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Abstract

Verified methods for the integration of initial value problems (IVPs) for ODEs
aim at computing guaranteed error bounds for the flow of an ODE while maintain-
ing a low level of overestimation. This paper is concerned with one of the sources of
overestimation: a matrix-vector product describing a parallelepiped in phase space.

We analyze the blunting method developed by Berz and Makino, which consists
of a special choice of the matrix in this product. For the linear model problem

u′ = Au, u(0) = u0 ∈ u0,

where u ∈ Rm, A ∈ Rm×m, m ≥ 2, and u0 is a given interval vector, we compare
the convergence behavior of the blunting method with that of the well-known QR
method. In both methods, the amount of overestimation of the flow of the initial
set depends on the spectral radius of some well-defined matrix. We show that
under certain conditions, the spectral radii of the matrices that describe the excess
propagation in the QR method and in the blunting method have the same limits,
and the excess propagation in both methods is similar.

1 Verified Integration of IVPs

Consider the set of autonomous IVPs

u′ = f(u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend], (1)

on some domain D ⊂ Rm, where f ∈ Cn(D), f : D → Rm; u0 is a given interval vector
in the space variables; and tend > t0 is a given endpoint of the time interval. The ODE
is defined in the traditional way, but the initial value is allowed to vary. In applications,
this variability is used for modeling uncertainties in initial conditions.
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For each u0 ∈ u0, the point IVP

u′ = f(u), u(t0) = u0

has a classical solution, denoted by u(t;u0). In the following, we assume that u(t;u0)
exists and is bounded for all t ∈ t and for all u0 ∈ u0.

Our goal, when solving (1), is to calculate bounds on the flow of the interval IVP. For
each t ∈ t, we wish to calculate an interval vector u(t) such that

u(t;u0) ∈ u(t) for all u0 ∈ u0.

The tube u(t), t ∈ t, then contains all solutions of u′ = f(u) that emerge from u0.

We illustrate in Figure 1(a) a flow emanating from an initial set u0 ⊂ R2 in the phase
plane. The direction field of the ODE is described by the arrows. The initial set u0 ⊂ R2

at t = 0 is defined by the rightmost square. As time passes, this set moves to the left in
the phase plane and is deformed along its path. At some time t1 > 0, the transported
flow has changed to the shape of the set in the middle of the picture, whereas the leftmost
set shows the flow at some time t2 > t1.

(a) Flow of an initial set. (b) Interval enclosures for the flow.

Figure 1: Flow of an ODE and its enclosures.

A verified integration method for ordinary IVPs computes enclosure sets for the flow
at distinct points tj, j = 0, . . . , N [6, 8, 9, 10, 11, 13, 15, 18, 21, 23, 24, 26, 31, 32, 33,
34, 35, 38, 39, 40, 41, 42, 43, 44, 47, 48, 49, 50]. In Figure 1(b), the first three time steps
of such an enclosure method are illustrated.

At t = t1, the rectangle u1 is an enclosure set for the flow of u0 at t = t1. Typically,
u1 overestimates this flow. This wrapping of the flow by u1 introduces overestimation in
any verified integration method. Instead of the exact flow at t = t1, the enclosure set u1

is used as the initial set in the second integration step,

u′ = f(u), t ∈ [t1, t2], u(t1) ∈ u1.

Then, at t = t2, the flow of u1 is enclosed by some set u2, depicted by the leftmost
square in Figure 1(b). We observe that the flow of the original initial set u0 at t = t2 is
contained in u2, but there is already substantial overestimation in this picture.

We assume that the reader is familiar with real interval arithmetic [1, 19, 35, 36, 45].
In this paper, the set of compact real intervals is denoted by

IR = {x = [x, x] | x, x ∈ R, x ≤ x }.
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Intervals are denoted by boldface. Lower-case letters are used to denote scalars and
vectors. Matrices are denoted by upper-case letters. The midpoint and the width of an
interval x are denoted by m(x) := (x+ x)/2 and w(x) := x− x, respectively. The set of
all m-dimensional interval vectors is denoted by IRm.

This paper is organized as follows. The general interval Taylor method for ordinary
IVPs is outlined in Section 2. In section 3, several interval methods for a linear model
problem are compared. The blunting method for this model problem is analyzed in
Section 4. Numerical experiments are reported in Section 5, and conclusions are in
Section 6.

2 Interval Taylor Series Methods for IVPs

In this section, we review interval Taylor series methods for the IVP (1). The basic idea
is to approximate each solution of (1) by its Taylor polynomial:

u(t) ≈ u(t0) +
n−1∑
k=1

u(k)(t0)

k!
(t− t0)k. (2)

The Taylor coefficients in (2) are computed by differentiating u′ = f(u) with respect to
t. From the chain rule, we obtain

u′′

2
=

1

2

(
∂

∂u
f(u)

)
u′ =

1

2

(
∂

∂u
f(u)

)
f(u).

