
THE PARALLEL SOLUTION OF ABD SYSTEMS

ARISING IN NUMERICAL METHODS FOR BVPS FOR ODES

by

Richard Norman Pancer

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c
�

2006 by Richard Norman Pancer

Abstract
The Parallel Solution of ABD Systems

Arising in Numerical Methods for BVPs for ODEs

Richard Norman Pancer

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2006

Many numerical algorithms for the solution of Boundary Value Problems (BVPs) for Ordinary

Differential Equations (ODEs) contain significant components that can be parallelized eas-

ily, and recent investigations have shown that substantial speedups are attainable on machines

with a modest number of processors. An important step in most of these algorithms—and

often the most computationally-intensive step—is the numerical solution of an Almost Block

Diagonal (ABD) system of linear algebraic equations. The parallelization of this step is not

so straightforward as certain characteristics of the problem make it difficult to apply standard

divide-and-conquer techniques in order to arrive at a stable parallel algorithm. In the past, sev-

eral algorithms have been proposed for the parallel solution of the ABD system, but many are

potentially unstable or offer only limited parallelism. The proper treatment of the ABD system

has proven to be a challenge in the design of parallel BVP codes.

In this thesis we present three parallel algorithms for the numerical solution of ABD sys-

tems. A parallel algorithm for this problem can be up to ���������	� times faster than the fastest

sequential algorithm, where the fastest sequential algorithm requires � steps. Each parallel

algorithm we present attains this theoretically optimal speedup if enough processors are avail-

able, and each can be adapted for use on architectures with fewer than the required number of

processors. Two of the algorithms, SLF-QR and SLF-LU, were discovered independently by us

and by S.J. Wright in the 1990s. Wright presented these algorithms and analyzed their stability

in two papers in the 1990s, proving SLF-QR is stable and showing that SLF-LU is stable un-

der certain assumptions. We provide some additional insight into the stability of SLF-LU, and

ii

extend the basic algorithms to make better use of available processors during the factorization

stage in order to increase parallelism in the solution stage.

The third algorithm we propose, RSCALE, is based on a notably different numerical tech-

nique: eigenvalue rescaling. RSCALE uses fewer local operations and produces less fill-in

than either of the other two algorithms. In addition, RSCALE is proven to be stable for a rea-

sonable class of problems, and has been observed to be stable for a wide class of problems

through extensive numerical testing.

RSCALE is approximately 2.2 times faster than SLF-QR. The efficiency of SLF-LU is

dependent on its solution strategy and its speed can vary from problem to problem, but for

most problems RSCALE is approximately 1.2 times faster than SLF-LU. Moreover, we show

that a variant of SLF-LU is potentially unstable on a surprising number of randomly-generated,

yet well-posed, linear problems, as well as on certain nonlinear problems commonly used to

test BVP codes. Since these problems pose no difficulty for either of the other two algorithms,

we believe that SLF-QR, not SLF-LU, may be RSCALE’s nearest competitor in terms of both

speed and reliability.

iii

Acknowledgements

I wish to thank my research supervisor, Professor Ken Jackson, for his patience and support

over the years. Ken was especially helpful in providing guidance and suggesting avenues for

redirection at the beginning of this project, when our original algorithms were “scooped” by

another author. Thanks to the members of my thesis committee: Professors Christina Christara,

Wayne Enright, Tom Fairgrieve and Rudi Mathon, and to my external examiner, Professor

Patrick Keast, for reading my manuscripts and for providing insightful comments and helpful

suggestions for improvement.

Special thanks to Professor Paul Muir of St. Mary’s University, Halifax, my friend and

colleague. Our collaboration on some of the key topics covered in this thesis proved to be an

essential ingredient in the completion of the thesis, as did Paul’s strong encouragement for me

to get the job done, his relentless pursuit of me whenever I began to slip, and his invaluable

assistance in proofreading many earlier drafts. Thank-you Paul.

I am grateful to the University of Toronto, and to the Department of Computer Science,

for providing me the opportunity to pursue graduate studies and for their generous financial

support over the years. I am also grateful to my current employer, the Department of Computer

and Mathematical Sciences at the University of Toronto at Scarborough, and in particular to

Professor John Scherk, the Chair of that department, for granting me a leave from teaching and

for encouraging me to complete this project during my leave.

Thanks to Kirstin for her patience, moral support, and for putting up with me during the

writing of this thesis, especially during the final few months. Thanks to my father, Phillip, for

putting up with me for the many years before that.

Finally, I dedicate this thesis to the memory of my mother, Irene Pancer, who always be-

lieved in me and who always knew I would succeed. And I did.

iv

Contents

1 Introduction and Background 1

1.1 The Numerical Solution of BVPs for ODEs 2

1.2 The Potential for Parallelism in a BVP Code 5

1.3 Sequential Codes for Solving ABD Systems 5

1.4 Early Attempts at Parallel Codes . 6

1.5 The First Stable Parallel Code and Thesis Goals 7

1.6 Overview of the Thesis . 8

2 Description of the Algorithms 10

2.1 Block Cyclic Reduction . 10

2.2 Stable Local Factorization . 13

2.2.1 Orthogonal Factorization . 13

2.2.2 Gaussian Elimination with Row Partial-Pivoting 14

2.2.3 The SLF Partitioning Algorithm . 14

2.2.4 An Alternative Partitioning Algorithm 20

2.3 Global Stability Control . 21

2.3.1 Improving SLF Transformations . 22

2.3.2 Sequential Rescaling . 23

2.3.3 Parallel Rescaling . 26

3 Stability of the Algorithms 34

3.1 SLF-QR . 34

3.2 SLF-LU . 37

3.2.1 Where to Look for SLF-LU Instability 38

3.2.2 Random Tests . 40

3.2.3 Stability of Other Variants of SLF-LU 46

v

3.3 � -RSCALE . 46

3.3.1 Stability Analysis . 47

3.3.2 Some Examples Where
�����

-RSCALE Fails 69

3.3.3 How Often Does
�����

-RSCALE Fail? 73

3.3.4 Dynamic ��� -RSCALE . 79

4 Performance of the Algorithms 84

4.1 Operation Counts . 85

4.1.1 SLF-QR . 85

4.1.2 SLF-LU . 88

4.1.3 RSCALE . 92

4.2 Sequential Tests . 97

4.2.1 Constant-Coefficient Linear Problems 99

4.2.2 Variable-Coefficient Linear Problems 104

4.3 Parallel Tests . 112

4.3.1 Compiler Directives . 114

4.3.2 Test Problems and Numerical Results 115

4.4 Performance within MirkDC . 122

4.4.1 Sequential MirkDC . 124

4.4.2 Parallel MirkDC . 139

4.4.3 Problems Where MirkDC/SLF-LU Fails 148

4.4.4 Fast Sequential MirkDC/RSCALE . 154

5 Conclusions and Future Work 163

A Additional � ���	� -RSCALE Experiments 166

B Additional Sequential Experiments 183

C Additional Parallel Experiments 191

D Additional MirkDC Performance Experiments 198

D.1 Sequential MirkDC . 198

D.2 Parallel MirkDC . 210

D.3 Problems Where MirkDC/SLF-LU Fails . 222

D.4 Fast Sequential MirkDC/RSCALE . 236

vi

E Fortran Source Listings 252

E.1 RSCALE . 252

E.2 SLF-LU . 278

E.3 SLF-QR . 299

Bibliography 319

vii

List of Tables

3.1 Seven test problems for � -RSCALE . 70

4.1 Complexity of the factorization and reduction component of a block-step in

each of the parallel ABD system solvers, and COLROW. Operations are counted

in terms of flops—multiplication/addition pairs. 97

4.2 Architecture specification for sequential tests. 97

4.3 Nine constant-coefficient linear problem classes to test the sequential perfor-

mance of SLF-QR, SLF-LU and RSCALE. 99

4.4 Architecture specification for parallel tests. 113

4.5 Six constant-coefficient linear problems to test the parallel performance of

SLF-QR, SLF-LU and RSCALE. 116

4.6 Architecture specifications. The Sun Ultra 2 is used as a sequential machine. . . 124

4.7 Eight MirkDC/SWF-III experiments to measure the relative performance of

the four MirkDC variants on a sequential machine and to demonstrate how

sequential performance is affected by problem and solution strategy parame-

ters. A SWF-III problem is defined by � and the interval of integration
� �������	��

.

A MirkDC solution strategy is specified by a MIRK scheme, defect tolerance
�

defect, number of initial mesh subintervals �� , and number of partitions. 125

4.8 Eight MirkDC/SWF-III experiments to measure the relative performance of

the four MirkDC variants on a sequential machine and to demonstrate how

sequential performance is affected by problem and solution strategy parame-

ters. The problems in these experiments are difficult numerically and must be

solved using parameter continuation. A SWF-III problem is defined by � and

the interval of integration
���������	��

. A MirkDC solution strategy is specified by a

MIRK scheme, defect tolerance �
defect, number of initial mesh subintervals �� ,

number of partitions, and parameter continuation strategy. 132

viii

4.9 Five SWF-III problems. Each problem is specified by � and the left and right

endpoints of the interval of integration (i.e. the distance between the rotating

disks). The problems are listed in increasing order of difficulty. 140

4.10 Ten MirkDC vs. PMirkDC experiments. Each experiment is specified by a

host architecture (Table 4.6), a SWF-III problem (Table 4.9), and a MirkDC

solution strategy. A MirkDC solution strategy is given by a MIRK scheme,

defect tolerance �
defect, number of initial mesh subintervals �� , and parameter

continuation strategy. 141

4.11 Eight MirkDC/SWF-III experiments to show how SLF-LU instability can af-

fect MirkDC performance. A SWF-III problem is defined by � and the interval

of integration
���	�����	�

. A MirkDC solution strategy is specified by a MIRK

scheme, defect tolerance �
defect, number of initial mesh subintervals � , and

number of partitions. 149

4.12 Eight MirkDC/SWF-III experiments in which sequential MirkDC/RSCALE

outperforms MirkDC/COLROW in terms of overall execution time and/or stor-

age requirements. A SWF-III problem is defined by � and the interval of in-

tegration
� �������	��

. A MirkDC solution strategy is specified by a MIRK scheme,

defect tolerance �
defect, number of initial mesh subintervals �� , and number of

partitions. 157

D.1 Numerical results index for experiments #5-#8 of Table 4.7 in
�
4.4.1. 199

D.2 Numerical results index for experiments #5-#8 of Table 4.8 in
�
4.4.1. 199

D.3 Numerical results index for experiments in Table 4.10 in
�
4.4.2. 210

D.4 Numerical results index for experiments #3-#8 of Table 4.11 in
�
4.4.3. 222

D.5 Numerical results index for experiments #3-#8 of Table 4.12 in
�
4.4.4. 236

ix

Chapter 1

Introduction and Background

The linear systems considered in this thesis inevitably arise in the numerical solution of Bound-

ary Value Problems (BVPs) for Ordinary Differential Equations (ODEs) of the form����� �����
	 � � � ��� ����� � �� � �	�����	��
��
(1.1)

subject to the boundary conditions ������� �	��� � ��� �	������� � �
(1.2)

where � ��	 � � ����� . If the boundary conditions are separable, (1.2) can be written as

������� �	��� � ��� �	������� � � � ����� �	������ � ����� �	������� � � �
(1.3)

where � � ���!�#" and � �������#$ with % ��& % �'� % .

In
�
1.1 a general framework for the numerical solution of (1.1) with separable or non-

separable boundary conditions is outlined. Although there exists a variety of different numeri-

cal methods for solving this problem, most adhere to this general framework. Also in
�
1.1 the

primary topic of this thesis—the Almost Block Diagonal (ABD) or Bordered Almost Block

Diagonal (BABD) linear system ([Asch 88, Chapter 7])—is introduced, along with an expla-

nation of where this system arises in the context of solving a BVP and a description of the

various forms in which it can appear. There is much potential for parallelism in the numerical

solution of BVPs for ODEs. This has been observed by several authors ([Benn 90], [Wrig 90],

[Asch 91], [Papr 91], etc.), as has the fact that the solution to the ABD system can easily be-

come the bottleneck in the execution time of a parallel BVP code. These issues are discussed

further in
�
1.2. Two popular sequential codes for solving ABD systems are described in

�
1.3.

1

CHAPTER 1. INTRODUCTION AND BACKGROUND 2

In
�
1.4 a brief history of the early attempts at developing a parallel code for solving ABD sys-

tems is given, and the first stable parallel codes are discussed in
�
1.5. An overview of the thesis

is given in
�
1.6.

1.1 The Numerical Solution of BVPs for ODEs

When solving (1.1) with (1.2) or (1.3) numerically, a discrete approximation to the true contin-

uous solution ��� ��� is often sought. First, the interval
���������	�

is subdivided into a mesh:

�	� � � � ��� ��������� �	� � �	� �

Many techniques then proceed to compute a discrete approximation of the form

 �
������

� � �
...� �

�������
�
����� ������� �

where ����� ��� � � � � ��� �
��� ��� � � � � � � � � . (We refer to � � as the
�
-th mesh variable of the

discrete approximation.) The vector

is obtained by solving a discrete system ! �
 �!� �

that depends on the system of ODEs, the boundary conditions, and the underlying numerical

method used to discretize the continuous problem. Although the residual function ! may be

written in many forms, it usually has only one component, " � , per subinterval, and often each

component depends only on the unknowns local to its subinterval. If, in addition, the boundary

conditions are separable, ! �
 ��� �
can be written as

! �
 ���
�����������

� � ��� �" ��� � � � �" � ��� � � � # �
..." �%$&� ��� �%$&� � � � �� � ��� � �

������������
�
� � �

(1.4)

where " � � ��� �'��� � � � � � � � � � (�
, and thus ! � � � ������� �

. A variant of Newton’s method

is often used to solve (1.4), yielding an iteration of the form

) �+* �-,
 �+* � (
 �.* �����0/ � ! �
 �+* � � �21 � � � � � � � �
(1.5)

CHAPTER 1. INTRODUCTION AND BACKGROUND 3

where
) �.* � ��� ! �
 �.* � � � �
 , the Jacobian of ! .

During each iteration,
) �+* �

is recomputed and the linear system (1.5) is solved. Because of

the structure of ! shown in (1.4), the Jacobian of ! has a “staircase” or Almost Block Diagonal

(ABD) form

� ! �
 �
�
 �

��������������

� �
� �

� � �
�
� # � #

.
� �%$&�

�
�%$&�
� �

���������������
�
��� � ������� ��� � ������� �

(1.6)

where

� � � � " ������� � ��� ��� �
� ��� ��� ��� � �

� � � � " ������� � ��� �����
� ��� ��� ��� ��� � � � � � � � � � � � � � (� �

and
� � � � � � ��� �

� � ��� � " � � � � �'� � � � ��� � �
� � � ��� �#$�� � �

The main objective of this thesis is to develop parallel algorithms for the numerical solution of

ABD linear systems.

Each iteration of (1.5) requires the evaluation and factorization of
) �+* �

, the evaluation

of ! �
 �.* � �
, and a forward elimination and back-solve. In practice,

) �.* �
may be held fixed

for several iterations provided an acceptable rate of convergence is achieved. In this case,

assuming the factors of
) �.* �

are stored, several linear systems may be solved at a substantially

reduced cost with only a forward elimination and back-solve on subsequent right-hand sides! �
 � � � � �
	 � 1 & � ��1 &�� � � � �
.

If the BVP is posed with non-separable boundary conditions, ! �
 ��� �
may be written as

! �
 ���
��������

����� � � � �" ��� � � � �" � ��� � � � # �
..." �%$&� ��� �%$&� � � � �

���������
�
� � �

(1.7)

where ����� � � � � � �!� and " � � � � � � � � � � � � � (�
are as defined in (1.4). In this case, the

Jacobian of ! has a slightly modified form. Augmented with its right-hand side, the linear

CHAPTER 1. INTRODUCTION AND BACKGROUND 4

system that must be solved at each iteration of (1.5) appears as

�) #�� !
 �
�����������

� � � � �
� � "

� � �
� " �
� # � # " #

.
...

� �%$&�
�
�%$&� " �%$&�

������������
�

(1.8)

where
� � � � � �
 � � � � � � � � � � � � (�

are as defined in (1.6), and

� � � � ����� � � � �
� � ��� ��� � � � � � � ����� � � � �

� � � ��� ��� � �
Although

) # is not, by precise definition, an ABD matrix, it is referred to as such through-

out this thesis so as to avoid having to maintain a distinction between the two Jacobian struc-

tures. This second form of Jacobian—often called a Bordered Almost Block Diagonal (BABD)

matrix—normally will be used when describing parallel algorithms for solving ABD systems

since none of the new algorithms we present require separable boundary conditions. Note that

if the BVP is posed with separable boundary conditions, (1.6) can be transformed easily to

(1.8) using an appropriate row permutation.

Finally, some algorithms described later are slightly more efficient in terms of both storage

and speed when � � ��� �&� � � � � � � � � (�
:

�)�� � !
 �
�����������

� � � � �
� � "

� � � " �
� # � " #

.
...

� �%$&� � " �%$&�

� ����������
�

(1.9)

This third form of Jacobian arises when

" ������� � ��� ������� ��� ����& � � ����� � � � � � � � � � � � � � (�
(1.10)

in (1.7), with � � � � � depending only on � � . This form of residual occurs, for example, in

multiple shooting and codes based on implicit Runge-Kutta formulas (see [Asch 88]).

There are several other issues that need be addressed in the numerical solution of BVPs,

including selecting an appropriate mesh, choosing a specific formula for the residual function,

and determining a convergence criteria for (1.5). See [Asch 88] for details.

CHAPTER 1. INTRODUCTION AND BACKGROUND 5

1.2 The Potential for Parallelism in a BVP Code

Much parallelism is inherent and obvious in the approach outlined in
�
1.1. For example, the

residual components of ! �
 �.* � �
can be evaluated independently, and the block-pairs

� � � � � �
 of) �+* �
can be constructed independently each time

) �+* �
is re-evaluated in (1.5). In [Benn 90],

a parallel version of COLNEW [Bade 87] is implemented and the speed-up achievable by

parallelizing the Jacobian set-up phase is investigated. A high percentage (60-80%) of the

total execution time in COLNEW is spent during set-up where large blocks are “condensed” to

form (1.6). Condensing in parallel, therefore, is very effective and in fact shifts the most time-

consuming phase of the code: run-time profiling in [Benn 90] shows that the factorization and

solution of the condensed ABD system becomes the bottleneck in the parallel implementation.

In codes that do not use condensation the resulting ABD system can be much larger, and its

factorization and solution an even bigger bottleneck. In COLSYS [Asch 81], for example, the

ABD factorization often accounts for more than 50% of the total execution time [Muir 91].

These statistics emphasize the importance of developing a parallel ABD system solver.

A detailed history of the development of parallel software for BVPs for ODEs (BVODEs)

is given in [Muir 03]. The focus of that paper is the parallel BVODE code PMirkDC which

incorporates, as its parallel ABD system solver, the RSCALE algorithm presented in this thesis.

Further experiments with PMirkDC are included in Chapter 4 of this thesis.

1.3 Sequential Codes for Solving ABD Systems

Efficient sequential codes for solving ABD systems have been available for several years—

two examples are SOLVEBLOK [deBo 80] and COLROW [Diaz 83]. Both codes perform

the factorization in � � � % � � time. SOLVEBLOK eliminates by rows and COLROW uses a

variation of alternate row and column elimination to avoid fill-in. Stability is achieved by a

pivoting strategy which controls element growth during the factorization. The pivoting results

in an implicit decoupling of the underlying increasing and decreasing fundamental solution

modes, an essential process for the stable solution of a BVP ([Asch 88, Chapter 6]).

The potential for parallelism in these codes is not obvious. Most are essentially variations

of Gaussian elimination with row partial-pivoting, and hence are inherently sequential. It is

sometimes possible, however, to first partition (1.6) and then factor each partition indepen-

dently using one of these sequential codes. This approach has met with limited success, and is

discussed further in the next section.

CHAPTER 1. INTRODUCTION AND BACKGROUND 6

1.4 Early Attempts at Parallel Codes

The greatest potential for speed-up in the parallel solution of ABD linear systems exists across

the blocks (i.e. in �), since typically � � % in a BVP. Parallelism within the blocks is

complementary, and could be exploited also if % is sufficiently large, but this possibility is

not pursued here. Suppressing the dependence on % , therefore, the theoretically best parallel

complexity is � � � ��� � � block-steps1 since block-rows must be processed pairwise during the

factorization. Most parallel algorithms proposed in the past, however, either do not achieve the

optimal speed-up or suffer from poor stability properties. Following is a brief history of some

of the more noteworthy contributions:

1989 Lentini [Lent 89] suggests performing Gaussian elimination with pivoting simultane-

ously from both ends of the matrix. This leads to a stable algorithm that effectively uses

two processors, but it cannot be generalized for greater parallelism.

1990 Wright and Pereyra [Wrig 90] present a block factorization algorithm which is essen-

tially equivalent to compactification—an algorithm known to be potentially unstable

([Asch 88, page 153]). They propose using the parallel algorithm initially, and when

instability is detected, switching to a more stable sequential method.

1991 Paprzycki and Gladwell [Papr 91] describe a “tearing” algorithm in which the origi-

nal ABD matrix is partitioned into several smaller matrices, each of which is ABD.

These represent sub-BVPs which can be solved independently using an existing sequen-

tial code, after which the solutions are combined. Unfortunately, although it is always

possible to select intermediate boundary conditions and construct the smaller ABD sys-

tems, there is no guarantee that the sub-problems will be well-conditioned. In addition,

the authors found that even when a problem could be solved stably with this method, the

speed-up achieved was less than expected.

1991 Ascher and Chan [Asch 91] propose solving the ABD system by first forming the normal

equations. The resulting system is symmetric, positive-definite, block-tridiagonal and

can be solved stably in � � �����	� � block-steps using a variation of block cyclic reduction.

(See [Hell 76]; we also describe the block cyclic reduction algorithm in this thesis.)

The drawback here, of course, is that by forming the normal equations explicitly the

1 �������	�
�������� .

CHAPTER 1. INTRODUCTION AND BACKGROUND 7

2-norm condition number of the original system is squared. Also, a block of fill-in is

introduced in each block-row which potentially leads to higher operation counts.

1.5 The First Stable Parallel Code and Thesis Goals

Wright was the first to publish a stable parallel algorithm that attains the theoretically optimal

speed-up for this problem. In [Wrig 92] a “structured orthogonal factorization” is described

which—when embedded in a cyclic reduction algorithm—solves the ABD system stably in

� � � � � � � block-steps with as few as � � � ���	� processors. Stability is assured since the algo-

rithm (Structured QR) is essentially a ��� -factorization applied to a row and column permuted

version of the original ABD matrix. In [Wrig 94], Wright replaces the local orthogonal trans-

formations used in [Wrig 92] with Gauss transformations with row partial-pivoting resulting

in a substantial speed-up even though the number of block-steps is the same. The algorithm

(Structured LU) is equivalent to Gaussian elimination with restricted row partial-pivoting ap-

plied to the original ABD matrix, and is stable for a wide range of problems, although rapid

error growth can arise in some cases [Wrig 93].

Since Wright published his Structured QR and Structured LU papers, several authors have

proposed minor modifications to the basic algorithms to help improve speedup and/or stability.

The local operation count per block-step, however, remains the same in all variations. A review

of recent parallel (and sequential) solution techniques for solving ABD linear systems is given

in [Amod 00].

The algorithms SLF-QR and SLF-LU described in
�
2.2 of this thesis were discovered inde-

pendently by us [Panc 92], and are similar to those of Wright. Unfortunately, before we could

complete our analysis of the algorithms, Wright published Structured QR along with a proof of

its stability. Once this happened, the focus of the thesis changed somewhat from our original

goal of discovering the first optimally parallel stable algorithm, and the following additional

goals were set:

� Extend SLF-QR and SLF-LU to increase parallelism to � � � � block-steps in the back-

solve stage (i.e., constant complexity, independent of �) by making better use of avail-

able processors during the decomposition stage.

� Further analyze the potential for instability in SLF-LU, which was initially addressed in

[Wrig 93] and [Wrig 94], and attempt to measure the reliability of this algorithm when

used in a production code for solving nonlinear BVPs for ODEs.

CHAPTER 1. INTRODUCTION AND BACKGROUND 8

� Develop a new algorithm—RSCALE—based on a different numerical technique, which

does not exhibit the instability inherent in SLF-LU, and which is significantly faster than

SLF-QR due to reduced local operation counts.

� Implement a robust parallel FORTRAN code for each of SLF-QR, SLF-LU and RSCALE

using state-of-the-art mathematical software (level-3 BLAS), show that each code speeds

up linearly with the number of processors on a parallel machine, and show that the rela-

tive execution times of the three codes agree with what one would expect from the local

operation counts.

� Assess the relative performance of the three codes, in terms of both accuracy and speed,

when they are incorporated in MirkDC [Enri 96], a software package for solving nonlin-

ear BVPs for ODEs.

These additional goals were met by the completion of the thesis.

1.6 Overview of the Thesis

An overview of the remainder of the thesis is given below.

Chapter 2: Several variations of SLF-QR, SLF-LU and RSCALE are described. Each algo-

rithm is presented as a modified form of block cyclic reduction (BlkCR), a generalization

of the well-known cyclic reduction algorithm for solving tridiagonal linear systems.

Chapter 3: The stability of the three algorithms is discussed. A thorough stability analysis

of SLF-QR and SLF-LU is given in [Wrig 92] and [Wrig 94]—only the key points are

reviewed here. However, the potential for instability in SLF-LU, which was initially

addressed in [Wrig 93] and [Wrig 94], is investigated in greater depth. The chapter closes

with a stability analysis of RSCALE, applicable when the algorithm is used to solve a

certain class of ABD system.

Chapter 4: The three algorithms are compared with respect to ease of implementation, stor-

age requirements, accuracy and speed. Detailed operation counts are derived for the local

operations performed at each block step. Numerical tests run on a sequential machine

show that the relative execution times of the three algorithms agree well with what one

would expect from the local operation counts. Numerical tests run on a parallel ma-

chine show that all three algorithms exhibit close to linear speedup when used to solve

CHAPTER 1. INTRODUCTION AND BACKGROUND 9

sufficiently large ABD systems. The relative performance of the algorithms is assessed

when the codes are incorporated in MirkDC [Enri 96], a software package for solving

nonlinear BVPs for ODEs.

Chapter 5: The thesis concludes with a summary and discussion of future work.

The appendices contain:

� additional RSCALE stability results from the analysis in Chapter 3,

� additional experiments demonstrating the relative performance of the three solvers on a

sequential machine,

� additional experiments demonstrating the relative performance of the three solvers on a

parallel machine,

� additional experiments with the solvers incorporated in MirkDC, and

� a complete source listing of the SLF-QR, SLF-LU and RSCALE parallel codes.

Chapter 2

Description of the Algorithms

In this chapter we describe several variations of three parallel algorithms for solving ABD

linear systems. Each variation is based on a generalization of cyclic reduction, an algorithm

originally proposed for solving tridiagonal linear systems. In
�
2.1, the basic (and unstable)

cyclic reduction algorithm is outlined. In
�
2.2 the block multiplications used in the basic algo-

rithm are replaced by Stable Local Factorization (SLF) transformations. These transformations

give rise to two similar parallel algorithms for solving the ABD system: SLF-QR and SLF-LU.

In
�
2.3 a third algorithm based on a different numerical technique is presented. RSCALE uses

eigenvalue rescaling to first transform the ABD matrix so that block cyclic reduction as de-

scribed in
�
2.1 can be performed stably. Although the number of block-steps is the same as

that of the algorithms in
�
2.2, RSCALE requires fewer local operations within each block-

step and therefore potentially is faster than either of the SLF-based algorithms. We provide a

detailed complexity analysis of the algorithms later in the thesis.

2.1 Block Cyclic Reduction

Cyclic reduction was originally proposed as a stable sequential algorithm for solving sym-

metric positive-definite tridiagonal linear systems ([Hock 65], [Hock 70], [Golu 83]). It does,

however, possess considerable inherent parallelism and can be readily adapted to solve ABD

systems. To this end, consider the third form of the ABD system (1.9). If this form does not

arise naturally from the discretization, it can be computed by multiplying the
�
-th block-row

of (1.8) through by �
$&�� (providing �

$&�� exists and is not too badly conditioned)—a process

which is obviously highly parallel. Now assuming � � � processors are available initially, the

first step or “sweep” of the reduction assigns each pair of block-rows
���

and
����& �

to a proces-

10

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 11

sor, multiplies row
�

by
� � ��� and subtracts it from row

� & �
, giving1

����������������

� � � � �
� � " (� � � � " � (� � "

� # � " #(� � � # � " � (� � " #
.

...
� �%$ # � " �%$ #

(� �%$&� � �%$ # � " �%$&� (� �%$&� " �%$ #

� ���������������
�

(2.1)

This effectively uncouples the odd-indexed unknowns from (1.9). Once � # � ��� � � � � � ��� � ,
have been computed, � # � ��� ��� � � � � � � � � (�

, can be obtained from (2.1) by

��# � ����� " # � (� # ��� # � � � � � � � � � � � � � (� �
(2.2)

The even-indexed unknowns are computed during the second sweep by solving a reduced or

compacted ABD system constructed from the odd rows and columns of (2.1):

��������

� � � � �
(� � � � " � (� � " (� � � # � " � (� � " #

.
...(� �%$&� � �%$ # � " �%$&� (� �%$&� " �%$ #

� �������
�

(2.3)

The algorithm proceeds recursively for � � � � sweeps—each sweep utilizing half the proces-

sors of the previous one—resulting in a final
� %�� � % compacted system. This small system is

solved sequentially by a stable method, such as Gaussian elimination, to obtain � and � � , and

then ����� � back-solve sweeps of the form (2.2) are used to recover the remaining unknowns.

During the back-solve, the number of active processors doubles with each sweep.

Other variants of this algorithm are possible. The need for ����� � back-solve sweeps can

be eliminated by continuously using � � � processors during the reduction. This results in a

1Block-elements of the ABD matrix appearing as white-space, such as the element between �������	� and
 in
block-row 1 of (2.1), are understood to be the ���� zero matrix. This convention is used throughout the thesis.

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 12

system of the form��������������

� � � � �
� � �" (� � � � �" �

� # � � � � �" #(� � � # � � � � �" �
...

. . .
...� (� � �%$&� � �%$&���� � �%$&� $ � � �" �%$&�

���������������
�

(2.4)

where
�" � " � �" � � " � (� � �" � $&� � � � � � � � � (�

. Then � and � � are computed by solving� � � � �� (� � �%$&� � �%$&���� � �%$&� $ � � � � � � � � � � �
�" �%$&� � (2.5)

the same
� % � � % compacted system that arises in the first version. The back-solve for (2.4) is

completely parallel: the remaining unknowns can be computed in
�

step on � processors or
�

steps on � � � processors.

If only � � � � � processors are available, each processor can be assigned ��� � � pairs of

block-rows to process in the first sweep, with the number of pairs of block-rows decreasing by

a factor of 2 with each sweep until there are more processors than pairs of block-rows. Alterna-

tively, the system could first be partitioned into � blocks of � ��� block-rows. Each partition

is assigned to a single processor, where it is reduced using a sequential algorithm. This re-

sults in a compacted system of order � that can be solved using cyclic reduction as shown

above. Using this technique, � � �����	� � complexity is attainable with as few as � � � � �����	�
processors. See [Asch 91] for more details.

Unfortunately, none of these algorithms is appropriate for solving ABD systems aris-

ing from numerical methods for BVPs. As pointed out in [Asch 91], they are equivalent to

compactification—an algorithm that is known to be unstable because it fails to decouple the

fast increasing and decreasing fundamental solution modes. Fundamental solution modes are

characteristic of the underlying dichotomy of the differential equation. Well posed BVPs ex-

hibit such a dichotomy. The increasing solution modes are controlled by the right boundary

conditions and the decreasing solution modes are controlled by the left boundary conditions.

These concepts are defined more formally in [Asch 88, Chapter 6], and in Chapter 3 of this

thesis where we discuss the stability of the algorithms.

In the following sections, we propose several modifications to the basic cyclic reduction

algorithm in order to improve its stability when used to solve the ABD system.

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 13

2.2 Stable Local Factorization

The cyclic reduction algorithm described in
�
2.1 uses the elementary transformation� ����� � � � ����� " ������ (� � ��� � � � ����� " � ��� (� � ��� " � ��� (� � �

(� � ��� � � � � ����� � � � ����� " ������ � � ��� � ����� " � ��� � (2.6)

The algorithm is potentially unstable if, for example, some eigenvalues of
� � and/or

� � ��� are

greater than one in magnitude, which is typical of ABD matrices arising from the discretization

of BVPs—the larger eigenvalues correspond to increasing fundamental solution modes. As the

reduction progresses,
� � � � � can grow rapidly resulting in the loss of all significant digits to

machine round-off.

In this section, we propose two alternative transformations which can be adapted for use

in a variation of the cyclic reduction algorithm. These Stable Local Factorization (SLF) trans-

formations give rise to stable parallel algorithms for solving ABD systems. Each avoids the

instability inherent in the block multiplications of (2.6) by controlling the growth of elements

during the reduction. One uses orthogonal factorization, the other Gaussian elimination with

row partial-pivoting. The stability of the new algorithms is analyzed in [Wrig 92], [Wrig 94]

and Chapter 3 of this thesis. (As is shown in [Wrig 94] and
�
3.2, the prefix “SLF” is perhaps

a bit of a misnomer for the Gaussian elimination variant, as this variant can be unstable on

certain classes of problems. Nevertheless, we find it convenient to label the orthogonal factor-

ization and Gaussian elimination variants of the new algorithm with the same prefix in order to

be consistent with Wright’s presentation, and also because they are structurally equivalent.)

Since SLF-transformations do not exploit the identity matrix, the second form of the ABD

system (1.8) is used throughout this section; the
�
-th slice appears as� ����� � � � � ����� " ������ � � ��� � � ��� ����� " � ��� �

The notation
�������� is used to indicate that the matrix

� � has been transformed during the
	

-th

step of an algorithm.

2.2.1 Orthogonal Factorization

This transformation requires the QR-factorization of part of the
�
-th slice:� � �

� � ��� � � � � � � �� �

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 14

where � � � � # ��� # �
is orthogonal and � � � � ��� � is upper-triangular. Conceptually, once � �

is obtained the
�
-th slice is multiplied through by ��� � giving� ����� � ������ � ������ � ������ ����� " ����������� ��� ���� ��� � ������ ��� ����� " ��� �� ��� ��� (� � � � � ����� � � � � ����� " ������ � � ��� � � ��� ����� " � ��� � (2.7)

However, in practice, the QR-factorization is computed in place with Householder reflections

which are stored in the lower triangle of � ������ and in the space formerly occupied by the ele-

ments in the % � % block immediately below � � ���� . Thus, in the context of a modified Newton

iteration (1.5), it is possible to perform several iterations (i.e. transform several subsequent

right-hand sides) without recomputing the QR-factorization.

The SLF-QR transformation is structurally different than (2.6); in particular, there is fill-

in at � ��� �� . Therefore, the algorithms in
�
2.1 must be modified for use with SLF-QR. This is

discussed further in
�
2.2.3 and

�
2.2.4.

2.2.2 Gaussian Elimination with Row Partial-Pivoting

This transformation is similar to SLF-QR, but instead uses an LU-factorization:� � �
� � ��� � ��� � ��� �� �

where
� $&�� � �� � � � ����� �� # � # �� � � � � � # ��� # �

,
����

is an elementary Gauss transformation, � � is

a permutation matrix, and � � � � ��� � is upper-triangular. Conceptually, once
� $&�� is obtained

the
�
-th slice is multiplied through by

� $&�� giving� ����� �� ������ � � ���� �
� ������ ����� �" ����������� ���� ���� ��� �
� ������ ��� ����� �" ������ ��� � � (� $&�� �

� ����� � � � � ����� " ������ � � ��� � � ��� ����� " � ��� � (2.8)

However, in practice, the factorization is computed in place with Gauss transformations which

are stored in the space formerly occupied by the elements below � ������ , and the permutation

matrices are stored in a single integer vector of length % . As with SLF-QR, several modified

Newton iterations (1.5) can be computed using the same SLF-LU factorization.

SLF-LU is obviously structurally equivalent to SLF-QR. Either can be used with the algo-

rithms in
�
2.2.3 and

�
2.2.4.

2.2.3 The SLF Partitioning Algorithm

SLF-transformations can be incorporated in a partitioning algorithm which generalizes cyclic

reduction for use on architectures with �	� � processors. The ABD system is first partitioned

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 15

into � blocks of � ��� block-rows each; the first partition appears as�����������

� � "
� � �

� " �
� # � # " #

� � � � " �
.

...
���

� � �
� " �

�

������������
�

(2.9)

where � & �
is the number of block-rows in the first partition. The reduction steps shown

below for the first partition can be carried out simultaneously on all � partitions. The reduction

starts at the top and works down. In the first step a factorization is computed for
�
� � � ��
 � and

(2.9) is transformed to �����������

����� � � ��� � � ��� � " ��� �
����� �� � ��� �� " ��� ��

� # � # " #
� � � � " �

.
...

���
� � �

� " �
�

������������
�

(2.10)

In the second step
�
� ��� �� � � �#
 � is factored and (2.10) is transformed to�����������

� ��� � � ��� � � ��� � " ��� �
� ��� �� � �	� �� � ��� �� " ��� ��
� ��� �# � ��� �# " ��� �#

� � � � " �
.

...
���

� � �
� " �

�

������������
�

(2.11)

After � steps the partition has the form������������

� ��� � � ��� � � ��� � " ��� �
� ��� �� � ��� �� � ��� �� " ��� ��
� �	
 �# � �	
 �# � �	
 �# " �	
 �#

...
.

...
� �	� � ��

�
$&� � �	� � ��

�
$&� � �	� � ��

�
$&� " �	� � ��

�
$&�

� ��� � ��
� � �	� � ��

� " �	� � ��
�

�������������
�

(2.12)

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 16

Once � and � � �
���

, the end mesh variables of this partition, are known, the interior mesh

variables are computed by back-substitution; each step requires solving the triangular system

� ��� �� $&� ��� � " ��� �� $&� (� ��� �� $&� � (� ��� �� $&� ��� ��� � � � � � � (� � � � � � ���
(2.13)

As with the reduction, this can be done simultaneously on all � partitions.

The end mesh variables for each partition are computed by solving a compacted system of

order � constructed from the last block-row of each partition. Letting
� � �	� � �� �

�
� ��� � �� �

� " �	� � �� �

 �

� � � � � � � � � " � �
���� � � � � � ��(�
, this compacted system has the form�����������

� � � � �
� � � � � � " � �

� � � � � � " � �
� � � � � � " � �

.
...

� ����� � � ����� � " ����� �

������������
�

(2.14)

which has the same structure as (1.8). It could therefore be solved in � � � � block-steps using

a stable sequential code, but since � processors are available it is possible to apply cyclic

reduction to solve it in � � ����� � � block-steps. Two versions of cyclic reduction using SLF-

transformations are described below. To simplify the figures, � is set to
�

and the right-hand

sides are omitted. Generalizing the algorithms for more processors is straightforward.

The first version (Figure 2.1) requires � ��� � reduction sweeps and � ��� � back-solve sweeps.

During the first reduction sweep � processors are active computing SLF-transformations si-

multaneously on block-rows 0-1, 2-3, 4-5, and 6-7. During the second sweep,
�

processors are

active transforming block-rows 1-3 and 5-7, and during the final sweep
�

processor is active

transforming block-rows 3-7. � � � and � ��	 ��� are then computed by solving a
� % � � % system

constructed from the first and last block-rows:� � � � �
� �	
 ���	 � �	
 ��
	 � � � � �� �
	 ��� � � � �

" �	
 ���	 � (2.15)

The back-solve works in a reverse fashion. During the first sweep
�

processor is active solving

the triangular system in block-row 3 for � ��� . During the second sweep
�

processors are active

solving systems in block-rows 1 and 5 for � � � and � �� , and during the final sweep � processors

are active solving systems in block-rows 0, 2, 4, and 6 for � � � , � �
 , � �
� , and � �
	 .
Several subsequent right-hand sides can be transformed during a modified Newton iteration

(1.5) without recomputing the local factorizations. If the Householder or Gauss transformations

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 17

Figure 2.1: Cyclic reduction using stable local factorization

� � � �
� � ��� � �
� � � � � �
� � � � � �
� �
 � �

� �� � ��
� ��� � ���
� �� � ��
� � 	 � � 	

Sweep #1
� � � �
� ��� �� ��� ��� �� � � ��� �� �
� ��� �� � � ��� �� �

� ��� �� � � ��� �� � � ��� �� �
� ��� ��
 � ��� ��

� ��� ��� � ��� ��� � ��� ���
� ��� ���� � ��� ����

� ��� ��� � ��� ��� � ��� ���
� ��� ���	 � ��� ���	

Sweep #2
� � � �
� ��� �� ��� ��� �� � � ��� �� �
� ��� �� � � ��� �� � � ��� �� �

� ��� �� � � ��� �� � � ��� �� �
� ��� ��
 � ��� ��

� ��� ���� � ��� ��� � ��� ���
� ��� ��
� � ��� ���� � ��� ����

� ��� ��� � ��� ��� � ��� ���
� ��� ��
	 � ��� ���	

Sweep #3
� � � �
� ��� �� � � ��� �� � � ��� �� �
� ��� �� � � �	� �� � � ��� �� �

� ��� �� � � ��� �� � � ��� �� �
� �	
 ��
 � �	
 ��
 � �	
 ��

� ��� ��� � ��� ��� � ��� ���
� ��� ���� � ��� ���� � ��� ����

� ��� ��� � ��� ��� � ��� ���
� �	
 ��
	 � �	
 ���	

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 18

Figure 2.2: Cyclic reduction to N-shape Jacobian using stable local factorization

Sweep #1
� � � �
� ��� �� � � ��� �� � � ��� �� �
� ��� �� � �

��� �� �
� ��� �� � � ��� �� � � ��� �� �
� ��� ��
 �

��� ��

� ��� ��� � ��� ��� � ��� ���
� ��� ���� � ��� ����

� ��� ���� � ��� ���� � ��� ���
� ��� ��
	 � ��� ���	

Sweep #2
� � � �
� ��� �� � � ��� �� � � ��� �� �
� �	� �� � � ��� �� � �

��� �� �
� ��� �� � � ��� �� � � ��� �� �

� �	� ��
 �
��� ��

� ��� ��� � ��� ��� � ��� ����
� ��� ���� � ��� ���� �

��� ����
� ��� ���� � ��� ��� � ��� ���

� ��� ���	 � ��� ���	
Sweep #3

� � � �
� �	
 �� � � ��� �� � � �	
 �� �
� ��� �� � � ��� �� � � ��� �� �
� �	
 �� � � ��� �� � � �	
 �� �
� �	
 ��
 � ��
 ��
 � �	
 ��

� ��
 ��� � ��� ��� � �	
 ����
� �	� ���� � �	� ��
� � ��� ��
�
� ��
 ��� � ��� ��� � �	
 ����

� �	
 ���	 � �	
 ��
	

Sweep #4
� � � �
� � � �� � � ��� �� � � �

� �� �
� � � �� � � ��� �� � � �

� �� �
� � � �� � � ��� �� � � �

� �� �
� �	
 ��
 � �	
 ��
 � �	
 ��

� � � ��� � ��� ���� � �

� ���
� � � ���� � ��� ���� � �

� ����
� � � ��� � ��� ��� � � � ���
� �	
 ���	 � �	
 ���	

are stored as explained in
�
2.2.1 or

�
2.2.2, the reduction sweeps simply involve applying the

stored transformations to the new right-hand side at a cost per block-row pair of
� % # flops2 for

a Householder transformation or
�# % # flops for a Gauss transformation.

In the second version (Figure 2.2) the need for ����� � back-solve sweeps is eliminated by

making better use of processors during the reduction. Processors that were idle in Figure 2.1

are now used to “push”
�

and � blocks outwards resulting in an N-shaped Jacobian. Clearly,

once � � � and � ��	 ��� are known, the back-solve on this Jacobian can be accomplished in
�

sweep

using � processors. The push begins at sweep #3 and requires an additional sweep at the end.

The savings of a completely parallel back-solve, however, can easily outweigh the overhead of

2We define a flop, or floating-point operation, formally in � 4.1.

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 19

the additional reduction sweep when the Jacobian is kept fixed for several iterations in (1.5).

The usual SLF-transformation keeps � � � � processors active during sweep
	
. The

�
and �

block pushes keep an additional � (� � � � � processors active during sweeps
	 � � � � � � � � &

� � � � . Therefore, for this version,

total # of active processors
� ���� ���

� � � � � � 	 � �

� (� � � � � � � 	 � � ��� �
��(� 	 � � & � ��� � �

Thus, in contrast to the first version, the number of active processors increases during the

reduction to a maximum of � (�
.

In order for the second version to be efficient each processor must push its blocks in the

same time required for the SLF-transformation (or less). For example, in sweep #3 of Fig-

ure 2.2 one processor computes the usual SLF-transformation on block-rows 3-7. Simultane-

ously, � other processors push
�

and � blocks outwards in rows 0, 2, 4, and 6. As shown below

for block-row 0, a “push” requires 4 steps:

1.
� � � � ��� �� � � $&� � ��� �� �

2. � � � � ��� �� � � $&� � ��� �� �

3.
� �	
 �� � � � ��� �� � (� ��� �� � �

4. � �	
 �� � � (� ��� �� � �
Since � ��� �� � is upper-triangular, steps 1 and 2 require % � � � flops each. The total for all four

steps is therefore
� % � & � � % # � which, fortunately, is less than the flop count for the fastest

SLF-transformation (see Chapter 4).

One possible way of optimizing this process stems from the observation that often in a BVP

the boundary conditions have little influence on the solution at interior mesh points. As a result,

in many problems the interior
�

and � blocks “vanish” long before they reach their respective

left and right boundaries. Numerical experiments show that these blocks can be dropped when

their norm falls below a threshold tolerance (close to machine epsilon) without affecting the

solution. Of course the overhead of monitoring the norm must be taken into consideration

when evaluating the cost effectiveness of such a scheme.

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 20

2.2.4 An Alternative Partitioning Algorithm

Instead of applying SLF-transformations as shown in (2.9)-(2.12), cyclic reduction can be used

in a sequential fashion on each partition. To illustrate, let � ��� in (2.9), so the first partition

appears as ����������������

� � "
� � �

� " �
� # � # " #

� � � � " �
��� � � " �

��� � � " �
��� � � " �

��� � � " �

� ���������������
�

(2.16)

Since only one processor is available for this partition, the reduction requires 7 steps as opposed

to 3 sweeps in Figure 2.1. After 4 steps (2.16) is transformed to����������������

� ��� � � ��� � � ��� � " ��� �
� ��� �� � ��� �� " ��� ��

� ��� �# � ��� �# � ��� �# " ��� �#
� ��� �� � ��� �� " ��� ��

� ��
 �� � �	
 �� � �	
 �� " �	
 ��
� ��
 �� � �	
 �� " �	
 ��

� � � �� � �
� �� � �

� �� " � � ��
� � � �� � �

� �� " � � ��

�����������������
�

(2.17)

After 2 more steps (2.17) is transformed to�����������������

� ��� � � ��� � � ��� � " ��� �
��� � �� � �

� �� � �
� �� " � � ��

� �	� �# � ��� �# � �	� �# " ��� �#
��� � �� � �

� �� " � � ��
� �	
 �� � �	
 �� � �	
 �� " �	
 ��
� � � �� � �

� �� � �
� �� " � � ��

� � � �� � �
� �� � �

� �� " � � ��
� � � �� � �

� �� " � � ��

������������������
�

(2.18)

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 21

After the final step the partition has the form����������������

� ��� � � ��� � � ��� � " ��� �
� � � �� � �

� �� � �
� �� " � � ��

� ��� �# � ��� �# � �	� �# " ��� �#
� � 	 �� � �

	 �� � �
	 �� " � 	 ��

� �	
 �� � �	
 �� � �	
 �� " �	
 ��
� � � �� � �

� �� � �
� �� " � � ��

� � � �� � �
� �� � �

� �� " � � ��
� � 	 �� � �

	 �� " � 	 ��

� ���������������
�

(2.19)

The end mesh variables of this partition, � and ��� , are computed by solving a compacted

system constructed from the last block-row of each partition as before (Figures 2.1 and 2.2).

Once the end variables are known, the interior variables are computed in 7 back-substitution

steps similar to (2.13), except that here the sequence is block-row 3,1,5,0,2,4,6.

The cost of applying cyclic reduction to each partition is the same as that of the algorithm

in
�
2.2.3. Which algorithm is better in terms of stability, however, is currently not known.

As first pointed out in [Wrig 93] and as shown by several additional numerical experiments

in Chapter 3 of this thesis, SLF-LU when implemented as described in
�
2.2.3 is potentially

unstable on certain problems when the partitions become large. Whether or not cyclic reduction

is a more stable alternative for these problems is an open question.

2.3 Global Stability Control

As shown in the previous section, SLF-transformations can be used with partitioning and cyclic

reduction to provide a stable algorithm for solving ABD systems. With as few as � � � ���	�
processors, a parallel complexity of � � � � � � � block-steps is attainable. Theoretically this is

the optimal speed-up with respect to � . Nevertheless, this algorithm can still be improved by

reducing the local operation counts (with respect to %) and storage requirements. In this sec-

tion we propose a new algorithm, RSCALE, based on a new technique: eigenvalue rescaling.

As will be shown in
�
4.1, RSCALE requires fewer local operations than either of the SLF-

based algorithms. When used to solve ABD systems of the form (1.9), RSCALE can be up to

twice as fast as SLF-LU—the fastest of the two SLF-based algorithms. When used to solve

ABD systems of the form (1.8), RSCALE is marginally faster than SLF-LU on most problems,

and often has better stability properties (Chapter 3).

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 22

2.3.1 Improving SLF Transformations

Three ways in which SLF-transformations differ from the elementary transformation used in

block cyclic reduction (2.6) are:

1. the % � % block � ��� �� in (2.7) and (2.8) fills-in requiring extra storage and resulting in a

more costly back-solve,

2. a
� % � % matrix factorization followed by four % � % matrix products is required, as

opposed to a single % ��% matrix product, and

3. the identity matrix that appears in the third form of the Jacobian (1.9) is destroyed, re-

sulting in additional fill-in if this form arises naturally from the discretization.

Indeed, the first two differences also hold when comparing SLF-transformations to the block-

step used in state-of-the-art sequential codes such as COLROW, except that the local operation

cost in COLROW is not due to matrix multiplication.

So the advantages of block cyclic reduction are obvious—it is faster and requires less stor-

age than SLF-transformations. The drawback, of course, is that it is not necessarily stable

when used to solve ABD systems arising from numerical methods for BVPs. The algorithms

discussed in
�
2.1 are stable, though, when used to solve certain classes of linear recurrence

relations. In particular, consider the two-term recurrence� ��� � ��� ����� � ����� & " � � � � � � � � � �
(2.20)

where
� � � � # � �

for all
�
. This recurrence is stable and can be computed in parallel using

cyclic reduction ([Sche 84]). In fact, this is precisely the recurrence that arises when solving

a stable linear IVP. As noted in [Gear 88], fast methods for the solution of linear IVPs can be

constructed from fast algorithms for solving (2.20).

Now, if the ABD system (1.9) could be transformed and the equations recast as (2.20), the

analysis in [Sche 84] and [Gear 88] would apply and block cyclic reduction as described in
�
2.1 could be used on this problem. In order to be competitive with SLF the transformation

cannot be expensive, and it should not have an adverse effect on the condition of the system

(c.f. the normal equations method in [Asch 91]). The RSCALE algorithm described below

is based on such a transformation. Since the mesh variables are changed globally to control

stability during the reduction, we refer to this technique as global stability control.

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 23

2.3.2 Sequential Rescaling

This form of the algorithm uses a sequential mesh variable transformation to produce an ABD

system that can be solved stably using block cyclic reduction. Instead of solving
)
 � ! for

, �)�� � �
 � ! is solved for
�
 � � $&�

, where

� �
�����������

� (�
�
� (�

�
� (�

�
.

� (�
�
�

� ����������
�

� � $&� �
�����������

�
�
�
�
�

�
� � ����� �

� �
�

�
�

�
� ����� �

�%$&� �
�

�
� ����� �

�%$ # �
.

...�
�
�
�

� ����������
�

(2.21)

For ease of notation, �
� �

is assumed throughout most of this section. The optimal choice

of � is currently an open question. Numerical experiments show that �
� �

is appropriate for

most test problems. Varying � , though, can affect the accuracy of the solution, as is discussed

further in [Panc 92] and Chapter 3.

Once
�

has been computed, the original mesh variables can be recovered easily:

��� � ���� (���� ��� � � � � � � � � � � (� �
(2.22)

The algorithm proceeds as follows—first, the system is transformed (the right-hand side is not

affected by the mesh variable transformation):

������������������

��������������
�

� � � �� ��� � �
. . .

. . .� �%$ � �� �%$ # �� �%$&� �

�
													
�
�

��������������
�

����� ��� ��
. . .

. . .����� ���

�
													
�

�� � �
...� �%$ �� �%$ #� �%$&�

�������������������
�

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 24

�
�������������

� � � � � � �� � � �� � � � � � � �� � �
.

...� �%$ � � � �%$ � �� � �%$ �� �%$ # � � �%$ # �� � �%$ #� �%$&� � � �%$&� � �%$&�

��������������
�

(2.23)

This requires no extra storage and only minimal computation in the actual implementation due

to the simple form of
�

. Now (2.23) is no longer ABD, but it can be transformed back to that

form by a sequential process starting at the bottom block-row and working up. First, block-row

� (�
is multiplied through by � � (� �%$&� � $&�

giving

�������������

� � � � � � �� �� � �� � � � � � � �� � �
.

...� �%$ � � � �%$ � �� � �%$ �� �%$ # � � �%$ # �� � �%$ #� ��� ��%$&� � � ��� ��%$&�

��������������
�

(2.24)

Next, block-row � (�
is added to block-row � (� to annihilate the (� in block-row � (� .

Then block-row � (�
is multiplied through by � � (� �%$ # & � ��� ��%$&� � $&�

giving

�������������

� � � � � � �� � � �� � � � � � � �� � �
.

...� �%$ � � � �%$ � �� � �%$ �� ��� ��%$ # � � ��� ��%$ #� ��� ��%$&� � � ��� ��%$&�

��������������
�

(2.25)

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 25

Block-rows � (� � � � � � �
are transformed similarly giving�������������

� � � � � � �� � � � � � � � �� � � � � �� � � � � � � ��
.

...� ��
 ��%$ � � � ��
 ��%$ �� ��� ��%$ # � � �	� ��%$ #� ��� ��%$&� � � ��� ��%$&�

��������������
�

(2.26)

Finally, (� � in the top block-row is annihilated:�������������

� � ��� � �� � � � � ��� � �� � � � � � � � �� � � � � �� � � � � � � ��
.

...� ��
 ��%$ � � � �	
 ��%$ �� ��� ��%$ # � � ��� ��%$ #� ��� ��%$&� � � ��� ��%$&�

� ������������
�

(2.27)

This last system is once again ABD. More importantly, numerical experiments in [Panc 92]

and Chapter 4 and a preliminary analysis in Chapter 3 indicate that it can be solved stably

using the algorithms in
�
2.1 because, for well-conditioned problems, the above transformation

effectively rescales the eigenvalues
�

and the norm of each
� � so that

1. � � � � � � � � & � ��� , and

2.
� � � � # � � � (� # � � & � � �

where � � � � # , and � � can be made arbitrarily small with a suitable choice for � in (2.21). For the

test problems considered in [Panc 92] and Chapter 4, the choice of �
� �

has been sufficient

for stability. In addition, even though theoretically the transformation may fail for any given

� if � � (� � � � & � ������ ��� ��� becomes numerically singular for some
�
, numerical experiments have

shown that a dynamic shift in � at this stage can redistribute the eigenvalues and allow the

algorithm to continue. At the time of writing this thesis, the only ABD matrices known to

require this dynamic shift are themselves very poorly conditioned. These issues are discussed

further in Chapter 3.

The total operation count for this algorithm—including operations required for the mesh

variable transformation, cyclic reduction, back-solve and mesh variable recovery (2.22)—is

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 26

approximately half that of SLF-LU. Multiple right-hand sides can be handled in � � � % # � time

if the local factorizations of � � (� � � � & � ��� �� ��� ��� are stored. In fact, once the Jacobian has been

reduced, the time required to solve with a different right-hand side is comparable to that of

algorithms based on alternate row and column pivoting. See Chapter 4 for details.

RSCALE requires
� � % # storage if the local factorizations are kept—the same as COL-

ROW and half that of SLF-based algorithms. Since RSCALE is indifferent to the separability

of the boundary conditions, systems with coupled BCs can be solved without fill-in.

2.3.3 Parallel Rescaling

Although (2.27) can be solved in parallel, constructing it as shown in (2.24)-(2.27) is a sequen-

tial process. This section explains how the mesh variable transformation can be integrated with

partitioning and cyclic reduction to provide a parallel RSCALE algorithm.

As in
�
2.2.3, the ABD system is first partitioned into � blocks of ����� block-rows each.

The transformation
�

is modified slightly by omitting the (� at the boundary between each

partition. For example, the transformation across the first partition has the form������������������

���������������
�

.� �
�
$ # �� �

�
$&� �� �

� �� �
�
��� �� �

�
� # �

.

�
														
�
�

���������������
�

.����� ��� ����� ��
.

�
														
�

...� �
�
$ #� �

�
$&�

� �
�� �

�
���� �

�
� #

...

�������������������
�

�
�������������

. . .
. . .

. . .
...� �

�
$ # � � � �

$ # �� � �
�
$ #� �

�
$&� � � � �

$&� � �
�
$&�

� �
� � �� � �

�� �
�
��� � � � �

��� �� � �
�
���

� �
�
� # � � � �

� # �� � �
�
� #

.
...

��������������
�

(2.28)

The steps shown below on the first partition can be carried out simultaneously on all � parti-

tions. Processing starts at block-row � (�
and works up. The partition is changed back to

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 27

ABD form as in the sequential algorithm, but now
� �

� is “dragged” to the left as well; i.e. the

reduction phase is interleaved with the rescaling. (This also could be done in the sequential

algorithm.) So the first step consists of

1.
� ��� ��

�
$&� � � � (� �

�
$&� � $&� � �

�
$&� � " ��� ��

�
$&� � � � (� �

�
$&��� $&� " �

�
$&�

,

2.
� ��� ��

�
� (� �

�
� ��� ��

�
$&� � " ��� ��

�
� " �

� (� �
� " ��� ��

�
$&�

.

After the first step the partition is��������������

.
...� �

�
$ # � � � �

$ # �� � �
�
$ #� ��� ��

�
$&� � � ��� ��

�
$&�

� ��� ��
� � �� � ��� ��

�� �
�
��� � � � �

��� �� � �
�
���

� �
�
� # � � � �

� # �� � �
�
� #

.
...

���������������
�

(2.29)

Next, the (� in block-row � '(�
is annihilated, block-row � '(�

is multiplied through by� � (� �
�
$ # & � ��� ��

�
$&� � $&�

, and
� ��� ��

� is dragged one block-column to the left:��������������

.
...� ��� ��

�
$ # � � ��� ��

�
$ #� ��� ��

�
$&� � � ��� ��

�
$&�� ��� ��

� � �� � ��� ��
�� �

�
��� � � � �

��� �� � �
�
���

� �
�
� # � � � �

� # �� � �
�
� #

.
...

���������������
�

(2.30)

Block-rows � (� � � � � � �
are transformed similarly. Assuming � � � �

, the second partition

will have been transformed by this time as well:����������������

� � � � �� �	� � � � � �	� � �
. . .

. . .
...� ��� ��

�
$&� � � ��� ��

�
$&�� �	� � ��

� � �� � �	� � ��
�� �	� � ��

�
��� � � �	� � ��

�
���

� �	� � � � ��
�
� # � � �	� � � � ��

�
� #

.
...

�����������������
�

(2.31)

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 28

Finally, (� � in the top block-row is annihilated, as is the (� appearing in the bottom block-row

of each partition (except the last):����������������

� �	� � � � �� � �	� � � � �� �	� � � � � �	� � �
.

...� ��� ��
�
$&� � � ��� ��

�
$&�� �	� � ��

� � �	� � � � ��
�

� �	� � � � ��
�� �	� � ��

�
��� � � �	� � ��

�
���� �	� � � � ��

�
� # � � ��� � � � ��

�
� #

.
...

�����������������
�

(2.32)

where � �	� � � � ��
�

� � & � ��� � ��
�
��� � " �	� � � � ��

�
� " �	� � ��

�
& " �	� � ��

�
���

.
�� and �� � �

���
are the end mesh variables of the first partition. Once they are known, the

interior variables can be computed by a forward recurrence and the original mesh variables can

be restored:
���� ���'� " ������ (� ������ ���� � ��� � ���� (���� ��� �2� � � � � � � � � (�

(2.33)� � �
� �� � � (�� � �

��� � � � �
����� �� � �

���
As with (2.27), numerical experiments show that the eigenvalues and norm of each

� ��� �� are

rescaled by the above transformation allowing (2.33) to be computed stably.

The end mesh variables for each partition are computed by solving a compacted system of

order � constructed from the last block-row of each partition. Letting

� � �	� � � � �� � �	� � � � �
 � ���� � ��
 � � � �	� � �� � � �	� � � � �� � " �	� � � � �� �

 � � � � � � � � " � �
 � � � � � � � ��(� �

this compacted system has the form�����������

�� � � � ��
� � � � � � " � �

� � � � � � " � �
.

...
� � ��� � � � � � � " � ��� �

� ����� �
� " ����� �

������������
�

(2.34)

This system has a slightly different structure than (1.9)—the identity is replaced by � � � in rows
� � � � � (� . Unlike (1.8), (2.34) cannot be transformed by multiplying each block-row through

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 29

by � $&�
� � , because � � � is not necessarily well-conditioned.3 Nevertheless, mesh variable trans-

formation can still be used in combination with cyclic reduction to solve this system stably in

� � � � � � � block-steps. Two versions of the algorithm are described below (again, � � �
is

used to simplify the figures).

The first version requires � ��� � reduction sweeps and � ��� � back-solve sweeps. During the

first reduction sweep, (2.34) is transformed as follows:�����������������������

��������������������
�

�� � � �� � � � � �� � � � � �� � � � � �� �
 � �
� � � � � �� ��� � �
�� �� � ��� ��	 �

�
																			
�

�

��������������������
�

����� � ��� ����� ����� �

�
																			
�

��� � �� � �� � �� �
� � �� �
�� ���� �
	

� ����������������������
�

�
�����������������

�� � �� � � � ��� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �� �
 � �
 � �
 � �
� ��� � �� � �� � ��� ��� � ��� � ��� � ���� �� � ��� � �� � ��� ��	 � � ��	

������������������
�

(2.35)

This transformation reconditions � � � � (� � � � ��� � � � � � � ��� , so these block-rows can now be

multiplied through by � � � � (� � � � $&� . For
� � � � � � � ��� , each of � processors is active during

the first sweep computing

1.
� ��� �� �

� � � � � (� � � � $&� � � � � " ��� �� � � � � � � (� � � � $&� " � � ,
2.
� ��� �� � � �

� (� � � � � � ��� �� �
� " ��� �� � � � � " � � � � (� � � � � " ��� �� � .

3The same is true for ����� in (2.14).

