4l
=

#, & call-per—-mesh profiles (¢ < 2.5%)

9% 14%

12% g 6%

f (144 calls total)

1136
568

284

259

186

80  15%
40

N I I I

20

10

mesh

7%

12%
14%
e 6%

s (453 calls total)



CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 162

Figure 4.69: Profiles of MirkDC/RSCALE in experiment #2 of Table 4.12. Profiles of
MirkDC/SLF-QR differ only slightly. These two variants of MirkDC converge in this ex-
periment, with a final mesh of size 568. Compare these profiles to those of the other variants
shown in Figure 4.68.
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r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Chapter 5
Conclusions and Future Work

The factorization and solution of the ABD linear system constitute two of the most compu-
tationally intensive stages in a BVODE code. As other computationally intensive stages can
be parallelized in a straightforward manner, there is a clear motivation for designing a parallel
algorithm for treating the ABD linear system. Common partitioning or block-cyclic reduction
approaches based on compactification obtain good speedup, but are potentially unstable on
problems with rapidly increasing and/or decreasing fundamental solution modes. Since many
well-posed BVODEs have this characteristic, these approaches are unsatisfactory. Our goal is
to find a stable, parallel algorithm for solving the ABD linear system. We have proposed three
such algorithms in this thesis—SLF-QR, SLF-LU and RSCALE.

Two of the algorithms—SLF-QR and SLF-LU- were discovered independently by us and
by S.J. Wright in the 1990s. Wright presented these algorithms and analyzed their stability in
[Wrig 92] and [Wrig 94]. We expand on the basic algorithms by proposing different variants
that make better use of idle processors in order to more fully exploit parallelism. We do not
attempt to expand on Wright’s stability analysis in [Wrig 94], but we do identify a wider class
of problems for which SLF-LU is potentially unstable. In [Wrig 92], Wright claims that SLF-
QR is stable because it is equivalent to the QR-factorization of a row and column permuted
version of the ABD matrix. We show the details of this equivalence for the single-partition
variant of the algorithm. A similar argument may be used to show that SLF-LU is equivalent
to a row-pivoted LU-factorization of a row and column permuted version of the ABD matrix.
Although we do not include this in the thesis, if we apply this result to the additional problems
we have identified for which SLF-LU is potentially unstable, we can identify an additional class
of well-conditioned linear systems for which Gaussian elimination with row partial pivoting is
unstable—systems different from those discussed in [Wrig 93].

163
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As both SLF-QR and SLF-LU attain the theoretically optimal speedup for the problem if
enough processors are available, not much can be done to improve on the global performance
of these algorithms. There are other avenues for improvement, however. In particular, one
could design an algorithm that uses fewer local operations per block-step, or has better stabil-
ity properties than SLF-LU. To this end, we propose RSCALE—a third algorithm based on a
notably different numerical technique. We show through extensive numerical testing and op-
eration count analysis that RSCALE is approximately twice as fast as SLF-QR, is marginally
faster than SLF-LU in most problems where SLF-LU pivots correctly to control stability, and
is stable on problems where SLF-LU fails. We show that the complexity of the SLF-LU local
factorization is dependent on its pivoting strategy, and our numerical tests suggest that in the
majority of problems this complexity tends toward its upper bound. We give a preliminary
analysis of the stability of RSCALE, point out some of its shortcomings, and address these
shortcomings with a few simple modifications to the original algorithm.

We have carefully implemented each of SLF-QR, SLF-LU and RSCALE in FORTRAN,
making extensive use of level-3 BLAS. We have tested the codes thoroughly on both a sequen-
tial and parallel machine, assessing the relative performance of the algorithms in terms of both
accuracy and speed. In most cases, the relative execution time of the solvers agrees with the
ratio predicted by the high-order coefficients of their respective operation counts. Tests on the
parallel machine show that parallelism begins to pay off with just a few processors when we
compare execution time to that of the best sequential solver for the problem. We also assess
the performance of the solvers when they are incorporated in MirkDC [Enri 96], a software
package for solving nonlinear BVODESs. The differences in speed and accuracy amongst the
solvers is reflected in the overall performance of MirkDC, re-enforcing the importance of the
role of the ABD system solver in BVODE software.

During the writing of this thesis, we contributed to the development of PMirkDC [Muir 03],
a parallel implementation of MirkDC using RSCALE in place of COLROW as the ABD sys-
tem solver. In this work, we targeted a tightly-coupled, shared memory architecture in our
implementation. In future work, we hope to implement PMirkDC on a distributed-memory
architecture, which has become more popular in recent years.

There are at least two possible contributions to sequential algorithms arising from the work
in this thesis. First, during our numerical testing with MirkDC, we noticed that the choice of
ABD system solver can have an effect on the convergence properties of the code. In particular,
MirkDC/RSCALE converged faster than other variants of MirkDC (even MirkDC/COLROW)
on some difficult problems. We believe RSCALE may act as a mild preconditioner on some
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of the poorly-conditioned ABD systems that typically arise when solving these difficult prob-
lems. We are particularly interested in determining if the choice of relaxation parameter o
can improve the conditioning of the ABD matrix. (We know it can do so for the individual
blocks; see §3.3.) We will pursue this possibility in future work. Second, as none of the par-
allel ABD system solvers require the boundary blocks of the linear system to be separable,
problems with coupled boundary conditions could be handled directly in a BVODE code if we
replace its sequential solver with one of our parallel solvers. This could result in substantial
savings in a sequential implementation. The usual approach to handling such problems is to
rewrite the BVODE with separated boundary conditions by doubling the number of differential
equations, which in turn doubles the order of the ABD system and significantly increases the
computational cost of most components in the code.

Another open question for future investigation follows from the observation that most of
the examples of potential SLF-LU instability discussed in this thesis apply only to the single-
partition variant of the algorithm, where the ABD matrix is processed in a sequential fashion
from top to bottom. As shown in §3.2, the single-partition variant is easy to analyze, and with
our analysis we gain some insight into where to look for instability. Other variants of SLF-
LU may have different numerical properties. We give a few examples where the partitioned
variant exhibits instability as the number of partitions changes (e.g., Figures D.57-D.60 in Ap-
pendix D.3), but at the time of writing we cannot comment further on these results. In addition,
our preliminary testing shows that the cyclic-reduction variant of SLF-LU does not seem to ex-
hibit the same instability on the class of problems we have identified to cause difficulty for the
single-partition variant of the algorithm. This is not surprising, since with cyclic reduction the
left and right blocks of the matrix change at each sweep of the reduction regardless of whether
pivoting is used. (The change in block structure also makes the algorithm more difficult to
analyze.) The stability of the cyclic-reduction variant of SLF-LU currently is in question, and
we intend to pursue this in future work.



Appendix A

Additional ¢/0;,-RSCALE Experiments

This appendix contains additional numerical experiments run on Problems C-F of Table 3.1.
As described in §3.3.2, each problem is constructed in such a way that static 1.0-RSCALE fails
at the computation of one or more rescaled V. See §3.3.2 for a complete description of how
the problems are set up, and an explanation of how to interpret the error statistics and plots.
The following table cross-references Problem # and Algorithm to give the figure and page #
of each experiment in this appendix:

Algorithm

1.0-RSCALE 0.98-RSCALE 1.02-RSCALE o¢4-RSCALE
C| Al pl67 A.2,p.168 A.3, p.169 A.4,p.170
Problem# | D | A5, p.171 A.6,p.172 A7,p.173 A8, p.174
E
F

A9,pl175  A10,pl76  All pl77  Al2 p.178
A13,p.179  Al4,p180  Al5p.18l  A.16,p.182

Of particular interest in these experiments are Problems E and F. In Problem E, selected
eigenvalues v and v, of V' (i.e. 197 and 7147) not only satisfy (3.82), but also (3.84) for ¢ = 4/5,
3/5,2/5 and 1/5. (These particular 125-th roots of unity also happen to be 100-th, 75-th, 50-
th and 25-th roots of unity.) This leads to additional singularities in the computation of V.,
f/k,,cf_l and Wk’f,i at k' = 29, 54, 79 and 104. Problem F demonstrates the ill-effects caused
by a singularity in the computation of V;; namely a poorly-conditioned compacted matrix C
and instability in the computation of ¢, in (3.16) (bottom left plot). Finally, note that in each
of the 0,-RSCALE solutions, only a few adjusted eigenvalue shifts are required to avoid the
singularities arising in static 1.0-RSCALE, supporting our conjecture that w, normally does
not grow too large in this algorithm.
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Figure A.1: The static 1.0-RSCALE solution to Table 3.1/C.

Theoretical bounds. Accuracy of Y.
Wor Wr | IVeillz Weallz  K2(C) K> ana.err. | Ki(J) alg.err.
1, 1le-14 | 6.5e+15 6.5e+15 1.3e+30 | 0.00098 4.6e+12 | 7.5e+04 4.6e+12

The true value of K5(C) is 94. The following plots show the true || V|2 along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), gy, in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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Figure A.2: The static 0.98-RSCALE solution to Table 3.1/C.

Theoretical bounds. Accuracy of Y.
Wor Wa | Vaillz Wil Ka(O) h? ana.err. | K,(J) alg.err.
3.6, 0.02 | 1.3e+04 3.4e+03 4.5e+06 | 0.00098 0.00053 | 7.5e+04 1.2e-11

The true value of K,(C) is 1.5e+02. The following plots show the true ||V}, along with the
eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
dar—1 in (3.14) (top right), §x in (3.16) (bottom left), and ¢, in (3.12) (bottom right):
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Figure A.3: The static 1.02-RSCALE solution to Table 3.1/C.

Theoretical bounds. Accuracy of Y.
Wor Wa | Vaillz Wil Ka(O) R>  ana.err. | Ki(J) alg.err.
3.6, 0.02 | 3.4e+03 3.4e+03 4.3e+06 | 0.00098 0.00053 | 7.5e+04 5.7e-11

The true value of K,(C) is 1.2e+02. The following plots show the true ||V}||» along with the
eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
dar—1 in (3.14) (top right), §x in (3.16) (bottom left), and ¢, in (3.12) (bottom right):
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Figure A.4: The 0,-RSCALE solution (7, = 10.0, ¢, = 0.25) to Table 3.1/C.

Theoretical bounds. Accuracy of Y.
Wy Wy ||‘~/k,z |2 ||Wk,i||2 ICQ(C) h? ana. err. Kl(j) alg err.
9.9, ? ? ? ? 0.00098 0.00053 | 7.5e+04 5.le-11

The true value of K, (C) is 1.3e+02. The following plots show the true ||V;||» along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
Grr—1 in (3.14) (top right), §x in (3.16) (bottom left), and ¢, in (3.89) (bottom right):
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Figure A.5: The static 1.0-RSCALE solution to Table 3.1/D.

Theoretical bounds. Accuracy of V.
2 Wil Ko(C) | B2 anacerr. | Ki(J) alg. err.
1, 1.1e-15 | 1.1e+17 1.1e+17 2e+32 | 0.0039 5.4e+12 | 3.9e+04 5.4e+12

Woy W ”sz|

The true value of K5(C) is 57. The following plots show the true ||V||» along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), gy, in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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Figure A.6: The static 0.98-RSCALE solution to Table 3.1/D.

Theoretical bounds.

Accuracy of Y.
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The true value of K,(C) is 1.1e+02. The following plots show the true ||V}, along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
dar—1 in (3.14) (top right), §x in (3.16) (bottom left), and ¢, in (3.12) (bottom right):
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Figure A.7: The static 1.02-RSCALE solution to Table 3.1/D.

Theoretical bounds. Accuracy of Y.

o Wallz  K2(C) R ana.err. | Ki(J) alg.err.
1.9, 0.02 | 6.3e+03 6.3e+03 2.2e+06 | 0.0039 0.0023 | 3.9e+04 2.4e-11

wWor wx | Vil

173

The true value of K,(C) is 1e+02. The following plots show the true ||V}]|, along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of

dar—1 in (3.14) (top right), §x in (3.16) (bottom left), and ¢, in (3.12) (bottom right):
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Figure A.8: The 0,-RSCALE solution (7, = 10.0, €, = 0.25) to Table 3.1/D.

Theoretical bounds. Accuracy of Y.
Wey Wy ”‘719,1“2 ||Wk,i”2 }CQ(C) h? ana. err. }61 (j) alg err.
10, ? ? ? ? 0.0039 0.0023 | 3.9e+04 3.le-11

The true value of K5(C) is 1.1e+02. The following plots show the true ||V;||» along with the
eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
Grr—1 in (3.14) (top right), §x in (3.16) (bottom left), and ¢, in (3.89) (bottom right):
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Figure A.9: The static 1.0-RSCALE solution to Table 3.1/E.
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Theoretical bounds. Accuracy of Y.
Wor Wr | Vaillz Wrillz Ka(C) R  ana.err. | Ki(J) alg.err.
1, 4.1e-15 | 1.4e+16 1.4e+16 6.9e+30 | 0.00024 1.8e+11 | 5.4e+04 1.8e+1l

The true value of K5(C) is 30. The following plots show the true ||V||» along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), gy, in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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Figure A.10: The static 0.98-RSCALE solution to Table 3.1/E.

Theoretical bounds. Accuracy of Y.
Wor Wa | WVaillz [Wailla  Ka(O) R*  ana.err. | Ki(J) alg.err.
13, 0.02 | 3.9e+04 2.9e+03 5.1e+07 | 0.00024 0.00017 | 5.4e+04 1.8e-10

The true value of K,(C) is 1.8e+02. The following plots show the true ||V}, along with the
eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
dar—1 in (3.14) (top right), §x in (3.16) (bottom left), and ¢, in (3.12) (bottom right):
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Figure A.11: The static 1.02-RSCALE solution to Table 3.1/E.

Theoretical bounds. Accuracy of Y.
Wor Wa | WVaillz [Wailla  Ka(O) R*  ana.err. | Ki(J) alg.err.
13, 0.02 | 2.9e+03 2.9e+03 4.6e+07 | 0.00024 0.00017 | 5.4e+04 1.9e-10

The true value of K,(C) is 78. The following plots show the true || V||, along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), g in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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Figure A.12: The 0,-RSCALE solution (7, = 10.0, ¢, = 0.25) to Table 3.1/E.

Theoretical bounds. Accuracy of V.
Woy W | Vaillz [[Wiillz K2(C) h? ana.err. | K,(J) alg.err.
8.8, ? ? ? ? 0.00024 0.00017 | 5.4e+04 4.7e-11

The true value of K5(C) is 66. The following plots show the true || V||, along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), g in (3.16) (bottom left), and ¢; in (3.89) (bottom right):
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Figure A.13: The static 1.0-RSCALE solution to Table 3.1/F.
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Theoretical bounds. Accuracy of Y.
Wor Wr | IVaill Waallz K2(C) | A? ana.erm | K (J) alg. err.
1, 6.8e-15 | 1le+16 le+16  3e+30 | 0.00098 72 5.8e+04 72

The true value of ICo(C') is 5.4e+13. The following plots show the true ||I7,€||2 along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
dar—1 in (3.14) (top right), g in (3.16) (bottom left), and g%l in (3.12) (bottom right):
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Figure A.14: The static 0.98-RSCALE solution to Table 3.1/F.

Theoretical bounds. Accuracy of Y.
Wor Wa | Vaillz Wil Ka(O) h? ana.err. | K,(J) alg.err.
3.6, 0.02 | 1.3e+04 3.4e+03 4.5e+06 | 0.00098 0.00038 | 5.8e+04 2.9e-11

The true value of K,(C) is 75. The following plots show the true || V||, along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), g in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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Figure A.15: The static 1.02-RSCALE solution to Table 3.1/F.

Theoretical bounds. Accuracy of Y.
Wor Wa | Vaillz Wil Ka(O) R>  ana.err. | Ki(J) alg.err.
3.6, 0.02 | 3.4e+03 3.4e+03 4.3e+06 | 0.00098 0.00038 | 5.8e+04 2.7e-11

The true value of K,(C) is 48. The following plots show the true || V||, along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), g in (3.16) (bottom left), and ¢; in (3.12) (bottom right):
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Figure A.16: The 0,-RSCALE solution (7, = 10.0, €, = 0.25) to Table 3.1/F.

Theoretical bounds. Accuracy of V.
Woy W | Vaillz [[Wiillz K2(C) h? ana.err. | K,(J) alg.err.
6.8, ? ? ? ? 0.00098 0.00038 | 5.8e+04 2.5e-11

The true value of K5(C) is 45. The following plots show the true || V||, along with the eigen-
value shifts used during rescaling (top left), sample norms arising in the computation of ¢,_;
in (3.14) (top right), g in (3.16) (bottom left), and ¢; in (3.89) (bottom right):
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Appendix B
Additional Sequential Experiments

This appendix contains the results of additional numerical experiments from §3.2.2 (Figures B.1-
B.4) and §4.2 (Figures B.5-B.10).

Figures B.1-B.4 show the results of experiments where we generate hundreds of linear
problems in search of problems that cause difficulty for SLF-LU. We divide the test DESs into
three classes, based on the sign of the elements in the Jacobian. Each problem is discretized
using trapezoidal finite differences, the resulting ABD system is reduced with SLF-LU, and
block growth is monitored during the reduction in order to detect potential SLF-LU instability.
(See §3.2.2 for further details on the criteria used to detect instability.) The effect of Jacobian
order and sparsity on stability is investigated in Figures B.1 and B.2, respectively. The effect
of Jacobian scale with dense Jacobians is investigated in Figure B.3, and the effect of Jacobian
scale with sparser (p = 50% nonzero) Jacobians is investigated in Figure B.4.

Figures B.5-B.10 show the results of additional numerical experiments illustrating the rel-
ative performance of the three ABD system solvers SLF-QR, SLF-LU, and RSCALE, when
run in sequential mode, on a sequential machine. Experiments on problems generated from
classes K, L and M of Table 4.3 in §4.2 are included. In each of these problems, the Jacobian
of the DE is random in structure—the nonzeros of the Jacobian are randomly-generated and
randomly-distributed throughout the matrix, with at least one nonzero in each row and column.
Experimental results are shown for sixteen Class K problems (» = 10) in Figures B.5 and
B.6, sixteen Class L problems (n = 12) in Figures B.7 and B.8, and sixteen Class M prob-
lems (n = 14) in Figures B.9 and B.10. In most experiments, as Jacobian density is increased
from 20% to 90% nonzero, we see a trend toward increased SLF-LU execution time. Note that
SLF-LU exhibits instability when solving some problems in Figures B.6, B.7, B.8 and B.9.

183
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Figure B.1: Effect of Jacobian order (n) on SLF-LU stability when solving 100 randomly-
generated class 1, 2 and 3 dense linear problems with A = 100 and p = 100% nonzero,
on meshes ranging from A = 0.02 to A = 0.009.
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Figure B.2: Effect of Jacobian sparsity (p) on SLF-LU stability when solving 100 randomly-
generated class 1, 2 and 3 unstructured linear problems with A = 100 and n = 10, on meshes
ranging from A = 0.02 to A = 0.09. Jacobian nonzeros are randomly distributed.
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Figure B.3: Effect of Jacobian scale (\) on SLF-LU stability when solving 100 randomly-

generated class 1, 2 and 3 dense linear problems with n = 10 and p = 100% nonzero,

on meshes ranging from h = 0.2 to h = 0.9.
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Figure B.4: Effect of Jacobian scale (\) on SLF-LU stability when solving 100 randomly-
generated class 1, 2 and 3 unstructured linear problems with n = 10 and p = 50% nonzero,
on meshes ranging from h = 0.2 to A = 0.9. Jacobian nonzeros are randomly distributed.
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Figure B.5: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class K problems of Table 4.3. Jacobian sparsity varies from 20%
to 90% nonzero, with nonzeros randomly distributed.
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Figure B.6: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class K problems of Table 4.3. Jacobian sparsity varies from 20%
to 90% nonzero, with nonzeros randomly distributed.
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Figure B.7: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class L problems of Table 4.3. Jacobian sparsity varies from 20% to
90% nonzero, with nonzeros randomly distributed.
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Figure B.8: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class L problems of Table 4.3. Jacobian sparsity varies from 20% to
90% nonzero, with nonzeros randomly distributed.
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Figure B.9: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class M problems of Table 4.3. Jacobian sparsity varies from 20%

to 90% nonzero, with nonzeros randomly distributed.
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Figure B.10: Execution time and accuracy of the three sequential ABD solvers when solving
eight randomly-generated Class M problems of Table 4.3. Jacobian sparsity varies from 20%

to 90% nonzero, with nonzeros randomly distributed.
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Appendix C
Additional Parallel Experiments

This appendix contains the results of additional numerical experiments illustrating the relative
performance of the three ABD system solvers SLF-QR, SLF-LU, and RSCALE, when run in
parallel mode, on a parallel machine. Additional experiments on problems A-F of Table 4.5 in
§4.3 are included.

Figures C.1-C.6 show results for problems A-F of Table 4.5 with M = 1024. Figures C.7-
C.12 show results with M = 2048. In both sets of experiments, as Jacobian order increases
fromn = 6 to n = 16 the payoff of parallelism as defined in §4.3 occurs with fewer processors,
and speedups become more optimal. Payoff for SLF-QR occurs only in Figures C.11 and C.12
(M = 2048, n = 14 and n = 16).
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Figure C.1: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem A of Table 4.5, with M = 1024. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU each payoff at 7 processors; there is no payoff when using SLF-QR.
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Figure C.2: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem B of Table 4.5, with A = 1024. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU each payoff at 6 processors; there is no payoff when using SLF-QR.
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Figure C.3: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem C of Table 4.5, with M = 1024. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU each payoff at 5 processors; there is no payoff when using SLF-QR.
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Figure C.4: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem D of Table 4.5, with M = 1024. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU payoff at 4 and 5 processors, respectively; there is no payoff when using
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Figure C.5: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem E of Table 4.5, with M = 1024. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU payoff at 4 and 5 processors, respectively; there is no payoff when using
SLF-QR.
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when solving Problem F of Table 4.5, with M = 1024. Architecture is the SGI Origin 2000.
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Figure C.7: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem A of Table 4.5, with M = 2048. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU each payoff at 7 processors; there is no payoff when using SLF-QR.
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Figure C.8: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem B of Table 4.5, with M = 2048. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU payoff at 5 and 6 processors, respectively; there is no payoff when using
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Figure C.9: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem C of Table 4.5, with M = 2048. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU each payoff at 5 processors; there is no payoff when using SLF-QR.
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Figure C.10: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem D of Table 4.5, with M = 2048. Architecture is the SGI Origin 2000.
RSCALE and SLF-LU payoff at 4 and 5 processors, respectively; there is no payoff when using

SLF-QR.
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Figure C.11: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem E of Table 4.5, with M = 2048. Architecture is the SGI Origin 2000.
RSCALE, SLF-LU and SLF-QR payoff at 4, 4 and 7 processors, respectively.
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Figure C.12: Execution time and speed-ups of the three parallel ABD solvers and COLROW
when solving Problem F of Table 4.5, with M = 2048. Architecture is the SGI Origin 2000.
RSCALE, SLF-LU and SLF-QR payoff at 4, 4 and 7 processors, respectively.
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Appendix D

Additional MirkDC Performance
Experiments

This appendix contains the results of several additional numerical experiments illustrating
the sequential and parallel performance of the four variants of MirkDC—MirkDC/COLROW,
MirkDC/SLF-QR, MirkDC/SLF-LU and MirkDC/RSCALE—described in §4.4.