Higher-order Taylor coefficients of u are computed similarly. Letting

f [0](u) = u, f [k](u) =
1

k

(
∂f [k−1]

∂u
f

)
(u) for k ≥ 1,

values of these coefficients can be computed recursively by automatic differentiation from
initial values u0 or u0, and the well-known formulas for the Taylor coefficients of sums,
products, quotients, and the standard functions [16, 35, 46].

In verified integration, it is not sufficient to compute an approximation to the solution.
Taylor’s theorem, however, allows us to compute not only the approximate solution in
(2), but also a rigorous error bound for it. According to Taylor’s theorem,

u(t) = u(t0) +
n−1∑
k=1

f [k]
(
u(t0)

)
(t− t0)k + f [n](uξ)(t− t0)n, (3)

where uξ =
(
u1(ξ1), u2(ξ2), . . . , um(ξm)

)
, and each ξi is between t0 and t1. Now suppose

that for some t1 > t0, componentwise bounds u, u fulfilling

u ≤ u(t) ≤ u for all t ∈ [t0, t1]

are known. Then the interval arithmetic evaluation of f [n]([u, u]) yields rigorous lower
and upper bounds for the nth Taylor coefficient, and thus also lower and upper bounds
for the solutions of (1), for given u(t0) ∈ u0 and for all t ∈ [t0, t1].
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Suitable values u, u can be computed by Picard’s iteration [35]. Using the Picard-
Lindelöff operator and the Banach fixed-point theorem, one can show that, if h0 and
v0 ⊇ u0 satisfy

ũ0 = u0 + [0, h0]f(v0) ⊆ v0,

then (1) has a unique solution u(t;u0) for t ∈ [t0, t0 + h0] and each u0 ∈ u0. Moreover,
u(t;u0) ∈ ũ0 holds for all t ∈ [t0, t0 +h0] and all u0 ∈ u0. The interval bound ũ0 is called
a coarse enclosure of the flow of u0, for t ∈ [t0, t1], where t1 = t0 + h0.

Picard’s iteration is easily performed, but it has the disadvantage that if often restricts
the step size of verified integration methods. More advanced schemes for computing
coarse enclosures are discussed in [12, 26].

Once a coarse enclosure is available, it can be used to obtain tighter bounds on the
flow by a refinement procedure. Inserting ũ0 in the formula for the truncation error of
the Taylor series in (3), the inclusion

u(t1;u0) ∈ u1 = u0 +
n−1∑
k=1

hk0f
[k](u0) + hn0f

[n](ũ0) (4)

is obtained. This formula is not useful for practical computations, however, because it is
width increasing in time. That is,

w(u1) = w(u0) + w

(
n−1∑
k=1

hk0f
[k](u0) + hn0f

[n](ũ0)

)
≥ w(u0),

and typically w(u1) > w(u0).

Tighter enclosures can be achieved by applying the mean-value form to f [k] in (4).
For any û0 ∈ u0, it holds that

u(t1;u0) ∈ û0 +
n−1∑
k=1

hk0f
[k](û0) + hn0f

[n](ũ0) +

(
I +

n−1∑
k=1

hk0
∂f [k]

∂u
(u0)

)
(u0 − û0), (5)

where I is the identity matrix, and ∂f [k]/∂u is the Jacobian of f [k]. These Jacobians can
be computed via automatic differentiation (see e.g. [23, 38]).

Letting

S0 = I +
n−1∑
k=1

hk0
∂f [k]

∂u
(u0) and z1 = hn0 f

[n](ũ0),

we write (5) as

u(t1;u0) ∈ u1 = û0 +
n−1∑
k=1

hk0f
[k](û0) + z1 + S0(u0 − û0). (6)

This approach was introduced by Moore [33, 34, 35]. Its main disadvantage lies in the
computation of the interval vector S0(u0 − û0). To obtain a valid enclosure method for
the flow of (1), it would be sufficient to compute a bound on the set

S = {S0(u0 − û0) | S0 ∈ S0, u0 ∈ u0}.
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Wrapping S by S0(u0 − û0) may result in significant overestimation of S, which also
causes overestimation in the initial set for the next integration step (cf. Section 1).

This so-called wrapping effect was first observed by Moore in 1965 [34]; recent analyses
of it are in [25, 39]. To reduce wrapping in interval methods for the verified integration
of IVPs, several schemes have been proposed in the literature [15, 21, 23, 24, 34]. On
a general scale, interval arithmetic has also been extended with symbolic computations
[14, 20, 27] to diminish the wrapping effect. Starting in the 1990s, Berz and his group
developed a rigorous multivariate Taylor arithmetic [2, 27, 30]. Taylor model arithmetic
has been defined in [2, 5, 27, 29, 30]. A software implementation of Taylor model arith-
metic has been developed by Berz and Makino [3, 28] in the COSY Infinity package [4].
Using COSY Infinity, Taylor models have been applied with success to a variety of prob-
lems, including global optimization [37], verified multi-dimensional integration [7], and
the verified solution of ODEs and DAEs [6, 17].