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 30

In addition, (�� �
and (� � � � � � � � � ���

, are annihilated, resulting in a system of the form�������������������

�� ��� �� � � �� ��� �
� ��� �� � � " ��� �� �
� ��� �� � � ��� �� � " ��� �� �� ��� �� �

� " ��� �� �� ��� ��
 � ��� ��
 " ��� ��
� ��� ��� � " ��� ���
� ��� ���� � ��� ��
� " ��� ����

� ��� ��� � " ��� ���
� ��� ���	 � " ��� ���	

� ������������������
�

(2.36)

This uncouples the odd-indexed variables from the system. Once �� � � ��� � � � � � � ��� � � are

known, �� � � � � ��� � � � � � � ��� can be computed and the transformation in (2.35) reversed by

�� � � � � � " ��� �� � (� ��� �� � �� � � � � � � � �� � � (�� � � � � � � � � � � � �� � � � � � � � � � � � � ��� � (2.37)

The even-indexed variables are computed during the second sweep by solving a reduced sys-

tem constructed from the odd rows and columns of (2.36). This system together with the

transformation that is applied during the second sweep is shown below:�������������

���������
�

�� ��� �� � �� ��� �� � � ��� �� �� ��� ��
 � ��� ��
� ��� ���� � ��� ����� ��� ���	 �

�
								
�
�
���������
�

����� ����� �

�
								
�

�� ��� �� ��� �� �� ��� ��
� ��� ��
�� ��� ��
	

��������������
�

�
�������

�� ��� �� �� ��� �� � � �� ��� �� ��� �� � � ��� �� � � ��� �� � � ��� �� �� ��� ��
 � ��� ��
 � ��� ��
 � ��� ��
� ��� ���� � ��� ��
� � ��� ���� � ��� ����� ��� ���	 � � ��� ���	

��������
� (2.38)

The algorithm continues recursively for � ��� � sweeps resulting in a final
� % � � % compacted

system. This system is solved sequentially by a stable method, such as Gaussian elimination,

followed by � ��� � back-solve/transformation reversal sweeps of the form (2.37).

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 31

Figure 2.3: Cyclic reduction to � -shape Jacobian using rescaling

Sweep #1��������������������
�

�� � �� � � �� � � � � � � � �� � � � � � � � �� � � � � � � � �� �
 � �
 � �
� � � � � � � � �� � � � � � � � �� � � � � � � � �� ��	 �

�
																			
�

��

��������������������
�

�� ��� �� � �� ��� �� � �� ��� �� � � ��� �� �� ��� �� � �� ��� ��
 � ��� ��
� ��� ��� �� ��� ���� � ��� ����� ��� ���� �� ��� ��
	 �

�
																			
�

Sweep #2��������������������
�

�� ��� �� �� ��� �� � �� ��� �� � � � ��� �� �� ��� �� � � ��� �� � � ��� �� �� ��� �� � �� ��� ��
 � ��� ��
 � ��� ��
� ��� ��� � � ��� ���� ��� ���� � ��� ��
� � ��� ����� ��� ��� �� ��� ���	 �

�
																			
�

��

��������������������
�

�� ��� �� � �� ��� �� � �� ��� �� � �� ��� �� � �� ��� ��
 � ��� ��
� ��� ��� �� ��� ���� �� ��� ��� �� ��� ���	 �

�
																			
�

Sweep #3��������������������
�

�� ��� �� �� ��� �� � �� ��� �� � � � ��� �� �� ��� �� � � � ��� �� �� ��� �� � � � ��� �� �� ��� ��
 � ��� ��
 � ��� ��
� ��� ��� �� ��� ���� �� ��� �� � �� ��� �� 	 �

�
																			
�

��

��������������������
�

�� ��
 �� � �� ��
 �� � �� ��
 �� � �� ��
 �� � �� ��
 ��
 �� ��
 ���� �� ��
 ��
� �� ��
 �� � �� ��
 �� 	 �

�
																			
�

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 32

Figure 2.4: Mesh variable transformation used prior to each sweep in Figure 2.3

Sweep #1 Sweep #2

� ���

��������������������
�

� ��� � ��� ����� ����� �

�
																			
�

� # �

��������������������
�

� ��� � � � ��� � � �

�
																			
�

Sweep #3

� � �

��������������������
�

� ��� � � � � � � �

�
																			
�

� � � # � � �

��������������������
�

���� �� ��� � ��� � �� ��� � ��� �

�
																			
�

CHAPTER 2. DESCRIPTION OF THE ALGORITHMS 33

In the second version (Figures 2.3 and 2.4) the need for ����� � back-solve sweeps is elim-

inated by continuously utilizing � processors during the reduction phase. In contrast to the

first version where every other block-row and column is skipped, the complete system is now

considered at each sweep. As shown in Figure 2.3, the reconditioning transformation cre-

ates upward-pointing spikes, which can be annihilated concurrently as the downward-pointing

spikes are “pushed” to the left.

During the first sweep the compacted system (2.34) is transformed by
� �

in Figure 2.4

which reconditions � � � � (� � � � � � � � � � � � ��� , and then 4 processors are used as explained in

(2.35)-(2.36) resulting in the system depicted on the right in Sweep #1 of Figure 2.3. During the

second sweep the system is transformed by
� # in Figure 2.4, reconditioning � � ��� �� � (� ��� �� �

� ��� �
� � �

. As shown in Sweep #2 of Figure 2.3, this creates 2 upward-pointing spikes of 2 blocks

each—one above block-row 1 and the other above block-row 5. The upward-pointing spikes are

annihilated simultaneously on 4 processors by subtracting appropriate multiples of block-row

1 or 5, while concurrently the downward-pointing spikes are pushed to the left by subtract-

ing appropriate multiples of block-row 1 or 5 on 4 other processors. Finally, during the third

sweep the system is transformed by
� �

in Figure 2.4, reconditioning � ��� ��
 (� �	� ��
 . As shown in

Sweep #3 of Figure 2.3, this creates an upward spike of 4 blocks which is annihilated simultane-

ously on 4 processors by subtracting appropriate multiples of block-row 3, while concurrently

the spike below � ��� ��
 (� ��� ��
 is pushed to the left by subtracting appropriate multiples of block-

row 3 on 4 other processors. In general, this version keeps � processors active during each

sweep of the reduction after the first.

The final system is depicted on the right in Sweep #3 of Figure 2.3—a � -shaped Jacobian

requiring a single-sweep back-solve once �� � � has been computed. As in Figure 2.2, �� � � and
�� ��	 ��� are computed by solving a

� % � � % system constructed from the first and last block-rows.

Finally, the mesh variable transformation is reversed:

 � � � � # � � �
 where

� � � # � � is shown

in the last frame of Figure 2.4. This, of course, is a highly parallel operation and requires as

few as ����� � � ��� � � vector subtractions.

Chapter 3

Stability of the Algorithms

Wright analyzed the stability of SLF-QR (his Structured QR or SQR) and SLF-LU (his Struc-

tured LU or SLU) in [Wrig 92] and [Wrig 94], respectively. We touch on these topics only

briefly in
�
3.1 and

�
3.2 of this chapter, referring the reader to Wright’s papers for further de-

tails. Wright also published some negative results on the stability of SLF-LU. We now have

additional insight on this topic which we discuss in
�
3.2.

The focus of this chapter is the third algorithm, RSCALE. In
�
3.3, we present a detailed

analysis of the stability of a variant of RSCALE applicable when the algorithm is used to solve

ABD systems arising from the discretization of a model linear problem. We are able to prove

that RSCALE is stable on this problem, under certain assumptions. These assumptions in turn

point out some possible shortcomings of RSCALE, which we address with a few simple mod-

ifications to the prototype algorithm. Several numerical examples are included to demonstrate

that the modifications have the desired effect, and also to test the sharpness of some of the error

bounds arising in the stability analysis.

3.1 SLF-QR

In [Wrig 92], Wright observes that Structured QR is simply QR-factorization applied to a row

and column permuted version of the ABD matrix, and uses this fact in his stability analysis of

the algorithm. The permutations are not shown explicitly. Below we show a possible structure

for these row and column permutations, applicable to the single-partition variant of SLF-QR.

Similar structures may be shown for other variants of the algorithm.

34

CHAPTER 3. STABILITY OF THE ALGORITHMS 35

Consider transforming the ABD matrix

) �
�����������

� � � �
� �

� � �
�
� # � #

.
� �%$&�

�
�%$&�

������������
�

using SLF-QR as shown in
�
2.2.3. Conceptually, the orthogonal transformation � � � � # ��� # �

used in the first stage of the reduction may be embedded in the � � & � � % � � � & � � % identity

matrix to form
�� ���� � ������� ��� � ������� �

, and the first stage may be written

�� �) �
�����������

� � � �
� ��� � � ��� � � ��� �
� ��� �� � ��� ��

� # � #
.

� �%$&�
�
�%$&�

� ����������
�

Similarly, the first � (�
stages of the reduction may be written

�� �%$&� �� �%$ # ����� �� �) �
������������

� � � �
� ��� � � ��� � � ��� �
� ��� �� � ��� �� � ��� ��

...
.

��� � � � ��%$ # � �
� � � ��%$ # � �

� � � ��%$ #
� � � � � ��%$&� � �

� � � ��%$&�

�������������
�

The
� % � � % compacted matrix involving

� ��� � � � � � � � � ��%$&�
and � �

� � � ��%$&�
extracted during the last

stage of the reduction may instead by relocated to the upper-left corner of the ABD matrix by

swapping the appropriate block rows and columns:

����� ��� " ��� � �� �%$&� �� �%$ # ����� �� �)
 ����� ��� " ��� �
�����������

� � � �
� � � � � ��%$&� � �

� � � ��%$&�
� ��� � � ��� � � ��� �

...
.

� � � � � ��%$ � � �
� � � ��%$ � � �

� � � ��%$ �
� � � � � ��%$ # � �

� � � ��%$ # � �
� � � ��%$ #

������������
�

CHAPTER 3. STABILITY OF THE ALGORITHMS 36

where ����� ��� " � � � � � ������� ��� � ������� �
is the permutation matrix that “bubbles” the last block-row

(block-column) to the second block-row (block-column) position. (This permutation actually

requires � block-row swaps.) The final orthogonal transformation � � � � # ��� # �
used to

reduce the compacted matrix may be embedded as before in
�� � � � � ������� ��� � ������� �

, and the

complete single-partition SLF-QR reduction may be written

�� � �� � ����� ��� " ��� � �� �%$&� �� �%$ # ����� �� �)
 ����� ��� " ��� �
For an embedded matrix � � , it can easily be shown that, if � � is orthogonal,

�� � is orthogonal.

Since � ��� ��� " � � is orthogonal, and since the product of orthogonal matrices is itself orthogonal,

the overall reduction may be written simply as

�� � ��) ����� ��� " ���
with

�� � �� � ����� ��� " ��� �� �%$&� �� �%$ # ����� �� �
orthogonal.

�� is not upper-triangular, but closer

examination of its structure

�� � ��) � ��� ��� " � � �
�����������

� � � �� � �
� ��

� �
� ��%$&�

� ��� � � ��� � � ��� �
...

.
� � � � � ��%$ � � �

� � � ��%$ � � �
� � � ��%$ �

� � � � � ��%$ # � �
� � � ��%$ # � �

� � � ��%$ #

������������
�

shows that it can be made upper-triangular by swapping the appropriate block rows and columns:

�� � � �

�� � �

�
�����������

� ��� � � ��� � � ��� �
.

...

� �
� � � ��%$ � � �

� � � ��%$ � � � � � � ��%$ �
� �
� � � ��%$ # � � � � � ��%$ # � �

� � � ��%$ #
� � � �� � �

� ��

� �
� ��%$&�

� ����������
�

where � �

��� � ������� ��� � ������� �
is the permutation matrix that “bubbles” the first two block-rows

(block-columns) to the last two block-row (block-column) positions. Therefore, the factoriza-

tion stage in single-partition SLF-QR or Structured QR is indeed a QR-factorization of a row

and column permuted version of the ABD matrix:

� �

�� � ��) � ��� ��� " � � � �

�

CHAPTER 3. STABILITY OF THE ALGORITHMS 37

(� � and ����� ��� " ��� could have been combined into a single permutation earlier in this discussion,

but we chose to separate them in order to follow the original reduction algorithm as presented

in
�
2.2.3 as closely as possible.)

Similar embeddings and permutations may be used to show that each variant of SLF-QR is

equivalent to a QR-factorization of a unique row and column permuted version of the original

ABD matrix, and hence is stable. We do not pursue this here. The accuracy of SLF-QR is not

in question. The shortcoming of SLF-QR is its comparatively high computational cost relative

to the other solvers, not its stability.

3.2 SLF-LU

Wright gives a detailed analysis of Structured LU in [Wrig 94], specifying certain conditions

that must be satisfied in order to ensure stability of the algorithm. Essentially, at each step of

the reduction as shown in (2.10)-(2.12) of
�
2.2.3, the number of row pivots used during the

� �
factorization of

�
� �� � �� ���
 � must match the number of rapidly increasing fundamental solution

modes represented in the underlying DE at that step ([Matt 85]). More precisely, the number

of cross-block pivots must match, where a cross-block pivot is defined as the exchange of rows

between two distinct block-rows as opposed to the exchange of rows within a single block-row.

(For example, the exchange of rows between the block-row containing � � and the block-row

containing
� � ��� is a cross-block pivot.) We refer to [Wrig 94] for further details.

In [Wrig 93], Wright gives examples of linear systems for which Gaussian elimination with

row partial pivoting is unstable. These are ABD linear systems arising from the discretization

of well-posed linear BVODEs. The Gaussian elimination algorithm discussed in [Wrig 93]

is not exactly Structured LU, as the boundary blocks in the ABD matrix are involved in the

reduction from the start of the algorithm. However, the cause of the instability applies to

both Structured LU and SLF-LU: the pivoting strategy at each stage of the reduction is not

sufficient to control the rapidly increasing fundamental solution modes in the underlying DE.

Wright conjectures that, although it is easy to construct such problems, they likely do not arise

frequently in practice. Some random testing is included to support the conjecture.

We have done similar random testing on the partitioned variant of SLF-LU, and found

that instability often occurs when solving certain classes of ABD linear system. Moreover,

we incorporated the parallel partitioned variant of SLF-LU in software for solving nonlinear

BVODEs (
�
4.4), and found several examples for which SLF-LU instability adversely affects

the behaviour of the code (
�
4.4.3).

CHAPTER 3. STABILITY OF THE ALGORITHMS 38

In
�
3.2.1, we give a short analysis suggesting where to look for problems that could cause

difficulty for SLF-LU. In
�
3.2.2, we show the results of random testing on these problems,

confirming that SLF-LU instability does indeed occur frequently in some cases. The potential

for instability in other variants of SLF-LU is addressed in
�
3.2.3.

3.2.1 Where to Look for SLF-LU Instability

In general, it is difficult to determine if the pivoting strategy used in the
� � factorization is

sufficient to control stability, especially when the ABD system arises from the discretization

of a nonlinear BVODE. Systems arising from the discretization of linear, constant-coefficient

BVODEs are somewhat easier to analyze. In these problems, however, we have found exam-

ples where SLF-LU exhibits instability even when the correct number of pivots is used. Thus, it

seems that even in simple problems, it is not sufficient to simply match the number of row piv-

ots to the number of increasing solution modes. The position of the pivoted rows is important

as well; in particular, the pivots must be cross-block as defined above.

One scenario is certain, though. If SLF-LU does not pivot, it cannot possibly control the

increasing solution modes. In fact, when SLF-LU does not pivot, it is equivalent to compacti-

fication (
�
2.1). With no pivoting, there is no fill-in at

�
� ��� �� in (2.8), and with

�
� ��� �� � �

, (2.8) is

equivalent to (2.6) other than for the difference in Jacobian form ((1.8) versus (1.9)).

We focus our attention on the no-pivot scenario in this section. To this end, consider the

linear, constant-coefficient equation � � � ������� ��� ��� & 1 � ��� � (3.1)

where � � 1 � � � � , � ��� � � � , and let
�

have the structure

� �
���

� � �
� � �

� � �

� ��
�

This structure arises, for example, from the standard technique of converting a single
� rd-

order differential equation into system of three
� st-order equations. Assume that (3.1) appears

in a well-posed BVODE (we are not concerned with the boundary conditions or interval of

integration in this discussion), and assume that we solve the BVODE using a trapezoidal finite-

difference discretization over a mesh of equally-spaced subintervals of size � . In this case,

� � � (� � & � � � � ���
�� � � � � � (� � � � ���
������ � � � � � � � � (�

CHAPTER 3. STABILITY OF THE ALGORITHMS 39

and in (2.8) we have:

� � �
� � ��� � �

�����������

� (� � � �
� � (� � �(� � � � (� � � � � (� � � �(� (� � � �
� (� (� � �(� � � � (� � � � (� (� � � �

� ����������
�

Three stages of Gaussian elimination are required to transform the
�
-th slice of the ABD matrix

as shown in (2.8). No pivoting is required during the first stage if

� � � � � � � �
(3.2)

and when the first stage is completed without pivoting, we have

� � ��
� �� ��� � �

�����������

� (� � � �
� � (� � �
� (� � � � (� � # � � � (� � � �
� (� �
� (� (� � �
� (� � � � (� � # � � (� (� � � �

� ����������
�

No pivoting is required during the second stage if

� � � �
(3.3)

� � � � � & � � # � � � � � �
(3.4)

and when the second stage is completed without pivoting, we have

� � � ��
� � �� ��� � �

�����������

� (� � � �
� � (� � �
� � � (� � � � (� � � � � & � � # � � � � � �
� � (� # � �
� � (�
� � (� (� � � � (� � � � � & � � # � � � � � �

������������
�

Finally, no pivoting is required during the third stage if

�
#
� � � � � (� � � (3.5)

� � � � (� � � (3.6)

� (� (� � � � � (� � � (3.7)

CHAPTER 3. STABILITY OF THE ALGORITHMS 40

where
� � � � � � & � � # � � & � � � � � .

Therefore, if � is sufficiently small, (3.2)-(3.6) will hold and no pivoting will occur during

any stage of the factorization if

� � � � � � & � � # � � & � � � � � � � �

In other words, if � is sufficiently small, and if �
� � and � are similar in magnitude, there is a

good chance no pivoting will occur during any stage of the factorization if � � �
.

This is somewhat surprising. There is a
� � �

chance that � will be negative if the elements

in the bottom row of
�

are randomly generated in any interval centered at
�
. The remaining

question is whether the resulting differential equations (3.1) exhibit a strong enough dichotomy

for the lack of pivoting to cause stability problems. We investigate this further in
�
3.2.2.

Finally, we note than when the ABD system arises from the discretization of a linear,

constant-coefficient equation,
� � � � � � � � �

��� � � � � � � � � (�
, and if no pivoting occurs

when transforming the
�
-th slice of the ABD matrix, no pivoting will occur when transforming� � & � �

-st slice either. The result of (2.8) without pivoting is:� ����� �� � � � ����� �" ������ (� � ��� � $&�� � � � � ��� ����� �" � ��� � � (� $&� � � ����� � � � � ����� " ������ � � ��� � � ��� ����� " � ��� � (3.8)

When processing the � ��& � �
-st slice, we then factor� � � ���

� � � # � � � � �
� � ��� � � � �

� �
In other words, we compute exactly the same factorization and the no-pivot scenario repeats.

Thus, when reducing on a single partition, if SLF-LU does not pivot when transforming the

first block-row pair in the partition, it will never pivot.

3.2.2 Random Tests

The analysis in the previous section can be extended to single equations of higher order, and to

systems of higher-order equations. In general, we claim that when the Jacobian
� � 	 � � �
 of the

differential equation arises from the standard technique of converting a system of higher-order

equations into a system of first-order equations, there is a greater probability of SLF-LU failure

due to no pivoting if the elements in the dense row or rows of the Jacobian are negative and

close in magnitude. (The nonzero in each sparse row is
�
; see Figure 4.1 in

�
4.2.1 for more

examples.) We now show the results of several random tests to substantiate this claim.

CHAPTER 3. STABILITY OF THE ALGORITHMS 41

Each test ABD system arises from the trapezoidal finite difference discretization of a linear,

constant-coefficient differential equation. We divide the test DEs into three classes:

Class 1:
� � 	 � � �
 � � � � (� � �
�� � �
 ������� �

Class 2:
� � 	 � � �
 � � � � � � �
 ������� �

Class 3:
� � 	 � � �
 � � � � (� � �
 ������� �

where
�

is a specified constant. If our conjecture is correct, there should be more instances of

potential SLF-LU instability when factoring ABD matrices arising from the discretization of

structured Class 1 problems with
�

not too large. (There is a higher probability of the elements

being close in magnitude when they are randomly generated in a smaller interval.)

We measure SLF-LU stability by monitoring the growth of
� � ��� � � �� �

as the reduction pro-

ceeds down the partition in (2.10)-(2.12). We flag the reduction as potentially unstable if

� ��� � � � �� ��� � � �
�
� � ��� �

�
(3.9)

for some
��� �

.

In each set of experiments, we generate and factor several hundred ABD matrices. In order

to save on computing time, in most cases we do not proceed with a reduction once it has been

flagged as unstable. We only complete the factorization for problems where we analyze the

accuracy of the solution (Figures 3.3 and 3.4). As we are interested only in problems with a

strong dichotomy in these tests, if a differential equation is generated with a weak dichotomy

or with no dichotomy, it is discarded and not counted in the total.

Figure 3.1 shows the results of four sets of experiments on randomly generated structured

linear problems, where the Jacobian structure arises from converting two
� th-order equations

into a system of ten
� st-order equations. The resulting Jacobian is of order % � � �

and is

approximately �
� � � �

nonzero. In each set of experiment,
� � �

ABD matrices are generated

on each of eight meshes. In the two sets of experiments with larger
�

(
� � � � �

and
� � � �

),

we see few instances of instability. In the two sets of experiments with smaller
�

(
� � �

and
� � �

), we see many more instances, especially with
� � �

. We also note there are

more instances of instability when factoring ABD matrices arising from the discretization of

structured Class 1 problems. (In fact, nearly all Class 1 problem reductions are flagged as

potentially unstable in the set of experiments with
� � �

.) All of these results support our

conjecture above.

CHAPTER 3. STABILITY OF THE ALGORITHMS 42

Figure 3.1: Effect of Jacobian scale (
�

) on SLF-LU stability when solving 100 randomly-

generated class 1, 2 and 3 structured linear problems with % � � �
and �

� � � �
nonzero,

on meshes ranging from �
� � � �

to �
� � ���

. The structure arises when a system of
�

fifth-

order equations is converted into a system of
� �

first-order equations.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1 1 1 1 1
1 1 12 2 2 2 2 2 2 23 3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1

1
1 1 1 1

1 12
2 2

2 2 2 2
23

3
3 3 3

3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1

1

1

1 1
1 1

12

2

2
2 2

2 2

2

3

3 3

3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1

1 1 1 1 1 1 1

2 2

2

2 2

2

2

2

3
3

3
3

3 3
3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 1

LEGEND: class 1 − a
ij
∈(−λ,0]∪[1], 2 − a

ij
∈[0,λ], 3 − a

ij
∈(−λ, λ].

CHAPTER 3. STABILITY OF THE ALGORITHMS 43

Figure 3.2 shows the results of four sets of experiments similar to those in Figure 3.1, ex-

cept that the Jacobians are not structured—the nonzeros are randomly distributed. All other

experiment parameters, including Jacobian sparsity, are the same as above. Here we see a

dramatic drop in the number of potentially unstable SLF-LU reductions. This shows the im-

portance of the analysis in
�
3.2.1. Random testing can sometimes be misleading without some

insight into where to look.

Figures B.1-B.4 of Appendix B show the results of several other sets of experiments on ran-

domly generated linear problems where the Jacobians are either dense, or sparse with nonzeros

randomly distributed. The meshes used in the experiments in Figures B.1 and B.2 are an order

of magnitude smaller than in other experiments. The effect of Jacobian order and sparsity on

stability is investigated in Figures B.1 and B.2, respectively. The effect of Jacobian scale with

dense Jacobians is investigated in Figure B.3, and the effect of Jacobian scale with sparser

(�
� � � �

nonzero) Jacobians is investigated in Figure B.4. At the time of writing, we do not

have enough insight into the reasons for the SLF-LU instability observed in these experiments

to comment further on the results.

Although the measure we use to flag potential instability (3.9) is a reasonably good indi-

cator that something has gone awry in SLF-LU, it does not necessarily mean the computed

solution to the ABD system will be inaccurate. As a further test, we extract selected Class 3

problems from some of the experiments in Figures 3.1 and 3.2 and solve them to completion

using each of the three ABD system solvers (RSCALE, SLF-QR and SLF-LU). The results

are shown in Figures 3.3 and 3.4. The graphs on the right show accuracy statistics for each

of the three solvers when used to solve a selected problem. The accuracy of a computed so-

lution is measured as the algebraic error—the difference between the computed solution and

the solution obtained with a trusted band solver. We also plot the reciprocal condition of the

extracted ABD matrix, and the discretization error—the difference between the true solution

and the band solver solution. (The problems are constructed in such a way that the true solution

is known.) In the context of solving a BVODE, a computed solution is acceptable if its alge-

braic error is smaller in magnitude than the discretization error. These measures are explained

further in Chapter 4 where we discuss the results of many more numerical tests.

The accuracy results in Figures 3.3 and 3.4 clearly show that SLF-LU—and only SLF-LU—

fails to compute an acceptable solution to each problem. Note that each extracted ABD matrix

is well-conditioned. Several other examples of SLF-LU instability appear in the numerical

testing in Chapter 4, when solving both linear and nonlinear BVODEs.

CHAPTER 3. STABILITY OF THE ALGORITHMS 44

Figure 3.2: Effect of Jacobian scale (
�

) on SLF-LU stability when solving 100 randomly-

generated class 1, 2 and 3 unstructured linear problems with % � � �
and �

� � � �
nonzero,

on meshes ranging from �
� � � �

to �
� � ���

. Jacobian nonzeros are randomly distributed.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1
1 1 1 1 1 1 1

2

2 2 2 2 2 2 23
3

3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1
1 1

1 1 1 1 1
2

2 2 2 2 2 2

2

3 3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1 1
1 1

1 1 1 1
2 2 2 2

2 2 2 2
3

3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1 1 1 1 1
1

1 1
2 2 2 2

2 2 2 23
3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 1

LEGEND: class 1 − a
ij
∈(−λ,0]∪[1], 2 − a

ij
∈[0,λ], 3 − a

ij
∈(−λ, λ].

CHAPTER 3. STABILITY OF THE ALGORITHMS 45

Figure 3.3: Accuracy of SLF-QR, SLF-LU and RSCALE when used to solve selected class 3

problems from the fourth set of random tests (
� � �

) in Figure 3.1.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1

1 1 1 1 1 1 1

2 2

2

2 2

2

2

2

3
3

3
3

3 3
3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

SLF−LU instability

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−20

−15

−10

−5

0

5

10

15

20

q q
q q q q q q

u

u

u
u

u
↑

(+
28

)

u

u
↑

(+
41

)

u

r r r r r r r r

disc. error; recip. cond.

h

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics for
selected class 3 problems

P
ro

b
lem

 sp
ecificatio

n
s:

λ =
 1, n =

 10, ρ =
 28%

 nz, M
 =

 200.

LEGEND: class 1 − a
ij
∈(−λ,0]∪[1], 2 − a

ij
∈[0,λ], 3 − a

ij
∈(−λ, λ],

 q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure 3.4: Accuracy of SLF-QR, SLF-LU and RSCALE when used to solve selected class 3

problems from the fourth set of random tests (
� � �

) in Figure 3.2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1 1 1 1 1
1

1 1
2 2 2 2

2 2 2 23
3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

SLF−LU instability

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q

u

u
u

u
u

u

u
↑

(+
29

)

u

r r r r r r r r

disc. error

recip. cond.

h

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics for
selected class 3 problems

P
ro

b
lem

 sp
ecificatio

n
s:

λ =
 1, n =

 10, ρ =
 28%

 nz, M
 =

 200.

LEGEND: class 1 − a
ij
∈(−λ,0]∪[1], 2 − a

ij
∈[0,λ], 3 − a

ij
∈(−λ, λ],

 q − SLF−QR, u − SLF−LU, r − RSCALE.

CHAPTER 3. STABILITY OF THE ALGORITHMS 46

3.2.3 Stability of Other Variants of SLF-LU

The analysis, random testing, and accuracy comparisons in
�
3.2.1 and

�
3.2.2 all apply to the

single-partition variant of SLF-LU. In this variant, the ABD matrix is processed in a sequen-

tial fashion from top to bottom as shown in (2.10)-(2.12). This algorithm has some features

that make it easy to analyze. In particular, if the ABD system arises from the discretization

of a constant-coefficient differential equation and the first factorization computed during the

reduction does not require pivoting, SLF-LU never pivots.

As suggested in
�
2.2.4, other variants of SLF-LU may have different numerical properties.

Some experiments in Chapter 4 show instability in a multi-partition variant of SLF-LU, where

the degree of instability changes as the number of partitions changes. (Surprisingly, the single-

partition variant is sometimes stable in these experiments.) Preliminary testing on a cyclic

reduction variant of SLF-LU shows that most of the problems we have identified in
�
3.2.1

and
�
3.2.2 are solved stably using a cyclic reduction approach. This is not surprising, since

even in a constant-coefficient problem the blocks
� � � � � change at each sweep of the reduction

regardless of whether pivoting is used (See 2.16-2.19 in
�
2.2.4.) We leave a more complete

analysis of the cyclic reduction variant of SLF-LU to future work.

3.3 � -RSCALE

We now present a stability analysis for a sequential variant of RSCALE described in
�
2.3,

applicable when the algorithm is used to solve ABD systems arising from a constant-stepsize

discretization of the model problem� ��� ����� � ��� ����& 1 � ��� � � � � �	�����	�
�� � � ��� �	� � & � � ��� �	����� � � (3.10)

where � ��1 � � � ��� , and
� � � ��� � � � ����� �

. We show conditions under which an algebraic

equivalent to the rescaling and compactification transformation used in RSCALE does not ex-

hibit instability attributable to the growth of rapidly increasing fundamental solution modes

in (3.10); instability which is inherent in BlkCR, and which may occur in SLF-LU if the pivot-

ing strategy fails.

In
�
3.3.1 we first give an outline of the variant of RSCALE we analyze, and then derive

algebraically equivalent expressions for the various recurrences appearing in the algorithm.

These expressions, which are more readily analyzed for stability than the original recurrences,

lead to theoretical bounds for the propagation of error at each stage of the algorithm. Our anal-

ysis indicates that the prototype algorithm described in
�
2.3—and included as a FORTRAN

CHAPTER 3. STABILITY OF THE ALGORITHMS 47

implementation in Appendix E.1—can sometimes fail. We construct some numerical exam-

ples in
�
3.3.2 illustrating this potential instability, and show how adjusting the algorithm as

suggested by the analysis corrects the situation. In
�
3.3.3 we discuss the expected frequency

of occurrences of instability. Finally, in order to address some of the shortcomings pointed out

by our analysis, in
�
3.3.4 we suggest a modification to the prototype algorithm which makes it

better-suited for variable-coefficient problems.

3.3.1 Stability Analysis

In the analysis that follows we assume little about the underlying constant-stepsize numerical

method used to discretize the continuous problem; we require only that the discretization of

(3.10) over a mesh of � subintervals results in an ABD system of the form��������

� � � �
� � �

� # �
.

� � �

���������
�

��������

� � ���#
...� �

���������
�
�

��������

�
" �" #
..." �

���������
�

�
(3.11)

where
� � � � � ����� � � "�� � ��� � 	 � � � � � � � � , and � � � �!� � 	 � � � � � � � � . In fact, the

intrinsic characteristics of dichotomy and boundary condition rank, which are closely related

to the conditioning of a BVODE, need not be addressed until quite late in the analysis.

The shifted RSCALE algorithm, � -RSCALE, is briefly introduced in
�
2.3.2. For ease of

notation, �
� �

is assumed throughout most of that section, and indeed this choice of � seems

appropriate for most test problems. In this section, however, we show that well-posed BVPs

exist for which �
� �

is not an appropriate choice. It is therefore necessary to retain � as a

parameter in the discussion that follows.

The steps used to solve (3.11) with � -RSCALE are listed in Figure 3.5. The system is

rescaled in step 1 as shown in (2.23)-(2.27) of
�
2.3.2, except that here rescaling starts at the

second-last, rather than the last, block-row. The rescaled system is compacted in step 2 using

a sequential variant of block reduction similar to (2.4) in
�
2.1. The transformed unknowns

are computed in step 3, and the original unknowns are recovered in step 4. Since � remains

constant at each rescaling iteration, we will sometimes refer to the algorithm in Figure 3.5 as

static � -RSCALE. A dynamic variant, ��� -RSCALE, is presented in
�
3.3.4.

We now proceed toward finding algebraically equivalent expressions for the recurrences

CHAPTER 3. STABILITY OF THE ALGORITHMS 48

Figure 3.5: Static � -RSCALE applied to the model ABD system (3.11).

1. Rescaling.

(a)
�� �%$&��� � � (� �
 � �� �%$&��� �� $&��%$&� � � �" �%$&��� �� $&��%$&� " �%$&� �

(b)

�� �
� � � (� � � (�� � �����

�� � � �� $&�
�
�

�"�� � �� $&�
� � "�� & �

�" � �����
� ������ 	 � � (� � � (� � � � � � � �

(c)
�� � � � � � � & �

�� ��� � �� � � & � �
� �" � �

2. Compactification.

(a)
�� ��� �� � � �" ��� �" � �

(b)

�� � � (�� � �� � $&��"�� � �"�� (�� � �" � $&��� 	 � � � � � � � � � � (� �

(c)
�� � � (� �� �%$&� � �" � � " � (� �" �%$&� �

3. Computation of transformed unknowns.

(a) �� � � �� � (� � �� �
 $&� � �� (� � �" � � �
(b) �� � � �"�� (�� � �� � 	 � � � � � � � � � � �

4. Recovery of original unknowns.

(a) � � $&��� �� � $&� (� �� � � 	 � � � � � � � � � � (� �

(b) � �%$&��� �� �%$&� � � � � �� � �

CHAPTER 3. STABILITY OF THE ALGORITHMS 49

appearing in Figure 3.5 which are more readily analyzed for stability. First, we expand the

recurrences for
�"�� in step 1,

�" � in step 2, and �� � in step 3 as follows.

Lemma 1 The recurrence

�" � ��� �� $&�
� "�� 	 � � (�

�� $&�
� � "�� & �

�" � ����� 	 � � (� � � (� � � � � � �

can be written equivalently as

�" � � �%$&�� ��� � �
� $ � � ��

� � �
�� $&�� � " � (3.12)

for
	 � � (� � � (� � � � � � �

.

Proof (by induction on k) For
	 � � (�

,

�" �%$&� � �� $&��%$&� " �%$&��
� � �%$&��
� � �%$&� �� $&�� � " �%$&�

� �%$&����� �%$&� � � $ � �%$&��� � ��
� � �%$&� �� $&�� � " �

and (3.12) holds. Assume now that (3.12) holds for an arbitrary
	 ��� � � (�

:

�"�� � �%$&�� � � � � � $ � �
��
� � � �� $&�� � " � � (3.13)

For
	 ��� (�

,
�"	� $&��� �� $&�� $&� � "�� $&� & �

�"�� � . Substituting (3.13) for
�"�� ,

�"	� $&� � �� $&�� $&��
 "�� $&��& �
� �%$&�� ��� � � � $ � �

��
� � � �� $&�� � " � ��

� �� $&�� $&��
 "�� $&��& �%$&�� ��� � � � $ � � $&��� �
��
� � � �� $&�� � " � �

� �� $&�� $&� "	� $&��& �%$&�� ��� � � � $ � � $&��� �
��

� � � $&� �� $&�� � " �
� �%$&����� � $&� � � $ � � $&��� �

��
� � � $&� �� $&�� � " � �

Thus (3.12) holds for all
	 � � (� � � (� � � � � � �

. �

CHAPTER 3. STABILITY OF THE ALGORITHMS 50

Lemma 2 The recurrence

�" � � � �"�� 	 � �
�"�� (�� � �" � $&� 	 � � � � � � � � � � (�

can be written equivalently as

�"�� � �" � & �
$&�� ��� � � (� � � � � � � $ ��� � � �� � $ � ��� � �" � (3.14)

for
	 � � � � � � � � � � (�

.

Proof (by induction on k) For
	 � �

,

�" � � �" �� �" � & � $&�� ��� � � (� � ��� � � � $ ��� � � �� � $ � ��� � �" �
and (3.14) holds. Assume now that (3.14) holds for an arbitrary

	 ��� � �
:

�"�� � �"�� & � $&�� ��� � � (� � � � � � � $ ��� � � �� � $ � ��� � �" � � (3.15)

For
	 ���& �

,
�"�� ���'� �"	� ��� (�� � ��� �"	� . Substituting (3.15) for

�"�� ,
�"�� ��� � �"�� ��� (�� � ��� � �"	� & � $&�� � � � � (� � � � � � � $ ��� � � �� � $ � ��� � �" � �

� �"�� ��� (�� � ��� �"�� & � $&�� ��� � � (� � � � ����� � � �� � ��� � � $ ��� � � �� � $ � ��� � �" �
� �"�� ��� (�� � ��� �"�� & � $&�� ��� � � (� � � � ����� � � � � � �����0$ ��

� � � �� � � �����0$ � ��� �� �" �
� �"�� ����& �� ��� � � (� � � � ����� � � �

 � � �����0$ ��
� � � �� � � �����0$ � ��� �� �" � �

Thus (3.14) holds for all
	 � � � � � � � � � � (�

. �
Lemma 3 The recurrence

�� � � �"��'(�� � �� 	 � � � � � � � � � � (�

CHAPTER 3. STABILITY OF THE ALGORITHMS 51

can be written equivalently as

�� � � �" � (� (� � � ��� � ��
� � � �� � $ � ��� � �� (3.16)

for
	 � � � � � � � � � � (�

.

Proof (by induction on k) We first show that

�� � � � (� � � ��� � ��
� � � �� � $ � ��� � (3.17)

for
	 � � � � � � � � � � (�

; (3.16) follows immediately from (3.17). For
	 � �

,

�� � � �� �� � (� � ����� � ��
� � � �� � $ � ��� �

and (3.17) holds. Assume now that (3.17) holds for an arbitrary
	 ��� � �

:

�� � � � (� � � ��� � ��� � � �� � $ � ��� � �
(3.18)

For
	 ���& �

,
�� � ����� (�� � ��� �� � . Substituting (3.18) for

�� � ,
�� � ��� � (�� � ��� � � (� � � ��� � ��� � � �� � $ � ��� � �� � (� � � � ����� ��� � � ����� � � �� � � �����0$ � ��� � �

Thus (3.17) and (3.16) both hold for all
	 � � � � � � � � � � (�

. �
Next, we derive three identities that will allow us to express the matrix products appearing

in (3.12), (3.14) and (3.16) explicitly in terms of
�

and � :

Lemma 4 The recurrence

�� � � � � � (� �
 $&� � 	 � � (�
� � (� � � (�� � �����
 $&� � 	 � � (� � � (� � � � � � �

can be written equivalently as

�� � � � � (� (� � � �%$
�
���
 $&� � � & �

�%$
� � (� � �%$

�
���

(3.19)

for
	 � � (� � � (� � � � � � �

.

CHAPTER 3. STABILITY OF THE ALGORITHMS 52

Proof (by induction on k) For
	 � � (�

,
�� �%$&�'� � � (� �
 $&� �

. If
� ��&

� �

is non-singular

(the issue of singularity in (3.19) is addressed later), then

�� �%$&� � � � (� �
 $&� � � &
� �
 $&� � � &

� �
 �� � � � & � �
 � � (� �
 � $&� � � & � �

� � � (� � � � #
 $&� � � & � �

and (3.19) holds. Assume now that (3.19) holds for an arbitrary

	 � � � � (�
:

�� � � � � (� (� � � �%$ � ���
 $&� � � & �
�%$ � � (� � �%$ � ���
 �

(3.20)

For
	 � � (�

,
�� � $&��� � � (� � � (�� � �
 $&� � . Substituting (3.20) for

�� � ,
�� � $&� � � � (� � � (� � (� (� � � �%$ � ���
 $&� � � & �

�%$ � � (� � �%$ � ���
��
 $&� �� � � � (� (� � � �%$ � ���
 $&� � � � (� (� � � �%$ � ���
 (
�
� � (� (� � � �%$ � ���
 � & �

� � & �
�%$ � � (� � �%$ � ���
�� � $&� �� � � � (� (� � � �%$ � ���
 $&� � � (� (� � � �%$ � � # � � $&� �� � � (� (� � � �%$ � � #
 $&� � � & �

�%$ � ��� � (� � �%$ � � #
 �
Thus (3.19) holds for all

	 � � (� � � (� � � � � � �
. �

Lemma 5
�� ��� � � � �

$ �� � � �� � $ � ��� can be written equivalently as

�� ��� � � � � (� (� � � �%$ �
 $&� � � �
$ � (� (�

� �%$
� � �%$ �

(3.21)

for
� � 	 � � (� � � � � � 	 (�

.

Proof (by induction on i) For
� � 	 (�

,
�� ��� � $&� � �� � . Referring to (3.19), clearly (3.21)

holds. Assume now that (3.21) holds for an arbitrary
� ��� � 	 (�

:

�� ��� � � � � (� (� � � �%$ �
 $&� � � �
$ � (� (�

� �%$
� � �%$ �
 �

(3.22)

For
� � � (�

,
�� ��� � $&� � �

$ � ����
� � � �� � $ � ��� � � �

$ ��
� � � �� � $ � ���
 �� � � �� ��� � �� � �

Substituting (3.22) for
�� ��� � and (3.19) for

�� � , we have

�� ��� � $&� � � � (� (� � � �%$ �
 $&� � � �
$ � (� (�

� �%$
� � �%$ �

�
� � (� (� � � �%$ � ���
 $&� � � & �

�%$ � � (� � �%$ � ���
 �

CHAPTER 3. STABILITY OF THE ALGORITHMS 53

Assuming that
�

is diagonalizable, the four matrices enclosed by square braces in the above

expression commute. After two interchanges,

�� ��� � $&� � � � (� (� � � �%$ � ���
 $&� � � (� (� � � �%$ �
 $&�
�

� � �
$ � (� (�

� �%$
� � �%$ �
 � � & �

�%$ � � (� � �%$ � ���
 �
Simplifying,

�� ��� � $&� � � � (� (� � � �%$ � ���
 $&� � � (� (� � � �%$ �
 $&� � � �
$ � ��� (� (�

� �%$
� � �%$ � ���& � �

$ � � �%$ � � (� � �%$ � ��� (� (�
� �%$

� � �%$ � � �%$ � � (� � �%$ � ���
� � � (� (� � � �%$ � ���
 $&� � � (� (� � � �%$ �
 $&� � � �
$ � ��� (� (�

� �%$
� � �%$ � ���

(� (� � � �%$ � � �
$ � ��� & � (� � � �%$ � � (�

� �%$
� � �%$ � ���
� � � (� (� � � �%$ � ���
 $&� � � (� (� � � �%$ �
 $&�

�
� � (� (� � � �%$ �
 � � �

$ � ��� (� (�
� �%$

� � �%$ � ���
� � � (� (� � � �%$ � ���
 $&� � � �
$ � ��� (� (�

� �%$
� � �%$ � ���
 �

Thus (3.21) holds for all
� ��	 (� � 	 (� � � � � � �

. �
Lemma 6

�� ��� � � � �� � � �� $&��
can be written equivalently as

�� ��� � � � � (� (� � � �%$
�
���
 $&� � � (� (� � � �%$ �

(3.23)

for
� � 	 � � (� � 	 � � � � (�

.

Proof (by induction on i) For
� � 	

,
�� ��� �

� �� $&�
� . Referring to (3.19),

�� $&�
�

� �� � �
$&�� � � (� (� � � �%$

�
���
 $&� � � & �

�%$
� � (� � �%$

�
���
 � $&�� � � (� (� � � �%$

�
���
 $&� � � (� (� � � �%$

�

and (3.23) holds. Assume now that (3.23) holds for an arbitrary
� � � � 	

:

�� ��� � � � � (� (� � � �%$
�
���
 $&� � � (� (� � � �%$ �
 �

(3.24)

For
� � �& �

,
�� ��� � ���'� � ����� � � �� $&�� � � ��

� � �
�� $&��
 �� $&�� ��� � �� ��� � �� � ��� � $&� �

CHAPTER 3. STABILITY OF THE ALGORITHMS 54

Substituting (3.24) for
�� ��� � and (3.19) for

�� � ��� , we have

�� ��� � ��� � � � (� (� � � �%$
�
���
 $&� � � (� (� � � �%$ �

�
� � (� (� � � �%$ �
 $&� � � & �

�%$ � $&� � (� � �%$ �
 � $&�� � � (� (� � � �%$
�
���
 $&� � � (� (� � � �%$ � $&�
 �

Thus (3.23) holds for all
� ��	 � 	 & � � � � � � � (�

. �
Considering (3.12) and Lemmas 4-6, there appears to be at least three potential sources of

instability in � -RSCALE; namely, for some
	

,
� � 	 � � ,

� � � grows too large or too small, and/or

� � � (� (� � � �
 is exactly or nearly singular.

If � � grows too large, there is potential for instability in the computation of (3.12). If � � grows

too small,
�� ��� � and

�� ��� � � � �
$ �

, i.e. � -RSCALE suffers from the same instability as BlkCR

(note that if �
� �

, the algorithms are identical). The identities derived in Lemmas 4-6 clearly

show why
� � (� (� � � �
 must remain non-singular. In order to address these instabilities in

our analysis, we require that the following two criterion are met by � .

Criterion 1 �
���

, ��� �
and ����� �
	 such that� � � � � ����� �

� �
� ���� � � � � � � � �

for all
	

,
� � 	 � � . Clearly,

� � � � �
�

�
� �

� ���
�

� � �

is the smallest such ��� .

Criterion 2 ������� �
such that

� � ��� � � � (� � � � � for all eigenvalues
� � � ��� � of � � � � .

Clearly, � � �
����� � � � (� � � � � is the largest such ��� .

Exact or near singularity in
� � (� (� � � �
 is thus avoided by selecting � to shift the eigenvalues

of
�

in such a way that � � is sufficiently greater than zero. Numerical examples presented

in
�
3.3.2 illustrate that when � -RSCALE is used to solve an ABD system of reasonable size,

usually it is possible to choose � so that � � is not too small while at the same time � � is not

too large, and often �
� �

is an appropriate choice. See
�
3.3.2 for further details.

In the proof of Lemma 5 we assumed that
�

is diagonalizable. This property is also re-

quired in the analysis that follows; we now state it formerly:

CHAPTER 3. STABILITY OF THE ALGORITHMS 55

Criterion 3
� � � ��� �

is diagonalizable (nondefective); i.e. � a nonsingular
� ��� ��� �

such

that
� � �

diag
� � � � � � � � � � � � $&� , where � � ��� ��� � � � � � � � % .

We now derive bounds for
� �� ��� � � # in Lemma 5 and

� �� ��� � � # in Lemma 6.

Lemma 7 If � � , � � and
�

are defined as stated in Criteria 1-3, then

� �� ��� � � # � ��� # � � � � � � & � � � � � �
 �
� �

� # � � � � � � & � � � � � � � � � �	
 � � � (3.25)

for
� � 	 � � (� � � � � � 	 (�

, where � # � � ��� � � � # � � $&� � # .
Proof From Lemma 5, and noting that ���� �

(Criterion 1),

�� ��� � � � � (� (� � � �%$ �
 $&� � � �
$ � (� (�

� �%$
� � �%$ �
� � � (� (� � � �%$ �
 $&� � (�

� $ � � � (� � � � $ � (� (� � � �%$ � �
 �
Let
� � ����� � � � � � � % represent the eigenvalues of

�� ��� � . Given that
�

diagonalizes
�

, clearly it

also diagonalizes
�� ��� � . Therefore,

� � � (�
� $ � � � (� ��� � $ � (� (� � � �%$ � � � � � (� (� � � �%$ � �

and
� � � � � �

� $ � � � � � � � $ � & � � � � �%$ � � � � � (� � � � �%$ � � (3.26)

where
� � � ��� � is the

�
-th eigenvalue of � � � � . We now derive bounds for � � � � in terms of � �

and � � which cover all possible
� �

. Given Criterion 2, two cases need be considered:

1. � � � � � ��� � � � � � � (� � . (This also implies that � � � � � � �
 .) Substituting into (3.26),

and noting that � (� � 	 (� � �
,

� � � � � �
� $ � � � � (� � � & � � (� � � � � � � (� � (� � ���� �
�
� $ � � � (� � � � � � �

2. � � � � � �	� � � � � � � & � � . Since � � � � �� �
, we can divide numerator and denominator in

(3.26) through by � � � �
�%$ �

giving

� � � � � �
� $ � � � � � � � � �%$

� & � � � � � � � � � �
�%$ � (� � � (3.27)

Substituting � � � � � � & � � into (3.27), and noting that � (� � � (� �
,

� � � � � �
� $ � � � � � � & � � � & � � � � � � � � & � � � (� ��

�
� $ � � � & � � � � � � �

CHAPTER 3. STABILITY OF THE ALGORITHMS 56

Combining the two cases, � � � � � �
� $ � � � & � � � � � � . Now,

� �� ��� � � # � � �
diag

� � � � � � � � � � � � $&� � #
� � � � # � diag

� � � � � � � � � � � � # � � $&� � #� � # � � � � diag
� � � � � � � � � � � � #

and since
�
diag

� � � � � � � � � � � � # � ����� � � � � � ,
� �� ��� � � # � � # � � � � � � $ � � � & � � � � � �
 � (3.28)

Finally, �
� $ � � � ��� �

$ �
with

� � 	 (� � � , and, given Criterion 1,

� ��� �
$ �
� � � �

� �

� � � � � (3.29)

Substituting (3.29) for �
� $ � in (3.28) gives (3.25). �

Lemma 8 If � � and
�

are defined as stated in Criteria 2-3, then

� �� ��� � � # � � # � � � � � � & � � � � � �
 (3.30)

for
� � 	 � � (� � 	 � � � � (�

.

Proof From Lemma 6,

�� ��� � � � � (� (� � � �%$
�
���
 $&� � � (� (� � � �%$ �
 �

Let
� � ��� � � � � � � � % represent the eigenvalues of

�� ��� � . Given that
�

diagonalizes
�

, clearly it

also diagonalizes
�� ��� � . Therefore,

� � � � � (� (� � � �%$ � � � � � (� (� � � �%$
�
��� �

and
� � � � � � � & � � � � �%$ � � � � � (� � � � �%$

�
���
� (3.31)

where
� � � � � � is the

�
-th eigenvalue of � � � � . We now derive bounds for � � � � in terms of � �

which cover all possible
� �

. Given Criterion 2, two cases need be considered:

1. � � � � � ��� � � � � � � (� � . (This also implies that � � � � � � �
 .) Substituting into (3.31),

and noting that � (& � � � (� � �
,

� � � � � � � & � � (� � ��� � � � (� � (� � ���� � � (� � � � � � �

CHAPTER 3. STABILITY OF THE ALGORITHMS 57

2. � � � � � �	� � � � � � � & � � . Since � � � � �� �
, we can divide numerator and denominator in

(3.31) through by � � � �
�%$ �

giving

� � � � � � � � � � � � �%$ � & � � � � � � � � � � �%$ � (� � � � � $ � ��� � � (3.32)

Substituting � � � � � � & � � into (3.32), and noting that � (� � �
and

� (& � � �
,

� � � � � � � � � � & � � � & � � � � � � � � & � � � (� � & � � � �� � � & � � � � � � � & � � � # (�
� � � & � � � � � � � � & � #� �� � � � � �

Combining the two cases, � � � � � � � & � � � � � � with � � � � � � 	 � . Now,

� �� ��� � � # � � �
diag

� � � � � � � � � � � � $&� � #
� � � � # � diag

� � � � � � � � � � � � # � � $&� � #� � # � � � � diag
� � � � � � � � � � � � #

and since
�
diag

� � � � � � � � � � � � # � � ��� � � � � � , (3.30) holds. �
Lemma 7 illustrates a key strength of � -RSCALE. With a suitable � ,

� �� ��� � � # can be made

sufficiently small thus preventing excessive block growth during compactification, which is the

primary reason both BlkCR and SLF-LU sometimes fail on problems with a strong dichotomy.

In fact,
� �� ��� � � # can be made arbitrarily small with � sufficiently large. (Note that the bound for

�
� �

is conservative when � is large.) Unfortunately, however, this property of � -RSCALE

rarely can be exploited since other stages of the algorithm—in particular the computation of
�"�� in (3.12)—restrict the size of � .

Using the bounds derived in Lemmas 7 and 8, we can now begin to analyze the propagation

of error in the computation of
�" � in step 1(b),

�"�� in step 2(b) and �� � in step 3(b) of � -RSCALE.

Lemma 9 Let
�! � � �� � � �" � � � � � � � �" � �
 � � � � ������� �

denote the computed (approximate)

right-hand-side of (3.11), and let ��� �
� � "���(�" � � # represent the absolute error in " � � � � 	 �

� (�
. (��� � includes both round-off and propagated error.) Let �� denote the computed solution

to the compacted system in step 3(a) of � -RSCALE (Figure 3.5), and let ���� �
� � �� (�� � # repre-

sent the absolute error in �� . Let
�" � , �" � and �� � denote the computed values for

�" � in step 1(b),�"�� in step 2(b) and �� � in step 3(b) of � -RSCALE, respectively, and let �
	� �
� � �"�� (�"�� � # ,

� �� �
� � �" � (�"�� � # and ���� �

� � �� � (�� � � # represent the absolute error in
�"�� , �"�� and �� � , respec-

tively. Let ��
� � ��� � � � � � � ��� � � �

 � � � �%$&�
, and ���

� � ��	� �
� � � � � ��	� � � �

 � ��� �%$&�
.

CHAPTER 3. STABILITY OF THE ALGORITHMS 58

If � � , � � and
�

are defined as stated in Criteria 1-3, then the propagation of error through

the
	

-th iteration of steps 1(b), 2(b) and 3(b) of � -RSCALE is bound as follows:

��	� � � � � � # � � � � � � & � � � � � �
 � � � � (3.33)

� �� � � � � 	� �
& � # � � � � � � & � � � � � �
 � � � � � � � � � �

� 	� �
& � # � � � � � � & � � � � � � � � � �	
 � � � � � � � � � � (3.34)

���� � � � � �� �
& � # � � � � � � & � � � � � �
 ���� � � � � � �

� �� �
& � # � � � � � � & � � � � � � � � � �	
 � �� � � � � � � (3.35)

Proof Writing the recurrences in steps 1(b), 2(b) and 3(b) of � -RSCALE in the form of

expansions (3.12), (3.14) and (3.16), respectively, we may derive (3.33), (3.34) and (3.35)

using the absolute error propagation formula for a linear function of several variables; namely,

if �&� ��� � ��� � � � � � � � � � � � � �
 � � � � � � �� � � and ��� � � ��� � �
, then

� � � � � (� � �� � � # � �� ��� � � � � � �
�&� � # � �&� (��&� � # � (3.36)

First, applying (3.36) to (3.12) we have

� 	� �
� � �" �'(�"�� � #
�

�%$&�� ��� �
����� �

� $ � ��
� � �

�� $&�� ����� # � " � (�" � � # �
Substituting � � for �

� $ � (Criterion 1), (3.30) for
� � �� � � �� $&�� � # (Lemma 8), and

�
��

� �
for

� �%$&���� � � � " � (�" � � � # , gives (3.33). Similarly, applying (3.36) to (3.14) we have

� �� �
� � �" � (�"�� � #
� � �" � (�"�� � # & �

$&�� ��� � ����� � (� � � � � � $ ��� � � �� � $ � ��� ����� # � �" � (�" � � # �
Substituting (3.25) for

� � �
$ �� � � �� � $ � ��� � # (Lemma 7) and

�
� �

� �
for

� �
$&���� � � �" � (�" � � # , gives

(3.34). Finally, applying (3.36) to (3.16) we have

� �� �
� � �� � (�� � � #
� � �" � (�"�� � # & ����� � (� � � ��� ��

� � � �� � $ � ���
����� # � �� (�� � # �

Substituting (3.25) for
� � �� � � �� � $ � ��� � # (Lemma 7) gives (3.35). �

CHAPTER 3. STABILITY OF THE ALGORITHMS 59

A suitable combination of (3.33)-(3.35) will enable us to measure how small perturbations

in the right-hand-side
�! of (3.11) affect the accuracy of the computed solution

�

. First, how-

ever, we must bound � �� � in (3.35), and this requires an estimate for the condition number of

the compacted matrix
� � � �� � (� � �� �

arising in step 3(a) of � -RSCALE. The condition

number of
�

is related to the condition number of the full ABD matrix
)

in (3.11), which in

turn is related to the system of ODEs, boundary conditions (3.10) and underlying numerical

method used to discretize the continuous problem. When a BVODE is well-posed, the left

and right boundary conditions sufficiently “control” the decaying and growing fundamental

solution modes, respectively, and an ABD matrix
)

arising from a reasonable discretization

usually is well-conditioned. The extent to which the boundary conditions must control the so-

lution modes depends largely on the rate of decay and growth of the modes (i.e. the strength

of the dichotomy) and on the length of the interval of integration. For example, if each so-

lution mode decays or grows only slowly over the entire problem interval, and the interval is

short, most likely any set of boundary conditions of sufficient rank will lead to a well-posed

BVODE. If, on the other hand, one or more solution mode decays or grows rapidly, sufficient

rank is no longer enough as the span of the basis of the boundary equations becomes increas-

ingly relevant. (These issues are discussed more fully in [Asch 88].) The characteristics of

dichotomy and interval length in the continuous problem are manifest in the ABD matrix
)

as the magnitude of the eigenvalues of the variational matrix
�

and the number of block-rows

� , respectively. A precise measurement of how the boundary conditions affect the condition

number of
)

, and hence the condition number of
�

, would necessitate the derivation of a con-

dition number estimate incorporating, among other parameters,
� �

,
� �

,
� � �

and � . This is a

non-trivial task and is not pursued here. Instead, we choose to derive a bound for the condition

number of
�

by comparing it to that of the compacted matrix arising during decoupling—a

proven stable sequential algorithm for solving ABD linear systems.

We first outline a simple variant of the decoupling algorithm; other variants and additional

details may be found in [Asch 88]. Initially, we assume that the boundary conditions in (3.10)

satisfy the following criterion.

Criterion 4 Let
�

be diagonalizable (nondefective); i.e. � a nonsingular
� � � ��� �

such that
� � �

diag
� � � � � � � � � � � � $&� , with eigenvalues � � ��� � � � � � � � % appearing in non-decreasing

order of magnitude

� � � � � ����� � � � � " � � � � � � � " ��� � � ����� � � � � �

CHAPTER 3. STABILITY OF THE ALGORITHMS 60

and partition
� $&� � � ��� �

as follows1

� $&� � � � $&��
� $&�� � � � $&�� � � � " � � � � $&�� � � � $ � � �

where % ��� % (% � . Then
� ��� � � � ����� �

must be separable, of rank % � and % � , respectively,

with
� $&�� �

row-span
� � � �

and
� $&�� �

row-span
� � � �

; i.e.
� �

and
� �

are of the form

� � ��� � � $&��
� � � � � ��� � �

� $&�� � �
(3.37)

where
� � ����� �

is nonsingular.

We begin this variant of the algorithm by diagonalizing each
� � � 	 � � � � � � � � in (3.11).

Given
�

as defined in Criterion 4, this may be accomplished by multiplying each block-row

(except the first) through by
� $&�

and each block-column through by
�

, giving��������

� � � � � �
� � �

� # �
.

� � �

���������
�

��������

��
�� �
���#
...
�� �

���������
�
�

��������

�
�" �
�" #
...
�" �

���������
�

�
(3.38)

where
� �

�
diag

� � � � � � � � � � " � � �#" ��� � � � � � � � � � 	 � � � � � � � � � �"�� � � $&� "�� � 	 � � � � � � � � and
�� � � � $&� � � � 	 � � � � � � � � . Two points are worth noting here:

� Although this step is obviously parallelizable in the constant-coefficient case, it is inher-

ently sequential in the variable-coefficient case since, in general, the diagonalization of
� � ��� cannot proceed until the diagonalization of

� � is complete.

� In a practical algorithm, diagonalization is unnecessarily costly. As shown in [Asch 88],

decoupling can be implemented just as effectively using triangular factorization.

Now if
� �

and
� �

are of the form shown in (3.37), the top block-row of (3.38) may be written

� � � $&��
� � � �� &�� � �

� $&�� � � �� � � � � (3.39)

1 ��� �	 and � � �
 denote the first � 	 and last �
 rows of ��� � , respectively. These two partitioned matrices are
neither square nor invertible.

CHAPTER 3. STABILITY OF THE ALGORITHMS 61

Multiplying (3.39) through by
�
$&�

gives� � �#"
� � �� & � �

� �#$ � �� � � �� (3.40)

where
� � " � ��� " � � and

� � $ � ��� $ � � represent the first % � and last % � rows of
�
, respectively,

and
�� � � $&� � . Thus, by transforming (3.11) as shown in (3.38)-(3.40), and assuming that

�

is nonsingular, the boundary equations now explicitly give

�� � �
���

�� �
...
�� �� "

����
� �

���

�� �
...
�� � "

����
� ��� �#" (3.41)

and

����� � ���

�� � � " � �

...
�� � �

� ��
� �

���

�� � " ���

...
�� �

� ��
� ��� �#$ � (3.42)

The remaining unknowns may be computed by using (3.41) as the initial value in a forward

recurrence for the decaying solution modes,

�� �� � �" � � (��
� �� �� $&� � 	 � � � � � � � � � � �

(3.43)

and (3.42) as the initial value in a backward recurrence for the growing solution modes,

����� � � � � � $&� � �" � � ��� (����� ���
 � 	 � � (� � � (� � � � � � � � (3.44)

where

�� �� �
���

�� � �
...
�� ��� "

����
� � �" � � �

���

�" � �
...
�"���� "

����
� ��� � " � �� �� �

���

�� � � " � �

...
�� �	�

����
� � �" � � �

���

�" � � " � �

...
�"����

����
� ��� �#$ �

and

�
� �

diag
� � � � � � � � � � " � ��� � " � � " � � � � diag

� � � " ��� � � � � � � � � ��� �#$�� �#$ �
Since

�
�
� � # � �

and
� � � � � $&� � # � �

, recurrences (3.43) and (3.44) are stable and neu-

trally stable, respectively. Finally, the original unknowns are recovered with � � � � �� � � 	 �
� � � � � � � .

Although it is possible to fabricate an ODE system where the boundary conditions must

satisfy Criterion 4 in order for problem to be well-posed, this criterion is rarely met in practice.

The usual minimum criterion for general non-separated boundary conditions in (3.10) is:

CHAPTER 3. STABILITY OF THE ALGORITHMS 62

Criterion 5 Let
�

be diagonalizable (nondefective); i.e. � a nonsingular
� � � ��� �

such that
� � �

diag
� � � � � � � � � � � � $&� , with eigenvalues � � ��� � � � � � � � % appearing in non-decreasing

order of magnitude:

� � � � � ����� � � � � " � � � � � � �#" ��� � � ����� � � � � � �
Then

� ��� � � ���!��� �
must be of rank % � and % � , respectively, where % � � % (% � .

When the decoupling algorithm is used to solve an ABD system with boundary conditions

satisfying this more general criterion only, it may no longer be possible to compute
�� � and

�� ��
as shown in (3.39)-(3.42). Instead, initial values for recurrences (3.43) and (3.44) typically are

computed by solving the compacted system� � � � � � �

�
�

�
� � � �� �� � � � � �

� � (3.45)

where
� ��� � �

are as specified in Criterion 5, �
� �
�
� � ����� �

are of the form

�
� � � � (� � ����� � � � � � �

� � � �
�
�'� � � �

� � (� � ����� � � � � $ � �
and � � � � is an appropriately transformed subvector of

�! .

A closer examination of (3.45) sheds some light on the intricate relationship between the

boundary conditions and dichotomy, and how they contribute to the condition number of both

the compacted and full ABD matrix. For example, let
� �
 � � ��� � , � �
 � � � � � , and

� �
 � � � � � denote the�
-th row,

�
-th column, and � ����� � -th element, respectively, of

� �
� ��� �
, and let � represent

machine epsilon. If, in (3.45), � � � �
 � � � � � � � � for some
� � � � � � % � , and one or both of the

following conditions hold:

1.
��� � � �
 � � � � � � � � ,

2.
��� � � �
 � � ��� � � � � and

��� � � �
 � � ��� � (� �
 � � ��� � � � � for some
�
,
� � � � % ,

then the compacted matrix is either poorly-conditioned or numerically singular, whereas if
� � � �
 � � � � � � � � , neither of these conditions is likely to adversely affect the condition number.