D.1 Sequential MirkDC

Tables 4.7 and 4.8 in §4.4.1 list sixteen experiments designed to measure the relative perfor-
mance of the four variants of MirkDC on the Sun Ultra 2, and to demonstrate how sequential
performance is affected by certain problem and solution strategy parameters. The experiments
listed in Table 4.7 are not difficult numerically, in that each SWF-II1 problem can be solved
directly for the specified value of epsilon. The experiments listed in Table 4.8, on the other
hand, are more difficult numerically and each requires a form of parameter continuation to
achieve convergence. See §4.4.1 for details. This appendix contains numerical results for
experiments #5-#8 of each table. Figures summarizing the output of each experiment are in-
dexed in Tables D.1 and D.2. In most cases, the output of an experiment is summarized in
two figures: (1) overall and selected program segment execution times, and (2) subroutine call
and call-per-mesh profiles. The program segments profiled include five tasks comprising the
primary computational costs associated with MirkDC.

The MirkDC solution strategies used in experiments #5-#8 of Table 4.7 are identical to
those used in experiments #1-#4 of that table, respectively. Experiments #5-#8 differ only
in that the SWF-III problem solved is defined over a wider interval of integration ([—1,1]

198
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Table D.1: Numerical results index for experiments #5-#8 of Table 4.7 in §4.4.1.

Results are shown
exp. # in Figure(s) | on page(s)
5 D.1,D.2 201
6 D.3,D4 202
7 D.5 D.6 203
8 D.7,D.8 204

Table D.2: Numerical results index for experiments #5-#8 of Table 4.8 in §4.4.1.

Results are shown
exp. # in Figure(s) on page(s)
5 D.9,D.10,D.17 | 205, 209
6 D.11,D.12, D.18 | 206, 209
7 D.13,D.14 207
8 D.15,D.16 208

as opposed to [0,1]). Comparing pairwise Figures (4.27,D.1), (4.28,D.3), (4.30,D.5) and
(4.32,D.7), we see that all task execution times are moderately increased. Comparing pair-
wise Figures (4.26,D.2), (4.29,D.4), (4.31,D.6) and (4.33,D.8), we see that in most cases this
increase in execution time can be attributed to a moderate increase in both overall number
of subroutine calls and ABD system size. Other effects demonstrated in experiments #5-#8
include the substantial reduction in task execution times (accompanied by an increase in the
ratio of ABD matrix construction to factorization time) which can result upon switching to a
higher-order MIRK discretization scheme, and the moderate increase in task execution time
which can result upon imposing a stricter defect tolerance.

Experiments #5-#8 of Table 4.8 differ from experiments #1-#4 of that table in two respects.
First, the SWF-III problem solved is defined over a wider interval of integration ([—1, 3] as
opposed to [0, 2]). Second, the continuation strategy differs. Specifically, in each of experi-
ments #5-#8, the first two continuation iterations utilize a target value for ¢ approximately 10
times larger than in experiments #1-#4. This change was necessary in order to achieve conver-
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gence on the wider interval of integration. Due to the new continuation strategy, however, the
wider interval of integration no longer results in increased task execution times as was the case
in experiments #5-#8 of Table 4.7. Nevertheless, experiments #5-#8 of Table 4.8 still demon-
strate many of the other effects described above. Note that parameter continuation is necessary
for convergence in these experiments. For example, Figures D.17 and D.18 show the conver-
gence patterns that result when the SWF-I11 problems in experiments #5 and #6 are solved
using MirkDC/COLROW without continuation. MirkDC/COLROW no longer converges in
either of these experiments; instead it proceeds through a sequence of failed Newton iterations
followed by mesh doubling until the maximum number of subintervals is exceeded.

Finally, Figure D.15 shows that the ABD matrix construction time of MirkDC/COLROW
is greater than that of the other variants in experiment #8. This, of course, is an anomaly. When
MirkDC variants exhibit identical convergence patterns in a given experiment—as is always the
case in §4.4.1—each of the residual evaluation, defect estimation and ABD matrix construc-
tion task execution times should not be noticably different among variants. This is because the
algorithm for each of these tasks is identical among variants. Some care was taken to avoid
such anomalies by averaging timing results over 4-8 consecutive runs. Occasionally, however,
because of unusually high load on a time-shared machine, absolute execution times can be
consistently inflated over 4-8 consecutive runs. This certainly is the case in experiment #8 of
Table 4.8, and also in any other experiment presented in §4.4.1 where there is a noticable differ-
ence among variants in the residual evaluation, defect estimation or ABD matrix construction
task execution times.
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Figure D.1: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #5 of Table 4.7. The slightly wider disk spacing results in a small

increase in execution times over experiment #1. Compare to Figure 4.27, and compare the

profiles in Figures 4.26 and D.2.
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Figure D.2: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in ex-

periment #5 of Table 4.7. Each variant succeeds in satisfying the specified 7gee. Profiles are
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Figure D.3: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #6 of Table 4.7. Switching to a 4™ order MIRK scheme results in a
substantial reduction in execution times. Compare to Figure D.1, and compare the profiles in
Figures D.2 and D.4.
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Figure D.4: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in ex-
periment #6 of Table 4.7. Each variant succeeds in satisfying the specified 7gee. Profiles are
identical among variants.
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Figure D.5: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #7 of Table 4.7. Switching to a stricter defect tolerance results in a
moderate increase in execution times. Compare to Figure D.3, and compare the profiles in

Figures D.4 and D.6.
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f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.6: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in ex-
periment #7 of Table 4.7. Each variant succeeds in satisfying the specified 7gee. Profiles are

identical among variants.
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Figure D.7: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #8 of Table 4.7. Switching to a 6t order MIRK scheme results in a
moderate reduction in execution times. Compare to Figure D.5, and compare the profiles in
Figures D.6 and D.8.

LEGEND: # - MirkDC/COLROW, ¢ — MirkDC/SLF-QR, 4 — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,

r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.8: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in ex-
periment #8 of Table 4.7. Each variant succeeds in satisfying the specified 7geet. Profiles are
identical among variants.
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f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.9: Overall and selected program segment execution times, accumulated over all three
continuation iterations, of the four variants of MirkDC in experiment #5 of Table 4.8. Although
the disk spacing is wider than in experiment #1, the new continuation strategy employed in ex-
periment #5 actually results in a moderate decrease in execution times. Compare to Figure 4.36,
and compare the profiles in Figures 4.35 and D.10.
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r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.10: Subroutine call and call-per-mesh profiles, accumulated over all three continua-
tion iterations, of the four variants of MirkDC in experiment #5 of Table 4.8. The first, second
and third continuation iteration terminates with a final mesh of 988, 1464 and 4752 subin-
tervals, respectively. Each variant succeeds in satisfying the specified 7y at each iteration.
Profiles are identical among variants.

LEGEND: & — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.11: Overall and selected program segment execution times, accumulated over all
three continuation iterations, of the four variants of MirkDC in experiment #6 of Table 4.8.
Switching to a 4™ order MIRK scheme results in a substantial reduction in execution times,
even with the stricter defect tolerance. Compare to Figure D.9, and compare the profiles in
Figures D.10 and D.12.
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f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.12: Subroutine call and call-per-mesh profiles, accumulated over all three continua-
tion iterations, of the four variants of MirkDC in experiment #6 of Table 4.8. The first, second
and third continuation iteration terminates with a final mesh of 119, 169 and 478 subintervals,
respectively. Each variant succeeds in satisfying the specified 7qeet at each iteration. Profiles
are identical among variants.
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f — ABD matrix factorization, s — ABD system backsolve.

&, ¢, 4, v call profile &, ¢, 4, v call-per—-mesh profiles (g < 2.5%)
5% & 3% 3%
5%
100 _ — 0 —
478 5% 478
1% —/ — 30% 1
S 80 L% L% s
fous
o 353 353
@ 60 [ [
o) 169 169
€ — — 37%
=}
c 40 L 119 L 119
S 80 5% 35% 80
S — —
20 20 20
3%
15%
0 mesh mesh 14%
rdec fs f (20 calls total) s (97 calls total)

program segment



APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 207

Figure D.13: Overall and selected program segment execution times, accumulated over all
three continuation iterations, of the four variants of MirkDC in experiment #7 of Table 4.8.
Switching to a stricter defect tolerance results in a moderate increase in execution times. Com-
pare to Figure D.11, and compare the profiles in Figures D.12 and D.14.
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f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.14: Subroutine call and call-per-mesh profiles, accumulated over all three continua-
tion iterations, of the four variants of MirkDC in experiment #7 of Table 4.8. The first, second
and third continuation iteration terminates with a final mesh of 625, 933 and 2434 subintervals,
respectively. Each variant succeeds in satisfying the specified 7qeet at each iteration. Profiles
are identical among variants.
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Figure D.15: Overall and selected program segment execution times, accumulated over all
three continuation iterations, of the four variants of MirkDC in experiment #8 of Table 4.8.
Switching to a 6t order MIRK scheme results in a moderate reduction in execution times.
Compare to Figure D.13, and compare the profiles in Figures D.14 and D.16. (Note: The seem-
ingly higher ABD matrix construction time of MirkDC/COLROW is just a timing anomaly; see
§D.1 for details.)
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Figure D.16: Subroutine call and call-per-mesh profiles, accumulated over all three continua-
tion iterations, of the four variants of MirkDC in experiment #8 of Table 4.8. The first, second
and third continuation iteration terminates with a final mesh of 151, 215 and 509 subintervals,
respectively. Each variant succeeds in satisfying the specified 7qeect at each iteration. Profiles
are identical among variants.
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r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.17: Subroutine call and call-per-mesh profiles of MirkDC/COLROW in experi-
ment #5 of Table 4.8, when parameter continuation is not used. Without continuation,
MirkDC/COLROW does not converge. The code proceeds through a sequence of failed New-
ton iterations followed by mesh doubling until the maximum number of subintervals is ex-
ceeded; the defect estimation stage is never reached.
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f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.18: Subroutine call and call-per-mesh profiles of MirkDC/COLROW in experi-
ment #6 of Table 4.8, when parameter continuation is not used. Without continuation,
MirkDC/COLROW does not converge. The code proceeds through a sequence of failed New-
ton iterations followed by mesh doubling until the maximum number of subintervals is ex-
ceeded,; the defect estimation stage is never reached.
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f — ABD matrix factorization, s — ABD system backsolve.
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Table D.3: Numerical results index for experiments in Table 4.10 in §4.4.2.

Results are shown

exp. # in Figure(s) on page(s)
1 D.19,D.20 211
3 D.21,D.22 212
5 D.23,D.24,D.25 | 213,214
6 D.26,D.27,D.28 | 215, 216
7 D.29,D.30,D.31 | 217,218
9 D.32,D.34,D.35 | 219, 220
10 D.33,D.36,D.37 | 219, 221

D.2 Parallel MirkDC

Table 4.10 in §4.4.2 lists ten experiments demonstrating the parallel (and sequential) perfor-
mance of PMirkDC, the parallel implementation of MirkDC/RSCALE appearing in [Muir 03].
This appendix contains numerical results for experiments #1, #3, #5, #6, #7, #9 and #10. Fig-
ures summarizing the output of each experiment are indexed in Table D.3.

In experiments #1 and #3, the execution time required to solve Problem A of Table 4.9 is
substantially increased by choosing an uneccessarily fine initial mesh of M, = 7000 subin-
tervals. While execution times exhibit better speedups, these experiments are not realistic as
MirkDC does not require such a fine initial mesh to achieve convergence. In experiments #5, #6
and #7, more realistic computationally intensive experiments are performed by solving more
difficult SWF-111 problems with the help of parameter continuation.

In experiments #9 and #10, we attempt to solve difficult SWF-111 problems without using
parameter continuation. In both experiments, the convergence pattern of PMirkDC is shorter
than that of MirkDC, resulting in a substantial improvment in execution time even on a sequen-
tial machine.
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Figure D.19: Overall speedup and execution time of MirkDC and PMirkDC in experiment #1

of Table 4.10. Parallelism begins to pay-off at 2 processors.
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Figure D.20: Speedup and execution time of selected program segments of MirkDC and
PMirkDC in experiment #1 of Table 4.10.
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Figure D.21: Overall speedup and execution time of MirkDC and PMirkDC in experiment #3

of Table 4.10. The same problem is solved as in experiment #1, using the same solution

strategy, but this time on the Origin 2000 instead of the Challenge L. Execution times are

nearly 5 times faster (compare to Figure D.19). Parallelism begins to pay-off at 3 processors.
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Figure D.22: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #3 of Table 4.10. Compare to Challenge L results shown in Fig-

ure D.20.
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Figure D.23: Overall speedup and execution time of MirkDC and PMirkDC in experiment #5

of Table 4.10. Results are shown for the final continuation step only. Parallelism begins to

pay-off at 3 processors.
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Figure D.24: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #5 of Table 4.10. Results are shown for the final continuation step

only.
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Figure D.25: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-
ment #5 of Table 4.10. Results are accumulated over all five continuation steps.
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Figure D.26: Overall speedup and execution time of MirkDC and PMirkDC in experiment #6

of Table 4.10. Results are shown for the final continuation step only. Parallelism begins to

pay-off at 3 processors.

Speedup

- optimal
—v

P N W b OO N ©

X faster than on 1 processor

1 2 3 4 5 6 7 8

# of processors

LEGEND: & - MIRKDC, v - PMIRKDC.

Absolute overall execution time

<« (7)
| <

seconds

w
3
3
]

<
]
]
£
[
£

1 2 3 4 5 6 7 8
# of processors

Figure D.27: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #6 of Table 4.10. Results are shown for the final continuation step

only.

LEGEND: r - residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all sequential program segments.

PMIRKDC segment speedups

? optimal optimal
sl —r —d
5
4

. .

s 3 .

m 2

) 1

o

o

S optimal

- —c

c

o

<

]

c

=

—

(]

=

7]

© optimal . optimal

X —f —s

PNWAOON®

12345678 12345678

# of processors

seconds

PMIRKDC segment times

3
MIRKDC w 2t
segment )
times §
3 » s
1r f (s
C
0 < 0
2 o L L
¢ 3 4
1 3
S
r
2,
O [%2]
1
# of processors S
%] 1t
cfS i~ fs fs
5 6 7 8

# of processors



APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 216

Figure D.28: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-
ment #6 of Table 4.10. Results are accumulated over all five continuation steps.
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Figure D.29: Overall speedup and execution time of MirkDC and PMirkDC in experiment #7

of Table 4.10. Results are shown for the final continuation step only. Parallelism begins to

pay-off at 3 processors.
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Figure D.30: Speedup and execution time of selected program segments of MirkDC and
PMirkDC in experiment #7 of Table 4.10. Results are shown for the final continuation step

only.
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Figure D.31: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-
ment #7 of Table 4.10. Results are accumulated over all five continuation steps.
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Figure D.32: Overall and selected program segment execution times of MirkDC and PMirkDC
in experiment #9 of Table 4.10. This experiment is run sequentially on the Ultra 2. The vast
difference in execution times is explained by the subroutine call and call-per-mesh profiles
shown in Figures D.34 and D.35.
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Figure D.33: Overall and selected program segment execution times of MirkDC and PMirkDC
in experiment #10 of Table 4.10. This experiment is run sequentially on the Ultra 2. The vast
difference in execution times is explained by the subroutine call and call-per-mesh profiles
shown in Figures D.36 and D.37.

LEGEND: & - MIRKDC, v — PMIRKDC, r — residual evaluation, d — defect estimation,
¢ — ABD matrix construction, f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.34: Profiles of MirkDC in experiment #9 of Table 4.10. These differ significantly
from those of PMirkDC (Figure D.35).

LEGEND: # - MIRKDC, ¥ - PMIRKDC, r - residual evaluation, d — defect estimation,
¢ - ABD matrix construction, f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.35: Profiles of PMirkDC in experiment #9 of Table 4.10. PMirkDC computes an
acceptable solution using fewer subroutine calls and fewer mesh subintervals than MirkDC
resulting in substantially reduced execution time (Figure D.32).

LEGEND: # - MIRKDC, v - PMIRKDC, r - residual evaluation, d — defect estimation,
¢ — ABD matrix construction, f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.36: Profiles of MirkDC in experiment #10 of Table 4.10. These differ significantly
from those of PMirkDC (Figure D.37).
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Figure D.37: Profiles of PMirkDC in experiment #10 of Table 4.10. PMirkDC computes an
acceptable solution using fewer subroutine calls and fewer mesh subintervals than MirkDC

resulting in substantially reduced execution time (Figure D.33).
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Table D.4: Numerical results index for experiments #3-#8 of Table 4.11 in §4.4.3.

Results are shown
exp. # in Figure(s) on page(s)
3 D.38, D.39, D.40, D.41 223,224
4 D.42,D.39,D.43,D.44 223, 225, 226
5 D.45, D.39, D.46, D.47, D.57, D.58 | 223, 227, 228, 234
6 D.48, D.49 229
7 D.50, D.51, D.52, D.53, D.59 230, 231, 235
8 D.54, D.51, D.55, D.56, D.60 230, 232, 233, 235

D.3 ProblemsWhere MirkDC/SLF-LU Fails

Table 4.11 in §4.4.3 lists eight experiments designed to show how SLF-LU instability can
affect MirkDC performance; this appendix contains numerical results for experiments #3-#8
of that table. Figures summarizing the output of each experiment are indexed in Table D.4. In
most cases, the output of an experiment is summarized in four figures: (1) overall and selected
program segment execution times, (2) profiles of the stable variants of MirkDC, (3) profiles of
MirkDC/SLF-LU, and (4) execution time and accuracy of the three parallel ABD solvers when
solving selected systems extracted from the MirkDC/SLF-LUsolution.

Of particular interest in these results are Figures D.41, D.44, D.47 and D.53, where we com-
pare the execution time and accuracy of the three solvers. In each of these figures, there are
one or more examples where SLF-LU exhibits instability when used to solve a well-conditioned
ABD system—a system for which the other solvers have no difficulty finding a solution. Fig-
ure D.56 shows some results with poorly-conditioned ABD systems. Figures D.57-D.60 show
the effects of partitioning on solver accuracy. In each of these experiments, we solve and re-
solve a selected system using a varying number of partitions. Only the stability of SLF-LU
seems affected by the partitioning strategy. Surprisingly, single-partitioned SLF-LU is stable
on these problems.
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Figure D.38: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #3 of Table 4.11. The poor performance of MirkDC/SLF-LU relative
to the other variants of MirkDC is explained by comparing the subroutine call and call-per-
mesh profiles in Figures D.39 and D.40.

LEGEND: & — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, 4 — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,

r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.39: Profiles of the stable variants of MirkDC (MirkDC/COLROW, MirkDC/SLF-QR
and MirkDC/RSCALE) in experiments #3, #4, and #5 of Table 4.11. Each of these variants
converges in all three experiments. Profiles are identical among variants and experiments.

LEGEND: # — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, # — MirkDC/SLF-LU, v — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.40: Profiles of MirkDC/SLF-LU in experiment #3 of Table 4.11. This variant of
MirkDC converges in this experiment, albeit less efficiently than the other three variants (Fig-
ure D.39). Instability was detected in the SLF-LU factorization of one or more ABD systems
built on meshes of size 640 and 1280. This instability is investigated further in Figure D.41.

total number of calls

Figure D.41: Execution time and accuracy of the three parallel ABD solvers when solving
selected systems extracted from the MirkDC/SLF-LU solution in experiment #3 (Figure D.40).
Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU
exhibits instability when solving ABD systems 9@mesh 640 and 7@mesh 1280 (selections #3

and #6)
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Figure D.42: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #4 of Table 4.11. The poor performance of MirkDC/SLF-LU relative
to the other variants of MirkDC is explained by comparing the subroutine call and call-per-
mesh profiles in Figures D.39 and D.43.

LEGEND: & — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, 4 — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,

r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.43: Profiles of MirkDC/SLF-LU in experiment #4 of Table 4.11. This variant of
MirkDC does not converge in this experiment (i.e. Tgeet 1S NOt Satisfied). Instability was de-
tected in the SLF-LU factorization of one or more ABD systems built on meshes of size 640,
1280, 2560, 5120 and 10240. This instability is investigated further in Figure D.44.
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f — ABD matrix factorization, s — ABD system backsolve.

« call profile 4 call-per—-mesh profiles (g < 2.5%)
e 5% 23%
3% :

200

10240 10240
17%

5120 5120

150

2560 2560

1280 1280
26%
100 640 26% 610
7% 320

160

50

total number of calls
[ [T T T T T T
[ [T T T T T

8%

r dc f s f (69 calls total)

program segment s (189 calls total)

3
ol
»
=
3
®
4}
=y



APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS

226

Figure D.44: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #4 (Figure D.43).
Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU
exhibits instability when solving ABD systems 8@mesh 640, 5@mesh 1280, 3-4@mesh 2560
and 1-2@mesh 5120.

relative (%)

absolute (sec)

relative (%)

absolute (sec)

100

75

50

25

0.45

0.3

=
Q
=]

~
a

o
o

N
3}

o

s
o

[N

o
3

o

LEGEND: g - SLF-QR, u - SLF-LU, r - RSCALE.

Execution time

P T —

lg——

( predicted by op. counts)

1 2 3 4 5 6 7
selection #

Execution time

'’

rg————

( predicted by op. counts)

8 9 10 11 12 13 14
selection #

log (base 10) of algebraic error

log (base 10) of algebraic error

20

15

10

-10

-15

20

15

10

-10

-15

Accuracy statistics

=4

[ c

— =-recip. cond.

1 2 3 4 5 6 7
selection #

Accuracy statistics

— =-recip. cond.

IS

L,:D:

bl

8 9 10 11 12 13 14
selection #

selection
index

1: 5@640
2: 6@640
3. 7@640
4: 8@640
5. 3@1280
6: 4@1280

7: 5@1280

selection
index

8: 2@2560
9: 3@2560
10: 4@2560
11: 5@2560
12: 6@2560
13: 1@5120

14: 2@5120

(uonosjas yoes 1o yssw@#Agy)

(uonoajas yoes Jo yssw@#Agy)



APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 227

Figure D.45: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #5 of Table 4.11. The poor performance of MirkDC/SLF-LU relative
to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures D.39 and D.46.

LEGEND: # - MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.46: Profiles of MirkDC/SLF-LU in experiment #5 of Table 4.11. This variant of
MirkDC does not converge in this experiment (i.e. Tgeet 1S NOt Satisfied). Instability was de-
tected in the SLF-LU factorization of one or more ABD systems built on meshes of size 640,
1280, 2560, 5120 and 10240. This instability is investigated further in Figure D.47.
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Figure D.47: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #5 (Figure D.46).
Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU
exhibits instability when solving ABD systems 8@mesh 640, 6-8@mesh 1280, 5@mesh 2560
and 4@mesh 5120.
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Figure D.48: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #6 of Table 4.11. This is the only experiment in Table 4.11 where
SLF-LU does not exhibit instability. MirkDC/SLF-LU performance is comparable to the other
variants of MirkDC, given the relative speeds of the parallel ABD system solvers.

LEGEND: & — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, # — MirkDC/SLF-LU, v — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.49: Profiles of the four variants of MirkDC in experiment #6 of Table 4.11. Each
variant converges in this experiment. Profiles are identical among variants.
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Figure D.50: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #7 of Table 4.11. The poor performance of MirkDC/SLF-LU relative
to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures D.51 and D.52.
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Figure D.51: Profiles of the stable variants of MirkDC (MirkDC/COLROW, MirkDC/SLF-
QR and MirkDC/RSCALE) in experiments #7 and #8 of Table 4.11. Each of these variants
converges in both experiments. Profiles are identical among variants and between experiments.
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Figure D.52: Profiles of MirkDC/SLF-LU in experiment #7 of Table 4.11. This variant of
MirkDC converges in this experiment, albeit less efficiently than the other three variants (Fig-
ure D.51). Instability was detected in the SLF-LU factorization of one or more ABD systems
built on meshes of size 640, 1280, 2560 and 5120. This instability is investigated further in

Figure D.53.
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Figure D.53: Execution time and accuracy of the three parallel ABD solvers when solving
selected systems extracted from the MirkDC/SLF-LU solution in experiment #7 (Figure D.52).
Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU
exhibits instability when solving ABD systems 10@mesh 640, 5@mesh 1280, 4-5@mesh 2560
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Figure D.54: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #8 of Table 4.11. The poor performance of MirkDC/SLF-LU relative
to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures D.51 and D.55.