The major source of overestimation in (6) is in the matrix-vector product S0(u0− û0).
The amount of overestimation is effectively reduced if this product is not performed
explicitly, but if S is propagated in the integration scheme as a parallelepiped instead
of an interval. This is achieved by introducing local coordinate systems described by
matrices, denoted here by Bj.

Letting û0 = m(u0), r0 = u0 − û0, B0 = I, choosing nonsingular matrices Bj,
and performing a sequence of integration steps, formula (6) is extended to the interval
iteration

ûj = ûj−1 +
n−1∑
k=1

hkj−1f
[k](ûj−1) + m(zj),

uj = ûj−1 +
n−1∑
k=1

hkj−1f
[k](ûj−1) + zj + (Sj−1Bj−1)rj−1,

 j = 1, 2, . . . , (7)

in which ûj is an approximate point solution, zj is an enclosure of the (usually small)
local error of the jth integration step, and the global error rj is propagated according to

rj =
(
B−1j (Sj−1Bj−1)

)
rj−1 +B−1j

(
zj −m(zj)

)
. (8)

We are free to choose the matrices Bj to optimize the error propagation properties
of the method (7–8). In Moore’s method, Bj = I is used in all steps, and the wrapping
effect generally appears with this choice. The parallelepiped method [15, 23] is obtained by
choosing Bj = m(Sj−1Bj−1). This method, for reducing the wrapping effect, is suitable
for pure rotations, but otherwise the matrices Bj tend to become close to singular (and
frequently singular in floating-point arithmetic) after a few steps.

The hitherto most successful general scheme for reducing the wrapping effect is
Lohner’s QR method [23, 24]. In this method, Bj is chosen as the orthogonal matrix
Q in the QR factorization of m(Sj−1Bj−1). Thus, the matrices Bj are always well condi-
tioned. In [39], it has been shown that, for an important subclass of linear autonomous
constant-coefficient systems, the bound on the global error of the QR method is not much
bigger than the global error of the corresponding approximate Taylor method.

As an alternative to QR factorization, one could modify the matrices Bj of the paral-
lelepiped method such that their condition number does not exceed some suitable bound.
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This variant of the parallelepiped method was already mentioned by Lohner in [23], but
not implemented in his thesis. Berz and Makino [8, 31] developed this idea into a practical
algorithm, which they named the blunting method.

The purpose of this paper is the analysis of the blunting method and a comparison
of its asymptotic behavior with that of the QR method. We have not been successful
in developing an analysis for nonlinear or time-dependent linear systems. Our analysis
applies only to the model problem of a linear system with constant coefficients. This, of
course, does not cover the full story, but it does provide useful information. In particular,
methods that perform poorly for the model problem are likely to perform poorly for other
problems as well.

3 Taylor Methods for a Linear Model Problem

We now consider the linear constant-coefficient model problem

u′ = Au, (A ∈ Rm×m, m ≥ 2)

u(0) = u0 ∈ u0.
(9)

The interval Taylor method with constant order n and stepsize h for solving (9) consists
of the iteration

uj := Tuj−1 + zj, j = 1, 2, . . . ,

where

T = Tn−1(hA) =
n−1∑
k=0

(hA)k

k!
, (10)

and zj denotes the local error.

We enclose the flow of (9) by

u(tj;u0) = {u(tj;u0) | u0 ∈ u0}
⊆ {uj + Sjw +Bjr | w ∈ u0 −m(u0), r ∈ rj},

where uj, w, r ∈ Rm, rj ∈ IRm; Sj, Bj ∈ Rm×m; and Bj must be nonsingular. The set

{uj + Sjw | w ∈ u0 −m(u0)}

approximates the flow {u(tj;u0) | u0 ∈ u0} at t = tj. The global error is guaranteed to
be contained in the set

{Bjr | r ∈ rj}.

We first formulate the interval methods mentioned in the previous section for the
model problem and then develop an error analysis for the blunting method.
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3.1 Propagation of the Global Error

In all interval methods that we study in this paper, the iteration is started with u0 =
m(u0), r0 = 0, S0 = B0 = I. The propagation of the global error is described by the
iteration (8), which for our model problem is

rj = (B−1j TBj−1)rj−1 +B−1j
(
zj −m(zj)

)
. (11)

For minimal overestimation, Bj should be chosen such that the inclusion

{TBj−1r + z | r ∈ rj−1, z ∈ zj −m(zj)} ⊆ {Bjr | r ∈ rj} (12)

is as a tight as possible.