The magnitude of each of the first % � elements on the diagonal of �
�

and last % � elements on

the diagonal of �
�

is uniquely determined by the strength of the dichotomy and length of the

interval of integration. For instance, in the above example we can easily have � � � �
 � � � � � ��� �
when the

�
-th fundamental solution mode decreases rapidly over a long interval. It therefore

CHAPTER 3. STABILITY OF THE ALGORITHMS 63

follows that the contribution of general
� �

and
� �

(i.e.
� �

and
� �

which satisfy Criterion 5

only) to the condition number of the compacted matrix depends also on the strength of the

dichotomy and length of the interval of integration. If, on the other hand,
� �

and
� �

satisfy

Criterion 4, the compacted system (3.45) reduces to (3.41), (3.42),

�� � �
���

�� � " � �

...
�� �

����
� �

���

� � " ���
...
� �

����
� (� (� � ����� � � � � $ � ���

�� � � " � �

...
�� � �

����
� (3.46)

and

�� �� � ���

�� � �
...
�� � � "

����
� �

���

� �
...

� �#"
����
� (� (� � ����� � � � � � ���

�� �
...
�� �� "

����
� �

(3.47)

Clearly, in this case, the contribution of
� �

and
� �

to the condition number of the compacted

matrix may be measured solely in terms of the condition number of
�

. (Recall that
�

is inverted

when computing
�� � in (3.41) and

�� �� in (3.42).)

We close this discussion on the decoupling algorithm by showing that when
� �

and
� �

satisfy Criterion 5, the compacted system (3.45) may be further reduced to an % � % system

involving
�� � and

�� �� only. To this end, consider partitioning
� �

,
� �

and
�

as follows:

� � � � � � �
� �

�
� � � � � � � � �

� �
�
� � � ��� � � � ��� �

where
� �

�
� � �

�
� �!� " � � � � �

�
� � �

�
� �!� $ � � � � �!� �!��� � "

and
� � � �!��� � $

. Rewriting (3.45)

using this partitioning gives������

� �
�
� � � �

�
� � � �

�
� � � �

�
� �

� �
�
� � � �

�
� � � �

�
� � � �

�
� �� (� � ����� � � � � � � � �

� � � � (� � ����� � � � � $ �
� �����
�

������

�� �
����
�� ��
�����

� �����
�
�

������

� �� �
� �

� �

� �����
� (3.48)

where, as before, we denote subvectors consisting of the first % � and last % � elements of � ��� �
as �

� � � � "
and � � ��� � $, respectively. Now interchanging

�� � and
�� �� in (3.48) gives������

� �

�
� � � �

�
� � � �

�
� � � �

�
� �

� �
�
� � � �

�
� � � �

�
� � � �

�
� �

� � � (� � ����� � � � � � �
� � � � (� � ����� � � � � $ �

� �����
�

������

�� ��
�� �
�� �
�� ��

� �����
�
�

������

� �� �
� �

� �

� �����
� (3.49)

CHAPTER 3. STABILITY OF THE ALGORITHMS 64

With the % � % identity matrix appearing in the lower-left corner of (3.49), we can clearly

eliminate
�� � and

�� �� from the first % equations by subtracting an appropriate multiple of the

last % equations. This leads to the compacted system

�� � �� �
����� � � � � �� � � (� � � � � � � �

�
� �

� �
�
� � � �

�
� � � � � �

� � � (3.50)

where

�� � � � � � � � � �
�
� �

� �
�
� � � �

�
� � � (� � � � � � � �

�
� �

� �
�
� � � �

�
� � � � � (� � ����� � � � � � �

� � (� � ����� � � � � $ � � �

Once (3.50) is solved giving
�� � and

�� �� ,
�� � and

�� �� may be computed either as shown in (3.46)

and (3.47), or as the last step of recurrences (3.44) and (3.43), respectively.

In the next lemma we bound the condition number of the compacted matrix arising in � -

RSCALE by comparing it to that of
��
. Note that since the variant of decoupling outlined

above is theoretically stable, the condition number of
��

is closely related to the conditioning

of the BVODE. For example, if the continuous problem is well-conditioned, and the full ABD

matrix
)

arises from a reasonable discretization, then both
)

and
��

are guaranteed to be well-

conditioned. A thorough analysis of the connection between the conditioning of the continuous

and discrete problems is given in [Asch 88].

We now derive an upper bound for the condition number of the compacted matrix
�

arising

in step 3(a) of � -RSCALE:

Lemma 10 If � � , � � , � � and
�

are defined as stated in Criteria 1, 2 and 5, then the 2-norm

condition number of the compacted matrix
� � �� � (� � �� � arising in step 3(a) of � -RSCALE

is bound above by

� # � � � � � � # � �� � � # � � � � � � � � #� � � ���� � � & � � � � � � �
 (3.51)

where
��

is the compacted matrix arising in the decoupling algorithm (3.50).

Proof Expanding
�� �

and
�� �

as computed in steps 1(c) and 2(c) of Figure 3.5,
�

can be

written equivalently as
� � � � (� � � � where

� � � � & �
�� �

and � � � � (� � ����� � �%$&��
� � � �� �%$ � �

CHAPTER 3. STABILITY OF THE ALGORITHMS 65

Substituting (3.19) (Lemma 4) for
�� �

in
� �

gives

� � � � &
�
� � (� (� � � �
 $&� � � & �

�%$&� � (� � �
� � � (� (� � � �
 $&� � � � (� (� � � �
�&
�
� � & �

�%$&� � (� � �
 �� � � (� (� � � �
 $&� � � &
� �

and substituting (3.21) (Lemma 5) for
�� �%$&�

� � � �%$&�� � � �� �%$ �
in
� �

gives

� � � � (� � ����� � � � (� (� � � �
 $&� � � �%$&� &
� �

�
� � (� � ����� � � (� (� � � �
 $&� � � � & � �
�����
 �

A fundamental relationship between
� �

and
� �

follows immediately; namely

� � � $&�� � � (� � ����� � � �
(3.52)

This relationship is exploited later in the proof.

Let
� �

and
� �

,
� � � � � � � � % , represent the eigenvalues of

� �
and

� �
, respectively. Given that

�

diagonalizes
�

(Criterion 5), clearly it also diagonalizes both
� �

and
� �

. Therefore,

� � � � � � (� � � �� � � � �
�
� (� � � � ��
 � $&�

or, multiplying through by
�

, � � � � � �
�
� (� � � � �

(3.53)

where �
� �

diag
� � � � � � � � � � � and �

���
diag

� � � � � � � � � � � . We now partition (3.53) to reflect

the dichotomy specified in Criterion 5. Let

� � � � � � �
� �

�
� � � � � � � � �

� �
�
� � � � � � � � � � �

where
� �

�
� � �

�
����� " � � � � �

�
� � �

�
� ��� $�� � � � � ������� � " � � ��������� �#$

, and let

�
� � � � �

�
�

� �
�
�
� �

�
� � � � �

�
�

� �
�
�
� �

where �
�
�
�
�
�
�
���!� " � � "

and �
�
�
�
�
�
�
�����#$ � �#$

. Then (3.53) may be written

� � � � � � � � � � �
�
� �

� �
�
� � � �

�
� � � � � �

�
�

� �
�
�
� (� � � � � � � �

�
� �

� �
�
� � � �

�
� � � � � �

�
�

� �
�
�
� �

(3.54)

CHAPTER 3. STABILITY OF THE ALGORITHMS 66

Let
� � � � �

�
�

� (� �
�
� � � ��� � � (3.55)

Multiplying (3.54) through by
� $&�

and simplifying gives

� � � $&� � � � � � � � � �
�
� �

� �
�
� � � �

�
� � � (� � � � � � � �

�
� �

� �
�
� � � �

�
� � � � � �

� �
$&��
�

�
� �

�
� �

$&��
�
� �

(3.56)

Now by diagonalizing (3.52), we have

�
�
�
$&�� � � (� � �����

�
� �

(3.57)

Taking the first % � equations of (3.57) gives

�
�
� �

$&��
�
� � (� � ����� � � � � �

(3.58)

where �
� �

diag
� � � � � � � � � �#" � . Similarly, inverting both sides of (3.57) and then taking the

last % � equations of the result gives

�
�
� �

$&��
�
� � (� � ����� � � � � $ � (3.59)

where � � � diag
� � � " ��� � � � � � � � � . Substituting (3.58) and (3.59) into (3.56), we see that (3.56)

is identical to
��

in (3.50); i.e. when
� �

and
� �

satisfy Criterion 5, the compacted matrix
�

arising in step 3(a) of � -RSCALE—when transformed with
� � $&�

—is algebraically equivalent

to the compacted matrix
��

arising in the decoupling algorithm. It therefore follows that

� # � � � � � # � �� � � # � � � � # � � � � (3.60)

We now derive a bound for � # � � � . From above, we have
� � � � � � (� � � � where

� � � � � (� (� � � �
 $&� � � &
� �

(3.61)

and � � � � (� � ����� � � (� (� � � �
 $&� � � � & � �
�����
 �

(3.62)

Since � �� �
(Criterion 1), (3.62) may be written equivalently as

� � � � (� � ����� �
�
�

� � (� (� � � � �
 $&� � � � � � � & � � � � �����
 �
(3.63)

Given that
�

diagonalizes each of
�

,
� �

and
� �

, expressions for the eigenvalues
� �

of
� �

and
� �

of
� �

follow directly from (3.61) and (3.63), respectively:

� � � � � & � � � � � � (� (� � � � � (3.64)

CHAPTER 3. STABILITY OF THE ALGORITHMS 67

� � � � (� � ����� � � �� & �
������ � � � � � � � (� (� � � � � �

(3.65)

for
� � � � � � � � % where

� � � � � � is the
�
-th eigenvalue of � � � � . From (3.55), we see that a

subset of these
� �

and
� �

make up the diagonal of
�

; namely

� �
diag

� � � � � � � � � � " � (� � " ��� � � � � � (� � � �
We next derive bounds, in terms of � � (Criterion 1) and � � (Criterion 2), for the magnitude of

each diagonal element in
�

. Taking absolute values in (3.64) and (3.65), we have
� � (� � � � �
� & � � � � � � � � � � �

� & � � � �
� � (� � � � � � (3.66)

� � � � � � (� � � � ����� �
�
� � � & � � � � � � � � � � � �

� � � � � & � � � � �����
�
� � � (� � � � � � � (3.67)

Given the order imposed on the eigenvalues of
�

as specified in Criterion 5, it follows that

each
� �

in
�

arises from an eigenvalue � � of
�

with � � � � � �
, and each

� �
in
�

arises from

an eigenvalue � � of
�

with � � � � � �
. We handle these cases separately below, taking into

consideration all possible
� �

arising from different combinations of � and � � .
1. Bounds for � � � � ��� � � � � � � � % � . Each

� �
is computed from � � with � � � � � �

.

(a) � � ��� � � � � � � � � � � � � � ��� � � � � (� � and

� � � � � �
�
� � � � � � � (� � � � �

(3.68)

Substituting (3.68) into (3.66),
� � (� � (� � � �� & � � (� � � � � � � � � � & � � (� � �

� � (� � (� � � � �
Simplifying,

� � � � � (� � � � � � � � � � � (� � � � � � � (3.69)

(b) � � ��� (� ��� � � � � � � � � � � � � & � � . The former

case is handled in 1(a). In the latter case,
� & � � � � � � � � � and

� & � � � � � � � � � � � � � � �
� � � � � (3.70)

Substituting (3.70) into (3.66),
� � (� � & � � � �� & � � � � � � � �

� & �
� � (� � & � � � � �

Simplifying,
� � � � � & � � � � � � � � � � � & �

� � � � � (3.71)

CHAPTER 3. STABILITY OF THE ALGORITHMS 68

2. Bounds for � � � � ��� � % ��& � � � � � � % . Each
� �

is computed from � � with � � � � � �
.

(a) �
� ��� � � � � � �	� � � � � � � � � � � � � & � � and

� � � & � � � � � � � � � � � � � � 	 �
(3.72)

Noting that � � � �
�
�� �

in this case, we divide numerator and denominator of each

side of (3.67) through by � � � �
�

giving
� � (� � � � �

�
� � � � � � � � � & � � � � � � � � � & � � � �

�
� � � � � � � � � (� �

�
(3.73)

Substituting (3.72) into (3.73),
� � (� � & � � � �

�
� � � � � � & � � � & � � � � � � � � � & � � � �

�
� � � � � � & � � � (� �

�

Simplifying, � � � � & � � �
� � � � & � � � � � � � � � � � & � � � � � � � & � � �

� � � �
�

(3.74)

(b) � � ��� & � ��� � � � � � � � � � � � � (� � . The former

case is handled in 2(a). In the latter case, � � � � � � � � (� � and

� � � � � � � �
�
� � � � �

� � � � � � � � (� � � � �
(3.75)

Noting that � � � �
�
�� �

again in this case, we substitute (3.75) into (3.73),
� � (� � (� � � �
�
� � � � � � & � � � � � � � � � & � � (� � �

�
� � � � � � (� � � (� �

�

Simplifying, � � � �� & � � � � � � � � � � � � (� � � � � (� � �� �
�

(3.76)

Relaxing the upper and lower limits in (3.69), (3.71), (3.74) and (3.76), we have

� � � � � � � � � � � � � � � (3.77)

� � � � � & � � � � � � � � � � � & � � � � � � � (3.78)

� � � � � � � � � � � � � � � � � & � � � � � � � � � (3.79)

� � � � � � � � � � � � � � � � � (3.80)

Considering (3.77)–(3.80), each diagonal element
� �
 � � � � � ��� � � � � � � � % of

�
must satisfy

� � � � � � � � � � � �
 � � � � � � � � ������ � � & � � � � � � �
 � � �
and hence, since

�
is diagonal,

� # � � ��� ������ � � �
 � � � � � � � ������ � � �
 � � � � � � � � � � � � � #� � ������ � � & � � � � � � �
 � (3.81)

Substituting (3.81) into (3.60) gives (3.51). �

CHAPTER 3. STABILITY OF THE ALGORITHMS 69

3.3.2 Some Examples Where
�����

-RSCALE Fails

We now present several numerical examples illustrating the potential instability in the prototype

algorithm
� � �

-RSCALE, the effect of a small shift in � on problems where
�����

-RSCALE fails,

and the sharpness of the bounds derived in Lemmas 7, 8 and 10.

Given the identities derived in Lemmas 4, 5 and 6, it is not difficult to construct well-posed

problems that cannot be solved stably with
� � �

-RSCALE. For example, if any eigenvalue � � of
�

in (3.11) is a root of the equation � (�� � �%$
��� ��� (� � � �

(3.82)

then, considering (3.19), (3.21) and (3.23), clearly there will be an exact singularity at the

computation of
�� � � , �� ��� � � $&� and

�� � � � � , respectively. In fact, potentially there are many such

singularities. Any � � satisfying (3.82) always satisfies� (�� �
	 � �%$
� � ����� (� � � � � � � � � � � ��� ��� � � (� & � ��� �

(3.83)

leading to additional singularities in the computation of
�� �%$ 	 � �%$

� � ����� ��� , �� ��� �%$ 	 � �%$
� � ����� and

�� �%$ 	 � �%$
� � ����� ��� � � at �

� � � � � � ��� � � � � (& � ���
. Also, when (3.82) is of high degree

(i.e.
	 � �), a � � satisfying (3.82) may satisfy� (�� � 	 � �%$

� � ����� (� � � � � � � � � � � (& � ���� �
(3.84)

leading to singularities in the computation of
��
��� , ��

��� ��� $&� and
�� ��� � � , at one or more

	�� � 	 .
There are � (& �

roots in (3.82), most of which are complex. If one of these roots

appears in the spectrum of a real matrix
�

, so must its complex conjugate. Thus, a strategy for

constructing a problem that cannot be solved stably with
� ���

-RSCALE is to work “backwards”:

First choose a
	

, then determine the roots of (3.82), and then select an appropriate number

of conjugate pairs of these roots as eigenvalues for
�

. The test problems in Table 3.1 are

constructed in this manner. Once eigenvalues
� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � ��� � � �� � � � � � ��� �
 have

been selected,
� ��� ��� �

is formed as

� � �
diag

� ��� � � � $&� �
where

� ��� � � real
� � � � � (imag

� � � � �

imag
� � � � � real

� � � � � � ����� � � � � � � � % (��� � � �
and

� � ����� �
is randomly generated. Note that the rows of

� $&�
are a purely real linear

combination of the left eigenvectors of
�

.
� �

and
� �

in (3.11) are then formed from the rows

CHAPTER 3. STABILITY OF THE ALGORITHMS 70

Table 3.1: Seven test problems for � -RSCALE

Selected eigenvalues for
�

are
� � � � � � � � � � � � � � � �� � � � � � � � � � � � � � ��� � � �� � � � � � ��� �
 , where � � �

is the
�
� -th root of � (�� � �%$

� � ��� (� � �
, and

�� � � is the complex conjugate of � � � .

Problem # � % � � � Selected eigenvalues for
� 	

A (6, 64)
� (� � � � (��� � � (� � � � (� � � � (� � � � (� � �

–

B (6, 64)
� (� � � � (� � � � (� � � � (� � � � � # � �� #
 50

C (6, 64)
� (� � � � (� � � � � # � �� # � � � � � �� � �
 42

D (8, 32)
� (� � � � (� � � � � # � �� # � � � � � �� � � � � # � � �� # �
 2

E (4, 128)
� (� � � � (� � � � � � � � �� � �
 4

F (6, 64)
� (� � � � (��� � � (� � � � (� � � � � � � � �� � �
 1

G (5, 64)
� (� � � � (� � � � (� ��� � (����� � (� � ��

–

of
� $&�

corresponding to decreasing (� � � � � �
) and increasing or neutral (� � � � � �

, � � � and
�� � �)

solution modes, respectively. Assuming that
� � � # is not too large, an ABD matrix constructed

in this manner is always well-conditioned [Asch 88].

The right-hand-side of each test problem is set up in such a way that the resulting linear

system represents the trapezoidal finite-difference discretization of (3.10) with

1 � ����� � � (�

���

���

...
���

����
�

and � � � �
���

�
�

...
�
�

����
� & � �

���

�
�

...
�
�

����
� �

With this particular choice for
1 � ��� and � , the analytic solution to (3.10) is

��� ����� ���

� �

...
���

����
� �

(3.85)

Again, the strategy for constructing such a right-hand-side is to work backwards; first choose an

appropriate interval of integration
���������	�

, and then compute
�

from
�

by applying the inverse

CHAPTER 3. STABILITY OF THE ALGORITHMS 71

of the trapezoidal formula:

� � � � �
� (��� � � & �
 � � (�
 $&� �

We now present the results of several numerical experiments run under Matlab 5.1 on a

167MHz Sun SPARCstation Ultra 2. The test problems in Table 3.1 are each solved using

� -RSCALE, with various choices for � , and the results of each experiment are summarized in

a figure containing a table and four plots. The table at the top of the figure gives some statistics

specific to that experiment; namely � � and � � from Criteria 1 and 2, the theoretical bounds for
� �� ��� � � # , � �� ��� � � # , and � # � � � derived in Lemmas 7, 8 and 10, respectively, and the analytic and

algebraic error in the computed solution
�

. The analytic error is measured as
� �
 (

ana
���

,

where � ana �
� � ��� � � � is the analytic solution (3.85) evaluated at mesh point

� � . The algebraic

error is measured as
� �
 (

alg
���

, where

alg is a solution to (3.11) obtained using Matlab’s

implementation of Gaussian elimination. To help assess the accuracy of the computed solution,

�
#

and
�� � �) � —the 1-norm condition number estimate of the full matrix in (3.11)—are listed

beside the analytic and algebraic errors. The four plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right). These

plots of sample norms arising in the actual algorithm are included to help gauge the accuracy

of the theoretical bounds, and to illustrate exactly where the algorithm fails when singularities

occur. Note that the eigenvalue-shift plot is rather trivial in the static variant of the algorithm

since � remains constant across the problem domain. This plot is more enlightening in the

dynamic variant of the algorithm presented in
�
3.3.4.

Figure 3.6 summarizes the
� � �

-RSCALE solution to Problem A of Table 3.1. With � � �
� � �

, each eigenvalue � � of
�

is sufficiently greater than
�

in magnitude, so we expect
� � �

-

RSCALE to be stable on this problem and give an accurate solution. The analytic and algebraic

errors listed in the table show this indeed is the case. The plots show that the theoretical bounds

on the norms are each about an order of magnitude greater than the actual values; the same is

true for the theoretical bound on � # � � � .
Figure 3.7 summarizes the

� ���
-RSCALE solution to Problem B of Table 3.1. This problem

is constructed in such a way that the algorithm fails due to a singularity at the computation

of rescaled
�� � . The plot of

� �� � � # confirms this singularity, and uncovers three others at the

computation of
�� � �

,
�� # and

�� �
. These additional singularities arise because eigenvalues � � and

� � of
�

(i.e. � # and
�� #) not only satisfy (3.82), but also (3.83) for �

� � � �
and � . Corresponding

singularities in the computation of
�� �%$&�

�
���

,
�� �%$&�

�
� �

,
�� �%$&�

�
� �

, and
�� �%$&�

�
�

are shown in the plot

CHAPTER 3. STABILITY OF THE ALGORITHMS 72

Figure 3.6: The static 1.0-RSCALE solution to Table 3.1/A.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1, 0.3 2.6e+02 2.6e+02 1.5e+03 0.00098 0.00029 9.9e+02 3.9e-13

The true value of � # � � � is 49. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

1σ k

k

2.5

3

3.5

4

4.5

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
2.6

2.8

3

3.2

3.4

3.6

||V
M−1,i

||
2

i

~

0 20 40 60 80
3

4

5

6

7

8

||V
k,0

||
2

k

~

0 20 40 60 80
3

4

5

6

7

8

||W
1,i

||
2

i

~

CHAPTER 3. STABILITY OF THE ALGORITHMS 73

of
� �� �%$&�

� � � # . These last four singularities are precisely the source of instability in the compu-

tation of
�" �%$&�

in (3.14). Similar singularities arise in the computation of
�"�� � 	 � � � � � � � � (�

in (3.14), and
�" � , �" � � , �" # and

�" � in (3.12). The effect is a loss of accuracy sufficient to ren-

der the computed solution
�

worthless, even though in this problem the compacted matrix
�

happens to be well-conditioned, and, as shown in the plot of
�� ��� , expansion (3.16) is stable for

all �� � .
Figure 3.8 summarizes the

����� �
-RSCALE solution to Problem B of Table 3.1. A small shift

in � of
& � � � �

is sufficient to evade the singularities arising in
� � �

-RSCALE, and as indicated

by the algebraic and analytic errors, the computed solution is now acceptably accurate. Note

that since � � does not grow too large, instabilities attributable to large � � do not occur. The

danger of over-shifting when evading singularities is addressed in
�
3.3.4.

The
� � �

,
� �����

and
� � � �

-RSCALE solutions to Problems C-F of Table 3.1 are summarized

in Appendix A. In all cases, singularities which arise in
� � �

-RSCALE as predicted by the

above analysis do not occur in either
� � � �

or
����� �

-RSCALE. Other details specific to these

experiments are given in the introduction to the appendix.

A final comment concerning Table 3.1: Each problem in this table possesses a dichotomy

sufficiently “strong” to cause instability in unmodified compactification (i.e. compactification

without rescaling, or BlkCR). For example, consider the
� ���

-RSCALE (BlkCR) solution to

Problem B summarized in Figure 3.9. When �
� �

,
� �� �

��� � �� � � � � 	 � � � � � � � � �
, result-

ing in constant plots for
� �� � � # and

� �� �
� � � # across the problem domain. The plots for

� �� �%$&�
� � � #

and
� �� ��� � # , on the other hand, clearly show the instability of the unmodified algorithm on this

problem.

3.3.3 How Often Does
�����

-RSCALE Fail?

Whether or not
�����

-RSCALE is stable on a given BVP depends both on the system of ODEs

and the underlying numerical method used to discretize the continuous problem, making it

difficult to predict just how often the algorithm will fail in practice. It is possible, however, to

roughly predict the frequency of instability in specific cases. To this end, we now look more

closely at ABD systems arising from the trapezoidal finite-difference discretization of (3.10).

When (3.11) is constructed using the trapezoidal scheme, eigenvalues � � of
�

are given by

� � � (�� � (� � � ���
$&�
� � & � � � ��� � � � � � � � � � % � (3.86)

CHAPTER 3. STABILITY OF THE ALGORITHMS 74

Figure 3.7: The static 1.0-RSCALE solution to Table 3.1/B.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1, 2e-15 3.4e+16 3.4e+16 3.4e+31 0.00098 6.2e+13 2.8e+04 6.2e+13

The true value of � # � � � is 50. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

1σ k

k

0

2

4

6

8
x 10

14 ||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

2

4

6

8
x 10

14 ||V
M−1,i

||
2

i

~

0 20 40 60 80
0

5

10

15

20

25

||V
k,0

||
2

k

~

0 20 40 60 80
0

10

20

30

40

||W
1,i

||
2

i

~

CHAPTER 3. STABILITY OF THE ALGORITHMS 75

Figure 3.8: The static 1.02-RSCALE solution to Table 3.1/B.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

3.6, 0.02 3.4e+03 3.4e+03 4.3e+06 0.00098 0.00033 2.8e+04 2.2e-11

The true value of � # � � � is 72. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

1

1.02

σ k

k

0

10

20

30

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

5

10

15

20

25

||V
M−1,i

||
2

i

~

0 20 40 60 80
0

2

4

6

8

10

||V
k,0

||
2

k

~

0 20 40 60 80
0

5

10

15

20

||W
1,i

||
2

i

~

CHAPTER 3. STABILITY OF THE ALGORITHMS 76

Figure 3.9: The static 0.0-RSCALE (BlkCR) solution to Table 3.1/B.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.
	 , 1 	 	 	 0.00098 6.9e+11 2.8e+04 6.9e+11

The true value of � # � � � is 	 . The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

0

1

σ k

k

11

12

13

14

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

0.5

1

1.5

2
x 10

27 ||V
M−1,i

||
2

i

~

0 20 40 60 80
0

2

4

6

8
x 10

27 ||V
k,0

||
2

k

~

0 20 40 60 80
0

0.5

1

1.5

2

||W
1,i

||
2

i

~

CHAPTER 3. STABILITY OF THE ALGORITHMS 77

where
� �

is the
�
-th eigenvalue of

�
. If
� � ��� ��� �� & � � � � ��

is complex,

� � � (� � (� � � � ��� �� & � � � � �� � � $&� � � & � � � � ��� �� & � � � � �� � �
� (� � � (� � � ��� �� � (� � � � � � �� �

$&�
� � � & � � � ��� �� � & � � � � � � �� �

and
� � � �

� � � � (� � � ��� �� � # & � � � � � � �� � # � $&� � � � & � � � ��� �� � # & � � � � � � �� � # � �

Clearly,
� � � � � ��� � � ��� �� � �

�
� � � �

(3.87)

and
� � � � � ��� � � ��� �� � �

�
� � � �

� � � � �
(3.88)

(We omit �
� �

in (3.87) since � � �
in every finite discretization. Also, we choose to omit� � � � � � � � 	 in (3.88), since this is not likely to occur in any “reasonable” discretization.)

Now referring to Criterion 2 and Lemmas 7, 8 and 10, we may expect instability in � -

RSCALE when � � � �
or � � � �

, which, in
� � �

-RSCALE, occurs when � � � � � �
or � � � � � �

.

Given (3.87) and (3.88), this occurs in the trapezoidal scheme when any eigenvalue
���

of
�

has real part exactly or nearly
�
, both real and imaginary parts exactly or nearly

�
, or when � is

nearly
�
. This prediction, however, is somewhat pessimistic. There are at least two reasons why

the algorithm itself may remain stable even though the theoretical bounds “blow up” due to a

small � � . First, an eigenvalue � � of
�

of magnitude
�

is not necessarily a root of (3.82) for some
	 � � ; i.e. such an eigenvalue will not necessarily cause a singularity in the computation of
�� � , �� ��� � and

�� ��� � within the problem domain
� � 	 � � (� � � � � � 	 (�

. Given that there

are infinitely many complex numbers of magnitude
�
, the likelihood of one satisfying (3.82)

is not great. Second, and perhaps more importantly, the eigenvalue � � � (�
or � � � (�

,

which arises in the trapezoidal scheme when
� ��� �

,
� � � �

, or � is small, is not a source

of instability in
� � �

-RSCALE. This is an extraneous singularity introduced in the derivation

of (3.19) in Lemma 4. (The term
� � &

� �
 $&� � � &
� �

was inserted during the “base” step

of the induction to simplify the algebra.) Figure 3.10 summarizes the
�����

-RSCALE solution

to Problem G of Table 3.1, in which three of five eigenvalues of
�

are (�
. The theoretical

bounds “blow up”, but as shown by the analytic and algebraic errors and plots,
� � �

-RSCALE

is stable and the computed solution is accurate. This is fortunate, since � � � (�
arises in every

reasonable discretization when � is sufficiently small.

CHAPTER 3. STABILITY OF THE ALGORITHMS 78

Figure 3.10: The static 1.0-RSCALE solution to Table 3.1/G.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1, 0 	 	 	 0.00098 0.00027 6e+03 5.5e-13

The true value of � # � � � is 8.8e+02. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of�" �%$&�
in (3.14) (top right), �� � in (3.16) (bottom left), and

�" � in (3.12) (bottom right):

0 20 40 60 80

1σ k

k

1.5

2

2.5

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
1.6

1.8

2

2.2

2.4

2.6

||V
M−1,i

||
2

i

~

0 20 40 60 80
2

2.5

3

3.5

4

||V
k,0

||
2

k

~

0 20 40 60 80
2

2.5

3

3.5

4

||W
1,i

||
2

i

~

CHAPTER 3. STABILITY OF THE ALGORITHMS 79

Therefore, more precisely, we may expect instability in
�����

-RSCALE if any eigenvalue
� �

of
�

is exactly or nearly purely imaginary, and the corresponding � � satisfies or nearly satisfies

(3.82) for some
	 � � . With this more accurate prediction, it is not surprising that in the

hundreds of random tests on ABD systems arising from the trapezoidal discretization reported

in Chapter 4, the prototype algorithm
� ���

-RSCALE did not once fail.

3.3.4 Dynamic ��� -RSCALE

Although the static � -RSCALE algorithm is simple enough to analyze, its implementation

suffers from at least two shortcomings. First, in general it is impossible to determine a priori a

suitable value for � when solving an ABD system arising from the discretization of a variable-

coefficient BVODE. In an implementation of � -RSCALE designed to solve such a problem,

it is necessary to initially “guess” a value for � (likely �
� �

), attempt to rescale with this

value, and, if rescaling fails, start over again with a new � . Although failure is not likely with

�
� �

, this approach has the potential to prove costly. Second, it is not always possible—even

in the constant-coefficient case—to choose a � that guarantees stability. Consider a problem

in which both % and � are large, and all or most eigenvalues of
�

are complex and clustered

around the unit-circle. Although it is always possible to choose a � to shift these eigenvalues

a “safe” distance from the unit-circle, the required � could easily result in a prohibitively large
� � � �

�
(especially if � is large), causing instability in the computation of (3.12) and a

poorly conditioned compacted matrix
�

(Lemma 10). To illustrate the negative effects of a

large � � , consider Problem B of Table 3.1. Since neither % nor � is particularly large in

this problem, and only 2 eigenvalues of
�

are clustered on the unit-circle, it is possible to

compute an accurate solution with a modest value for � (Figure 3.8). When the same problem

is solved with �
� � � �

, however, accuracy is lost (Figure 3.11). Comparing the plots in the

two Figures, it is evident that
� �� ��� � � # is significantly damped by the larger � . This by itself

is a positive effect, in that it could only improve stability in the computation of recurrences

(3.14) and (3.16). Unfortunately, however, any improvement is usually far outweighed by the

negative effects of a large � � on other stages of the algorithm; namely recurrence (3.12) and

the solution of the compacted linear system in step 3(a) of Figure 3.5.

These weaknesses in static � -RSCALE are addressed in the design of the dynamic variant

of the algorithm presented in Figure 3.12. In � � -RSCALE, the eigenvalue shifts are continually

adjusted during rescaling. The frequency and magnitude of the adjustments is determined by

bounding the growth of
� �� � � � . Specifically, the following criterion is met in ��� -RSCALE:

CHAPTER 3. STABILITY OF THE ALGORITHMS 80

Figure 3.11: The static 1.7-RSCALE solution to Table 3.1/B.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

5.6e+14, 0.32 2.5e+02 2.5e+02 4.2e+32 0.00098 24 2.8e+04 24

The true value of � # � � � is 1.9e+15. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of�" �%$&�
in (3.14) (top right), �� � in (3.16) (bottom left), and

�" � in (3.12) (bottom right):

0 20 40 60 80

1

1.7

σ k

k

1.8

2

2.2

2.4

2.6

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

0.5

1

1.5

2

2.5

||V
M−1,i

||
2

i

~

0 20 40 60 80
0

0.5

1

1.5

2

||V
k,0

||
2

k

~

0 20 40 60 80
3

4

5

6

7

8

||W
1,i

||
2

i

~

CHAPTER 3. STABILITY OF THE ALGORITHMS 81

Figure 3.12: Dynamic ��� -RSCALE applied to the model ABD system (3.11).

0. Initialization. � �
� � � 	 � � � � � � � � � � (� �

1. Rescaling.

(a)
�� �%$&��� � � (�

�%$&� �
 � �� �%$&��� �� $&��%$&� � �
while

� �� �%$&� � � � � 	
� � �

�%$&���
�
�%$&� & � � �

�� �%$&��� � � (�
�%$&� �
�� �� �%$&��� �� $&��%$&� �

end while
�

�" �%$&��� �� $&��%$&� " �%$&� �
(b) for

	 � � (� � � (� � � � � � � �
�� �
� � � (�	� � & �	�

��� �� � ����
�� �� � � �� $&�
�
� �

while
� �� � � � � � 	

� � �	�
�

�	�
& � � �

�� �
� � � (�	� � & �	�

��� �� � ���
 � �� � � �� $&�
�
�

end while
�

�"�� � �� $&�
� � "�� & �	�

��� �"�� ����� �
end for

�

(c)
�� � � � � � � & �

� �� ��� � �� � � & �
� � � �" � �

2. Compactification.

(a)
�� ��� �� � � �" ��� �" � �

(b)

�� � � (�� � �� � $&�
�"�� � �"�� (�� � �" � $&��� 	 � � � � � � � � � � (� �

(c)
�� � � (� �� �%$&� � �" � � " � (� �" �%$&� �

3. Computation of transformed unknowns.

(a) �� � � �� � (� � �� �
 $&� � �� (� � �" � � �
(b) �� � � �"�� (�� � �� � 	 � � � � � � � � � � �

4. Recovery of original unknowns.

(a) � � $&��� �� � $&� (�	� �� � � 	 � � � � � � � � � � (� �

(b) � �%$&��� �� �%$&� � � � � �� � �

CHAPTER 3. STABILITY OF THE ALGORITHMS 82

Criterion 6 � � 	� � �
such that

� �� � � � � � 	
� for all

	
,
� � 	 � � (�

.

(The 1-norm is used in lieu of the 2-norm to reduce overhead.) Initially, each eigenvalue shift � �
is set to

�
. In order to satisfy Criterion 6 in steps 1(a) and 1(b) of Figure 3.12, however, it may

be necessary to adjust one or more ��� . The adjustment could be determined exactly given the

eigenvalues of
�

and
�� � ��� , but this is unnecessarily costly. Instead, ��� is simply incremented

by � � until Criterion 6 is met. Numerical experiments show that, if � � is large enough, usually

only one increment is necessary. Note that the “while” loops in steps 1(a) and 1(b) will always

terminate if � � � �
and � 	

� � �
, since

�� � has only a finite number of eigenvalues. Whether

or not there are optimal values for these parameters, however, is currently an open question.

Preliminary analysis indicates that � 	�
� � � � � � , � � � � � � � � � % are effective choices.

We believe that Criterion 6 is analogous to Criterion 2 in � -RSCALE, in that singularities

will not arise during rescaling if
� �� � � � � � � � � � � 	 � � � � � � � � (�

. A further analysis of

exactly how Criterion 6 affects the stability of � � -RSCALE is left for future work.

Figure 3.13 summarizes the ��� -RSCALE solution to Problem B of Table 3.1. Note that

Criterion 6 (� 	�

� � �
) is satisfied with only

�
adjusted eigenvalue shifts. Many other numerical

experiments show this is typical—when singularities occur in static 1.0-RSCALE, usually only

a few adjusted shifts are required to avoid them. The � � -RSCALE solutions to Problems C-F

of Table 3.1 are summarized in Appendix A.

The expansions for
�"�� in step 2 and �� � in step 3 of � � -RSCALE are identical to (3.14) and

(3.16) of � -RSCALE, respectively. The expansion for
�"�� in step 1 is a generalization of (3.12):

�" � � �%$&�� ��� � �
��

� � � ��� � � � �
��
� � �

�� $&�� � " � (3.89)

In �	� -RSCALE, � � � � �%$&�
� � � �	� will not grow too large when ���

� �
for most

	
, and hence

the instability in (3.89) attributable to large � � is avoided. In addition, identities corresponding

to Lemmas 4, 5, and 6 exist for ��� -RSCALE, albeit more complex. We can therefore derive

bounds for
� �� ��� � � # , � �� ��� � � # and � # � � � similar to those in Lemmas 7, 8, and 10; this, however,

is left for future work.

CHAPTER 3. STABILITY OF THE ALGORITHMS 83

Figure 3.13: The � � -RSCALE solution (� 	� � � � ��� � � � � � � � �
) to Table 3.1/B.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

3.5, ? ? ? ? 0.00098 0.00033 2.8e+04 1.6e-11

The true value of � # � � � is 51. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.89) (bottom right):

0 20 40 60 80

1

1.5

σ k

k

3

4

5

6

7

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
2

4

6

8

10

||V
M−1,i

||
2

i

~

0 20 40 60 80
0

5

10

15

||V
k,0

||
2

k

~

0 20 40 60 80
0

5

10

15

20

25

30

||W
1,i

||
2

i

~

Chapter 4

Performance of the Algorithms

In this chapter we discuss and assess the performance of the three parallel ABD system solvers

SLF-QR, SLF-LU, and RSCALE, looking not only at their relative performance but also how

they compare to some state-of-the-art sequential solvers. Each of the parallel solvers has been

implemented in FORTRAN 77, with extensive use of level-3 BLAS. The code is included in

Appendix E. Both the accuracy and speed of the implementations are assessed.

In
�
4.1 we derive operation counts for the computationally-intensive stages of each algo-

rithm: factorization and reduction. Operation counts for other ABD system solvers, such as

COLROW [Diaz 83], are cited from the literature. Ratios of the high-order coefficients of these

operation counts are used to verify timing measurements reported in numerical experiments

throughout the chapter. In
�
4.2 we assess the performance of the single-partition sequential

variant of each algorithm by testing the codes on a single-processor machine. In
�
4.3 we assess

the parallel variants by testing on a shared-memory multi-processor machine. We conclude

in
�
4.4 by assessing the relative performance of the algorithms when the codes are incorpo-

rated in MirkDC [Enri 96], a software package for solving nonlinear boundary value ordinary

differential equations.

We note that the tests in
�
4.2 were run several years after the tests run in

�
4.3 and

�
4.4.

Computer architecture has of course evolved over the years, and processing speed is now con-

siderably faster. The problems in
�
4.2 have been scaled appropriately so that absolute execution

times are similar to those in earlier tests. In other words, we have solved more computationally-

intensive problems in recent tests. Detailed architecture specifications are given at the begin-

ning of each section.

84

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 85

4.1 Operation Counts

In Chapter 2, we propose different variants of each of the ABD system solvers. Some variants

make better use of idle processors in order to more fully exploit parallelism (e.g., Figure 2.2 in
�
2.2.3, Figure 2.3 in

�
2.3.3); some variants may exhibit better stability properties (e.g., (2.16)-

(2.19) in
�
2.2.4). In most cases, the basic computations performed during a block-step of a

given solver are the same for all variants of that solver. In this section, we analyze the com-

plexity of SLF-QR, SLF-LU and RSCALE by deriving operation counts for the factorization

and reduction components of their respective block-steps. Ratios of the high-order coefficients

of these operation counts are used to verify some of the timing measurements collected when

assessing the performance of the solvers in
�
4.2,

�
4.3 and

�
4.4. As the forward and back-solve

components of a block-step do not contribute to the high-order coefficients, we do not include

these components in our analysis.

We count floating-point operations (flops) in our analysis throughout this section. As is

commonly done, we define a flop to be a multiplication-addition pair.

4.1.1 SLF-QR

As discussed in
�
2.2.1, the computations performed during a block-step of SLF-QR include a

QR-factorization � � �
� � ��� � � � � � �

� �
where � � � # ��� # �

is orthogonal and � � � ����� � is upper-triangular, followed by a reduction

applied across the
�
-th slice of the ABD matrix:� ����� � ������ � ������ � ������ ���������� ��� ���� ��� � ������ ��� ����� � � (� � � � ����� � � � � ���������� � � ��� � � ��� ����� �

The above is conceptual only. In practice—and, in particular, in the code included in Ap-

pendix E— � is never explicitly computed. Instead, Householder reflections are applied di-

rectly to each of the
� % columns of � ����� � � � � ���������� � � ��� � � ��� ����� �

in order to compute the triangularization and reduction. We now analyze the cost of applying

these reflections.

First, we triangularize
�
� �� � �� ���
 � using % reflections, computed and applied as follows:

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 86

Stage 1: Let � � � � # �
represent the first column of

�
� �� � �� ���
 � , and let � � � � (��� � � � � � � � �

with � � the first column of the
� % �

� % identity matrix. The Householder reflection

� � � � (� � � � � � � � � ��� � � � # ��� # �
annihilates the first column of

�
� �� � �� ���
 � below its

first element:

� � � � � � � (� � � � � � � � � � � �	
 � �� � � (� � � � � � � � � � � � � �	
 �� � � � � # � � �
� � is not explicitly formed. Only � is computed and stored at a cost of

� % flops for � � � � � .
In addition, � � � is computed at negligible extra cost and stored for future use.

The remaining % (�
columns of

�
� �� � �� ���
 � are also transformed with � �

:

� � � � � � � (� � � � � � � � � � � �
 � �� � � (� � � � � � � � � � � � � �	
 �
for

� � � � � � � � % . The cost is
� � � % � flops per column—

� % flops for � � � � , and
� % flops

for the vector subtraction and scalar-vector multiplication. � � � is not recomputed.

The total cost for stage
�

is therefore
� % flops for computing � , and

� � � % � � % (� �
flops

for applying the reflection to columns
� � � � � � % of

�
� �� � �� ���
 � .

Stage 2: The first column of
�
� �� � �� ���
 � has been annihilated. We now repeat the steps in

stage
�
, but this time on the � � % (� �

� � %�(� �
submatrix starting at row

�
, column

�
.

Let � # � � # � $&�
represent the first column of this submatrix, and let � � � # (��� � � # � # � � �

with � � the first column of the � � % (� �
� � � % (� �

identity matrix. The reflection

� # � � (� � � � � � � � � � � � ��� # � $&� � # � $&�
annihilates the first column of the submatrix:

� # � # � � � (� � � � � � � � � � � �	
 � #� � # (� � � � � � # � � � � � � �	
 �� � � # � # � � �
Again, � # is not explicitly formed— � is computed at a cost of � � % (� �

flops for � � # � # ,
and � ��� is computed at negligible extra cost and stored for future use.

The remaining % (�
columns of the submatrix are also transformed with � # :

� # � � � � � (� � � � � � � � � � � �
 � �� � � (� � � � � � � � � � � � � �	
 �

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 87

for
��� � � � � � � % . The cost is

� � � % (� �
flops per column— � � % (� �

flops for � � � � , and� � % (� �
flops for the vector subtraction and scalar-vector multiplication.

The total cost for stage
�

is � � % (� �
flops for computing � and

� � � % (� � � % (� �
flops

for applying the reflection to columns
� � � � � � % of the submatrix.

Stage j: For
� � � � � � � � % (� �

we process the � � % (�& � �
� � % (� & � �

submatrix starting at

row
�

column
�
. The Householder reflection is computed at a cost of � � % (� & � �

flops,

and the last � % (� �
columns of the submatrix are transformed at a cost of

� � � % (� & � �
flops per column. The total cost for stage

�
is � � % (�& � � & � � � % (��& � � � %%(� �

flops.

Stage n: The % -th column, starting at row % , is annihilated below its first element. The House-

holder reflection is computed at a cost of � % & � �
flops. As this is the last column to be

processed, no other columns are transformed with this reflection.

Thus, the total operation count for computing the reflections is

� % & � � % (� � & ����� & � � % (� & � � & ����� & � % & � � � # �� � � � � (�� � � � �� � � % � � � % & � � � � (% � % & � � � �� � � � � � % # & � � � � � % flops

and the total operation count for applying the reflections is

� � � % � � % (� � &�� � � % (� � � % (� � & ����� &�� � � % (� & � � � % (� � & ����� &�� � % &�� � � � �� � � � % (� � # & � % & � � � % (� �	
 & � � � % (� � # & � % & � � � % (� �	
& ����� &�� � � % (� � # & � % & � � � % (� �	
�& ����� & � � � � � # & � % & � � � � �	
� ��� � $&�� ��� � � # & � % & � � � $&�� ��� � � �� � � � % (� � � % � � � % (� � � � & � % & � � � % (� � � % � � �
� � � � � � % � (% # (� � � � � % flops

for a grand total of � � � � � % � & � � � � � % # (� � � � � % flops
�

Once the triangularization is complete, we use the % reflections to transform� � �
� � and

� �

� � ��� � �
(4.1)

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 88

Stage 1: Application of the stage
�

reflector across the columns � � of (4.1):

� � � � � � � (� � � � � � � � � � � �
 � �� � � (� � � � � � � � � � � � � �	
 �
requires

� % flops per column, for a total of � � % � � � % � flops. The computation of � � � �
requires only % flops instead of

� % flops because of the sparsity inherent in the
�

blocks.

This savings is not realized in subsequent stages, however, as the structural sparsity is

destroyed by the stage
�

reflector—the
�

blocks fill-in immediately. (When structural

sparsity is preserved, operation counts are reduced. This is an important factor in the

analysis of SLF-LU in
�
4.1.2.)

Stage j: For
� � � � � � � � % � application of the stage

�
reflector across (4.1) requires

� � � % (� & � �
flops per column, for a total of

� � � % (� & � � � � % � flops.

Thus, the total operation count for applying the reflections to transform (4.1) is� � % � � � % � & � � � % (� � � � % � & ����� &�� � � % (� & � � � � % � & ����� &�� � % & � � � � % �
� � � � % � � � % � (% � � % � &�� � � % (� � � � % � & ����� &�� � � % (� & � � � � % � & ����� & � � % & � � � � % �� � % � # �� ��� � � (�� ��� � � � (� % #� � % � � � % � � � % & � � � � (% � % & � � � ��
 (� % #� � % � flops

Finally, the total cost of all computations performed during a block-step of SLF-QR, including

both triangularization and reduction, is � � � � � � % � & � � � � � % # (� � � � � % flops.

4.1.2 SLF-LU

The SLF-LU block-step is similar to that of SLF-QR, except that instead of a QR-factorization

we use an LU-factorization � � �
� � ��� � � � � � �� �

where
� $&� � �� � � � ����� �� # � # �� � � � � � # ��� # �

,
����

is an elementary Gauss transformation, � � is

a permutation matrix, and � � � �!��� � is upper-triangular. Conceptually, once
� $&�

is obtained,

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 89

it is used to reduce the
�
-th slice of the ABD matrix:� ����� �� ������ � � ���� �

� ������ ���������� ���� ���� ��� �
� ������ ��� ����� � � (� $&� � � ����� � � � � ���������� � � ��� � � ��� ����� �

SLF-LU is obviously structurally equivalent to SLF-QR. We have accented the transformed

blocks (
�� ������ versus

� ������ , etc.) to emphasize that the underlying transformation is not equivalent.

As with the orthogonal matrix � in SLF-QR, the Gaussian matrix
�

in SLF-LU is never

explicitly computed. Instead, the individual permutations (row interchanges) and Gauss trans-

formations (row combinations) are applied directly to each of the
� % columns of� ����� � � � � ���������� � � ��� � � ��� ����� �

in order to compute the triangularization and reduction. We now analyze the cost of applying

these transformations.

First, we triangularize
�
� �� � �� ���
 � using % permutations (possibly) and % Gauss transforma-

tions, computed and applied as follows:

Stage 1: Before eliminating, we interchange rows if necessary to ensure that the element in

row
�
, column

�
, is the largest in magnitude of all elements in column

�
. We then

eliminate all elements in the first column below the first element by subtracting multiples

of row
�

from each of the other � � %�(� �
rows. The cost is � � % (� �

divisions to form

the multipliers and � � % (� � � % (� �
flops to process all elements below row

�
and to the

right of column
�
.

Stage 2: The first column of
�
� �� � �� ���
 � has been eliminated. We now repeat the steps in

stage
�
, but this time on the � � % (� �

� � %�(� �
submatrix starting at row

�
, column

�
.

If necessary, we interchange rows to ensure that the element in row
�
, column

�
, is the

largest in magnitude of all elements in column
�
. Elimination requires � � %�(� � divisions

to form the multipliers and � � % (� � � %�(� �
flops to process all elements below row

�

and to the right of column
�
.

Stage j: For
� � � � � � � � % (� �

we process the � � % (�& � �
� � % (� & � �

submatrix starting at

row
�

column
�
. If necessary, we interchange rows to ensure that the element in row

�
,

column
�
, is the largest in magnitude of all elements in column

�
. Elimination requires� � % (� � divisions to form the multipliers and � � % (� � � % (� � flops to process all elements

below row
�

and to the right of column
�
.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 90

Stage n: If necessary, we interchange rows to ensure that the element in row % , column % , is

the largest in magnitude of all elements in column % . Elimination of the % -th column,

starting at row � % & � �
, requires % divisions to form the multipliers. As this is the last

column to be processed, no other computations are necessary.

Thus, the total operation count for forming the multipliers is� � % (� � & � � % (� � & ����� & � � % (� � & ����� & % � # � $&�� ��� � � (� $&�� ��� � �� � � % (� � � � % � � � (� % (� � � % � � �� � � � � � % # (� � � � � % divisions

and the total operation count for applying the Gauss transformations (i.e., subtracting multiples

of one row from another) is� � % (� � � % (� ��& � � % (� � � % (� � & ����� & � � % (� � � % (� � & ����� & � % & � � � � �
� � � % (� � # (% � � % (� � & � � % (� � # (% � � % (� �& ����� & � � % (� � # (% � � % (� � & ����� & � % & � � # (% � % & � �� # � $&�� ��� � � # (�� ��� � � # (% � # �

$&�� ��� � � (�� ��� � � �� � � % (� � � � % � � � % (� � � � (� % � � % & � � � � % & � � � � (% � � � % (� � � � % � � � (% � % & � � � �
� � � � � � % � (% # & � � � � � % flops

for a grand total of� � � � � % � (% # & � � � � � % flops
���� � � � � � % # (� � � � � % divisions

�

Once the triangularization is complete, we use the % permutations and % Gauss transformations

to transform � � �
� � and

� �

� � ��� � �
(4.2)

We must analyze this step carefully, as the row interchanges used during the LU-factorization

could have a significant impact on the efficiency of the transformation. We look at the trans-

formation on
� � �� � �
 � first, considering a best and worst case scenario.

Best Case: At each stage of the factorization, a row below row % is pivoted up, and never the

same row twice. This results in a null row pivoted up in
� � �� � �
 � at each stage of its

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 91

transformation, and the associated Gauss transformation at each stage, when applied to
� � �� � �
 � , would require no flops. (In level-3 BLAS, subtracting a multiple of zero does

not require work.) The total flops required is therefore
�
.

Worst Case: At the first stage of the factorization, no pivoting occurs or a row above row %
is pivoted up. The associated Gauss transformation at the first stage, when applied to
� � �� � �
 � , would completely fill in its lower % � % block and the fill-in would persist

throughout the remaining stages of the transformation. (There is no elimination here;

the Gauss transformations are designed to eliminate in
�
� �� � �� ���
 � only.) When there is

complete fill-in, the total operation count for transforming
� � �� � �
 � is� � % (� � � % � & � � % (� � � % � & ����� & � � % (� � � % � & ����� & � % & � � � % � & � % � � % �� % � # � $&�� ��� � � (� $&�� ��� � � �� % � � � % (� � � � % � � � (� % (� � � % � � ��
� � � � � � % � (� � � � � % # flops

Next, we look at the transformation on
� � � � �� ���
 � in (4.2), again considering a best and worst

case scenario.

Best Case: At each stage of the factorization, there is either no pivoting or a row above row %
is pivoted up. This results in a null pivot row in

� � � � �� ���
 � at each stage of its transforma-

tion, and the associated Gauss transformation at each stage, when applied to
� � � � �� ���
 � ,

would require no flops. The total flops required is therefore
�
.

Worst Case: At the first stage of the factorization, a row below row % is pivoted up. This re-

sults in a dense row pivoted up in
� � � � �� ���
 � . The associated Gauss transformation at the

first stage, when applied to
� � � � �� ���
 � , would completely fill in its upper % ��% block and

the fill-in would persist throughout the remaining stages of the transformation. The total

operation count for transforming
� � � � �� ���
 � is� � % (� � � % � & � � % (� � � % � & ����� & � � % (� � � % � & ����� & � % & � � � % � & � % � � % �� % � # � $&�� ��� � � (� $&�� ��� � � �� % � � � % (� � � � % � � � (� % (� � � % � � ��
� � � � � � % � (� � � � � % # flops

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 92

Note that we cannot have a best case scenario for both
� � �� � �
 � and

� � � � �� ���
 � , as

best case for
� � �� � �
 � � �

worst case for
� � � � �� ���
 �

best case for
� � � � �� ���
 � � � worst case for

� � �� � �
 �
We could have a “near” worst case scenario for both, though. For example, at the first stage a

dense row is pivoted up in
� � � � �� ���
 � and at the second stage no pivoting occurs. This would

result in both
� � �� � �
 � and

� � � � �� ���
 � being dense from the second stage onward, except for the

first row in the former. The transformation costs are then

� � � � �� ���
 � : � � � � � % � (� � � � � % # flops
� � �� � �
 � : � � � � � % � (� � � � � % # (� � % (� � % flops

In summary, the total cost of all computations performed during a block-step of SLF-LU,

including both triangularization and reduction, is

� % � & � � % # � flops
�

where � � � � � � � � � � ��
 , and its exact value depends on the pivoting strategy employed during

the LU-factorization.

An interesting question now arises: In a “typical” block-step of SLF-LU, does � tend

toward its lower or upper bound? Considering the analysis in
�
3.2.1, we see immediately that

� achieves its lower bound only in problems where SLF-LU is potentially unstable; i.e., when

there is no pivoting, no cross-block pivoting, or maximum pivoting causing the block-rows to

be flipped. In the experiments in
�
4.2,

�
4.3 and

�
4.4, we see that � tends toward its upper

bound in most problems where SLF-LU is stable.

4.1.3 RSCALE

In
�
2.3.2 and

�
2.3.3, we introduced RSCALE by showing how its transformations are applied

to the right-block-identity form of the ABD system (1.9). In this section, we analyze the com-

plexity of RSCALE when its transformations are applied directly to the more general form

of the ABD system (1.8). We begin by stepping through the initial few stages of the algo-

rithm (the first block-step is slightly different than subsequent block-steps), and then specify

the general block-step and analyze its complexity. Again, since we are concerned only with

transformations that contribute to the high-order coefficient in the operation count, we do not

consider the right-hand side in this discussion.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 93

Given the general form of the ABD matrix

) �
��������������

� � � �
� �

� � � �
.

� �%$ � � �%$ �
� �%$ # � �%$ #

� �%$&�
�
�%$&�

� �������������
�

(4.3)

RSCALE first performs a column-differencing transformation:

��������������

� � (� � � �
� � (� (�

� � �
� (� � (� �
.

� �%$ � � �%$ � (� �%$ � (� �%$ �
� �%$ # �

�%$ # (� �%$ # (� �%$ #
� �%$&�

�
�%$&� (� �%$&�

���������������
�

(4.4)

The bottom block-row is then transformed by multiplying through by
�
�
�%$&� (� �%$&�
 $&�

��������������

� � (� � � �
� � �(� (�

� � �
� (� � (� �
.

� �%$ � � �%$ � (� �%$ � (� �%$ �
� �%$ # �

�%$ # (� �%$ # (� �%$ #
� � � ��%$&� �

���������������
�

(4.5)

where
� � � ��%$&� � �

�
�%$&� (� �%$&�
 $&� � �%$&�

. The inverse is not formed explicitly; this transfor-

mation is implemented by computing the LU-factorization of
�
�
�%$&� (� �%$&�

, followed by% -solves. The same is true for all subsequent matrix inversions appearing in this discussion.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 94

Next, we eliminate �
�%$ # from block row � (�

:

��������������

� � (� � � �
� � (� (�

� � �
� (� � (� �
.

� �%$ � � �%$ � (� �%$ � (� �%$ �
� �%$ # � ��� ��%$ #

� � � ��%$&� �

���������������
�

(4.6)

where � ��� ��%$ # � � �%$ # (� �%$ # & � �%$ # � � � ��%$&� � � �%$ # � � & � � � ��%$&� � (� �%$ # , and multiply block-

row � (�
through by

�
� ��� ��%$ #
 $&� :

��������������

� � (� � � �
� � (� (�

� � �
� (� � (� �
.

� �%$ � � �%$ � (� �%$ � (� �%$ �
� ��� ��%$ # �

� � � ��%$&� �

���������������
�

(4.7)

where
� ��� ��%$ # � �

� ��� ��%$ #
 $&� � �%$ # . We then “drag”
��� � ��%$&�

over by one block-column by subtract-

ing a multiple of block-row � (�
from block-row � (�

:

��������������

� � (� � � �
� � (� (�

� � �
� (� � (� �
.

� �%$ � � �%$ � (� �%$ � (� �%$ �
� ��� ��%$ # �
� ��� ��%$&� �

� �������������
�

(4.8)

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 95

where
����� ��%$&� � (� � � ��%$&� � ��� ��%$ # . Next, we eliminate �

�%$ �
from block row � (�

:��������������

� � (� � � �
� � (� (�

� � �
� (� � (� �
.

� �%$ � � ��� ��%$ �
� ��� ��%$ # �
� ��� ��%$&� �

���������������
�

(4.9)

where � �	� ��%$ � � � �%$ � (� �%$ � & � �%$ � � ��� ��%$ # � � �%$ � � � & � ��� ��%$ # � (� �%$ �
, and multiply block-

row � (�
through by

�
� ��� ��%$ �
 $&�

:��������������

� � (� � � �
� � (� (�

� � �
� (� � (� �
.

� ��� ��%$ � �
� ��� ��%$ # �
� ��� ��%$&� �

� �������������
�

(4.10)

where
� �	� ��%$ � � �

� ��� ��%$ �
 $&� � �%$ �
. We then drag

� ��� ��%$&�
over another block-column by subtracting

a multiple of block-row � (�
from block-row � (�

:��������������

� � (� � � �
� � (� (�

� � �
� (� � (� �
.

� ��� ��%$ � �
� ��� ��%$ # �

� ��� ��%$&� �

� �������������
�

(4.11)

where
� �	� ��%$&� � (� ��� ��%$&� � ��� ��%$ �

. We continue in this fashion, working upward toward the top

block-row of the matrix. In the final stage, the left boundary block is transformed

� � � �� � � ��& � � � � � � � �
� � � � � & � � � � � �

�

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 96

In general, at stage
	

the RSCALE block-step involves three transformations:

� ��� �� � (� ��� � & � ��� � � �� ��� � (� � (4.12)
� ��� �� � (�

� ������
 $&� � � (4.13)
� ������%$&�

� ((� ��� � � ��%$&� � ������ (4.14)

(4.12) requires % additions for � � & � ��� � � �� ��� � , % � flops for the matrix multiplication, and % #
additions for the matrix difference. (4.13) is implemented with an LU-factorization followed

by % solves, for a total cost of � � � � � % � & � � % # � flops. (We include the cost of computing the

Gauss transformation multipliers in the � � % # � term, although strictly speaking a division is not

a flop.) (4.14) requires % � flops for the matrix multiplication. The total cost of all computations

performed during a general block-step of RSCALE is therefore � � � � � � % � & � � % # � flops.

If the right-block-identity form of the ABD system (1.9) arises naturally in the discretiza-

tion, the cost drops to � � � � � % � & � � % # � flops since when � � � � �2�
there is no need for the

matrix multiplication in (4.12). It is interesting to note that the overall cost to first transform

(1.8) to (1.9), and then apply RSCALE to the transformed system, is slightly greater than the

cost of applying RSCALE directly to (1.8) as shown above. In order to transform (1.8) to

(1.9) we must compute
�
� �
 $&� � � ��� � � � � � � � � (�

at a cost of � � � � � % � & � � % # � flops per

block-row. Comparing high-order coefficients of the complexity of the two approaches, we

see � � � � � % � & � � � � � % � � � � � � � � % � . In addition, the transformation may not even be possible

if one or more of the blocks � � is poorly-conditioned. (Recall that we are able to control the

condition of
�
� � ����

in (4.13) with a suitable choice of relaxation parameter � (
�
3.3). We do not

include � in our complexity analysis as it affects the � � % � term of the operation count only.)

The code included in Appendix E is designed to handle the general form of the ABD system

directly, as shown in (4.4)-(4.11).

Table 4.1 summarizes the operation counts for the three ABD system solvers. We include

operation counts for COLROW [Diaz 83] for comparison. In the remaining sections of this

chapter, we discuss the results of several experiments in which we assess the performance of

the three parallel ABD system solvers. We expect that for problems of suitable dimension (i.e.,% suitably large), the relative execution time of the solvers should approximate the ratio of the

high-order coefficients of their respective operation counts. Given the coefficients just derived,

we predict the RSCALE/SLF-QR and RSCALE/SLF-LU relative execution times to be ap-

proximately � � �
and

� � �
, respectively. These predicted ratios— � � �

and
� � �

—are included

as benchmarks in timing experiments throughout this chapter. (We set the SLF-LU coefficient

at its upper bound in this predicted ratio so that any improvement in SLF-LU execution time

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 97

Table 4.1: Complexity of the factorization and reduction component of a block-step in each of

the parallel ABD system solvers, and COLROW. Operations are counted in terms of flops—

multiplication/addition pairs.

ABD System Solver Complexity

SLF-QR � � � � � � % � & � � % # �
SLF-LU � % � & � � % # � � � � � � � � � � � � ��

RSCALE � � � � � � % � & � � % # �
COLROW � � � � � % � & � � % # �

Table 4.2: Architecture specification for sequential tests.

Specificiations
Architecture

processors

acronym model vendor # speed type
memory

BLA SunBlade 1000 Sun Microsystems 2 600 MHZ USPARC3 5 Gigabytes

due to reduced fill-in is immediately apparent. Our experiments show that the coefficient tends

toward its upper bound in most problems where SLF-LU is stable.)

4.2 Sequential Tests

Each of the experiments discussed in this section was run on the SunBlade 1000. Architecture

specifications are given in Table 4.2. All code was compiled using the level 3 (extensive) opti-

mization options available with Sun’s Fortran 77 compiler. The objective of the experiments is

to measure the relative performance of the three ABD system solvers SLF-QR, SLF-LU, and

RSCALE, when run in sequential mode, on a sequential machine.

We consider linear problems only in this section—problems of the form� � � ������� � ��� ��� ��� & 1 � ��� � � � � �	�����	��
�� � � ��� �	� � & � � ��� �	����� � � (4.15)

where � ��1 � � � � � , � � ����� � , � � ����� " � � and
� � � ��� $�� �

. In most cases, we use separable

boundary conditions so that the ABD system arising from the discretization may be solved

with a band solver, providing an additional means for checking solution accuracy.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 98

Each problem is constructed in such a way that the analytic (or true) solution is known in

advance. In particular, if we set

1 � ����� � � (� � �����
���

���

...
���

� ��
� �

the analytic solution is ��� ����� � � � � � � � � � �
 � �

Once constructed, a problem is discretized using a trapezoidal or mid-point finite-difference

discretization on meshes of varying size, and the ABD linear systems that arise are solved with

each of the ABD system solvers to yield discrete computed solutions
�

.