LEGEND: & — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, v — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.55: Profiles of MirkDC/SLF-LU in experiment #8 of Table 4.11. This variant of
MirkDC does not converge in this experiment (i.e. Tgeet 1S NOt Satisfied). Instability was de-
tected in the SLF-LU factorization of one or more ABD systems built on meshes of size 1280,

2560, 5120 and 10240. This instability is investigated further in Figure D.56.
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Figure D.56: Execution time and accuracy of the three parallel ABD solvers when solving se-
lected systems extracted from the MirkDC/SLF-LU solution in experiment #8 (Figure D.55).
Although extracted ABD matrices 20-23@mesh 640 are poorly conditioned, each of the ABD
solvers computes a reasonably accurate solution to the respective systems. Extracted ABD
matrices built on meshes of size 1280, 2560, and 5120 are comparitively well-conditioned.
Of the three ABD solvers, only SLF-LU exhibits instability when solving ABD systems
6@mesh 1280, 5@mesh 2560 and 4@mesh 5120.
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Figure D.57: Execution time and accuracy of the three parallel ABD solvers when solving,
using 1-8 partitions, ABD system 5@mesh 2560 extracted from the MirkDC/SLF-LU solution
in experiment #5 (Figure D.46). Of the three ABD solvers, only SLF-LU exhibits instability
when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.
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Figure D.58: Execution time and accuracy of the three parallel ABD solvers when solving,
using 1-8 partitions, ABD system 4@mesh 5120 extracted from the MirkDC/SLF-LU solution
in experiment #5 (Figure D.46). Of the three ABD solvers, only SLF-LU exhibits instability
when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.
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Figure D.59: Execution time and accuracy of the three parallel ABD solvers when solving,
using 1-8 partitions, ABD system 10@mesh 640 extracted from the MirkDC/SLF-LU solution
in experiment #7 (Figure D.52). Of the three ABD solvers, only SLF-LU exhibits instability

when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.
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Table D.5: Numerical results index for experiments #3-#8 of Table 4.12 in §4.4.4.

Results are shown

exp. # in Figure(s) on page(s)
3 D.61, D.62, D.63, D.64, D.65 | 237, 238, 239
4 D.66, D.67, D.68, D.69, D.70 | 240, 241, 242
5 D.71,D.72,D.73 243, 244
6 D.74,D.75,D.76, D.77 245, 246
7 D.78,D.79, D.80 247, 248
8 D.81, D.82,D.83, D.84, D.85 | 249, 250, 251

D.4 ProblemsWhere Sequential MirkDC/RSCALE
Outperforms MirkDC/COLROW

Table 4.12 in §4.4.4 lists eight experiments on difficult SWF-111 problems. In each experiment,
the convergence pattern of at least one variant of MirkDC differs from the others. This appendix
contains numerical results for experiments #3-#8 of that table. Figures summarizing the output
of each experiment are indexed in Table D.5.

The output of an experiment is summarized in a figure showing the overall and selected
program segment execution times of each variant of MirkDC, and two or more figures showing
the subroutine call and call-per-mesh profiles for each distinct convergence pattern. We note
in the figure caption when two or more variants share the same pattern, or when a pattern does
not lead to convergence.

Convergence is achieved by each variant in each experiment, except for MirkDC/SLF-LU
in experiment #4. In all but experiments #5 and #8, MirkDC/RSCALE converges faster than
the other variants, including MirkDC/COLROW. In experiments #5 and #8 MirkDC/COLROW
is marginally faster, even though the MirkDC/COLROW convergence sequence shows one or
more larger ABD systems than generated by MirkDC/RSCALE. (Compare profiles in Fig-
ures D.72 and D.73, and Figures D.82 and D.85.)
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Figure D.61: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #3 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW
in all program segments. Compare the subroutine call and call-per-mesh profiles in Fig-
ures D.62, D.63, D.64 and D.65.

LEGEND: & — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, # — MirkDC/SLF-LU, v — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.62: Profiles of MirkDC/COLROW in experiment #3 of Table 4.12. This variant
of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-
ure D.65).
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Figure D.63: Profiles of MirkDC/SLF-QR in experiment #3 of Table 4.12. This variant
of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.65).
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Figure D.64: Profiles of MirkDC/SLF-LU in experiment #3 of Table 4.12. This variant
of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.65).
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Figure D.65: Profiles of MirkDC/RSCALE in experiment #3 of Table 4.12. This variant of
MirkDC converges in this experiment, with a final mesh of size 2180. Compare these profiles
to those of the other variants shown in Figures D.62, D.63 and D.64.

LEGEND: # — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, # — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.66: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #4 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments.
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Figure D.68: Profiles of MirkDC/SLF-QR in experiment #4 of Table 4.12. This variant
of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.70).
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Figure D.69: Profiles of MirkDC/SLF-LU in experiment #4 of Table 4.12. This variant of
MirkDC does not converge in this experiment (i.e. Tgerect 1S NOt satisfied).
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Figure D.70: Profiles of MirkDC/RSCALE in experiment #4 of Table 4.12. This variant of
MirkDC converges in this experiment, with a final mesh of size 502. Compare these profiles to
those of the other variants shown in Figures D.67, D.68 and D.69.
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f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.71: Overall and selected program segment execution times of the four variants
of MirkDC in experiment #5 of Table 4.12. MirkDC/COLROW is marginally faster than
MirkDC/RSCALE with respect to overall execution time, however it generates larger ABD
systems. Compare the subroutine call and call-per-mesh profiles in Figures D.72 and D.73.
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f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.72: Profiles of MirkDC/COLROW, MirkDC/SLF-QR and MirkDC/SLF-LU in ex-
periment #5 of Table 4.12. These three variants of MirkDC converge in this experiment, but
less efficiently than MirkDC/RSCALE (Figure D.73).

LEGEND: & — MirkDC/COLROW, ¢ - MirkDC/SLF-QR, & — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.

&, ¢, 4 call profile #, ¢, & call-per—-mesh profiles (g < 2.5%)
500 5% 7% 3% 3% 9%
— 2% —
— 9584 9584
4792 1550 4792
© 4000 2306 1% 2396 13%
3 3488 3488
— — — 9%
1744 1744
S 300 || 1408 || 1408
[} [ 6% —
-E 1280 a% 1280 6%
g 200 [ |640 [_|640 7%
< 320 6% 320
% [ |60 % [ |60 %
+ 100 | |80 6% | |80
40 40
20 6% 10% 20 &
0 [ w0 0% [ w0 o 9%

rdecec fs f (96 calls total)

program segment mesh S (455 calls total)



APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 244

Figure D.73: Profiles of MirkDC/RSCALE in experiment #5 of Table 4.12. This variant of
MirkDC converges in this experiment, with a final mesh of size 4792. Compare these profiles

to those of the other variants shown in Figure D.72.
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Figure D.74: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #6 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments.
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Figure D.75: Profiles of MirkDC/COLROW and MirkDC/SLF-LU in experiment #6 of Ta-
ble 4.12. These two variants of MirkDC converge in this experiment, but less efficiently than
either MirkDC/RSCALE or MirkDC/SLF-QR (Figures D.77 and D.76).
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Figure D.76: Profiles of MirkDC/SLF-QR in experiment #6 of Table 4.12. This variant
of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.77).
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r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.77: Profiles of MirkDC/RSCALE in experiment #6 of Table 4.12. This variant of
MirkDC converges in this experiment, with a final mesh of size 686. Compare these profiles to
those of the other variants shown in Figures D.75 and D.76.
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Figure D.78: Overall and selected program segment execution times of the four variants of
MirkDC in experiment #7 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments.
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Figure D.79: Profiles of MirkDC/COLROW in experiment #7 of Table 4.12. Profiles of
MirkDC/SLF-LU differ only slightly. These two variants of MirkDC converge in this experi-
ment, but less efficiently than either MirkDC/RSCALE or MirkDC/SLF-QR (Figure D.80).
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Figure D.80: Profiles of MirkDC/RSCALE in experiment #7 of Table 4.12. Profiles of
MirkDC/SLF-QR differ only slightly. These two variants of MirkDC converge in this ex-
periment, with a final mesh of size 1092. Compare these profiles to those of the other variants
shown in Figure D.79.

LEGEND: # — MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, ¢ — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve.
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Figure D.81: Overall and selected program segment execution times of the four variants
of MirkDC in experiment #8 of Table 4.12. MirkDC/COLROW is marginally faster than
MirkDC/RSCALE with respect to overall execution time, however it generates larger ABD
systems. Compare the subroutine call and call-per-mesh profiles in Figures D.82 D.83, D.84
and D.85.

LEGEND: & - MirkDC/COLROW, ¢ — MirkDC/SLF-QR, & — MirkDC/SLF-LU, ¥ — MirkDC/RSCALE,
r — residual evaluation, d — defect estimation, c — ABD matrix construction,
f — ABD matrix factorization, s — ABD system backsolve, o — all other program segments.
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Figure D.82: Profiles of MirkDC/COLROW in experiment #8 of Table 4.12. This variant
of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-
ure D.85).
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Figure D.83: Profiles of MirkDC/SLF-QR in experiment #8 of Table 4.12. This variant
of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-
ure D.85).
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Figure D.84: Profiles of MirkDC/SLF-LU in experiment #8 of Table 4.12. This variant
of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-
ure D.85).
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Figure D.85: Profiles of MirkDC/RSCALE in experiment #8 of Table 4.12. This variant of
MirkDC converges in this experiment, with a final mesh of size 532. Compare these profiles to

those of the other variants shown in Figures D.82, D.83 and D.84.
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Appendix E

Fortran Source Listings

E.1 RSCALE

subroutine rscale (Iftblk, array, nrwblk, nbloks, rgtblk,

* b, pivot, iflag, nparts, work)
c
double precision Iftblk(1), array(l), rgtblk(l), b(1), work(l)
integer nrwblk, nbloks, pivot(l), iflag, nparts

C AR **xx
c *  This subroutine solves the linear system A x = b where *
o * A i1s an Almost Block Diagonal matrix of the form *
C * *
c * Iftblk rgtblk *
c * array(,,1) *
c * array(,,2) *
C * . *
C * _ *
C * _ *
c * array(, ,nbloks) *
C * *
c * Iftblk and rgtblk are each nrwblkxnrwblk, array(, ,k) *
o * is nrwblkx2*nrwblk, and array(, ,k) and array(, ,k+1) *
o * overlap by nrwblk columns. The linear system is square *
o * and of order (nbloks+1)*nrwblk. *
C * *
c * [ Note: ABDs often arise in other forms. For example, *
o * Iftblk and rgtblk may be uncoupled so that 1ftblk *
c * appears at the top of the matrix and rgtblk appears *
o * at the bottom. In this case, the ABD system first *
c * can be transformed into the correct form for input *
c * to ’rscale’ using an auxiliary routine included *
c * with this package. See “couple” for details. *
o * Alternatively, ’rscalc’, a modified version of *
o * rscale” that incorporates “couple’, can be used. 1 =
C * *
c *  THE ALGORITHM: *
C * *
o *  The system is decomposed and solved using a variant *
o *  of the parallel Rescaling algorithm described in [1]. *
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Parallelism is achieved by slicing the system into
nparts’ partitions in such a way that each partition
can be processed independently. Assuming at least one
processor is available per partition, a speed-up of S
(over sequential Rescaling) may be attained where

1 <= S < nparts,

with S =1 if nbloks < 2*nparts,
and S 7 nparts if nparts << nbloks/nparts.

In other words, for systems of sufficiently high order,
speed-up is approximately linear with respect to nparts
when nparts is sufficiently small. Sample problems and
timing benchmarks are included with this package.

PARAMETERS:
on entry

ITftblk [double precision(nrwblk,nrwblk)]
The top left block of the ABD matrix.

array [double precision(nrwblk,2*nrwblk,nbloks)]
array(, ,k) contains the k-th nrwblkx2*nrwblk
block of the ABD matrix.

nrwblk [integer]
The number of rows in Iftblk, array(,,k),
and rgtblk. The number of columns in
Iftblk and rgtblk. There are 2*nrwblk
columns in array(, ,k).

nbloks [integer]
The number of nrwblkx2*nrwblk blocks
in array(,,)-

rgtblk [double precision(nrwblk,nrwblk)]
The top right block of the ABD matrix.

b [double precision((nbloks+1)*nrwblk)]
The right-hand side vector.

pivot [integer((nbloks+1)*nrwblk)]
Work space to hold the pivoting strategy.

nparts [integer]
The number of partitions to use in the
decomposition and solve.

work [double precision
((nbloks+2*nparts+1)*nrwblk**2)]
Work space to hold Fill-in and local
storage for BLAS.

OB % % b 3k 3 X b 2 X b b X X b 3k 3k b o 2 X o b % X b b % X o o X X o 3 X b b % X o 3k % X ok % X X ok X X % %
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on return

Iftblk, array, rgtblk, work
The desired decomposition of the ABD matrix.

[ Note: |If iflag = -1 the factorization is
not complete. 1

nrwblk, nbloks
Unchanged.

b [double precision((nbloks+1)*nrwblk)]
The solution vector (if iflag = 0).

pivot [integer((nbloks+1)*nrwblk)]
The pivoting strategy (if iflag = 0).

iflag [integer]

= 0 on normal return

= -1 if the ABD matrix is singular

[ Note: Only exact singularity is detected;
iflag = 0 is not a guarantee of well-
conditioning. In the case where Iftblk
and rgtblk can be uncoupled, Lapack’s
DGBTRF/DGBCON may be used to obtain a
condition estimate for the ABD matrix.
Subroutines are included in ABDpack for
transforming the rscale-format matrix
into the correct form for input into
Lapack”’s band routines. See “uncple’
and “mkband” for details. 1

nparts [integer]
Normally unchanged. If, however, the
requested number of partitions would
result in fewer than 2 blocks of array(,,)
per partition (i.e. if nbloks < 2*nparts),
the subroutine automatically resets nparts
to 1 and uses non-partitioned Rescaling.

SUBROUTINES CALLED:

rscfa (Iftblk, array, nrwblk, nbloks, rgtblk,
pivot, iflag, nparts, work)

Factors the ABD matrix using parallel Rescaling.
Parameters are as described above.

rscsl (Iftblk, array, nrwblk, nbloks, rgtblk,
b, pivot, nparts, work)

OO0O00OO00O0000000000000000000000000000000000000000000000O0O0O0
ook X b 3k 3 X b 2k X b b X X b 3k 3k b b 3 X o b X b b X b o X X o % X b b % X b % % X b 3 X X ok X X % %
ook % X b 3k % X b 2k X b b X X b 3k 3 o b 3k X % b % X b b % X b o X X o 3 X o b % X o % % X ok 3 X X ok X X % %

Uses the factors returned by ’rscfa’ to perform
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o * forward elimination and back-solve on right-hand *
c * side b. Parameters are as described above. *
C * *
c *  SOLVING FOR MULTIPLE RIGHT-HAND SIDES: *
C * *
o * rscale” is called only once for a given system A X = b. *
c * IT iflag = 0 the system is solved. In order to solve for *
c * a different right-hand side (i.e. A x = b”), “rscsl’ is *
C * called directly. The arrays Iftblk, array, rgtblk, work, *
o * and pivot contain the decomposition of A and pivoting *
o *  strategy on return from “rscale’ and therefore must not *
o * be altered between successive calls to ’rscsl’. b is *
c *  the only parameter that may be changed. *
C * *
c *  REFERENCES: *
C * *
o * [1] K-.R. Jackson and R.N. Pancer, The parallel solution *
c * of ABD systems arising in numerical methods for *
c * BVPs for ODEs, University of Toronto, Department *
c * of Computer Science, Technical Report 255/91, 1992. *
C AR L o o o E =
c
call rscfa (Iftblk, array, nrwblk, nbloks, rgtblk,
* pivot, iflag, nparts, work)
if (iflag .eq. 0) then
call rscsl (Iftblk, array, nrwblk, nbloks, rgtblk,
* b, pivot, nparts, work)
end if
return
end
C ____________________________________________________________________
subroutine rscfa (Iftblk, array, nrwblk, nbloks, rgtblk,
* pivot, iflag, nparts, work)
c
double precision Iftblk(1), array(l), rgtblk(l), work(l)
integer nrwblk, nbloks, pivot(l), iflag, nparts
C AR L o o E =
o *  This subroutine factors the ABD matrix defined in arrays *
c * Iftblk, array, and rgtblk using a variant of the parallel *
C * Rescaling algorithm. On return, Iftblk, array, rgtblk, *
c * work, and pivot contain the decomposition of the matrix *
o * and pivoting strategy used. See comments in subroutine *
o * rscale” for further details. *
C AR L o *xx
integer nsquar, wkl, wk2, wk3, wk4, minblk, remblk
c
iflag = 0
C AR o o E =
o * Use non-partitioned Rescaling if requested number *
c * of partitions would result in fewer than 2 blocks *
c * per partition. *
C AR **xx

if (nbloks .I1t. 2*nparts) then
nparts = 1
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endif
C A E T x
c * Work-space allocation: *
c * right blocks - work(1)..work(wk2-1) *
o * 1st-level product blocks - work(wk2).._.work(wk3-1) *
o * 2nd-level product block - work(wk3)..work(wk4-1) *
c * local storage for BLAS - work(wk4)..end *
C * *
C * Total requirement: nbloks*[nrwblkxnrwblk] *
o * + nparts*[nrwblkxnrwblk] *
o * + [nrwblkxnrwblk] *
o * + nparts*[nrwblkxnrwblk] *
C AR E E x
nsquar = nrwblk**2
wkl =1
wk2 = wkl + nbloks*nsquar
wk3 = wk2 + nparts*nsquar
wk4 = wk3 + nsquar
C AR o **xx
C * Calculate minimum number of blocks per partition *
o * Remaining blocks are distributed evenly among the *
o * first partitions. *
C AR E E x
minblk = nbloks/nparts
remblk = nbloks - minblk*nparts
C AR L o o o *xx
o * Three level factorization. The factorization is *
o * aborted immediatley if singularity is detected. *
C AR **x*x
call rscfl(array,work(wkl),work(wk2),nrwblk,pivot,iflag,
* minblk, remblk,nparts,work(wk4))
if (iflag .eq- 0) then
call rscf2(array,work(wkl) ,work(wk2) ,work(wk3),nrwblk,
* pivot,iflag,minblk,remblk,nparts,work(wk4))
if (iflag .eq. 0) then
call rscf3(Iftblk,array,work(wkl) ,work(wk2) ,work(wk3),
* nrwblk,nbloks, rgtblk,pivot, iflag,nparts,work(wk4))
endif
endif
C AR E E x
c * Set iflag to -1 if exact singularity was detected. *
C R o o o E =
if (iflag -ne. 0) then
iflag = -1
endif
return
end
C ____________________________________________________________________
subroutine rscfl (array, right, prodxl, nrwblk, pivot, iflag,
* minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), prodxl1(nrwblk,nrwblk,1),
* blaws(nrwblk,nrwblk,1)
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integer nrwblk, pivot(l), iflag, minblk, remblk, nparts

*Kkx *xx

C __________________________________________________________
C *  The following notation is used in the comments: *
C * *
o * V_k, W k <=> array(1,1,k), array(1,nrwblk+1,k) *
o * R_k <=> right(1,1,k) *
c * S k <=> prodx1(1,1,k) *
C * *
c * In addition, the affix ” designates that the matrix is *
o *  transformed at the First level of the factorization. *
C AR o o *xx
integer nsquar, kpart, kblok, base, basel, top, info
c
nsquar = nrwblk**2
C AR L o o o E =
o * Each loop 20 iteration is independent and could *
o * execute concurrently with the others. *
C AR E T x
C$DOACROSS SHARE (array, right, prodxl, nrwblk, pivot, iflag,
C$& minblk, remblk, nparts, blaws, nsquar),
C$& LOCAL (kpart, kblok, base, basel, top, info)
do 20 kpart = 1, nparts
C AR o, *xx
C * Rescaling starts at the second-last block-row *
c * of each partition. *
C R L o o o *xx
call partx(minblk,remblk,kpart,base, top)
basel = base - 1
C AR o, *kx
c * W _basel” <- (W_basel - V_basel) *
C AR L o E =
call DAXPY(nsquar,-1.dO,array(1,1,basel),1,
* array(1,nrwblk+1,basel),1)
C AR o, **xx
C * W _basel” <- LUfact(W_basel - V_basel) *
C A **xx
call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,basel),nrwblk,
* pivot(basel*nrwblk+1),iflag)
if (iflag .ne. 0) return
C AR **kx
C * V_basel’ <- (W_basel - V_basel) -1 V_basel *
C AR L o o o *xx
call DGETRS(’N” ,nrwblk,nrwblk,array(1,nrwblk+1,basel),
* nrwblk,pivot(basel*nrwblk+1),
* array(1,1,basel),nrwblk, info)
C AR o, **xx
o * S_kpart’ <- (V_base V_basel’)"T *
C * *
o * [ Notes: 1. The transpose of the product is accumulated *
C * since Lapack’s DGEMM is faster multiplying in *
c * this mode when both matrices are dense. *
C * *
o * 2. After the last call to DGEMM, the resulting *
o * matrix must be transposed once. 1 =
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C AR L o o E =
call DGEMM(C T, T” ,nrwblk,nrwblk,nrwblk,
* 1.d0,array(1,1,basel),nrwblk,
* array(1,1,base),nrwblk,
* 0.d0,prodx1(1,1,kpart),nrwblk)
C AR L o o E
c * Each partition is now processed sequentially *
c * from the third-last block row to the top. *
C AR **kx
do 10 kblok = base-2, top, -1
C AR L o o E =
C * R _kblok <- W_kblok *
C * *
c * [ Note: The right block must be saved in order to *
o * transform subsequent right hand sides. 1 =
C AR L o o o E =
call DCOPY(nsquar,array(1,nrwblk+1,kblok),1,
* right(l1,1,kblok),1)
C AR * kX
c * W_kblok” <- W_kblok(l + V_kblok+1”) - V_kblok *
C AR L o o *xx
call DCOPY(nsquar,array(1,1,kblok+1),1,
* blaws(1,1,kpart),1)
call maddi(C+”,nrwblk,blaws(1,1,kpart))
call DCOPY(nsquar,array(1,1,kblok),1,
* array(1,nrwblk+1,kblok),1)
call DGEMM(’N”,”>N” ,nrwblk,nrwblk,nrwblk,
* 1.d0,right(1,1,kblok),nrwblk,
* blaws(1,1,kpart),nrwblk,
* -1.d0,array(1,nrwblk+1,kblok),nrwblk)
C AR L o o *xx
o * W_kblok” <- LUfact(W_kblok(l + V_kblok+1”) - V_kblok) *
C AR L o o o E =
call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,kblok),
* nrwblk,pivot(kblok*nrwblk+1), iflag)
if (iflag .ne. 0) return
C AR L o o o *xx
c * V_kblok” <- (W_kblok(l + V_kblok+17) *
c * - V_kblok)™-1 V_kblok *
C AR o **xx
call DGETRS(’N” ,nrwblk,nrwblk,array(l1,nrwblk+1,kblok),
* nrwblk,pivot(kblok*nrwblk+1),
* array(1,1,kblok),nrwblk, info)
C AR L L o o *xx
c * S kpart” <- V_kblok”"T S_kpart” *
C AR **xx
call DGEMM(*T”,”N” ,nrwblk,nrwblk,nrwblk,
* 1.d0,array(1,1,kblok),nrwblk,
* prodx1(1,1,kpart),nrwblk,
* 0.d0,blaws(1,1,kpart) ,nrwblk)
call DCOPY(nsquar,blaws(1,1,kpart),1,
* prodx1(l,1,kpart),1)
10 continue
E =

C *kx
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C *
C **kk
C E o =
C *
C *
C **kxk
20
C *xk
C *
C *
C *xk
do
C **kk
C *
C **kxk
*
C E o =
C *
C **kk
*
*
*
*
C *xk
C *
C *
C *
C *
C *
C *
C *
C *xkxk
*
30
return
end

The final product must be transposed.