There is a straightforward geometric interpretation of the inclusion (12). The sum
of a parallelepiped (containing the accumulated global error of the previous integration
steps) and an interval box (containing the local error of the current integration step) is
enclosed into a new parallelepiped, as illustrated by Figure 2.

+ = ⊂

Figure 2: Propagation of the global error.

3.2 Wrapping Effect

In Moore’s method [33, 34, 35], Bj = I is used for all j, so that the global error is
propagated according to

rj = Trj−1 + zj −m(zj).

The chosen coordinates are optimal for the local error, which is simply added to the
global error. However, if T describes a rotation in phase space, then the volume of Trj−1
can be much larger than the volume of rj−1.

The parallelepiped method [15, 23] uses Bj = TBj−1. Thus,

rj = rj−1 + T−j
(
zj −m(zj)

)
.

The chosen coordinates are optimal for the global error. The local errors are usually
small compared to the global error, so that a certain amount of overestimation of the
local error may be tolerable. In the parallelepiped method, the local coordinate system
is only suitable for the local error if cond(T j) is not too big. However, in the presence
of shear, T j becomes singular for j → ∞. In practice, the matrices Bj often become
ill-conditioned, resulting in large overestimations and ultimately in the breakdown of the
method.
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Lohner [23, 24] proposed the following modification of the parallelepiped method.
The QR factorization of TBj−1 is computed, QjRj = TBj−1, and Bj is chosen as the
orthogonal matrix Qj:

rj = Rjrj−1 +QT
j

(
zj −m(zj)

)
.

The coordinate system used in the QR method is not optimal for the global error, but ro-
tations occurring in T are accounted for. To minimize overestimation in the QR method,
the columns of TBj−1 must be ordered according to decreasing length in the orthogonal-
ization process [23, 24].

Since Qj is an orthogonal matrix, Bj is well-conditioned for all j. So far, the QR
method has been the most successful method for simultaneously treating rotation, con-
traction, and shear. However, there is an example by Kühn [21] showing that even the
QR method may fail badly.

In the next section, we study the blunting method of Berz and Makino [8, 31]. In
numerical experiments, it has been observed that for certain choices of blunting factors,
the local coordinates are sometimes better suited for the global error than the coordinates
used in the QR method. Like the QR method, the blunting method can simultaneously
handle rotation, contraction, and shear, but the actual amount of overestimation depends
on these factors.

4 The Blunting Method

As noted above, in the QR method, we perform a QR factorization TBj−1 = QjRj and
select Bj = Qj. For the model problem, this choice leads to the simultaneous iteration
TQj−1 = QjRj [39]. In the blunting method, we select Bj from

TBj−1 = Q∗jR
∗
j (QR factorization of TBj−1),

B̂j = TBj−1Dj +Q∗jGj,

Bj = B̂jFj.

(13)

We use Q∗j and R∗j in (13) to distinguish these matrices from the matrices Qj and Rj

that occur in the QR method. Dj is a diagonal matrix such that TBj−1Dj is normalized,
with each column of length one in the Euclidean norm; Gj is a diagonal matrix with
heuristically chosen positive blunting factors [8, 31]; and Fj is a diagonal matrix such

that the columns of Bj = B̂jFj are of Euclidean norm one.

First, we compare the asymptotic behavior of the blunting and QR methods and then
investigate the condition numbers of the matrices Bj in the blunting method.

4.1 Error Propagation: Blunting versus QR

Let

Vj = (R∗jDj +Gj)Fj. (14)
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Then Bj = Q∗jVj. In the QR factorization in (13), it is desirable to ensure that all
diagonal entries of R∗j are positive. Otherwise, it may happen that a diagonal entry of
R∗jDj + Gj becomes zero, and hence Bj becomes singular. In our analysis, we assume
that the QR factorizations in the QR and blunting methods are such that the diagonal
of each Rj and R∗j is positive.

Using (14), we write the blunting iteration (13) as

TQ∗j−1 = Q∗j(R
∗
jV
−1
j−1).

Choosing Q0 = Q∗0 = I (where I is the identity matrix), the relations between the
respective matrices in the QR and in the blunting methods are

Qj = Q∗j and Rj = R∗jV
−1
j−1.

We are interested (cf. (11)) in the excess propagation in

(B−1j TBj−1)rj−1.

In the QR method, we have B−1j TBj−1 = QT
j TQj−1 = Rj, whereas, in the the blunting

method, we have

B−1j TBj−1 = V −1j QT
j QjR

∗
j = V −1j R∗j = V −1j RjVj−1.