The accuracy of a computed solution
�

is measured as the algebraic error
� �
 (
 � ���

,

where

 �

is the solution obtained with LAPACK’s band-solver routines DGBTRF/DGBTRS.

A condition number estimate for the ABD matrix is computed with DGBCON. The condition

number is used to gauge the expected number of correct digits in the band-solver solution,

which must be known in order to correctly interpret the algebraic error. The discretization

error is estimated as
�
 � (

�
���

, where

� is the discrete analytic solution. In the context

of solving a BVODE, a computed solution
�

is acceptable if its algebraic error is smaller in

magnitude than the discretization error. In most experiments in this section, algebraic errors

are several orders of magnitude smaller than the discretization error. Thus, small variations in

the algebraic error among the solvers likely are of no concern. Also, since the algebraic error is

measured with respect to LAPACK’s DGBTRF-DGBTRS, the ABD solver with the “smallest”

algebraic error simply agrees best with that particular code. While this is reassuring, it does not

imply that the band-solver computes the true algebraic solution. In other words, the algebraic

errors listed may not be completely accurate.

Execution time is measured in two ways—absolute and relative. The absolute execution

time required to compute a given solution
�

is the time required to complete a call to the ABD

system solver as measured by Fortran 77’s DTIME. (A call to DTIME is placed immediately

before and after the call to the ABD system solver.) In order to avoid possible timing inconsis-

tencies due to swapping in a time-sharing environment, experiments either were run when the

machine was quiet (no other users), or results were averaged over several runs. The relative

execution time is measured as the ratio of the RSCALE/SLF-LU and RSCALE/SLF-QR ab-

solute execution times. In each experiment, the relative execution times are compared to their

expected values as predicted by the ratios of the high-order (% �) coefficients of the algorithm

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 99

Table 4.3: Nine constant-coefficient linear problem classes to test the sequential performance

of SLF-QR, SLF-LU and RSCALE.

Problems are randomly-generated in each class. Each problem is discretized using

trapezoidal finite differences and solved on a single partition. Longer execution

time is induced by increasing � , the number of mesh subintervals. The length

of the interval of integration
� �������	�

is adjusted accordingly in order to maintain a

uniform mesh spacing of �
� � � � � � � .

Class % Structure of
� � � � �

A
� �

two
� th order eqns. � � � �

B
� �

five
� nd order eqns. � � � �

C
� �

two
� th order eqns. � � � �

D
� �

six
� nd order eqns. � � � �

E
� � two

� th order eqns. � � � �

F
� � seven

� nd order eqns. � � � �

K
� �

random sparsity � � � �

L
� �

random sparsity � � � �

M
� � random sparsity � � � �

Meshes used for each problem

� ���	�����	��

�

� � � � (� � � � � � � � �
 � � � � � �
� � � � � (� � � � � � � � �
 � � � � � �
� � � � � (� � � � � � � � �
 � � � � � �

� � � � � (� � � � � � � � �
 � � � � � �

operation counts (
�
4.1). We use the worst-case coefficient for SLF-LU in these ratios, so that

any improvement in SLF-LU execution time due to reduced fill-in is immediately apparent.

4.2.1 Constant-Coefficient Linear Problems

Table 4.3 lists nine problem classes. Several problems are generated from each class and solved

with the ABD system solvers. The problems in classes A-M are all constant-coefficient; i.e.,

they are of the form (4.15) but with
� � ��� � � � �

. Variable-coefficient linear problems are

considered in
�
4.2.2, and nonlinear problems are considered in

�
4.4.

The problems in classes A-F of Table 4.3 are structured. The structure of the Jacobian
� 	 � � � arises from the standard technique of converting a system of higher-order equations

into a system of first-order equations. Such a conversion is often necessary before interfacing

to mathematical software for solving systems of differential equations. Figure 4.1 shows the

Jacobian sparsity pattern. We note that problems in classes A, C, and E have sparse Jacobians,

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 100

Figure 4.1: Jacobian structures of the test problems in Table 4.3.

For problems in classes A-F, the structure of
� � �����

� �
�

depicted below arises

from converting a system of
	

� -order equations into a system of % � 	
� first-

order equations. In each structure, when row
�

is sparse the only non-zero entry is
� � � � ����� �

. When row
�

is dense, � � � � � � � � � � � � � � % �
A C E

(
	 ���

�
� �

) (
	 ���

�
� �

) (
	 � �

�
� �

)

����

� � � ��������������������� � � ��������������������

�����
�

������

� � � � �� ������������� �������� � � � �� ������������� �������

�������
�

��������

� � � � � ������������ ���������������� � � � � ������������ ���������������

� �������
�

B D F
(
	 � �

�
���

) (
	 � �

�
� �

) (
	 � �

�
� �

)

����

��

�����
�

������

�� ������������� ��������� ������������� ��������� ������������� ��������� ������������� ��������� ������������� ��������� ������������� �������

�������
�

��������

������������ ��������������������������� ��������������������������� ��������������������������� ��������������������������� ��������������������������� ��������������������������� ���������������

� �������
�

whereas problems in classes B, D, and F have denser Jacobians. Problems in classes K, L and

M have random structure—the nonzeros of the Jacobian are randomly-distributed throughout

the matrix, with at least one nonzero in each row and column.

A given problem in a class is constructed by randomly-generating the nonzeros of the Jaco-

bian. For the structured problems in classes A-F, only elements in the dense rows are randomly-

generated. The nonzero in each sparse row is
�
. For problems in classes K, L and M, all

nonzeros are randomly generated (random in both value and position). Problems generated are

of sufficient order (% � � � � � �
or

� �) that the random generation of Jacobian elements usually

results in a strong dichotomy with at least one rapidly increasing and one rapidly decreasing

fundamental solution mode. The separable boundary conditions are set up in such a way as to

control the solution modes, so that the resulting problem is well-posed. Once constructed, a

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 101

Figure 4.2: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class A problems of Table 4.3. Jacobian structure arises from the

conversion of two
� th order equations.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

q

u
r

problem #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q
qu

u
u u u u u u

r r r r r r r r

disc. error

recip. cond.

problem #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 10, M

 = 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

problem is discretized using a trapezoidal finite-difference discretization and the ABD linear

system that arises is solved with each of the ABD system solvers.

We now discuss the results of several experiments run on test problems from Table 4.3.

These results are summarized in Figures 4.2-4.7 of this section, and in Figures B.5-B.10 of

Appendix B. Figure 4.2 shows the execution time and accuracy of the three ABD solvers when

solving eight randomly-generated Class A problems. The graph on the right shows that each

solver is acceptably accurate on all problems, given that the algebraic errors are all several

orders of magnitude less than the discretization error. The algebraic error in the SLF-LU solu-

tions is smallest, indicating that SLF-LU agrees best with the band-solver in these experiments.

The graph on the left shows that RSCALE is approximately 1.2 and 2.2 times faster than SLF-

LU and SLF-QR, respectively, which is in close agreement with the ratios predicted by the

operation counts (dotted line). We see slight fluctuations in the RSCALE/SLF-LU execution

time ratio—in particular, in problem #4. This is an example of reduced SLF-LU execution time

due to reduced fill-in.

Figure 4.3 shows the execution time and accuracy of the three ABD solvers when solving

eight randomly-generated Class B problems. The Jacobians in Class A and Class B problems

are of the same dimension (% � � �
)—they differ only in structure. More precisely, Class B

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 102

Figure 4.3: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class B problems of Table 4.3. Jacobian structure arises from the

conversion of five
� nd order equations.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

q

u

r

problem #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u u u

u

u u u u

r r r r r r r r

disc. error

recip. cond.

problem #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 10, M

 = 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

problems have denser Jacobians (Figure 4.1). We expect SLF-LU execution time to tend toward

its upper bound in these problems, and indeed the RSCALE/SLF-LU execution time ratios tend

to be smaller in the problems in Figure 4.3. This trend is also reflected in a slight increase in

displacement between the SLF-LU and RSCALE absolute execution times. Again, each solver

is acceptably accurate on all problems. Note that the SLF-LU solution does not exhibit the

smallest algebraic error in problem #4. We will see more examples of the degradation in SLF-

LU accuracy in subsequent experiments.

Figures 4.4 and 4.5 show experimental results for randomly-generated Class C and Class D

problems, respectively. Jacobians are all of dimension % � � �
—sparse in Class C and dense in

Class D. We see the same trend as before; namely, the SLF-LU execution time tends toward its

upper bound when the Jacobian is denser. There are also more instances of reduced SLF-LU

accuracy in these problems.

Figures 4.6 and 4.7 show experimental results for randomly-generated Class E and Class F

problems, respectively. Jacobians are all of dimension % � � � —sparse in Class E and dense in

Class F. We see more evidence of the sensitivity of SLF-LU execution time to Jacobian density,

and two dramatic examples of SLF-LU instability. In the problems where SLF-LU fails (#4

and #8 of Figure 4.6) the RSCALE/SLF-LU execution time ratio is close to 100%. In fact, the

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 103

Figure 4.4: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class C problems of Table 4.3. Jacobian structure arises from the

conversion of two
� th order equations.

1 2 3 4 5 6 7 8
0

0.125

0.25

0.375
q

u
r

problem #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q
q

q

u

u u u

u
u

u u
r r r r r r r r

disc. error

recip. cond.

problem #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 12, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure 4.5: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class D problems of Table 4.3. Jacobian structure arises from the

conversion of six
� nd order equations.

1 2 3 4 5 6 7 8
0

0.125

0.25

0.375
q

u

r

problem #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q
q q q q

u u u u

u

u u u

r r r r r r r r

disc. error

recip. cond.

problem #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 12, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 104

Figure 4.6: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class E problems of Table 4.3. Jacobian structure arises from the

conversion of two
� th order equations.

1 2 3 4 5 6 7 8
0

0.175

0.35

0.525
q

u
r

problem #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u

u

u

u

u

u u

u
↑

(+
23

)

r r r r r r r r

disc. error; recip. cond.

problem #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 14, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

ratio is actually slightly greater than 100% indicating that SLF-LU is faster on these problems

than RSCALE. Closer investigation shows that SLF-LU does not pivot at all on these problems,

explaining both its improved speed and degraded stability. (When SLF-LU does not pivot, it is

equivalent to unstable compactification. See
�
2.1 and

�
3.2.)

Problems in classes K, L and M exhibit random Jacobian structure. While these prob-

lems are not likely to arise in practice, they are somewhat useful for investigating the pivoting

and fill-in behaviour of SLF-LU. Experimental results for sixteen randomly-generated Class K

problems (% � � �
) are shown in Figures B.5 and B.6 of Appendix B. As Jacobian density is

increased from 20% to 90% nonzero, we see a notable trend toward increased SLF-LU execu-

tion time. Similar trends are evident in Figures B.7 and B.8 (Class L problems, % � � �
) and

Figures B.9 and B.10 (Class M problems, % � � �). Note the problems where SLF-LU exhibits

instability in Figures B.6, B.7, B.8 and B.9.

4.2.2 Variable-Coefficient Linear Problems

Several model variable-coefficient linear problems have appeared in the literature for testing

BVODE codes and ABD solvers. We have selected four of these problems for the experiments

in this section. For each problem, we perform two experiments. In the first, we solve the

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 105

Figure 4.7: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class F problems of Table 4.3. Jacobian structure arises from the

conversion of seven
� nd order equations.

1 2 3 4 5 6 7 8
0

0.175

0.35

0.525
q

u

r

problem #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q
q q qu u

u

u u u u u

r r r r r r r r

disc. error

recip. cond.

problem #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 14, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

problem on meshes of increasing number of subintervals, using the single partition variant of

each solver. In the second, we solve the problem on a fixed mesh and vary the number of

partitions used by each solver. The second experiment is intended to gauge the sensitivity of

the solvers to the partitioning strategy. Ideally the partitioning strategy should have no effect

on the computed solution, but this is not always the case. (See, for example, Figures 4.61 and

4.62 in
�
4.4.3.) In all experiments, the accuracy and efficiency of the computed solutions is

analyzed and compared as in
�
4.2.1, using the criteria outlined at the beginning of

�
4.2.

Problem R (Ascher and Chan [Asch 91]) �
� � � � � � � % � � �

� � ����� � (��� ��� � � � � & �
�
��� � � �

(� & �
�
��� � � � ��� ��� � � � � � 1 � ����� � � (� � ����� � ���

��� � �

subject to the boundary conditions � � � � ��� � � � � � � ��� � . The true solution is ��� ����� � � � � � � � � .

A fundamental solution matrix is

 � ����� � � ��� � � �
� � � �

(�� ��� � � � ��� � � � � �
$ � � �
� � � � � �

so the dichotomy is clear: there is one decaying and one growing mode. The problem is first

solved with
� � � � � � � �

(Figures 4.8 and 4.9), and then with
� � � � � � � � �

(Figures 4.10

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 106

Figure 4.8: Execution time and accuracy of the three sequential ABD solvers when solving

Problem R (Ascher-Chan) with
� � � � � � � �

. Solved on one partition, with � varying from
� �

to � � � �
block-rows.

32 64 128 256 512 1024 2048 4096
0

0.025

0.05

0.075

q

u

r

of block−rows

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

32 64 128 256 512 1024 2048 4096
−20

−15

−10

−5

0

5

10

15

20

q q q q q q
q q

u u u u u u u ur r r r r r r r

disc. error

recip. cond.

of block−rows

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 2, q =
 1.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

and 4.11). With
� � � �

the fundamental solution modes are “slow” and the problem is not

difficult numerically. SLF-LU likely does not pivot at all on this problem which should result

in reduced execution time. However, the order of the Jacobian is too small for this effect to

be noticeable. With
� � � ���

the modes are “fast” and the problem is difficult numerically.

This case was one of the earliest problems for testing parallel ABD solvers. We see that in

all four experiments with Problem R, each solver is acceptably accurate on all problems and

the relative execution times are in close agreement with the predicted ratios. Partitioning in

Figures 4.9 and 4.11 has little effect on either accuracy or execution time.

Problem S (Mattheij [Matt 85]) �
� � � � ��� � % � � �

� � ����� ���

� (� � � ��� � � � � & � �
�
� � � �

� � � �

(� & � �
�
��� ��� � � & � � � ��� ���

����
� � 1 � ����� � � (� � �����

���

���

���

���

����
� �

subject to the boundary conditions � � � � � � ���# � � � � ���� � � � � & � � � � � � � � ��� �

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 107

Figure 4.9: Execution time and accuracy of the three sequential ABD solvers when solving

Problem R (Ascher-Chan) with
� � � � � � � � � � ��� � � � . The number of partitions is varied.

1 2 3 4 5 6 7 8
0

0.025

0.05

0.075

q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u u u u u u u u

r r r r r r r r

disc. error

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 2, M
 =

 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure 4.10: Execution time and accuracy of the three sequential ABD solvers when solving

Problem R (Ascher-Chan) with
� � � ��� � � � �

. Solved on one partition, with � varying from
� �

to � � � �
block-rows.

32 64 128 256 512 1024 2048 4096
0

0.025

0.05

0.075

q

u

r

of block−rows

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

32 64 128 256 512 1024 2048 4096
−20

−15

−10

−5

0

5

10

15

20

q q q q q
q q q

u u u u u u u u
r r r r r r r r

disc. error

recip. cond.

of block−rows

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 2, q =
 1.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 108

Figure 4.11: Execution time and accuracy of the three sequential ABD solvers when solving

Problem R (Ascher-Chan) with
� � � � � � � � � � � � � � � � . The number of partitions is

varied.

1 2 3 4 5 6 7 8
0

0.025

0.05

0.075

q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u u u u u u u u

r r r r r r r r

disc. error

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 2, M
 =

 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

The true solution is ��� ����� � � � � � � � � � � . A fundamental solution matrix is

 � ����� ���

�
� � � � (� ��� �
� � �
� ��� � �

�
��� �

����
�

���

�
� � �
� �

� �
� �

� � �
$&�
�
�

����
� �

There is one decaying and two growing solution modes, and the modes are fast enough to

make the problem difficult numerically. Figures 4.12 and 4.13 show the results of the exper-

iments on this problem. Each solver is acceptably accurate on all problems and the relative

execution times are in close agreement with the predicted ratios. (The large fluctuation in the

RSCALE/SLF-LU execution time ratio in Figure 4.12 is likely an anomaly, although precau-

tions were taken to avoid timing inconsistencies.) Figure 4.13 shows that partitioning has only

a minor effect on the accuracy of the solvers.

Problem T (Wright [Wrig 94]) �
� � � � � � � % � � �

� � �����
��������

(� � � ��� � � � � � � ��& � �
�
��� � � � � � �

� (� # � ��� � � # � � � # & � # � � � � � # � �

(� � & � �
�
� � � � � � � � � � � � � � � � � �

� (� # & � # � � � � � # � � � # � ��� � � # � �
� � � � � �

���������
�

�

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 109

Figure 4.12: Execution time and accuracy of the three sequential ABD solvers when solving

Problem S (Mattheij). Solved on one partition, with � varying from
� �

to � � � �
block-rows.

32 64 128 256 512 1024 2048 4096
0

0.05

0.1

0.15
q

u

r

of block−rows

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

32 64 128 256 512 1024 2048 4096
−20

−15

−10

−5

0

5

10

15

20

q q q q
q q q q

u u u u u u u u

r r r r r r r r

disc. error

recip. cond.

of block−rows

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 3, q = 1.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure 4.13: Execution time and accuracy of the three sequential ABD solvers when solving

Problem S (Mattheij) with � ��� � � � . The number of partitions is varied.

1 2 3 4 5 6 7 8
0

0.025

0.05

0.075

q

u

r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q
q q q q q q q

u u u u u u u u

r
r r r r r r r

disc. error

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 3, M
 =

 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 110

1 � ����� � � (� � ����� , � � � � � � � � � � � � � � / � �

subject to the boundary conditions � � � � � � �� # � � � & � � � � � � � �

� � � � � � �

(� � � � ��& � � � � � � �

(� � # � � � & � � � � � � � � �

The true solution is ��� ��� � � � � � � � � � � � � � � � . The problem is solved with
� � � � � �

,
� # �

� � � � � � � � � � ��� �
, and �-# � � �

. A fundamental solution is

 � �����
��������

� ��� � �
�
� � � � �

� � ��� � � � �
�
� � � � � �

(�� ��� � � � ��� � � �
� (�� � � � ��� � � ��� � � � �
� � � � �

� �������
�

��������

�
$ # � � � � �
� �

$ � � � � �
� � �

� � �
� � � �

� � �
� � � � �

� �

� �������
�
�

There are two decaying and three growing solution modes, and the modes are fast enough to

make the problem difficult numerically. Figures 4.14 and 4.15 show the results of the exper-

iments on this problem. Each solver is acceptably accurate on all problems and the relative

execution times are in close agreement with the predicted ratios. Figure 4.15 shows that parti-

tioning has only a minor effect on the accuracy of the solvers.

Problem U (Jackson [Asch 91]) �
� � � � � � � � % ��� �

� � ����� � � � ��� � (� � �
� (� � � � ��� � 1 � ����� � � (� � � � ����� � � ���

�
� ���

� � �

where

� � ����� � � ��� � � � (� � � � � �
�
��� � � � � ��� � � � � �

subject to the boundary conditions � � � � � � � �� � � � � � � � � � �

The true solution is ��� ����� � � � ���
� � � � � � � .

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 111

Figure 4.14: Execution time and accuracy of the three sequential ABD solvers when solving

Problem T (Wright). Solved on one partition, with � varying from
� �

to � � � �
block-rows.

32 64 128 256 512 1024 2048 4096
0

0.075

0.15

0.225
q

u

r

of block−rows

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

32 64 128 256 512 1024 2048 4096
−20

−15

−10

−5

0

5

10

15

20

q
q q q q q q q

u u u u u u u u
r

r
r

r
r r r r

disc. error

recip. cond.

of block−rows

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 5, q =
 1.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure 4.15: Execution time and accuracy of the three sequential ABD solvers when solving

Problem T (Wright) with � ��� � � � . The number of partitions is varied.

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

q

u

r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q
q q q q q q qu u u u u u u u

r r r r r r r r

disc. error

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 5, M

 = 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 112

Figure 4.16: Execution time and accuracy of the three sequential ABD solvers when solving

Problem U (Jackson). Solved on one partition, with � varying from
� �

to � � � �
block-rows.

32 64 128 256 512 1024 2048 4096
0

0.025

0.05

0.075

q

u
r

of block−rows

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

32 64 128 256 512 1024 2048 4096
−20

−15

−10

−5

0

5

10

15

20

q
q q q q q q q

u u u u u u u u

r
r

r r r r r r

disc. error

recip. cond.

of block−rows

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 2, q =
 1.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Since � � ��� is orthonormal, the eigenvalues of
� � ��� are

� (� � (��
 for all
�
. This problem was

chosen as a test case because, in a boundary-value problem, it is not typical for the spectrum

of
� � ��� to be negative for all

�
. However, the kinematic eigenvalues are

� � � � � �
and (� � � � � �

,

so this ODE has an exponential dichotomy and the problem is well-posed. (See [Asch 88] for

a discussion of these concepts.)

Figures 4.16 and 4.17 show the results of the experiments on this problem. Each solver

is acceptably accurate on all problems and the relative execution times are in close agreement

with the predicted ratios. Figure 4.17 shows that partitioning has little effect on either accuracy

or execution time.

4.3 Parallel Tests

Each of the experiments discussed in this section was run on the Origin 2000. Architecture

specifications are given in Table 4.4. The Origin 2000 is a tightly-coupled, shared-memory

machine. All code was compiled using the level 3 (extensive) optimization options available

with the Silicon Graphics Fortran 77 compiler. The objective of the experiments is to measure

the relative performance of the three ABD system solvers SLF-QR, SLF-LU, and RSCALE,

when run in parallel mode, on a parallel machine.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 113

Figure 4.17: Execution time and accuracy of the three sequential ABD solvers when solving

Problem U (Jackson) with � � � � � � . The number of partitions is varied.

1 2 3 4 5 6 7 8
0

0.025

0.05

0.075

q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u u u u u u u u

r r r r r r r r

disc. error

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 2, M
 =

 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Table 4.4: Architecture specification for parallel tests.

Specificiations
Architecture

processors

acronym model vendor # speed type
memory

ORG Origin 2000 Silcon Graphics 8 250 MHZ R10000 2 Gigabytes

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 114

4.3.1 Compiler Directives

Parallelism and memory partitioning on the Origin 2000 is achieved by using shared-memory

parallel compiler directives provided by the Silicon Graphics Fortran 77 compiler. The parti-

tioning algorithms discussed in
�
2.2 and

�
2.3 readily translate into code with loop iterations

that can be performed independently, and it is straightforward to prepare such loops for parallel

execution.

As an example, consider the following simple loop for processing a one-dimensional array:

integer j, M

real Y(1024)

M = 1024

do 10 j = 1, M

Y(j) = 0.0d0

10 continue

Clearly, each iteration of this loop could be performed independently and in random order

without affecting the outcome. We could also group the iterations into num_partition

slices of M/num_partition iterations each:

integer j, k, M, num_partition, partition_size

real Y(1024)

M = 1024

num_partition = 16

partition_size = M/num_partition

do 20 k = 1, num_partition

do 10 j = (k-1)*partition_size + 1, k*partition_size

Y(j) = 0.0d0

10 continue

20 continue

and each group of iterations could be performed independently and in random order without

affecting the outcome. (This, of course, is the partitioning strategy used in all partitioning

algorithms discussed in
�
2.2 and

�
2.3.) The partitioned loop is designated for parallel execution

by inserting a $DOACROSS compiler directive as follows:

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 115

integer j, k, M, num_partition, partition_size

real Y(1024)

M = 1024

num_partition = 16

partition_size = M/num_partition

C$DOACROSS SHARE (Y, num_partition, partition_size),

C$& LOCAL (j, k)

do 20 k = 1, num_partition

do 10 j = (k-1)*partition_size + 1, k*partition_size

Y(j) = 0.0d0

10 continue

20 continue

Variables (memory locations) specified in the SHARE list may be accessed concurrently by all

processors; variables in the LOCAL list are private to each processor. The directive allows each

iteration of the outer loop to be performed independently and concurrently on its own processor

if enough processors are available.

The original simple loop could also have been parallelized with a $DOACROSS directive,

but the random concurrent access of single elements in Y by several processors would result

in a degradation of parallel performance. In the partitioned approach, each processor accesses

a contiguous slice of Y of size partition_size, which permits more efficient memory

management when input and output is buffered. For similar reasons, care must be taken to avoid

memory access collisions when sharing small arrays (such as workspace arrays). Partitions

must be spread apart sufficiently so that a processor does not lock (or rarely locks) memory

locations in adjacent partitions during buffered output.

Many more examples of the use of the $DOACROSS directive may be found in the code

included in Appendix E.

4.3.2 Test Problems and Numerical Results

Six test problems are specified in Table 4.5. Each problem is linear and constant-coefficient—

as defined in
�
4.2.1—with a structured Jacobian. Figure 4.18 shows the Jacobian sparsity pat-

terns. The elements in the dense rows of the Jacobian are randomly-generated, and the nonzero

in each sparse row is
�
. Further details about this type of Jacobian structure are given in

�
4.2.1.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 116

Table 4.5: Six constant-coefficient linear problems to test the parallel performance of SLF-QR,

SLF-LU and RSCALE.

Each problem is discretized using trapezoidal finite differences. Longer execution

time is induced by increasing � , the number of mesh subintervals. The length

of the interval of integration
� �������	�

is adjusted accordingly in order to maintain a

uniform mesh spacing of �
� � � � � � � .

Problem # % Structure of
� � � � �

A
�

two
� rd order eqns. � � � �

B
�

four
� nd order eqns. � � � �

C
� �

two
� th order eqns. � � � ���

D
� �

six
� nd order eqns. � � � ���

E
� � seven

� nd order eqns. � � � ���

F
� �

four � th order eqns. � � � ���

Meshes used for each problem

� � �	�����	�

�

� � � � (� � � � � � � � ��
 � � � � � �
� � � � � (� � ��� � � � � �
 � � � � � �
� � � � � (� � ��� � � � � �
 � � � � � �

� � � � � (� � � ��� � � � � � �
 � � � � � �

Once constructed, a problem is discretized using a trapezoidal finite-difference discretization

on meshes of varying size, and the ABD linear systems that arise are solved with each of the

parallel ABD system solvers.

As with the sequential tests in
�
4.2, we measure both absolute and relative execution time

in the parallel tests, showing the RSCALE/SLF-LU and RSCALE/SLF-QR relative times and

comparing them to their expected values as predicted by the ratios of the high-order coefficients

of the algorithm operation counts. In each experiment, a given problem is solved and re-solved

on an increasing number of processors (
�
,
�
, . . . ,

�
), using an increasing number of partitions

(the number of partitions is set to match the number of processors), and the execution times are

plotted. We expect to see a decrease in execution time as the number of processors increases.

We say that optimal speedup is achieved if the execution time on � processors is � times faster

than the execution time on
�

processor. As it is not immediately obvious if a code is achieving

optimal (or close to optimal) speedup by looking only at its absolute execution time, we use

a speedup graph to determine this measure. A speedup graph is simply a plot of
� � � � � versus

� , where
� �

and
� � are the absolute execution times on

�
and � processors, respectively. As �

increases, the closer
� � � � � is to � , the closer we are to achieving optimal speedup.

Another useful measure of the gain of parallelism is the number of processors required

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 117

Figure 4.18: Jacobian structures of the test problems in Table 4.5.

The structures of
� � � ���

� �
�

depicted below arise from converting a system of
	

� -order equations into a system of % � 	
� first-order equations. In each structure,

when row
�

is sparse the only non-zero entry is � � � � ��� � �
. When row

�
is dense,

� � � � � � � � � � � � � � � % �
A B C

(
	 ���

�
� �

) (
	 � � �

���
) (

	 � �
�
� �

)

�

� ������������� ������������

�
�

��

�������������� ��������������� ��������������� ��������������� �

���
�

����

� � � ��������������������� � � ��������������������

� ���
�

D E F
(
	 � �

�
� �

) (
	 ���

�
� �

) (
	 � � �

� �)

������

��

� �����
�

��������

���� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ������������� ���������

���������
�

����������

� � ���������� ���������������������� � ���������� ���������������������� � ���������� ���������������������� � ���������� ���������������������

�����������
�

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 118

Figure 4.19: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem A of Table 4.5, with � � � � � �
. Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at
�

processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.175

0.35

0.525

q

u
r

c
u r

payoffs: r@7, u@7, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 6, M
 =

 4096.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

before a parallel code outperforms the best sequential code for the problem. To this end, we

solve each of the problems with COLROW [Diaz 83], and plot the absolute execution time of

the COLROW solution along with the times of the parallel solver solutions. As � increases and

the parallel solver times decrease, the COLROW time remains constant. The point at which

the times cross is defined as the payoff—the number of processors required before the parallel

solver can solve the problem faster than COLROW.

We do not report on the accuracy of computed solutions in these experiments. Each solver is

acceptably accurate on all problems, with all partitionings. (The algebraic error in a computed

solution is always several orders of magnitude less than the discretization error; see
�
4.2.)

Figure 4.19 shows the execution time and speedup of the three ABD solvers when solving

Problem A of Table 4.5, with � � � � � �
. Absolute execution times decrease as the number

of processors increases, and the speedup graphs on the right show that good—but less than

optimal—speedup is achieved. (Better speedups are achieved in subsequent experiments when

the Jacobian is of greater dimension.) The RSCALE/SLF-QR execution time ratio is in close

agreement with the predicted ratio. The RSCALE/SLF-LU ratio is slightly greater than pre-

dicted, which is to be expected as the Jacobian in this problem is sparse. RSCALE and SLF-LU

each payoff at
�

processors; there is no payoff when using SLF-QR.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 119

Figure 4.20: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem B of Table 4.5, with � � � � � �
. Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at
�

processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.275

0.55

0.825

q

u
r

c
u r

payoffs: r@5, u@5, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 8, M
 =

 4096.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figures 4.20-4.24 show execution times and speedups when solving Problem B-F of Ta-

ble 4.5. � � � � � �
in all experiments. As the Jacobian dimension increases from % � �

to% � � �
, we see two trends:

� Speedups become closer to optimal, and

� payoffs occur with fewer processors.

Both of these trends can be attributed to the fact that the local operations performed during the

solution process (in particular, the local factorizations) become more computationally intensive

as % increases. When execution time is dominated by the cost of these local operations, any

time lost to overhead—such as non-parallelizable tasks related to resolving memory access

contention—becomes less significant. As overhead becomes less significant, speedup becomes

more optimal. And since COLROW is approximately � times faster than sequential RSCALE

and SLF-LU, and approximately
�

times faster than sequential SLF-QR, we would expect

payoffs to occur at � and
�

processors, respectively. When local operations dominate execution

time, these payoffs are realized.

Appendix C contains some additional experiments with problems A-F of Table 4.5.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 120

Figure 4.21: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem C of Table 4.5, with � � � � � �
. Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at � processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.375

0.75

1.125

q

u

r

c
u r

payoffs: r@4, u@4, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 10, M
 =

 4096.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figure 4.22: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem D of Table 4.5, with � � � � � �
. Architecture is the SGI Origin 2000.

RSCALE, SLF-LU and SLF-QR payoff at � , � and
�

processors, respectively.

1 2 3 4 5 6 7 8
0

0.525

1.05

1.575

q

u
r

c
u r q

payoffs: r@4, u@4, q@8

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 12, M
 =

 4096.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 121

Figure 4.23: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem E of Table 4.5, with � � � � � �
. Architecture is the SGI Origin 2000.

RSCALE, SLF-LU and SLF-QR payoff at
�
, � and

�
processors, respectively.

1 2 3 4 5 6 7 8
0

0.725

1.45

2.175

q

u
r

c
r u q

payoffs: r@3, u@4, q@7

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 14, M
 =

 4096.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figure 4.24: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem F of Table 4.5, with � � � � � �
. Architecture is the SGI Origin 2000.

RSCALE, SLF-LU and SLF-QR payoff at
�
, � and

�
processors, respectively.

1 2 3 4 5 6 7 8
0

0.95

1.9

2.85

q

u

r

c
r u q

payoffs: r@3, u@4, q@7

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n = 16, M

 = 4096.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 122

4.4 Performance within MirkDC

We now assess the relative performance of the three algorithms—in terms of both accuracy and

speed—when the codes are incorporated in MirkDC [Enri 96], a software package for solving

nonlinear boundary value ordinary differential equations (BVODEs).

The MirkDC package is designed to solve a system of first-order nonlinear BVODEs,� � � ��� � 	 � � � ��� ����� , with separated boundary conditions. Starting with an initial mesh of �
subintervals which partitions the problem interval

���������	��

, and an initial guess for the solution,

MirkDC proceeds to discretize the continuous problem using one of several mono-implicit

Runge-Kutta (MIRK) schemes. The resulting system of nonlinear algebraic equations, or

residual, is solved using a hybrid damped Newton and fixed Jacobian iteration. As described in
�
1.1, each Newton iteration involves the evaluation of the residual, (possibly) the construction

and factorization an almost block diagonal (ABD) system of linear algebraic equations, and

the backsolve of the factored system. Once the Newton iteration has converged, a continuous

mono-implicit Runge-Kutta scheme is used to interpolate the computed discrete solution with

a
� �

continuous polynomial, � � ��� , which in turn is used to compute an estimate of the solution

defect
�

� � � ��� (� � � � � ����� � . The final convergence test compares this defect estimate to a user

defined tolerance, � defect. If this test fails, MirkDC uses the defect estimates on each subinterval

of the current mesh to design a new mesh which equidistributes the defect estimates. A new

initial guess for the solution on the new mesh is computed with � � ��� , and the process repeats.

See [Enri 96] for a more detailed description of the code.

The primary computational costs associated with MirkDC may be attributed to the program

segments responsible for the following five tasks:

1. residual evaluation

2. defect estimation

3. ABD matrix construction

4. ABD matrix factorization

5. ABD system backsolve

Other costs, such as those attributable to mesh selection or redistribution, are less significant

([Muir 91], [Muir 03]). In the following sections we assess the overall and task-specific per-

formance of four variants of MirkDC:

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 123

� MirkDC/COLROW

� MirkDC/SLF-QR

� MirkDC/SLF-LU

� MirkDC/RSCALE

As indicated by their names, these variants differ only in how the tasks of ABD matrix fac-

torization and system backsolve are handled. In MirkDC/COLROW, each ABD system so-

lution is computed with COLROW [Diaz 83]; in MirkDC/SLF-QR, MirkDC/SLF-LU and

MirkDC/RSCALE, each ABD system solution is computed with the SLF-QR, SLF-LU and

RSCALE parallel solvers, respectively. All MirkDC experiments below involve the numer-

ical solution of the nonlinear problem Swirling Flow III (SWF-III) [Asch 88], which, when

transformed into a first-order system, may be written as�����������

� ��� �#� ��� ��� ��� ��

� ����������
�
�

�����������

��#� � � � � ��� � � � (� � � # �� �� �� �
(� � � � � ��� � � � & � � ��# �

� ����������
�

(4.16)

subject to the boundary conditions� � � �	�#��� (� � � � � �	����� � � � � � �	� ��� � � � �	�#��� � � � � � �	����� � � � �	� ��� � �
(4.17)

These equations model the “swirling” flow of a viscous incompressible fluid between two

counter-rotating coaxial disks located at
��� ���

and
��� �	�

. The degree of viscosity is specified

by � � � � � � �
. The problem is more difficult numerically for less viscous fluids; i.e. for small

values of � which correspond to large Reynolds numbers. No closed form solution exists.

Experiments are run on three different computer architectures, as specified in Table 4.6.

Of particular interest in the experiments is the convergence pattern of each MirkDC variant.

This concept will be defined formerly below; simply stated it refers to the sequence of meshes

chosen by MirkDC as the computation proceeds, and the number of full Newton iterations

associated with each of the meshes. In
�
4.4.1 and

�
4.4.2, we assess the sequential and parallel

performance, respectively, of the four variants of MirkDC using experiments in which the

convergence patterns (1) are identical among variants, and (2) are not affected by partitioning.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 124

Table 4.6: Architecture specifications. The Sun Ultra 2 is used as a sequential machine.

Specificiations
Architecture

processors

acronym model vendor # speed type
memory

CHA Challenge L Silcon Graphics 8 150 MHZ R4400 512 Megabytes

ORG Origin 2000 Silcon Graphics 8 250 MHZ R10000 2 Gigabytes

ULT Ultra 2/2170 Sun Microsystems 2 150 MHZ SPARC 256 Megabytes

This second point is especially important when illustrating speedups in
�
4.4.2. In

�
4.4.3 and

�
4.4.4, we assess the sequential performance of the four variants of MirkDC using experiments

in which the convergence patterns differ among variants and/or are affected by partitioning. In
�
4.4.3, we analyze problems where an unusual convergence pattern in MirkDC/SLF-LU leads

to poor MirkDC/SLF-LU performance. We suspect the cause of this performance degradation

is SLF-LU instability and show that this indeed is the case by extracting selected ABD systems

from the MirkDC/SLF-LU solution sequence and showing that SLF-LU—and only SLF-LU—

exhibits instability when solving these systems. In
�
4.4.4 we analyze experiments in which the

convergence pattern of MirkDC/RSCALE is shorter than that of the other variants, including

that of MirkDC/COLROW. These results suggest that on a sequential machine it sometimes

may prove beneficial to choose RSCALE over other state-of-the-art sequential ABD system

solvers such as COLROW.

4.4.1 Sequential MirkDC

Each of the experiments discussed in this section was run on the Sun Ultra 2, and involved

a sequential single-partition variant of the ABD system solvers. All code was compiled us-

ing the level 3 (extensive) optimization options available with Sun’s Fortran 77 compiler, and

most timing results are averaged over 4-8 runs. The objective of the experiments is to mea-

sure the relative performance of the four variants of MirkDC on a sequential machine, and to

demonstrate how sequential performance is affected by certain problem and solution strategy

parameters. Specifically, we are interested in how the SWF-III problem parameters of

� viscosity � , and

� disk spacing � �	� (�	� � ,

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 125

Table 4.7: Eight MirkDC/SWF-III experiments to measure the relative performance of the four

MirkDC variants on a sequential machine and to demonstrate how sequential performance is

affected by problem and solution strategy parameters. A SWF-III problem is defined by � and

the interval of integration
� �������	�

. A MirkDC solution strategy is specified by a MIRK scheme,

defect tolerance �
defect, number of initial mesh subintervals �� , and number of partitions.

SWF-III parameters MirkDC solution strategy
exp. # � ���	�����	��

MIRK scheme �
defect � # part.

1
� ����� � � � � �

trapezoidal,
� nd order

� � $ � � � �

2
� ����� � � � � �

Lobatto, � th order
� � $ � � � �

3
� ����� � � � � �

Lobatto, � th order
� � $ � � � �

4
� ����� � � � � �
 � th order

� � $ � � � �

5
� ����� � � (� � �

trapezoidal,
� nd order

� � $ � � � �

6
� ����� � � (� � �

Lobatto, � th order
� � $ � � � �

7
� ����� � � (� � �

Lobatto, � th order
� � $ � � � �

8
� ����� � � (� � �
 � th order

� � $ � � � �

and MirkDC solution strategy parameters of

� MIRK discretization scheme order,

� defect tolerance �
defect,

� number of initial mesh subintervals � , and

� number of partitions

affect MirkDC performance.

Table 4.7 lists eight experiments in which the SWF-III problems solved are not difficult

numerically—at least not compared to other experiments presented later in this section. These

experiments demonstrate some effects of disk spacing, MIRK scheme order and defect toler-

ance on MirkDC performance. Figure 4.25 shows the absolute overall execution time of the

four variants of MirkDC in each experiment. Note that the execution times of experiments #1

and #5, shown separately in the bar graph on the left, are at least an order of magnitude greater

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 126

Figure 4.25: Overall execution time of the four variants of MirkDC when run on the exper-

iments specified in Table 4.7. The relative performance of the variants reflects that of the

underlying ABD system solvers. Note the execution times of experiments #1 and #5 are an

order of magnitude greater than those of the other experiments.

1 5
0

2

4

6

8

♣
♣

♦

♦

♠

♠

♥

♥

experiment #

se
co

nd
s

Overall time

2 3 4 6 7 8
0

0.2

0.4

0.6

0.8

♣

♣
♣ ♣

♣
♣♦

♦

♦

♦

♦

♦

♠

♠

♠
♠

♠

♠

♥

♥

♥
♥

♥

♥

experiment #

se
co

nd
s

Overall time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE.

than those of the other six experiments. This illustrates a consequence of choosing an inade-

quate discretization scheme (
� nd order) for the required defect tolerance �

defect
� � � $ �

. The

graphs for experiments #(3,4) and #(7,8) illustrate this as well, but to a lesser extent. Com-

paring the graphs for experiments #(2,3) and #(6,7), we see an effect of decreasing the defect

tolerance. Comparing the graphs for experiments #(1,5), #(2,6), #(3,7) and #(4,8), we see an

effect of increasing the disk spacing.

Figure 4.25 also shows that the relative performance of the four variants of MirkDC in each

experiment is consistent with what one would expect given the relative performance of the un-

derlying ABD system solvers (
�
4.1 and

�
4.2); i.e. ranking from fastest to slowest we have (1)

MirkDC/COLROW, (2) MirkDC/RSCALE, (3) MirkDC/SLF-LU and (4) MirkDC/SLF-QR.

This is true in part because, in each experiment, the MirkDC variants exhibit identical con-

vergence patterns. We define the convergence pattern of a MirkDC experiment in terms of

its subroutine call and call-per-mesh profile. The subroutine call profile summarizes the total

number of calls to the program segments responsible for residual evaluation, defect estimation,

ABD matrix construction, ABD matrix factorization and ABD system backsolve; i.e. the five

tasks comprising the primary computational costs associated with MirkDC. The call-per-mesh

profile summarizes the number of ABD matrix factorizations and ABD system backsolves per-

formed on each mesh selected by MirkDC as the computation proceeds, and thus also discloses

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 127

Figure 4.26: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in

experiment #1 of Table 4.7. Each variant succeeds in satisfying the specified �
defect. Profiles

are identical among variants.

r d c f s
0

20

40

60

80

100

120

140

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

14%

21%

17%
17%

17%

3%

3%
3%3%

f (29 calls total)

10

20

40

80

160

640

2190

3304

3790

mesh

10%

17%

25%
20%

19%

3%
ε

1
ε

2
ε

3

s (129 calls total)

10

20

40

80

160

640

2190

3304

3790

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

the mesh selection strategy.

Figure 4.26 shows the convergence pattern of the four variants of MirkDC in experiment #1

of Table 4.7. From the call-per-mesh profiles, we see that MirkDC selects meshes of size
� �

to
� � � �

subintervals. The initial uniform mesh of �� � � �
subintervals is specified in the

solution strategy; subsequent meshes are, in general, non-uniform. The pie charts give the

number of factorizations and backsolves on each mesh. For example, on the mesh of size
� � �

there were
� � �

of
� �

or
�

factorizations and
� � �

of
� � �

or
� �

backsolves. (The percentages

in the pie charts are rounded to two figures.) From the call profile we see that, as is always the

case, there are exactly the same number of ABD matrix constructions and factorizations. There

are relatively few defect estimations, as these are computed during the the final convergence

test only. Finally, the number of residual evaluations is close to—but not exactly the same as—

the number of ABD system backsolves. See [Enri 96] for an explanation of why these totals

sometimes differ.

Figure 4.27 shows a breakdown of the execution times of the five tasks profiled in Fig-

ure 4.26. Also shown is the cumulative execution time of all other program segments. From

this figure, it is clear that the differences in the overall execution time of the four variants of

MirkDC is attributable solely to the differences in factorization and backsolve times of the

four underlying ABD system solvers. This is always the case when the MirkDC variants ex-

hibit identical convergence patterns. In
�
4.4.3 and

�
4.4.4, we consider experiments where the

overall execution time of the variants differs for other reasons.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 128

Figure 4.27: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #1 of Table 4.7. The differences in overall execution time are at-

tributable solely to the differences in factorization and backsolve times of the four underlying

ABD system solvers.

r d c f s o
0

0.5

1

1.5

2

2.5

♣ ♣
♣ ♣

♣

♣♦ ♦
♦

♦↑

(3
)

♦

♦♠ ♠
♠

♠

♠

♠♥ ♥
♥

♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

1

2

3

4

5

6

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figures 4.28 and 4.29 show the task execution times and convergence patterns, respec-

tively, in experiment #2 of Table 4.7. Comparing Figures 4.28 and 4.27, we see that switching

to a � th order MIRK scheme in experiment #2 results in a substantial reduction in all task

execution times. Comparing Figures 4.29 and 4.26, it is clear that this reduction in execu-

tion times is due in part to fewer subroutine calls overall, but primarily can be attributed to

working with smaller ABD systems built on meshes of fewer subintervals—the largest ABD

system arising in experiment #2 consists of only
� � �

block-rows. Note also when comparing

Figures 4.28 and 4.27, that the ratio of ABD matrix construction to factorization time increases

in experiment #2. (Recall that there is always the same number of ABD matrix constructions

and factorizations in a given experiment.) This increase is due to the higher computational cost

associated with a � th order discretization.

Figures 4.30 and 4.31 show the task execution times and convergence patterns, respec-

tively, in experiment #3 of Table 4.7. Comparing Figures 4.30 and 4.28, we see that switching

to a stricter defect tolerance in experiment #3 results in a moderate increase in all task execu-

tion times. Comparing Figures 4.31 and 4.29, it is clear that this increase in execution times

primarily can be attributed to working with moderately larger ABD systems.

Finally, Figures 4.32 and 4.33 show the task execution times and convergence patterns,

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 129

Figure 4.28: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #2 of Table 4.7. Switching to a � th order MIRK scheme results in a

substantial reduction in execution times. Compare to Figure 4.27, and compare the profiles in

Figures 4.26 and 4.29.

r d c f s o
0

0.02

0.04

0.06

0.08

0.1

♣ ♣

♣

♣ ♣
♣♦ ♦

♦

♦

♦

♦♠ ♠

♠
♠

♠

♠♥ ♥

♥

♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

0.05

0.1

0.15

0.2

0.25

♣

♦

♠
♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure 4.29: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in

experiment #2 of Table 4.7. Each variant succeeds in satisfying the specified �
defect. Profiles

are identical among variants.

r d c f s
0

10

20

30

40

50

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

38%

38%

8%

8%

8%

f (13 calls total)

10

20

72

93

102

mesh

43%

41%

7%

4%
4%

s (46 calls total)

10

20

72

93

102

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 130

Figure 4.30: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #3 of Table 4.7. Switching to a stricter defect tolerance results in a

moderate increase in execution times. Compare to Figure 4.28, and compare the profiles in

Figures 4.29 and 4.31.

r d c f s o
0

0.05

0.1

0.15

0.2

♣ ♣

♣

♣ ♣
♣♦ ♦

♦

♦

♦

♦♠ ♠

♠

♠

♠

♠♥ ♥

♥
♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

0.1

0.2

0.3

0.4

0.5

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure 4.31: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in

experiment #3 of Table 4.7. Each variant succeeds in satisfying the specified �
defect. Profiles

are identical among variants.

r d c f s
0

10

20

30

40

50

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

38%

38%

8%

8%

8%

f (13 calls total)

10

20

80

238

294

mesh

43%

41%

8%

4%
4%

s (51 calls total)

10

20

80

238

294

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 131

Figure 4.32: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #4 of Table 4.7. Switching to a
� th order MIRK scheme results in a

moderate reduction in execution times. Compare to Figure 4.30, and compare the profiles in

Figures 4.31 and 4.33.

r d c f s o
0

0.02

0.04

0.06

0.08

0.1

♣ ♣

♣

♣
♣ ♣

♦ ♦

♦
♦

♦

♦
♠ ♠

♠

♠

♠

♠
♥ ♥

♥

♥ ♥

♥

se
co

nd
s

Absolute execution time of program segments

0

0.05

0.1

0.15

0.2

0.25

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure 4.33: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in

experiment #4 of Table 4.7. Each variant succeeds in satisfying the specified �
defect. Profiles

are identical among variants.

r d c f s
0

10

20

30

40

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

30%

50%

10%

10%

f (10 calls total)

10

20

80

101

mesh

30%

57%

8%

5%

s (37 calls total)

10

20

80

101

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 132

Table 4.8: Eight MirkDC/SWF-III experiments to measure the relative performance of the four

MirkDC variants on a sequential machine and to demonstrate how sequential performance is

affected by problem and solution strategy parameters. The problems in these experiments are

difficult numerically and must be solved using parameter continuation. A SWF-III problem is

defined by � and the interval of integration
���������	��

. A MirkDC solution strategy is specified by

a MIRK scheme, defect tolerance �
defect, number of initial mesh subintervals � , number of

partitions, and parameter continuation strategy.

SWF-III parameters MirkDC solution strategy
exp. # � � �	�����	�

scheme �
defect � # part. � continuation

1
� � � � � � � � � �
 � nd ord.

� � $ � � � � � � � � � � � � � � � � � $ �
2

� � � � � � � � � �
 � th ord.
� � $ � � � � � � � � � � � � � � � � � $ �

3
� � � � � � � � � �
 � th ord.

� � $&� � � � � � � � � � � � � � � � � $ �
4

� � � � � � � � � �
 � th ord.
� � $&� � � � � � � � � � � � � � � � � $ �

5
� � � � � � � (� � �
 � nd ord.

� � $ � � � � � � � � � � � � ��� � �
�

� � $ �
6

� � � � � � � (� � �
 � th ord.
� � $ � � � � � � � � � � � � ��� � �

�
� � $ �

7
� � � � � � � (� � �
 � th ord.

� � $&� � � � � � � � � � � � ��� � �
�

� � $ �
8

� � � � � � � (� � �
 � th ord.
� � $&� � � � � � � � � � � � ��� � �

�
� � $ �

respectively, in experiment #4 of Table 4.7. Here we see many of the same effects as in ex-

periment #2; namely that switching to a
� th order MIRK scheme in experiment #4 results in a

moderate reduction in all task execution times, and the ratio of ABD matrix construction to fac-

torization time increases over that in experiment #3. Figures summarizing the task execution

times and convergence patterns in experiments #5-#8 are included in Appendix D.1.

While we are able to demonstrate some sequential performance characteristics of the four

MirkDC variants with the experiments listed in Table 4.7, these experiments are not suitable

for measuring parallel performance because they are not computationally intensive; the overall

execution time in most is less than a second. Thus, in preparation for the discussion of parallel

performance in the next section, we present eight additional MirkDC/SWF-III experiments in

Table 4.8. Each of these new experiments is more computationally intensive than any of those

listed in Table 4.7, for one or more of the following reasons:

� � is smaller,

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 133

Figure 4.34: Overall execution time of the four variants of MirkDC when run on the exper-

iments specified in Table 4.8. The relative performance of the variants reflects that of the

underlying ABD system solvers. Note the execution times of experiments #1, #3 and #5 are

displayed on a different time scale than those of the other experiments.

1 3 5
0

10

20

30

40

50

♣

♣

♣

♦

♦

♦

♠

♠

♠

♥

♥

♥

experiment #

se
co

nd
s

Overall time

2 4 6 7 8
0

2

4

6

8

10

♣

♣

♣

♣

♣

♦

♦

♦

♦

♦♠

♠

♠

♠

♠
♥

♥

♥

♥

♥

experiment #

se
co

nd
s

Overall time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE.

� the disk spacing is wider,

� the defect tolerance is stricter.

Figure 4.34 shows the absolute overall execution time of the four variants of MirkDC in each

experiment listed in Table 4.8. As in Figure 4.25, we see that the relative performance of the

four variants of MirkDC is consistent with what one would expect given the relative perfor-

mance of the underlying ABD system solvers. Also, as desired, the experiments in Table 4.8

are clearly more computationally intensive than those in Table 4.7.

Designing more computationally intensive MirkDC experiments is not as straightforward

as it may seem. Adjusting problem and/or solution strategy parameters as suggested above

does increase execution time to a point, however before times increase sufficiently MirkDC

often begins to exhibit converge difficulties. When this happens, parameter continuation can

be used to help MirkDC converge. Each of the experiments listed in Table 4.8 incorporates a

form of parameter continuation—involving � —as part of its solution strategy; the continuation

sequence is specified in the column titled “ � continuation”. For example, in experiment #1 we

begin with a uniform mesh of � � � �
subintervals and then proceed to solve the specified

SWF-III problem (� � � ��� � � �
) using three continuation iterations. During the first iteration,

we solve a comparatively easy SWF-III problem with � � � ��� �
. We then use the solution and

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 134

Figure 4.35: Subroutine call and call-per-mesh profiles, accumulated over all three continuation

iterations, of the four variants of MirkDC in experiment #1 of Table 4.8. The first, second and

third continuation iteration terminates with a final mesh of 2556, 4632 and 5604 subintervals,

respectively. Each variant succeeds in satisfying the specified �
defect at each iteration. Profiles

are identical among variants.

r d c f s
0

50

100

150

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

11%

11%

11%

11%

3% 3%
9%

23%

3%

9%

3%3%

f (35 calls total)
20

40

80

160

640

1805

2556

5112

4211

4632

5095

5604

mesh

17%

12%

12%

12%
ε

1
ε

2

6%

20%

ε
3

13%

ε
4

ε
5

s (143 calls total)
20

40

80

160

640

1805

2556

5112

4211

4632

5095

5604

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

final mesh from the first iteration as the initial solution and mesh for a second SWF-III problem

with � � � � � � � . Finally, we use the solution and final mesh from the second iteration as the

initial solution and mesh for a third SWF-III problem with � � � � � � � �
.

Figure 4.35 shows the convergence pattern of the four variants of MirkDC in experiment #1

of Table 4.8. The profiles shown represent subroutine calls counted over all three continuation

iterations. The first, second and third continuation iteration terminates with a final mesh of
� � � �

, � � � �
and

� � � � subintervals, respectively. (This information is extracted from a more

detailed profile not shown in the figure.) Figure 4.36 shows a breakdown of the execution

times of the five tasks profiled in Figure 4.35. These times are accumulated over all three

continuation iterations. Again, this figure shows that the differences in the overall execution

time of the four variants of MirkDC is attributable solely to the differences in factorization and

backsolve times of the four underlying ABD system solvers.

It should be noted that parameter continuation is not just an option in the experiments listed

in Table 4.8; it is necessary for convergence. For example, if we try to solve the specified

SWF-III problem in experiment #1 using MirkDC/COLROW without continuation, the con-

vergence pattern shown in Figure 4.37 arises. MirkDC/COLROW no longer converges in this

experiment; instead it proceeds through a sequence of failed Newton iterations followed by

mesh doubling until the maximum number of subintervals (
� � � � �

in this implementation) is

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 135

Figure 4.36: Overall and selected program segment execution times, accumulated over all three

continuation iterations, of the four variants of MirkDC in experiment #1 of Table 4.8. The

differences in overall execution time are attributable solely to the differences in factorization

and backsolve times of the four underlying ABD system solvers.

r d c f s o
0

5

10

15

20

♣
♣

♣ ♣

♣

♣♦
♦

♦

♦

♦

♦♠
♠

♠

♠ ♠

♠♥
♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

10

20

30

40

50

♣

♦

♠
♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure 4.37: Subroutine call and call-per-mesh profiles of MirkDC/COLROW in experi-

ment #1 of Table 4.8, when parameter continuation is not used. Without continuation,

MirkDC/COLROW does not converge. The code proceeds through a sequence of failed New-

ton iterations followed by mesh doubling until the maximum number of subintervals is ex-

ceeded; the defect estimation stage is never reached.

r d c f s
0

50

100

150

200

250

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile

11%

10%

10%

10%

10% 10%

10%

10%

10%

10%

f (71 calls total)

20

40

80

160

320

640

1280

2560

5120

10240

mesh

11%

10%

10%

10%

10% 10%

10%

10%

10%

10%

s (231 calls total)

20

40

80

160

320

640

1280

2560

5120

10240

mesh

♣ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 136

Figure 4.38: Overall and selected program segment execution times, accumulated over all

three continuation iterations, of the four variants of MirkDC in experiment #2 of Table 4.8.

Switching to a � th order MIRK scheme results in a substantial reduction in execution times,

even with the stricter defect tolerance. Compare to Figure 4.36, and compare the profiles in

Figures 4.35 and 4.39.

r d c f s o
0

0.5

1

1.5

2

♣
♣

♣

♣

♣

♣
♦

♦

♦

♦

♦

♦
♠

♠

♠

♠ ♠

♠
♥

♥

♥ ♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

1

2

3

4

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

exceeded. As indicated by the
�

count in the subroutine call profile, the defect estimation

stage is never reached. Similar behaviour is observed in each experiment in Table 4.8 when

parameter continuation is not used.

Figures 4.38, 4.40, 4.42 and 4.39, 4.41, 4.43 show the task execution times and convergence

patterns, respectively, in experiments #2, #3, #4 of Table 4.8. These experiments demonstrate

many of the same performance effects as the experiments in Table 4.7, but with greater ex-

ecution time. Of particular interest is experiment #4, where the third continuation iteration

terminates with a mesh of fewer subintervals than the second. In this experiment, MirkDC

designed a new mesh with fewer subintervals than the preceding mesh when equidistributing

the defect estimate during the third continuation iteration. This is not so uncommon in difficult

problems—the number of subintervals does not always strictly increases in the mesh sequence

of a MirkDC convergence pattern. Figures summarizing the task execution times and con-

vergence patterns in experiments #5-#8 are included in Appendix D.1. Note that the wider

disk spacing in experiments #5-#8 does not necessarily lead to greater execution time since a

different continuation sequence must be used in order to achieve convergence.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 137

Figure 4.39: Subroutine call and call-per-mesh profiles, accumulated over all three continuation

iterations, of the four variants of MirkDC in experiment #2 of Table 4.8. The first, second and

third continuation iteration terminates with a final mesh of 244, 349 and 399 subintervals,

respectively. Each variant succeeds in satisfying the specified �
defect at each iteration. Profiles

are identical among variants.

r d c f s
0

20

40

60

80

100

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

15%

5%

5%

15%

40%

15%

5%

f (20 calls total)

20

80

203

244

488

349

399

mesh

35%

4%
ε

1

9%

28%

20%

ε
2

s (103 calls total)

20

80

203

244

488

349

399

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure 4.40: Overall and selected program segment execution times, accumulated over all three

continuation iterations, of the four variants of MirkDC in experiment #3 of Table 4.8. Switch-

ing to a stricter defect tolerance results in a moderate increase in execution times. Compare to

Figure 4.38, and compare the profiles in Figures 4.39 and 4.41.

r d c f s o
0

2

4

6

8

10

♣

♣

♣

♣

♣

♣
♦

♦

♦

♦ ♦

♦
♠

♠

♠

♠
♠

♠
♥

♥

♥ ♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

20

25

30

♣

♦

♠
♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 138

Figure 4.41: Subroutine call and call-per-mesh profiles, accumulated over all three continuation

iterations, of the four variants of MirkDC in experiment #3 of Table 4.8. The first, second and

third continuation iteration terminates with a final mesh of 1350, 1947 and 2448 subintervals,

respectively. Each variant succeeds in satisfying the specified �
defect at each iteration. Profiles

are identical among variants.

r d c f s
0

20

40

60

80

100

120

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

14%

5%

5%

5%

14%

36%

14%

5%
5%

f (22 calls total)

20

80

320

1062

1350

2700

1947

2226

2448

mesh

36%

4%
ε

1 ε
2

7%

27%

19%

ε
3

ε
4

s (126 calls total)

20

80

320

1062

1350

2700

1947

2226

2448

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure 4.42: Overall and selected program segment execution times, accumulated over all

three continuation iterations, of the four variants of MirkDC in experiment #4 of Table 4.8.

Switching to a
� th order MIRK scheme results in a moderate reduction in execution times.

Compare to Figure 4.40, and compare the profiles in Figures 4.41 and 4.43.

r d c f s o
0

0.5

1

1.5

2

2.5

♣

♣

♣

♣

♣

♣

♦

♦

♦
♦

♦

♦

♠

♠

♠

♠

♠

♠

♥

♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

2

4

6

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 139

Figure 4.43: Subroutine call and call-per-mesh profiles, accumulated over all three continuation

iterations, of the four variants of MirkDC in experiment #4 of Table 4.8. The first, second and

third continuation iteration terminates with a final mesh of 277, 554 and 487 subintervals,

respectively. Each variant succeeds in satisfying the specified �
defect at each iteration. Profiles

are identical among variants.

r d c f s
0

20

40

60

80

100

120

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

16%

5%

5%

16%

53%

5%

f (19 calls total)

20

80

238

277

554

487

mesh

38%

3% ε
1

8%

48%

ε
2

s (117 calls total)

20

80

238

277

554

487

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

4.4.2 Parallel MirkDC

The experiments in the previous section—especially those in Table 4.8—clearly show that

ABD matrix construction, factorization and backsolve dominate the computational costs as-

sociated with MirkDC. The costs associated with residual evaluation, defect estimation, and

the sum total of all other program segments are not negligible, but they are far less significant.

Hence, the greatest gain from parallelism in MirkDC should be realized by parallelizing the

three tasks associated with the ABD matrix.

For the experiments in this section, we have developed and tested code on two parallel

computer architectures: the Challenge L and Origin 2000. Both are a tightly-coupled, shared-

memory machines; the latter is faster and has more memory. Complete architecture specifica-

tions are given in Table 4.6. Parallelism and memory partitioning on both machines is achieved

by using shared-memory parallel compiler directives provided by the Silicon Graphics Fortran

77 compiler. The MirkDC tasks of ABD matrix construction, residual evaluation and defect

estimation may be parallelized in a straightforward manner with these directives, using the

loop partitioning strategy discussed in
�
4.3. The parallelization of ABD matrix factorization

and backsolve is, of course, the main goal of our work in this thesis, and in theory could be

handled by any one of the parallel ABD system solvers. Since we have developed three par-

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 140

Table 4.9: Five SWF-III problems. Each problem is specified by � and the left and right end-

points of the interval of integration (i.e. the distance between the rotating disks). The problems

are listed in increasing order of difficulty.

SWF-III parameters
Problem # � � �	� ���	�

A
� � � � � � � �

B
����� � � � � � � � �

C
����� � � � � � (� � �

D
� � � � � � (� � �

E
����� � � � � � � � �

allel ABD system solvers, we have three possibilities for a parallel variant of MirkDC. We

discuss and present numerical results for only one of these variants in this section—parallel

MirkDC/RSCALE.

Parallel MirkDC/RSCALE has already appeared in the literature. It was first published as a

technical report, and then appeared in Parallel Computing [Muir 03]. In this paper, the accuracy

and speed of parallel MirkDC/RSCALE is compared to that of sequential MirkDC/COLROW.

The experiments and numerical results discussed in [Muir 03] were prepared during the writing

of this thesis. We review these results in this section. In order to be consistent with the nomen-

clature used in the paper, throughout this section we refer to sequential MirkDC/COLROW as

simply MirkDC, and parallel MirkDC/RSCALE as PMirkDC.

Table 4.9 specifies parameters for five SWF-III problems. The problems are listed in in-

creasing order of difficulty. A problem becomes more difficult as the magnitude of � decreases

and/or the length of the interval of integration increases. Table 4.10 lists specifications for ten

experiments used to compare the performance of MirkDC and PMirkDC. A MirkDC solution

strategy is as defined in
�
4.4.1. Experiments are actually run on three different architectures:

the two parallel machines mentioned above and the sequential Sun Ultra 2. We use a sequen-

tial machine for experiments #9 and #10 because the convergence patterns of PMirkDC and

MirkDC differ significantly in these experiments. As the convergence pattern has a major ef-

fect on performance, it does not make sense to test on a parallel machine. In other words,

speedup is not the issue in these experiments. We discuss this further at the end of the section.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 141

Table 4.10: Ten MirkDC vs. PMirkDC experiments. Each experiment is specified by a host

architecture (Table 4.6), a SWF-III problem (Table 4.9), and a MirkDC solution strategy.