IT there was an odd number of multiplications,
the final product also must be negated.

if (mod(base-top,2) .ne. 0) then
call mnegv(nrwblk,prodx1(1,1,kpart))
end if

continue

[ Notes: 1. R _base-1 is free at this point.

The second-level array right blocks are computed.
(This could be done concurrently.)

30 kpart = 1, nparts - 1
call partx(minblk,remblk,kpart,base, top)

call DCOPY(nsquar,array(1,nrwblk+1,base),1,
right(l1,1,base),1)

call DCOPY(nsquar,array(l,1,base+1),1,
blaws(1,1,kpart),1)
call maddi("+”,nrwblk,blaws(1,1,kpart))
call DGEMM(’N~,”N” ,nrwblk,nrwblk,nrwblk,
1.d0,right(1,1,base),nrwblk,
blaws(1,1,kpart) ,nrwblk,
0.dO,array(1,nrwblk+1,base),nrwblk)

R _base-1 <- W_base(l + V_base+1”)

only right block that need not be saved.

2. W _base(l + V_base+1”) is stored in R_base-1

for use during second-level processing.

call DCOPY(nsquar,array(1,nrwblk+1,base),1,
right(1,1,base-1),1)

continue

subroutine rscf2 (array, right, prodxl, prodx2, nrwblk,
pivot, iflag, minblk, remblk, nparts, blaws)

double precision array(nrwblk,2*nrwblk,1),
right(nrwblk,nrwblk,1), prodxl(nrwblk,nrwblk,1),

*

*

integer nrwblk, pivot(l), iflag, minblk, remblk, nparts

prodx2(nrwblk,1), blaws(nrwblk,1)

It is the

*xx

*xx

*xx

*x*x

*x*x

*xx

*xx

*xx

*xx

**k*x

ok X % %k X X%
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O0O0O0O0O00000O00OO0

O00O0

O00O0

O0O0O0O0000O00OO0

ook % % o % X ok % ¥

ok % ok ok X % %

*
*
*

k <=> array(1,1,k), array(1,nrwblk+1,k)
k <=> right(1,1,k)
k <=> prodx1(1,1,k)

<=> prodx2(1,1)

In addition, the affix ”/”” designates that the
matrix was/is transformed at the first/second level
of the factorization.

integer nsquar, kpart, npartsl, base, top, info

IT there is only one partition, nothing needs to be
done at the second level of the factorization.

Rescaling starts at the second-last block-row of
the second-level array.

nsquar = nrwblk**2
npartsl = nparts - 1
call partx(minblk,remblk,npartsl,base, top)

call DAXPY(nsquar,-1.d0,prodx1(1,1,npartsl),1,
array(1,nrwblk+1,base), 1)

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,base),nrwblk,

pivot(base*nrwblk+1),iflag)
if (iflag .ne. 0) return

call DGETRS(’N”,nrwblk,nrwblk,array(1,nrwblk+1,base),
nrwblk,pivot(base*nrwblk+1),
prodx1(1,1,npartsl),nrwblk, info)

T”” <- (S_nparts” S _nparts-1"7)"T

[ Notes: 1. The transpose of the product is accumulated
since Lapack’s DGEMM is faster multiplying in
this mode when both matrices are dense.

2. After the last call to DGEMM, the resulting
matrix must be transposed once.

call DGEMM(C’T”,”>T” ,nrwblk,nrwblk,nrwblk,
1.d0,prodx1(1,1,npartsl),nrwblk,

ok % % ok % X ok % X

**x*x

*xx

**k*x

*xx

*k*x

*k*x

*x*x

**x*x

*x*x

*k*x

*xx

*
*
*

ok X ok ok X % %
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O00O0

O0O000O0

Oo00O0

00

O00O0

10

do

* [ No

*

*kx

*Kkx

*kx

*kx

*Kkx

*kx

con
*Ahk

E =

*kx

E =

if

end
return

prodx1(1,1,nparts),nrwblk,
0.d0, prodx2,nrwblk)

The second-level array is now processed sequentially
from the third-last block row to the top.

10 kpart = nparts-2, 1, -1
call partx(minblk,remblk,kpart,base, top)

W _base”” <- W_base’(l + S_kpart+1””) - S kpart”

te: A copy of W _base” was stored in R_base-1 during
the First-level factorization.

call DCOPY(nsquar,prodx1(1,1,kpart+l),1,blaws,1)

call maddi("+”,nrwblk,blaws)

call DCOPY(nsquar,prodx1(l,1,kpart),1,
array(1,nrwblk+1,base), 1)

call DGEMM(’N~,”N” ,nrwblk,nrwblk,nrwblk,

1.d0,right(1,1,base-1),nrwblk,blaws,nrwblk,

-1.d0,array(1,nrwblk+1,base),nrwblk)

*xx

*k*x

*

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,base),nrwblk,

pivot(base*nrwblk+1),iflag)
if (iflag -ne. 0) return

S kpart®’” <- (W_base’(l + S _kpart+1”7)
- S kpart”’)"-1 S kpart’

call DGETRS(’N”,nrwblk,nrwblk,array(1,nrwblk+1,base),
nrwblk,pivot(base*nrwblk+1),
prodx1(1,1,kpart),nrwblk, info)

call DGEMM(*T”,>N” ,nrwblk,nrwblk,nrwblk,
1.d0,prodx1(1,1,kpart),nrwblk,
prodx2,nrwblk,0.d0,blaws,nrwblk)

call DCOPY(nsquar,blaws,1,prodx2,1)

tinue

IT there was an odd number of multiplications,
the final product also must be negated.

(mod(npartsl,2) .ne. 0) then
call mnegv(nrwblk,prodx2)
if

**x*x

*x*x

*xx

*x*x

*x*x

*xx

*x*x

*xx
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end
C ____________________________________________________________________
subroutine rscf3 (Iftblk, array, right, prodxl, prodx2, nrwblk,
* nbloks, rgtblk, pivot, iflag, nparts, blaws)
c
double precision Iftblk(nrwblk,1), array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), prodxl1(nrwblk,nrwblk,1),
* prodx2(nrwblk,1), rgtblk(nrwblk,1), blaws(nrwblk,1)
integer nrwblk, nbloks, pivot(l), iflag, nparts
C R o o E =
o *  The following notation is used in the comments: *
C * *
c * B a, B b <=> Iftblk, rgtblk *
c * V_ k, W k <=> array(1,1,k), array(1,nrwblk+1,k) *
o * R_k <=> right(1,1,k) *
c * S k <=> prodx1(1,1,k) *
c * T <=> prodx2(1,1) *
C * *
C * In addition, the affix ”/”” designhates that the *
c *  matrix was (or at least could have been) transformed *
o * at the first/second level of the factorization. *
o * (In order to be consistent with other variants of *
C *  this algorithm, all transformations to B_a and B_b *
c * occur at the third level of the factorization.) *
C AR **xx
integer nsquar, info
c
nsquar = nrwblk**2
C AR **xx
c * R_nbloks <- LUFfact(W_nbloks) *
C * *
c * [ Note: The LU factorization of W_nbloks is stored *
o * in R_nbloks for use below and for processing *
c * subsequent right hand sides. The pivot indices *
c * are stored in pivot(l..nrwblk). 1 =
C A o **xx
call DCOPY(nsquar,array(1,nrwblk+1,nbloks),1,
* right(l1,1,nbloks),1)
call DGETRF(nrwblk,nrwblk,right(1,1,nbloks),nrwblk,
* pivot,iflag)
if (iflag .ne. 0) return
C AR L o o o E =
o * The content of part of the third-level block-array *
o * depends on whether or not paritioning was done. *
C AR o **xx
if (nparts .gt. 1) then
C AR L o o E =
o * IT there is more than one partition, the third-level *
o * block-array is of the form [B_a’” B b *
c * T”” W_nbloks], *
c * where B a’” =B a” +B a” S 17’ *
c * =B_a” (1 +S_.17%) *
c * =(Ba+BaVvVl’)) d+S1) *
c * =B a(+V1) A +S17) *



APPENDIX E. FORTRAN SOURCE LISTINGS 263

c * =B a({ +V.1 +S1”” +V 1> S 1"”), *
C * *
c * and T>” = +/-S nparts” S nparts-1"~... S 17~°. *
C * *
o * Instead of directly factoring this 2x2 block array, *
o * the reduced array [B_ a’” - B_ b W _nbloks™1 T””] is *
c * factored and its factorization is stored at the base *
c * of the last partition in W_nbloks. *
C * *
o * [ Note: This cannot be done in the slf_lu or sIf _qr *
o * algorithms since W_nbloks is often numerically *
o * singular at this level of the factorization. 1 =
C AR **xx
c
C AR o o E =
c * W _nbloks <- B.a (I + V.17 + S 1”7 +V_ 17 S 1°7) *
C AR L o o E =
call DCOPY(nsquar,prodxl,l,blaws,1)
call DGEMM(’N~,”N” ,nrwblk,nrwblk,nrwblk,
* 1.d0,array,nrwblk,prodxl,nrwblk,
* 1.d0,blaws,nrwblk)
call DAXPY(nsquar,1.dO,array,1,blaws,1)
call maddi(C+”,nrwblk,blaws)
call DGEMM(’N~,”N” ,nrwblk,nrwblk,nrwblk,
* 1.do, Iftblk,nrwblk,blaws,nrwblk,
* 0.dO0,array(1,nrwblk+1,nbloks),nrwblk)
C R o *xx
C * W_nbloks <- (B_a”” - B_b W nbloks™1 T”7) *
C AR **xx
call DCOPY(nsquar,prodx2,1,blaws,1)
call DGETRS(’N”,nrwblk,nrwblk,right(1,1,nbloks),
* nrwblk,pivot,blaws,nrwblk, info)
call DGEMM(’N~”,”N” ,nrwblk,nrwblk,nrwblk,
* -1.d0, rgtblk,nrwblk,blaws,nrwblk,
* 1.d0,array(1,nrwblk+1,nbloks),nrwblk)
C A **kx
c * W_nbloks <- LUfact(B_a’” - B b W nbloks™1 T*7) *
C AR L o o *xx
call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,nbloks),nrwblk,
* pivot(nbloks*nrwblk+1),iflag)
else
C AR L o o o E =
o * IT there is only one partition, the third-level *
c * block-array is of the form [B_a” B_b *
C * S 17 W_nbloks], *
C * where B a> =B a+BaVvl’, *
C * *
C * and S 1” = +/-V_nbloks V_nbloks-1"... V_17. *
C * *
c * Instead of directly factoring this 2x2 block array, *
c * the reduced array [B a” - B_ b W nbloks™1 S 1°] is *
c * factored and its factorization is stored in W_nbloks. *
C AR L o o *xx
c
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c KR e *kk
c * W _nbloks <- (B_.a + B_.a V_17) *
C AR o **xx

call DCOPY(nsquar, Iftblk,1,array(l1,nrwblk+1,nbloks),1)
call DGEMM(’N”,”N” ,nrwblk,nrwblk,nrwblk,

* 1.dO, Iftblk,nrwblk,array,nrwblk,

* 1.d0,array(1,nrwblk+1,nbloks),nrwblk)
C A **xx
c * W _nbloks <- (B_a” - B_b W nbloks™1 S 17) *
c KR e *kk

call DCOPY(nsquar,prodxl,1,blaws,1)

call DGETRS(’N” ,nrwblk,nrwblk,right(1,1,nbloks),
* nrwblk,pivot,blaws,nrwblk, info)

call DGEMM(’N~,”N” ,nrwblk,nrwblk,nrwblk,
* -1.d0,rgtblk,nrwblk,blaws,nrwblk,
* 1.d0,array(1,nrwblk+1,nbloks),nrwblk)

C *kx **k*x

c * W _nbloks <- LUfact(B_a” - B b W nbloks™1 S _17) *

*kk *kk
(]

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,nbloks),nrwblk,
* pivot(nbloks*nrwblk+1),iflag)
endif
return
end

subroutine rscsl (Iftblk, array, nrwblk, nbloks, rgtblk,
* b, pivot, nparts, work)

double precision Iftblk(1), array(l), rgtblk(l), b(1), work(l)
integer nrwblk, nbloks, pivot(l), nparts
*  Given the factors of ABD matrix A computed by subroutine *
* ’rscfa’ and stored in arrays Iftblk, array, rgtblk, *
* work and pivot, this subroutine solves the linear system *
* A X =b. b is overwritten with x. See comments in *
*  subroutine “rscale’ for further details. *

O0O0O0O00O0

Work-space allocation:
right blocks - work(l1)..work(wk2-1)
1st-level product blocks - work(wk2).._.work(wk3-1)
2nd-level product block work(wk3) . .work(wk4-1)
local storage for BLAS work(wk4) . .end

Total requirement: nbloks*[nrwblkxnrwblk]

+ nparts*[nrwblkxnrwblk]
+ [nrwblkxnrwblk]
+ nparts*[nrwblkxnrwblk]

nsquar = nrwblk**2

wk1 1

wk2 = wkl + nbloks*nsquar

wk3 = wk2 + nparts*nsquar

O0O0O00000000OO0
ook ok X ok % X X % ¥
ook % % o % X X % ¥
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wk4 = wk3 + nsquar

C A o **xx
c * Calculate minimum number of blocks per partition *
c * Remaining blocks are distributed evenly among the *
o * Ffirst partitions. *
C R L o o E =
minblk = nbloks/nparts
remblk = nbloks - minblk*nparts
C AR o, **xx
o * Three level forward elimination. *
C AR L L o *xx
call rscsfl(array,work(wkl),nrwblk,b,
* pivot,minblk,remblk,nparts,work(wk4))
call rscsf2(array,work(wkl) ,work(wk2),nrwblk,b,
* pivot,minblk,remblk,nparts,work(wk4))
call rscsf3(Iftblk,array,work(wkl),nrwblk,rgtblk,
* b,b,pivot,minblk, remblk,nparts,work(wk4))
C AR *xx
c * Three level back-solve. *
C AR **xx
call rscsb3(array,work(wkl) ,work(wk2) ,work(wk3),
* nrwblk,nbloks,b,b,pivot,nparts,work(wk4))
call rscsb2(array,work(wk2),nrwblk,b,
* minblk, remblk, nparts,work(wk4))
call rscsbl(array,nrwblk,b,
* minblk, remblk,nparts,work(wk4))
return
end
C ____________________________________________________________________
subroutine rscsfl (array, right, nrwblk, phi,
* pivot, minblk, remblk, nparts, blaws)
c
double precision array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), phi(1), blaws(nhrwblk,nrwblk,1)
integer nrwblk, pivot(l), minblk, remblk, nparts
C AR kX
o *  The following notation is used in the comments: *
C * *
c * V_ k, W k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R _k <=> right(1,1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
o * In addition, the affix ” designates that the vector is *
o *  transformed at the First level of the forward solve. *
C AR **kx
integer kpart, kblok, base, basel, top, info
C AR L o o E =
o * Each loop 30 iteration is independent and could *
o * execute concurrently with the others. *
C AR o, **xx
C$DOACROSS SHARE (array, right, nrwblk, phi,
C$& pivot, minblk, remblk, nparts, blaws),
C$& LOCAL (kpart, kblok, base, basel, top, info)

do 30 kpart = 1, nparts

265
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c KR e *kk
(o} * Forward elimination starts at the second-last *
c * block-row of each partition. *
C AR *xx

call partx(minblk,remblk,kpart,base, top)
basel = base - 1

C AR **xx
c * phi_basel” <- (W_basel - V_basel) -1 phi_basel *
C A **kx
call DGETRS(’N”,nrwblk,1,array(1,nrwblk+1,basel),
* nrwblk,pivot(basel*nrwblk+1),
* phi(basel*nrwblk+1),nrwblk, info)
C A **kx
c * Each partition is now processed sequentially *
o * from the third-last block row to the top. *
C AR L L o o E =
do 10 kblok = base-2, top, -1
c * phi_kblok” <- phi_kblok + R_kblok phi_kblok+1~ *
C AR o, **xx
call DGEMV(’N” ,nrwblk,nrwblk,
* 1.d0,right(1,1,kblok),nrwblk,
* phi((kblok+1)*nrwblk+1),1,
* 1.d0,phi(kblok*nrwblk+1),1)
C AR **xx
c * phi_kblok” <- (W_kblok(l + V_kblok+1”) *
c * - V_kblok)™-1 phi_kblok” *
C AR L o o E =
call DGETRS(’N” ,nrwblk,1,array(1,nrwblk+1,kblok),
* nrwblk,pivot(kblok*nrwblk+1),
* phi(kblok*nrwblk+1),nrwblk, info)
10 continue
C AR o o o E =
c * phi_base is now computed. First, phi_top is stored *
c * in a temporary vector (temp <- phi_top). *
C AR **kx
call DCOPY(nrwblk,phi(top*nrwblk+1),1,blaws(1,1,kpart),1)
C AR L o o E =
c * The temporary vector is then processed sequentially *
c * from the second block-row to the bottom. *
C AR **kx
do 20 kblok = top+l1l, base-1
AR L o o o E =
o * temp <- phi_kblok” - V_kblok” temp *
call DCOPY(nrwblk,phi(kblok*nrwblk+1),1,
* blaws(1,2,kpart),1)
call DGEMV(’N” ,nrwblk,nrwblk,
* -1.d0,array(1,1,kblok),nrwblk,
* blaws(1,1,kpart),1,1.d0,blaws(1,2,kpart),1)
call DCOPY(nrwblk,blaws(1,2,kpart),1,
* blaws(1,1,kpart),1)
20 continue

C *kx *x*x
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o * phi_base” <- phi_base - V_base temp *
C AR **xx
call DGEMV(C’N” ,nrwblk,nrwblk,
* -1.d0,array(1,1,base),nrwblk,
* blaws(1,1,kpart),1,1.d0,phi(base*nrwblk+1),1)
30 continue
C AR **xx
c * Finally, phi_base is updated in each partition by *
c * computing a vector sum across partition boundaries. *
o * (This could be done concurrently.) *
C AR L o e E =
do 40 kpart = 1, nparts - 1

AR **xx
c * phi_base” <- phi_base” + R _base phi_base+1” *
C R L o o o *Kxx

call partx(minblk,remblk,kpart,base, top)
call DGEMV(’N” ,nrwblk,nrwblk,

* 1.dO,right(1,1,base),nrwblk,

* phi((base+1)*nrwblk+1),1,

* 1.d0,phi(base*nrwblk+1),1)

40 continue
return

end
C ____________________________________________________________________

subroutine rscsf2 (array, right, prodxl, nrwblk, phi,

* pivot, minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1),

* right(nrwblk,nrwblk,1), phi(1),

* prodx1(nrwblk,nrwblk,1), blaws(nrwblk,1)

integer nrwblk, pivot(1l), minblk, remblk, nparts
C AR L o o E =
o *  The following notation is used in the comments: *
C * *
C * V_ k, W k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R _k <=> right(1,1,k) *
c * S k <=> prodx1(1,1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
c * In addition, the affix ”/”” designhates that the *
c *  vector was/is transformed at the Ffirst/second level *
o * of the forward solve. *
C AR L o *xx
integer kpart, base, basep, top, info
C AR o **xx
c * IT there is only one partition, nothing needs to be *
o * done at the second level of the forward solve. *
C AR L L o *xx
if (nparts .eq. 1) return

C AR o, **xx
c * Forward elimination starts at the second-last *
C * block-row of the second-level array. *
C AR L o o o *xx

call partx(minblk,remblk,nparts-1,base,top)
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O00O0 O00O0 0O0O0O00O0 O000O0 (9]

O0O00O0

(9]

10

20

AR L o o E =
* phi_base”” <- (W_base” - S nparts-17)"-1 phi_base’ *
call DGETRS(’N”,nrwblk,1,array(1,nrwblk+1,base),

* nrwblk,pivot(base*nrwblk+1),

* phi(base*nrwblk+1),nrwblk, info)

* Forward elimination now proceeds sequentially *
* from the third-last block row to the top of the *
* second-level array. *
KXk E =

do 10 kpart = nparts-2, 1, -1
basep = base
call partx(minblk,remblk,kpart,base, top)

AR L o o E =
* phi_base”” <- phi_base” + W_base” phi_basep”’ *
* *
* [ Note: A copy of W base”’ was stored in R _base-1 during *
* the first-level factorization. 1 =
call DGEMV(’N” ,nrwblk,nrwblk,
* 1.d0,right(1,1,base-1),nrwblk,
* phi(basep*nrwblk+1),1,1.d0,phi(base*nrwblk+1),1)
* phi_base”” <- (W_base’(l + S kpart+1”?) *
* - S_kpart”’)”-1 phi_base”” *
AR L o o o E =
call DGETRS(’N”,nrwblk,1,array(1,nrwblk+1,base),
* nrwblk,pivot(base*nrwblk+1),
* phi(base*nrwblk+1),nrwblk, info)
continue
AR L o o o *xx
* phi_base nparts”” is now computed. First, phi_base 1”~ *
* is stored in a temporary vector (temp <- phi_base 177). *

call partx(minblk,remblk,1,base,top)
call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)

AR L o o o E =
* The temporary vector is then processed sequentially *
* from the second block-row to the bottom of the *
* second-level array. *
E = E =

do 20 kpart = 2, nparts-1
call partx(minblk,remblk,kpart,base, top)

AR **xx
* temp <- phi_base”” - S kpart’” temp *
E = E =

call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws(1,2),1)
call DGEMV(’N” ,nrwblk,nrwblk,

* -1.d0,prodx1(1,1,kpart),nrwblk,
* blaws,1,1.d0,blaws(1,2),1)
call DCOPY(nrwblk,blaws(1,2),1,blaws,1)
continue
E = E =

268
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(¢} O0O0O0O0O00000O0O0000OO0

O0O0O0O0O0000000000O00O00O0O0

* phi_base _nparts”’ <- phi_base nparts”’ - S_nparts’ temp *
call partx(minblk,remblk,nparts,base,top)
call DGEMV(C’N” ,nrwblk,nrwblk,
* -1.d0,prodx1(1,1,nparts),nrwblk,
* blaws,1,1.d0,phi(base*nrwblk+1),1)
return
end

subroutine rscsf3 (Iftblk, array, right, nrwblk, rgtblk,
* beta, phi, pivot, minblk, remblk, nparts, blaws)

double precision Iftblk(nrwblk,1), array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), rgtblk(nrwblk,1),
* beta(1), phi(1), blaws(nrwblk,1)

integer nrwblk, pivot(l), minblk, remblk, nparts

b <=> Iftblk, rgtblk

k <=> array(1,1,k), array(1,nrwblk+1,k)
k <=> right(1,1,k)

a <=> beta(l) (<=> phi_0)

phi_k <=> phi(k*nrwblk+1), k >= 1

In addition, the affix ”/”” desighates that the
vector was (or at least could have been) transformed
at the first/second level of the forward solve.