Since the width of rj is

w(rj) = |B−1j TBj−1|w(rj−1) + |B−1j |w(zj) (15)

(absolute values are taken componentwise), the excess propagation depends on the spec-
tral radii of the matrices specified below.

In the QR method, this matrix is [39]

Hj,i = |Q−1j TQj−1| |Q−1j−1TQj−2| · · · |Q−1i+1TQi| = |Rj| |Rj−1| · · · |Ri+1|,

whereas, in the blunting method, it is

Pj,i = |B−1j TBj−1| |B−1j−1TBj−2| · · · |B−1i+1TBi|

= |V −1j RjVj−1| |V −1j−1Rj−1Vj−2| · · · |V −1i+1Ri+1Vi|.

Now we consider the case that T has eigenvalues λi of distinct magnitudes, that
is, |λ1| > |λ2| > · · · |λm| > 0. In the QR method, the diagonal of |Rj| converges to
(|λ1|, |λ2|, . . . , |λm|), as j → ∞. For i and j sufficiently large, the diagonal of Hj,i con-
verges to (

|λ1|j−i+1, |λ2|j−i+1, . . . , |λm|j−i+1
)
.

Denote

α
(k)
i,j =

(Vi)k,k
(Vj)k,k

. (16)
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The (k, k) entry of Pj,i is

(Pj,i)k,k =
(Vi)k,k
(Vj)k,k

j∏
l=i+1

|(Rl)k,k| = α
(k)
i,j

j∏
l=i+1

|(Rl)k,k|.

(for all k = 1, . . . ,m). Since |(Vl)1,1| = 1 for all l, α
(1)
i,j = 1 for all i, j with i < j. Hence,

the diagonal of Pj,i behaves like(
|λ1|j−i+1, α

(2)
i,j |λ2|j−i+1, . . . , α

(m)
i,j |λm|j−i+1

)
.

Now, we derive bounds for the α
(k)
i,j , for k = 2, . . . ,m. Since the (diagonal) matrix Fl

normalizes each column of R∗lDl + Gl in the Euclidean norm, and each column of R∗lDl

is of length one,

1/(Fl)k,k =
∥∥(R∗lDl)1,k, ..., (R

∗
lDl)k−1,k, (R

∗
lDl)k,k + (Gl)k,k

∥∥
2

=
√

1 + 2(R∗lDl)k,k(Gl)k,k + (Gl)2k,k

≤ 1 + (Gl)k,k

(0 < (R∗lDl)k,k ≤ 1). Then,

(Vl)k,k = (R∗lDl +Gl)k,k(Fl)k,k ≥ (Gl)k,k(Fl)k,k ≥
(Gl)k,k

1 + (Gl)k,k
. (17)

Taking into account that (Vl)k,k ≤ 1, since the length of the k column of Vl is one (cf.
(14)), and using (17) in (16), we obtain

(Gi)k,k
1 + (Gi)k,k

≤ α
(k)
i,j ≤ 1 +

1

(Gj)k,k
, for all k = 2, . . . ,m.

Consider the case when all blunting factors are the same, for example Gj = εI. Then

ε

1 + ε
≤ α

(k)
i,j ≤ 1 +

1

ε
.

If, for example, ε = 10−3,

10−3 ≈ 10−3

1 + 10−3
≤ α

(k)
i,j ≤ 1001,

whereas for ε = 1, the estimation is

0.5 ≤ α
(k)
i,j ≤ 2.

Obviously, as ε becomes large, the α
(k)
i,j become closer and closer to 1, which implies that

the QR and the blunting method should exhibit similar behavior.

The case that T has eigenvalues of the same magnitude appears much more difficult
to analyze (see also [39]). For this case, we report numerical experiments in §5.3 on two
problems that have eigenvalues of the same magnitude.
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4.2 Condition numbers of Bj

To obtain insights into the condition numbers of the Bj = Q∗jVj matrices, we employ the
following result from [22] on condition numbers of triangular matrices. Let U be upper
triangular and denote

β = max
l<p

|Ul,p|
|Ul,l|

and γ = min
l
|Ul,l|.

Then ∥∥U−1∥∥
1,∞ ≤

(β + 1)m−1

γ
,

where equality can be achieved in this bound [22].

For the upper triangular Vj (with positive diagonal entries), we have

β = max
l<p

|(Vj)l,p|
(Vj)l,l

, γ = min
l

(Vj)l,l.

Since |(Vj)l,p| < 1 for all l, p, using (17) we obtain

β ≤ 1

minl (Vj)l,l
≤ 1

minl
(Gj)l,l

1+(Gj)l,l

and γ ≥ min
l

(Gj)l,l
1 + (Gj)l,l

.

When Gj = εI,
β ≤ 1/ε+ 1, γ ≥ ε/(1 + ε),

and ∥∥V −1j

∥∥
1,∞ ≤

(1 + ε) (1/ε+ 1)m−1

ε
.