A MirkDC solution strategy is given by a MIRK scheme, defect tolerance �
defect, number of

initial mesh subintervals � , and parameter continuation strategy.

MirkDC solution strategy
exp. # arch. prb.

scheme �
defect � � continuation

1 CHA A � th ord.
� � $&� � � ��� �

none; solve directly for � � ����� �

2 CHA A � th ord.
� � $&� � � �

none; solve directly for � � ����� �

3 ORG A � th ord.
� � $&� � � ��� �

none; solve directly for � � ����� �

4 ORG A � th ord.
� � $&� � � �

none; solve directly for � � ����� �

5 ORG B � th ord.
� � $ � � � � ��� ����� � � � � �

6 ORG C � th ord.
� � $ � � � � ��� ����� � � � � �

7 ORG D � th ord.
� � $ � � � � ����� � � � � � � � ��� ��� � � � � � � � � ����� � � �

8 ORG E � th ord.
� � $ � � � � � � � � � � � � � ��� � � � � � � � � � �

9 ULT C � th ord.
� � $ � � �

none; solve directly for � � � � � � � � �

10 ULT D � th ord.
� � $ � � �

none; solve directly for � � ��� ��� �

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 142

Figure 4.44: Overall speedup and execution time of MirkDC and PMirkDC in experiment #2

of Table 4.10. Parallelism begins to pay-off at 2 processors.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♥

♥

♥
♥

♥ ♥ ♥ ♥

of processors

se
co

nd
s

Absolute overall execution time

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 optimal
♥

Speedup

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC.

Problem A is not difficult numerically. When we start with an initial mesh of � � � �

subintervals in experiment #2, both MirkDC and PMirkDC choose the mesh selection sequence

shown in Figure 4.46 and convergence is achieved on a final mesh of
� � � �

subintervals. Fig-

ure 4.44 shows the overall speedup and execution time of MirkDC and PMirkDC in this exper-

iment, and Figure 4.45 shows the speedup and execution time of each of the five parallelized

computational tasks. The experiment is run on the Challenge L. Parallelism begins to pay off

with
�

processors, as is reflected in both the overall execution time and individual task execu-

tion times.

In experiment #4, we solve the same problem on the Origin 2000, starting with the same ini-

tial mesh and using the same defect tolerance. The results are shown in Figures 4.47 and 4.48.

Execution times are nearly
�

times as fast. Comparing Figures 4.47 and 4.44, we see less

optimal speedup on the Origin 2000, and parallelism does not begin to pay off until
�

proces-

sors. The reason for the apparent degradation in speedup is that the problem is too easy, and is

solved too quickly. As a result, non-parallelized overhead tasks become a noticeable contrib-

utor to overall execution time. Similar parallel performance degradation was observed in the

experiments in
�
4.3.

In experiments #1 and #3, we have substantially increased the execution time required to

solve Problem A by selecting an initial mesh of � � � ��� � subintervals. The results are shown

in Figures D.19, D.20, D.21 and D.22 of Appendix D.2. In these experiments, we see much

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 143

Figure 4.45: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #2 of Table 4.10.

1 2 3 4
0

0.5

1

1.5

2

r
r r r

d

d
d d

c

c

c
c

f

f

f
f

s

s
s

s
o o o o

se
co

nd
s

PMIRKDC segment times

5 6 7 8
0

0.5

1

1.5

2

r r r rd d d d

c c c c

f f f fs s s s

o o o o

of processors

se
co

nd
s

1
2
3
4
5
6
7
8 optimal

r
optimal
d

optimal
c

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

f

1 2 3 4 5 6 7 8

optimal
s

PMIRKDC segment speedups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

1
0

0.5

1

1.5

2

r
d

c

f s
o

of processors

se
co

nd
s

MIRKDC
segment

times

LEGEND: r − residual evaluation, d − defect estimation, c − ABD matrix construction,
f − ABD matrix factorization, s − ABD system backsolve, o − all sequential program segments.

Figure 4.46: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-

ment #2 of Table 4.10.

r d c f s
0

10

20

30

40

50

60

70

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♥ call profile

33%

33%

7%

7%

7%

7%

7%

f (15 calls total)

10

20

80

320

1280

2582

2970

mesh

38%

40%

8%

5%

3%
3%3%

s (63 calls total)

10

20

80

320

1280

2582

2970

mesh

♣, ♥ call−per−mesh profiles

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 144

Figure 4.47: Overall speedup and execution time of MirkDC and PMirkDC in experiment #4 of

Table 4.10. The same problem is solved as in experiment #2, using the same solution strategy,

but this time on the Origin 2000 instead of the Challenge L. Execution times are nearly 5 times

faster (compare to Figure 4.44). Parallelism begins to pay-off at 3 processors.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♥

♥

♥
♥

♥ ♥ ♥ ♥

of processors

se
co

nd
s

Absolute overall execution time

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 optimal
♥

Speedup

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC.

Figure 4.48: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #4 of Table 4.10. Compare to Challenge L results shown in Fig-

ure 4.45.

1 2 3 4
0

0.1

0.2

0.3

0.4

r
r r r

d

d
d d

c

c
c

c

f

f

f
f

s

s

s
s

o o o o

se
co

nd
s

PMIRKDC segment times

5 6 7 8
0

0.1

0.2

0.3

0.4

r r r rd d d d
c c c c

f f f fs s s s
o o o o

of processors

se
co

nd
s

1
2
3
4
5
6
7
8 optimal

r
optimal
d

optimal
c

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

f

1 2 3 4 5 6 7 8

optimal
s

PMIRKDC segment speedups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

1
0

0.1

0.2

0.3

0.4

r

d

c

f so

of processors

se
co

nd
s

MIRKDC
segment

times

LEGEND: r − residual evaluation, d − defect estimation, c − ABD matrix construction,
f − ABD matrix factorization, s − ABD system backsolve, o − all sequential program segments.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 145

Figure 4.49: Overall speedup and execution time of MirkDC and PMirkDC in experiment #8

of Table 4.10. Results are shown for the final continuation step only. Parallelism begins to

pay-off at 3 processors.

1 2 3 4 5 6 7 8
0

10

20

30

40

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♥↑

(4
5)

♥

♥
♥

♥
♥ ♥ ♥

of processors

se
co

nd
s

Absolute overall execution time

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 optimal
♥

Speedup

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC.

better speedups. In fact, Figure D.20 shows nearly perfect linear speedup in each task execution

time when we run on the Challenge L, a phenomenon rarely seen in our experiments. These

experiments, however, are not realistic. �� � � � � � is much too fine of an initial mesh for this

problem. MirkDC immediately redistributes the mesh and computes an acceptable solution on

a mesh of only
� � � � subintervals.

We can create more realistic computationally intensive experiments by solving more dif-

ficult SWF-III problems, such as problems B, C, D and E of Table 4.9. We solve these in

experiments #5, #6, #7 and #8, respectively. In each experiment, a parameter continuation

strategy is adopted as discussed in
�
4.4.1. The results of experiments #5, #6 and #7 are shown

in Figures D.23- D.31 of Appendix D.2. The results of experiment #8, the most computation-

ally intensive of the four, are shown here in Figures 4.49-4.52.

Figure 4.52 shows the subroutine call and call-per-mesh profiles of MirkDC and PMirkDC

accumulated over all five continuation iterations in experiment #8. Figure 4.51 shows the

profiles for the final, most expensive, continuation step only. We see many more meshes,

finer meshes, and many more task calls than in the experiments with Problem A. Figures 4.49

and 4.50 show overall and individual task execution times significantly greater—and speedups

are closer to optimal—than in previous experiments run on the Origin 2000 (experiments #3

and #4).

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 146

Figure 4.50: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #8 of Table 4.10. Results are shown for the final continuation step

only.

1 2 3 4
0

5

10

15

20

r
r r rd d d d

c

c
c c

f

f

f
f

s

s

s
s

o o o o

se
co

nd
s

PMIRKDC segment times

5 6 7 8
0

5

10

15

20

r r r rd d d d
c c c c

f f f f
s s s s

o o o o

of processors

se
co

nd
s

1
2
3
4
5
6
7
8 optimal

r
optimal
d

optimal
c

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

f

1 2 3 4 5 6 7 8

optimal
s

PMIRKDC segment speedups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

1
0

5

10

15

20

r

d

c

f

s

o

of processors

se
co

nd
s

MIRKDC
segment

times

LEGEND: r − residual evaluation, d − defect estimation, c − ABD matrix construction,
f − ABD matrix factorization, s − ABD system backsolve, o − all sequential program segments.

Figure 4.51: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-

ment #8 of Table 4.10. Results are shown for the final continuation step only, which is the most

computationally intensive.

r d c f s
0

100

200

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♥ call profile
8%

24%

ε
1

13%

22%

18%

14%

f (112 calls total)

380

760

478

956

1912

3824

7648

mesh

8%

24%

ε
1

10%

19%

18%

20%

s (348 calls total)

380

760

478

956

1912

3824

7648

mesh

♣, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 147

Figure 4.52: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-

ment #8 of Table 4.10. Results are accumulated over all five continuation steps.

r d c f s
0

100

200

300

400

500

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♥ call profile
4%ε

13%ε
2

4%
ε

3

5%

9%

19%

ε
4 10%

18%

14%

11%

f (142 calls total)

10
40
66
149
179
296
340
380
760
478
956
1912
3824
7648

mesh

7%ε
1

4%ε
2

6%

ε
3

9%

8%

17% ε
4

7%

13%

12%

14%

s (497 calls total)

10
40
66
149
179
296
340
380
760
478
956
1912
3824
7648

mesh

♣, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

When a difficult SWF-III problem is solved without using parameter continuation, MirkDC

convergence may be slower, or it may not occur at all. We have also found that for some diffi-

cult problems, the MirkDC convergence pattern is affected by the choice ABD system solver.

For the purposes of the experiments in this section, the convergence patterns of MirkDC and

PMirkDC must be identical on a given problem in order to obtain a fair and accurate mea-

sure of the gains of parallelism. In particular, a longer, more expensive convergence pattern in

PMirkDC could easily overshadow any improvement in execution time gained through paral-

lelism.

What we have found, however, is the opposite. We have identified difficult problems for

which the convergence pattern of PMirkDC is shorter than that of MirkDC when parameter

continuation is not used. For example, in experiments #9 and #10 of Table 4.10 we attempt

to solve Problems D and E directly for the given value of � , without using parameter contin-

uation. These experiments are run on the Sun Ultra 2, with PMirkDC in sequential, single-

partition mode. The resulting convergence patterns of MirkDC/PMirkDC are shown in Fig-

ures D.34/D.35 and D.36/D.37 of Appendix D.2, respectively. In both experiments, PMirkDC

converges on fewer, coarser meshes, with fewer task calls than MirkDC, which explains the

improvement in performance reflected in both the overall execution time and individual task

execution times shown in Figures D.32 and D.33. At the time of writing, the reason for the

shorter convergence patterns is unknown. It is also unknown if problems exist where the re-

verse occurs; i.e., where the convergence pattern of PMirkDC is longer than that of MirkDC.

Preliminary analysis, though, indicates that RSCALE may be acting as a mild preconditioner

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 148

on some of the poorly-conditioned ABD systems that typically arise when solving these dif-

ficult problems. More experiments comparing the behaviour of all four variants of MirkDC

on difficult SWF-III problems (i.e., MirkDC/COLROW, MirkDC/RSCALE, MirkDC/SLF-QR

and MirkDC/SLF-LU) are discussed in
�
4.4.4.

4.4.3 Problems Where MirkDC/SLF-LU Fails

The analysis in
�
3.2 suggests that there may be a higher probability of SLF-LU failure when

solving an ABD system arising from a discretization over a mesh with several wide subinter-

vals. Such a system can arise in the discretization of SWF-III when the coaxial disks are spread

far apart. In the resulting physical system, most of the fluid motion occurs close to either disk

and there is little if any motion throughout much of the interior. In this case, an adaptive mesh

selection strategy—such as the one used in MirkDC–often leads to a discretization over a mesh

with many wide subintervals covering the interior of the interval of integration.

To this end, we have designed the eight MirkDC/SWF-III experiments shown in Table 4.11.

Each experiment uses a wide interval of integration and large viscosity parameter � . (� cannot

be too small in these problems if the solution is to be obtained in a reasonable amount of time.)

Many of the ABD systems generated by MirkDC in these experiments have the characteristic

mentioned above, and as a result could cause problems for SLF-LU. Note that some of the

experiments differ only in the number of partitions used—this turns out to be a key factor in

determining SLF-LU stability.

Figure 4.53 shows the absolute overall execution time of the four variants of MirkDC

in each experiment listed in Table 4.11. We see immediately that in all but experiment #6,

MirkDC/SLF-LU uses significantly more execution time than the other variants of MirkDC.

More importantly, MirkDC/SLF-LU does not converge in experiments #2, #4, #5 and #8.

In order to determine the cause of performance degradation in MirkDC/SLF-LU, we now

look closely at experiments #1 and #2. (These experiments differ only in the number of par-

titions used.) Figure 4.54 shows the task execution times in experiment #1. The degradation

in MirkDC/SLF-LU overall execution time is reflected in each of the five task execution times.

The cause of the degradation is made clear by examining the convergence pattern in experi-

ment #1. More precisely, we must examine two convergence patterns: one for the stable vari-

ants of MirkDC—MirkDC/COLROW, MirkDC/SLF-QR and MirkDC/RSCALE—and one for

the unstable variant—MirkDC/SLF-LU. These convergence patterns are shown in Figures 4.55

and 4.56, respectively.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 149

Table 4.11: Eight MirkDC/SWF-III experiments to show how SLF-LU instability can affect

MirkDC performance. A SWF-III problem is defined by � and the interval of integration
� � �����	��

.

A MirkDC solution strategy is specified by a MIRK scheme, defect tolerance �
defect, number of

initial mesh subintervals � , and number of partitions.

SWF-III parameters MirkDC solution strategy
exp. # � � �	�����	�

MIRK scheme �
defect � # part.

1
� � (� � � � � � �

Lobatto, � th order
� � $ � � � �

2
� � (� � � � � � �

Lobatto, � th order
� � $ � � � �

3
� � � � (� � � � � � �

Lobatto, � th order
� � $ � � � �

4
� � � � (� � � � � � �

Lobatto, � th order
� � $ � � � �

5
� � � � (� � � � � � �

Lobatto, � th order
� � $ � � � �

6
� � � � (� � � � �
 � th order

� � $ � � � �

7
� � � � (� � � � �
 � th order

� � $ � � � �

8
� � � � (� � � � �
 � th order

� � $ � � � �

Figure 4.53: Overall execution time of the four variants of MirkDC when run on the exper-

iments specified in Table 4.11. In all but experiment #6, MirkDC/SLF-LU performance is

degraded by SLF-LU instability. Note that MirkDC/SLF-LU does not converge (i.e. � defect is

not satisfied) in experiments #2, #4, #5, and #8.

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

♣ ♣ ♣ ♣ ♣

♣ ♣ ♣

♦ ♦
♦ ♦ ♦

♦ ♦ ♦

♠ ♠

♠
♠

♠

♠

♠

♠

♥ ♥ ♥ ♥ ♥

♥ ♥ ♥

experiment #

se
co

nd
s

Absolute overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 150

Figure 4.54: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #1 of Table 4.11. The poor performance of MirkDC/SLF-LU relative

to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures 4.55 and 4.56.

r d c f s o
0

1

2

3

4

♣
♣

♣

♣
♣

♣
♦

♦

♦

♦
♦

♦

♠

♠

♠

♠↑

(5
)

♠↑

(4
)

♠
♥

♥

♥ ♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

20

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure 4.55: Profiles of the stable variants of MirkDC (MirkDC/COLROW, MirkDC/SLF-

QR and MirkDC/RSCALE) in experiments #1 and #2 of Table 4.11. Each of these variants

converges in both experiments. Profiles are identical among variants and between experiments.

r d c f s
0

50

100

150

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♥ call profile
8%

8%

6%

24%

24%

29%

f (49 calls total)

10

20

40

80

160

320

mesh

5%

6%

5%

20%

24%

40%

s (164 calls total)

10

20

40

80

160

320

mesh

♣, ♦, ♥ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 151

Figure 4.56: Profiles of MirkDC/SLF-LU in experiment #1 of Table 4.11. This variant of

MirkDC converges in this experiment, albeit less efficiently than the other three variants (Fig-

ure 4.55). Instability was detected in the SLF-LU factorization of one or more ABD systems

built on meshes of size 320 and 640. This instability is investigated further in Figure 4.57.

r d c f s
0

50

100

150

200

250

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
5%

5%

4%

15%

12%

33%

9%

17%

f (81 calls total)

10

20

40

80

160

320

640

1280

mesh

3%4%
3%

11%

12%

33%

11%

23%

s (284 calls total)

10

20

40

80

160

320

640

1280

mesh

♠ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure 4.55 shows that MirkDC/COLROW, MirkDC/SLF-QR and MirkDC/RSCALE ex-

hibit identical convergence patterns in experiment #1, and that the convergence pattern does

not change in experiment #2 when two partitions are used instead of one when solving the

ABD systems. There are � �
factorizations in total, and the largest ABD system that arises

consists of
� � �

block-rows. Figure 4.56 shows a notably different convergence pattern for

MirkDC/SLF-LU. There are
� �

factorizations in total, and the largest ABD system consists of
� � � �

block-rows. In fact, a significant number of such
� � � �

block-row systems arise—
� � �

of
� �

or 14 of them. It is clear why MirkDC/SLF-LU takes more time than the other variants of

MirkDC in this experiment.

But why does MirkDC/SLF-LU exhibit a different convergence pattern? The reason lies in

the stability of SLF-LU. To illustrate, we extract selected systems from the MirkDC/SLF-LU

solution process in experiment #1, and solve these systems directly with each of the parallel

ABD system solvers. The results are shown in Figure 4.57. We see that only SLF-LU exhibits

instability when solving the
� th,

� th,
� th,

� � th and
� � th ABD system built on a mesh of

� � �

subintervals. All systems are well-conditioned. (Note that the systems analyzed in Figure 4.57

are just an example. Several others arise during the solution process in experiment #1 that

cause problems for SLF-LU.)

The accuracy of the ABD system solver inside of MirkDC has a direct effect on all other

MirkDC tasks (defect estimation, mesh selection, etc.). Simply stated, the instability of SLF-

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 152

Figure 4.57: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #1 (Figure 4.56).

Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU

exhibits instability when solving ABD systems 7-11@mesh 320 (selection # 2-6).

1 2 3 4 5 6 7
0

0.05

0.1

0.15

q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

15

20

q
q q q q q qu

u

u u u

u

ur
r r r r r r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

1: 6@320

2: 7@320

3: 8@320

4: 9@320

5: 10@320

6: 11@320

7: 12@320

selection
index

(A
B

D
#@

m
esh of each selection)

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

LU in experiment #1 causes MirkDC to work harder in order to find an acceptable solution.

Figure 4.58 shows the task execution times in experiment #2. Again we see degradation

in MirkDC/SLF-LU performance in each task, except for defect estimation (more on that be-

low). Figure 4.59 shows the convergence pattern for MirkDC/SLF-LU in this experiment.

(Recall that the convergence pattern for the other variants of MirkDC, shown in Figure 4.55,

is unchanged from experiment #1.) MirkDC/SLF-LU computes
� �

factorizations in total in

experiment #2, and the largest ABD system consists of
� � � � � block-rows. ABD systems of

� � � �
,
� ��� �

and
� � � �

block-rows also arise, all much larger than in Figure 4.55. It is clear

why MirkDC/SLF-LU takes more time than the other variants of MirkDC. We also note that

MirkDC/SLF-LU does not converge. The code proceeds through a sequence of failed Newton

iterations followed by mesh doubling until the maximum number of subintervals (
� � � � �

in this

implementation) is exceeded. The defect estimation stage is never reached.

The only difference between experiments #1 and #2 is the number of partitions used by the

ABD system solvers. Comparing Figures 4.56 and 4.59, we see this had a notable effect on the

convergence pattern of MirkDC/SLF-LU. As discussed in
�
4.4.2, one would hope that parti-

tioning does not adversely affect convergence, because when it does any gain from parallelism

could easily be negated.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 153

Figure 4.58: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #2 of Table 4.11. The poor performance of MirkDC/SLF-LU relative

to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures 4.55 and 4.59.

r d c f s o
0

1

2

3

4

♣
♣

♣

♣
♣

♣
♦

♦

♦

♦
♦

♦

♠

♠

♠↑

(5
)

♠↑

(7
)

♠↑

(4
)

♠
♥

♥

♥ ♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

20

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure 4.59: Profiles of MirkDC/SLF-LU in experiment #2 of Table 4.11. This variant of

MirkDC does not converge in this experiment (i.e. � defect is not satisfied). Instability was de-

tected in the SLF-LU factorization of one or more ABD systems built on meshes of size 320,

640, 1280, 2560, 5120 and 10240. This instability is investigated further in Figures 4.60, 4.61

and 4.62.

r d c f s
0

50

100

150

200

250

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
5%

5%

4%

15%

13%

37%

8%

6%

5%
ε

1
ε

2

f (79 calls total)
10

20

40

80

160

320

640

1280

2560

5120

10240

mesh

4%
4%

3%

13%

14%

41%

10%

6%
4%

ε
1

ε
2

s (250 calls total)
10

20

40

80

160

320

640

1280

2560

5120

10240

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 154

The failure of MirkDC/SLF-LU in experiment #2 again may be attributed to the instability

of SLF-LU. In Figure 4.60, we extract selected systems from the MirkDC/SLF-LU solution

process in experiment #2, and solve these systems directly with each of the parallel ABD sys-

tem solvers. Only SLF-LU exhibits instability when solving ABD systems 6-9@mesh 320,

6@mesh 640, 5@mesh 1280, 3-4@mesh 2560 and 1@mesh 5120. All of these systems are

well-conditioned, and there are several others that arise during the solution process in experi-

ment #2 that cause problems for SLF-LU.

The effect of partitioning on the accuracy of SLF-LU is investigated further in Figures 4.61

and 4.62. In Figure 4.61, we extract ABD system 5@mesh 1280 and solve it directly, using

1-8 partitions, with each of the parallel ABD system solvers. Only SLF-LU exhibits instability

when using 2-8 partitions. Note that non-partitioned SLF-LU is stable on this problem. This

is somewhat surprising given the analysis in
�
3.2 which suggests that SLF-LU instability is

likely to worsen as the size of the partition increases. In Figure 4.62, we extract ABD system

4@mesh 1280 and solve it directly using 1-8 partitions. Only SLF-LU exhibits mild instability

when using 2, 4, 6 and 8 partitions, and yet is stable using 1, 3, 5 and 7 partitions. We note that

an ABD matrix arising in the MirkDC solution process typically has variable block-rows (i.e.,

the blocks change from row to row). It seems that for these types of systems, SLF-LU stability

may depend not only on partition size, but also on breakpoint positioning.

The remaining experiments in Table 4.11 (#3-#8) are discussed in Appendix D.3.

4.4.4 Problems Where Sequential MirkDC/RSCALE

Outperforms MirkDC/COLROW

When comparing the performance of parallel MirkDC/RSCALE (PMirkDC) and sequential

MirkDC/COLROW (MirkDC) in
�
4.4.2 and [Muir 03], we found that for some difficult SWF-

III problems the convergence patterns of the two codes differed. In particular, in experiments #9

and #10 in
�
4.4.2 the convergence pattern of PMirkDC was shorter than that of MirkDC, re-

sulting in a substantial improvement in execution time even on a sequential machine. In this

section we investigate other difficult SWF-III problems that cause differences in convergence

patterns, this time comparing the performance of all four sequential variants of MirkDC on the

problems—MirkDC/COLROW, MirkDC/RSCALE, MirkDC/SLF-QR and MirkDC/SLF-LU.

Table 4.12 lists eight experiments on difficult SWF-III problems. Each of these problems is

difficult because of the magnitude of � , not because of the length of the interval of integration.

In each experiment, the convergence pattern of at least one variant of MirkDC differs from

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 155

Figure 4.60: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #2 (Figure 4.59).

Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU

exhibits instability when solving ABD systems 6-9@mesh 320, 6@mesh 640, 5@mesh 1280,

3-4@mesh 2560 and 1@mesh 5120.

1 2 3 4 5 6 7
0

0.05

0.1

0.15

q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

15

20

q
q

q q q q q
u

u

u

u

u

u

u

r r
r

r r r r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

1: 4@320

2: 5@320

3: 6@320

4: 7@320

5: 8@320

6: 9@320

7: 10@320

selection
index

(A
B

D
#@

m
esh of each selection)

8 9 10 11 12 13 14
0

0.45

0.9

1.35

q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

8 9 10 11 12 13 14
−20

−15

−10

−5

0

5

10

15

20

q
q

q
q

q
q

q

u

u

u

u

u

u u

r
r

r
r

r
r

r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

8: 5@640

9: 6@640

10: 4@1280

11: 5@1280

12: 3@2560

13: 4@2560

14: 1@5120

selection
index

(A
B

D
#@

m
esh of each selection)

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 156

Figure 4.61: Execution time and accuracy of the three parallel ABD solvers when solving,

using 1-8 partitions, ABD system 5@mesh 1280 extracted from the MirkDC/SLF-LU solution

in experiment #2 (Figure 4.59). Of the three ABD solvers, only SLF-LU exhibits instability

when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.

1 2 3 4 5 6 7 8
0

0.15

0.3

0.45
q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q qu

u

u

u

u

u

u
u

r r r r r r r r

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 6, M

 = 1280.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure 4.62: Execution time and accuracy of the three parallel ABD solvers when solving, us-

ing 1-8 partitions, ABD system 4@mesh 1280 extracted from the MirkDC/SLF-LU solution in

experiment #2 (Figure 4.59). Of the three ABD solvers, only SLF-LU exhibits mild instability

when using 2,4,6 and 8 partitions. Surprisingly, SLF-LU is stable—and also the most accurate

of the three solvers—when using 1, 3, 5 and 7 paritions.

1 2 3 4 5 6 7 8
0

0.15

0.3

0.45
q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u

u

u

u

u

u

u

u

r r r r r r r r

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 6, M

 = 1280.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 157

Table 4.12: Eight MirkDC/SWF-III experiments in which sequential MirkDC/RSCALE out-

performs MirkDC/COLROW in terms of overall execution time and/or storage requirements.

A SWF-III problem is defined by � and the interval of integration
� �������	��

. A MirkDC solu-

tion strategy is specified by a MIRK scheme, defect tolerance �
defect, number of initial mesh

subintervals � , and number of partitions.

SWF-III parameters MirkDC solution strategy
exp. # � � �	�����	�

MIRK scheme �
defect � # part.

1
� � � � � � � (� � ��
 trapezoidal,

� nd order
� � $ � � � �

2
� � � � � � � (� � ��
 Lobatto, � th order

� � $ � � � �

3
� ����� � � � � (� � ��
 Lobatto, � th order

� � $ � � � �

4
� � � � � � � (� � ��
 � th order

� � $ � � � �

5
� ����� � � � � (� � �

trapezoidal,
� nd order

� � $ � � � �

6
� ����� � � � � � (� � �

Lobatto, � th order
� � $ � � � �

7
� � � � � � � (� � �

Lobatto, � th order
� � $ � � � �

8
� ����� � � � � � (� � �
 � th order

� � $ � � � �

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 158

Figure 4.63: Overall execution time of the four variants of MirkDC when run on the ex-

periments specified in Table 4.12. Convergence is achieved by each variant in each ex-

periment except for MirkDC/SLF-LU in experiment #4. In all but experiments #5 and #8,

MirkDC/RSCALE converges faster than the other variants, including MirkDC/COLROW.

In experiments #5 and #8, MirkDC/COLROW is marginally faster.

1 3 4 5 7
0

50

100

150

200

250

♣

♣

♣

♣

♣

♦
♦

♦

♦

♦

♠

♠

♠

♠

♠

♥ ♥

♥

♥

♥

experiment #

se
co

nd
s

Overall time

2 6 8
0

10

20

30

40

♣

♣

♣

♦

♦

♦

♠

♠

♠

♥
♥

♥

experiment #

se
co

nd
s

Overall time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE.

the others. There are also cases where all four patterns differ, or match pairwise. As in the

experiments in
�
4.4.2, the differences in convergence patterns are substantial enough to result

in significant differences in performance among the variants.

Figure 4.63 shows the overall execution time of each of the four variants of MirkDC when

run on the experiments specified in Table 4.12. Convergence is achieved by each variant in

each experiment except for MirkDC/SLF-LU in experiment #4. In all experiments, we see

a significant difference in overall execution time among the variants. In most experiments,

MirkDC/RSCALE converges faster than the other variants, including MirkDC/COLROW.

These performance differences are explained by examining the convergence patterns and

individual task execution times in each experiment. Figure 4.64 shows the overall and selected

program segment execution times of the four variants of MirkDC in experiment #1 of Ta-

ble 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW in all program segments except

ABD matrix factorization. Comparing the subroutine call and call-per-mesh profiles in Fig-

ures 4.65 and 4.66, we see that MirkDC/RSCALE converges on fewer, coarser meshes, with

fewer task calls, than any of the other variants.

Figure 4.67 shows the overall and selected program segment execution times of the four

variants of MirkDC in experiment #2. MirkDC/RSCALE outperforms MirkDC/COLROW

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 159

Figure 4.64: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #1 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments except ABD matrix factorization. Compare the subroutine call and

call-per-mesh profiles in Figures 4.65 and 4.66.

r d c f s o
0

10

20

30

40

50

60

♣
♣

♣
♣

♣

♣♦
♦

♦

♦↑

(6
5)

♦

♦♠
♠

♠

♠ ♠

♠♥ ♥
♥

♥ ♥

♥

se
co

nd
s

Absolute execution time of program segments

0

50

100

150

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure 4.65: Profiles of MirkDC/COLROW and MirkDC/SLF-LU in experiment #1 of Ta-

ble 4.12. Profiles of MirkDC/SLF-QR differ only slightly. These three variants of MirkDC

converge in this experiment, but less efficiently than MirkDC/RSCALE (Figure 4.66).

r d c f s
0

100

200

300

400

500

600

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♠ call profile
5%

7%

12%

9%

9%

9% 9%

9%

9%

ε
2

ε
3

10%

9%

f (182 calls total)
10

20

40

80

160

320

640

1280

2560

1341

1514

1665

3330

6660

mesh

5%
5%

12%

9%

9%

9% 9%

9%

9%

ε
2

ε
3

10%

10%

s (593 calls total)
10

20

40

80

160

320

640

1280

2560

1341

1514

1665

3330

6660

mesh

♣, ♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 160

Figure 4.66: Profiles of MirkDC/RSCALE in experiment #1 of Table 4.12. This variant of

MirkDC converges in this experiment, with a final mesh of size 1831. Compare these profiles

to those of the other variants shown in Figure 4.65.

r d c f s
0

100

200

300

400

500

600

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile
6%

8%

14%

11%

10% 10%

10%

10%

10%

ε
2

5%3%

f (155 calls total)
10

20

40

80

160

320

640

1280

2560

1341

1514

1665

1831

mesh

6%
6%

14%

11%

11%
11%

10%

10%

11%

ε
2

4%
4%

s (504 calls total)
10

20

40

80

160

320

640

1280

2560

1341

1514

1665

1831

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

in all program segments except ABD matrix factorization and backsolve. In this experi-

ment, MirkDC/RSCALE and MirkDC/SLF-QR have very similar convergence patterns, as do

MirkDC/COLROW and MirkDC/SLF-LU. Comparing the subroutine call and call-per-mesh

profiles in Figures 4.68 (MirkDC/COLROW, MirkDC/SLF-LU) and 4.69 (MirkDC/RSCALE,

MirkDC/SLF-QR), we see that MirkDC/RSCALE and MirkDC/SLF-QR converge on fewer,

coarser meshes, with fewer task calls, than both MirkDC/COLROW and MirkDC/SLF-LU.

Since RSCALE is faster than SLF-QR, MirkDC/RSCALE outperforms MirkDC/SLF-QR in

this experiment with respect to overall execution time.

The results for experiments #3-#8 of Table 4.12 are shown in Appendix D.4.

At the time of writing, the reason for the differences in convergence patterns among the

variants of MirkDC is unknown. It is also unknown if problems exist where MirkDC/SLF-QR

or MirkDC/SLF-LU outperform MirkDC/RSCALE. Preliminary analysis, though, indicates

that RSCALE may be acting as a mild preconditioner on some of the poorly-conditioned ABD

systems that typically arise when solving these difficult problems. We will pursue this possi-

bility in future work.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 161

Figure 4.67: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #2 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments except ABD matrix factorization and backsolve (backsolve times are

nearly equal). Compare the subroutine call and call-per-mesh profiles in Figures 4.68 and 4.69.

r d c f s o
0

2

4

6

♣

♣

♣

♣

♣

♣♦
♦

♦

♦

♦

♦

♠

♠

♠

♠

♠

♠♥
♥

♥
♥ ♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

20

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure 4.68: Profiles of MirkDC/COLROW and MirkDC/SLF-LU in experiment #2 of Ta-

ble 4.12. These two variants of MirkDC converge in this experiment, but less efficiently than

either MirkDC/RSCALE or MirkDC/SLF-QR (Figure 4.69).

r d c f s
0

100

200

300

400

500

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♠ call profile
9%

19%

12%

12% ε
1

6%

13%

15%

14%

f (144 calls total)

10

20

40

80

186

259

284

568

1136

mesh

7%

14%

15%

14%
ε

1 6%

12%

15%

18%

s (453 calls total)

10

20

40

80

186

259

284

568

1136

mesh

♣, ♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

CHAPTER 4. PERFORMANCE OF THE ALGORITHMS 162

Figure 4.69: Profiles of MirkDC/RSCALE in experiment #2 of Table 4.12. Profiles of

MirkDC/SLF-QR differ only slightly. These two variants of MirkDC converge in this ex-

periment, with a final mesh of size 568. Compare these profiles to those of the other variants

shown in Figure 4.68.

r d c f s
0

100

200

300

400

500

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile
10%

22%

13%

13%

ε
1

6%

14%

21%

f (129 calls total)

10

20

40

80

186

259

284

568

mesh

8%

17%

17%

16%

ε
1

6%

14%

21%

s (386 calls total)

10

20

40

80

186

259

284

568

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Chapter 5

Conclusions and Future Work

The factorization and solution of the ABD linear system constitute two of the most compu-

tationally intensive stages in a BVODE code. As other computationally intensive stages can

be parallelized in a straightforward manner, there is a clear motivation for designing a parallel

algorithm for treating the ABD linear system. Common partitioning or block-cyclic reduction

approaches based on compactification obtain good speedup, but are potentially unstable on

problems with rapidly increasing and/or decreasing fundamental solution modes. Since many

well-posed BVODEs have this characteristic, these approaches are unsatisfactory. Our goal is

to find a stable, parallel algorithm for solving the ABD linear system. We have proposed three

such algorithms in this thesis—SLF-QR, SLF-LU and RSCALE.

Two of the algorithms—SLF-QR and SLF-LU– were discovered independently by us and

by S.J. Wright in the 1990s. Wright presented these algorithms and analyzed their stability in

[Wrig 92] and [Wrig 94]. We expand on the basic algorithms by proposing different variants

that make better use of idle processors in order to more fully exploit parallelism. We do not

attempt to expand on Wright’s stability analysis in [Wrig 94], but we do identify a wider class

of problems for which SLF-LU is potentially unstable. In [Wrig 92], Wright claims that SLF-

QR is stable because it is equivalent to the QR-factorization of a row and column permuted

version of the ABD matrix. We show the details of this equivalence for the single-partition

variant of the algorithm. A similar argument may be used to show that SLF-LU is equivalent

to a row-pivoted LU-factorization of a row and column permuted version of the ABD matrix.

Although we do not include this in the thesis, if we apply this result to the additional problems

we have identified for which SLF-LU is potentially unstable, we can identify an additional class

of well-conditioned linear systems for which Gaussian elimination with row partial pivoting is

unstable—systems different from those discussed in [Wrig 93].

163

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 164

As both SLF-QR and SLF-LU attain the theoretically optimal speedup for the problem if

enough processors are available, not much can be done to improve on the global performance

of these algorithms. There are other avenues for improvement, however. In particular, one

could design an algorithm that uses fewer local operations per block-step, or has better stabil-

ity properties than SLF-LU. To this end, we propose RSCALE—a third algorithm based on a

notably different numerical technique. We show through extensive numerical testing and op-

eration count analysis that RSCALE is approximately twice as fast as SLF-QR, is marginally

faster than SLF-LU in most problems where SLF-LU pivots correctly to control stability, and

is stable on problems where SLF-LU fails. We show that the complexity of the SLF-LU local

factorization is dependent on its pivoting strategy, and our numerical tests suggest that in the

majority of problems this complexity tends toward its upper bound. We give a preliminary

analysis of the stability of RSCALE, point out some of its shortcomings, and address these

shortcomings with a few simple modifications to the original algorithm.

We have carefully implemented each of SLF-QR, SLF-LU and RSCALE in FORTRAN,

making extensive use of level-3 BLAS. We have tested the codes thoroughly on both a sequen-

tial and parallel machine, assessing the relative performance of the algorithms in terms of both

accuracy and speed. In most cases, the relative execution time of the solvers agrees with the

ratio predicted by the high-order coefficients of their respective operation counts. Tests on the

parallel machine show that parallelism begins to pay off with just a few processors when we

compare execution time to that of the best sequential solver for the problem. We also assess

the performance of the solvers when they are incorporated in MirkDC [Enri 96], a software

package for solving nonlinear BVODEs. The differences in speed and accuracy amongst the

solvers is reflected in the overall performance of MirkDC, re-enforcing the importance of the

role of the ABD system solver in BVODE software.

During the writing of this thesis, we contributed to the development of PMirkDC [Muir 03],

a parallel implementation of MirkDC using RSCALE in place of COLROW as the ABD sys-

tem solver. In this work, we targeted a tightly-coupled, shared memory architecture in our

implementation. In future work, we hope to implement PMirkDC on a distributed-memory

architecture, which has become more popular in recent years.

There are at least two possible contributions to sequential algorithms arising from the work

in this thesis. First, during our numerical testing with MirkDC, we noticed that the choice of

ABD system solver can have an effect on the convergence properties of the code. In particular,

MirkDC/RSCALE converged faster than other variants of MirkDC (even MirkDC/COLROW)

on some difficult problems. We believe RSCALE may act as a mild preconditioner on some

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 165

of the poorly-conditioned ABD systems that typically arise when solving these difficult prob-

lems. We are particularly interested in determining if the choice of relaxation parameter �
can improve the conditioning of the ABD matrix. (We know it can do so for the individual

blocks; see
�
3.3.) We will pursue this possibility in future work. Second, as none of the par-

allel ABD system solvers require the boundary blocks of the linear system to be separable,

problems with coupled boundary conditions could be handled directly in a BVODE code if we

replace its sequential solver with one of our parallel solvers. This could result in substantial

savings in a sequential implementation. The usual approach to handling such problems is to

rewrite the BVODE with separated boundary conditions by doubling the number of differential

equations, which in turn doubles the order of the ABD system and significantly increases the

computational cost of most components in the code.

Another open question for future investigation follows from the observation that most of

the examples of potential SLF-LU instability discussed in this thesis apply only to the single-

partition variant of the algorithm, where the ABD matrix is processed in a sequential fashion

from top to bottom. As shown in
�
3.2, the single-partition variant is easy to analyze, and with

our analysis we gain some insight into where to look for instability. Other variants of SLF-

LU may have different numerical properties. We give a few examples where the partitioned

variant exhibits instability as the number of partitions changes (e.g., Figures D.57-D.60 in Ap-

pendix D.3), but at the time of writing we cannot comment further on these results. In addition,

our preliminary testing shows that the cyclic-reduction variant of SLF-LU does not seem to ex-

hibit the same instability on the class of problems we have identified to cause difficulty for the

single-partition variant of the algorithm. This is not surprising, since with cyclic reduction the

left and right blocks of the matrix change at each sweep of the reduction regardless of whether

pivoting is used. (The change in block structure also makes the algorithm more difficult to

analyze.) The stability of the cyclic-reduction variant of SLF-LU currently is in question, and

we intend to pursue this in future work.

Appendix A

Additional ������� -RSCALE Experiments

This appendix contains additional numerical experiments run on Problems C-F of Table 3.1.

As described in
�
3.3.2, each problem is constructed in such a way that static

� � �
-RSCALE fails

at the computation of one or more rescaled
�� � . See

�
3.3.2 for a complete description of how

the problems are set up, and an explanation of how to interpret the error statistics and plots.

The following table cross-references Problem # and Algorithm to give the figure and page #

of each experiment in this appendix:

Algorithm

�����
-RSCALE

� �����
-RSCALE

� ��� �
-RSCALE � � -RSCALE

C A.1, p.167 A.2, p.168 A.3, p.169 A.4, p.170

Problem # D A.5, p.171 A.6, p.172 A.7, p.173 A.8, p.174

E A.9, p.175 A.10, p.176 A.11, p.177 A.12, p.178

F A.13, p.179 A.14, p.180 A.15, p.181 A.16, p.182

Of particular interest in these experiments are Problems E and F. In Problem E, selected

eigenvalues � � and � � of
�

(i.e. � � � and
�� � �) not only satisfy (3.82), but also (3.84) for �

� � � � ,
� � � ,

� � � and
� � � . (These particular

� � �
-th roots of unity also happen to be

� � �
-th,

� �
-th,

� �
-

th and
� �

-th roots of unity.) This leads to additional singularities in the computation of
��
��� ,��

��� ��� $&� and
�� � � � � at

	 � � � �
,
� � ,

� �
and

� � � . Problem F demonstrates the ill-effects caused

by a singularity in the computation of
�� �

; namely a poorly-conditioned compacted matrix
�

and instability in the computation of �� � in (3.16) (bottom left plot). Finally, note that in each

of the �	� -RSCALE solutions, only a few adjusted eigenvalue shifts are required to avoid the

singularities arising in static 1.0-RSCALE, supporting our conjecture that � � normally does

not grow too large in this algorithm.

166

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 167

Figure A.1: The static 1.0-RSCALE solution to Table 3.1/C.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1, 1e-14 6.5e+15 6.5e+15 1.3e+30 0.00098 4.6e+12 7.5e+04 4.6e+12

The true value of � # � � � is 94. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

1σ k

k

0

2

4

6

8

10
x 10

13 ||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

0.5

1

1.5

2
x 10

13 ||V
M−1,i

||
2

i

~

0 20 40 60 80
0

5

10

15

20

25

||V
k,0

||
2

k

~

0 20 40 60 80
0

5

10

15

20

25

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 168

Figure A.2: The static 0.98-RSCALE solution to Table 3.1/C.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

3.6, 0.02 1.3e+04 3.4e+03 4.5e+06 0.00098 0.00053 7.5e+04 1.2e-11

The true value of � # � � � is 1.5e+02. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

0.98

1

σ k

k

0

20

40

60

80

100

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

20

40

60

80

100

120

||V
M−1,i

||
2

i

~

0 20 40 60 80
0

5

10

15

20

25

30

||V
k,0

||
2

k

~

0 20 40 60 80
0

5

10

15

20

25

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 169

Figure A.3: The static 1.02-RSCALE solution to Table 3.1/C.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

3.6, 0.02 3.4e+03 3.4e+03 4.3e+06 0.00098 0.00053 7.5e+04 5.7e-11

The true value of � # � � � is 1.2e+02. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

1

1.02

σ k

k

0

50

100

150

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

20

40

60

80

100

||V
M−1,i

||
2

i

~

0 20 40 60 80
0

2

4

6

8

10

||V
k,0

||
2

k

~

0 20 40 60 80
0

5

10

15

20

25

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 170

Figure A.4: The � � -RSCALE solution (� 	�

� � � � � � � � � � � � �
) to Table 3.1/C.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

9.9, ? ? ? ? 0.00098 0.00053 7.5e+04 5.1e-11

The true value of � # � � � is 1.3e+02. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.89) (bottom right):

0 20 40 60 80

1

2.25

σ k

k

4

5

6

7

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

1

2

3

4

5

6

||V
M−1,i

||
2

i

~

0 20 40 60 80
0

2

4

6

8

10

||V
k,0

||
2

k

~

0 20 40 60 80
0

5

10

15

20

25

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 171

Figure A.5: The static 1.0-RSCALE solution to Table 3.1/D.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1, 1.1e-15 1.1e+17 1.1e+17 2e+32 0.0039 5.4e+12 3.9e+04 5.4e+12

The true value of � # � � � is 57. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 10 20 30 40

1σ k

k

0

1

2

3
x 10

14 ||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 10 20 30
0

2

4

6

8

10
x 10

13 ||V
M−1,i

||
2

i

~

0 10 20 30 40
0

50

100

150

||V
k,0

||
2

k

~

0 10 20 30 40
0

50

100

150

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 172

Figure A.6: The static 0.98-RSCALE solution to Table 3.1/D.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1.9, 0.02 1.2e+04 6.3e+03 2.3e+06 0.0039 0.0023 3.9e+04 2.2e-11

The true value of � # � � � is 1.1e+02. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 10 20 30 40

0.98

1

σ k

k

0

20

40

60

80

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 10 20 30
0

50

100

150

200

||V
M−1,i

||
2

i

~

0 10 20 30 40
0

10

20

30

40

50

60

||V
k,0

||
2

k

~

0 10 20 30 40
0

10

20

30

40

50

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 173

Figure A.7: The static 1.02-RSCALE solution to Table 3.1/D.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1.9, 0.02 6.3e+03 6.3e+03 2.2e+06 0.0039 0.0023 3.9e+04 2.4e-11

The true value of � # � � � is 1e+02. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 10 20 30 40

1

1.02

σ k

k

0

50

100

150

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 10 20 30
0

20

40

60

80

||V
M−1,i

||
2

i

~

0 10 20 30 40
0

10

20

30

40

||V
k,0

||
2

k

~

0 10 20 30 40
0

10

20

30

40

50

60

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 174

Figure A.8: The � � -RSCALE solution (��	� � � � � � � � � � � � � �
) to Table 3.1/D.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

10, ? ? ? ? 0.0039 0.0023 3.9e+04 3.1e-11

The true value of � # � � � is 1.1e+02. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.89) (bottom right):

0 10 20 30 40

1

2.75

σ k

k

0

2

4

6

8

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 10 20 30
0

2

4

6

8

||V
M−1,i

||
2

i

~

0 10 20 30 40
0

2

4

6

8

10

||V
k,0

||
2

k

~

0 10 20 30 40
0

10

20

30

40

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 175

Figure A.9: The static 1.0-RSCALE solution to Table 3.1/E.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1, 4.1e-15 1.4e+16 1.4e+16 6.9e+30 0.00024 1.8e+11 5.4e+04 1.8e+11

The true value of � # � � � is 30. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 50 100 150

1σ k

k

0

0.5

1

1.5

2
x 10

13 ||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 50 100 150
0

5

10

15
x 10

12 ||V
M−1,i

||
2

i

~

0 50 100 150
0

5

10

15

20

25

||V
k,0

||
2

k

~

0 50 100 150
0

5

10

15

20

25

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 176

Figure A.10: The static 0.98-RSCALE solution to Table 3.1/E.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

13, 0.02 3.9e+04 2.9e+03 5.1e+07 0.00024 0.00017 5.4e+04 1.8e-10

The true value of � # � � � is 1.8e+02. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 50 100 150

0.98

1

σ k

k

0

50

100

150

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 50 100 150
0

20

40

60

80

100

||V
M−1,i

||
2

i

~

0 50 100 150
0

50

100

150

||V
k,0

||
2

k

~

0 50 100 150
0

5

10

15

20

25

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 177

Figure A.11: The static 1.02-RSCALE solution to Table 3.1/E.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

13, 0.02 2.9e+03 2.9e+03 4.6e+07 0.00024 0.00017 5.4e+04 1.9e-10

The true value of � # � � � is 78. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 50 100 150

1

1.02

σ k

k

0

50

100

150

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 50 100 150
0

50

100

150

||V
M−1,i

||
2

i

~

0 50 100 150
0

2

4

6

8

||V
k,0

||
2

k

~

0 50 100 150
0

5

10

15

20

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 178

Figure A.12: The � � -RSCALE solution (� 	� � � � � � � � � � � � � �
) to Table 3.1/E.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

8.8, ? ? ? ? 0.00024 0.00017 5.4e+04 4.7e-11

The true value of � # � � � is 66. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.89) (bottom right):

0 50 100 150

1

2

σ k

k

2

4

6

8

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 50 100 150
0

2

4

6

8

||V
M−1,i

||
2

i

~

0 50 100 150
0

2

4

6

8

||V
k,0

||
2

k

~

0 50 100 150
0

5

10

15

20

25

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 179

Figure A.13: The static 1.0-RSCALE solution to Table 3.1/F.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

1, 6.8e-15 1e+16 1e+16 3e+30 0.00098 72 5.8e+04 72

The true value of � # � � � is 5.4e+13. The following plots show the true
� �� � � # along with the

eigenvalue shifts used during rescaling (top left), sample norms arising in the computation of�" �%$&�
in (3.14) (top right), �� � in (3.16) (bottom left), and

�" � in (3.12) (bottom right):

0 20 40 60 80

1σ k

k

0

2

4

6

8

10
x 10

12 ||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

100

200

300

400

||V
M−1,i

||
2

i

~

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3
x 10

13 ||V
k,0

||
2

k

~

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3
x 10

13 ||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 180

Figure A.14: The static 0.98-RSCALE solution to Table 3.1/F.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

3.6, 0.02 1.3e+04 3.4e+03 4.5e+06 0.00098 0.00038 5.8e+04 2.9e-11

The true value of � # � � � is 75. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

0.98

1

σ k

k

0

50

100

150

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

20

40

60

80

100

120

||V
M−1,i

||
2

i

~

0 20 40 60 80
0

10

20

30

40

||V
k,0

||
2

k

~

0 20 40 60 80
5

10

15

20

25

30

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 181

Figure A.15: The static 1.02-RSCALE solution to Table 3.1/F.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

3.6, 0.02 3.4e+03 3.4e+03 4.3e+06 0.00098 0.00038 5.8e+04 2.7e-11

The true value of � # � � � is 48. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.12) (bottom right):

0 20 40 60 80

1

1.02

σ k

k

0

20

40

60

80

100

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

20

40

60

80

100

||V
M−1,i

||
2

i

~

0 20 40 60 80
2

4

6

8

10

||V
k,0

||
2

k

~

0 20 40 60 80
0

5

10

15

20

25

30

||W
1,i

||
2

i

~

APPENDIX A. ADDITIONAL � � ��� -RSCALE EXPERIMENTS 182

Figure A.16: The � � -RSCALE solution (� 	� � � � ��� � � � � � � � �
) to Table 3.1/F.

Theoretical bounds. Accuracy of
�

.
� � , � � � �� ��� � � # � �� ��� � � # � # � � � �

#
ana. err.

�� � �) � alg. err.

6.8, ? ? ? ? 0.00098 0.00038 5.8e+04 2.5e-11

The true value of � # � � � is 45. The following plots show the true
� �� � � # along with the eigen-

value shifts used during rescaling (top left), sample norms arising in the computation of
�" �%$&�

in (3.14) (top right), �� � in (3.16) (bottom left), and
�" � in (3.89) (bottom right):

0 20 40 60 80

1

2

σ k

k

3

4

5

6

7

||V
k
||

2
 and σ

k

||V
k|| 2

^

^

0 20 40 60 80
0

1

2

3

4

5

6

||V
M−1,i

||
2

i

~

0 20 40 60 80
1

2

3

4

5

6

7

||V
k,0

||
2

k

~

0 20 40 60 80
0

5

10

15

20

25

||W
1,i

||
2

i

~

Appendix B

Additional Sequential Experiments

This appendix contains the results of additional numerical experiments from
�
3.2.2 (Figures B.1-

B.4) and
�
4.2 (Figures B.5-B.10).

Figures B.1-B.4 show the results of experiments where we generate hundreds of linear

problems in search of problems that cause difficulty for SLF-LU. We divide the test DEs into

three classes, based on the sign of the elements in the Jacobian. Each problem is discretized

using trapezoidal finite differences, the resulting ABD system is reduced with SLF-LU, and

block growth is monitored during the reduction in order to detect potential SLF-LU instability.

(See
�
3.2.2 for further details on the criteria used to detect instability.) The effect of Jacobian

order and sparsity on stability is investigated in Figures B.1 and B.2, respectively. The effect

of Jacobian scale with dense Jacobians is investigated in Figure B.3, and the effect of Jacobian

scale with sparser (�
� � � �

nonzero) Jacobians is investigated in Figure B.4.

Figures B.5-B.10 show the results of additional numerical experiments illustrating the rel-

ative performance of the three ABD system solvers SLF-QR, SLF-LU, and RSCALE, when

run in sequential mode, on a sequential machine. Experiments on problems generated from

classes K, L and M of Table 4.3 in
�
4.2 are included. In each of these problems, the Jacobian

of the DE is random in structure—the nonzeros of the Jacobian are randomly-generated and

randomly-distributed throughout the matrix, with at least one nonzero in each row and column.

Experimental results are shown for sixteen Class K problems (% � � �
) in Figures B.5 and

B.6, sixteen Class L problems (% � � �
) in Figures B.7 and B.8, and sixteen Class M prob-

lems (% � � �) in Figures B.9 and B.10. In most experiments, as Jacobian density is increased

from 20% to 90% nonzero, we see a trend toward increased SLF-LU execution time. Note that

SLF-LU exhibits instability when solving some problems in Figures B.6, B.7, B.8 and B.9.

183

APPENDIX B. ADDITIONAL SEQUENTIAL EXPERIMENTS 184

Figure B.1: Effect of Jacobian order (%) on SLF-LU stability when solving 100 randomly-

generated class 1, 2 and 3 dense linear problems with
� � � ���

and �
� � � � �

nonzero,

on meshes ranging from �
� � � � �

to �
� � ��� �

.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

1

1
1

1 1 1 1 12

2

2

2

2

2

2

2

3 3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

n = 8

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

1 1
1 1 1 1 1 1

2

2

2

2

2

2

2 2
3 3

3 3 3
3

3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

n = 10

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

1

1
1

1
1 1

1
12

2

2

2

2

2 2 2

3 3 3

3 3 3
3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

n = 12

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

1 1 1
1 1

1 1 1

2

2

2

2

2 2 2
2

3 3 3
3

3
3 3

3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

n = 14

LEGEND: class 1 − a
ij
∈(−λ,0]∪[1], 2 − a

ij
∈[0,λ], 3 − a

ij
∈(−λ, λ].

APPENDIX B. ADDITIONAL SEQUENTIAL EXPERIMENTS 185

Figure B.2: Effect of Jacobian sparsity (�) on SLF-LU stability when solving 100 randomly-

generated class 1, 2 and 3 unstructured linear problems with
� � � � �

and % � � �
, on meshes

ranging from �
� � � � �

to �
� � ��� �

. Jacobian nonzeros are randomly distributed.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

1
1 1 1 1

1 1 1
2 2 2 2 2

2 2 2
3 3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

ρ = 25% nz

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

1
1 1

1 1 1 1 1
2 2 2

2

2

2
2

2

3
3 3 3

3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

ρ = 50% nz

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

1
1 1 1 1 1

1 1
2

2

2

2

2
2

2

2

3
3 3

3 3 3 3
3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

ρ = 75% nz

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

1 1
1 1 1 1 1 1

2

2

2

2

2

2

2 2
3 3

3 3 3
3

3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

ρ = 100% nz

LEGEND: class 1 − a
ij
∈(−λ,0]∪[1], 2 − a

ij
∈[0,λ], 3 − a

ij
∈(−λ, λ].

APPENDIX B. ADDITIONAL SEQUENTIAL EXPERIMENTS 186

Figure B.3: Effect of Jacobian scale (
�

) on SLF-LU stability when solving 100 randomly-

generated class 1, 2 and 3 dense linear problems with % � � �
and �

� � � � �
nonzero,

on meshes ranging from �
� � � �

to �
� � ���

.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1 1 1
1 1 1 1 1

2 2 2 2 2 2 2 2
3

3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1 1
1 1 1 1 1 1

2

2

2

2

2

2

2 2
3 3

3 3 3
3

3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1

1

1 1 1 1 1 1
2

2

2

2

2

2
2

2

3 3 3 3 3
3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1

1 1
1 1 1 1 1

2 2 2 2 2 2 2 23 3
3 3 3 3 3

3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 1

LEGEND: class 1 − a
ij
∈(−λ,0]∪[1], 2 − a

ij
∈[0,λ], 3 − a

ij
∈(−λ, λ].

APPENDIX B. ADDITIONAL SEQUENTIAL EXPERIMENTS 187

Figure B.4: Effect of Jacobian scale (
�

) on SLF-LU stability when solving 100 randomly-

generated class 1, 2 and 3 unstructured linear problems with % � � �
and �

� � � �
nonzero,

on meshes ranging from �
� � � �

to �
� � ���

. Jacobian nonzeros are randomly distributed.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1
1

1 1 1 1 1 1
2 2 2 2 2 2 2 2

3

3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1
1 1

1 1 1 1 1
2 2 2

2

2

2
2

2

3
3 3 3

3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1
1 1 1

1 1 1 1

2
2 2 2

2 2 2

2

3

3 3

3
3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

1 1 1
1 1 1

1 1

2 2 2 2 2 2 2 23 3 3 3 3 3 3 3

h

%
 p

ot
en

tia
lly

 u
ns

ta
bl

e

λ = 1

LEGEND: class 1 − a
ij
∈(−λ,0]∪[1], 2 − a

ij
∈[0,λ], 3 − a

ij
∈(−λ, λ].

APPENDIX B. ADDITIONAL SEQUENTIAL EXPERIMENTS 188

Figure B.5: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class K problems of Table 4.3. Jacobian sparsity varies from
� � �

to
� � �

nonzero, with nonzeros randomly distributed.

20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

q

u
r

% nonzero

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

q q q
q q q q qu

u u u u u u u

r
r r r r r r r

disc. error

recip. cond.

% nonzero

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 10, M

 = 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure B.6: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class K problems of Table 4.3. Jacobian sparsity varies from
� � �

to
� � �

nonzero, with nonzeros randomly distributed.

20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

q

u
r

% nonzero

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

q q q q q
q

q q

u

u u

u

u u u

u
r r r r r r r r

disc. error

recip. cond.

% nonzero

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 10, M

 = 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX B. ADDITIONAL SEQUENTIAL EXPERIMENTS 189

Figure B.7: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class L problems of Table 4.3. Jacobian sparsity varies from
� � �

to
� � �

nonzero, with nonzeros randomly distributed.

20 30 40 50 60 70 80 90
0

0.125

0.25

0.375
q

u
r

% nonzero

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q qu u u u u u

u

u

r r r r r r r r

disc. error

recip. cond.

% nonzero

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 12, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure B.8: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class L problems of Table 4.3. Jacobian sparsity varies from
� � �

to
� � �

nonzero, with nonzeros randomly distributed.

20 30 40 50 60 70 80 90
0

0.125

0.25

0.375
q

u

r

% nonzero

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

q

q q q q
q

q
q

u

u

u

u u u u u

r
r r r r r r r

disc. error

recip. cond.

% nonzero

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 12, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX B. ADDITIONAL SEQUENTIAL EXPERIMENTS 190

Figure B.9: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class M problems of Table 4.3. Jacobian sparsity varies from
� � �

to
� � �

nonzero, with nonzeros randomly distributed.

20 30 40 50 60 70 80 90
0

0.175

0.35

0.525
q

u
r

% nonzero

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

q q
q

q q q q q

u

u
u

u u

u
↑

(+
24

) u

u

r r
r

r r r r r

disc. error

recip. cond.

% nonzero

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 14, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure B.10: Execution time and accuracy of the three sequential ABD solvers when solving

eight randomly-generated Class M problems of Table 4.3. Jacobian sparsity varies from
� � �

to
� � �

nonzero, with nonzeros randomly distributed.

20 30 40 50 60 70 80 90
0

0.175

0.35

0.525
q

u
r

% nonzero

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

20 30 40 50 60 70 80 90
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q
qu u u u u u u u

r r r r r r r r

disc. error

recip. cond.

% nonzero

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 14, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Appendix C

Additional Parallel Experiments

This appendix contains the results of additional numerical experiments illustrating the relative

performance of the three ABD system solvers SLF-QR, SLF-LU, and RSCALE, when run in

parallel mode, on a parallel machine. Additional experiments on problems A-F of Table 4.5 in
�
4.3 are included.

Figures C.1-C.6 show results for problems A-F of Table 4.5 with � � � � � � . Figures C.7-

C.12 show results with � � � � � � . In both sets of experiments, as Jacobian order increases

from % � �
to % � � �

the payoff of parallelism as defined in
�
4.3 occurs with fewer processors,

and speedups become more optimal. Payoff for SLF-QR occurs only in Figures C.11 and C.12

(� � � � � � , % � � � and % � � �
).

191

APPENDIX C. ADDITIONAL PARALLEL EXPERIMENTS 192

Figure C.1: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem A of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at
�

processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15 q

u
r

c
u r

payoffs: r@7, u@7, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n = 6, M

 = 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figure C.2: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem B of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at
�

processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.075

0.15

0.225 q

u

r

c
u r

payoffs: r@6, u@6, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 8, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

APPENDIX C. ADDITIONAL PARALLEL EXPERIMENTS 193

Figure C.3: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem C of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at
�

processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3
q

u
r

c
u r

payoffs: r@5, u@5, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n = 10, M

 = 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figure C.4: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem D of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU payoff at � and
�

processors, respectively; there is no payoff when using

SLF-QR.

1 2 3 4 5 6 7 8
0

0.125

0.25

0.375

q

u

r

c
r u

payoffs: r@4, u@5, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 12, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

APPENDIX C. ADDITIONAL PARALLEL EXPERIMENTS 194

Figure C.5: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem E of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU payoff at � and
�

processors, respectively; there is no payoff when using

SLF-QR.

1 2 3 4 5 6 7 8
0

0.175

0.35

0.525

q

u
r

c
r u

payoffs: r@4, u@5, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 14, M
 =

 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figure C.6: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem F of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at � processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.25

0.5

0.75

q

u

r

c
u r

payoffs: r@4, u@4, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n = 16, M

 = 1024.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

APPENDIX C. ADDITIONAL PARALLEL EXPERIMENTS 195

Figure C.7: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem A of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at
�

processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3 q

u
r

c
u r

payoffs: r@7, u@7, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n = 6, M

 = 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figure C.8: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem B of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU payoff at
�

and
�

processors, respectively; there is no payoff when using

SLF-QR.

1 2 3 4 5 6 7 8
0

0.125

0.25

0.375

q

u

r

c
r u

payoffs: r@5, u@6, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 8, M
 =

 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

APPENDIX C. ADDITIONAL PARALLEL EXPERIMENTS 196

Figure C.9: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem C of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU each payoff at
�

processors; there is no payoff when using SLF-QR.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

q

u

r

c
u r

payoffs: r@5, u@5, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n = 10, M

 = 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figure C.10: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem D of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE and SLF-LU payoff at � and
�

processors, respectively; there is no payoff when using

SLF-QR.

1 2 3 4 5 6 7 8
0

0.275

0.55

0.825

q

u
r

c
r u

payoffs: r@4, u@5, q−none

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 12, M
 =

 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

APPENDIX C. ADDITIONAL PARALLEL EXPERIMENTS 197

Figure C.11: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem E of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE, SLF-LU and SLF-QR payoff at � , � and
�

processors, respectively.

1 2 3 4 5 6 7 8
0

0.375

0.75

1.125

q

u
r

c
u r q

payoffs: r@4, u@4, q@7

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 14, M
 =

 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Figure C.12: Execution time and speed-ups of the three parallel ABD solvers and COLROW

when solving Problem F of Table 4.5, with � � � � � � . Architecture is the SGI Origin 2000.

RSCALE, SLF-LU and SLF-QR payoff at � , � and
�

processors, respectively.