(In order to be consistent with other variants of
this algorithm, all transformations to beta occur

at the third level of the forward solve.)

ok % % ok 3k X % ok % X ok % X

IT there is more than one partition, the third-level
system is of the form

[B_.a>” B b [y a = [beta’”
T~ W _nbloks 7 vy b] phi_base nparts’’],

where B_a’”, T?”, and phi_base_nparts are as

described in rscf3.f and rscsf2.f, and
beta’” beta’ + B_a” phi_base 17~
beta” + (B_.a + B_a V_17) phi_base_17"
beta + B_a phi_1~
+ (B_a + B_aV_1”) phi_base_ 1"
beta + B_a (phi_1” + phi_base 17~
+ V_17 phi_base _177)

The right-hand side of the reduced nrwblkxnrwblk
system for y a (see rscf3.f) is then

ook % X R % X X ok % X ok ok X X ok % X
ok % X o % X X ok % X ok ok X X ok % X
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00

O00O0

O0O0O0O000O0

O0O0O0O000000O00000OO0

0Oo0O0

ok X X ok %

ook kX b o % X b 3 X X ok %

*

*x

*kx

*kx

*Kxx

*kx

beta’”” = beta’” - B_b W _nbloks™-1 phi_base nparts””.

beta’” <- beta + B_a (phi_1” + phi_base 17~
+ V_17 phi_base 177)

call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DGEMV(’N” ,nrwblk,nrwblk,1.d0,array,nrwblk,
phi(base*nrwblk+1),1,1.d0,blaws,1)
call DAXPY(nrwblk,1.dO,phi(nrwblk+1),1,blaws,1)
call DGEMV(C’N” ,nrwblk,nrwblk,1.d0, Iftblk,nrwblk,
blaws,1,1.d0,beta,l)

beta’”” <- beta’” - B_ b W_nbloks™-1 phi_base_nparts”’

[ Note: The LU factorization and pivot indices

for W_nbloks were stored in R_nbloks and
pivot(1l..nrwblk), respectively, during the
third level of the factorization.

call partx(minblk,remblk,nparts,base,top)

call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)

call DGETRS(’N”,nrwblk,1,right(1,1,base),nrwblk,
pivot,blaws,nrwblk, info)

call DGEMV(’N” ,nrwblk,nrwblk,-1.d0,rgtblk,nrwblk,
blaws,1,1.d0,beta,1)

IT there is only one partition, the third-level
system is of the form

[B_.a” B_ b [y a = [beta’
S 17 W_nbloks 1 vy b] phi_base 17],

where B_a”, S 1” are as described in rscf3.f, and
beta’ = beta + B_a phi_1~

The right-hand side of the reduced nrwblkxnrwblk
system for y a (see rscf3.f) is then

beta’”’” = beta” - B_b W_nbloks™-1 phi_base 1~.

call DGEMV(C’N” ,nrwblk,nrwblk,1.d0, Iftblk,nrwblk,
phi(nrwblk+1),1,1.d0,beta,l)

*

*xx

*k*x

*xx

ook ok X b ok % X b 3k X X ok %

*xx

*xx

*k*x
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call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DGETRS(’N”,nrwblk,1,right(1,1,base),nrwblk,

* pivot,blaws,nrwblk, info)
call DGEMV(C’N” ,nrwblk,nrwblk,-1.d0, rgtblk,nrwblk,
* blaws,1,1.d0,beta,1)
endif
return

end
C ____________________________________________________________________

subroutine rscsb3 (array, right, prodxl, prodx2, nrwblk,

* nbloks, beta, phi, pivot, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1),

* right(nrwblk,nrwblk,1), prodxl(nrwblk,nrwblk,1),

* prodx2(nrwblk,1), beta(l), phi(1), blaws(nrwblk,1)

integer nrwblk, nbloks, pivot(l), nparts
C AR L L o o E =
c *  The following notation is used in the comments: *
C * *
c * V_ k, W k <=> array(1,1,k), array(1,nrwblk+1,k) *
o * R_k <=> right(1,1,k) *
c * S k <=> prodx1(1,1,k) *
c * T <=> prodx2(1,1) *
c * beta <=> beta(l) (<=> phi_0) *
c * phi_k <=> phi(k*nrwblk+1), k >= 1 *
C * *
o *  Since [beta; phi] is overwritten with the solution, *
C * *
c * ya<=yDO0 <=> beta *
c * y_k <=> phi_k, k =1, nbloks-1 *
o * y b <=> y nbloks <=> phi(nbloks*nrwblk+1) *
C * *
o * In addition, the affix ””” designhates that the solution *
c *  vector is obtained at the third level of the back-solve. *
C A o **kx
integer info

C AR o E =
c * First y a’”” is obtained by solving the reduced system *
C * *
c * [Ba”” - Bb W _nbloks™1 T>”] y_a’”” = beta””’” or *
c * [Ba> - Bb W _nbloks™1 S 1°] y a’”” = beta””’ *
C * *
o * if nparts > 1, or nparts = 1, respectively. *
C * *
c * In either case, the factorization and pivot indices *
c *  for the reduced system are stored in W_nbloks and *
o * pivot_nbloks, respectively. *
C * *
C * Note that y a””” _is not_y a. Rescaling results in *
c * a change of variable which is undone at levels 2 and 1 *
c *  of the back-solve. *
C A **xx

call DGETRS(’N”,nrwblk,1,array(1,nrwblk+1,nbloks),nrwblk,
* pivot(nbloks*nrwblk+1),beta(l),nrwblk, info)
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c KR e *kk
c * Next, y b””” is obtained from *
C * *
c * W _nbloks y b””” = phi_nbloks”” - T”” y a’”” or *
C * W_nbloks y b””” = phi_nbloks” - S 1”7y a””’ *
C * *
c * if nparts > 1, or nparts = 1, respectively. *
C * *
c * Note that y b””” is_y b. Rescaling at levels 1 and 2 *
o * of the factorization did not change y b. *
c KR e *kk

if (nparts .gt. 1) then
call DGEMV(C’N” ,nrwblk,nrwblk,-1.d0,prodx2,nrwblk,

* beta,1,1.d0,phi(nbloks*nrwblk+1),1)
else
call DGEMV(’N” ,nrwblk,nrwblk,-1._.d0,prodx1,nrwblk,
* beta,1,1.d0,phi(nbloks*nrwblk+1),1)
endif
call DGETRS(’N”,nrwblk,1,right(1,1,nbloks),nrwblk,
* pivot,phi(nbloks*nrwblk+1),nrwblk, info)
return
end
C ____________________________________________________________________
subroutine rscsb2 (array, prodxl, nrwblk, phi,
* minblk, remblk, nparts, blaws)
c
double precision array(nrwblk,2*nrwblk,1), phi(1),
* prodx1(nrwblk,nrwblk,1), blaws(nrwblk,1)
integer nrwblk, minblk, remblk, nparts
C AR **xx
o *  The following notation is used in the comments: *
C * *
o * V_k, W k <= array(1,1,k), array(1l,nrwblk+1,k) *
c * S k <=> prodx1(1,1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
o *  Since phi is overwritten with the solution, *
C * *
c * ya<=>yDO0 <=> phi_0 (<=> beta in rscsb3.f) *
c * y k <=> phi_k, k =1, nbloks-1 *
c * y b <=> y nbloks <=> phi(nbloks*nrwblk+1) *
C * *
o * In addition, the affix ””?/”” designates that the *
o * solution vector was/is obtained at the third/second *
c * level of the back-solve. *
C AR **xx
integer kpart, base, basep, top
C AR L o o *xx
o * IT there is only one partition, nothing needs to be *
c * done at the second level of the back-solve. *
C AR E T x
if (nparts .eq. 1) return
C AR L o o o *xx

Cc * Back-solve starts at the first block-row of the *
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o * second-level system and proceeds downward sequentially *

c * to the second-last block-row. *

C AR **xx
base = 0

do 10 kpart = 1, nparts-1
basep = base
call partx(minblk,remblk,kpart,base, top)

C A *kx
c * y base’” <- phi_base - S kpart y basep”’ *
C AR o o o E =
call DGEMV(’N” ,nrwblk,nrwblk,

* -1.dO0,prodx1(1,1,kpart),nrwblk,

* phi(basep*nrwblk+1),1,1.d0,

* phi(base*nrwblk+1),1)
C AR L o o E =
o * The change of variable due to second-level rescaling *
o * is now undone: Yy basep’’ <- y basep”’’ - y base’’ *
C A **kx

call DAXPY(nrwblk,-1.d0,phi(base*nrwblk+1),1,
* phi(basep*nrwblk+1),1)
10 continue
return

end
C ____________________________________________________________________

subroutine rscsbl (array, nrwblk, phi,

* minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1), phi(1),

* blaws(nrwblk,nrwblk,1)

integer nrwblk, minblk, remblk, nparts
C AR L o E =
c *  The following notation is used in the comments: *
C * *
c * V_ k, W k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
o *  Since phi is overwritten with the solution, *
C * *
c * ya<=>yDo0 <=> phi_0 (<=> beta in rscsb3.f) *
c * y k <=> phi_k, k =1, nbloks-1 *
c * y b <=> y nbloks <=> phi(nbloks*nrwblk+1) *
C * *
o * In addition, the affix ”’/” designhates that the *
o * solution vector was/is obtained at the second/first *
c * level of the back-solve. *
C AR **x*x
integer kpart, kblok, base, top

C AR o o o E =
o * Each loop 20 iteration is independent and could *
C * execute concurrently with the others. *
C AR o **x*x
C$DOACROSS SHARE (array, nrwblk, phi,
C$& minblk, remblk, nparts, blaws),

C$& LOCAL (kpart, kblok, base, top)
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O0O00O0

(9]

O00O0

O0O0O0O00000000000000000O00OO0

10
20

do 20 kpart = 1, nparts

A o *xx
* Back-solve starts at the first block-row of each *
* partition and proceeds downward sequentially to *
* the second-last block-row. *
*xk *Kkx

call partx(minblk,remblk,kpart,base, top)
do 10 kblok = top, base-1

* y_kblok” = phi_kblok - V_kblok y_kblok-1~ *
AR L o *xx
call DGEMV(’N” ,nrwblk,nrwblk,
* -1.d0,array(1,1,kblok),nrwblk,
* phi((kblok-1)*nrwblk+1),1,1.dO,
* phi(kblok*nrwblk+1),1)
AR L o o o E =
* The change of variable due to first-level rescaling *
* is now undone: vy kblok-1" <- y kblok-1" - y kblok” *
call DAXPY(nrwblk,-1.d0,phi(kblok*nrwblik+1),1,
* phi((kblok-1)*nrwblk+1),1)
continue
continue
return
end

subroutine maddi (sgn, n, A)

character*1l sgn

double precision A(1)

integer n
maddi” overwrites A with (I + A) if sgn .eq. “+” or
(1 - A ifsgn .eq. *-".

on entry

sgn [character*1]
+” or *- as above.

n [integer]
The (implicit) number of rows and columns
in A. A is accessed as a 1D array inside
this subroutine.

A [double precision(n**2)]
The matrix to be transformed.

on return

sgn [character*1]
Unchanged.

oo % X b 3k % X o 3k X X ok X X % ok % X ok % X

ook % X b % % X b 3k X % o X X % ok % X ok % X

n [integer]
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o * Unchanged. *
C * *
c * A [double precision(n**2)] *
c * Overwritten with either (1 + A) or (I - A). *
C R o o *xx
logical plus, minus, LSAME
integer i, k, nsquar
c
nsquar = n**2
plus = LSAME (sgn, ’+7)
minus = LSAME (sgnh, ’-7)
if ( plus ) then
do 10 k =1, n
i = (k-1)*n + k
A(i) = A(i) + 1.dO
10 continue
else if ( minus ) then
call mnegv (n, A)
do 20k =1, n
i = (k-1)*n + k
A(i) = A(i) + 1.dO
20 continue
else
write(6,*) > *** maddi: sgn not understood ~
end if
return
end
C ____________________________________________________________________
subroutine mnegv (n, A)
c
double precision A(1)
integer n
C AR L o o o E =
c * ’mnegv’ overwrites A with -A. *
C * *
(o} * on entry *
C * *
o * n [integer] *
c * The (implicit) number of rows and columns *
c * in A. A is accessed as a 1D array inside *
c * this subroutine. *
C * *
o * A [double precision(n**2)] *
o * The matrix to be negated. *
C * *
c * on return *
C * *
o * n [integer] *
c * Unchanged. *
C * *
c * A [double precision(n**2)] *
c * Overwritten with -A. *
C AR L o o E =

integer k, nsquar
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O0O0O0O0O000000000000000O00OO0

nsquar = n**2
do 10 k = 1, nsquar
AK) = - AK)
10 continue
return
end
subroutine mtran (n, A)
double precision A(n,1)
integer n
A
* mtran’ overwrites A with transpose(A).
*
* on entry
*
* n [integer]
* The number of rows and columns in A.
* (If A is dimensioned as a 2D array in
* the calling (sub) program, n must be the
* leading dimension.)
*
* A [double precision(n,n)]
* The matrix to be transposed.
*
* on return
*
* n [integer]
* Unchanged.
*
* A [double precision(n,n)]
*

*

* X

The transpose of A.

double precision temp
integer i, j

ok 3k X b % X X ok 3k X % o X X % % X X %

do 20 jJ =1, n
do 10 1 = j+1, n
temp = A(1,]J)
A(T,3) = AU, D)
A(,i) = temp
10 continue
20 continue
return
end
subroutine partx (minblk, remblk, k, base, top)
integer minblk, remblk, k, base, top
* partx” calculates the index of the base and top block
*  of the k-th partition. The indexing scheme assumes that
* nbloks >= 2*nparts, so minblk >= 2 and remblk >= 0.
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C * *
(o} * on entry *
C * *
c * minblk [integer] *
o * minimum number of blocks/partition *
c * (minblk = nbloks/nparts) *
C * *
c * remblk [integer] *
c * first remblk partitions have minblk+1 blocks *
o * (remblk = nbloks - minblk*nparts) *
C * *
o * k [integer] *
C * *
c * on return *
C * *
o * base [integer] *
o * index of base block of k-th partition *
C * *
c * top [integer] *
c * index of top block of k-th partition *
C AR L o o E =
integer khigh, klow
c
if (k .le. remblk) then
khigh = k
klow = 0O
else
khigh = remblk
klow = k - khigh
endif
base = khigh*(minblk+1) + klow*minblk
top = base - minblk + 1
if (k .le. remblk) then
top = top - 1
endif
return

end



APPENDIX E. FORTRAN SOURCE LISTINGS 278

E2 SLF-LU

subroutine sif_lu (Iftblk, array, nrwblk, nbloks, rgtblk,
* b, pivot, iflag, nparts, work)

double precision Iftblk(1), array(l), rgtblk(l), b(1), work(l)
integer nrwblk, nbloks, pivot(l), iflag, nparts

This subroutine solves the linear system A X = b where

A 1s an Almost Block Diagonal matrix of the form

Iftblk rgtblk
a
bgnblk r
r
a a
y r
G.Dr
a
y
.2
a
r
r
a
y endblk

(, ,nbloks-1)

Iftblk and rgtblk are each nrwblkxnrwblk, array(, ,k)

is 2*nrwblkxnrwblk, k = 1._.nbloks, endblk/bgnblk alias
the upper/lower nrwblkxnrwblk block of array(, ,nbloks),
bgnblk overlaps the first nrwblk rows of array(,,1),
{[array(, ,k) array(,,k+1)], k = 1._nbloks-2} overlap

by nrwblk rows each, and endblk overlaps the last nrwblk
rows of array(,,nbloks-1). The linear system is square
and of order (nbloks+1)*nrwblk.

[ Note: ABDs often arise in other forms. For example,
Iftblk and rgtblk may be uncoupled so that Iftblk
appears at the top of the matrix and rgtblk appears
at the bottom. Also, the blocks in array(,,) are
often arranged so that array(, ,k) holds the left
and right blocks in block-row k. In these cases,
the ABD system first can be transformed into the
correct form for input to “slf _lu” using auxiliary
routines included with this package. See “couple”’
and “rotcw” for details. Alternatively, “slifluc’,
a modified version of ’slf_lu” that incorporates
both “couple” and “rotcw”, can be used. 1

THE ALGORITHM:

The system is decomposed and solved using a variant
of the parallel SLF-LU algorithm described in [1].-

O000000000000000000000000000000000000000000O0000O0
ook % X b 3k % b b 3k X b b X X b 3k 3k o b 3k X o o % X b b 3 X b % X X o % X o ok X X ok % X X %
ok % % b 3k % b ok 2 X o b X X b 3k 3k % b o X X o X b b % X b % X X o % X % ok X X ok % X X %
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OO0O00OO00O0000000000000000000000000000000000000000000000O0O0

ook kX b 3k 3 X b 3k X b b X X b 3k 3k b b 3 X X b % X b b X b o X X o 3 X b b % X b % % X ok % X X ok X X % %

Parallelism is achieved by slicing the system into
nparts’ partitions in such a way that each partition
can be processed independently. Assuming at least one
processor is available per partition, a speed-up of S
(over sequential SLF-LU) may be attained where

1 <= S < nparts,

with S =1 if nbloks < 2*nparts,
and S 7 nparts if nparts << nbloks/nparts.

In other words, for systems of sufficiently high order,
speed-up is approximately linear with respect to nparts
when nparts is sufficiently small. Sample problems and
timing benchmarks are included with this package.

PARAMETERS:
on entry

Iftblk [double precision(nrwblk,nrwblk)]
The top left block of the ABD matrix.

array [double precision(2*nrwblk,nrwblk,nbloks)]
array(,,k), k = 1..nbloks-1, contains the
k-th 2*nrwblkxnrwblk block of the ABD matrix
as described above. array(, ,nbloks) contains
endblk/bgnblk as described above.

nrwblk [integer]
The number of columns in Iftblk, array(,,k)
and rgtblk. The number of rows in
Iftblk and rgtblk. There are 2*nrwblk
rows in array(,,k).

nbloks [integer]
The number of 2*nrwblkxnrwblk blocks
in array(,,)-

rgtblk [double precision(nrwblk,nrwblk)]
The top right block of the ABD matrix.

b [double precision((nbloks+1)*nrwblk)]
The right-hand side vector.

pivot [integer((nbloks+2)*nrwblk)]
Work space to hold the pivoting strategy.

nparts [integer]
The number of partitions to use in the
decomposition and solve.

work [double precision(2*nparts*nrwblk +
(2*nbloks+4*nparts+4)*nrwbl1k**2)7]

OB % % b 3k 3 X o 3k X b b X X b 3k 3k o b 2 X X b % X b o % X o o X X o 3 X b b X X o 3k % X b % X X ok X X % %
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Work space to hold Fill-in and local
storage for BLAS.

on return

Iftblk, array, rgtblk, work
The desired decomposition of the ABD matrix.

[ Note: |IFf iflag = -1 the matrix is exactly
singular. The factorization has been
completed, but division by zero will
occur if it is used to solve a system
of equations. 1

nrwblk, nbloks
Unchanged.

b [double precision((nbloks+1)*nrwblk)]
The solution vector (if iflag = 0).

pivot [integer((nbloks+2)*nrwblk)]
The pivoting strategy.

iflag [integer]

= 0 on normal return

= -1 if the ABD matrix is singular

[ Note: Only exact singularity is detected;
iflag = 0 is not a guarantee of well-
conditioning. In the case where Iftblk
and rgtblk can be uncoupled, Lapack’s
DGBTRF/DGBCON may be used to obtain a
condition estimate for the ABD matrix.
Subroutines are included in ABDpack for
transforming the slf_lu-format matrix
into the correct form for input into
Lapack”’s band routines. See “rotccw’,
“uncple” and “mkband” for details. 1

nparts [integer]
Normally unchanged. [If, however, the
requested number of partitions would
result in fewer than 2 blocks of array(,,)
per partition (i.e. if nbloks < 2*nparts),
the subroutine automatically resets nparts
to 1 and uses non-partitioned SLF-LU.

SUBROUTINES CALLED:

slufa (Iftblk, array, nrwblk, nbloks, rgtblk,
pivot, iflag, nparts, work)

Factors the ABD matrix using parallel SLF-LU.
Parameters are as described above.

OO0O00OO000000000000000000000000000000000000000000000000O0O0
ook % X b 3 X b 2k X b b X X b 3k 3k b b 3 X o b X b b X b o X X o 3 X b b % X b % % X b % X X o X X % %
ok o % R 3k 3 X o 2k X b b X X b 3k 3k % o 2 X X b % X b b % X b o X X o 3k X b b % X o 3k X X ok % X X ok X X %
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slusl (Iftblk, array, nrwblk, nbloks, rgtblk,
b, pivot, nparts, work)

Uses the factors returned by “slufa’ to perform
forward elimination and back-solve on right-hand
side b. Parameters are as described above.

SOLVING FOR MULTIPLE RIGHT-HAND SIDES:

st _lu” is called only once for a given system A X = b.
IT iflag = 0 the system is solved. In order to solve for
a different right-hand side (i.e. A x = b”), “slusl’ is
called directly. The arrays Iftblk, array, rgtblk, work,
and pivot contain the decomposition of A and pivoting
strategy on return from ’slf_lu” and therefore must not
be altered between successive calls to ’slusl’. b is

the only parameter that may be changed.