For ε = 10−3, this bound reads∥∥V −1j

∥∥
1,∞ ≤ (1 + 10−3)103(103 + 1)m−1,

which is huge even for small values of m. In §5.4, we give an example for which the
condition number cond(Bj) is large, although not as large as the above bound.

For ε = 1, the more practical bound∥∥V −1j

∥∥
1,∞ ≤ 2m

is obtained, which ensures that the matrices Bj are well conditioned for ε ≈ 1, and m
not very large.

5 Numerical experiments

In §5.1, we use a simple example to illustrate how the sets
{
Bjr | r ∈ rj

}
propagate in

the blunting, parallelepiped, and QR methods. In §5.2, we show these sets for various
blunting factors and also for the QR method. In §5.3, we compare the error propagation
in the blunting method, for various blunting factors, with the error propagation in the
QR method. In §5.4, we show an example for which the Bj’s that occur in the blunting
method have large condition numbers.

In all the examples that follow, the blunting factor matrix Gj = εI, for all j, ε > 0.
We perform all experiments with constant stepsize, h.

The computations and plots are produced with Matlab.
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5.1 Blunting versus parallelepiped and QR methods

Consider the problem

u′ = Au =

(
1 −2
3 −4

)
u.

Here and in §5.2, we assume for simplicity that

zj −m(zj) = 10−12 ([−10, 10], [−1, 1])T , for all j = 0, 1, . . .;

use h = 0.1 and set T = ehA.

In Figure 3, we show the sets
{
Bjr | r ∈ rj

}
computed with the parallelepiped, QR,

and blunting methods for j = 1, . . . , 9, where ε = 0.3 in the blunting method. (The
matrices Bj and the vectors rj are computed in each of these methods as described
earlier.) Although the parallelepiped method gives reasonable enclosures during the first
few steps, it produces large overestimations as j increases. On the other hand, both
the blunting and QR methods produce much tighter enclosures, with the enclosures
associated with the blunting method being a little smaller than those associated with the
QR method, for all j = 1, . . . , 9.
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Figure 3: Propagation of the sets
{
Bjr | r ∈ rj

}
in the parallelepiped (P), QR (QR),

and blunting (B) methods; the blunting factor is 0.3.

5.2 Influence of blunting factors

Now we illustrate how the sets
{
Bjr | r ∈ rj

}
associated with the blunting method behave

depending on the blunting factor, and compare them with the corresponding enclosure
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Figure 4: The sets
{
B100r | r ∈ r100

}
in the QR (QR) and blunting (B) methods.

sets produced by the QR method. More specifically, for j = 100, we show in Figure 4 the
sets

{
B100r | r ∈ r100

}
for the blunting method with ε = 0.01, 0.1, 0.2, 0.3, 0.4, 0.8, 0.9, 1,

and 10, and for the QR method. As expected, for this example, the blunting method
behaves more like the parallelepiped method for small ε, and more like the QR method
for large ε.

5.3 Error propagation: blunting versus QR

We compare empirically the error propagation in the QR and blunting methods. To
simplify our study, we follow the approach in [39] and compare how the local error on the
first step is propagated by these methods for the same order and stepsize of the Taylor
series. From (15), this error propagates to the jth step as

|B−1j TBj−1| · · · |B−12 TB1| |B−11 |w(z1).

We investigate the ratio

κ(j) =

∥∥|B−1j TBj−1| · · · |B−12 TB1| |B−11 |
∥∥
2∥∥|Rj| |Rj−1| · · · |R2| |Q1|

∥∥
2

(j ≥ 1), where the Bj (for the blunting method) are computed as in (13), and the
Ri and Q1 are from the QR method. We plot this ratio versus j for blunting factors
ε = 0.001, 0.1, 0.5, and 1, and four choices for the matrix A of our model problem.
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5.3.1 Non-normal A with real negative eigenvalues

In this and the next subsection, we construct A by computing an orthogonal matrix Q
from the QR-factorization of a 5× 5 Hilbert matrix, choose an R as described below and
set A = QRQT . Then T = T16(hA) is computed from the Taylor polynomial (10), with
n = 17 and stepsizes as indicated below.

Distinct eigenvalues. In this example,

R =


−1 6 0 0 0
0 −3 6 0 0
0 0 −5 6 0
0 0 0 −7 6
0 0 0 0 −9


and h = 0.1. The plots of κ(j) are in Figure 5(a). Here the error propagation in the
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(a) A is non-normal with λi = −2i + 1, i =
1, . . . , 5; h = 0.1, ρ(T ) ≈ 0.905.
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(b) A is non-normal with λi = −3, i = 1, . . . , 4,
λ5 = −1; h = 0.1, ρ(T ) ≈ 0.905.
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(c) A is symmetric with λi = i, i = 1, . . . , 5;
h = 0.01, ρ(T ) ≈ 1.051.
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(d) A has a dominating complex eigenvalue, h =
0.1, ρ(T ) ≈ 0.971.