1 2 3 4 5 6 7 8
0

0.475

0.95

1.425

q

u

r

c
u r q

payoffs: r@4, u@4, q@7

of processors

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1
2
3
4
5
6
7
8 optimal

q
optimal
u

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

r

1 2 3 4 5 6 7 8

optimal
c

Speed−ups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

P
ro

b
lem

 sp
ecificatio

n
s: n =

 16, M
 =

 2048.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE, c − COLROW.

Appendix D

Additional MirkDC Performance

Experiments

This appendix contains the results of several additional numerical experiments illustrating

the sequential and parallel performance of the four variants of MirkDC—MirkDC/COLROW,

MirkDC/SLF-QR, MirkDC/SLF-LU and MirkDC/RSCALE—described in
�
4.4.

D.1 Sequential MirkDC

Tables 4.7 and 4.8 in
�
4.4.1 list sixteen experiments designed to measure the relative perfor-

mance of the four variants of MirkDC on the Sun Ultra 2, and to demonstrate how sequential

performance is affected by certain problem and solution strategy parameters. The experiments

listed in Table 4.7 are not difficult numerically, in that each SWF-III problem can be solved

directly for the specified value of epsilon. The experiments listed in Table 4.8, on the other

hand, are more difficult numerically and each requires a form of parameter continuation to

achieve convergence. See
�
4.4.1 for details. This appendix contains numerical results for

experiments #5-#8 of each table. Figures summarizing the output of each experiment are in-

dexed in Tables D.1 and D.2. In most cases, the output of an experiment is summarized in

two figures: (1) overall and selected program segment execution times, and (2) subroutine call

and call-per-mesh profiles. The program segments profiled include five tasks comprising the

primary computational costs associated with MirkDC.

The MirkDC solution strategies used in experiments #5-#8 of Table 4.7 are identical to

those used in experiments #1-#4 of that table, respectively. Experiments #5-#8 differ only

in that the SWF-III problem solved is defined over a wider interval of integration (
� (� � �

198

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 199

Table D.1: Numerical results index for experiments #5-#8 of Table 4.7 in
�
4.4.1.

Results are shown
exp. #

in Figure(s) on page(s)

5 D.1, D.2 201

6 D.3, D.4 202

7 D.5, D.6 203

8 D.7, D.8 204

Table D.2: Numerical results index for experiments #5-#8 of Table 4.8 in
�
4.4.1.

Results are shown
exp. #

in Figure(s) on page(s)

5 D.9, D.10, D.17 205, 209

6 D.11, D.12, D.18 206, 209

7 D.13, D.14 207

8 D.15, D.16 208

as opposed to
� � � �

). Comparing pairwise Figures (4.27,D.1), (4.28,D.3), (4.30,D.5) and

(4.32,D.7), we see that all task execution times are moderately increased. Comparing pair-

wise Figures (4.26,D.2), (4.29,D.4), (4.31,D.6) and (4.33,D.8), we see that in most cases this

increase in execution time can be attributed to a moderate increase in both overall number

of subroutine calls and ABD system size. Other effects demonstrated in experiments #5-#8

include the substantial reduction in task execution times (accompanied by an increase in the

ratio of ABD matrix construction to factorization time) which can result upon switching to a

higher-order MIRK discretization scheme, and the moderate increase in task execution time

which can result upon imposing a stricter defect tolerance.

Experiments #5-#8 of Table 4.8 differ from experiments #1-#4 of that table in two respects.

First, the SWF-III problem solved is defined over a wider interval of integration (
� (� � �

as

opposed to
� � � ��

). Second, the continuation strategy differs. Specifically, in each of experi-

ments #5-#8, the first two continuation iterations utilize a target value for � approximately
� �

times larger than in experiments #1-#4. This change was necessary in order to achieve conver-

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 200

gence on the wider interval of integration. Due to the new continuation strategy, however, the

wider interval of integration no longer results in increased task execution times as was the case

in experiments #5-#8 of Table 4.7. Nevertheless, experiments #5-#8 of Table 4.8 still demon-

strate many of the other effects described above. Note that parameter continuation is necessary

for convergence in these experiments. For example, Figures D.17 and D.18 show the conver-

gence patterns that result when the SWF-III problems in experiments #5 and #6 are solved

using MirkDC/COLROW without continuation. MirkDC/COLROW no longer converges in

either of these experiments; instead it proceeds through a sequence of failed Newton iterations

followed by mesh doubling until the maximum number of subintervals is exceeded.

Finally, Figure D.15 shows that the ABD matrix construction time of MirkDC/COLROW

is greater than that of the other variants in experiment #8. This, of course, is an anomaly. When

MirkDC variants exhibit identical convergence patterns in a given experiment—as is always the

case in
�
4.4.1—each of the residual evaluation, defect estimation and ABD matrix construc-

tion task execution times should not be noticably different among variants. This is because the

algorithm for each of these tasks is identical among variants. Some care was taken to avoid

such anomalies by averaging timing results over 4-8 consecutive runs. Occasionally, however,

because of unusually high load on a time-shared machine, absolute execution times can be

consistently inflated over 4-8 consecutive runs. This certainly is the case in experiment #8 of

Table 4.8, and also in any other experiment presented in
�
4.4.1 where there is a noticable differ-

ence among variants in the residual evaluation, defect estimation or ABD matrix construction

task execution times.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 201

Figure D.1: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #5 of Table 4.7. The slightly wider disk spacing results in a small

increase in execution times over experiment #1. Compare to Figure 4.27, and compare the

profiles in Figures 4.26 and D.2.

r d c f s o
0

1

2

3

4

♣ ♣
♣ ♣

♣

♣♦ ♦
♦

♦

♦

♦♠ ♠
♠

♠
♠

♠♥ ♥
♥

♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

2

4

6

8

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.2: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in ex-

periment #5 of Table 4.7. Each variant succeeds in satisfying the specified �
defect. Profiles are

identical among variants.

r d c f s
0

50

100

150

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

21%

17%

10%
10%

10%

10%

10%

3%
3%3%

f (29 calls total)

10

20

40

80

160

320

640

2165

3633

4364

mesh

13%

13%

16%

14%

13%

13%

13%

ε
1

ε
2

ε
3

s (152 calls total)

10

20

40

80

160

320

640

2165

3633

4364

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 202

Figure D.3: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #6 of Table 4.7. Switching to a � th order MIRK scheme results in a

substantial reduction in execution times. Compare to Figure D.1, and compare the profiles in

Figures D.2 and D.4.

r d c f s o
0

0.05

0.1

0.15

♣
♣

♣

♣

♣

♣
♦

♦

♦

♦

♦

♦
♠

♠

♠

♠
♠

♠
♥

♥

♥
♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

0.1

0.2

0.3

0.4

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.4: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in ex-

periment #6 of Table 4.7. Each variant succeeds in satisfying the specified �
defect. Profiles are

identical among variants.

r d c f s
0

20

40

60

80

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

31%

23%

23%

8%

8%

8%

f (13 calls total)

10

20

40

94

118

129

mesh

29%

31%

31%

4%
3%3%

s (72 calls total)

10

20

40

94

118

129

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 203

Figure D.5: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #7 of Table 4.7. Switching to a stricter defect tolerance results in a

moderate increase in execution times. Compare to Figure D.3, and compare the profiles in

Figures D.4 and D.6.

r d c f s o
0

0.05

0.1

0.15

0.2

0.25

♣ ♣

♣

♣
♣

♣
♦ ♦

♦

♦

♦

♦
♠ ♠

♠

♠

♠

♠
♥ ♥

♥
♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

0.2

0.4

0.6

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.6: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in ex-

periment #7 of Table 4.7. Each variant succeeds in satisfying the specified �
defect. Profiles are

identical among variants.

r d c f s
0

20

40

60

80

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

31%

23%

23%

8%

8%

8%

f (13 calls total)

10

20

40

160

327

377

mesh

28%

30%

33%

5%

ε
1

ε
2

s (80 calls total)

10

20

40

160

327

377

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 204

Figure D.7: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #8 of Table 4.7. Switching to a
� th order MIRK scheme results in a

moderate reduction in execution times. Compare to Figure D.5, and compare the profiles in

Figures D.6 and D.8.

r d c f s o
0

0.02

0.04

0.06

0.08

0.1

0.12

♣

♣

♣

♣

♣

♣

♦

♦

♦
♦

♦

♦

♠

♠

♠

♠
♠

♠

♥

♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

0.1

0.2

0.3

0.4

0.5

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.8: Subroutine call and call-per-mesh profiles of the four variants of MirkDC in ex-

periment #8 of Table 4.7. Each variant succeeds in satisfying the specified �
defect. Profiles are

identical among variants.

r d c f s
0

20

40

60

80

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

33%

25%

25%

8%

8%

f (12 calls total)

10

20

40

112

132

mesh

27%

32%

35%

4%3%

s (75 calls total)

10

20

40

112

132

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 205

Figure D.9: Overall and selected program segment execution times, accumulated over all three

continuation iterations, of the four variants of MirkDC in experiment #5 of Table 4.8. Although

the disk spacing is wider than in experiment #1, the new continuation strategy employed in ex-

periment #5 actually results in a moderate decrease in execution times. Compare to Figure 4.36,

and compare the profiles in Figures 4.35 and D.10.

r d c f s o
0

2

4

6

8

♣
♣

♣ ♣

♣

♣♦
♦

♦

♦
♦

♦♠
♠

♠

♠

♠

♠♥
♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.10: Subroutine call and call-per-mesh profiles, accumulated over all three continua-

tion iterations, of the four variants of MirkDC in experiment #5 of Table 4.8. The first, second

and third continuation iteration terminates with a final mesh of 988, 1464 and 4752 subin-

tervals, respectively. Each variant succeeds in satisfying the specified �
defect at each iteration.

Profiles are identical among variants.

r d c f s
0

50

100

150

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

23%

23%

4% 4%
8%

27%

4%
4%

4%

f (26 calls total)

20

40

160

626

988

1464

2850

4149

4752

mesh

25%

23%

ε
1

ε
2

10%

31%

ε
3

ε
43%

s (138 calls total)

20

40

160

626

988

1464

2850

4149

4752

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 206

Figure D.11: Overall and selected program segment execution times, accumulated over all

three continuation iterations, of the four variants of MirkDC in experiment #6 of Table 4.8.

Switching to a � th order MIRK scheme results in a substantial reduction in execution times,

even with the stricter defect tolerance. Compare to Figure D.9, and compare the profiles in

Figures D.10 and D.12.

r d c f s o
0

0.2

0.4

0.6

0.8

♣
♣

♣

♣

♣

♣
♦

♦

♦

♦

♦

♦
♠

♠

♠

♠
♠

♠
♥

♥

♥
♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

0.5

1

1.5

2

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.12: Subroutine call and call-per-mesh profiles, accumulated over all three continua-

tion iterations, of the four variants of MirkDC in experiment #6 of Table 4.8. The first, second

and third continuation iteration terminates with a final mesh of 119, 169 and 478 subintervals,

respectively. Each variant succeeds in satisfying the specified �
defect at each iteration. Profiles

are identical among variants.

r d c f s
0

20

40

60

80

100

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

30%

5%

15%

35%

5%

5%
5%

f (20 calls total)

20

80

119

169

353

435

478

mesh

37%

3%

14%

37%

3%
3%

ε
1

s (97 calls total)

20

80

119

169

353

435

478

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 207

Figure D.13: Overall and selected program segment execution times, accumulated over all

three continuation iterations, of the four variants of MirkDC in experiment #7 of Table 4.8.

Switching to a stricter defect tolerance results in a moderate increase in execution times. Com-

pare to Figure D.11, and compare the profiles in Figures D.12 and D.14.

r d c f s o
0

1

2

3

4

♣
♣

♣

♣

♣

♣
♦

♦

♦

♦ ♦

♦
♠

♠

♠

♠
♠

♠
♥

♥

♥
♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

2

4

6

8

10

♣

♦

♠
♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.14: Subroutine call and call-per-mesh profiles, accumulated over all three continua-

tion iterations, of the four variants of MirkDC in experiment #7 of Table 4.8. The first, second

and third continuation iteration terminates with a final mesh of 625, 933 and 2434 subintervals,

respectively. Each variant succeeds in satisfying the specified �
defect at each iteration. Profiles

are identical among variants.

r d c f s
0

20

40

60

80

100

120

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

30%

5%

5%

15%

35%

5%
5%

f (20 calls total)

20

80

320

625

933

1964

2434

mesh

40%

3% ε
1

15%

37%

ε
2

ε
3

s (109 calls total)

20

80

320

625

933

1964

2434

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 208

Figure D.15: Overall and selected program segment execution times, accumulated over all

three continuation iterations, of the four variants of MirkDC in experiment #8 of Table 4.8.

Switching to a
� th order MIRK scheme results in a moderate reduction in execution times.

Compare to Figure D.13, and compare the profiles in Figures D.14 and D.16. (Note: The seem-

ingly higher ABD matrix construction time of MirkDC/COLROW is just a timing anomaly; see
�
D.1 for details.)

r d c f s o
0

0.2

0.4

0.6

0.8

♣

♣

♣

♣

♣

♣

♦

♦

♦

♦ ♦

♦

♠

♠

♠

♠ ♠

♠

♥

♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

0.5

1

1.5

2

2.5

3

♣

♦

♠ ♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.16: Subroutine call and call-per-mesh profiles, accumulated over all three continua-

tion iterations, of the four variants of MirkDC in experiment #8 of Table 4.8. The first, second

and third continuation iteration terminates with a final mesh of 151, 215 and 509 subintervals,

respectively. Each variant succeeds in satisfying the specified �
defect at each iteration. Profiles

are identical among variants.

r d c f s
0

20

40

60

80

100

120

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile

32%

5%

16%

37%

5%
5%

f (19 calls total)

20

80

151

215

448

509

mesh

41%

ε
1

15%

39%

ε
2

ε
3

s (108 calls total)

20

80

151

215

448

509

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 209

Figure D.17: Subroutine call and call-per-mesh profiles of MirkDC/COLROW in experi-

ment #5 of Table 4.8, when parameter continuation is not used. Without continuation,

MirkDC/COLROW does not converge. The code proceeds through a sequence of failed New-

ton iterations followed by mesh doubling until the maximum number of subintervals is ex-

ceeded; the defect estimation stage is never reached.

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile
3%

8%

7%

10%

12%

12% 12%

12%

12%

12%

f (130 calls total)

20

40

80

160

320

640

1280

2560

5120

10240

mesh

3%
9%

8%

11%

11%

11%

12%

12%

12%

12%

s (370 calls total)

20

40

80

160

320

640

1280

2560

5120

10240

mesh

♣ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure D.18: Subroutine call and call-per-mesh profiles of MirkDC/COLROW in experi-

ment #6 of Table 4.8, when parameter continuation is not used. Without continuation,

MirkDC/COLROW does not converge. The code proceeds through a sequence of failed New-

ton iterations followed by mesh doubling until the maximum number of subintervals is ex-

ceeded; the defect estimation stage is never reached.

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile
9%

12%

7%

10%

10%
11%

11%

11%

11%

11%

f (152 calls total)

20

40

80

160

320

640

1280

2560

5120

10240

mesh

8%

12%

8%

10%

10%
10%

10%

10%

10%

10%

s (416 calls total)

20

40

80

160

320

640

1280

2560

5120

10240

mesh

♣ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 210

Table D.3: Numerical results index for experiments in Table 4.10 in
�
4.4.2.

Results are shown
exp. #

in Figure(s) on page(s)

1 D.19, D.20 211

3 D.21, D.22 212

5 D.23, D.24, D.25 213, 214

6 D.26, D.27, D.28 215, 216

7 D.29, D.30, D.31 217, 218

9 D.32, D.34, D.35 219, 220

10 D.33, D.36, D.37 219, 221

D.2 Parallel MirkDC

Table 4.10 in
�
4.4.2 lists ten experiments demonstrating the parallel (and sequential) perfor-

mance of PMirkDC, the parallel implementation of MirkDC/RSCALE appearing in [Muir 03].

This appendix contains numerical results for experiments #1, #3, #5, #6, #7, #9 and #10. Fig-

ures summarizing the output of each experiment are indexed in Table D.3.

In experiments #1 and #3, the execution time required to solve Problem A of Table 4.9 is

substantially increased by choosing an uneccessarily fine initial mesh of � � � � � �
subin-

tervals. While execution times exhibit better speedups, these experiments are not realistic as

MirkDC does not require such a fine initial mesh to achieve convergence. In experiments #5, #6

and #7, more realistic computationally intensive experiments are performed by solving more

difficult SWF-III problems with the help of parameter continuation.

In experiments #9 and #10, we attempt to solve difficult SWF-III problems without using

parameter continuation. In both experiments, the convergence pattern of PMirkDC is shorter

than that of MirkDC, resulting in a substantial improvment in execution time even on a sequen-

tial machine.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 211

Figure D.19: Overall speedup and execution time of MirkDC and PMirkDC in experiment #1

of Table 4.10. Parallelism begins to pay-off at 2 processors.

1 2 3 4 5 6 7 8
0

10

20

30

40

50

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♥

♥

♥
♥

♥ ♥ ♥ ♥

of processors

se
co

nd
s

Absolute overall execution time

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 optimal
♥

Speedup

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC.

Figure D.20: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #1 of Table 4.10.

1 2 3 4
0

2

4

6

8

10

r

r

r
r

d d d d

c

c

c
c

f

f

f
f

s
↑

(1
7) s

s

s

o o o o

se
co

nd
s

PMIRKDC segment times

5 6 7 8
0

2

4

6

8

10

r r r r
d d d d

c c c c

f f f f

s
s

s so o o o

of processors

se
co

nd
s

1
2
3
4
5
6
7
8 optimal

r
optimal
d

optimal
c

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

f

1 2 3 4 5 6 7 8

optimal
s

PMIRKDC segment speedups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

1
0

2

4

6

8

10

r

d

c

f

s

o

of processors

se
co

nd
s

MIRKDC
segment

times

LEGEND: r − residual evaluation, d − defect estimation, c − ABD matrix construction,
f − ABD matrix factorization, s − ABD system backsolve, o − all sequential program segments.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 212

Figure D.21: Overall speedup and execution time of MirkDC and PMirkDC in experiment #3

of Table 4.10. The same problem is solved as in experiment #1, using the same solution

strategy, but this time on the Origin 2000 instead of the Challenge L. Execution times are

nearly 5 times faster (compare to Figure D.19). Parallelism begins to pay-off at 3 processors.

1 2 3 4 5 6 7 8
0

2

4

6

8

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣
♥↑

(9
)

♥

♥

♥
♥

♥ ♥ ♥

of processors

se
co

nd
s

Absolute overall execution time

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 optimal
♥

Speedup

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC.

Figure D.22: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #3 of Table 4.10. Compare to Challenge L results shown in Fig-

ure D.20.

1 2 3 4
0

1

2

3

r

r
r rd d d d

c

c
c

c

f

f
f

f

s
↑

(5
)

s

s

s

o o o o

se
co

nd
s

PMIRKDC segment times

5 6 7 8
0

1

2

3

r r r rd d d d
c c c c

f f f f

s
s s

s
o o o o

of processors

se
co

nd
s

1
2
3
4
5
6
7
8 optimal

r
optimal
d

optimal
c

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

f

1 2 3 4 5 6 7 8

optimal
s

PMIRKDC segment speedups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

1
0

1

2

3

r

d

c

f

s

o

of processors

se
co

nd
s

MIRKDC
segment

times

LEGEND: r − residual evaluation, d − defect estimation, c − ABD matrix construction,
f − ABD matrix factorization, s − ABD system backsolve, o − all sequential program segments.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 213

Figure D.23: Overall speedup and execution time of MirkDC and PMirkDC in experiment #5

of Table 4.10. Results are shown for the final continuation step only. Parallelism begins to

pay-off at 3 processors.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♥

♥

♥
♥

♥ ♥ ♥ ♥

of processors

se
co

nd
s

Absolute overall execution time

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 optimal
♥

Speedup

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC.

Figure D.24: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #5 of Table 4.10. Results are shown for the final continuation step

only.

1 2 3 4
0

0.1

0.2

0.3

0.4

r
r r rd

d d d

c

c
c c

f

f
f

f

s

s

s
s

o o o o

se
co

nd
s

PMIRKDC segment times

5 6 7 8
0

0.1

0.2

0.3

0.4

r r r rd d d d
c c c c

f f f f

s s s so o o o

of processors

se
co

nd
s

1
2
3
4
5
6
7
8 optimal

r
optimal
d

optimal
c

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

f

1 2 3 4 5 6 7 8

optimal
s

PMIRKDC segment speedups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

1
0

0.1

0.2

0.3

0.4

r
d

c

f

s

o

of processors

se
co

nd
s

MIRKDC
segment

times

LEGEND: r − residual evaluation, d − defect estimation, c − ABD matrix construction,
f − ABD matrix factorization, s − ABD system backsolve, o − all sequential program segments.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 214

Figure D.25: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-

ment #5 of Table 4.10. Results are accumulated over all five continuation steps.

r d c f s
0

50

100

150

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♥ call profile

14%

14%

3%

3%

3%

17% 3%

11%

3%

11%

3%

11%

3%

f (35 calls total)

10
20
80
320
493
542
658
723
795
874
961
1057
1162

mesh

14%

14%

3%
ε

1ε
2

15%
ε

3

18%

ε
4

16%

ε
5

12%

ε
6

s (154 calls total)

10
20
80
320
493
542
658
723
795
874
961
1057
1162

mesh

♣, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 215

Figure D.26: Overall speedup and execution time of MirkDC and PMirkDC in experiment #6

of Table 4.10. Results are shown for the final continuation step only. Parallelism begins to

pay-off at 3 processors.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♥↑

(7
)

♥

♥

♥
♥ ♥ ♥ ♥

of processors

se
co

nd
s

Absolute overall execution time

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 optimal
♥

Speedup

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC.

Figure D.27: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #6 of Table 4.10. Results are shown for the final continuation step

only.

1 2 3 4
0

1

2

3

r
r r rd d d d

c

c
c

c

f

f

f
f

s

s

s
s

o o o o

se
co

nd
s

PMIRKDC segment times

5 6 7 8
0

1

2

3

r r r rd d d d

c c c c

f f f f
s s s s

o o o o

of processors

se
co

nd
s

1
2
3
4
5
6
7
8 optimal

r
optimal
d

optimal
c

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

f

1 2 3 4 5 6 7 8

optimal
s

PMIRKDC segment speedups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

1
0

1

2

3

r

d

c

f
s

o

of processors

se
co

nd
s

MIRKDC
segment

times

LEGEND: r − residual evaluation, d − defect estimation, c − ABD matrix construction,
f − ABD matrix factorization, s − ABD system backsolve, o − all sequential program segments.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 216

Figure D.28: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-

ment #6 of Table 4.10. Results are accumulated over all five continuation steps.

r d c f s
0

50

100

150

200

250

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♥ call profile
5%

4%

4%
ε

1ε
2

4%

5%

ε
3

5%

ε
4

7%

33%

26%

f (73 calls total)

10
20
40
149
204
224
248
277
304
334
367
734
1468

mesh

7%

8%

8%

ε
1ε
2

6%

8%

ε
3

11% ε
4 6%

23%

21%

s (306 calls total)

10
20
40
149
204
224
248
277
304
334
367
734
1468

mesh

♣, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 217

Figure D.29: Overall speedup and execution time of MirkDC and PMirkDC in experiment #7

of Table 4.10. Results are shown for the final continuation step only. Parallelism begins to

pay-off at 3 processors.

1 2 3 4 5 6 7 8
0

2

4

6

8

10

♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣

♥↑

(1
2)

♥

♥

♥
♥

♥ ♥ ♥

of processors

se
co

nd
s

Absolute overall execution time

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8 optimal
♥

Speedup

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC.

Figure D.30: Speedup and execution time of selected program segments of MirkDC and

PMirkDC in experiment #7 of Table 4.10. Results are shown for the final continuation step

only.

1 2 3 4
0

1

2

3

4

5

r
r r rd d d d

c

c
c

c

f

f
f

f

s

s

s
s

o o o o

se
co

nd
s

PMIRKDC segment times

5 6 7 8
0

1

2

3

4

5

r r r rd d d d

c c c c

f f f f
s s s s

o o o o

of processors

se
co

nd
s

1
2
3
4
5
6
7
8 optimal

r
optimal
d

optimal
c

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8 optimal

f

1 2 3 4 5 6 7 8

optimal
s

PMIRKDC segment speedups

of processors

X
 fa

st
er

 th
an

 o
n

1
pr

oc
es

so
r

1
0

1

2

3

4

5

r

d

c

f
s

o

of processors

se
co

nd
s

MIRKDC
segment

times

LEGEND: r − residual evaluation, d − defect estimation, c − ABD matrix construction,
f − ABD matrix factorization, s − ABD system backsolve, o − all sequential program segments.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 218

Figure D.31: Subroutine call and call-per-mesh profiles of MirkDC and PMirkDC in experi-

ment #7 of Table 4.10. Results are accumulated over all five continuation steps.

r d c f s
0

50

100

150

200

250

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♥ call profile
6%

4%

4%
ε

1ε
2

4%

7%

ε
3

7%

ε
4

11%

26%

25%

f (72 calls total)

10
20
40
160
327
377
434
499
548
602
662
1324
2648

mesh

7%

8%

8%

ε
1ε
2

6%

8%

ε
3

9% ε
4

9%

20%

20%

s (307 calls total)

10
20
40
160
327
377
434
499
548
602
662
1324
2648

mesh

♣, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 219

Figure D.32: Overall and selected program segment execution times of MirkDC and PMirkDC

in experiment #9 of Table 4.10. This experiment is run sequentially on the Ultra 2. The vast

difference in execution times is explained by the subroutine call and call-per-mesh profiles

shown in Figures D.34 and D.35.

r d c f s other
0

1

2

3

4

5

6

♣

♣

♣

♣

♣

♣
♥

♥

♥ ♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15
♣

♥se
co

nd
s

Overall execution time

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

Figure D.33: Overall and selected program segment execution times of MirkDC and PMirkDC

in experiment #10 of Table 4.10. This experiment is run sequentially on the Ultra 2. The vast

difference in execution times is explained by the subroutine call and call-per-mesh profiles

shown in Figures D.36 and D.37.

r d c f s other
0

5

10

15

20

♣

♣

♣↑

(2
4)

♣

♣

♣

♥
♥

♥ ♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

20

40

60

♣

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 220

Figure D.34: Profiles of MirkDC in experiment #9 of Table 4.10. These differ significantly

from those of PMirkDC (Figure D.35).

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile
9%

4%

10%

9%

9%

ε
1

7%

26%

15%

10%

f (91 calls total)

10

20

40

80

160

257

312

624

1248

2496

mesh

5%
3%

12%

12%

13%

ε
1 4%

20%

16%

13%

s (385 calls total)

10

20

40

80

160

257

312

624

1248

2496

mesh

♣ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

Figure D.35: Profiles of PMirkDC in experiment #9 of Table 4.10. PMirkDC computes an

acceptable solution using fewer subroutine calls and fewer mesh subintervals than MirkDC

resulting in substantially reduced execution time (Figure D.32).

r d c f s
0

50

100

150

200

250

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile

13%

7%

15%

13%
13%

ε
1

7%

8%

22%

f (60 calls total)

10

20

40

80

160

257

312

343

686

mesh

7%

4%

18%

18%

19%

ε
1

4%

4%

23%

s (262 calls total)

10

20

40

80

160

257

312

343

686

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 221

Figure D.36: Profiles of MirkDC in experiment #10 of Table 4.10. These differ significantly

from those of PMirkDC (Figure D.37).

r d c f s
0

100

200

300

400

500

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile
4%

8%

9%

7%

7%

ε
1

6%

10% 7%

22%

10%

9%

f (125 calls total)

10

20

40

80

160

392

545

599

1198

2396

4792

9584

mesh

3%5%

11%

10%

10%

ε
1

5%
6% 8%

19%

12%

11%

s (492 calls total)

10

20

40

80

160

392

545

599

1198

2396

4792

9584

mesh

♣ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

Figure D.37: Profiles of PMirkDC in experiment #10 of Table 4.10. PMirkDC computes an

acceptable solution using fewer subroutine calls and fewer mesh subintervals than MirkDC

resulting in substantially reduced execution time (Figure D.33).

r d c f s
0

50

100

150

200

250

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile
7%

14%

16%

13% 13%

ε
1

20%

14%

f (69 calls total)

10

20

40

80

160

392

546

1092

mesh

5%

9%

19%

18% 18%

ε
1

11%

19%

s (281 calls total)

10

20

40

80

160

392

546

1092

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MIRKDC, ♥ − PMIRKDC, r − residual evaluation, d − defect estimation,
c − ABD matrix construction, f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 222

Table D.4: Numerical results index for experiments #3-#8 of Table 4.11 in
�
4.4.3.

Results are shown
exp. #

in Figure(s) on page(s)

3 D.38, D.39, D.40, D.41 223, 224

4 D.42, D.39, D.43, D.44 223, 225, 226

5 D.45, D.39, D.46, D.47, D.57, D.58 223, 227, 228, 234

6 D.48, D.49 229

7 D.50, D.51, D.52, D.53, D.59 230, 231, 235

8 D.54, D.51, D.55, D.56, D.60 230, 232, 233, 235

D.3 Problems Where MirkDC/SLF-LU Fails

Table 4.11 in
�
4.4.3 lists eight experiments designed to show how SLF-LU instability can

affect MirkDC performance; this appendix contains numerical results for experiments #3-#8

of that table. Figures summarizing the output of each experiment are indexed in Table D.4. In

most cases, the output of an experiment is summarized in four figures: (1) overall and selected

program segment execution times, (2) profiles of the stable variants of MirkDC, (3) profiles of

MirkDC/SLF-LU, and (4) execution time and accuracy of the three parallel ABD solvers when

solving selected systems extracted from the MirkDC/SLF-LUsolution.

Of particular interest in these results are Figures D.41, D.44, D.47 and D.53, where we com-

pare the execution time and accuracy of the three solvers. In each of these figures, there are

one or more examples where SLF-LU exhibits instability when used to solve a well-conditioned

ABD system—a system for which the other solvers have no difficulty finding a solution. Fig-

ure D.56 shows some results with poorly-conditioned ABD systems. Figures D.57-D.60 show

the effects of partitioning on solver accuracy. In each of these experiments, we solve and re-

solve a selected system using a varying number of partitions. Only the stability of SLF-LU

seems affected by the partitioning strategy. Surprisingly, single-partitioned SLF-LU is stable

on these problems.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 223

Figure D.38: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #3 of Table 4.11. The poor performance of MirkDC/SLF-LU relative

to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures D.39 and D.40.

r d c f s o
0

2

4

6

8

♣
♣

♣

♣
♣

♣
♦

♦

♦

♦

♦

♦

♠

♠

♠

♠↑

(1
0)

♠↑

(1
0)

♠
♥

♥

♥ ♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

20

25

30

35

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.39: Profiles of the stable variants of MirkDC (MirkDC/COLROW, MirkDC/SLF-QR

and MirkDC/RSCALE) in experiments #3, #4, and #5 of Table 4.11. Each of these variants

converges in all three experiments. Profiles are identical among variants and experiments.

r d c f s
0

50

100

150

200

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♥ call profile
7%ε

1

3%

31%

10%

17%

31%

f (59 calls total)

10

20

40

80

160

320

640

mesh

5%ε
1

3%

26%

8%

14%

42%

s (186 calls total)

10

20

40

80

160

320

640

mesh

♣, ♦, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 224

Figure D.40: Profiles of MirkDC/SLF-LU in experiment #3 of Table 4.11. This variant of

MirkDC converges in this experiment, albeit less efficiently than the other three variants (Fig-

ure D.39). Instability was detected in the SLF-LU factorization of one or more ABD systems

built on meshes of size 640 and 1280. This instability is investigated further in Figure D.41.

r d c f s
0

50

100

150

200

250

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
5%ε

1ε
2

22%

7%

11%
11%

22%

19%

f (83 calls total)

10

20

40

80

160

320

640

1280

2560

mesh

3%ε
1ε

2

17%

5%

8%

11%

26%

26%

s (287 calls total)

10

20

40

80

160

320

640

1280

2560

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure D.41: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #3 (Figure D.40).

Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU

exhibits instability when solving ABD systems 9@mesh 640 and 7@mesh 1280 (selections #3

and #6).

1 2 3 4 5 6 7
0

0.15

0.3

0.45
q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

15

20

q

q q

q
q q q

u
u

u

u

u

u

u
r

r
r

r
r r r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

1: 7@640

2: 8@640

3: 9@640

4: 5@1280

5: 6@1280

6: 7@1280

7: 8@1280

selection
index

(A
B

D
#@

m
esh of each selection)

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 225

Figure D.42: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #4 of Table 4.11. The poor performance of MirkDC/SLF-LU relative

to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures D.39 and D.43.

r d c f s o
0

2

4

6

8

♣
♣

♣

♣
♣

♣
♦

♦

♦

♦

♦

♦

♠

♠

♠

♠↑

(1
0) ♠

♠♥
♥

♥ ♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

20

25

30

35

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.43: Profiles of MirkDC/SLF-LU in experiment #4 of Table 4.11. This variant of

MirkDC does not converge in this experiment (i.e. � defect is not satisfied). Instability was de-

tected in the SLF-LU factorization of one or more ABD systems built on meshes of size 640,

1280, 2560, 5120 and 10240. This instability is investigated further in Figure D.44.

r d c f s
0

50

100

150

200

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
6%ε

1
3%

26%

9%

13%

12%

7%

19%

3%
ε

2

f (69 calls total)
10

20

40

80

160

320

640

1280

2560

5120

10240

mesh

5%ε
1

3%

26%

8%

13%

13%

10%

17%

3%
ε

2

s (189 calls total)
10

20

40

80

160

320

640

1280

2560

5120

10240

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 226

Figure D.44: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #4 (Figure D.43).

Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU

exhibits instability when solving ABD systems 8@mesh 640, 5@mesh 1280, 3-4@mesh 2560

and 1-2@mesh 5120.

1 2 3 4 5 6 7
0

0.15

0.3

0.45
q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

15

20

q q q
q

q q
qu u

u

u

u u

u

r r
r r

r r
r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

1: 5@640

2: 6@640

3: 7@640

4: 8@640

5: 3@1280

6: 4@1280

7: 5@1280

selection
index

(A
B

D
#@

m
esh of each selection)

8 9 10 11 12 13 14
0

0.5

1

1.5
q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

8 9 10 11 12 13 14
−20

−15

−10

−5

0

5

10

15

20

q q
q

q q

q q
u

u

u

u u

u

u

r r
r r r

r r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

8: 2@2560

9: 3@2560

10: 4@2560

11: 5@2560

12: 6@2560

13: 1@5120

14: 2@5120

selection
index

(A
B

D
#@

m
esh of each selection)

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 227

Figure D.45: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #5 of Table 4.11. The poor performance of MirkDC/SLF-LU relative

to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures D.39 and D.46.

r d c f s o
0

2

4

6

8

♣
♣

♣

♣
♣

♣
♦

♦

♦

♦

♦

♦

♠

♠

♠↑

(8
)

♠↑

(1
2)

♠↑

(9
)

♠
♥

♥

♥ ♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

20

25

30

35

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.46: Profiles of MirkDC/SLF-LU in experiment #5 of Table 4.11. This variant of

MirkDC does not converge in this experiment (i.e. � defect is not satisfied). Instability was de-

tected in the SLF-LU factorization of one or more ABD systems built on meshes of size 640,

1280, 2560, 5120 and 10240. This instability is investigated further in Figure D.47.

r d c f s
0

50

100

150

200

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
6%ε

1
3%

26%

9%

13%

12%

12%

7%

6%
4%

f (68 calls total)
10

20

40

80

160

320

640

1280

2560

5120

10240

mesh

5%ε
1

3%

25%

8%

12%

14%

14%

8%

7%
4%

s (198 calls total)
10

20

40

80

160

320

640

1280

2560

5120

10240

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 228

Figure D.47: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #5 (Figure D.46).

Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU

exhibits instability when solving ABD systems 8@mesh 640, 6-8@mesh 1280, 5@mesh 2560

and 4@mesh 5120.

1 2 3 4 5 6 7
0

0.15

0.3

0.45
q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

15

20

q
q

q
q

q
q q

u
u

u

u

u u u

r
r

r
r

r

r

r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

1: 6@640

2: 7@640

3: 8@640

4: 5@1280

5: 6@1280

6: 7@1280

7: 8@1280

selection
index

(A
B

D
#@

m
esh of each selection)

8 9 10 11 12 13 14
0

0.525

1.05

1.575 q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

8 9 10 11 12 13 14
−20

−15

−10

−5

0

5

10

15

20

q q
q q

q q
qu u

u

u

u u

u↑

(+
30

)

r r r
r

r r
r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

8: 2@2560

9: 3@2560

10: 4@2560

11: 5@2560

12: 2@5120

13: 3@5120

14: 4@5120

selection
index

(A
B

D
#@

m
esh of each selection)

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 229

Figure D.48: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #6 of Table 4.11. This is the only experiment in Table 4.11 where

SLF-LU does not exhibit instability. MirkDC/SLF-LU performance is comparable to the other

variants of MirkDC, given the relative speeds of the parallel ABD system solvers.

r d c f s o
0

10

20

30

40

♣

♣

♣

♣

♣

♣

♦

♦

♦
♦ ♦

♦

♠

♠

♠

♠ ♠

♠

♥

♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

20

40

60

80

100

120

♣

♦

♠ ♥se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.49: Profiles of the four variants of MirkDC in experiment #6 of Table 4.11. Each

variant converges in this experiment. Profiles are identical among variants.

r d c f s
0

50

100

150

200

250

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠, ♥ call profile
ε

1
ε

2ε
3ε

4

12%

7%

30%

24%

22%

f (76 calls total)

10

20

40

80

160

320

640

1280

2560

mesh

ε
1

ε
2ε

3ε
4

7%

4%

29%

27%

27%

s (299 calls total)

10

20

40

80

160

320

640

1280

2560

mesh

♣, ♦, ♠, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 230

Figure D.50: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #7 of Table 4.11. The poor performance of MirkDC/SLF-LU relative

to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures D.51 and D.52.

r d c f s o
0

10

20

30

40

♣

♣

♣

♣

♣

♣

♦

♦

♦
♦ ♦

♦

♠

♠

♠

♠ ♠

♠
♥

♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

20

40

60

80

100

120

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.51: Profiles of the stable variants of MirkDC (MirkDC/COLROW, MirkDC/SLF-

QR and MirkDC/RSCALE) in experiments #7 and #8 of Table 4.11. Each of these variants

converges in both experiments. Profiles are identical among variants and between experiments.

r d c f s
0

50

100

150

200

250

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♥ call profile
ε

1
ε

2ε
3ε

4

12%

7%

30%

24%

22%

f (76 calls total)

10

20

40

80

160

320

640

1280

2560

mesh

ε
1

ε
2ε

3ε
4

7%

4%

29%

27%

27%

s (299 calls total)

10

20

40

80

160

320

640

1280

2560

mesh

♣, ♦, ♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 231

Figure D.52: Profiles of MirkDC/SLF-LU in experiment #7 of Table 4.11. This variant of

MirkDC converges in this experiment, albeit less efficiently than the other three variants (Fig-

ure D.51). Instability was detected in the SLF-LU factorization of one or more ABD systems

built on meshes of size 640, 1280, 2560 and 5120. This instability is investigated further in

Figure D.53.

r d c f s
0

50

100

150

200

250

300

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
ε

1
ε

2ε
3ε

4

11%

6%

13%

35%

6%

23%

f (79 calls total)

10

20

40

80

160

320

640

1280

2560

5120

mesh

ε
1

ε
2ε

3ε
4

7%

4%

11%

38%

5%

28%

s (295 calls total)

10

20

40

80

160

320

640

1280

2560

5120

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure D.53: Execution time and accuracy of the three parallel ABD solvers when solving

selected systems extracted from the MirkDC/SLF-LU solution in experiment #7 (Figure D.52).

Each extracted ABD matrix is well-conditioned. Of the three ABD solvers, only SLF-LU

exhibits instability when solving ABD systems 10@mesh 640, 5@mesh 1280, 4-5@mesh 2560

and 2@mesh 5120.

1 2 3 4 5 6 7
0

0.45

0.9

1.35

q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

15

20

q

q

q

q
q

q

q

u

u

u

u

u

u↑

(+
27

)

u

r

r

r
r

r
r

r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

1: 9@640

2: 10@640

3: 4@1280

4: 5@1280

5: 4@2560

6: 5@2560

7: 2@5120

selection
index

(A
B

D
#@

m
esh of each selection)

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 232

Figure D.54: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #8 of Table 4.11. The poor performance of MirkDC/SLF-LU relative

to the other variants of MirkDC is explained by comparing the subroutine call and call-per-

mesh profiles in Figures D.51 and D.55.

r d c f s o
0

10

20

30

40

♣

♣

♣

♣

♣

♣

♦

♦

♦
♦ ♦

♦

♠

♠

♠↑

(4
4)

♠

♠

♠

♥

♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

20

40

60

80

100

120

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.55: Profiles of MirkDC/SLF-LU in experiment #8 of Table 4.11. This variant of

MirkDC does not converge in this experiment (i.e. � defect is not satisfied). Instability was de-

tected in the SLF-LU factorization of one or more ABD systems built on meshes of size 1280,

2560, 5120 and 10240. This instability is investigated further in Figure D.56.

r d c f s
0

50

100

150

200

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
ε

1ε
2ε

3ε
4

13%

7%

33%

9%

7%

6%

19%

f (69 calls total)
10

20

40

80

160

320

640

1280

2560

5120

10240

mesh

ε
1ε

2ε
3ε

4

10%

6%

40%

10%

7%

6%

14%

s (220 calls total)
10

20

40

80

160

320

640

1280

2560

5120

10240

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 233

Figure D.56: Execution time and accuracy of the three parallel ABD solvers when solving se-

lected systems extracted from the MirkDC/SLF-LU solution in experiment #8 (Figure D.55).

Although extracted ABD matrices 20-23@mesh 640 are poorly conditioned, each of the ABD

solvers computes a reasonably accurate solution to the respective systems. Extracted ABD

matrices built on meshes of size 1280, 2560, and 5120 are comparitively well-conditioned.

Of the three ABD solvers, only SLF-LU exhibits instability when solving ABD systems

6@mesh 1280, 5@mesh 2560 and 4@mesh 5120.

1 2 3 4 5 6 7
0

0.125

0.25

0.375
q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7
−20

−15

−10

−5

0

5

10

15

20

q q
q

q

q
q

qu u u
u

u u

u

r r
r

r
r

r
r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

1: 20@640

2: 21@640

3: 22@640

4: 23@640

5: 4@1280

6: 5@1280

7: 6@1280

selection
index

(A
B

D
#@

m
esh of each selection)

8 9 10 11 12 13 14
0

0.575

1.15

1.725
q

u
r

selection #

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

8 9 10 11 12 13 14
−20

−15

−10

−5

0

5

10

15

20

q
q q

q

q q
qu u

u

u

u u

u↑

(+
29

)

r r
r r

r r
r

recip. cond.

selection #

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

8: 2@2560

9: 3@2560

10: 4@2560

11: 5@2560

12: 2@5120

13: 3@5120

14: 4@5120

selection
index

(A
B

D
#@

m
esh of each selection)

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 234

Figure D.57: Execution time and accuracy of the three parallel ABD solvers when solving,

using 1-8 partitions, ABD system 5@mesh 2560 extracted from the MirkDC/SLF-LU solution

in experiment #5 (Figure D.46). Of the three ABD solvers, only SLF-LU exhibits instability

when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.

1 2 3 4 5 6 7 8
0

0.3

0.6

0.9
q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u

u↑

(+
25

)

u

u

u

u

u
u

r r r r
r

r r r

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 6, M

 = 2560.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure D.58: Execution time and accuracy of the three parallel ABD solvers when solving,

using 1-8 partitions, ABD system 4@mesh 5120 extracted from the MirkDC/SLF-LU solution

in experiment #5 (Figure D.46). Of the three ABD solvers, only SLF-LU exhibits instability

when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.

1 2 3 4 5 6 7 8
0

0.6

1.2

1.8
q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u

u↑

(+
45

)

u↑

(+
30

)

u↑

(+
28

)

u↑

(+
21

)

u

u

u

r r r r r r r r

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 6, M

 = 5120.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 235

Figure D.59: Execution time and accuracy of the three parallel ABD solvers when solving,

using 1-8 partitions, ABD system 10@mesh 640 extracted from the MirkDC/SLF-LU solution

in experiment #7 (Figure D.52). Of the three ABD solvers, only SLF-LU exhibits instability

when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.

1 2 3 4 5 6 7 8
0

0.075

0.15

0.225
q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q
q q q

q qu

u

u u u
u

u u

r r r r
r r r r

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n =

 6, M
 =

 640.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

Figure D.60: Execution time and accuracy of the three parallel ABD solvers when solving,

using 1-8 partitions, ABD system 6@mesh 1280 extracted from the MirkDC/SLF-LU solution

in experiment #8 (Figure D.55). Of the three ABD solvers, only SLF-LU exhibits instability

when using 2-8 partitions. Surprisingly, non-partitioned SLF-LU is stable on this problem.

1 2 3 4 5 6 7 8
0

0.15

0.3

0.45
q

u
r

of partitions

ab
so

lu
te

 (
se

c)

0

25

50

75

100

r/q

r/u

(predicted by op. counts)

re
la

tiv
e

(%
)

Execution time

1 2 3 4 5 6 7 8
−20

−15

−10

−5

0

5

10

15

20

q q q q q q q q
u

u

u

u

u

u
u u

r r r r r r r r

recip. cond.

of partitions

lo
g

(b
as

e
10

)
of

 a
lg

eb
ra

ic
 e

rr
or

Accuracy statistics

P
ro

b
lem

 sp
ecificatio

n
s: n = 6, M

 = 1280.

LEGEND: q − SLF−QR, u − SLF−LU, r − RSCALE.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 236

Table D.5: Numerical results index for experiments #3-#8 of Table 4.12 in
�
4.4.4.

Results are shown
exp. #

in Figure(s) on page(s)

3 D.61, D.62, D.63, D.64, D.65 237, 238, 239

4 D.66, D.67, D.68, D.69, D.70 240, 241, 242

5 D.71, D.72, D.73 243, 244

6 D.74, D.75, D.76, D.77 245, 246

7 D.78, D.79, D.80 247, 248

8 D.81, D.82, D.83, D.84, D.85 249, 250, 251

D.4 Problems Where Sequential MirkDC/RSCALE

Outperforms MirkDC/COLROW

Table 4.12 in
�
4.4.4 lists eight experiments on difficult SWF-III problems. In each experiment,

the convergence pattern of at least one variant of MirkDC differs from the others. This appendix

contains numerical results for experiments #3-#8 of that table. Figures summarizing the output

of each experiment are indexed in Table D.5.

The output of an experiment is summarized in a figure showing the overall and selected

program segment execution times of each variant of MirkDC, and two or more figures showing

the subroutine call and call-per-mesh profiles for each distinct convergence pattern. We note

in the figure caption when two or more variants share the same pattern, or when a pattern does

not lead to convergence.

Convergence is achieved by each variant in each experiment, except for MirkDC/SLF-LU

in experiment #4. In all but experiments #5 and #8, MirkDC/RSCALE converges faster than

the other variants, including MirkDC/COLROW. In experiments #5 and #8 MirkDC/COLROW

is marginally faster, even though the MirkDC/COLROW convergence sequence shows one or

more larger ABD systems than generated by MirkDC/RSCALE. (Compare profiles in Fig-

ures D.72 and D.73, and Figures D.82 and D.85.)

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 237

Figure D.61: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #3 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments. Compare the subroutine call and call-per-mesh profiles in Fig-

ures D.62, D.63, D.64 and D.65.

r d c f s o
0

20

40

60

♣

♣

♣

♣

♣

♣
♦

♦

♦

♦

♦

♦

♠

♠

♠

♠
♠

♠♥
♥

♥ ♥ ♥

♥

se
co

nd
s

Absolute execution time of program segments

0

50

100

150

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.62: Profiles of MirkDC/COLROW in experiment #3 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.65).

r d c f s
0

200

400

600

800

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile
5%

8%

10%

9%

9%

9% ε
1 4%

10%

11%

13%

9%

f (202 calls total)
10

20

40

80

160

320

412

493

986

1972

3944

7888

mesh

4%
6%

11%

11%

10%

10% ε
1 3%

10%

11%

12%

12%

s (670 calls total)
10

20

40

80

160

320

412

493

986

1972

3944

7888

mesh

♣ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 238

Figure D.63: Profiles of MirkDC/SLF-QR in experiment #3 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.65).

r d c f s
0

200

400

600

800

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♦ call profile
5%

7%

8%

8%

8%

8%
ε

1 3% 16%

3%

13%

9%

11%

f (236 calls total)
10

20

40

80

160

320

412

494

543

597

1194

2388

4776

mesh

4%
5%

10%

10%

9%

9%
ε

1 3%
15%

ε
2

13%

10%

12%

s (760 calls total)
10

20

40

80

160

320

412

494

543

597

1194

2388

4776

mesh

♦ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure D.64: Profiles of MirkDC/SLF-LU in experiment #3 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.65).

r d c f s
0

200

400

600

800

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
5%

7%

9%

8%

9%

9% ε
1 6%

14%

12%

12%

9%

f (215 calls total)
10

20

40

80

160

320

412

493

986

1972

3944

7888

mesh

4%
5%

10%

10%

9%

10% ε
1 4%

13%

11%

11%

11%

s (700 calls total)
10

20

40

80

160

320

412

493

986

1972

3944

7888

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 239

Figure D.65: Profiles of MirkDC/RSCALE in experiment #3 of Table 4.12. This variant of

MirkDC converges in this experiment, with a final mesh of size 2180. Compare these profiles

to those of the other variants shown in Figures D.62, D.63 and D.64.

r d c f s
0

200

400

600

800

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile
6%

9%

11%

10%

11%
11%

ε
1

9%

3%

17%

12%

f (174 calls total)
10

20

40

80

160

320

412

496

545

1090

2180

mesh

5%
7%

13%

13%

12%
12%

ε
1

7%

ε
2

16%

14%

s (567 calls total)
10

20

40

80

160

320

412

496

545

1090

2180

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 240

Figure D.66: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #4 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments. Compare the subroutine call and call-per-mesh profiles in Fig-

ures D.67, D.68, D.69 and D.70. Note that MirkDC/SLF-LU does not converge in this ex-

periment.

r d c f s o
0

20

40

60

80

100

♣

♣

♣

♣

♣

♣♦
♦

♦ ♦
♦

♦

♠

♠

♠↑

(1
07

)

♠

♠

♠
♥ ♥

♥ ♥ ♥ ♥

se
co

nd
s

Absolute execution time of program segments

0

50

100

150

200

250

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.67: Profiles of MirkDC/COLROW in experiment #4 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.70).

r d c f s
0

200

400

600

800

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile
5%

4%

9%

8%

8%

ε
2

17%

17%

12%

10%

9%

f (242 calls total)
10

20

40

80

160

350

407

447

894

1788

3576

7152

mesh

4%3%

9%

10%

10%

ε
2

13% 14%

13%

11%

12%

s (782 calls total)
10

20

40

80

160

350

407

447

894

1788

3576

7152

mesh

♣ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 241

Figure D.68: Profiles of MirkDC/SLF-QR in experiment #4 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.70).

r d c f s
0

200

400

600

800

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♦ call profile
7%

7%

14%

13%

13%
ε

2

ε
3

27%

14%

f (152 calls total)

10

20

40

80

160

350

406

446

892

1784

mesh

5%
4%

14%

15%

15%
ε

1
ε

2
ε

3

25%

17%

s (525 calls total)

10

20

40

80

160

350

406

446

892

1784

mesh

♦ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure D.69: Profiles of MirkDC/SLF-LU in experiment #4 of Table 4.12. This variant of

MirkDC does not converge in this experiment (i.e. � defect is not satisfied).

r d c f s
0

200

400

600

800

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
5%

4%

10%

9%

9%

ε
3

17%

14%

9%

11%

11%

f (226 calls total)
10

20

40

80

160

350

407

447

491

982

1964

3928

7856

mesh

4%3%

10%

11%

11%

ε
3

12%

13%

9%

13%

12%

s (732 calls total)
10

20

40

80

160

350

407

447

491

982

1964

3928

7856

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 242

Figure D.70: Profiles of MirkDC/RSCALE in experiment #4 of Table 4.12. This variant of

MirkDC converges in this experiment, with a final mesh of size 502. Compare these profiles to

those of the other variants shown in Figures D.67, D.68 and D.69.

r d c f s
0

200

400

600

800

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile
10%

9%

19%

18%

18%

5%

19%

ε
1

ε
2

f (113 calls total)

10

20

40

80

160

350

700

457

502

mesh

7%

6%

19%

20%
20%

4%

21%

ε
1

ε
2

s (392 calls total)

10

20

40

80

160

350

700

457

502

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 243

Figure D.71: Overall and selected program segment execution times of the four variants

of MirkDC in experiment #5 of Table 4.12. MirkDC/COLROW is marginally faster than

MirkDC/RSCALE with respect to overall execution time, however it generates larger ABD

systems. Compare the subroutine call and call-per-mesh profiles in Figures D.72 and D.73.

r d c f s o
0

10

20

30

40

50

60

♣

♣

♣ ♣

♣

♣
♦

♦

♦

♦

♦

♦
♠

♠

♠

♠

♠

♠♥
♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

50

100

150

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.72: Profiles of MirkDC/COLROW, MirkDC/SLF-QR and MirkDC/SLF-LU in ex-

periment #5 of Table 4.12. These three variants of MirkDC converge in this experiment, but

less efficiently than MirkDC/RSCALE (Figure D.73).

r d c f s
0

100

200

300

400

500

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♦, ♠ call profile
5%

4%

11%

6%

6%

6%

6%
6%

ε
1

10%

6%

8%

15%

7%

f (96 calls total)
10

20

40

80

160

320

640

1280

1408

1744

3488

2396

4792

9584

mesh

3%3%

10%

9%

7%

9%

9% 9%

ε
1

5%

9%

6%

13%

9%

s (455 calls total)
10

20

40

80

160

320

640

1280

1408

1744

3488

2396

4792

9584

mesh

♣, ♦, ♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 244

Figure D.73: Profiles of MirkDC/RSCALE in experiment #5 of Table 4.12. This variant of

MirkDC converges in this experiment, with a final mesh of size 4792. Compare these profiles

to those of the other variants shown in Figure D.72.

r d c f s
0

100

200

300

400

500

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile
6%

5%

13%

7%

7%

7%

7% 7%

ε
1

11%

7%

10%

14%

f (88 calls total)
10

20

40

80

160

320

640

1280

1408

1744

3488

2396

4792

mesh

4%3%

11%

10%

8%

10%

10%

10%

ε
1

5%

10%

6%

14%

s (406 calls total)
10

20

40

80

160

320

640

1280

1408

1744

3488

2396

4792

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 245

Figure D.74: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #6 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments. Compare the subroutine call and call-per-mesh profiles in Fig-

ures D.75, D.76 and D.77.

r d c f s o
0

2

4

6

8

10

♣

♣

♣

♣

♣

♣
♦

♦

♦

♦
♦

♦

♠

♠

♠

♠

♠

♠
♥

♥

♥ ♥
♥

♥

se
co

nd
s

Absolute execution time of program segments

0

5

10

15

20

25

30

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.75: Profiles of MirkDC/COLROW and MirkDC/SLF-LU in experiment #6 of Ta-

ble 4.12. These two variants of MirkDC converge in this experiment, but less efficiently than

either MirkDC/RSCALE or MirkDC/SLF-QR (Figures D.77 and D.76).

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣, ♠ call profile
9%

4%

10%

9%

9%

ε
1

7%

26%

15%

10%

f (91 calls total)

10

20

40

80

160

257

312

624

1248

2496

mesh

5%
3%

12%

12%

13%

ε
1 4%

20%

16%

13%

s (385 calls total)

10

20

40

80

160

257

312

624

1248

2496

mesh

♣, ♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 246

Figure D.76: Profiles of MirkDC/SLF-QR in experiment #6 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.77).

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♦ call profile
10%

5%

11%

10%

10%
ε

1 14%

29%

12%

f (84 calls total)

10

20

40

80

160

257

312

624

1248

mesh

5%
3%

13%

13%

13%
ε

1 10%

22%

19%

s (363 calls total)

10

20

40

80

160

257

312

624

1248

mesh

♦ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure D.77: Profiles of MirkDC/RSCALE in experiment #6 of Table 4.12. This variant of

MirkDC converges in this experiment, with a final mesh of size 686. Compare these profiles to

those of the other variants shown in Figures D.75 and D.76.

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile

13%

7%

15%

13%
13%

ε
1

7%

8%

22%

f (60 calls total)

10

20

40

80

160

257

312

343

686

mesh

7%

4%

18%

18%

19%

ε
1

4%

4%

23%

s (262 calls total)

10

20

40

80

160

257

312

343

686

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 247

Figure D.78: Overall and selected program segment execution times of the four variants of

MirkDC in experiment #7 of Table 4.12. MirkDC/RSCALE outperforms MirkDC/COLROW

in all program segments. Compare the subroutine call and call-per-mesh profiles in Fig-

ures D.79 and D.80.

r d c f s o
0

5

10

15

20

25

30

35

♣

♣

♣

♣

♣

♣

♦ ♦
♦

♦ ♦

♦

♠

♠

♠

♠↑

(3
6)

♠↑

(3
9)

♠

♥ ♥
♥ ♥ ♥

♥

se
co

nd
s

Absolute execution time of program segments

0

20

40

60

80

100

120

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.79: Profiles of MirkDC/COLROW in experiment #7 of Table 4.12. Profiles of

MirkDC/SLF-LU differ only slightly. These two variants of MirkDC converge in this experi-

ment, but less efficiently than either MirkDC/RSCALE or MirkDC/SLF-QR (Figure D.80).

r d c f s
0

100

200

300

400

500

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile
4%

8%

9%

7%

7%

ε
1

6%

10% 7%

22%

10%

9%

f (125 calls total)
10

20

40

80

160

392

545

599

1198

2396

4792

9584

mesh

3%5%

11%

10%

10%

ε
1

5%
6% 8%

19%

12%

11%

s (492 calls total)
10

20

40

80

160

392

545

599

1198

2396

4792

9584

mesh

♣ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 248

Figure D.80: Profiles of MirkDC/RSCALE in experiment #7 of Table 4.12. Profiles of

MirkDC/SLF-QR differ only slightly. These two variants of MirkDC converge in this ex-

periment, with a final mesh of size 1092. Compare these profiles to those of the other variants

shown in Figure D.79.

r d c f s
0

100

200

300

400

500

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile
7%

14%

16%

13% 13%

ε
1

20%

14%

f (69 calls total)

10

20

40

80

160

392

546

1092

mesh

5%

9%

19%

18% 18%

ε
1

11%

19%

s (281 calls total)

10

20

40

80

160

392

546

1092

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 249

Figure D.81: Overall and selected program segment execution times of the four variants

of MirkDC in experiment #8 of Table 4.12. MirkDC/COLROW is marginally faster than

MirkDC/RSCALE with respect to overall execution time, however it generates larger ABD

systems. Compare the subroutine call and call-per-mesh profiles in Figures D.82 D.83, D.84

and D.85.

r d c f s o
0

5

10

15

♣

♣

♣

♣
♣

♣

♦

♦

♦
♦

♦

♦

♠

♠

♠

♠ ♠

♠♥

♥

♥

♥

♥

♥

se
co

nd
s

Absolute execution time of program segments

0

10

20

30

40

♣

♦

♠

♥

se
co

nd
s

Overall execution time

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve, o − all other program segments.

Figure D.82: Profiles of MirkDC/COLROW in experiment #8 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.85).

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♣ call profile
6%

7%

4%

22%

20%

4%

11%

26%

f (54 calls total)

10

20

40

80

160

377

454

908

mesh

3%4%
3%

23%

27%

3%

7%

30%

s (249 calls total)

10

20

40

80

160

377

454

908

mesh

♣ call−per−mesh profiles

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 250

Figure D.83: Profiles of MirkDC/SLF-QR in experiment #8 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.85).

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♦ call profile
4%

5%
3%

16%

14%

18%

14%

3%

6%

17%

f (77 calls total)

10

20

40

80

160

368

736

512

563

1126

mesh

ε
13%ε

2

18%

19%

10%

18%

ε
3

4%

22%

s (344 calls total)

10

20

40

80

160

368

736

512

563

1126

mesh

♦ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Figure D.84: Profiles of MirkDC/SLF-LU in experiment #8 of Table 4.12. This variant

of MirkDC converges in this experiment, but less efficiently than MirkDC/RSCALE (Fig-

ure D.85).

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♠ call profile
3%4%ε

1

12%

11%

ε
2

4%

38%

11%

12%

f (99 calls total)

10

20

40

80

160

377

458

503

1006

2012

mesh

ε
13%ε

2

15%

17%

ε
3

3%
24%

11%

22%

s (395 calls total)

10

20

40

80

160

377

458

503

1006

2012

mesh

♠ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

APPENDIX D. ADDITIONAL MIRKDC PERFORMANCE EXPERIMENTS 251

Figure D.85: Profiles of MirkDC/RSCALE in experiment #8 of Table 4.12. This variant of

MirkDC converges in this experiment, with a final mesh of size 532. Compare these profiles to

those of the other variants shown in Figures D.82, D.83 and D.84.

r d c f s
0

100

200

300

400

program segment

to
ta

l n
um

be
r

of
 c

al
ls

♥ call profile
6%

8%

4%

24%

22%

12%

24%

ε
1

f (51 calls total)

10

20

40

80

160

374

748

532

mesh

3%4%
3%

23%

26%

8%

31%

ε
1

s (252 calls total)

10

20

40

80

160

374

748

532

mesh

♥ call−per−mesh profiles (ε < 2.5%)

LEGEND: ♣ − MirkDC/COLROW, ♦ − MirkDC/SLF−QR, ♠ − MirkDC/SLF−LU, ♥ − MirkDC/RSCALE,
r − residual evaluation, d − defect estimation, c − ABD matrix construction,

f − ABD matrix factorization, s − ABD system backsolve.