REFERENCES:

[1] K-.R. Jackson and R.N. Pancer, The parallel solution
of ABD systems arising in numerical methods for
BVPs for ODEs, University of Toronto, Department
of Computer Science, Technical Report 255/91, 1992.

ook % ok b X X b 3k % X b 3 X X o % X % ok % X ok 3 X
ook % o b X X b 3k % X b 3 X X o % X % ok X X ok 3 X

O0O0O0O0O00000000000000000O000O00O00

call slufa (Iftblk, array, nrwblk, nbloks, rgtblk,
* pivot, iflag, nparts, work)
if (iflag .eq. 0) then
call slusl (Iftblk, array, nrwblk, nbloks, rgtblk,

* b, pivot, nparts, work)
end if
return
end
C ____________________________________________________________________
subroutine slufa (Iftblk, array, nrwblk, nbloks, rgtblk,
* pivot, iflag, nparts, work)
c
double precision Iftblk(1), array(l), rgtblk(l), work(l)
integer nrwblk, nbloks, pivot(l), iflag, nparts

C AR o o o *xx
o *  This subroutine factors the ABD matrix defined in arrays *
o * Iftblk, array, and rgtblk using a variant of the parallel *
C *  SLF-LU algorithm. On return, Iftblk, array, rgtblk, *
c * work, and pivot contain the decomposition of the matrix *
o * and pivoting strategy used. See comments in subroutine *
c * >slf_lu” for further details. *
C R L o o o E =

integer nsquar, wkl, wk2, wk3, minblk, remblk
c

iflag = 0
C AR L o e e E =

o * Use non-partitioned SLF-LU if requested number *
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o * of partitions would result in fewer than 2 blocks *
c * per partition. *
C AR o **xx
if (nbloks .I1t. 2*nparts) then
nparts = 1
endif
C AR **kx
c * Work-space allocation: *
c * 1st/2nd-level Fill-in - work(1)..work(wk2-1) *
o * 3rd-level reduced matrix - work(wk2)..work(wk3-1) *
c * temporary storage for BLAS - work(wk3)..end *
C * *
c * Total requirement: nbloks*[(nrwblk)x(2*nrwblk)] *
c * + [C*nrwbIk)x(2*nrwblk)] *
o * + nparts*[(2*nrwblk)x(2*nrwblk+1)] *
C AR L o o o *xx
nsquar = nrwblk**2
wkl =1
wk2 = wkl + 2*nbloks*nsquar
wk3 = wk2 + 4*nsquar
C AR L o E =
o * Calculate minimum number of blocks per partition *
c * Remaining blocks are distributed evenly among the *
c * first partitions. *
C A **x*x
minblk = nbloks/nparts
remblk = nbloks - minblk*nparts
C AR L o o o *xx
c * Three level factorization. *
C AR E E x
call slufl(array,work(wkl),nrwblk,nbloks,pivot,iflag,
* minblk, remblk, nparts,work(wk3))
call sluf2(array,work(wkl),nrwblk,pivot,iflag,
* minblk, remblk, nparts,work(wk3))
call sluf3(Iftblk,array,work(wkl) ,work(wk2),
* nrwblk,nbloks, rgtblk,pivot, iflag,work(wk3))
C AR L o o o *xx
o * Set iflag to -1 if exact singularity was detected. *
C AR **x*x
if (iflag .ne. 0) then
iflag = -1
endif
return
end
C ____________________________________________________________________
subroutine slufl (array, fill, nrwblk, nbloks, pivot, iflag,
* minblk, remblk, nparts, blaws)
c
double precision array(2*nrwblk,nrwblk,1),
* Fill(nrwblk,2*nrwblk,1), blaws(2*nrwblk,2*nrwblk+1,1)
integer nrwblk, nbloks, pivot(l), iflag, minblk, remblk, nparts
C AR **x*x
o *  The following notation is used in the comments: *



APPENDIX E. FORTRAN SOURCE LISTINGS

O0O0O000O0O0O0

(@]

O0O0

C

ok X ok % X % %

*
*
*

[W_nbloks <=> array(l,1,nbloks)

V_1]

[W_k <=> array(1,1,k), k = 1..nbloks-1
V_k+1]

S k, T_k <=> fill(1,1,k), Fill(d,nrwblk+1,k)

In addition, the affix ” designates that the matrix is
transformed at the first level of the factorization.

integer ndoubl, kpart, kblok, base, top

ndoubl = 2*nrwblk

Each loop 20 iteration is independent and could
execute concurrently with the others.

C$DOACROSS SHARE (array, fill, nrwblk, nbloks, pivot, iflag,

C$&
C$&

C
C
C

OO0 000

0O00O0

O0O0O0O0000O0

*kx

*KXx

*

*kx

ok X % ok X X%

*
*
*

minblk, remblk, nparts, blaws, ndoubl),

LOCAL (kpart, kblok, base, top)
do 20 kpart = 1, nparts

call partx(minblk,remblk,kpart,base, top)
if (kpart .gt. 1) then
call mcopy(1,nrwblk,fill(l1,1,top),blaws,
blaws,array(1,1,top-1))
else
call mcopy(1,nrwblk,Ffill(l1,1,top),blaws,
blaws,array(l1,1,nbloks))

SLF-LU starts at the [top; top+1] block-row pair of
each partition and proceeds downward sequentially
to the [base-1; base] block-row pair.

[W_kblok <-- LUfact([W_kblok
V_kblok+1]” V_kblok+1]

call DGETRF(ndoubl,nrwblk,array(1,1,kblok),ndoubl,
pivot(kblok*nrwblk+1),iflag)

[S_kblok <--— [L, 177-1 P [S_kblok
S_kblok+1]” 0 1

Operator [L, 177-1 P is implemented by applying the
pivoting strategy recorded in pivot_kblok, followed
by the nrwblk Gauss transforms stored in the lower
trapezoid of [W_kblok; V_kblok+1]~.

call mcopy(3,nrwblk,Ffill(1,1,kblok),blaws,
blaws(1,1,kpart),blaws)

ok X & % X % %

*
*
*

*xx

**k*x

*x*x

*xx

**k*x

ok X % ok X X%

*
*
*
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call apyLU(ndoubl,nrwblk,array(1,1,kblok),ndoubl,

* pivot(kblok*nrwblk+1),blaws(1,1,kpart),
* ndoubl ,nrwblk,blaws(1,nrwblk+1,kpart))
call mcopy(4,nrwblk,fill(1,1,kblok),Ffill(1,1,kblok+1),
* blaws(1,1,kpart),blaws)
C AR L o o o o e *Kxx
c * [T_kblok <——[L, IT7-1 PL[ O *
c * W_kblok+1]” W_kblok+1] *
C * *
o * Operator [L, 177-1 P is implemented as above. *
C AR o o o *xx
call mcopy(5,nrwblk,blaws,blaws,
* blaws(1,1,kpart),array(l1,1,kblok+1))
call apyLU(ndoubl ,nrwblk,array(1,1,kblok),ndoubl,
* pivot(kblok*nrwblk+1),blaws(1,1,kpart),
* ndoubl ,nrwblk,blaws(1,nrwblk+1,kpart))
call mcopy(6,nrwblk,Ffill(1,1,kblok),blaws,
* blaws(1,1,kpart),array(l1,1,kblok+1))
10 continue
20 continue
return
end
C ____________________________________________________________________
subroutine sluf2 (array, fill, nrwblk, pivot, iflag,
* minblk, remblk, nparts, blaws)
c
double precision array(2*nrwblk,nrwblk,1),
* Fill(nrwblk,2*nrwblk,1), blaws(2*nrwblk,1)
integer nrwblk, pivot(l), iflag, minblk, remblk, nparts
C AR **xx
o *  The following notation is used in the comments: *
C * *
o * [W_nbloks <=> array(l,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S k, Tk <= fill(1,1,k), fill(1,nrwblk+1,k) *
C * *
c * In addition, the affix ”/”” designates that the *
c *  matrix was/is transformed at the Ffirst/second level *
c *  of the factorization. *
C AR L L o o *xx
integer ndoubl, kpart, base, basel, top
C AR L o o o *xx
c * IT there is only one partition, nothing needs to be *
c * done at the second level of the factorization. *
C AR L o o o E =
if (nparts .eq. 1) return
C AR L o o *xx
c * SLF-LU starts at the [1; 2] block-row pair of the *
c * second-level array and proceeds downward sequentially *
C * to the [nparts-1; nparts] block-row pair. *
C AR o o E =

ndoubl = 2*nrwblk
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O0O0O0

O0O0O0O0000O0

O0O0O00O0

*KXx

E =

*

*kx

ok X % ok X X%

*

* X

do 10 kpart = 1, nparts-1

call partx(minblk,remblk,kpart,base, top)
call partx(minblk,remblk,kpart+1,basel,top)

[W_base <-- LUfact([W_base”
V_base+1]”” S _basel’]

call mcopy(2,nrwblk,fill(l1,1,basel),blaws,
blaws,array(1,1,base))

call DGETRF(ndoubl,nrwblk,array(1,1,base),ndoubl,
pivot(base*nrwblk+1),iflag)

[S_base <-- [L, 17T7-1 P [S_base’
S basel]”” 0 1

Operator [L, 177-1 P is implemented by applying the
pivoting strategy recorded in pivot _base, followed
by the nrwblk Gauss transforms stored in the lower
trapezoid of [W_base; V_base+1]””.

call mcopy(3,nrwblk,fill(l,1,base),blaws,
blaws,blaws)

call apyLU(ndoubl ,nrwblk,array(l1,1,base),ndoubl,
pivot(base*nrwblk+1) ,blaws,ndoubl ,nrwblk,
blaws(1,nrwblk+1))

call mcopy(4,nrwblk,fill(1,1,base),fill(1,1,basel),
blaws,blaws)

[T_base <-—-[L, IT7-1P[ O
W_basel]”” W_basel’]

Operator [L, 177-1 P is implemented as above.

call mcopy(5,nrwblk,blaws,blaws,
blaws,array(1,1,basel))

call apyLU(ndoubl ,nrwblk,array(l1,1,base),ndoubl,
pivot(base*nrwblk+1) ,blaws,ndoubl ,nrwblk,
blaws(1,nrwblk+1))

call mcopy(6,nrwblk,fill(l,1,base),blaws,
blaws,array(1,1,basel))

10

continue
return
end

subroutine sluf3 (Iftblk, array, fill, rdcmx,

*xx

*xx

*x*x

¥ Ok X % ok X X%

*xx

* nrwblk, nbloks, rgtblk, pivot, iflag, blaws)

double precision Iftblk(nrwblk,1), array(2*nrwblk,nrwblk,1),
* Fill(nrwblk,2*nrwblk,1), rdemx(2*nrwblk,1),

* rgtblk(nrwblk,1), blaws(2*nrwblk,1)
integer nrwblk, nbloks, pivot(l), iflag

*  The following notation is used in the comments:

285



APPENDIX E. FORTRAN SOURCE LISTINGS

O0O0O0O0O0000O00OO0

O0O0O0O0O000O0O0

O0O0O0O00O0

O0O00O0

10
20

* B_a, B b <=> Iftblk, rgtblk *
* [W_nbloks <=> array(1,1,nbloks) *
* V_l] *
* [W_k <=> array(1,1,k), k = 1..nbloks-1 *
* V_k+1] *
* S k, Tk <= fill(1,1,k), fill(1,nrwblk+1,k) *
* In addition, the affix /7”7 designates that the *
*  matrix was/is transformed at the second/third level *
* of the factorization. *
R L L o o E =
integer i, j, ndoubl
* The third-level block-array is of the form *
* *
* [ B.a B b *
* S _nbloks”” W_nbloks””] *
* The LU-factorization of this block-array is stored *
* in the rdcmx(,) work-space. The pivot indices are *
* *

stored in pivot(nbloks*nrwblk+1.._(nbloks+2)*nrwblk).
ndoubl = 2*nrwblk
do 20 j = 1, nrwblk
do 10 i = 1, nrwblk
rdemx(i,j) = Iftblk(i,j)
rdemx(i,nrwblk+j) = rgtblk(i,j)
rdemx(nrwblk+i,j) = Ffill(i,j,nbloks)
rdemx(nrwblk+i,nrwblk+j) = array(i,j,nbloks)
continue
continue
call DGETRF(ndoubl,ndoubl,rdcmx,ndoubl,
* pivot(nbloks*nrwblk+1),iflag)
return
end

subroutine slusl (Iftblk, array, nrwblk, nbloks, rgtblk,
* b, pivot, nparts, work)

double precision Iftblk(1), array(l), rgtblk(l), b(1), work(l)
integer nrwblk, nbloks, pivot(l), nparts
*  Given the factors of ABD matrix A computed by subroutine *
* >slufa” and stored in arrays Iftblk, array, rgtblk, *
* work and pivot, this subroutine solves the linear system *
* A X =Db. b is overwritten with x. See comments in *
* subroutine ’slf _lu” for further details. *

* Work-space allocation: *
* 1st/2nd-level Fill-in - work(1)..work(wk2-1) *
* 3rd-level reduced matrix - work(wk2)..work(wk3-1) *
* *

temporary storage for BLAS - work(wk3)..end

286
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O0O00O0

O000O0

00

O0O0O0O0O0000O000O0

* *
* Total requirement: nbloks*[(nrwblk)x(2*nrwblk)] *
* + [C*nrwblk)x(2*nrwblk)] *
* + nparts*[(2*nrwblk)x(2*nrwblk+1)] *
AR L o o *xx
nsquar = nrwblk**2
wkl =1
wk2 = wkl + 2*nbloks*nsquar
wk3 = wk2 + 4*nsquar
AR L o *xx
* Calculate minimum number of blocks per partition *
* Remaining blocks are distributed evenly among the *
* first partitions. *
minblk = nbloks/nparts
remblk = nbloks - minblk*nparts
AR L o o o *xx
* Three level forward elimination. *
call slusfl(array,nrwblk,b,pivot,
* minblk, remblk, nparts,work(wk3))
call slusf2(array,nrwblk,b,pivot,
* minblk, remblk, nparts,work(wk3))
call slusf3(work(wk2),nrwblk,nbloks,b,b,pivot,work(wk3))
* Three level back-solve. *
AR L o o E =
call slusb3(work(wk2),nrwblk,nbloks,b,b,work(wk3))
call slusb2(array,work(wkl),nrwblk,nbloks,b,
* minblk, remblk, nparts,work(wk3))
call slusbl(array,work(wkl),nrwblk,b,
* minblk, remblk, nparts,work(wk3))
return
end
subroutine slusfl (array, nrwblk, phi, pivot,
* minblk, remblk, nparts, blaws)
double precision array(2*nrwblk,nrwblk,1), phi(1),
* blaws(2*nrwblk,2*nrwblk+1,1)
integer nrwblk, pivot(l), minblk, remblk, nparts
AR o o o E =
*  The following notation is used in the comments: *
* *
* [W_nbloks <=> array(1,1,nbloks) *
* V_l] *
* [W_k <=> array(1,1,k), k = 1.._nbloks-1 *
* V_k+1] *
* phi_k <=> phi(k*nrwblk+1) *
* In addition, the affix ” designates that the vector is *
*  transformed at the first level of the forward solve. *
**x E =

integer ndoubl, kpart, kblok, base, top
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c
ndoubl = 2*nrwblk
C AR **xx
c * Each loop 20 iteration is independent and could *
o * execute concurrently with the others. *
C AR L o o o E =
C$DOACROSS SHARE (array, nrwblk, phi, pivot,
C$& minblk, remblk, nparts, blaws, ndoubl),
C$& LOCAL (kpart, kblok, base, top)
do 20 kpart = 1, nparts
C AR o o E =
o * Forward elimination starts at [phi_top; phi_top+1] *
C * of each partition and proceeds downward sequentially *
c * to [phi_base-1; phi_base]. *
C AR L o o E =
call partx(minblk,remblk,kpart,base, top)
do 10 kblok = top, base-1
C AR * kX
c * [phi_kblok <-- [L, 177-1 P [phi_kblok *
c * phi_kblok+1]~ phi_kblok+1] *
C * *
o * Operator [L, 177-1 P is implemented by applying the *
c * pivoting strategy recorded in pivot _kblok, followed *
c * by the nrwblk Gauss transforms stored in the lower *
c * trapezoid of [W_kblok; V_kblok+1]~. *
C AR L o o E =
call apyLU(ndoubl,nrwblk,array(1,1,kblok),ndoubl,
* pivot(kblok*nrwblk+1),phi(kblok*nrwblk+1),
* ndoubl,1,blaws(l,nrwblk+1,kpart))
10 continue
20 continue
return

end
C ____________________________________________________________________

subroutine slusf2 (array, nrwblk, phi, pivot,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1), phi(1),

* blaws(2*nrwblk, 1)

integer nrwblk, pivot(l), minblk, remblk, nparts

C AR **xx
o *  The following notation is used in the comments: *
C * *
o * [W_nbloks <=> array(l,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
c * In addition, the affix ”/”” designhates that the *
c *  vector was/is transformed at the Ffirst/second level *
c *  of the forward solve. *
C AR L L o o E =

integer ndoubl, kpart, base, basel, top
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*

*Kkx

0O00O0

*kx

O0O00O0
*

*kx

*kx

O0O0O0O0O000O0
ok X X % % X

*

* X

10

IT there is only one partition, nothing needs to be
done at the second level of the forward solve.

Forward elimination starts at [phi_base 1; phi_base 2]
of the second-level system and proceeds downward
sequentially to [phi_base nparts-1; phi_base nparts].
ndoubl = 2*nrwblk
do 10 kpart = 1, nparts-1
call partx(minblk,remblk,kpart,base, top)
call partx(minblk,remblk,kpart+1,basel,top)
[phi_base <-- [L, 177-1 P [phi_base””
phi_basel]”” phi_basel”]

Operator [L, 177-1 P is implemented by applying the
pivoting strategy recorded in pivot base, followed
by the nrwblk Gauss transforms stored in the lower
trapezoid of [W_base; V_base+1]””.
call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DCOPY(nrwblk,phi(basel*nrwblk+1),1,
blaws(nrwblk+1,1),1)
call apyLU(ndoubl ,nrwblk,array(l1,1,base),ndoubl,
pivot(base*nrwblk+1) ,blaws,ndoubl,1,
blaws(1,nrwblk+1))
call DCOPY(nrwblk,blaws,1,phi(base*nrwblk+1),1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,
phi(basel*nrwblk+1),1)
continue

return
end

Su

do

*

broutine slusf3 (rdcmx, nrwblk, nbloks, beta, phi,
pivot, blaws)

uble precision rdemx(2*nrwblk,1), beta(l),
phi(1), blaws(2*nrwblk,1)

integer nrwblk, nbloks, pivot(l)

ok X ok ok X % %

O0O0O0O00000O0

(@]
*
*
*

The following notation is used in the comments:

beta <=> beta(l) (<=> phi_0)
phi_k <=> phi(k*nrwblk+1), k >= 1

In addition, the affix ”’/””” designates that the
vector was/is transformed at the second/third level
of the forward solve.

*k*x

*
*
*

X X b X X %

*xx
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o * The right-hand side of the third-level system is *
c * transformed as follows: *
C * *
c * [beta <-- [L, 17T7-1 P [beta *
o * phi_nbloks]””” phi_nbloks””] *
C * *
c * Operator [L, 177-1 P is implemented by applying the *
c * 2*nrwblk pivoting strategy recorded in pivot_nbloks, *
c * followed by the 2*nrwblk Gauss transforms stored in *
o * the lower triangle of rdemx(,)- *
C AR L L o o E =
ndoubl = 2*nrwblk
call DCOPY(nrwblk,beta,1,blaws,1)
call DCOPY(nrwblk,phi(nbloks*nrwblk+1),1,
* blaws(nrwblk+1,1),1)
call apyLU(ndoubl ,ndoubl,rdcmx,ndoubl,
* pivot(nbloks*nrwblk+1),blaws,ndoubl,1,
* blaws(1,nrwblk+1))
call DCOPY(nrwblk,blaws,1,beta,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,
* phi(nbloks*nrwblk+1),1)
return
end
C ____________________________________________________________________
subroutine slusb3 (rdcmx, nrwblk, nbloks, beta, phi, blaws)
c
double precision rdcmx(2*nrwblk,1), beta(l),
* phi(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks
C A o **xx
(o *  The following notation is used in the comments: *
C * *
c * beta <=> beta(l) (<=> phi_0) *
c * phi_k <=> phi(k*nrwblk+1), k >= 1 *
C * *
c *  Since [beta; phi] is overwritten with the solution, *
C * *
c * ya<=>yO0 <=> beta *
c * y_k <=> phi_k, k =1, nbloks-1 *
c * y b <=> y nbloks <=> phi(nbloks*nrwblk+1) *
C * *
c * In addition, the affix ””” desighates that the solution *
o *  vector is obtained at the third level of the back-solve. *
C R L o o o E =
integer ndoubl
C A **kx
o * y a’’” and y_b””” are obtained by solving the upper- *
o * triangular third-level system *
C * *
c * rdemx(,) [y_a = [beta *
c * y b] phi_nbloks] *
C AR *xx

ndoubl = 2*nrwblk
call DCOPY(nrwblk,beta,1,blaws,1)
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O00O0000000000000O000O0O0

0O00O0

O0O0O0O0

re
en

call DCOPY(nrwblk,phi(nbloks*nrwblk+1),1,
blaws(nrwblk+1,1),1)
call DTRSM(’L”,”U”,”N”,”N”,ndoubl,1,1.dO,
rdcmx,ndoubl ,blaws,ndoubl)
call DCOPY(nrwblk,blaws,1,beta,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,
phi(nbloks*nrwblk+1),1)
turn
d

Su

do

in

ok % ok b X X b % X o ok % X % % X X

*

* X

*kx

*KXx

*kx

*kx

*kx

broutine slusb2 (array, fill, nrwblk, nbloks, phi,
minblk, remblk, nparts, blaws)

uble precision array(2*nrwblk,nrwblk,1),
Fill(nrwblk,2*nrwblk,1), phi(1), blaws(2*nrwblk
teger nrwblk, nbloks, minblk, remblk, nparts

The following notation is used in the comments:

[W_nbloks <=> array(1,1,nbloks)

V_1]

[W_k <=> array(1,1,k), k = 1.._.nbloks-1

V_k+1]

S k, T_k <= fill(1,1,k), Fill(d,nrwblk+1,k)
phi_k <=> phi(k*nrwblk+1)

Since phi is overwritten with the solution,

ya<=>vyO0 <=> phi_0 (<=> beta in slusb3.T)
y_k <=> phi_k, k =1, nbloks-1
y_b <=>y nbloks <=> phi(nbloks*nrwblk+1)

In addition, the affix ””?/”” designates that the
solution vector was/is obtained at the third/second
level of the back-solve.

IT there is only one partition, nothing needs to be
done at the second level of the back-solve.

Back-solve starts at the second-last block-row of the
second-level system and proceeds upward sequentially
to the First block-row.

ndoubl = 2*nrwblk

base = nbloks

call DCOPY(nrwblk,phi,1,blaws,1)

do 10 kpart = nparts-1, 1, -1
basep = base
call partx(minblk,remblk,kpart,base, top)

.1)

Ok % ok oF X X b % X ok ok % X % % X X

*xx

*k*x
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C * phi_base <-- phi_base - S base y 0””” - T_base y basep””’ *
C A o **xx
call DCOPY(nrwblk,phi(basep*nrwblk+1),1,
* blaws(nrwblk+1,1),1)
call DGEMV(’N” ,nrwblk,ndoubl,
* -1.do,fill(1,1,base),nrwblk,
* blaws,1,1.d0,phi(base*nrwblk+1),1)
C A **kx
c * y base’” is now obtained by solving the upper-triangular *
o * nrwblkxnrwblk system W _base y _base = phi_base *
C AR L L o *xx
call DTRSM(°L”,”U”,”N”,”N” ,nrwblk,1,1.dO0,
* array(l1,1,base),ndoubl,
* phi(base*nrwblk+1),nrwblk)
10 continue
return
end
C ____________________________________________________________________
subroutine slusbl (array, fill, nrwblk, phi,
* minblk, remblk, nparts, blaws)
c
double precision array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), phi(l),
* blaws(2*nrwblk,nrwblk+1,1)
integer nrwblk, minblk, remblk, nparts
C AR L o o o *xx
o *  The following notation is used in the comments: *
C * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
o * [W_k <=> array(1,1,k), k = 1.._nbloks-1 *
c * V_k+1] *
c * S k, Tk <= fill(1,1,k), fill(1,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
c *  Since phi is overwritten with the solution, *
C * *
c * ya<=>yo0 <=> phi_0 (<=> beta in slusb3.f) *
c * y k <=> phi_k, k =1, nbloks-1 *
c * y b <=> y nbloks <=> phi(nbloks*nrwblk+1) *
C * *
o * In addition, the affix ”’/” designhates that the *
o * solution vector was/is obtained at the second/first *
o * level of the back-solve. *
C AR **kx
integer ndoubl, kpart, kblok, base, top
c
ndoubl = 2*nrwblk
C AR L o o *xx
c * Each loop 20 iteration is independent and could *
C * execute concurrently with the others. *
C AR **kx

C$DOACROSS SHARE (array, fill, nrwblk, phi,
C$& minblk, remblk, nparts, blaws, ndoubl),
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C$& LOCAL (kpart, kblok, base, top)

do 20 kpart = 1, nparts
C A o **xx
c * Back-solve starts at the second-last block-row of *
o * each partition and proceeds upward sequentially to *
o * the first block-row. *
C AR **kx

call partx(minblk,remblk,kpart,base, top)
call DCOPY(nrwblk,phi((top-1)*nrwblk+1),1,

* blaws(1,1,kpart),1)
do 10 kblok = base-1, top, -1
C R L L o o *xx
c * phi_kblok <-- phi_kblok - S kblok y top-1~~ *
c * - T_kblok y _kblok+1~ *
C AR o o E E =
call DCOPY(nrwblk,phi((kblok+1)*nrwblk+1),1,
* blaws(nrwblk+1,1,kpart),1)
call DGEMV(’N” ,nrwblk,ndoubl,
* -1.do,fill(1,1,kblok),nrwblk,
* blaws(1,1,kpart),1,1.dO,
* phi(kblok*nrwblk+1),1)
C R o o E =
c * y kblok” is now obtained by solving the upper-triangular *
c * nrwblkxnrwblk system W _kblok y kblok = phi_kblok *
C AR **xx
call DTRSM(°L?,”U”,”N”,”N”,nrwblk,1,1.dO,
* array(1,1,kblok),ndoubl,
* phi(kblok*nrwblk+1) ,nrwblk)
10 continue
20 continue
return
end
C ____________________________________________________________________
subroutine apyLU (m, n, LU, IdLU, ipiv, C, IdC, nC, blaws)
c
double precision LU(IALU,1), C(IdC,1), blaws(n,l)
integer m, n, IdLU, ipiv(l), IdC, nC
C AR L L o o *xx
c *  Given an LU factorization computed by Lapack’s DGETRF, *
c * apyLU” applies the pivoting strategy recorded in ipiv *
C * and Gauss transforms stored in the lower trapezoid of *
o * LU to the m x nC matrix C. *
C * *
C * on entry *
C * *
C * m [integer] *
o * The number of rows in LU and C. *
C * *
o * n [integer] *
c * The number of columns in LU. n <= m. *
C * *
c * LU [double precision(ldLU,n)] *
o * The factors L and U computed and stored *
o * by Lapack”s DGETRF. *
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1dLU [integer]
The leading dimension of the array LU.

ipiv [integer(n)]
The pivot indices computed and stored
by Lapack’s DGETRF.