Figure 5: The ratios κ(j) for blunting factors ε = 0.001, 0.1, 0.5, and 10.

blunting method is consistently worse than the error propagation in the QR method,
with small blunting factors giving worse results than large ones.
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Multiple same eigenvalues. However, if we change R to

R =


−3 10 0 0 0
0 −3 10 0 0
0 0 −3 10 0
0 0 0 −3 10
0 0 0 0 −1


and retain h = 0.1, we obtain the plots in Figure 5(b). Initially, the blunting method
performs worse than the QR method, but, after j ≈ 40, the former has more favorable
error propagation than the latter, with small blunting factors giving better results than
large ones.

5.3.2 Symmetric A with positive eigenvalues.

For
R = diag(1, 2, 3, 4, 5)

and h = 0.01, the corresponding plots are in Figure 5(c). Up to j ≈ 280 the error
propagation for the blunting method for ε = 0.001, 0.1, 0.5 is more favorable than in the
QR method. However, after j ≈ 280, the blunting method with all ε considered here,
except ε = 0.001, performs nearly the same as the QR method. For ε = 0.001, the
performance of the blunting method is worse than that of the QR method.

5.3.3 Dominating complex eigenvalue.

We chose

A =

−0.5 0.5 0
−2.0 −0.5 1

0 1 −2

 .

For n = 17 and h = 0.1, the eigenvalues of T are γ1,2 ≈ 0.9674±0.0836i and γ3 ≈ 0.7858.
Here |γ1| = |γ2| ≈ 0.9710 > |γ3| ≈ 0.7858. On this example, for 0 < ε � 1, the error
propagation for the blunting method is substantially more favorable than for the QR
method; see Figure 5(d).

5.4 Poorly conditioned Bj

The bounds in §5.4 suggest that, if the Vj are such that the magnitude of a diagonal
entry is much smaller than the magnitude of an entry to the right of it, cond(Bj) may
be large. Such matrices are not difficult to obtain. For example, we can chose a matrix
A with diagonal

(−0.1,−100,−101, . . . ,−100−m− 1),

super diagonal with all entries equal to 100, and remaining entries equal to 0. For m = 9,
h = 0.1, and n = 30, the T computed from (10) has largest eigenvalue ≈ 0.99, and
the remaining eigenvalues are negative and of magnitude 10−2 to 10−3. The condition
number of T (using the Euclidean norm) is ≈ 5.13× 1014.
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Note that, T is upper triangular, and all Q∗j = I, in the blunting method. So,

B1 = V1 = (R∗1D1 +G1)F1 = (TD1 +G1)F1.

T = R∗1 has the eigenvalues of T on its diagonal, in decreasing order of magnitude, and
larger entries above it. Scaling by D1 and F1 does not change these properties of the
matrix, if the blunting factors are small for all i = 2, . . . ,m.

In Figure 6(a), we plot on a semi-log scale cond(Bj) versus j for blunting factors
0.001, 0.1, 0.5, and 1.0, and in Figure 6(b), we plot the ratios κ(j) for the same blunting
factors. For this particular A, small blunting factors result in large condition numbers
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Figure 6: Plots from ill-conditioned matrices Bj in the blunting method.

and large κ(j), and as ε decreases in size, both the condition numbers and the κ(j)
increase in magnitude.

The previous example may seem “artificial.” In the last experiment, we chose
A1 = QAQT , where A is the matrix described in the previous example, and Q is an
orthogonal matrix from the QR factorization of a 10 × 10 Hilbert matrix. We perform
the same experiments as above and plot cond(Bj) and κ(j) versus j in Figure 6(c) and
(d). Although the condition numbers behave similarly, with larger “wiggles” in the latter
example, we observe much smaller κ(j) for the blunting method with A1 than for the
blunting method with A, cf. Figure 6(b) and (d).
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Since theoretically T29(hA) and T29(hA1) have the same eigenvalues, we do not have
a sound explanation for this different behavior. One reason could be that, due to the
floating-point computations, complex eigenvalues appear in T = T29(hA1), while they do
not occur in T29(hA), when evaluated in floating-point arithmetic.

6 Conclusion

We have studied the blunting method in the verified integration of IVPs for ODEs. For
our linear model problem, we showed that the blunting method and the QR methods have
similar asymptotic performance, if the matrix T in the Taylor method has eigenvalues
of distinct magnitude. An extension of our analysis to linear problems with eigenvalues
of the same magnitude (this includes the important case that T has a pair of complex
conjugate eigenvalues) and to linear, time-dependent problems is desirable. Also, we do
not know how to accommodate in our analysis permutations in the QR and blunting
methods.