Appendix E

Fortran Source Listings

E.1 RSCALE
subroutine rscale (lftblk, array, nrwblk, nbloks, rgtblk,

* b, pivot, iflag, nparts, work)
c

double precision lftblk(1), array(1), rgtblk(1), b(1), work(1)
integer nrwblk, nbloks, pivot(1), iflag, nparts

c ***--***
c * This subroutine solves the linear system A x = b where *
c * A is an Almost Block Diagonal matrix of the form *
c * *
c * lftblk rgtblk *
c * array(,,1) *
c * array(,,2) *
c * . *
c * . *
c * . *
c * array(,,nbloks) *
c * *
c * lftblk and rgtblk are each nrwblkxnrwblk, array(,,k) *
c * is nrwblkx2*nrwblk, and array(,,k) and array(,,k+1) *
c * overlap by nrwblk columns. The linear system is square *
c * and of order (nbloks+1)*nrwblk. *
c * *
c * [Note: ABDs often arise in other forms. For example, *
c * lftblk and rgtblk may be uncoupled so that lftblk *
c * appears at the top of the matrix and rgtblk appears *
c * at the bottom. In this case, the ABD system first *
c * can be transformed into the correct form for input *
c * to ’rscale’ using an auxiliary routine included *
c * with this package. See ’couple’ for details. *
c * Alternatively, ’rscalc’, a modified version of *
c * ’rscale’ that incorporates ’couple’, can be used.] *
c * *
c * THE ALGORITHM: *
c * *
c * The system is decomposed and solved using a variant *
c * of the parallel Rescaling algorithm described in [1]. *

252

APPENDIX E. FORTRAN SOURCE LISTINGS 253

c * Parallelism is achieved by slicing the system into *
c * ’nparts’ partitions in such a way that each partition *
c * can be processed independently. Assuming at least one *
c * processor is available per partition, a speed-up of S *
c * (over sequential Rescaling) may be attained where *
c * *
c * 1 <= S < nparts, *
c * *
c * with S = 1 if nbloks < 2*nparts, *
c * and S ˜ nparts if nparts << nbloks/nparts. *
c * *
c * In other words, for systems of sufficiently high order, *
c * speed-up is approximately linear with respect to nparts *
c * when nparts is sufficiently small. Sample problems and *
c * timing benchmarks are included with this package. *
c * *
c * PARAMETERS: *
c * *
c * on entry *
c * *
c * lftblk [double precision(nrwblk,nrwblk)] *
c * The top left block of the ABD matrix. *
c * *
c * array [double precision(nrwblk,2*nrwblk,nbloks)] *
c * array(,,k) contains the k-th nrwblkx2*nrwblk *
c * block of the ABD matrix. *
c * *
c * nrwblk [integer] *
c * The number of rows in lftblk, array(,,k), *
c * and rgtblk. The number of columns in *
c * lftblk and rgtblk. There are 2*nrwblk *
c * columns in array(,,k). *
c * *
c * nbloks [integer] *
c * The number of nrwblkx2*nrwblk blocks *
c * in array(,,). *
c * *
c * rgtblk [double precision(nrwblk,nrwblk)] *
c * The top right block of the ABD matrix. *
c * *
c * b [double precision((nbloks+1)*nrwblk)] *
c * The right-hand side vector. *
c * *
c * pivot [integer((nbloks+1)*nrwblk)] *
c * Work space to hold the pivoting strategy. *
c * *
c * nparts [integer] *
c * The number of partitions to use in the *
c * decomposition and solve. *
c * *
c * work [double precision *
c * ((nbloks+2*nparts+1)*nrwblk**2)] *
c * Work space to hold fill-in and local *
c * storage for BLAS. *

APPENDIX E. FORTRAN SOURCE LISTINGS 254

c * *
c * on return *
c * *
c * lftblk, array, rgtblk, work *
c * The desired decomposition of the ABD matrix. *
c * *
c * [Note: If iflag = -1 the factorization is *
c * not complete.] *
c * *
c * nrwblk, nbloks *
c * Unchanged. *
c * *
c * b [double precision((nbloks+1)*nrwblk)] *
c * The solution vector (if iflag = 0). *
c * *
c * pivot [integer((nbloks+1)*nrwblk)] *
c * The pivoting strategy (if iflag = 0). *
c * *
c * iflag [integer] *
c * = 0 on normal return *
c * = -1 if the ABD matrix is singular *
c * *
c * [Note: Only exact singularity is detected; *
c * iflag = 0 is not a guarantee of well- *
c * conditioning. In the case where lftblk *
c * and rgtblk can be uncoupled, Lapack’s *
c * DGBTRF/DGBCON may be used to obtain a *
c * condition estimate for the ABD matrix. *
c * Subroutines are included in ABDpack for *
c * transforming the rscale-format matrix *
c * into the correct form for input into *
c * Lapack’s band routines. See ’uncple’ *
c * and ’mkband’ for details.] *
c * *
c * nparts [integer] *
c * Normally unchanged. If, however, the *
c * requested number of partitions would *
c * result in fewer than 2 blocks of array(,,) *
c * per partition (i.e. if nbloks < 2*nparts), *
c * the subroutine automatically resets nparts *
c * to 1 and uses non-partitioned Rescaling. *
c * *
c * SUBROUTINES CALLED: *
c * *
c * rscfa (lftblk, array, nrwblk, nbloks, rgtblk, *
c * pivot, iflag, nparts, work) *
c * *
c * Factors the ABD matrix using parallel Rescaling. *
c * Parameters are as described above. *
c * *
c * rscsl (lftblk, array, nrwblk, nbloks, rgtblk, *
c * b, pivot, nparts, work) *
c * *
c * Uses the factors returned by ’rscfa’ to perform *

APPENDIX E. FORTRAN SOURCE LISTINGS 255

c * forward elimination and back-solve on right-hand *
c * side b. Parameters are as described above. *
c * *
c * SOLVING FOR MULTIPLE RIGHT-HAND SIDES: *
c * *
c * ’rscale’ is called only once for a given system A x = b. *
c * If iflag = 0 the system is solved. In order to solve for *
c * a different right-hand side (i.e. A x = b’), ’rscsl’ is *
c * called directly. The arrays lftblk, array, rgtblk, work, *
c * and pivot contain the decomposition of A and pivoting *
c * strategy on return from ’rscale’ and therefore must not *
c * be altered between successive calls to ’rscsl’. b is *
c * the only parameter that may be changed. *
c * *
c * REFERENCES: *
c * *
c * [1] K.R. Jackson and R.N. Pancer, The parallel solution *
c * of ABD systems arising in numerical methods for *
c * BVPs for ODEs, University of Toronto, Department *
c * of Computer Science, Technical Report 255/91, 1992. *
c ***--***
c

call rscfa (lftblk, array, nrwblk, nbloks, rgtblk,
* pivot, iflag, nparts, work)

if (iflag .eq. 0) then
call rscsl (lftblk, array, nrwblk, nbloks, rgtblk,

* b, pivot, nparts, work)
end if

return
end

c--
subroutine rscfa (lftblk, array, nrwblk, nbloks, rgtblk,

* pivot, iflag, nparts, work)
c

double precision lftblk(1), array(1), rgtblk(1), work(1)
integer nrwblk, nbloks, pivot(1), iflag, nparts

c ***--***
c * This subroutine factors the ABD matrix defined in arrays *
c * lftblk, array, and rgtblk using a variant of the parallel *
c * Rescaling algorithm. On return, lftblk, array, rgtblk, *
c * work, and pivot contain the decomposition of the matrix *
c * and pivoting strategy used. See comments in subroutine *
c * ’rscale’ for further details. *
c ***--***

integer nsquar, wk1, wk2, wk3, wk4, minblk, remblk
c

iflag = 0
c ***--***
c * Use non-partitioned Rescaling if requested number *
c * of partitions would result in fewer than 2 blocks *
c * per partition. *
c ***--***

if (nbloks .lt. 2*nparts) then
nparts = 1

APPENDIX E. FORTRAN SOURCE LISTINGS 256

endif
c ***--***
c * Work-space allocation: *
c * right blocks - work(1)..work(wk2-1) *
c * 1st-level product blocks - work(wk2)..work(wk3-1) *
c * 2nd-level product block - work(wk3)..work(wk4-1) *
c * local storage for BLAS - work(wk4)..end *
c * *
c * Total requirement: nbloks*[nrwblkxnrwblk] *
c * + nparts*[nrwblkxnrwblk] *
c * + [nrwblkxnrwblk] *
c * + nparts*[nrwblkxnrwblk] *
c ***--***

nsquar = nrwblk**2
wk1 = 1
wk2 = wk1 + nbloks*nsquar
wk3 = wk2 + nparts*nsquar
wk4 = wk3 + nsquar

c ***--***
c * Calculate minimum number of blocks per partition *
c * Remaining blocks are distributed evenly among the *
c * first partitions. *
c ***--***

minblk = nbloks/nparts
remblk = nbloks - minblk*nparts

c ***--***
c * Three level factorization. The factorization is *
c * aborted immediatley if singularity is detected. *
c ***--***

call rscf1(array,work(wk1),work(wk2),nrwblk,pivot,iflag,
* minblk,remblk,nparts,work(wk4))

if (iflag .eq. 0) then
call rscf2(array,work(wk1),work(wk2),work(wk3),nrwblk,

* pivot,iflag,minblk,remblk,nparts,work(wk4))
if (iflag .eq. 0) then

call rscf3(lftblk,array,work(wk1),work(wk2),work(wk3),
* nrwblk,nbloks,rgtblk,pivot,iflag,nparts,work(wk4))

endif
endif

c ***--***
c * Set iflag to -1 if exact singularity was detected. *
c ***--***

if (iflag .ne. 0) then
iflag = -1

endif
return
end

c--
subroutine rscf1 (array, right, prodx1, nrwblk, pivot, iflag,

* minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), prodx1(nrwblk,nrwblk,1),
* blaws(nrwblk,nrwblk,1)

APPENDIX E. FORTRAN SOURCE LISTINGS 257

integer nrwblk, pivot(1), iflag, minblk, remblk, nparts
c ***--***
c * The following notation is used in the comments: *
c * *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R_k <=> right(1,1,k) *
c * S_k <=> prodx1(1,1,k) *
c * *
c * In addition, the affix ’ designates that the matrix is *
c * transformed at the first level of the factorization. *
c ***--***

integer nsquar, kpart, kblok, base, base1, top, info
c

nsquar = nrwblk**2
c ***--***
c * Each loop 20 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, right, prodx1, nrwblk, pivot, iflag,
C$& minblk, remblk, nparts, blaws, nsquar),
C$& LOCAL (kpart, kblok, base, base1, top, info)

do 20 kpart = 1, nparts
c ***--***
c * Rescaling starts at the second-last block-row *
c * of each partition. *
c ***--***

call partx(minblk,remblk,kpart,base,top)
base1 = base - 1

c ***--***
c * W_base1’ <- (W_base1 - V_base1) *
c ***--***

call DAXPY(nsquar,-1.d0,array(1,1,base1),1,
* array(1,nrwblk+1,base1),1)

c ***--***
c * W_base1’ <- LUfact(W_base1 - V_base1) *
c ***--***

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,base1),nrwblk,
* pivot(base1*nrwblk+1),iflag)

if (iflag .ne. 0) return
c ***--***
c * V_base1’ <- (W_base1 - V_base1)ˆ-1 V_base1 *
c ***--***

call DGETRS(’N’,nrwblk,nrwblk,array(1,nrwblk+1,base1),
* nrwblk,pivot(base1*nrwblk+1),
* array(1,1,base1),nrwblk,info)

c ***--***
c * S_kpart’ <- (V_base V_base1’)ˆT *
c * *
c * [Notes: 1. The transpose of the product is accumulated *
c * since Lapack’s DGEMM is faster multiplying in *
c * this mode when both matrices are dense. *
c * *
c * 2. After the last call to DGEMM, the resulting *
c * matrix must be transposed once.] *

APPENDIX E. FORTRAN SOURCE LISTINGS 258

c ***--***
call DGEMM(’T’,’T’,nrwblk,nrwblk,nrwblk,

* 1.d0,array(1,1,base1),nrwblk,
* array(1,1,base),nrwblk,
* 0.d0,prodx1(1,1,kpart),nrwblk)

c ***--***
c * Each partition is now processed sequentially *
c * from the third-last block row to the top. *
c ***--***

do 10 kblok = base-2, top, -1
c ***--***
c * R_kblok <- W_kblok *
c * *
c * [Note: The right block must be saved in order to *
c * transform subsequent right hand sides.] *
c ***--***

call DCOPY(nsquar,array(1,nrwblk+1,kblok),1,
* right(1,1,kblok),1)

c ***--***
c * W_kblok’ <- W_kblok(I + V_kblok+1’) - V_kblok *
c ***--***

call DCOPY(nsquar,array(1,1,kblok+1),1,
* blaws(1,1,kpart),1)

call maddi(’+’,nrwblk,blaws(1,1,kpart))
call DCOPY(nsquar,array(1,1,kblok),1,

* array(1,nrwblk+1,kblok),1)
call DGEMM(’N’,’N’,nrwblk,nrwblk,nrwblk,

* 1.d0,right(1,1,kblok),nrwblk,
* blaws(1,1,kpart),nrwblk,
* -1.d0,array(1,nrwblk+1,kblok),nrwblk)

c ***--***
c * W_kblok’ <- LUfact(W_kblok(I + V_kblok+1’) - V_kblok) *
c ***--***

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,kblok),
* nrwblk,pivot(kblok*nrwblk+1),iflag)

if (iflag .ne. 0) return
c ***--***
c * V_kblok’ <- (W_kblok(I + V_kblok+1’) *
c * - V_kblok)ˆ-1 V_kblok *
c ***--***

call DGETRS(’N’,nrwblk,nrwblk,array(1,nrwblk+1,kblok),
* nrwblk,pivot(kblok*nrwblk+1),
* array(1,1,kblok),nrwblk,info)

c ***--***
c * S_kpart’ <- V_kblok’ˆT S_kpart’ *
c ***--***

call DGEMM(’T’,’N’,nrwblk,nrwblk,nrwblk,
* 1.d0,array(1,1,kblok),nrwblk,
* prodx1(1,1,kpart),nrwblk,
* 0.d0,blaws(1,1,kpart),nrwblk)

call DCOPY(nsquar,blaws(1,1,kpart),1,
* prodx1(1,1,kpart),1)

10 continue
c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 259

c * The final product must be transposed. *
c ***--***

call mtran(nrwblk,prodx1(1,1,kpart))
c ***--***
c * If there was an odd number of multiplications, *
c * the final product also must be negated. *
c ***--***

if (mod(base-top,2) .ne. 0) then
call mnegv(nrwblk,prodx1(1,1,kpart))

end if
20 continue

c ***--***
c * The second-level array right blocks are computed. *
c * (This could be done concurrently.) *
c ***--***

do 30 kpart = 1, nparts - 1
call partx(minblk,remblk,kpart,base,top)

c ***--***
c * R_base <- W_base *
c ***--***

call DCOPY(nsquar,array(1,nrwblk+1,base),1,
* right(1,1,base),1)

c ***--***
c * W_base’ <- W_base(I + V_base+1’) *
c ***--***

call DCOPY(nsquar,array(1,1,base+1),1,
* blaws(1,1,kpart),1)

call maddi(’+’,nrwblk,blaws(1,1,kpart))
call DGEMM(’N’,’N’,nrwblk,nrwblk,nrwblk,

* 1.d0,right(1,1,base),nrwblk,
* blaws(1,1,kpart),nrwblk,
* 0.d0,array(1,nrwblk+1,base),nrwblk)

c ***--***
c * R_base-1 <- W_base(I + V_base+1’) *
c * *
c * [Notes: 1. R_base-1 is free at this point. It is the *
c * only right block that need not be saved. *
c * *
c * 2. W_base(I + V_base+1’) is stored in R_base-1 *
c * for use during second-level processing.] *
c ***--***

call DCOPY(nsquar,array(1,nrwblk+1,base),1,
* right(1,1,base-1),1)

30 continue
return
end

c--
subroutine rscf2 (array, right, prodx1, prodx2, nrwblk,

* pivot, iflag, minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), prodx1(nrwblk,nrwblk,1),
* prodx2(nrwblk,1), blaws(nrwblk,1)
integer nrwblk, pivot(1), iflag, minblk, remblk, nparts

APPENDIX E. FORTRAN SOURCE LISTINGS 260

c ***--***
c * The following notation is used in the comments: *
c * *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R_k <=> right(1,1,k) *
c * S_k <=> prodx1(1,1,k) *
c * T <=> prodx2(1,1) *
c * *
c * In addition, the affix ’/’’ designates that the *
c * matrix was/is transformed at the first/second level *
c * of the factorization. *
c ***--***

integer nsquar, kpart, nparts1, base, top, info
c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the factorization. *
c ***--***

if (nparts .eq. 1) return
c ***--***
c * Rescaling starts at the second-last block-row of *
c * the second-level array. *
c ***--***

nsquar = nrwblk**2
nparts1 = nparts - 1
call partx(minblk,remblk,nparts1,base,top)

c ***--***
c * W_base’’ <- (W_base’ - S_nparts-1’) *
c ***--***

call DAXPY(nsquar,-1.d0,prodx1(1,1,nparts1),1,
* array(1,nrwblk+1,base),1)

c ***--***
c * W_base’’ <- LUfact(W_base’ - S_nparts-1’) *
c ***--***

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,base),nrwblk,
* pivot(base*nrwblk+1),iflag)

if (iflag .ne. 0) return
c ***--***
c * S_nparts-1’’ <- (W_base’ - S_nparts-1’)ˆ-1 S_nparts-1’ *
c ***--***

call DGETRS(’N’,nrwblk,nrwblk,array(1,nrwblk+1,base),
* nrwblk,pivot(base*nrwblk+1),
* prodx1(1,1,nparts1),nrwblk,info)

c ***--***
c * T’’ <- (S_nparts’ S_nparts-1’’)ˆT *
c * *
c * [Notes: 1. The transpose of the product is accumulated *
c * since Lapack’s DGEMM is faster multiplying in *
c * this mode when both matrices are dense. *
c * *
c * 2. After the last call to DGEMM, the resulting *
c * matrix must be transposed once.] *
c ***--***

call DGEMM(’T’,’T’,nrwblk,nrwblk,nrwblk,
* 1.d0,prodx1(1,1,nparts1),nrwblk,

APPENDIX E. FORTRAN SOURCE LISTINGS 261

* prodx1(1,1,nparts),nrwblk,
* 0.d0,prodx2,nrwblk)

c ***--***
c * The second-level array is now processed sequentially *
c * from the third-last block row to the top. *
c ***--***

do 10 kpart = nparts-2, 1, -1
call partx(minblk,remblk,kpart,base,top)

c ***--***
c * W_base’’ <- W_base’(I + S_kpart+1’’) - S_kpart’ *
c * *
c * [Note: A copy of W_base’ was stored in R_base-1 during *
c * the first-level factorization.] *
c ***--***

call DCOPY(nsquar,prodx1(1,1,kpart+1),1,blaws,1)
call maddi(’+’,nrwblk,blaws)
call DCOPY(nsquar,prodx1(1,1,kpart),1,

* array(1,nrwblk+1,base),1)
call DGEMM(’N’,’N’,nrwblk,nrwblk,nrwblk,

* 1.d0,right(1,1,base-1),nrwblk,blaws,nrwblk,
* -1.d0,array(1,nrwblk+1,base),nrwblk)

c ***--***
c * W_base’’ <- LUfact(W_base’(I + S_kpart+1’’) - S_kpart’) *
c ***--***

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,base),nrwblk,
* pivot(base*nrwblk+1),iflag)

if (iflag .ne. 0) return
c ***--***
c * S_kpart’’ <- (W_base’(I + S_kpart+1’’) *
c * - S_kpart’)ˆ-1 S_kpart’ *
c ***--***

call DGETRS(’N’,nrwblk,nrwblk,array(1,nrwblk+1,base),
* nrwblk,pivot(base*nrwblk+1),
* prodx1(1,1,kpart),nrwblk,info)

c ***--***
c * T’’ <- S_kpart’’ˆT T’’ *
c ***--***

call DGEMM(’T’,’N’,nrwblk,nrwblk,nrwblk,
* 1.d0,prodx1(1,1,kpart),nrwblk,
* prodx2,nrwblk,0.d0,blaws,nrwblk)

call DCOPY(nsquar,blaws,1,prodx2,1)
10 continue

c ***--***
c * The final product must be transposed. *
c ***--***

call mtran(nrwblk,prodx2)
c ***--***
c * If there was an odd number of multiplications, *
c * the final product also must be negated. *
c ***--***

if (mod(nparts1,2) .ne. 0) then
call mnegv(nrwblk,prodx2)

end if
return

APPENDIX E. FORTRAN SOURCE LISTINGS 262

end
c--

subroutine rscf3 (lftblk, array, right, prodx1, prodx2, nrwblk,
* nbloks, rgtblk, pivot, iflag, nparts, blaws)

c
double precision lftblk(nrwblk,1), array(nrwblk,2*nrwblk,1),

* right(nrwblk,nrwblk,1), prodx1(nrwblk,nrwblk,1),
* prodx2(nrwblk,1), rgtblk(nrwblk,1), blaws(nrwblk,1)
integer nrwblk, nbloks, pivot(1), iflag, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * B_a, B_b <=> lftblk, rgtblk *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R_k <=> right(1,1,k) *
c * S_k <=> prodx1(1,1,k) *
c * T <=> prodx2(1,1) *
c * *
c * In addition, the affix ’/’’ designates that the *
c * matrix was (or at least could have been) transformed *
c * at the first/second level of the factorization. *
c * (In order to be consistent with other variants of *
c * this algorithm, all transformations to B_a and B_b *
c * occur at the third level of the factorization.) *
c ***--***

integer nsquar, info
c

nsquar = nrwblk**2
c ***--***
c * R_nbloks <- LUfact(W_nbloks) *
c * *
c * [Note: The LU factorization of W_nbloks is stored *
c * in R_nbloks for use below and for processing *
c * subsequent right hand sides. The pivot indices *
c * are stored in pivot(1..nrwblk).] *
c ***--***

call DCOPY(nsquar,array(1,nrwblk+1,nbloks),1,
* right(1,1,nbloks),1)

call DGETRF(nrwblk,nrwblk,right(1,1,nbloks),nrwblk,
* pivot,iflag)

if (iflag .ne. 0) return
c ***--***
c * The content of part of the third-level block-array *
c * depends on whether or not paritioning was done. *
c ***--***

if (nparts .gt. 1) then
c ***--***
c * If there is more than one partition, the third-level *
c * block-array is of the form [B_a’’ B_b *
c * T’’ W_nbloks], *
c * where B_a’’ = B_a’ + B_a’ S_1’’ *
c * = B_a’ (I + S_1’’) *
c * = (B_a + B_a V_1’) (I + S_1’’) *
c * = B_a (I + V_1’) (I + S_1’’) *

APPENDIX E. FORTRAN SOURCE LISTINGS 263

c * = B_a (I + V_1’ + S_1’’ + V_1’ S_1’’), *
c * *
c * and T’’ = +/-S_nparts’ S_nparts-1’’... S_1’’. *
c * *
c * Instead of directly factoring this 2x2 block array, *
c * the reduced array [B_a’’ - B_b W_nbloksˆ-1 T’’] is *
c * factored and its factorization is stored at the base *
c * of the last partition in W_nbloks. *
c * *
c * [Note: This cannot be done in the slf_lu or slf_qr *
c * algorithms since W_nbloks is often numerically *
c * singular at this level of the factorization.] *
c ***--***
c
c ***--***
c * W_nbloks <- B_a (I + V_1’ + S_1’’ + V_1’ S_1’’) *
c ***--***

call DCOPY(nsquar,prodx1,1,blaws,1)
call DGEMM(’N’,’N’,nrwblk,nrwblk,nrwblk,

* 1.d0,array,nrwblk,prodx1,nrwblk,
* 1.d0,blaws,nrwblk)

call DAXPY(nsquar,1.d0,array,1,blaws,1)
call maddi(’+’,nrwblk,blaws)
call DGEMM(’N’,’N’,nrwblk,nrwblk,nrwblk,

* 1.d0,lftblk,nrwblk,blaws,nrwblk,
* 0.d0,array(1,nrwblk+1,nbloks),nrwblk)

c ***--***
c * W_nbloks <- (B_a’’ - B_b W_nbloksˆ-1 T’’) *
c ***--***

call DCOPY(nsquar,prodx2,1,blaws,1)
call DGETRS(’N’,nrwblk,nrwblk,right(1,1,nbloks),

* nrwblk,pivot,blaws,nrwblk,info)
call DGEMM(’N’,’N’,nrwblk,nrwblk,nrwblk,

* -1.d0,rgtblk,nrwblk,blaws,nrwblk,
* 1.d0,array(1,nrwblk+1,nbloks),nrwblk)

c ***--***
c * W_nbloks <- LUfact(B_a’’ - B_b W_nbloksˆ-1 T’’) *
c ***--***

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,nbloks),nrwblk,
* pivot(nbloks*nrwblk+1),iflag)

else
c ***--***
c * If there is only one partition, the third-level *
c * block-array is of the form [B_a’ B_b *
c * S_1’ W_nbloks], *
c * where B_a’ = B_a + B_a V_1’, *
c * *
c * and S_1’ = +/-V_nbloks V_nbloks-1’... V_1’. *
c * *
c * Instead of directly factoring this 2x2 block array, *
c * the reduced array [B_a’ - B_b W_nbloksˆ-1 S_1’] is *
c * factored and its factorization is stored in W_nbloks. *
c ***--***
c

APPENDIX E. FORTRAN SOURCE LISTINGS 264

c ***--***
c * W_nbloks <- (B_a + B_a V_1’) *
c ***--***

call DCOPY(nsquar,lftblk,1,array(1,nrwblk+1,nbloks),1)
call DGEMM(’N’,’N’,nrwblk,nrwblk,nrwblk,

* 1.d0,lftblk,nrwblk,array,nrwblk,
* 1.d0,array(1,nrwblk+1,nbloks),nrwblk)

c ***--***
c * W_nbloks <- (B_a’ - B_b W_nbloksˆ-1 S_1’) *
c ***--***

call DCOPY(nsquar,prodx1,1,blaws,1)
call DGETRS(’N’,nrwblk,nrwblk,right(1,1,nbloks),

* nrwblk,pivot,blaws,nrwblk,info)
call DGEMM(’N’,’N’,nrwblk,nrwblk,nrwblk,

* -1.d0,rgtblk,nrwblk,blaws,nrwblk,
* 1.d0,array(1,nrwblk+1,nbloks),nrwblk)

c ***--***
c * W_nbloks <- LUfact(B_a’ - B_b W_nbloksˆ-1 S_1’) *
c ***--***

call DGETRF(nrwblk,nrwblk,array(1,nrwblk+1,nbloks),nrwblk,
* pivot(nbloks*nrwblk+1),iflag)

endif
return
end

c--
subroutine rscsl (lftblk, array, nrwblk, nbloks, rgtblk,

* b, pivot, nparts, work)
c

double precision lftblk(1), array(1), rgtblk(1), b(1), work(1)
integer nrwblk, nbloks, pivot(1), nparts

c ***--***
c * Given the factors of ABD matrix A computed by subroutine *
c * ’rscfa’ and stored in arrays lftblk, array, rgtblk, *
c * work and pivot, this subroutine solves the linear system *
c * A x = b. b is overwritten with x. See comments in *
c * subroutine ’rscale’ for further details. *
c ***--***

integer nsquar, wk1, wk2, wk3, wk4, minblk, remblk
c ***--***
c * Work-space allocation: *
c * right blocks - work(1)..work(wk2-1) *
c * 1st-level product blocks - work(wk2)..work(wk3-1) *
c * 2nd-level product block - work(wk3)..work(wk4-1) *
c * local storage for BLAS - work(wk4)..end *
c * *
c * Total requirement: nbloks*[nrwblkxnrwblk] *
c * + nparts*[nrwblkxnrwblk] *
c * + [nrwblkxnrwblk] *
c * + nparts*[nrwblkxnrwblk] *
c ***--***

nsquar = nrwblk**2
wk1 = 1
wk2 = wk1 + nbloks*nsquar
wk3 = wk2 + nparts*nsquar

APPENDIX E. FORTRAN SOURCE LISTINGS 265

wk4 = wk3 + nsquar
c ***--***
c * Calculate minimum number of blocks per partition *
c * Remaining blocks are distributed evenly among the *
c * first partitions. *
c ***--***

minblk = nbloks/nparts
remblk = nbloks - minblk*nparts

c ***--***
c * Three level forward elimination. *
c ***--***

call rscsf1(array,work(wk1),nrwblk,b,
* pivot,minblk,remblk,nparts,work(wk4))

call rscsf2(array,work(wk1),work(wk2),nrwblk,b,
* pivot,minblk,remblk,nparts,work(wk4))

call rscsf3(lftblk,array,work(wk1),nrwblk,rgtblk,
* b,b,pivot,minblk,remblk,nparts,work(wk4))

c ***--***
c * Three level back-solve. *
c ***--***

call rscsb3(array,work(wk1),work(wk2),work(wk3),
* nrwblk,nbloks,b,b,pivot,nparts,work(wk4))

call rscsb2(array,work(wk2),nrwblk,b,
* minblk,remblk,nparts,work(wk4))

call rscsb1(array,nrwblk,b,
* minblk,remblk,nparts,work(wk4))
return
end

c--
subroutine rscsf1 (array, right, nrwblk, phi,

* pivot, minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), phi(1), blaws(nrwblk,nrwblk,1)
integer nrwblk, pivot(1), minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R_k <=> right(1,1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * In addition, the affix ’ designates that the vector is *
c * transformed at the first level of the forward solve. *
c ***--***

integer kpart, kblok, base, base1, top, info
c ***--***
c * Each loop 30 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, right, nrwblk, phi,
C$& pivot, minblk, remblk, nparts, blaws),
C$& LOCAL (kpart, kblok, base, base1, top, info)

do 30 kpart = 1, nparts

APPENDIX E. FORTRAN SOURCE LISTINGS 266

c ***--***
c * Forward elimination starts at the second-last *
c * block-row of each partition. *
c ***--***

call partx(minblk,remblk,kpart,base,top)
base1 = base - 1

c ***--***
c * phi_base1’ <- (W_base1 - V_base1)ˆ-1 phi_base1 *
c ***--***

call DGETRS(’N’,nrwblk,1,array(1,nrwblk+1,base1),
* nrwblk,pivot(base1*nrwblk+1),
* phi(base1*nrwblk+1),nrwblk,info)

c ***--***
c * Each partition is now processed sequentially *
c * from the third-last block row to the top. *
c ***--***

do 10 kblok = base-2, top, -1
c ***--***
c * phi_kblok’ <- phi_kblok + R_kblok phi_kblok+1’ *
c ***--***

call DGEMV(’N’,nrwblk,nrwblk,
* 1.d0,right(1,1,kblok),nrwblk,
* phi((kblok+1)*nrwblk+1),1,
* 1.d0,phi(kblok*nrwblk+1),1)

c ***--***
c * phi_kblok’ <- (W_kblok(I + V_kblok+1’) *
c * - V_kblok)ˆ-1 phi_kblok’ *
c ***--***

call DGETRS(’N’,nrwblk,1,array(1,nrwblk+1,kblok),
* nrwblk,pivot(kblok*nrwblk+1),
* phi(kblok*nrwblk+1),nrwblk,info)

10 continue
c ***--***
c * phi_base is now computed. First, phi_top is stored *
c * in a temporary vector (temp <- phi_top). *
c ***--***

call DCOPY(nrwblk,phi(top*nrwblk+1),1,blaws(1,1,kpart),1)
c ***--***
c * The temporary vector is then processed sequentially *
c * from the second block-row to the bottom. *
c ***--***

do 20 kblok = top+1, base-1
c ***--***
c * temp <- phi_kblok’ - V_kblok’ temp *
c ***--***

call DCOPY(nrwblk,phi(kblok*nrwblk+1),1,
* blaws(1,2,kpart),1)

call DGEMV(’N’,nrwblk,nrwblk,
* -1.d0,array(1,1,kblok),nrwblk,
* blaws(1,1,kpart),1,1.d0,blaws(1,2,kpart),1)

call DCOPY(nrwblk,blaws(1,2,kpart),1,
* blaws(1,1,kpart),1)

20 continue
c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 267

c * phi_base’ <- phi_base - V_base temp *
c ***--***

call DGEMV(’N’,nrwblk,nrwblk,
* -1.d0,array(1,1,base),nrwblk,
* blaws(1,1,kpart),1,1.d0,phi(base*nrwblk+1),1)

30 continue
c ***--***
c * Finally, phi_base is updated in each partition by *
c * computing a vector sum across partition boundaries. *
c * (This could be done concurrently.) *
c ***--***

do 40 kpart = 1, nparts - 1
c ***--***
c * phi_base’ <- phi_base’ + R_base phi_base+1’ *
c ***--***

call partx(minblk,remblk,kpart,base,top)
call DGEMV(’N’,nrwblk,nrwblk,

* 1.d0,right(1,1,base),nrwblk,
* phi((base+1)*nrwblk+1),1,
* 1.d0,phi(base*nrwblk+1),1)

40 continue
return
end

c--
subroutine rscsf2 (array, right, prodx1, nrwblk, phi,

* pivot, minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), phi(1),
* prodx1(nrwblk,nrwblk,1), blaws(nrwblk,1)
integer nrwblk, pivot(1), minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R_k <=> right(1,1,k) *
c * S_k <=> prodx1(1,1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * In addition, the affix ’/’’ designates that the *
c * vector was/is transformed at the first/second level *
c * of the forward solve. *
c ***--***

integer kpart, base, basep, top, info
c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the forward solve. *
c ***--***

if (nparts .eq. 1) return
c ***--***
c * Forward elimination starts at the second-last *
c * block-row of the second-level array. *
c ***--***

call partx(minblk,remblk,nparts-1,base,top)

APPENDIX E. FORTRAN SOURCE LISTINGS 268

c ***--***
c * phi_base’’ <- (W_base’ - S_nparts-1’)ˆ-1 phi_base’ *
c ***--***

call DGETRS(’N’,nrwblk,1,array(1,nrwblk+1,base),
* nrwblk,pivot(base*nrwblk+1),
* phi(base*nrwblk+1),nrwblk,info)

c ***--***
c * Forward elimination now proceeds sequentially *
c * from the third-last block row to the top of the *
c * second-level array. *
c ***--***

do 10 kpart = nparts-2, 1, -1
basep = base
call partx(minblk,remblk,kpart,base,top)

c ***--***
c * phi_base’’ <- phi_base’ + W_base’ phi_basep’’ *
c * *
c * [Note: A copy of W_base’ was stored in R_base-1 during *
c * the first-level factorization.] *
c ***--***

call DGEMV(’N’,nrwblk,nrwblk,
* 1.d0,right(1,1,base-1),nrwblk,
* phi(basep*nrwblk+1),1,1.d0,phi(base*nrwblk+1),1)

c ***--***
c * phi_base’’ <- (W_base’(I + S_kpart+1’’) *
c * - S_kpart’)ˆ-1 phi_base’’ *
c ***--***

call DGETRS(’N’,nrwblk,1,array(1,nrwblk+1,base),
* nrwblk,pivot(base*nrwblk+1),
* phi(base*nrwblk+1),nrwblk,info)

10 continue
c ***--***
c * phi_base_nparts’’ is now computed. First, phi_base_1’’ *
c * is stored in a temporary vector (temp <- phi_base_1’’). *
c ***--***

call partx(minblk,remblk,1,base,top)
call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)

c ***--***
c * The temporary vector is then processed sequentially *
c * from the second block-row to the bottom of the *
c * second-level array. *
c ***--***

do 20 kpart = 2, nparts-1
call partx(minblk,remblk,kpart,base,top)

c ***--***
c * temp <- phi_base’’ - S_kpart’’ temp *
c ***--***

call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws(1,2),1)
call DGEMV(’N’,nrwblk,nrwblk,

* -1.d0,prodx1(1,1,kpart),nrwblk,
* blaws,1,1.d0,blaws(1,2),1)

call DCOPY(nrwblk,blaws(1,2),1,blaws,1)
20 continue

c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 269

c * phi_base_nparts’’ <- phi_base_nparts’ - S_nparts’ temp *
c ***--***

call partx(minblk,remblk,nparts,base,top)
call DGEMV(’N’,nrwblk,nrwblk,

* -1.d0,prodx1(1,1,nparts),nrwblk,
* blaws,1,1.d0,phi(base*nrwblk+1),1)
return
end

c--
subroutine rscsf3 (lftblk, array, right, nrwblk, rgtblk,

* beta, phi, pivot, minblk, remblk, nparts, blaws)
c

double precision lftblk(nrwblk,1), array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), rgtblk(nrwblk,1),
* beta(1), phi(1), blaws(nrwblk,1)
integer nrwblk, pivot(1), minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * B_a, B_b <=> lftblk, rgtblk *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R_k <=> right(1,1,k) *
c * beta <=> beta(1) (<=> phi_0) *
c * phi_k <=> phi(k*nrwblk+1), k >= 1 *
c * *
c * In addition, the affix ’/’’ designates that the *
c * vector was (or at least could have been) transformed *
c * at the first/second level of the forward solve. *
c * (In order to be consistent with other variants of *
c * this algorithm, all transformations to beta occur *
c * at the third level of the forward solve.) *
c ***--***

integer base, top, info
c

if (nparts .gt. 1) then
c ***--***
c * If there is more than one partition, the third-level *
c * system is of the form *
c * *
c * [B_a’’ B_b [y_a = [beta’’ *
c * T’’ W_nbloks] y_b] phi_base_nparts’’], *
c * *
c * where B_a’’, T’’, and phi_base_nparts’’ are as *
c * described in rscf3.f and rscsf2.f, and *
c * *
c * beta’’ = beta’ + B_a’ phi_base_1’’ *
c * = beta’ + (B_a + B_a V_1’) phi_base_1’’ *
c * = beta + B_a phi_1’ *
c * + (B_a + B_a V_1’) phi_base_1’’ *
c * = beta + B_a (phi_1’ + phi_base_1’’ *
c * + V_1’ phi_base_1’’) *
c * *
c * The right-hand side of the reduced nrwblkxnrwblk *
c * system for y_a (see rscf3.f) is then *

APPENDIX E. FORTRAN SOURCE LISTINGS 270

c * *
c * beta’’’ = beta’’ - B_b W_nbloksˆ-1 phi_base_nparts’’. *
c ***--***

call partx(minblk,remblk,1,base,top)
c ***--***
c * beta’’ <- beta + B_a (phi_1’ + phi_base_1’’ *
c * + V_1’ phi_base_1’’) *
c ***--***

call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DGEMV(’N’,nrwblk,nrwblk,1.d0,array,nrwblk,

* phi(base*nrwblk+1),1,1.d0,blaws,1)
call DAXPY(nrwblk,1.d0,phi(nrwblk+1),1,blaws,1)
call DGEMV(’N’,nrwblk,nrwblk,1.d0,lftblk,nrwblk,

* blaws,1,1.d0,beta,1)
c ***--***
c * beta’’’ <- beta’’ - B_b W_nbloksˆ-1 phi_base_nparts’’ *
c * *
c * [Note: The LU factorization and pivot indices *
c * for W_nbloks were stored in R_nbloks and *
c * pivot(1..nrwblk), respectively, during the *
c * third level of the factorization.] *
c ***--***

call partx(minblk,remblk,nparts,base,top)
call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DGETRS(’N’,nrwblk,1,right(1,1,base),nrwblk,

* pivot,blaws,nrwblk,info)
call DGEMV(’N’,nrwblk,nrwblk,-1.d0,rgtblk,nrwblk,

* blaws,1,1.d0,beta,1)
else

c ***--***
c * If there is only one partition, the third-level *
c * system is of the form *
c * *
c * [B_a’ B_b [y_a = [beta’ *
c * S_1’ W_nbloks] y_b] phi_base_1’], *
c * *
c * where B_a’, S_1’ are as described in rscf3.f, and *
c * *
c * beta’ = beta + B_a phi_1’ *
c * *
c * The right-hand side of the reduced nrwblkxnrwblk *
c * system for y_a (see rscf3.f) is then *
c * *
c * beta’’’ = beta’ - B_b W_nbloksˆ-1 phi_base_1’. *
c ***--***

call partx(minblk,remblk,1,base,top)
c ***--***
c * beta’ <- beta + B_a phi_1’ *
c ***--***

call DGEMV(’N’,nrwblk,nrwblk,1.d0,lftblk,nrwblk,
* phi(nrwblk+1),1,1.d0,beta,1)

c ***--***
c * beta’’’ <- beta’ - B_b W_nbloksˆ-1 phi_base_1’ *
c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 271

call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DGETRS(’N’,nrwblk,1,right(1,1,base),nrwblk,

* pivot,blaws,nrwblk,info)
call DGEMV(’N’,nrwblk,nrwblk,-1.d0,rgtblk,nrwblk,

* blaws,1,1.d0,beta,1)
endif

return
end

c--
subroutine rscsb3 (array, right, prodx1, prodx2, nrwblk,

* nbloks, beta, phi, pivot, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1),
* right(nrwblk,nrwblk,1), prodx1(nrwblk,nrwblk,1),
* prodx2(nrwblk,1), beta(1), phi(1), blaws(nrwblk,1)
integer nrwblk, nbloks, pivot(1), nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * R_k <=> right(1,1,k) *
c * S_k <=> prodx1(1,1,k) *
c * T <=> prodx2(1,1) *
c * beta <=> beta(1) (<=> phi_0) *
c * phi_k <=> phi(k*nrwblk+1), k >= 1 *
c * *
c * Since [beta; phi] is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> beta *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’’ designates that the solution *
c * vector is obtained at the third level of the back-solve. *
c ***--***

integer info
c ***--***
c * First y_a’’’ is obtained by solving the reduced system *
c * *
c * [Ba’’ - Bb W_nbloksˆ-1 T’’] y_a’’’ = beta’’’ or *
c * [Ba’ - Bb W_nbloksˆ-1 S_1’] y_a’’’ = beta’’’ *
c * *
c * if nparts > 1, or nparts = 1, respectively. *
c * *
c * In either case, the factorization and pivot indices *
c * for the reduced system are stored in W_nbloks and *
c * pivot_nbloks, respectively. *
c * *
c * Note that y_a’’’ _is not_ y_a. Rescaling results in *
c * a change of variable which is undone at levels 2 and 1 *
c * of the back-solve. *
c ***--***

call DGETRS(’N’,nrwblk,1,array(1,nrwblk+1,nbloks),nrwblk,
* pivot(nbloks*nrwblk+1),beta(1),nrwblk,info)

APPENDIX E. FORTRAN SOURCE LISTINGS 272

c ***--***
c * Next, y_b’’’ is obtained from *
c * *
c * W_nbloks y_b’’’ = phi_nbloks’’ - T’’ y_a’’’ or *
c * W_nbloks y_b’’’ = phi_nbloks’ - S_1’ y_a’’’ *
c * *
c * if nparts > 1, or nparts = 1, respectively. *
c * *
c * Note that y_b’’’ _is_ y_b. Rescaling at levels 1 and 2 *
c * of the factorization did not change y_b. *
c ***--***

if (nparts .gt. 1) then
call DGEMV(’N’,nrwblk,nrwblk,-1.d0,prodx2,nrwblk,

* beta,1,1.d0,phi(nbloks*nrwblk+1),1)
else

call DGEMV(’N’,nrwblk,nrwblk,-1.d0,prodx1,nrwblk,
* beta,1,1.d0,phi(nbloks*nrwblk+1),1)

endif
call DGETRS(’N’,nrwblk,1,right(1,1,nbloks),nrwblk,

* pivot,phi(nbloks*nrwblk+1),nrwblk,info)
return
end

c--
subroutine rscsb2 (array, prodx1, nrwblk, phi,

* minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1), phi(1),
* prodx1(nrwblk,nrwblk,1), blaws(nrwblk,1)
integer nrwblk, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * S_k <=> prodx1(1,1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * Since phi is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> phi_0 (<=> beta in rscsb3.f) *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’’/’’ designates that the *
c * solution vector was/is obtained at the third/second *
c * level of the back-solve. *
c ***--***

integer kpart, base, basep, top
c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the back-solve. *
c ***--***

if (nparts .eq. 1) return
c ***--***
c * Back-solve starts at the first block-row of the *

APPENDIX E. FORTRAN SOURCE LISTINGS 273

c * second-level system and proceeds downward sequentially *
c * to the second-last block-row. *
c ***--***

base = 0
do 10 kpart = 1, nparts-1

basep = base
call partx(minblk,remblk,kpart,base,top)

c ***--***
c * y_base’’ <- phi_base - S_kpart y_basep’’ *
c ***--***

call DGEMV(’N’,nrwblk,nrwblk,
* -1.d0,prodx1(1,1,kpart),nrwblk,
* phi(basep*nrwblk+1),1,1.d0,
* phi(base*nrwblk+1),1)

c ***--***
c * The change of variable due to second-level rescaling *
c * is now undone: y_basep’’ <- y_basep’’ - y_base’’ *
c ***--***

call DAXPY(nrwblk,-1.d0,phi(base*nrwblk+1),1,
* phi(basep*nrwblk+1),1)

10 continue
return
end

c--
subroutine rscsb1 (array, nrwblk, phi,

* minblk, remblk, nparts, blaws)
c

double precision array(nrwblk,2*nrwblk,1), phi(1),
* blaws(nrwblk,nrwblk,1)
integer nrwblk, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * V_k, W_k <=> array(1,1,k), array(1,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * Since phi is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> phi_0 (<=> beta in rscsb3.f) *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’/’ designates that the *
c * solution vector was/is obtained at the second/first *
c * level of the back-solve. *
c ***--***

integer kpart, kblok, base, top
c ***--***
c * Each loop 20 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, nrwblk, phi,
C$& minblk, remblk, nparts, blaws),
C$& LOCAL (kpart, kblok, base, top)

APPENDIX E. FORTRAN SOURCE LISTINGS 274

do 20 kpart = 1, nparts
c ***--***
c * Back-solve starts at the first block-row of each *
c * partition and proceeds downward sequentially to *
c * the second-last block-row. *
c ***--***

call partx(minblk,remblk,kpart,base,top)
do 10 kblok = top, base-1

c ***--***
c * y_kblok’ = phi_kblok - V_kblok y_kblok-1’ *
c ***--***

call DGEMV(’N’,nrwblk,nrwblk,
* -1.d0,array(1,1,kblok),nrwblk,
* phi((kblok-1)*nrwblk+1),1,1.d0,
* phi(kblok*nrwblk+1),1)

c ***--***
c * The change of variable due to first-level rescaling *
c * is now undone: y_kblok-1’ <- y_kblok-1’ - y_kblok’ *
c ***--***

call DAXPY(nrwblk,-1.d0,phi(kblok*nrwblk+1),1,
* phi((kblok-1)*nrwblk+1),1)

10 continue
20 continue

return
end

c--
subroutine maddi (sgn, n, A)

c
character*1 sgn
double precision A(1)
integer n

c ***--***
c * ’maddi’ overwrites A with (I + A) if sgn .eq. ’+’ or *
c * (I - A) if sgn .eq. ’-’. *
c * *
c * on entry *
c * *
c * sgn [character*1] *
c * ’+’ or ’-’ as above. *
c * *
c * n [integer] *
c * The (implicit) number of rows and columns *
c * in A. A is accessed as a 1D array inside *
c * this subroutine. *
c * *
c * A [double precision(n**2)] *
c * The matrix to be transformed. *
c * *
c * on return *
c * *
c * sgn [character*1] *
c * Unchanged. *
c * *
c * n [integer] *

APPENDIX E. FORTRAN SOURCE LISTINGS 275

c * Unchanged. *
c * *
c * A [double precision(n**2)] *
c * Overwritten with either (I + A) or (I - A). *
c ***--***

logical plus, minus, LSAME
integer i, k, nsquar

c
nsquar = n**2
plus = LSAME (sgn, ’+’)
minus = LSAME (sgn, ’-’)
if (plus) then

do 10 k = 1, n
i = (k-1)*n + k
A(i) = A(i) + 1.d0

10 continue
else if (minus) then

call mnegv (n, A)
do 20 k = 1, n

i = (k-1)*n + k
A(i) = A(i) + 1.d0

20 continue
else

write(6,*) ’ *** maddi: sgn not understood ’
end if

return
end

c--
subroutine mnegv (n, A)

c
double precision A(1)
integer n

c ***--***
c * ’mnegv’ overwrites A with -A. *
c * *
c * on entry *
c * *
c * n [integer] *
c * The (implicit) number of rows and columns *
c * in A. A is accessed as a 1D array inside *
c * this subroutine. *
c * *
c * A [double precision(n**2)] *
c * The matrix to be negated. *
c * *
c * on return *
c * *
c * n [integer] *
c * Unchanged. *
c * *
c * A [double precision(n**2)] *
c * Overwritten with -A. *
c ***--***

integer k, nsquar

APPENDIX E. FORTRAN SOURCE LISTINGS 276

c
nsquar = n**2
do 10 k = 1, nsquar

A(k) = - A(k)
10 continue

return
end

c--
subroutine mtran (n, A)

c
double precision A(n,1)
integer n

c ***--***
c * ’mtran’ overwrites A with transpose(A). *
c * *
c * on entry *
c * *
c * n [integer] *
c * The number of rows and columns in A. *
c * (If A is dimensioned as a 2D array in *
c * the calling (sub) program, n must be the *
c * leading dimension.) *
c * *
c * A [double precision(n,n)] *
c * The matrix to be transposed. *
c * *
c * on return *
c * *
c * n [integer] *
c * Unchanged. *
c * *
c * A [double precision(n,n)] *
c * The transpose of A. *
c ***--***

double precision temp
integer i, j

c
do 20 j = 1, n

do 10 i = j+1, n
temp = A(i,j)
A(i,j) = A(j,i)
A(j,i) = temp

10 continue
20 continue

return
end

c--
subroutine partx (minblk, remblk, k, base, top)

c
integer minblk, remblk, k, base, top

c ***--***
c * ’partx’ calculates the index of the base and top block *
c * of the k-th partition. The indexing scheme assumes that *
c * nbloks >= 2*nparts, so minblk >= 2 and remblk >= 0. *

APPENDIX E. FORTRAN SOURCE LISTINGS 277

c * *
c * on entry *
c * *
c * minblk [integer] *
c * minimum number of blocks/partition *
c * (minblk = nbloks/nparts) *
c * *
c * remblk [integer] *
c * first remblk partitions have minblk+1 blocks *
c * (remblk = nbloks - minblk*nparts) *
c * *
c * k [integer] *
c * *
c * on return *
c * *
c * base [integer] *
c * index of base block of k-th partition *
c * *
c * top [integer] *
c * index of top block of k-th partition *
c ***--***

integer khigh, klow
c

if (k .le. remblk) then
khigh = k
klow = 0

else
khigh = remblk
klow = k - khigh

endif
base = khigh*(minblk+1) + klow*minblk
top = base - minblk + 1
if (k .le. remblk) then

top = top - 1
endif

return
end

APPENDIX E. FORTRAN SOURCE LISTINGS 278

E.2 SLF-LU

subroutine slf_lu (lftblk, array, nrwblk, nbloks, rgtblk,
* b, pivot, iflag, nparts, work)

c
double precision lftblk(1), array(1), rgtblk(1), b(1), work(1)
integer nrwblk, nbloks, pivot(1), iflag, nparts

c ***--***
c * This subroutine solves the linear system A x = b where *
c * A is an Almost Block Diagonal matrix of the form *
c * *
c * lftblk rgtblk *
c * a *
c * bgnblk r *
c * r *
c * a a *
c * y r *
c * (,,1) r *
c * a . *
c * y . *
c * (,,2) . *
c * a *
c * r *
c * r *
c * a *
c * y endblk *
c * (,,nbloks-1) *
c * *
c * lftblk and rgtblk are each nrwblkxnrwblk, array(,,k) *
c * is 2*nrwblkxnrwblk, k = 1..nbloks, endblk/bgnblk alias *
c * the upper/lower nrwblkxnrwblk block of array(,,nbloks), *
c * bgnblk overlaps the first nrwblk rows of array(,,1), *
c * {[array(,,k) array(,,k+1)], k = 1..nbloks-2} overlap *
c * by nrwblk rows each, and endblk overlaps the last nrwblk *
c * rows of array(,,nbloks-1). The linear system is square *
c * and of order (nbloks+1)*nrwblk. *
c * *
c * [Note: ABDs often arise in other forms. For example, *
c * lftblk and rgtblk may be uncoupled so that lftblk *
c * appears at the top of the matrix and rgtblk appears *
c * at the bottom. Also, the blocks in array(,,) are *
c * often arranged so that array(,,k) holds the left *
c * and right blocks in block-row k. In these cases, *
c * the ABD system first can be transformed into the *
c * correct form for input to ’slf_lu’ using auxiliary *
c * routines included with this package. See ’couple’ *
c * and ’rotcw’ for details. Alternatively, ’slfluc’, *
c * a modified version of ’slf_lu’ that incorporates *
c * both ’couple’ and ’rotcw’, can be used.] *
c * *
c * THE ALGORITHM: *
c * *
c * The system is decomposed and solved using a variant *
c * of the parallel SLF-LU algorithm described in [1]. *

APPENDIX E. FORTRAN SOURCE LISTINGS 279

c * Parallelism is achieved by slicing the system into *
c * ’nparts’ partitions in such a way that each partition *
c * can be processed independently. Assuming at least one *
c * processor is available per partition, a speed-up of S *
c * (over sequential SLF-LU) may be attained where *
c * *
c * 1 <= S < nparts, *
c * *
c * with S = 1 if nbloks < 2*nparts, *
c * and S ˜ nparts if nparts << nbloks/nparts. *
c * *
c * In other words, for systems of sufficiently high order, *
c * speed-up is approximately linear with respect to nparts *
c * when nparts is sufficiently small. Sample problems and *
c * timing benchmarks are included with this package. *
c * *
c * PARAMETERS: *
c * *
c * on entry *
c * *
c * lftblk [double precision(nrwblk,nrwblk)] *
c * The top left block of the ABD matrix. *
c * *
c * array [double precision(2*nrwblk,nrwblk,nbloks)] *
c * array(,,k), k = 1..nbloks-1, contains the *
c * k-th 2*nrwblkxnrwblk block of the ABD matrix *
c * as described above. array(,,nbloks) contains *
c * endblk/bgnblk as described above. *
c * *
c * nrwblk [integer] *
c * The number of columns in lftblk, array(,,k) *
c * and rgtblk. The number of rows in *
c * lftblk and rgtblk. There are 2*nrwblk *
c * rows in array(,,k). *
c * *
c * nbloks [integer] *
c * The number of 2*nrwblkxnrwblk blocks *
c * in array(,,). *
c * *
c * rgtblk [double precision(nrwblk,nrwblk)] *
c * The top right block of the ABD matrix. *
c * *
c * b [double precision((nbloks+1)*nrwblk)] *
c * The right-hand side vector. *
c * *
c * pivot [integer((nbloks+2)*nrwblk)] *
c * Work space to hold the pivoting strategy. *
c * *
c * nparts [integer] *
c * The number of partitions to use in the *
c * decomposition and solve. *
c * *
c * work [double precision(2*nparts*nrwblk + *
c * (2*nbloks+4*nparts+4)*nrwblk**2)] *

APPENDIX E. FORTRAN SOURCE LISTINGS 280

c * Work space to hold fill-in and local *
c * storage for BLAS. *
c * *
c * on return *
c * *
c * lftblk, array, rgtblk, work *
c * The desired decomposition of the ABD matrix. *
c * *
c * [Note: If iflag = -1 the matrix is exactly *
c * singular. The factorization has been *
c * completed, but division by zero will *
c * occur if it is used to solve a system *
c * of equations.] *
c * *
c * nrwblk, nbloks *
c * Unchanged. *
c * *
c * b [double precision((nbloks+1)*nrwblk)] *
c * The solution vector (if iflag = 0). *
c * *
c * pivot [integer((nbloks+2)*nrwblk)] *
c * The pivoting strategy. *
c * *
c * iflag [integer] *
c * = 0 on normal return *
c * = -1 if the ABD matrix is singular *
c * *
c * [Note: Only exact singularity is detected; *
c * iflag = 0 is not a guarantee of well- *
c * conditioning. In the case where lftblk *
c * and rgtblk can be uncoupled, Lapack’s *
c * DGBTRF/DGBCON may be used to obtain a *
c * condition estimate for the ABD matrix. *
c * Subroutines are included in ABDpack for *
c * transforming the slf_lu-format matrix *
c * into the correct form for input into *
c * Lapack’s band routines. See ’rotccw’, *
c * ’uncple’ and ’mkband’ for details.] *
c * *
c * nparts [integer] *
c * Normally unchanged. If, however, the *
c * requested number of partitions would *
c * result in fewer than 2 blocks of array(,,) *
c * per partition (i.e. if nbloks < 2*nparts), *
c * the subroutine automatically resets nparts *
c * to 1 and uses non-partitioned SLF-LU. *
c * *
c * SUBROUTINES CALLED: *
c * *
c * slufa (lftblk, array, nrwblk, nbloks, rgtblk, *
c * pivot, iflag, nparts, work) *
c * *
c * Factors the ABD matrix using parallel SLF-LU. *
c * Parameters are as described above. *

APPENDIX E. FORTRAN SOURCE LISTINGS 281

c * *
c * slusl (lftblk, array, nrwblk, nbloks, rgtblk, *
c * b, pivot, nparts, work) *
c * *
c * Uses the factors returned by ’slufa’ to perform *
c * forward elimination and back-solve on right-hand *
c * side b. Parameters are as described above. *
c * *
c * SOLVING FOR MULTIPLE RIGHT-HAND SIDES: *
c * *
c * ’slf_lu’ is called only once for a given system A x = b. *
c * If iflag = 0 the system is solved. In order to solve for *
c * a different right-hand side (i.e. A x = b’), ’slusl’ is *
c * called directly. The arrays lftblk, array, rgtblk, work, *
c * and pivot contain the decomposition of A and pivoting *
c * strategy on return from ’slf_lu’ and therefore must not *
c * be altered between successive calls to ’slusl’. b is *
c * the only parameter that may be changed. *
c * *
c * REFERENCES: *
c * *
c * [1] K.R. Jackson and R.N. Pancer, The parallel solution *
c * of ABD systems arising in numerical methods for *
c * BVPs for ODEs, University of Toronto, Department *
c * of Computer Science, Technical Report 255/91, 1992. *
c ***--***
c

call slufa (lftblk, array, nrwblk, nbloks, rgtblk,
* pivot, iflag, nparts, work)

if (iflag .eq. 0) then
call slusl (lftblk, array, nrwblk, nbloks, rgtblk,

* b, pivot, nparts, work)
end if

return
end

c--
subroutine slufa (lftblk, array, nrwblk, nbloks, rgtblk,

* pivot, iflag, nparts, work)
c

double precision lftblk(1), array(1), rgtblk(1), work(1)
integer nrwblk, nbloks, pivot(1), iflag, nparts

c ***--***
c * This subroutine factors the ABD matrix defined in arrays *
c * lftblk, array, and rgtblk using a variant of the parallel *
c * SLF-LU algorithm. On return, lftblk, array, rgtblk, *
c * work, and pivot contain the decomposition of the matrix *
c * and pivoting strategy used. See comments in subroutine *
c * ’slf_lu’ for further details. *
c ***--***

integer nsquar, wk1, wk2, wk3, minblk, remblk
c

iflag = 0
c ***--***
c * Use non-partitioned SLF-LU if requested number *

APPENDIX E. FORTRAN SOURCE LISTINGS 282

c * of partitions would result in fewer than 2 blocks *
c * per partition. *
c ***--***

if (nbloks .lt. 2*nparts) then
nparts = 1

endif
c ***--***
c * Work-space allocation: *
c * 1st/2nd-level fill-in - work(1)..work(wk2-1) *
c * 3rd-level reduced matrix - work(wk2)..work(wk3-1) *
c * temporary storage for BLAS - work(wk3)..end *
c * *
c * Total requirement: nbloks*[(nrwblk)x(2*nrwblk)] *
c * + [(2*nrwblk)x(2*nrwblk)] *
c * + nparts*[(2*nrwblk)x(2*nrwblk+1)] *
c ***--***

nsquar = nrwblk**2
wk1 = 1
wk2 = wk1 + 2*nbloks*nsquar
wk3 = wk2 + 4*nsquar

c ***--***
c * Calculate minimum number of blocks per partition *
c * Remaining blocks are distributed evenly among the *
c * first partitions. *
c ***--***

minblk = nbloks/nparts
remblk = nbloks - minblk*nparts

c ***--***
c * Three level factorization. *
c ***--***

call sluf1(array,work(wk1),nrwblk,nbloks,pivot,iflag,
* minblk,remblk,nparts,work(wk3))

call sluf2(array,work(wk1),nrwblk,pivot,iflag,
* minblk,remblk,nparts,work(wk3))

call sluf3(lftblk,array,work(wk1),work(wk2),
* nrwblk,nbloks,rgtblk,pivot,iflag,work(wk3))

c ***--***
c * Set iflag to -1 if exact singularity was detected. *
c ***--***

if (iflag .ne. 0) then
iflag = -1

endif
return
end

c--
subroutine sluf1 (array, fill, nrwblk, nbloks, pivot, iflag,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), blaws(2*nrwblk,2*nrwblk+1,1)
integer nrwblk, nbloks, pivot(1), iflag, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *

APPENDIX E. FORTRAN SOURCE LISTINGS 283

c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * *
c * In addition, the affix ’ designates that the matrix is *
c * transformed at the first level of the factorization. *
c ***--***

integer ndoubl, kpart, kblok, base, top
c

ndoubl = 2*nrwblk
c ***--***
c * Each loop 20 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, fill, nrwblk, nbloks, pivot, iflag,
C$& minblk, remblk, nparts, blaws, ndoubl),
C$& LOCAL (kpart, kblok, base, top)

do 20 kpart = 1, nparts
c ***--***
c * S_top <-- V_top *
c ***--***

call partx(minblk,remblk,kpart,base,top)
if (kpart .gt. 1) then

call mcopy(1,nrwblk,fill(1,1,top),blaws,
* blaws,array(1,1,top-1))

else
call mcopy(1,nrwblk,fill(1,1,top),blaws,

* blaws,array(1,1,nbloks))
endif

c ***--***
c * SLF-LU starts at the [top; top+1] block-row pair of *
c * each partition and proceeds downward sequentially *
c * to the [base-1; base] block-row pair. *
c ***--***

do 10 kblok = top, base-1
c ***--***
c * [W_kblok <-- LUfact([W_kblok *
c * V_kblok+1]’ V_kblok+1] *
c ***--***

call DGETRF(ndoubl,nrwblk,array(1,1,kblok),ndoubl,
* pivot(kblok*nrwblk+1),iflag)

c ***--***
c * [S_kblok <-- [L, I]ˆ-1 P [S_kblok *
c * S_kblok+1]’ 0] *
c * *
c * Operator [L, I]ˆ-1 P is implemented by applying the *
c * pivoting strategy recorded in pivot_kblok, followed *
c * by the nrwblk Gauss transforms stored in the lower *
c * trapezoid of [W_kblok; V_kblok+1]’. *
c ***--***

call mcopy(3,nrwblk,fill(1,1,kblok),blaws,
* blaws(1,1,kpart),blaws)

APPENDIX E. FORTRAN SOURCE LISTINGS 284

call apyLU(ndoubl,nrwblk,array(1,1,kblok),ndoubl,
* pivot(kblok*nrwblk+1),blaws(1,1,kpart),
* ndoubl,nrwblk,blaws(1,nrwblk+1,kpart))

call mcopy(4,nrwblk,fill(1,1,kblok),fill(1,1,kblok+1),
* blaws(1,1,kpart),blaws)

c ***--***
c * [T_kblok <-- [L, I]ˆ-1 P [0 *
c * W_kblok+1]’ W_kblok+1] *
c * *
c * Operator [L, I]ˆ-1 P is implemented as above. *
c ***--***

call mcopy(5,nrwblk,blaws,blaws,
* blaws(1,1,kpart),array(1,1,kblok+1))

call apyLU(ndoubl,nrwblk,array(1,1,kblok),ndoubl,
* pivot(kblok*nrwblk+1),blaws(1,1,kpart),
* ndoubl,nrwblk,blaws(1,nrwblk+1,kpart))

call mcopy(6,nrwblk,fill(1,1,kblok),blaws,
* blaws(1,1,kpart),array(1,1,kblok+1))

10 continue
20 continue

return
end

c--
subroutine sluf2 (array, fill, nrwblk, pivot, iflag,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), blaws(2*nrwblk,1)
integer nrwblk, pivot(1), iflag, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * *
c * In addition, the affix ’/’’ designates that the *
c * matrix was/is transformed at the first/second level *
c * of the factorization. *
c ***--***

integer ndoubl, kpart, base, base1, top
c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the factorization. *
c ***--***

if (nparts .eq. 1) return
c ***--***
c * SLF-LU starts at the [1; 2] block-row pair of the *
c * second-level array and proceeds downward sequentially *
c * to the [nparts-1; nparts] block-row pair. *
c ***--***

ndoubl = 2*nrwblk

APPENDIX E. FORTRAN SOURCE LISTINGS 285

do 10 kpart = 1, nparts-1
call partx(minblk,remblk,kpart,base,top)
call partx(minblk,remblk,kpart+1,base1,top)

c ***--***
c * [W_base <-- LUfact([W_base’ *
c * V_base+1]’’ S_base1’] *
c ***--***

call mcopy(2,nrwblk,fill(1,1,base1),blaws,
* blaws,array(1,1,base))

call DGETRF(ndoubl,nrwblk,array(1,1,base),ndoubl,
* pivot(base*nrwblk+1),iflag)

c ***--***
c * [S_base <-- [L, I]ˆ-1 P [S_base’ *
c * S_base1]’’ 0] *
c * *
c * Operator [L, I]ˆ-1 P is implemented by applying the *
c * pivoting strategy recorded in pivot_base, followed *
c * by the nrwblk Gauss transforms stored in the lower *
c * trapezoid of [W_base; V_base+1]’’. *
c ***--***

call mcopy(3,nrwblk,fill(1,1,base),blaws,
* blaws,blaws)

call apyLU(ndoubl,nrwblk,array(1,1,base),ndoubl,
* pivot(base*nrwblk+1),blaws,ndoubl,nrwblk,
* blaws(1,nrwblk+1))

call mcopy(4,nrwblk,fill(1,1,base),fill(1,1,base1),
* blaws,blaws)

c ***--***
c * [T_base <-- [L, I]ˆ-1 P [0 *
c * W_base1]’’ W_base1’] *
c * *
c * Operator [L, I]ˆ-1 P is implemented as above. *
c ***--***

call mcopy(5,nrwblk,blaws,blaws,
* blaws,array(1,1,base1))

call apyLU(ndoubl,nrwblk,array(1,1,base),ndoubl,
* pivot(base*nrwblk+1),blaws,ndoubl,nrwblk,
* blaws(1,nrwblk+1))

call mcopy(6,nrwblk,fill(1,1,base),blaws,
* blaws,array(1,1,base1))