C [double precision(ldC,nC)]
The matrix to be transformed.

1dC [integer]
The leading dimension of the array C.

nC [integer]
The number of columns in C. nC <= n.

blaws [double precision(n,2*n)]
Work space.

on return

C [double precision(1dC,nC)]
The transformed matrix.

ok % X b X b o X X b 3k X o b % X o ok X X ok % X %

All other parameters are unchanged.

O0O00O0O00000000000000000O000O0O00

AR L o o o
integer i, j
AR o,
c * Apply the pivoting strategy to C.
C R L o o
call DLASWP(nC,C,I1dC,1,n,ipiv,1)
C AR L o o
c * The Gauss transforms are stored in [L; A], the lower
c * trapezoid of LU, where L is n x n unit lower triangular
c * and A is k x n, k =m - n. The transforms are applied
o * by solving [L O; A 1] [C1”; C2°] = [C1; C2] where O is
c * the n x k zero matrix, I is the k x k identity matrix,
c * and C1 and C2 are n x nC and k x nC, respectively.
C *
c * First, solve L C1” = C1. If n = m, this is enough.
o * If n<m, C2° is computed from C1” as described below.
C AR L o o o
call DTRSM(*L?,”L”,”’N”,”U”,n,nC,1.d0O,LU, IdLU,C, IdC)
if (n .eq. m) return
C AR o
o * Repack A into consecutive work space.
C AR o o
do 20 J =1, n
do 101 =1, n
blaws(i,j) = LU(n+i,j)
10 continue
20 continue

if (nC .gt. 1) then

ook % % b 3k X b ok X X b 3 X o b % X o ok X X ok % X %

*x*x

*xx

*x*x

*
*
*

Oox % ok X % ok X
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c KR e *kk
c * Compute C2” = C2 - A*C1” using DGEMM. C2 first *
c * must be repacked into consecutive work space. *
C AR **xx

do 40 j =1, nC
do 301 =1, n
blaws(i,n+j) = C(n+i,j)

30 continue
40 continue
call DGEMM(’N”,’N”,n,nC,n,-1.d0,blaws,n,
* C,1dC,1.d0,blaws(1,n+1),n)

do 60 jJ =1, nC
do 501 =1, n
C(n+i,j) = blaws(i,n+j)

50 continue
60 continue
else
C A **kx
C * Compute C2” = C2 - A*C1” using DGEMV. *
C AR **xx
call DGEMV(’N’,n,n,-1.d0,blaws,n,C,1,1.d0,C(n+1,1),1)
end if
return
end
C ____________________________________________________________________
subroutine mcopy (sel, n, C, D, E, F)
c

double precision C(n,1), D(n,1), E(2*n,1), F(2*n,1)
integer sel, n
mcopy”’ performs the matrix copy selected by sel.
Note: Due to the nature of the storage organization,
vectorized copying (Lapack’s DCOPY) is not possible.

on entry

sel [integer]
Copy selection (see below for details).

n [integer]
The number of rows in C and D and the number
of columns In E and F. There are 2*n columns
in C and D and 2*n rows in E and F.

C, D, E, F [double precision
(n,2*n), (n,2*n), (2*n,n), (2*n,n)]
The matrices before copying.

on return

sel [integer]
Unchanged.

O0O0O0O0O0000000000000000O000O0O0

ook % % b 3k X X o % X o o X X o % X o 2k X X ok 3k

ook % % b 3 X X o % X b o X X b % X o 2k X X ok %

n [integer]
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O0O0O00O0

O0O0O0O0O000O0O0

O0O0

100

110

120

200

210
220

O00O0

300

310
320

O00O0

400

ok X % %

*

**x

*
*
*

ook X % ok % X %

*kx

*kx

*Kxx

*kx

*Kkx

*kx

*Kkx

Unchanged.

C, D, E, F [double precision
(n,2*n), (n,2*n), (2*n,n), (2*n,n)]
The matrices after copying.

integer i, j, jl

The following notation is used in the comments:

C <=> [C1 C2] D <=> [D1 D2]
E <=> [E1 F <=> [F1
E2] F2]

Ck, Dk, Ek and Fk, k = 1, 2, are each nxn matrices.
(0) is the nxn zero matrix.

C(i,J) = F(n+i,j)
continue
continue
return

continue
continue
return

, N
do 310 i =1

continue
continue
return

ok X % %

*x

ook % X ok % X % %

*
*
*

*xx

**x*x

*x*x

*xx

*k*x

*xx

**x*x

*xx
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D(i,3) = E(n+i, )

*k*x

*xx

*x*x

*xx

410 continue
420 continue
return
C AR L o o
o * Copy selection #5: E1 <- (0)
c * E2 <- F1
C A
500 do 520 j =1, n
do 510 i =1, n
E(i,j) = 0.dO
E(n+i,3) = F(i.J)
510 continue
520 continue
return
C AR L L o
o * Copy selection #6: C2 <- E1
c * F1 <- E2
C A
600 do 620 j =1, n
Jl =n+j
do 610 i = 1, n
C(i,j1) = ECi.J)
F(i,J) = E(n+iLj)
610 continue
620 continue
return
end
C ____________________________________________________________________
subroutine partx (minblk, remblk, k, base, top)
c

integer minblk, remblk, k, base, top

O0O00O0O000000000000O0000O0OO0

ook % % b % X X ok % X o ok X X ok % X ok % ¥

partx” calculates the index of the base and top block
of the k-th partition. The indexing scheme assumes that
nbloks >= 2*nparts, so minblk >= 2 and remblk >= 0.

on entry

minblk [integer]
minimum number of blocks/partition
(minblk = nbloks/nparts)

remblk [integer]
first remblk partitions have minblk+1 blocks
(remblk = nbloks - minblk*nparts)

k [integer]

on return

base [integer]
index of base block of k-th partition

ook % % b 3 X X ok % X o o X X ok % X ok X
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o * top [integer] *
c * index of top block of k-th partition *
C AR **xx

integer khigh, klow

c
if (k .le. remblk) then
khigh = k
klow = 0O
else

khigh = remblk
klow = k - khigh
endif
base = khigh*(minblk+1) + klow*minblk
top = base - minblk + 1
if (k .le. remblk) then
top = top -1
endif
return
end
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E3 SLF-QR

subroutine slf _gr (Iftblk, array, nrwblk, nbloks, rgtblk,
* b, tau, iflag, nparts, work)

double precision Iftblk(1), array(l), rgtblk(l), b(1),

* tau(l), work(l)

integer nrwblk, nbloks, iflag, nparts
This subroutine solves the linear system A X = b where
A 1s an Almost Block Diagonal matrix of the form

Iftblk rgtblk
a
bgnblk r
r
a a
y r
G.D)r
a
y
.2
a
r
r
a
y endblk

(,,nbloks-1)

Iftblk and rgtblk are each nrwblkxnrwblk, array(, ,k)

is 2*nrwblkxnrwblk, k = 1._nbloks, endblk/bgnblk alias
the upper/lower nrwblkxnrwblk block of array(, ,nbloks),
bgnblk overlaps the first nrwblk rows of array(,,1),
{[array(,,k) array(,.k+1)], k = 1..nbloks-2} overlap

by nrwblk rows each, and endblk overlaps the last nrwblk
rows of array(,,nbloks-1). The linear system is square
and of order (nbloks+1)*nrwblk.

[ Note: ABDs often arise in other forms. For example,
Iftblk and rgtblk may be uncoupled so that Iftblk
appears at the top of the matrix and rgtblk appears
at the bottom. Also, the blocks in array(,,) are
often arranged so that array(, ,k) holds the left
and right blocks in block-row k. In these cases,
the ABD system first can be transformed into the
correct form for input to “slf _qr’ using auxiliary
routines included with this package. See “couple”’
and “rotcw” for details. Alternatively, “slfqrc’,
a modified version of ’slf_gr’ that incorporates
both “couple” and “rotcw”, can be used. 1

THE ALGORITHM:

OO0O00O0O000000000000000000000000000000000000O00O00O00O00O0

ook % b 3k % b o 3k X b b X X b 3 X b o 3k X b 3k X X b % X b o % X o 3k X X o % X o ok % X %

The system is decomposed and solved using a variant

ook % b X 3k b % % b 3k b % % bk o X 3 b X X b X X b X X b ok b kX b X 3k X X ok % ¥
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OO0O00OO000000000000000000000000000000000000000000000000O0O0

ook % X b 3k 3 X b o X b b X X b 3k 3k b b 3k X o b % X b b 3 X b o X X o 3 X b b % X b % % X b % X X ok X X % %

of the parallel SLF-QR algorithm described in [1].-
Parallelism is achieved by slicing the system into
nparts’ partitions in such a way that each partition
can be processed independently. Assuming at least one
processor is available per partition, a speed-up of S
(over sequential SLF-QR) may be attained where

1l <= S < nparts,

with S =1 it nbloks < 2*nparts,
and S 7 nparts if nparts << nbloks/nparts.

In other words, for systems of sufficiently high order,
speed-up is approximately linear with respect to nparts
when nparts is sufficiently small. Sample problems and
timing benchmarks are included with this package.

PARAMETERS:
on entry

ITtblk [double precision(nrwblk,nrwblk)]
The top left block of the ABD matrix.

array [double precision(2*nrwblk,nrwblk,nbloks)]
array(,,k), k = 1._nbloks-1, contains the
k-th 2*nrwblkxnrwblk block of the ABD matrix
as described above. array(, ,nbloks) contains
endblk/bgnblk as described above.

nrwblk [integer]
The number of columns in Iftblk, array(,,k)
and rgtblk. The number of rows in
Iftblk and rgtblk. There are 2*nrwblk
rows in array(,,k).

nbloks [integer]
The number of 2*nrwblkxnrwblk blocks
in array(,,)-

rgtblk [double precision(nrwblk,nrwblk)]
The top right block of the ABD matrix.

b [double precision((nbloks+1)*nrwblk)]
The right-hand side vector.

tau [double precision((nbloks+1)*nrwblk)]
Work space to hold the scalar factors of
the elementary reflectors used to compute
the decomposition.

nparts [integer]
The number of partitions to use in the
decomposition and solve.

ook % X b 3k X b ok X b b X X b 3k 3k b b 2 X % b % X b oF % X b o X X o % X b oF X X b % % X o 3k X X ok X X % %
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work [double precision(2*nparts*nrwblk +
(2*nbloks+2*nparts+4)*nrwblk**2)]
Work space to hold Fill-in and local
storage for BLAS.

on return

Iftblk, array, rgtblk, work
The desired decomposition of the ABD matrix.

[ Note: |If iflag = -1 the matrix is exactly
singular. The factorization has been
completed, but division by zero will
occur if it is used to solve a system
of equations. 1

nrwblk, nbloks
Unchanged.

b [double precision((nbloks+1)*nrwblk)]
The solution vector (if iflag = 0).

tau [double precision((nbloks+1)*nrwblk)]
The scalar factors of the elementary
reflectors.

iflag [integer]

= 0 on normal return

= -1 if the ABD matrix is singular

[ Note: Only exact singularity is detected;
iflag = 0 is not a guarantee of well-
conditioning. In the case where Iftblk
and rgtblk can be uncoupled, Lapack’s
DGBTRF/DGBCON may be used to obtain a
condition estimate for the ABD matrix.
Subroutines are included in ABDpack for
transforming the slf _gr-format matrix
into the correct form for input into
Lapack’s band routines. See “rotccw’,
“uncple” and “mkband” for details. 1

nparts [integer]
Normally unchanged. [If, however, the
requested number of partitions would
result in fewer than 2 blocks of array(,,)
per partition (i.e. if nbloks < 2*nparts),
the subroutine automatically resets nparts
to 1 and uses non-partitioned SLF-QR.

SUBROUTINES CALLED:

OO0O00OO000000000000000000000000000000000000000000000000O0O0
ook % X b 3k % X b ok X b b X X b 3k 3k b b 3 X o b % X b b X b o X X o % X b b % X b % % X ok % X X ok X X % %
ook % X R 3k % X o o X b b X X b 3k 3 % b 2 X X b % X b b % X b o X X o 3k X b b % X o % % X ok % X X ok X X % %

sgrfa (Iftblk, array, nrwblk, nbloks, rgtblk,
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OO0O0O0O0O0O0000000000000000000O000000600O0

O0O0O000O0

tau, iflag, nparts, work)

Factors the ABD matrix using parallel SLF-QR.
Parameters are as described above.

sgrsl (Iftblk, array, nrwblk, nbloks, rgtblk,
b, tau, nparts, work)

Uses the factors returned by ’“sqrfa’ to perform
forward elimination and back-solve on right-hand
side b. Parameters are as described above.

SOLVING FOR MULTIPLE RIGHT-HAND SIDES:

st _gr” is called only once for a given system A X = b.
IT iflag = 0 the system is solved. In order to solve
for a different right-hand side (i.e. A x = b”), ’sgrsl”’
is called directly. The arrays Iftblk, array, rgtblk,
work, and tau contain the decomposition of A and scalar
factors of the elementary reflectors used to compute
the decompostion on return from “slf _gr” and therefore
must not be altered between successive calls to “sqrsl’.
b is the only parameter that may be changed.

REFERENCES:

[1] K-.R. Jackson and R.N. Pancer, The parallel solution
of ABD systems arising in numerical methods for
BVPs for ODEs, University of Toronto, Department
of Computer Science, Technical Report 255/91, 1992.

ok X ok b X X b 3k 3k o b 3k X X b % X b o % X o ok X X ok % X %
ok X o b X X b 3k 2 % b o X X b % X o o X X o 2k X X ok % X %

call sqrfa (Iftblk, array, nrwblk, nbloks, rgtblk,
* tau, iflag, nparts, work)
if (iflag .eq. 0) then
call sqrsl (Iftblk, array, nrwblk, nbloks, rgtblk,
* b, tau, nparts, work)
end if
return
end

subroutine sqrfa (Iftblk, array, nrwblk, nbloks, rgtblk,
* tau, iflag, nparts, work)

double precision Iftblk(1), array(l), rgtblk(l),
* tau(l), work(l)

integer nrwblk, nbloks, iflag, nparts
*  This subroutine factors the ABD matrix defined iIn arrays
* Iftblk, array, and rgtblk using a variant of the parallel
*  SLF-QR algorithm. On return, Iftblk, array, rgtblk,
* work, and tau contain the decomposition of the matrix
* and factors of the elementary reflectors used to compute
*  the decompostion. See comments in subroutine ’slf _qr’

*oX X b X ¥

302



APPENDIX E. FORTRAN SOURCE LISTINGS

Cc * for further details.

c
iflag = 0
C AR L o o
c * Use non-partitioned SLF-QR if requested number
c * of partitions would result in fewer than 2 blocks
c * per partition.
C R L L o o
if (nbloks .I1t. 2*nparts) then
nparts = 1
endif
C AR
o * Work-space allocation:
c * 1st/2nd-level fill-in - work(1)..work(wk2-1)
o * 3rd-level reduced matrix - work(wk2).._.work(wk3-1)
C * temporary storage for BLAS - work(wk3)..end
C *
c * Total requirement: nbloks*[(nrwblk)x(2*nrwblk)]
o * + [C*nrwblk)x(2*nrwblk)]
o * + nparts*[(2*nrwblk)x(nrwblk+1)7]
C AR o,
nsquar = nrwblk**2
wkl =1
wk2 = wkl + 2*nbloks*nsquar
wk3 = wk2 + 4*nsquar
C AR L o o o o
c * Calculate minimum number of blocks per partition
c * Remaining blocks are distributed evenly among the
o * first partitions.
C AR L o o
minblk = nbloks/nparts
remblk = nbloks - minblk*nparts
C AR
c * Three level factorization.
C AR L o o o
call sqgrfl(array,work(wkl),nrwblk,nbloks,tau,iflag,
* minblk, remblk, nparts,work(wk3))
call sqrf2(array,work(wkl),nrwblk,tau,iflag,
* minblk, remblk, nparts,work(wk3))
call sqrf3(Iftblk,array,work(wkl) ,work(wk2),
* nrwblk,nbloks, rgtblk, tau, i flag,work(wk3))
C AR L o o o
c * Set iflag to -1 if exact singularity was detected.
C AR o,
if (iflag -ne. 0) then
iflag = -1
endif
return
end
C _________________________________________________________________

subroutine sqrfl (array, fill, nrwblk, nbloks, tau, iflag,
* minblk, remblk, nparts, blaws)

*
*
*

OoX X o X X ok

*xx

*xx

**x*x

*x*x

*xx

303



APPENDIX E. FORTRAN SOURCE LISTINGS

O0O0O0O0O00000O00O0

(9]

OO0

C

double precision array(2*nrwblk,nrwblk,1),

fill(nrwblk,2*nrwblk,1), tau(l),
blaws(2*nrwblk,nrwblk+1,1)

integer nrwblk, nbloks, iflag, minblk, remblk, nparts

ook % % ok % X ok % ¥

The following notation is used in the comments:

[W_nbloks <=> array(1,1,nbloks)

V_1]

[W_k <=> array(1,1,k), k = 1.._.nbloks-1
V_k+1]

S k, T_k <= fill(1,1,k), Fill(d,nrwblk+1,k)

In addition, the affix ” designates that the matrix is
transformed at the first level of the factorization.

integer ndoubl, kpart, kblok, base, top, info, msing

ndoubl = 2*nrwblk

Each loop 20 iteration is independent and could
execute concurrently with the others.

C$DOACROSS SHARE (array, fill, nrwblk, nbloks, tau, iflag,

C$&
C$&

C
C
C

O0O00O0

O00O0

*KXx

*kx

*kx

minblk, remblk, nparts, blaws, ndoubl),
LOCAL (kpart, kblok, base, top, info)
do 20 kpart = 1, nparts

call partx(minblk,remblk,kpart,base, top)
if (kpart .gt. 1) then
call mcopy(1,nrwblk,fill(l1,1,top),blaws,
blaws,array(l1,1,top-1))
else
call mcopy(1,nrwblk,Ffill(l1,1,top),blaws,
blaws,array(1,1,nbloks))

SLF-QR starts at the [top; top+1l] block-row pair of
each partition and proceeds downward sequentially
to the [base-1; base] block-row pair.