The numerical experiments we have performed show that the blunting method can
have more favorable error propagation than the QR method, for some problems and
some choices of blunting factors, and less favorable for others. That is, there is no clear
winner between these two methods. Moreover, the choice of blunting factor can make
a significant difference in the performance of the blunting method. However, how to
choose optimal blunting factors does not appear to be easy. In particular, we note that,
the suggested blunting factor 10−3 [8, 31] may not always be a good choice. Developing
a good heuristic for selecting the “right” blunting factors is an interesting challenge for
future study.
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und Anwendungen. PhD thesis, Universität Karlsruhe, 1988.

[24] R. Lohner. Computation of guaranteed solutions of ordinary initial and boundary
value problems. In J. R. Cash and I. Gladwell, editors, Computational Ordinary
Differential Equations, pages 425–435. Clarendon Press, Oxford, 1992.

[25] R. Lohner. On the ubiquity of the wrapping effect in the computation of error
bounds. In U. Kulisch, R. Lohner, and A. Facius, editors, Perspectives of Enclosure
Methods, pages 201–217. Springer, Wien, 2001.

[26] K. Makino. Rigorous analysis of nonlinear motion in particle accelerators. PhD
thesis, Michigan State University, 1998.

[27] K. Makino and M. Berz. Remainder differential algebras and their applications. In
M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors, Computational Differ-
entiation: Techniques, Applications and Tools, pages 63–74. SIAM, Philadelphia,
1996.

[28] K. Makino and M. Berz. COSY INFINITY version 8. Nuclear Instruments &
Methods in Physics Research A, 427:338–343, 1999.

[29] K. Makino and M. Berz. Efficient control of the dependency problem based on
Taylor model methods. Reliable Computing, 5:3–12, 1999.

[30] K. Makino and M. Berz. Taylor models and other validated functional inclusion
methods. Int. J. Pure Appl. Math., 4:379–456, 2003.

[31] K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model-based
verified integrators: Long-term stabilization by preconditioning. Int. J. Diff. Eq.
Appl., 10:353–384, 2005.

[32] K. Makino and M. Berz. Suppression of the wrapping effect by Taylor model-based
verified integrators: The single step. Int. J. Pure Appl. Math., 36:175–197, 2006.

[33] R. E. Moore. The automatic analysis and control of error in digital computation
based on the use of interval numbers. In L. B. Rall, editor, Error in Digital Com-
putation, Vol. I, pages 61–130. John Wiley and Sons, New York, 1965.

[34] R. E. Moore. Automatic local coordinate transformations to reduce the growth of
error bounds in interval computation of solutions of ordinary differential equations.
In L. B. Rall, editor, Error in Digital Computation, Vol. II, pages 103–140. John
Wiley and Sons, New York, 1965.

[35] R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, N.J., 1966.

[36] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to Interval Analysis.
SIAM, Philadelphia, 2009.



Analysis of the Blunting Method · July 31, 2015 20

[37] P. S. V. Nataraj and K. Kotecha. Global optimization with higher order inclusion
function forms. Part 1: A combined Taylor-Bernstein form. Reliable Computing,
10:27–44, 2004.

[38] N. S. Nedialkov. Computing rigorous bounds on the solution of an IVP for an ODE.
PhD thesis, University of Toronto, 1999.

[39] N. S. Nedialkov and K. R. Jackson. A new perspective on the wrapping effect in
interval methods for initial value problems for ordinary differential equations. In
U. Kulisch, R. Lohner, and A. Facius, editors, Perspectives of Enclosure Methods,
pages 219–264. Springer, Wien, 2001.

[40] N. S. Nedialkov and K. R. Jackson. Some recent advances in validated methods for
IVPs for ODEs. Appl. Numer. Math., 42:269–284, 2003.

[41] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated solutions of initial value
problems for ordinary differential equations. Appl. Math. Comput., 105:21–68, 1999.

[42] N. S. Nedialkov, K. R. Jackson, and J. Pryce. An effective high-order interval
method for validating existence and uniqueness of the solution of an IVP for an
ODE. Reliable Computing, 7:449–465, 2001.

[43] M. Neher. Geometric series bounds for the local errors of Taylor methods for linear
nth order ODEs. In G. Alefeld, J. Rohn, S. Rump, and T. Yamamoto, editors, Sym-
bolic Algebraic Methods and Verification Methods, pages 183–193. Springer, Wien,
2001.

[44] M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor model based integration
of ODEs. SIAM J. Numer. Anal., 45:236–262, 2007.

[45] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge, 1990.

[46] L. B. Rall. Automatic Differentiation: Techniques and Applications, Lecture Notes
in Computer Science, Vol. 120. Springer, Berlin, 1981.
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