10 continue
return
end

c--
subroutine sluf3 (lftblk, array, fill, rdcmx,

* nrwblk, nbloks, rgtblk, pivot, iflag, blaws)
c

double precision lftblk(nrwblk,1), array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), rdcmx(2*nrwblk,1),
* rgtblk(nrwblk,1), blaws(2*nrwblk,1)
integer nrwblk, nbloks, pivot(1), iflag

c ***--***
c * The following notation is used in the comments: *
c * *

APPENDIX E. FORTRAN SOURCE LISTINGS 286

c * B_a, B_b <=> lftblk, rgtblk *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * *
c * In addition, the affix ’’/’’’ designates that the *
c * matrix was/is transformed at the second/third level *
c * of the factorization. *
c ***--***

integer i, j, ndoubl
c ***--***
c * The third-level block-array is of the form *
c * *
c * [B_a B_b *
c * S_nbloks’’ W_nbloks’’] *
c * *
c * The LU-factorization of this block-array is stored *
c * in the rdcmx(,) work-space. The pivot indices are *
c * stored in pivot(nbloks*nrwblk+1..(nbloks+2)*nrwblk). *
c ***--***

ndoubl = 2*nrwblk
do 20 j = 1, nrwblk

do 10 i = 1, nrwblk
rdcmx(i,j) = lftblk(i,j)
rdcmx(i,nrwblk+j) = rgtblk(i,j)
rdcmx(nrwblk+i,j) = fill(i,j,nbloks)
rdcmx(nrwblk+i,nrwblk+j) = array(i,j,nbloks)

10 continue
20 continue

call DGETRF(ndoubl,ndoubl,rdcmx,ndoubl,
* pivot(nbloks*nrwblk+1),iflag)
return
end

c--
subroutine slusl (lftblk, array, nrwblk, nbloks, rgtblk,

* b, pivot, nparts, work)
c

double precision lftblk(1), array(1), rgtblk(1), b(1), work(1)
integer nrwblk, nbloks, pivot(1), nparts

c ***--***
c * Given the factors of ABD matrix A computed by subroutine *
c * ’slufa’ and stored in arrays lftblk, array, rgtblk, *
c * work and pivot, this subroutine solves the linear system *
c * A x = b. b is overwritten with x. See comments in *
c * subroutine ’slf_lu’ for further details. *
c ***--***

integer nsquar, wk1, wk2, wk3, minblk, remblk
c ***--***
c * Work-space allocation: *
c * 1st/2nd-level fill-in - work(1)..work(wk2-1) *
c * 3rd-level reduced matrix - work(wk2)..work(wk3-1) *
c * temporary storage for BLAS - work(wk3)..end *

APPENDIX E. FORTRAN SOURCE LISTINGS 287

c * *
c * Total requirement: nbloks*[(nrwblk)x(2*nrwblk)] *
c * + [(2*nrwblk)x(2*nrwblk)] *
c * + nparts*[(2*nrwblk)x(2*nrwblk+1)] *
c ***--***

nsquar = nrwblk**2
wk1 = 1
wk2 = wk1 + 2*nbloks*nsquar
wk3 = wk2 + 4*nsquar

c ***--***
c * Calculate minimum number of blocks per partition *
c * Remaining blocks are distributed evenly among the *
c * first partitions. *
c ***--***

minblk = nbloks/nparts
remblk = nbloks - minblk*nparts

c ***--***
c * Three level forward elimination. *
c ***--***

call slusf1(array,nrwblk,b,pivot,
* minblk,remblk,nparts,work(wk3))

call slusf2(array,nrwblk,b,pivot,
* minblk,remblk,nparts,work(wk3))

call slusf3(work(wk2),nrwblk,nbloks,b,b,pivot,work(wk3))
c ***--***
c * Three level back-solve. *
c ***--***

call slusb3(work(wk2),nrwblk,nbloks,b,b,work(wk3))
call slusb2(array,work(wk1),nrwblk,nbloks,b,

* minblk,remblk,nparts,work(wk3))
call slusb1(array,work(wk1),nrwblk,b,

* minblk,remblk,nparts,work(wk3))
return
end

c--
subroutine slusf1 (array, nrwblk, phi, pivot,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1), phi(1),
* blaws(2*nrwblk,2*nrwblk+1,1)
integer nrwblk, pivot(1), minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * In addition, the affix ’ designates that the vector is *
c * transformed at the first level of the forward solve. *
c ***--***

integer ndoubl, kpart, kblok, base, top

APPENDIX E. FORTRAN SOURCE LISTINGS 288

c
ndoubl = 2*nrwblk

c ***--***
c * Each loop 20 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, nrwblk, phi, pivot,
C$& minblk, remblk, nparts, blaws, ndoubl),
C$& LOCAL (kpart, kblok, base, top)

do 20 kpart = 1, nparts
c ***--***
c * Forward elimination starts at [phi_top; phi_top+1] *
c * of each partition and proceeds downward sequentially *
c * to [phi_base-1; phi_base]. *
c ***--***

call partx(minblk,remblk,kpart,base,top)
do 10 kblok = top, base-1

c ***--***
c * [phi_kblok <-- [L, I]ˆ-1 P [phi_kblok *
c * phi_kblok+1]’ phi_kblok+1] *
c * *
c * Operator [L, I]ˆ-1 P is implemented by applying the *
c * pivoting strategy recorded in pivot_kblok, followed *
c * by the nrwblk Gauss transforms stored in the lower *
c * trapezoid of [W_kblok; V_kblok+1]’. *
c ***--***

call apyLU(ndoubl,nrwblk,array(1,1,kblok),ndoubl,
* pivot(kblok*nrwblk+1),phi(kblok*nrwblk+1),
* ndoubl,1,blaws(1,nrwblk+1,kpart))

10 continue
20 continue

return
end

c--
subroutine slusf2 (array, nrwblk, phi, pivot,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1), phi(1),
* blaws(2*nrwblk,1)
integer nrwblk, pivot(1), minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * In addition, the affix ’/’’ designates that the *
c * vector was/is transformed at the first/second level *
c * of the forward solve. *
c ***--***

integer ndoubl, kpart, base, base1, top

APPENDIX E. FORTRAN SOURCE LISTINGS 289

c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the forward solve. *
c ***--***

if (nparts .eq. 1) return
c ***--***
c * Forward elimination starts at [phi_base_1; phi_base_2] *
c * of the second-level system and proceeds downward *
c * sequentially to [phi_base_nparts-1; phi_base_nparts]. *
c ***--***

ndoubl = 2*nrwblk
do 10 kpart = 1, nparts-1

call partx(minblk,remblk,kpart,base,top)
call partx(minblk,remblk,kpart+1,base1,top)

c ***--***
c * [phi_base <-- [L, I]ˆ-1 P [phi_base’’ *
c * phi_base1]’’ phi_base1’] *
c * *
c * Operator [L, I]ˆ-1 P is implemented by applying the *
c * pivoting strategy recorded in pivot_base, followed *
c * by the nrwblk Gauss transforms stored in the lower *
c * trapezoid of [W_base; V_base+1]’’. *
c ***--***

call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DCOPY(nrwblk,phi(base1*nrwblk+1),1,

* blaws(nrwblk+1,1),1)
call apyLU(ndoubl,nrwblk,array(1,1,base),ndoubl,

* pivot(base*nrwblk+1),blaws,ndoubl,1,
* blaws(1,nrwblk+1))

call DCOPY(nrwblk,blaws,1,phi(base*nrwblk+1),1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,

* phi(base1*nrwblk+1),1)
10 continue

return
end

c--
subroutine slusf3 (rdcmx, nrwblk, nbloks, beta, phi,

* pivot, blaws)
c

double precision rdcmx(2*nrwblk,1), beta(1),
* phi(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks, pivot(1)

c ***--***
c * The following notation is used in the comments: *
c * *
c * beta <=> beta(1) (<=> phi_0) *
c * phi_k <=> phi(k*nrwblk+1), k >= 1 *
c * *
c * In addition, the affix ’’/’’’ designates that the *
c * vector was/is transformed at the second/third level *
c * of the forward solve. *
c ***--***

integer ndoubl
c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 290

c * The right-hand side of the third-level system is *
c * transformed as follows: *
c * *
c * [beta <-- [L, I]ˆ-1 P [beta *
c * phi_nbloks]’’’ phi_nbloks’’] *
c * *
c * Operator [L, I]ˆ-1 P is implemented by applying the *
c * 2*nrwblk pivoting strategy recorded in pivot_nbloks, *
c * followed by the 2*nrwblk Gauss transforms stored in *
c * the lower triangle of rdcmx(,). *
c ***--***

ndoubl = 2*nrwblk
call DCOPY(nrwblk,beta,1,blaws,1)
call DCOPY(nrwblk,phi(nbloks*nrwblk+1),1,

* blaws(nrwblk+1,1),1)
call apyLU(ndoubl,ndoubl,rdcmx,ndoubl,

* pivot(nbloks*nrwblk+1),blaws,ndoubl,1,
* blaws(1,nrwblk+1))

call DCOPY(nrwblk,blaws,1,beta,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,

* phi(nbloks*nrwblk+1),1)
return
end

c--
subroutine slusb3 (rdcmx, nrwblk, nbloks, beta, phi, blaws)

c
double precision rdcmx(2*nrwblk,1), beta(1),

* phi(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks

c ***--***
c * The following notation is used in the comments: *
c * *
c * beta <=> beta(1) (<=> phi_0) *
c * phi_k <=> phi(k*nrwblk+1), k >= 1 *
c * *
c * Since [beta; phi] is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> beta *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’’ designates that the solution *
c * vector is obtained at the third level of the back-solve. *
c ***--***

integer ndoubl
c ***--***
c * y_a’’’ and y_b’’’ are obtained by solving the upper- *
c * triangular third-level system *
c * *
c * rdcmx(,) [y_a = [beta *
c * y_b] phi_nbloks] *
c ***--***

ndoubl = 2*nrwblk
call DCOPY(nrwblk,beta,1,blaws,1)

APPENDIX E. FORTRAN SOURCE LISTINGS 291

call DCOPY(nrwblk,phi(nbloks*nrwblk+1),1,
* blaws(nrwblk+1,1),1)

call DTRSM(’L’,’U’,’N’,’N’,ndoubl,1,1.d0,
* rdcmx,ndoubl,blaws,ndoubl)

call DCOPY(nrwblk,blaws,1,beta,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,

* phi(nbloks*nrwblk+1),1)
return
end

c--
subroutine slusb2 (array, fill, nrwblk, nbloks, phi,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), phi(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * Since phi is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> phi_0 (<=> beta in slusb3.f) *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’’/’’ designates that the *
c * solution vector was/is obtained at the third/second *
c * level of the back-solve. *
c ***--***

integer ndoubl, kpart, base, basep, top
c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the back-solve. *
c ***--***

if (nparts .eq. 1) return
c ***--***
c * Back-solve starts at the second-last block-row of the *
c * second-level system and proceeds upward sequentially *
c * to the first block-row. *
c ***--***

ndoubl = 2*nrwblk
base = nbloks
call DCOPY(nrwblk,phi,1,blaws,1)
do 10 kpart = nparts-1, 1, -1

basep = base
call partx(minblk,remblk,kpart,base,top)

c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 292

c * phi_base <-- phi_base - S_base y_0’’’ - T_base y_basep’’ *
c ***--***

call DCOPY(nrwblk,phi(basep*nrwblk+1),1,
* blaws(nrwblk+1,1),1)

call DGEMV(’N’,nrwblk,ndoubl,
* -1.d0,fill(1,1,base),nrwblk,
* blaws,1,1.d0,phi(base*nrwblk+1),1)

c ***--***
c * y_base’’ is now obtained by solving the upper-triangular *
c * nrwblkxnrwblk system W_base y_base = phi_base *
c ***--***

call DTRSM(’L’,’U’,’N’,’N’,nrwblk,1,1.d0,
* array(1,1,base),ndoubl,
* phi(base*nrwblk+1),nrwblk)

10 continue
return
end

c--
subroutine slusb1 (array, fill, nrwblk, phi,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), phi(1),
* blaws(2*nrwblk,nrwblk+1,1)
integer nrwblk, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * Since phi is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> phi_0 (<=> beta in slusb3.f) *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’/’ designates that the *
c * solution vector was/is obtained at the second/first *
c * level of the back-solve. *
c ***--***

integer ndoubl, kpart, kblok, base, top
c

ndoubl = 2*nrwblk
c ***--***
c * Each loop 20 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, fill, nrwblk, phi,
C$& minblk, remblk, nparts, blaws, ndoubl),

APPENDIX E. FORTRAN SOURCE LISTINGS 293

C$& LOCAL (kpart, kblok, base, top)
do 20 kpart = 1, nparts

c ***--***
c * Back-solve starts at the second-last block-row of *
c * each partition and proceeds upward sequentially to *
c * the first block-row. *
c ***--***

call partx(minblk,remblk,kpart,base,top)
call DCOPY(nrwblk,phi((top-1)*nrwblk+1),1,

* blaws(1,1,kpart),1)
do 10 kblok = base-1, top, -1

c ***--***
c * phi_kblok <-- phi_kblok - S_kblok y_top-1’’ *
c * - T_kblok y_kblok+1’ *
c ***--***

call DCOPY(nrwblk,phi((kblok+1)*nrwblk+1),1,
* blaws(nrwblk+1,1,kpart),1)

call DGEMV(’N’,nrwblk,ndoubl,
* -1.d0,fill(1,1,kblok),nrwblk,
* blaws(1,1,kpart),1,1.d0,
* phi(kblok*nrwblk+1),1)

c ***--***
c * y_kblok’ is now obtained by solving the upper-triangular *
c * nrwblkxnrwblk system W_kblok y_kblok = phi_kblok *
c ***--***

call DTRSM(’L’,’U’,’N’,’N’,nrwblk,1,1.d0,
* array(1,1,kblok),ndoubl,
* phi(kblok*nrwblk+1),nrwblk)

10 continue
20 continue

return
end

c--
subroutine apyLU (m, n, LU, ldLU, ipiv, C, ldC, nC, blaws)

c
double precision LU(ldLU,1), C(ldC,1), blaws(n,1)
integer m, n, ldLU, ipiv(1), ldC, nC

c ***--***
c * Given an LU factorization computed by Lapack’s DGETRF, *
c * ’apyLU’ applies the pivoting strategy recorded in ipiv *
c * and Gauss transforms stored in the lower trapezoid of *
c * LU to the m x nC matrix C. *
c * *
c * on entry *
c * *
c * m [integer] *
c * The number of rows in LU and C. *
c * *
c * n [integer] *
c * The number of columns in LU. n <= m. *
c * *
c * LU [double precision(ldLU,n)] *
c * The factors L and U computed and stored *
c * by Lapack’s DGETRF. *

APPENDIX E. FORTRAN SOURCE LISTINGS 294

c * *
c * ldLU [integer] *
c * The leading dimension of the array LU. *
c * *
c * ipiv [integer(n)] *
c * The pivot indices computed and stored *
c * by Lapack’s DGETRF. *
c * *
c * C [double precision(ldC,nC)] *
c * The matrix to be transformed. *
c * *
c * ldC [integer] *
c * The leading dimension of the array C. *
c * *
c * nC [integer] *
c * The number of columns in C. nC <= n. *
c * *
c * blaws [double precision(n,2*n)] *
c * Work space. *
c * *
c * on return *
c * *
c * C [double precision(ldC,nC)] *
c * The transformed matrix. *
c * *
c * All other parameters are unchanged. *
c ***--***

integer i, j
c ***--***
c * Apply the pivoting strategy to C. *
c ***--***

call DLASWP(nC,C,ldC,1,n,ipiv,1)
c ***--***
c * The Gauss transforms are stored in [L; A], the lower *
c * trapezoid of LU, where L is n x n unit lower triangular *
c * and A is k x n, k = m - n. The transforms are applied *
c * by solving [L O; A I] [C1’; C2’] = [C1; C2] where O is *
c * the n x k zero matrix, I is the k x k identity matrix, *
c * and C1 and C2 are n x nC and k x nC, respectively. *
c * *
c * First, solve L C1’ = C1. If n = m, this is enough. *
c * If n < m, C2’ is computed from C1’ as described below. *
c ***--***

call DTRSM(’L’,’L’,’N’,’U’,n,nC,1.d0,LU,ldLU,C,ldC)
if (n .eq. m) return

c ***--***
c * Repack A into consecutive work space. *
c ***--***

do 20 j = 1, n
do 10 i = 1, n

blaws(i,j) = LU(n+i,j)
10 continue
20 continue

if (nC .gt. 1) then

APPENDIX E. FORTRAN SOURCE LISTINGS 295

c ***--***
c * Compute C2’ = C2 - A*C1’ using DGEMM. C2 first *
c * must be repacked into consecutive work space. *
c ***--***

do 40 j = 1, nC
do 30 i = 1, n

blaws(i,n+j) = C(n+i,j)
30 continue
40 continue

call DGEMM(’N’,’N’,n,nC,n,-1.d0,blaws,n,
* C,ldC,1.d0,blaws(1,n+1),n)

do 60 j = 1, nC
do 50 i = 1, n

C(n+i,j) = blaws(i,n+j)
50 continue
60 continue

else
c ***--***
c * Compute C2’ = C2 - A*C1’ using DGEMV. *
c ***--***

call DGEMV(’N’,n,n,-1.d0,blaws,n,C,1,1.d0,C(n+1,1),1)
end if

return
end

c--
subroutine mcopy (sel, n, C, D, E, F)

c
double precision C(n,1), D(n,1), E(2*n,1), F(2*n,1)
integer sel, n

c ***--***
c * ’mcopy’ performs the matrix copy selected by sel. *
c * Note: Due to the nature of the storage organization, *
c * vectorized copying (Lapack’s DCOPY) is not possible. *
c * *
c * on entry *
c * *
c * sel [integer] *
c * Copy selection (see below for details). *
c * *
c * n [integer] *
c * The number of rows in C and D and the number *
c * of columns in E and F. There are 2*n columns *
c * in C and D and 2*n rows in E and F. *
c * *
c * C, D, E, F [double precision *
c * (n,2*n), (n,2*n), (2*n,n), (2*n,n)] *
c * The matrices before copying. *
c * *
c * on return *
c * *
c * sel [integer] *
c * Unchanged. *
c * *
c * n [integer] *

APPENDIX E. FORTRAN SOURCE LISTINGS 296

c * Unchanged. *
c * *
c * C, D, E, F [double precision *
c * (n,2*n), (n,2*n), (2*n,n), (2*n,n)] *
c * The matrices after copying. *
c ***--***

integer i, j, j1
c ***--***
c * The following notation is used in the comments: *
c * *
c * C <=> [C1 C2] D <=> [D1 D2] *
c * E <=> [E1 F <=> [F1 *
c * E2] F2] *
c * *
c * Ck, Dk, Ek and Fk, k = 1, 2, are each nxn matrices. *
c * (0) is the nxn zero matrix. *
c ***--***

go to (100, 200, 300, 400, 500, 600) sel
c ***--***
c * Copy selection #1: C1 <- F2 *
c ***--***
100 do 120 j = 1, n

do 110 i = 1, n
C(i,j) = F(n+i,j)

110 continue
120 continue

return
c ***--***
c * Copy selection #2: F2 <- C1 *
c ***--***
200 do 220 j = 1, n

do 210 i = 1, n
F(n+i,j) = C(i,j)

210 continue
220 continue

return
c ***--***
c * Copy selection #3: E1 <- C1 *
c * E2 <- (0) *
c ***--***
300 do 320 j = 1, n

do 310 i = 1, n
E(i,j) = C(i,j)
E(n+i,j) = 0.d0

310 continue
320 continue

return
c ***--***
c * Copy selection #4: C1 <- E1 *
c * D1 <- E2 *
c ***--***
400 do 420 j = 1, n

do 410 i = 1, n
C(i,j) = E(i,j)

APPENDIX E. FORTRAN SOURCE LISTINGS 297

D(i,j) = E(n+i,j)
410 continue
420 continue

return
c ***--***
c * Copy selection #5: E1 <- (0) *
c * E2 <- F1 *
c ***--***
500 do 520 j = 1, n

do 510 i = 1, n
E(i,j) = 0.d0
E(n+i,j) = F(i,j)

510 continue
520 continue

return
c ***--***
c * Copy selection #6: C2 <- E1 *
c * F1 <- E2 *
c ***--***
600 do 620 j = 1, n

j1 = n + j
do 610 i = 1, n

C(i,j1) = E(i,j)
F(i,j) = E(n+i,j)

610 continue
620 continue

return
end

c--
subroutine partx (minblk, remblk, k, base, top)

c
integer minblk, remblk, k, base, top

c ***--***
c * ’partx’ calculates the index of the base and top block *
c * of the k-th partition. The indexing scheme assumes that *
c * nbloks >= 2*nparts, so minblk >= 2 and remblk >= 0. *
c * *
c * on entry *
c * *
c * minblk [integer] *
c * minimum number of blocks/partition *
c * (minblk = nbloks/nparts) *
c * *
c * remblk [integer] *
c * first remblk partitions have minblk+1 blocks *
c * (remblk = nbloks - minblk*nparts) *
c * *
c * k [integer] *
c * *
c * on return *
c * *
c * base [integer] *
c * index of base block of k-th partition *
c * *

APPENDIX E. FORTRAN SOURCE LISTINGS 298

c * top [integer] *
c * index of top block of k-th partition *
c ***--***

integer khigh, klow
c

if (k .le. remblk) then
khigh = k
klow = 0

else
khigh = remblk
klow = k - khigh

endif
base = khigh*(minblk+1) + klow*minblk
top = base - minblk + 1
if (k .le. remblk) then

top = top - 1
endif

return
end

APPENDIX E. FORTRAN SOURCE LISTINGS 299

E.3 SLF-QR

subroutine slf_qr (lftblk, array, nrwblk, nbloks, rgtblk,
* b, tau, iflag, nparts, work)

c
double precision lftblk(1), array(1), rgtblk(1), b(1),

* tau(1), work(1)
integer nrwblk, nbloks, iflag, nparts

c ***--***
c * This subroutine solves the linear system A x = b where *
c * A is an Almost Block Diagonal matrix of the form *
c * *
c * lftblk rgtblk *
c * a *
c * bgnblk r *
c * r *
c * a a *
c * y r *
c * (,,1) r *
c * a . *
c * y . *
c * (,,2) . *
c * a *
c * r *
c * r *
c * a *
c * y endblk *
c * (,,nbloks-1) *
c * *
c * lftblk and rgtblk are each nrwblkxnrwblk, array(,,k) *
c * is 2*nrwblkxnrwblk, k = 1..nbloks, endblk/bgnblk alias *
c * the upper/lower nrwblkxnrwblk block of array(,,nbloks), *
c * bgnblk overlaps the first nrwblk rows of array(,,1), *
c * {[array(,,k) array(,,k+1)], k = 1..nbloks-2} overlap *
c * by nrwblk rows each, and endblk overlaps the last nrwblk *
c * rows of array(,,nbloks-1). The linear system is square *
c * and of order (nbloks+1)*nrwblk. *
c * *
c * [Note: ABDs often arise in other forms. For example, *
c * lftblk and rgtblk may be uncoupled so that lftblk *
c * appears at the top of the matrix and rgtblk appears *
c * at the bottom. Also, the blocks in array(,,) are *
c * often arranged so that array(,,k) holds the left *
c * and right blocks in block-row k. In these cases, *
c * the ABD system first can be transformed into the *
c * correct form for input to ’slf_qr’ using auxiliary *
c * routines included with this package. See ’couple’ *
c * and ’rotcw’ for details. Alternatively, ’slfqrc’, *
c * a modified version of ’slf_qr’ that incorporates *
c * both ’couple’ and ’rotcw’, can be used.] *
c * *
c * THE ALGORITHM: *
c * *
c * The system is decomposed and solved using a variant *

APPENDIX E. FORTRAN SOURCE LISTINGS 300

c * of the parallel SLF-QR algorithm described in [1]. *
c * Parallelism is achieved by slicing the system into *
c * ’nparts’ partitions in such a way that each partition *
c * can be processed independently. Assuming at least one *
c * processor is available per partition, a speed-up of S *
c * (over sequential SLF-QR) may be attained where *
c * *
c * 1 <= S < nparts, *
c * *
c * with S = 1 if nbloks < 2*nparts, *
c * and S ˜ nparts if nparts << nbloks/nparts. *
c * *
c * In other words, for systems of sufficiently high order, *
c * speed-up is approximately linear with respect to nparts *
c * when nparts is sufficiently small. Sample problems and *
c * timing benchmarks are included with this package. *
c * *
c * PARAMETERS: *
c * *
c * on entry *
c * *
c * lftblk [double precision(nrwblk,nrwblk)] *
c * The top left block of the ABD matrix. *
c * *
c * array [double precision(2*nrwblk,nrwblk,nbloks)] *
c * array(,,k), k = 1..nbloks-1, contains the *
c * k-th 2*nrwblkxnrwblk block of the ABD matrix *
c * as described above. array(,,nbloks) contains *
c * endblk/bgnblk as described above. *
c * *
c * nrwblk [integer] *
c * The number of columns in lftblk, array(,,k) *
c * and rgtblk. The number of rows in *
c * lftblk and rgtblk. There are 2*nrwblk *
c * rows in array(,,k). *
c * *
c * nbloks [integer] *
c * The number of 2*nrwblkxnrwblk blocks *
c * in array(,,). *
c * *
c * rgtblk [double precision(nrwblk,nrwblk)] *
c * The top right block of the ABD matrix. *
c * *
c * b [double precision((nbloks+1)*nrwblk)] *
c * The right-hand side vector. *
c * *
c * tau [double precision((nbloks+1)*nrwblk)] *
c * Work space to hold the scalar factors of *
c * the elementary reflectors used to compute *
c * the decomposition. *
c * *
c * nparts [integer] *
c * The number of partitions to use in the *
c * decomposition and solve. *

APPENDIX E. FORTRAN SOURCE LISTINGS 301

c * *
c * work [double precision(2*nparts*nrwblk + *
c * (2*nbloks+2*nparts+4)*nrwblk**2)] *
c * Work space to hold fill-in and local *
c * storage for BLAS. *
c * *
c * on return *
c * *
c * lftblk, array, rgtblk, work *
c * The desired decomposition of the ABD matrix. *
c * *
c * [Note: If iflag = -1 the matrix is exactly *
c * singular. The factorization has been *
c * completed, but division by zero will *
c * occur if it is used to solve a system *
c * of equations.] *
c * *
c * nrwblk, nbloks *
c * Unchanged. *
c * *
c * b [double precision((nbloks+1)*nrwblk)] *
c * The solution vector (if iflag = 0). *
c * *
c * tau [double precision((nbloks+1)*nrwblk)] *
c * The scalar factors of the elementary *
c * reflectors. *
c * *
c * iflag [integer] *
c * = 0 on normal return *
c * = -1 if the ABD matrix is singular *
c * *
c * [Note: Only exact singularity is detected; *
c * iflag = 0 is not a guarantee of well- *
c * conditioning. In the case where lftblk *
c * and rgtblk can be uncoupled, Lapack’s *
c * DGBTRF/DGBCON may be used to obtain a *
c * condition estimate for the ABD matrix. *
c * Subroutines are included in ABDpack for *
c * transforming the slf_qr-format matrix *
c * into the correct form for input into *
c * Lapack’s band routines. See ’rotccw’, *
c * ’uncple’ and ’mkband’ for details.] *
c * *
c * nparts [integer] *
c * Normally unchanged. If, however, the *
c * requested number of partitions would *
c * result in fewer than 2 blocks of array(,,) *
c * per partition (i.e. if nbloks < 2*nparts), *
c * the subroutine automatically resets nparts *
c * to 1 and uses non-partitioned SLF-QR. *
c * *
c * SUBROUTINES CALLED: *
c * *
c * sqrfa (lftblk, array, nrwblk, nbloks, rgtblk, *

APPENDIX E. FORTRAN SOURCE LISTINGS 302

c * tau, iflag, nparts, work) *
c * *
c * Factors the ABD matrix using parallel SLF-QR. *
c * Parameters are as described above. *
c * *
c * sqrsl (lftblk, array, nrwblk, nbloks, rgtblk, *
c * b, tau, nparts, work) *
c * *
c * Uses the factors returned by ’sqrfa’ to perform *
c * forward elimination and back-solve on right-hand *
c * side b. Parameters are as described above. *
c * *
c * SOLVING FOR MULTIPLE RIGHT-HAND SIDES: *
c * *
c * ’slf_qr’ is called only once for a given system A x = b. *
c * If iflag = 0 the system is solved. In order to solve *
c * for a different right-hand side (i.e. A x = b’), ’sqrsl’ *
c * is called directly. The arrays lftblk, array, rgtblk, *
c * work, and tau contain the decomposition of A and scalar *
c * factors of the elementary reflectors used to compute *
c * the decompostion on return from ’slf_qr’ and therefore *
c * must not be altered between successive calls to ’sqrsl’. *
c * b is the only parameter that may be changed. *
c * *
c * REFERENCES: *
c * *
c * [1] K.R. Jackson and R.N. Pancer, The parallel solution *
c * of ABD systems arising in numerical methods for *
c * BVPs for ODEs, University of Toronto, Department *
c * of Computer Science, Technical Report 255/91, 1992. *
c ***--***
c

call sqrfa (lftblk, array, nrwblk, nbloks, rgtblk,
* tau, iflag, nparts, work)

if (iflag .eq. 0) then
call sqrsl (lftblk, array, nrwblk, nbloks, rgtblk,

* b, tau, nparts, work)
end if

return
end

c--
subroutine sqrfa (lftblk, array, nrwblk, nbloks, rgtblk,

* tau, iflag, nparts, work)
c

double precision lftblk(1), array(1), rgtblk(1),
* tau(1), work(1)
integer nrwblk, nbloks, iflag, nparts

c ***--***
c * This subroutine factors the ABD matrix defined in arrays *
c * lftblk, array, and rgtblk using a variant of the parallel *
c * SLF-QR algorithm. On return, lftblk, array, rgtblk, *
c * work, and tau contain the decomposition of the matrix *
c * and factors of the elementary reflectors used to compute *
c * the decompostion. See comments in subroutine ’slf_qr’ *

APPENDIX E. FORTRAN SOURCE LISTINGS 303

c * for further details. *
c ***--***

integer nsquar, wk1, wk2, wk3, minblk, remblk
c

iflag = 0
c ***--***
c * Use non-partitioned SLF-QR if requested number *
c * of partitions would result in fewer than 2 blocks *
c * per partition. *
c ***--***

if (nbloks .lt. 2*nparts) then
nparts = 1

endif
c ***--***
c * Work-space allocation: *
c * 1st/2nd-level fill-in - work(1)..work(wk2-1) *
c * 3rd-level reduced matrix - work(wk2)..work(wk3-1) *
c * temporary storage for BLAS - work(wk3)..end *
c * *
c * Total requirement: nbloks*[(nrwblk)x(2*nrwblk)] *
c * + [(2*nrwblk)x(2*nrwblk)] *
c * + nparts*[(2*nrwblk)x(nrwblk+1)] *
c ***--***

nsquar = nrwblk**2
wk1 = 1
wk2 = wk1 + 2*nbloks*nsquar
wk3 = wk2 + 4*nsquar

c ***--***
c * Calculate minimum number of blocks per partition *
c * Remaining blocks are distributed evenly among the *
c * first partitions. *
c ***--***

minblk = nbloks/nparts
remblk = nbloks - minblk*nparts

c ***--***
c * Three level factorization. *
c ***--***

call sqrf1(array,work(wk1),nrwblk,nbloks,tau,iflag,
* minblk,remblk,nparts,work(wk3))

call sqrf2(array,work(wk1),nrwblk,tau,iflag,
* minblk,remblk,nparts,work(wk3))

call sqrf3(lftblk,array,work(wk1),work(wk2),
* nrwblk,nbloks,rgtblk,tau,iflag,work(wk3))

c ***--***
c * Set iflag to -1 if exact singularity was detected. *
c ***--***

if (iflag .ne. 0) then
iflag = -1

endif
return
end

c--
subroutine sqrf1 (array, fill, nrwblk, nbloks, tau, iflag,

* minblk, remblk, nparts, blaws)

APPENDIX E. FORTRAN SOURCE LISTINGS 304

c
double precision array(2*nrwblk,nrwblk,1),

* fill(nrwblk,2*nrwblk,1), tau(1),
* blaws(2*nrwblk,nrwblk+1,1)
integer nrwblk, nbloks, iflag, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * *
c * In addition, the affix ’ designates that the matrix is *
c * transformed at the first level of the factorization. *
c ***--***

integer ndoubl, kpart, kblok, base, top, info, msing
c

ndoubl = 2*nrwblk
c ***--***
c * Each loop 20 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, fill, nrwblk, nbloks, tau, iflag,
C$& minblk, remblk, nparts, blaws, ndoubl),
C$& LOCAL (kpart, kblok, base, top, info)

do 20 kpart = 1, nparts
c ***--***
c * S_top <-- V_top *
c ***--***

call partx(minblk,remblk,kpart,base,top)
if (kpart .gt. 1) then

call mcopy(1,nrwblk,fill(1,1,top),blaws,
* blaws,array(1,1,top-1))

else
call mcopy(1,nrwblk,fill(1,1,top),blaws,

* blaws,array(1,1,nbloks))
endif

c ***--***
c * SLF-QR starts at the [top; top+1] block-row pair of *
c * each partition and proceeds downward sequentially *
c * to the [base-1; base] block-row pair. *
c ***--***

do 10 kblok = top, base-1
c ***--***
c * [W_kblok <-- QRfact([W_kblok *
c * V_kblok+1]’ V_kblok+1] *
c ***--***

call DGEQRF(ndoubl,nrwblk,array(1,1,kblok),ndoubl,
* tau(kblok*nrwblk+1),blaws(1,nrwblk+1,kpart),
* ndoubl,info)

iflag = msing(nrwblk,array(1,1,kblok))
c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 305

c * [S_kblok <-- QˆT [S_kblok *
c * S_kblok+1]’ 0] *
c ***--***

call mcopy(3,nrwblk,fill(1,1,kblok),blaws,
* blaws(1,1,kpart),blaws)

call DORMQR(’L’,’T’,ndoubl,nrwblk,nrwblk,
* array(1,1,kblok),ndoubl,
* tau(kblok*nrwblk+1),blaws(1,1,kpart),ndoubl,
* blaws(1,nrwblk+1,kpart),ndoubl,info)

call mcopy(4,nrwblk,fill(1,1,kblok),fill(1,1,kblok+1),
* blaws(1,1,kpart),blaws)

c ***--***
c * [T_kblok <-- QˆT [0 *
c * W_kblok+1]’ W_kblok+1] *
c ***--***

call mcopy(5,nrwblk,blaws,blaws,
* blaws(1,1,kpart),array(1,1,kblok+1))

call DORMQR(’L’,’T’,ndoubl,nrwblk,nrwblk,
* array(1,1,kblok),ndoubl,
* tau(kblok*nrwblk+1),blaws(1,1,kpart),ndoubl,
* blaws(1,nrwblk+1,kpart),ndoubl,info)

call mcopy(6,nrwblk,fill(1,1,kblok),blaws,
* blaws(1,1,kpart),array(1,1,kblok+1))

10 continue
20 continue

return
end

c--
subroutine sqrf2 (array, fill, nrwblk, tau, iflag,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), tau(1), blaws(2*nrwblk,1)
integer nrwblk, iflag, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * *
c * In addition, the affix ’/’’ designates that the *
c * matrix was/is transformed at the first/second level *
c * of the factorization. *
c ***--***

integer ndoubl, kpart, base, base1, top, info, msing
c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the factorization. *
c ***--***

if (nparts .eq. 1) return
c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 306

c * SLF-QR starts at the [1; 2] block-row pair of the *
c * second-level array and proceeds downward sequentially *
c * to the [nparts-1; nparts] block-row pair. *
c ***--***

ndoubl = 2*nrwblk
do 10 kpart = 1, nparts-1

call partx(minblk,remblk,kpart,base,top)
call partx(minblk,remblk,kpart+1,base1,top)

c ***--***
c * [W_base <-- QRfact([W_base’ *
c * V_base+1]’’ S_base1’] *
c ***--***

call mcopy(2,nrwblk,fill(1,1,base1),blaws,
* blaws,array(1,1,base))

call DGEQRF(ndoubl,nrwblk,array(1,1,base),ndoubl,
* tau(base*nrwblk+1),blaws(1,nrwblk+1),ndoubl,info)

iflag = msing(nrwblk,array(1,1,base))
c ***--***
c * [S_base <-- QˆT [S_base’ *
c * S_base1]’’ 0] *
c ***--***

call mcopy(3,nrwblk,fill(1,1,base),blaws,
* blaws,blaws)

call DORMQR(’L’,’T’,ndoubl,nrwblk,nrwblk,
* array(1,1,base),ndoubl,tau(base*nrwblk+1),
* blaws,ndoubl,blaws(1,nrwblk+1),ndoubl,info)

call mcopy(4,nrwblk,fill(1,1,base),fill(1,1,base1),
* blaws,blaws)

c ***--***
c * [T_base <-- QˆT [0 *
c * W_base1]’’ W_base1’] *
c ***--***

call mcopy(5,nrwblk,blaws,blaws,
* blaws,array(1,1,base1))

call DORMQR(’L’,’T’,ndoubl,nrwblk,nrwblk,
* array(1,1,base),ndoubl,tau(base*nrwblk+1),
* blaws,ndoubl,blaws(1,nrwblk+1),ndoubl,info)

call mcopy(6,nrwblk,fill(1,1,base),blaws,
* blaws,array(1,1,base1))

10 continue
return
end

c--
subroutine sqrf3 (lftblk, array, fill, rdcmx,

* nrwblk, nbloks, rgtblk, tau, iflag, blaws)
c

double precision lftblk(nrwblk,1), array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), rdcmx(2*nrwblk,1),
* rgtblk(nrwblk,1), tau(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks, iflag

c ***--***
c * The following notation is used in the comments: *
c * *
c * B_a, B_b <=> lftblk, rgtblk *

APPENDIX E. FORTRAN SOURCE LISTINGS 307

c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * *
c * In addition, the affix ’’/’’’ designates that the *
c * matrix was/is transformed at the second/third level *
c * of the factorization. *
c ***--***

integer i, j, ndoubl, info
c ***--***
c * The third-level block-array is of the form *
c * *
c * [B_a B_b *
c * S_nbloks’’ W_nbloks’’] *
c * *
c * The QR-factorization of this block-array is stored *
c * in the rdcmx(,) work-space. The scalar factors of the *
c * elementary reflectors are stored in [tau(1..nrwblk); *
c * tau(nbloks*nrwblk+1..(nbloks+1)*nrwblk)]. *
c ***--***

ndoubl = 2*nrwblk
do 20 j = 1, nrwblk

do 10 i = 1, nrwblk
rdcmx(i,j) = lftblk(i,j)
rdcmx(i,nrwblk+j) = rgtblk(i,j)
rdcmx(nrwblk+i,j) = fill(i,j,nbloks)
rdcmx(nrwblk+i,nrwblk+j) = array(i,j,nbloks)

10 continue
20 continue

call DGEQRF(ndoubl,ndoubl,rdcmx,ndoubl,blaws,
* blaws(1,nrwblk+1),ndoubl,info)

call DCOPY(nrwblk,blaws,1,tau,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,

* tau(nbloks*nrwblk+1),1)
c ***--***
c * Check for exact singularity. *
c ***--***

do 30 i = 1, ndoubl
if (rdcmx(i,i) .eq. 0.d0) iflag = i

30 continue
return
end

c--
subroutine sqrsl (lftblk, array, nrwblk, nbloks, rgtblk,

* b, tau, nparts, work)
c

double precision lftblk(1), array(1), rgtblk(1),
* b(1), tau(1), work(1)
integer nrwblk, nbloks, nparts

c ***--***
c * Given the factors of ABD matrix A computed by subroutine *
c * ’sqrfa’ and stored in arrays lftblk, array, rgtblk, *

APPENDIX E. FORTRAN SOURCE LISTINGS 308

c * work and tau, this subroutine solves the linear system *
c * A x = b. b is overwritten with x. See comments in *
c * subroutine ’slf_qr’ for further details. *
c ***--***

integer nsquar, wk1, wk2, wk3, minblk, remblk
c ***--***
c * Work-space allocation: *
c * 1st/2nd-level fill-in - work(1)..work(wk2-1) *
c * 3rd-level reduced matrix - work(wk2)..work(wk3-1) *
c * temporary storage for BLAS - work(wk3)..end *
c * *
c * Total requirement: nbloks*[(nrwblk)x(2*nrwblk)] *
c * + [(2*nrwblk)x(2*nrwblk)] *
c * + nparts*[(2*nrwblk)x(nrwblk+1)] *
c ***--***

nsquar = nrwblk**2
wk1 = 1
wk2 = wk1 + 2*nbloks*nsquar
wk3 = wk2 + 4*nsquar

c ***--***
c * Calculate minimum number of blocks per partition *
c * Remaining blocks are distributed evenly among the *
c * first partitions. *
c ***--***

minblk = nbloks/nparts
remblk = nbloks - minblk*nparts

c ***--***
c * Three level forward elimination. *
c ***--***

call sqrsf1(array,nrwblk,b,tau,
* minblk,remblk,nparts,work(wk3))

call sqrsf2(array,nrwblk,b,tau,
* minblk,remblk,nparts,work(wk3))

call sqrsf3(work(wk2),nrwblk,nbloks,b,b,tau,work(wk3))
c ***--***
c * Three level back-solve. *
c ***--***

call sqrsb3(work(wk2),nrwblk,nbloks,b,b,work(wk3))
call sqrsb2(array,work(wk1),nrwblk,nbloks,b,

* minblk,remblk,nparts,work(wk3))
call sqrsb1(array,work(wk1),nrwblk,b,

* minblk,remblk,nparts,work(wk3))
return
end

c--
subroutine sqrsf1 (array, nrwblk, phi, tau,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1), phi(1),
* tau(1), blaws(2*nrwblk,nrwblk+1,1)
integer nrwblk, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *

APPENDIX E. FORTRAN SOURCE LISTINGS 309

c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * In addition, the affix ’ designates that the vector is *
c * transformed at the first level of the forward solve. *
c ***--***

integer ndoubl, kpart, kblok, base, top, info
c

ndoubl = 2*nrwblk
c ***--***
c * Each loop 20 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, nrwblk, phi, tau,
C$& minblk, remblk, nparts, blaws, ndoubl),
C$& LOCAL (kpart, kblok, base, top, info)

do 20 kpart = 1, nparts
c ***--***
c * Forward elimination starts at [phi_top; phi_top+1] *
c * of each partition and proceeds downward sequentially *
c * to [phi_base-1; phi_base]. *
c ***--***

call partx(minblk,remblk,kpart,base,top)
do 10 kblok = top, base-1

c ***--***
c * [phi_kblok <-- QˆT [phi_kblok *
c * phi_kblok+1]’ phi_kblok+1] *
c * *
c * QˆT is resurrected from nrwblk elementary reflectors *
c * stored in [W_kblok; V_kblok+1] and tau_kblok. *
c ***--***

call DORMQR(’L’,’T’,ndoubl,1,nrwblk,
* array(1,1,kblok),ndoubl,tau(kblok*nrwblk+1),
* phi(kblok*nrwblk+1),ndoubl,
* blaws(1,nrwblk+1,kpart),ndoubl,info)

10 continue
20 continue

return
end

c--
subroutine sqrsf2 (array, nrwblk, phi, tau,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1), phi(1),
* tau(1), blaws(2*nrwblk,1)
integer nrwblk, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *

APPENDIX E. FORTRAN SOURCE LISTINGS 310

c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * In addition, the affix ’/’’ designates that the *
c * vector was/is transformed at the first/second level *
c * of the forward solve. *
c ***--***

integer ndoubl, kpart, base, base1, top, info
c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the forward solve. *
c ***--***

if (nparts .eq. 1) return
c ***--***
c * Forward elimination starts at [phi_base_1; phi_base_2] *
c * of the second-level system and proceeds downward *
c * sequentially to [phi_base_nparts-1; phi_base_nparts]. *
c ***--***

ndoubl = 2*nrwblk
do 10 kpart = 1, nparts-1

call partx(minblk,remblk,kpart,base,top)
call partx(minblk,remblk,kpart+1,base1,top)

c ***--***
c * [phi_base <-- QˆT [phi_base’’ *
c * phi_base1]’’ phi_base1’] *
c * *
c * QˆT is resurrected from nrwblk elementary reflectors *
c * stored in [W_base; V_base+1] and tau_base. *
c ***--***

call DCOPY(nrwblk,phi(base*nrwblk+1),1,blaws,1)
call DCOPY(nrwblk,phi(base1*nrwblk+1),1,

* blaws(nrwblk+1,1),1)
call DORMQR(’L’,’T’,ndoubl,1,nrwblk,

* array(1,1,base),ndoubl,tau(base*nrwblk+1),
* blaws,ndoubl,blaws(1,nrwblk+1),ndoubl,info)

call DCOPY(nrwblk,blaws,1,phi(base*nrwblk+1),1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,

* phi(base1*nrwblk+1),1)
10 continue

return
end

c--
subroutine sqrsf3 (rdcmx, nrwblk, nbloks, beta, phi, tau, blaws)

c
double precision rdcmx(2*nrwblk,1), beta(1), phi(1),

* tau(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks

c ***--***
c * The following notation is used in the comments: *
c * *
c * beta <=> beta(1) (<=> phi_0) *
c * phi_k <=> phi(k*nrwblk+1), k >= 1 *
c * *

APPENDIX E. FORTRAN SOURCE LISTINGS 311

c * In addition, the affix ’’/’’’ designates that the *
c * vector was/is transformed at the second/third level *
c * of the forward solve. *
c ***--***

integer ndoubl, info
c ***--***
c * The right-hand side of the third-level system is *
c * multiplied through by the transpose of the orthogonal *
c * factor of the third-level block-array: *
c * *
c * [beta <-- QˆT [beta *
c * phi_nbloks]’’’ phi_nbloks’’] *
c * *
c * QˆT is resurrected from 2*nrwblk elementary reflectors *
c * stored in rdcmx(,) and [tau_0; tau_nbloks]. *
c ***--***

ndoubl = 2*nrwblk
call DCOPY(nrwblk,tau,1,blaws(1,2),1)
call DCOPY(nrwblk,tau(nbloks*nrwblk+1),1,

* blaws(nrwblk+1,2),1)
call DCOPY(nrwblk,beta,1,blaws,1)
call DCOPY(nrwblk,phi(nbloks*nrwblk+1),1,

* blaws(nrwblk+1,1),1)
call DORMQR(’L’,’T’,ndoubl,1,ndoubl,

* rdcmx,ndoubl,blaws(1,2),blaws,ndoubl,
* blaws(1,nrwblk+1),ndoubl,info)

call DCOPY(nrwblk,blaws,1,beta,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,

* phi(nbloks*nrwblk+1),1)
return
end

c--
subroutine sqrsb3 (rdcmx, nrwblk, nbloks, beta, phi, blaws)

c
double precision rdcmx(2*nrwblk,1), beta(1),

* phi(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks

c ***--***
c * The following notation is used in the comments: *
c * *
c * beta <=> beta(1) (<=> phi_0) *
c * phi_k <=> phi(k*nrwblk+1), k >= 1 *
c * *
c * Since [beta; phi] is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> beta *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’’ designates that the solution *
c * vector is obtained at the third level of the back-solve. *
c ***--***

integer ndoubl
c ***--***

APPENDIX E. FORTRAN SOURCE LISTINGS 312

c * y_a’’’ and y_b’’’ are obtained by solving the upper- *
c * triangular third-level system *
c * *
c * rdcmx(,) [y_a = [beta *
c * y_b] phi_nbloks] *
c ***--***

ndoubl = 2*nrwblk
call DCOPY(nrwblk,beta,1,blaws,1)
call DCOPY(nrwblk,phi(nbloks*nrwblk+1),1,

* blaws(nrwblk+1,1),1)
call DTRSM(’L’,’U’,’N’,’N’,ndoubl,1,1.d0,

* rdcmx,ndoubl,blaws,ndoubl)
call DCOPY(nrwblk,blaws,1,beta,1)
call DCOPY(nrwblk,blaws(nrwblk+1,1),1,

* phi(nbloks*nrwblk+1),1)
return
end

c--
subroutine sqrsb2 (array, fill, nrwblk, nbloks, phi,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), phi(1), blaws(2*nrwblk,1)
integer nrwblk, nbloks, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * Since phi is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> phi_0 (<=> beta in sqrsb3.f) *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’’/’’ designates that the *
c * solution vector was/is obtained at the third/second *
c * level of the back-solve. *
c ***--***

integer ndoubl, kpart, base, basep, top
c ***--***
c * If there is only one partition, nothing needs to be *
c * done at the second level of the back-solve. *
c ***--***

if (nparts .eq. 1) return
c ***--***
c * Back-solve starts at the second-last block-row of the *
c * second-level system and proceeds upward sequentially *
c * to the first block-row. *

APPENDIX E. FORTRAN SOURCE LISTINGS 313

c ***--***
ndoubl = 2*nrwblk
base = nbloks
call DCOPY(nrwblk,phi,1,blaws,1)
do 10 kpart = nparts-1, 1, -1

basep = base
call partx(minblk,remblk,kpart,base,top)

c ***--***
c * phi_base <-- phi_base - S_base y_0’’’ - T_base y_basep’’ *
c ***--***

call DCOPY(nrwblk,phi(basep*nrwblk+1),1,
* blaws(nrwblk+1,1),1)

call DGEMV(’N’,nrwblk,ndoubl,
* -1.d0,fill(1,1,base),nrwblk,
* blaws,1,1.d0,phi(base*nrwblk+1),1)

c ***--***
c * y_base’’ is now obtained by solving the upper-triangular *
c * nrwblkxnrwblk system W_base y_base = phi_base *
c ***--***

call DTRSM(’L’,’U’,’N’,’N’,nrwblk,1,1.d0,
* array(1,1,base),ndoubl,
* phi(base*nrwblk+1),nrwblk)

10 continue
return
end

c--
subroutine sqrsb1 (array, fill, nrwblk, phi,

* minblk, remblk, nparts, blaws)
c

double precision array(2*nrwblk,nrwblk,1),
* fill(nrwblk,2*nrwblk,1), phi(1),
* blaws(2*nrwblk,nrwblk+1,1)
integer nrwblk, minblk, remblk, nparts

c ***--***
c * The following notation is used in the comments: *
c * *
c * [W_nbloks <=> array(1,1,nbloks) *
c * V_1] *
c * [W_k <=> array(1,1,k), k = 1..nbloks-1 *
c * V_k+1] *
c * S_k, T_k <=> fill(1,1,k), fill(1,nrwblk+1,k) *
c * phi_k <=> phi(k*nrwblk+1) *
c * *
c * Since phi is overwritten with the solution, *
c * *
c * y_a <=> y_0 <=> phi_0 (<=> beta in sqrsb3.f) *
c * y_k <=> phi_k, k = 1, nbloks-1 *
c * y_b <=> y_nbloks <=> phi(nbloks*nrwblk+1) *
c * *
c * In addition, the affix ’’/’ designates that the *
c * solution vector was/is obtained at the second/first *
c * level of the back-solve. *
c ***--***

integer ndoubl, kpart, kblok, base, top

APPENDIX E. FORTRAN SOURCE LISTINGS 314

c
ndoubl = 2*nrwblk

c ***--***
c * Each loop 20 iteration is independent and could *
c * execute concurrently with the others. *
c ***--***
C$DOACROSS SHARE (array, fill, nrwblk, phi,
C$& minblk, remblk, nparts, blaws, ndoubl),
C$& LOCAL (kpart, kblok, base, top)

do 20 kpart = 1, nparts
c ***--***
c * Back-solve starts at the second-last block-row of *
c * each partition and proceeds upward sequentially to *
c * the first block-row. *
c ***--***

call partx(minblk,remblk,kpart,base,top)
call DCOPY(nrwblk,phi((top-1)*nrwblk+1),1,

* blaws(1,1,kpart),1)
do 10 kblok = base-1, top, -1

c ***--***
c * phi_kblok <-- phi_kblok - S_kblok y_top-1’’ *
c * - T_kblok y_kblok+1’ *
c ***--***

call DCOPY(nrwblk,phi((kblok+1)*nrwblk+1),1,
* blaws(nrwblk+1,1,kpart),1)

call DGEMV(’N’,nrwblk,ndoubl,
* -1.d0,fill(1,1,kblok),nrwblk,
* blaws(1,1,kpart),1,1.d0,
* phi(kblok*nrwblk+1),1)

c ***--***
c * y_kblok’ is now obtained by solving the upper-triangular *
c * nrwblkxnrwblk system W_kblok y_kblok = phi_kblok *
c ***--***

call DTRSM(’L’,’U’,’N’,’N’,nrwblk,1,1.d0,
* array(1,1,kblok),ndoubl,
* phi(kblok*nrwblk+1),nrwblk)

10 continue
20 continue

return
end

c--
subroutine mcopy (sel, n, C, D, E, F)

c
double precision C(n,1), D(n,1), E(2*n,1), F(2*n,1)
integer sel, n

c ***--***
c * ’mcopy’ performs the matrix copy selected by sel. *
c * Note: Due to the nature of the storage organization, *
c * vectorized copying (Lapack’s DCOPY) is not possible. *
c * *
c * on entry *
c * *
c * sel [integer] *
c * Copy selection (see below for details). *

APPENDIX E. FORTRAN SOURCE LISTINGS 315

c * *
c * n [integer] *
c * The number of rows in C and D and the number *
c * of columns in E and F. There are 2*n columns *
c * in C and D and 2*n rows in E and F. *
c * *
c * C, D, E, F [double precision *
c * (n,2*n), (n,2*n), (2*n,n), (2*n,n)] *
c * The matrices before copying. *
c * *
c * on return *
c * *
c * sel [integer] *
c * Unchanged. *
c * *
c * n [integer] *
c * Unchanged. *
c * *
c * C, D, E, F [double precision *
c * (n,2*n), (n,2*n), (2*n,n), (2*n,n)] *
c * The matrices after copying. *
c ***--***

integer i, j, j1
c ***--***
c * The following notation is used in the comments: *
c * *
c * C <=> [C1 C2] D <=> [D1 D2] *
c * E <=> [E1 F <=> [F1 *
c * E2] F2] *
c * *
c * Ck, Dk, Ek and Fk, k = 1, 2, are each nxn matrices. *
c * (0) is the nxn zero matrix. *
c ***--***

go to (100, 200, 300, 400, 500, 600) sel
c ***--***
c * Copy selection #1: C1 <- F2 *
c ***--***
100 do 120 j = 1, n

do 110 i = 1, n
C(i,j) = F(n+i,j)

110 continue
120 continue

return
c ***--***
c * Copy selection #2: F2 <- C1 *
c ***--***
200 do 220 j = 1, n

do 210 i = 1, n
F(n+i,j) = C(i,j)

210 continue
220 continue

return
c ***--***
c * Copy selection #3: E1 <- C1 *

APPENDIX E. FORTRAN SOURCE LISTINGS 316

c * E2 <- (0) *
c ***--***
300 do 320 j = 1, n

do 310 i = 1, n
E(i,j) = C(i,j)
E(n+i,j) = 0.d0

310 continue
320 continue

return
c ***--***
c * Copy selection #4: C1 <- E1 *
c * D1 <- E2 *
c ***--***
400 do 420 j = 1, n

do 410 i = 1, n
C(i,j) = E(i,j)
D(i,j) = E(n+i,j)

410 continue
420 continue

return
c ***--***
c * Copy selection #5: E1 <- (0) *
c * E2 <- F1 *
c ***--***
500 do 520 j = 1, n

do 510 i = 1, n
E(i,j) = 0.d0
E(n+i,j) = F(i,j)

510 continue
520 continue

return
c ***--***
c * Copy selection #6: C2 <- E1 *
c * F1 <- E2 *
c ***--***
600 do 620 j = 1, n

j1 = n + j
do 610 i = 1, n

C(i,j1) = E(i,j)
F(i,j) = E(n+i,j)

610 continue
620 continue

return
end

c--
integer function msing (n, A)

c
double precision A(1)
integer n

c ***--***
c * ’msing’ checks for exact singularity in the nxn upper- *
c * triangle of 2*nxn matrix A. *
c * *
c * on entry *

APPENDIX E. FORTRAN SOURCE LISTINGS 317

c * *
c * n [integer] *
c * The number of columns and half the number of *
c * rows in A. This is implicit -- A is accessed *
c * as a 1D array inside this function. *
c * *
c * A [double precision(2*n**2)] *
c * Only the diagonal of the nxn upper-triangle *
c * is accessed. *
c * *
c * on return *
c * *
c * n [integer] *
c * Unchanged. *
c * *
c * A [double precision(2*n**2)] *
c * Unchanged. *
c * *
c * msing [integer] *
c * = k if the k-th element on the diagonal of *
c * the nxn upper-triangle of A is exactly zero *
c * (note: there may be other zeros), *
c * = 0 otherwise. *
c ***--***

integer ndoubl, i, k
c

ndoubl = 2*n
do 10 k = 1, n

i = (k-1)*ndoubl + k
if (A(i) .eq. 0.d0) then

msing = k
return

end if
10 continue

msing = 0
return
end

c--
subroutine partx (minblk, remblk, k, base, top)

c
integer minblk, remblk, k, base, top

c ***--***
c * ’partx’ calculates the index of the base and top block *
c * of the k-th partition. The indexing scheme assumes that *
c * nbloks >= 2*nparts, so minblk >= 2 and remblk >= 0. *
c * *
c * on entry *
c * *
c * minblk [integer] *
c * minimum number of blocks/partition *
c * (minblk = nbloks/nparts) *
c * *
c * remblk [integer] *
c * first remblk partitions have minblk+1 blocks *

APPENDIX E. FORTRAN SOURCE LISTINGS 318

c * (remblk = nbloks - minblk*nparts) *
c * *
c * k [integer] *
c * *
c * on return *
c * *
c * base [integer] *
c * index of base block of k-th partition *
c * *
c * top [integer] *
c * index of top block of k-th partition *
c ***--***

integer khigh, klow
c

if (k .le. remblk) then
khigh = k
klow = 0

else
khigh = remblk
klow = k - khigh

endif
base = khigh*(minblk+1) + klow*minblk
top = base - minblk + 1
if (k .le. remblk) then

top = top - 1
endif

return
end

Bibliography

[Amod 00] P. Amodio, J.R. Cash, G. Roussos, R.W. Wright, G. Fairweather, I. Gladwell, G.L.

Kraut, M. Paprzycki, Almost Block Diagonal linear systems: sequential and paral-

lel solution techniques, and applications, Numer. Linear Algebra Appl., 7 (2000),

pp. 275-317.

[Asch 81] U.M. Ascher, J. Christiansen, R.D. Russell, Collocation software for boundary-

value ODEs, ACM Trans. Math. Software, 7 (1981), pp. 209-222.

[Asch 88] U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary

Value Problems for Ordinary Differential Equations, Prentice Hall, Englewood

Cliffs, 1988.

[Asch 91] U.M. Ascher, S.Y.P. Chan, On parallel methods for boundary value ODEs, Com-

puting 46/1 (1991), pp. 1-17.

[Bade 87] G. Bader, U.M. Ascher, A new basis implementation for a mixed order boundary

value ODE solver, SIAM J. Sci. Stat. Comput., 8 (1987), pp. 483-500.

[Benn 90] K.R. Bennett, G. Fairweather, PCOLNEW: A parallel boundary-value ODE code

for shared-memory machines, Univ. of Kentucky, Center for Computational Sci-

ences, T.R. CCS-90-8, 1990.

[deBo 80] C. de Boor, R. Weiss, SOLVEBLOK: A package for solving almost block diagonal

linear systems, ACM Trans. Math. Software, 6 (1980), pp. 80-87.

[Diaz 83] J.C. Diaz, G. Fairweather, P. Keast, Algorithm 603. COLROW and ARCECO: FOR-

TRAN packages for solving certain almost block diagonal linear systems by modi-

fied alternate row and column elimination, ACM Trans. Math. Software 9/3 (1983),

pp. 376-380.

319

BIBLIOGRAPHY 320

[Enri 96] W.H. Enright, P.H. Muir, Runge-Kutta software with defect control for boundary

value ODEs, SIAM J. Sci. Comput. 17/2 (1996), pp. 479-497.

[Gear 88] C.W. Gear, Massive parallelism across the method in ODEs, Univ. of Illinois, Com-

puter Science Dept., T.R. UIUCDCS-R-88-1442, 1988.

[Golu 83] G. Golub, C. van Loan, Matrix Computations, Johns Hopkins University Press,

Baltimore, 1983.

[Hell 76] D. Heller, Some aspects of the cyclic reduction algorithm for block tridiagonal

linear systems, SIAM J. Numer. Anal., 13 (1976), pp. 484-496.

[Hock 65] R. Hockney, A Fast Direct Solution of Poisson’s Equation Using Fourier Analysis,

J. ACM, 12 (1965), pp. 95-113.

[Hock 70] R. Hockney, The Potential Calculation and Some Applications, Meth. Comput.

Phys., 9 (1970), pp. 135-211.

[Lent 77] M. Lentini, V. Pereyra, An adaptive finite difference solver for nonlinear two-point

boundary value problems with mild boundary layers, SIAM J. Numer. Anal., 14

(1977), pp. 91-111.

[Lent 89] M. Lentini, Parallel solution of special large block tridiagonal systems: TPBVP,

manuscript (1989).

[Matt 85] R.M.M. Mattheij, Decoupling and stability of algorithms for boundary value prob-

lems, SIAM Review, 27 (1985), pp. 1-44.

[Muir 91] P.H. Muir, Private communication.

[Muir 03] P.H. Muir, R.N. Pancer, K.R. Jackson, PMIRKDC: a parallel mono-implicit Runge-

Kutta code with defect control for Boundary Value ODEs, Parallel Computing, 29

(2003), pp. 711-741.

[Panc 92] R.N. Pancer, K.R. Jackson, The parallel solution of ABD systems arising in numer-

ical methods for BVPs for ODEs, Univ. of Toronto, Dept. of Computer Science,

T.R. 255/91, 1992.

[Papr 91] M. Paprzycki, I. Gladwell, Solving almost block diagonal systems on parallel com-

puters, Parallel Comput. 17/2 (1991), pp. 133-153.

BIBLIOGRAPHY 321

[Sche 84] U. Schendel, Introduction to Numerical Methods for Parallel Computers, Ellis Hor-

wood, New York, 1984.

[Wrig 90] S.J. Wright, V. Pereyra, Adaptation of a two-point boundary value problem solver

to a vector-multiprocessor environment, SIAM J. Sci. Stat. Comput. 11/3 (1990),

pp. 425-449.

[Wrig 92] S.J. Wright, Stable parallel algorithms for two-point boundary value problems,

SIAM J. Sci. Stat. Comput. 13/3 (1992), pp. 742-764.

[Wrig 93] S.J. Wright, A collection of problems for which Gaussian elimination with partial

pivoting is unstable, SIAM J. Sci. Comput. 14/1 (1993), pp. 231-238.

[Wrig 94] S.J. Wright, Stable parallel elimination for boundary value ODEs, Numer. Math.

67/4 (1994), pp. 521-535.