[W_kblok <-- QRfact([W_kblok
V_kblok+1]~ V_kblok+1]

call DGEQRF(ndoubl,nrwblk,array(1,1,kblok),ndoubl,

ok % % ok % X % % X

*
*
*

*k*x

*xx

*xx

*k*x

tau(kblok*nrwblk+1) ,blaws(1,nrwblk+1,kpart),

ndoubl , info)
iflag = msing(nrwblk,array(1,1,kblok))
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(9]

Oo00O0

O0O0O00O0O000O0O00O0OO0

0O00O0

(9]

10
20

* [S_kblok <-- Q7T [S_kblok *
* S_kblok+1]” 0 1 *
call mcopy(3,nrwblk,Ffill(1,1,kblok),blaws,
* blaws(1,1,kpart),blaws)
call DORMQR(’L”,”T”,ndoubl,nrwblk,nrwblk,
* array(1,1,kblok),ndoubl,
* tau(kblok*nrwblk+1) ,blaws(1,1,kpart),ndoubl,
* blaws(1,nrwblk+1,kpart),ndoubl, info)
call mcopy(4,nrwblk,fill(1,1,kblok),Ffill(1,1,kblok+1),
* blaws(1,1,kpart),blaws)
AR L o o o *xx
* [T_kblok <--QTL O *
* W_kblok+1]” W_kblok+1] *
E *xx

call mcopy(5,nrwblk,blaws,blaws,

* blaws(1,1,kpart),array(1,1,kblok+1))
call DORMQR(’L?,”T”,ndoubl,nrwblk,nrwblk,

* array(1,1,kblok),ndoubl,

* tau(kblok*nrwblk+1) ,blaws(1,1,kpart),ndoubl,

* blaws(1,nrwblk+1,kpart),ndoubl, info)
call mcopy(6,nrwblk,Ffill(1,1,kblok),blaws,

* blaws(1,1,kpart),array(l1,1,kblok+1))

continue
continue
return
end

subroutine sqrf2 (array, fill, nrwblk, tau, iflag,
* minblk, remblk, nparts, blaws)

double precision array(2*nrwblk,nrwblk,1),

* Fill(nrwblk,2*nrwblk,1), tau(l), blaws(2*nrwblk,1)
integer nrwblk, iflag, minblk, remblk, nparts
AR **xx
*  The following notation is used in the comments: *
* *
* [W_nbloks <=> array(l,1,nbloks) *
* V_l] *
* [W_k <=> array(1,1,k), k = 1..nbloks-1 *
* V_k+1] *
* S k, Tk <= fill(1,1,k), fill(1,nrwblk+1,k) *
* *
* In addition, the affix ”/”” designhates that the *
*  matrix was/is transformed at the First/second level *
*  of the factorization. *
AR L o o o *xx
integer ndoubl, kpart, base, basel, top, info, msing
AR L o e *xx
* IT there is only one partition, nothing needs to be *
* done at the second level of the factorization. *
AR **xx
if (nparts .eq. 1) return
**x *xx
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0O00O0

O0O0O0

O00O0

O00O0

O0O0O0

SLF-QR starts at the [1; 2] block-row pair of the
second-level array and proceeds downward sequentially

* to the [nparts-1; nparts] block-row pair. *

*Kxx

ndo
do

*Kkx

*kx

*Kkx

*kx

*KXx

*kx

10 con
return
end

subrou

double

intege

* The

*xx

ubl = 2*nrwblk

10 kpart = 1, nparts-1

call partx(minblk,remblk,kpart,base, top)

call partx(minblk,remblk,kpart+1,basel,top)
[W_base <-- QRfact([W_base”’ *
V_base+1]”” S _basel”] *

*k*

call mcopy(2,nrwblk,fill(l1,1,basel),blaws,
blaws,array(1,1,base))
call DGEQRF(ndoubl,nrwblk,array(1,1,base),ndoubl,
tau(base*nrwblk+1),blaws(1,nrwblk+1),ndoubl, info)
iflag = msing(nrwblk,array(1,1,base))
[S_base <-- QT [S_base” *
S basel]”’ 0 1 *
call mcopy(3,nrwblk,fill(1,1,base),blaws,
blaws,blaws)
call DORMQR(’L?,”T”,ndoubl,nrwblk,nrwblk,
array(1,1,base),ndoubl,tau(base*nrwblk+1),
blaws,ndoubl ,blaws(1,nrwblk+1) ,ndoubl, info)
call mcopy(4,nrwblk,fill(l,1,base),fill(1,1,basel),

blaws,blaws)
[T_base <--Q°TL O *
W_basel]”” W_basel’] *

call mcopy(5,nrwblk,blaws,blaws,
blaws,array(1,1,basel))

call DORMQR(’L?,”T”,ndoubl,nrwblk,nrwblk,
array(1,1,base),ndoubl,tau(base*nrwblk+1),
blaws,ndoubl ,blaws(1,nrwblk+1) ,ndoubl, info)

call mcopy(6,nrwblk,fill(l,1,base),blaws,
blaws,array(1,1,basel))

tinue

tine sqrf3 (Iftblk, array, fill, rdcmx,
nrwblk, nbloks, rgtblk, tau, iflag, blaws)

precision Iftblk(nrwblk,1), array(2*nrwblk,nrwblk,1),
Fill(nrwblk,2*nrwblk,1), rdemx(2*nrwblk,1),
rgtblk(nrwblk,1), tau(l), blaws(2*nrwblk,1)
r nrwblk, nbloks, iflag

following notation is used in the comments: *

B_a, B b <=> Iftblk, rgtblk *

306
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o * [W_nbloks <=> array(l,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S k, Tk <= fill(1,1,k), fill(1,nrwblk+1,k) *
C * *
c * In addition, the affix /7”7 designates that the *
c *  matrix was/is transformed at the second/third level *
c *  of the factorization. *
C AR o o o E =
integer i, j, ndoubl, info
C AR o o o *xx
c * The third-level block-array is of the form *
C * *
C * [ B a B b *
C * S _nbloks”” W_nbloks””] *
C * *
c * The QR-factorization of this block-array is stored *
c * in the rdcmx(,) work-space. The scalar factors of the *
c * elementary reflectors are stored in [tau(l..nrwblk); *
o * tau(nbloks*nrwblk+1. . (nbloks+1)*nrwblk)]. *
C AR L o o o *xx
ndoubl = 2*nrwblk
do 20 j = 1, nrwblk
do 10 1 = 1, nrwblk
rdemx(i,j) = Iftblk(i,})
rdemx(i,nrwblk+j) = rgtblk(i,j)
rdemx(nrwblk+i,j) = Ffill(i,j,nbloks)
rdemx(nrwblk+i,nrwblk+j) = array(i,j,nbloks)
10 continue
20 continue
call DGEQRF(ndoubl,ndoubl,rdcmx,ndoubl ,blaws,
* blaws(1,nrwblk+1),ndoubl, info)
call DCOPY(nrwblk,blaws,1,tau,l)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,
* tau(nbloks*nrwblk+1),1)
C R o o E =
o * Check for exact singularity. *
C AR **xx
do 30 1 = 1, ndoubl
if (rdemx(i,i) .eq. 0.d0) iflag = i
30 continue
return
end
C ____________________________________________________________________
subroutine sqrsl (Iftblk, array, nrwblk, nbloks, rgtblk,
* b, tau, nparts, work)
c
double precision Iftblk(1), array(l), rgtblk(l),
* b(1), tau(l), work(1)
integer nrwblk, nbloks, nparts
C AR o **kx
o *  Given the factors of ABD matrix A computed by subroutine *

c * ’sgrfa’ and stored in arrays Iftblk, array, rgtblk, *
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o * work and tau, this subroutine solves the linear system *
c * A X =Db. b is overwritten with x. See comments in *
c *  subroutine “slf _gqr’ for further details. *
C AR *kx
integer nsquar, wkl, wk2, wk3, minblk, remblk
C R L o o *xx
c * Work-space allocation: *
c * 1st/2nd-level fill-in - work(1)..work(wk2-1) *
c * 3rd-level reduced matrix - work(wk2)..work(wk3-1) *
o * temporary storage for BLAS - work(wk3)..end *
C * *
o * Total requirement: nbloks*[(nrwblk)x(2*nrwblk)] *
c * + [C*nrwblIk)x(2*nrwblk)] *
c * + nparts*[(2*nrwblk)x(nrwblk+1)] *
C AR L o o o E =
nsquar = nrwblk**2
wkl =1
wk2 = wkl + 2*nbloks*nsquar
wk3 = wk2 + 4*nsquar
C AR o, **x*x
o * Calculate minimum number of blocks per partition *
o * Remaining blocks are distributed evenly among the *
c * first partitions. *
C AR E E x
minblk = nbloks/nparts
remblk = nbloks - minblk*nparts
C AR L o o o *xx
o * Three level forward elimination. *
C AR E E x
call sqrsfl(array,nrwblk,b,tau,
* minblk, remblk, nparts,work(wk3))
call sqrsf2(array,nrwblk,b,tau,
* minblk, remblk, nparts,work(wk3))
call sqrsf3(work(wk2),nrwblk,nbloks,b,b,tau,work(wk3))
C AR E E x
c * Three level back-solve. *
C R L o o *xx
call sqrsb3(work(wk2),nrwblk,nbloks,b,b,work(wk3))
call sqrsb2(array,work(wkl),nrwblk,nbloks,b,
* minblk, remblk, nparts,work(wk3))
call sqgrsbl(array,work(wkl),nrwblk,b,
* minblk, remblk,nparts,work(wk3))
return
end
C ____________________________________________________________________
subroutine sqrsfl (array, nrwblk, phi, tau,
* minblk, remblk, nparts, blaws)
c
double precision array(2*nrwblk,nrwblk,1), phi(1),
* tau(l), blaws(*nrwblk,nrwblk+1,1)
integer nrwblk, minblk, remblk, nparts
C AR **kx
o *  The following notation is used in the comments: *
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o * [W_nbloks <=> array(l,1,nbloks) *
c * v_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
c * In addition, the affix ” designates that the vector is *
c *  transformed at the first level of the forward solve. *
C AR E E x
integer ndoubl, kpart, kblok, base, top, info
c
ndoubl = 2*nrwblk
C A *kx
c * Each loop 20 iteration is independent and could *
o * execute concurrently with the others. *
C AR L o o *xx
C$DOACROSS SHARE (array, nrwblk, phi, tau,
C$& minblk, remblk, nparts, blaws, ndoubl),
C$& LOCAL (kpart, kblok, base, top, info)
do 20 kpart = 1, nparts
C AR L o o *xx
o * Forward elimination starts at [phi_top; phi_top+1] *
c * of each partition and proceeds downward sequentially *
c * to [phi_base-1; phi_base]. *
C AR **x*x
call partx(minblk,remblk,kpart,base, top)
do 10 kblok = top, base-1
C AR o o e e *xx
c * [phi_kblok <-- Q7T [phi_kblok *
c * phi_kblok+1]~ phi_kblok+1] *
C * *
c * Q"T is resurrected from nrwblk elementary reflectors *
C * stored in [W_kblok; V_kblok+1] and tau_kblok. *
C AR **x*x
call DORMQR(’L”,”T”,ndoubl,1,nrwblk,
* array(1,1,kblok),ndoubl, tau(kblok*nrwblk+1),
* phi(kblok*nrwblk+1),ndoubl,
* blaws(1,nrwblk+1,kpart),ndoubl, info)
10 continue
20 continue
return
end
C ____________________________________________________________________
subroutine sqrsf2 (array, nrwblk, phi, tau,
* minblk, remblk, nparts, blaws)
c
double precision array(2*nrwblk,nrwblk,1), phi(1),
* tau(l), blaws(2*nrwblk,1)
integer nrwblk, minblk, remblk, nparts
C AR **xx
c *  The following notation is used in the comments: *
C * *
o * [W_nbloks <=> array(l,1,nbloks) *
c * V_1] *



APPENDIX E. FORTRAN SOURCE LISTINGS

o * [W_k <=> array(1,1,k), k = 1.._.nbloks-1

c * V_k+1]

c * phi_k <=> phi(k*nrwblk+1)

C *

o * In addition, the affix ”/”” desighates that the

o *  vector was/is transformed at the First/second level

c *  of the forward solve.

C AR
integer ndoubl, kpart, base, basel, top, info

C AR L L o

o * IT there is only one partition, nothing needs to be

o * done at the second level of the forward solve.

C AR
if (nparts .eq. 1) return

C AR L o o

o * Forward elimination starts at [phi_base_1; phi_base 2]

o * of the second-level system and proceeds downward

c * sequentially to [phi_base nparts-1; phi_base nparts].

C AR

ndoubl = 2*nrwblk

do 10 kpart = 1, nparts-1
call partx(minblk,remblk,kpart,base, top)
call partx(minblk,remblk,kpart+1l,basel,top)

C __________________________________________________________
c * [phi_base <-- Q°T [phi_base””
(o * phi_basel]”” phi_basel”]
C *
o * Q"T is resurrected from nrwblk elementary reflectors
c * stored in [W_base; V_base+l1l] and tau_base.
C AR
call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DCOPY(nrwblk,phi(basel*nrwblk+1),1,
* blaws(nrwblk+1,1),1)
call DORMQR(’L?,”T”,ndoubl,1,nrwblk,
* array(1,1,base),ndoubl,tau(base*nrwblk+1),
* blaws,ndoubl ,blaws(1,nrwblk+1),ndoubl, info
call DCOPY(nrwblk,blaws,1,phi(base*nrwblk+1),1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,
* phi(basel*nrwblk+1),1)
10 continue
return
end
C _________________________________________________________________
subroutine sqrsf3 (rdemx, nrwblk, nbloks, beta, phi, tau, blaws)
c
double precision rdcmx(2*nrwblk,1), beta(l), phi(l),
* tau(l), blaws(2*nrwblk,1)
integer nrwblk, nbloks
**x

*  The following notation is used in the comments:

beta <=> beta(l) (<=> phi_0)
phi_k <=> phi(k*nrwblk+1), k >= 1

O0O0O00O0

* ok X X

O X ok % X %

*xx

*xx

O % F %

*xx

)

ok X % %
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OO0 00

O0O0O0O0O0000O00OO0

OO0OO0O0O0000O0O0O0000O0

(9]

* In addition, the affix ”’/””” designates that the
*  vector was/is transformed at the second/third level
*  of the forward solve.
integer ndoubl, info
R L o o
* The right-hand side of the third-level system is
* multiplied through by the transpose of the orthogonal
* factor of the third-level block-array:
*
* [beta <-- Q°T [beta
* phi_nbloks]””” phi_nbloks””]
* Q"T is resurrected from 2*nrwblk elementary reflectors
*

stored in rdemx(,) and [tau_O; tau_nbloks].
ndoubl = 2*nrwblk
call DCOPY(nrwblk,tau,l,blaws(1,2),1)
call DCOPY(nrwblk,tau(nbloks*nrwblk+1),1,
* blaws(nrwblk+1,2),1)
call DCOPY(nrwblk,beta,1,blaws,1)
call DCOPY(nrwblk,phi(nbloks*nrwblk+1),1,

* blaws(nrwblk+1,1),1)

call DORMQR(’L”,”T”,ndoubl,1,ndoubl,
* rdcmx,ndoubl ,blaws(1,2),blaws,ndoubl,
* blaws(1,nrwblk+1),ndoubl, info)

call DCOPY(nrwblk,blaws,1,beta,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,
* phi(nbloks*nrwblk+1),1)
return
end

subroutine sqrsb3 (rdcmx, nrwblk, nbloks, beta, phi, blaws)

double precision rdcmx(2*nrwblk,1), beta(l),
* phi(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks

The following notation is used in the comments:

beta <=> beta(l) (<=> phi_0)
phi_k <=> phi(k*nrwblk+1), k >= 1

Since [beta; phi] is overwritten with the solution,

y a<=>y0 <=> beta
y_k <=> phi_k, k =1, nbloks-1
y b <=> y nbloks <=> phi(nbloks*nrwblk+1)

In addition, the affix ””” designates that the solution
vector is obtained at the third level of the back-solve.

ok X o b X X o % X ok % ¥

*

*xx

*
*
*

X % b X % ok X %
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y a and y b””” are obtained by solving the upper-
triangular third-level system

rdemx(,) [y_a = [beta
y_b] phi_nbloks]
ndoubl = 2*nrwblk
call DCOPY(nrwblk,beta,1,blaws,1)
call DCOPY(nrwblk,phi(nbloks*nrwblk+1),1,

O0O0O00OO0
ok X %
ok X %

* blaws(nrwblk+1,1),1)
call DTRSM(’L”,?U”,”N”,”N”,ndoubl,1,1.dO,
* rdcmx,ndoubl ,blaws,ndoubl)

call DCOPY(nrwblk,blaws,1,beta,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,

* phi(nbloks*nrwblk+1),1)
return

end
C ____________________________________________________________________

subroutine sqrsb2 (array, fill, nrwblk, nbloks, phi,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1),

* fill(nrwblk,2*nrwblk,1), phi(1), blaws(2*nrwblk,1)

integer nrwblk, nbloks, minblk, remblk, nparts
C AR **kx
o *  The following notation is used in the comments: *
C * *
o * [W_nbloks <=> array(l,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S k, Tk <= fill(1,1,k), fill(1,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
c *  Since phi is overwritten with the solution, *
C * *
c * ya<=>yo0 <=> phi_0 (<=> beta in sqrsb3.f) *
o * y k <=> phi_k, k =1, nbloks-1 *
c * y b <=> y nbloks <=> phi(nbloks*nrwblk+1) *
C * *
c * In addition, the affix 7”7/’ designates that the *
o * solution vector was/is obtained at the third/second *
c * level of the back-solve. *
C AR L o o E =
integer ndoubl, kpart, base, basep, top
C A * kX
o * IT there is only one partition, nothing needs to be *
o * done at the second level of the back-solve. *
C AR L o o E =
if (nparts .eq. 1) return

C AR * kX
c * Back-solve starts at the second-last block-row of the *
o * second-level system and proceeds upward sequentially *
o * to the first block-row. *
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C *kx *k*x

ndoubl = 2*nrwblk
base = nbloks
call DCOPY(nrwblk,phi,1,blaws,1)
do 10 kpart = nparts-1, 1, -1
basep = base
call partx(minblk,remblk,kpart,base, top)

C AR o *xx
C * phi_base <-- phi_base - S base y 0°”” - T _base y basep”” *
C AR o o o *Kxx
call DCOPY(nrwblk,phi(basep*nrwblk+1),1,
* blaws(nrwblk+1,1),1)
call DGEMV(’N” ,nrwblk,ndoubl,
* -1.do,fill(1,1,base),nrwblk,
* blaws,1,1.d0,phi(base*nrwblk+1),1)
C AR L o o E =
o * y base’” is now obtained by solving the upper-triangular *
C * nrwblkxnrwblk system W _base y base = phi_base *
C AR E T x
call DTRSM(’L”,”U”,”N”,”N”,nrwblk,1,1.dO,
* array(1,1,base),ndoubl,
* phi(base*nrwblk+1),nrwblk)
10 continue
return
end
C ____________________________________________________________________
subroutine sqrsbl (array, fill, nrwblk, phi,
* minblk, remblk, nparts, blaws)
c
double precision array(2*nrwblk,nrwblk,1),
* Fill(nrwblk,2*nrwblk,1), phi(1),
* blaws(2*nrwblk,nrwblk+1,1)
integer nrwblk, minblk, remblk, nparts
C AR **xx
c *  The following notation is used in the comments: *
C * *
c * [W_nbloks <=> array(l,1,nbloks) *
c * v_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S k, T_k <=> fill(1,1,k), Fill(d,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
C * *
o *  Since phi is overwritten with the solution, *
C * *
c * ya<=>yDO0 <=> phi_0 (<=> beta in sqrsb3.f) *
o * y_k <=> phi_k, k =1, nbloks-1 *
o * y b <=> y nbloks <=> phi(nbloks*nrwblk+1) *
C * *
c * In addition, the affix ”’/” designates that the *
c * solution vector was/is obtained at the second/first *
c * level of the back-solve. *
C AR L o o o *xx

integer ndoubl, kpart, kblok, base, top
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*xx

*k*x

*xx

*xx

*xx

*x*x

c
ndoubl = 2*nrwblk
C AR
c * Each loop 20 iteration is independent and could
o * execute concurrently with the others.
C AR L o o o
C$DOACROSS SHARE (array, fill, nrwblk, phi,
C$& minblk, remblk, nparts, blaws, ndoubl),
C$& LOCAL (kpart, kblok, base, top)
do 20 kpart = 1, nparts
C R L o o o
c * Back-solve starts at the second-last block-row of
c * each partition and proceeds upward sequentially to
c * the First block-row.
C AR L o o
call partx(minblk,remblk,kpart,base, top)
call DCOPY(nrwblk,phi((top-1)*nrwblk+1),1,
* blaws(1,1,kpart),1)
do 10 kblok = base-1, top, -1
C AR o,
o * phi_kblok <-- phi_kblok - S_kblok y_top-1~~
c * - T_kblok y_kblok+1~
C A
call DCOPY(nrwblk,phi((kblok+1)*nrwblk+1),1,
* blaws(nrwblk+1,1,kpart),1)
call DGEMV(’N” ,nrwblk,ndoubl,
* -1.do,fill(1,1,kblok),nrwblk,
* blaws(1,1,kpart),1,1.dO,
* phi(kblok*nrwblk+1),1)
C AR
c * y kblok” is now obtained by solving the upper-triangular
o * nrwblkxnrwblk system W_kblok y kblok = phi_kblok
C AR L o o
call DTRSM(L”,”U”,”N”,”N”,nrwblk,1,1.dO,
* array(1,1,kblok),ndoubl,
* phi(kblok*nrwblk+1) ,nrwblk)
10 continue
20 continue
return
end
C ____________________________________________________________________
subroutine mcopy (sel, n, C, D, E, F)
c
double precision C(n,1), D(n,1), E(2*n,1), F(2*n,1)
integer sel, n
C AR
o * mcopy” performs the matrix copy selected by sel.
o * Note: Due to the nature of the storage organization,
o *  vectorized copying (Lapack’s DCOPY) is not possible.
C *
(o} * on entry
C *
o * sel [integer]
o * Copy selection (see below for details).

Ok X % ok X X %

314
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C * *
c * n [integer] *
c * The number of rows in C and D and the number *
c * of columns in E and F. There are 2*n columns *
C * in C and D and 2*n rows in E and F. *
C * *
c * C, D, E, F [double precision *
c * (n,2*n), (n,2*n), (2*n,n), (2*n,n)] *
c * The matrices before copying. *
C * *
C * on return *
C * *
c * sel [integer] *
c * Unchanged. *
C * *
o * n [integer] *
o * Unchanged. *
C * *
c * C, D, E, F [double precision *
c * (n,2*n), (n,2*n), (2*n,n), (2*n,n)] *
o * The matrices after copying. *
C AR L o o o E =
integer i, j, jl
C AR kX
c * The following notation is used in the comments: *
C * *
o * C <=> [C1 C2] D <=> [D1 D2] *
c * E <=> [E1 F <=> [F1 *
c * E2] F2] *
C * *
C * Ck, Dk, Ek and Fk, k = 1, 2, are each nxn matrices. *
o * (0) is the nxn zero matrix. *
C R o o o E =
go to (100, 200, 300, 400, 500, 600) sel
C AR * kX
c * Copy selection #1: Cl <- F2 *
C AR L o o o E =
100 do 120 j =1, n
do 110 i = 1, n
C(i.J) = F(n+i,j)
110 continue
120 continue
return
C R o o o E =
c * Copy selection #2: F2 <- C1 *
C A **xx
200 do 220 j =1, n
do 210 i =1, n
F(n+i,j) = C(1.J1)
210 continue
220 continue
return
C AR L o o E =

o * Copy selection #3: E1 <- C1 *
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300

310
320

O00O0

400

410
420

O00O0

500

510
520

O00O0

600

610
620

O0O00O0

* E2 <- (0)
do 320 j =1, n
do 310 i =1, n
ECi,5) = C(1.5)
E(n+i,j) = 0.d0
continue
continue
return
AR L L o
* Copy selection #4: Cl1l <- E1
* D1 <- E2
do 420 j =1, n
do 410 i =1, n
C(i.J) = ECi. 1)
D(i.J) = E(n+i,j)
continue
continue
return
AR L o o o
* Copy selection #5: E1 <- (0)
* E2 <- F1
do 520 j =1, n
do 510 i = 1, n
E(i,j) = 0.dO
E(n+i.j) = F(1.j§)
continue
continue
return
AR L o o o
* Copy selection #6: C2 <- E1
* F1 <- E2
do 620 j =1, n
J1=n+j
do 610 i = 1, n
C(i.j1) = E(1,J5)
F(1,J) = E(n+i,]j)
continue
continue
return
end

integer function msing (n, A)

dou

ble precision A(1)

integer n

’msing” checks for exact singularit
triangle of 2*nxn matrix A.

on entry

the nxn upper-

*xx

*k*x

*xx

*x*x

*xx

*x*x

*xx

* ok X X
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n [integer]
The number of columns and half the number of
rows in A. This is implicit -- A iIs accessed
as a 1D array inside this function.

A [double precision(2*n**2)]
Only the diagonal of the nxn upper-triangle
is accessed.

on return

n [integer]
Unchanged.

A [double precision(2*n**2)]
Unchanged.
msing [integer]
= k if the k-th element on the diagonal of
the nxn upper-triangle of A is exactly zero
(note: there may be other zeros),
= 0 otherwise.

integer ndoubl, i, k

% % b ok X b b 3k X b 3k 3 X o 3 X X ok X X % %
O % R ok X ok b 3k X o 2k % X b 3k X X ok X X % %

*
*
*
*
*
*

O00000O000000000000O000O000O0

c
ndoubl = 2*n
do 10 k =1, n
i = (k-1)*ndoubl + k
if (A(i) .eqg. 0.dO) then
msing = k
return
end If
10 continue
msing = 0
return
end
C ____________________________________________________________________
subroutine partx (minblk, remblk, k, base, top)
c
integer minblk, remblk, k, base, top
C R L o o *Kxx
o * partx” calculates the index of the base and top block *
o *  of the k-th partition. The indexing scheme assumes that *
c * nbloks >= 2*nparts, so minblk >= 2 and remblk >= 0. *
C * *
C * on entry *
C * *
o * minblk [integer] *
C * minimum number of blocks/partition *
c * (minblk = nbloks/nparts) *
C * *
o * remblk [integer] *
o * Ffirst remblk partitions have minblk+1 blocks *
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(remblk = nbloks - minblk*nparts)
k [integer]
on return

base [integer]
index of base block of k-th partition

top [integer]
index of top block of k-th partition

integer khigh, klow

ook % X o %k % % ok % X

O0O0O0O0O00000O00OO0

(9]

if (k .le. remblk) then
khigh = k
klow = 0O
else
khigh = remblk
klow = k - khigh
endif
base = khigh*(minblk+1) + klow*minblk
top = base - minblk + 1
if (k .le. remblk) then
top = top -1
endif
return
end

ook % X % % % % ok % X
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