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Abstract

Verified methods for the integration of initial value problems (IVPs) for ODEs
aim at computing guaranteed error bounds for the flow of an ODE and maintaining
a low level of overestimation at the same time.

This paper is concerned with one of the sources of overestimation: a matrix-
vector product describing a parallelepiped in the phase space. We analyze the so-
called blunting method developed by Berz and Makino, which consists of a special
choice of the matrix in this product. For the linear model problem

u′ = Au, u(0) = u0 ∈ u0,

where u ∈ Rm, A ∈ Rm×m, m ≥ 2, and u0 is a given interval vector, we compare
the convergence behavior of the blunting method with that of the well-known QR
interval method.

For both methods, the amount of overestimation of the flow of the initial set
depends on the spectral radius of some well-defined matrix. We show that under
certain conditions, the spectral radii of the matrices that describe the excess prop-
agation in the QR method and in the blunting method, respectively, have the same
limits, so that the excess propagation in both methods is similar.

1 Verified Integration of IVPs

Consider the set of autonomous IVPs

u′ = f(u), u(t0) = u0 ∈ u0, t ∈ t = [t0, tend], (1)

on some domain D ⊂ Rm, where f ∈ Cn(D), f : D → Rm. u0 is a given interval vector
in the space variables, and tend > t0 is a given endpoint of the time interval. The ODE
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is defined in the traditional way, but the initial value is allowed to vary. In applications,
this variability is used for modeling uncertainties in initial conditions.

For each u0 ∈ u0, the point IVP

u′ = f(u), u(t0) = u0

has a classical solution, which is denoted by u(t; u0). In the following, we assume that
u(t; u0) exists and is bounded for all t ∈ t and for all u0 ∈ u0.

Our goal when solving (1) is to calculate bounds on the flow of the interval IVP. For
each t ∈ t, we wish to calculate an interval u(t) such that

u(t; u0) ∈ u(t)

holds for all u0 ∈ u0. The tube u(t), t ∈ t, then contains all solutions of u′ = f(u) that
emerge from u0.

In Fig. 1, the flow of an initial set u0 ⊂ Rm in the phase plane is shown for m = 2.
The direction field of the ODE is described by red arrows. The initial set u0 ⊂ R2 at
t = 0 shall be defined by the rightmost blue square. As time passes, the initial set moves
to the left in the phase plane and is deformed along its path. At some time t1 > 0, the
transported flow has changed to the shape of the blue set in the middle of the picture,
whereas the leftmost blue set shows the flow at some time t2 > t1.

Figure 1: Flow of an initial set. Figure 2: Interval enclosures for the flow.

A verified integration method for ordinary IVPs computes enclosure sets for the flow at
distinct points tj, j = 0, . . . , N [6, 8, 9, 10, 11, 14, 21, 23, 24, 26, 32, 33, 34, 35, 36, 39,
40, 41, 42, 43, 44, 45, 48, 49, 50]. In Fig. 2, the first two time steps of such an enclosure
method are illustrated.

At t = t1, the brown rectangle u1 is an enclosure set for the flow of u0 at t =
t1. Typically, u1 overestimates the flow. This wrapping of the flow into u1 introduces
overestimation in any verified integration method. Instead of the exact flow at t = t1,
the enclosure set u1 is used as the initial set in the second integration step,

u′ = f(u), t ∈ [t1, t2], u(t1) ∈ u1.
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Then, at t = t2, the flow of u1 is enclosed into some set u2, depicted by the black square
in Fig. 2. We observe that the flow of the original initial set u0 at t = t2 is contained in
u2, but that there is already much overestimation in this picture.

We assume that the reader is familiar with real interval arithmetic [1, 17, 36, 37, 46].
In this paper, the set of compact real intervals is denoted by

IR = {x = [x, x] | x, x ∈ R, x ≤ x }.

Intervals are denoted by boldface. Lower-case letters are used for denoting scalars and
vectors. Matrices are denoted by upper-case letters. The midpoint and the width of an
interval x are denoted by m(x) := (x + x)/2 and w(x) := x− x, respectively. The set of
all m-dimensional interval vectors is denoted by IRm.

This paper is organized as follows. The general interval Taylor method for ordinary
IVPs is outlined in Section 2. In section 3, several interval methods for a linear model
problem are compared. The blunting method for the model problem is analyzed in Section
4. Some numerical examples are presented.

2 Enclosure Methods for IVPs Based on Taylor Ex-

pansion

In this section, we review interval Taylor methods for the interval IVP (1),

u′ = f(u), u(t0) = u0 ∈ u0, (2)

on some domain D ⊂ Rm, where f ∈ Cn(D), f : D → Rm, t ∈ [t0, tend] for some tend > t0.

The basic idea of Taylor methods is to approximate each solution of (2) by its Taylor
polynomial:

u(t) ≈ u(t0) +
n−1∑
k=1

u(k)

k!
(t− t0)

k. (3)

The derivatives in (3) are computed by differentiating u′ = f(u) with respect to t. From
the chain rule, we obtain

u′′ =

(
∂

∂u
f(u)

)
u′ = f(u)

∂

∂u
f(u).

Higher order derivatives of u are computed similarly. Letting

f [0](u) = u, f [k](u) =
1

k

(
∂f [k−1]

∂u
f

)
(u) for k ≥ 1,

values of these derivatives can be computed recursively from by automatic differentiation
from initial values u0 or u0, respectively, and the well-known formulas for the Taylor
coefficients of sums, products, quotients, and the standard functions [15, 36, 47].

In verified integration, it is not sufficient to compute an approximation to the solution.
Taylor’s theorem, however, opens a door for computing not only the approximate solution
in (3), but also a rigorous error bound with it. According to Taylor’s theorem,

u(t) = u(t0) +
n−1∑
k=1

f [k](t− t0)
k +

u(n)(τ)

n!
(t− t0)

n
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for some τ ∈ (t0, t). Now suppose that for some t1 > t0, componentwise bounds u, u
fulfilling

u ≤ u(t) ≤ u for all t ∈ [t0, t1]

are known. Then the interval arithmetic evaluation of u(n)([u, u]) yields rigorous lower
and upper bounds for the truncation error in (3), and thus also lower and upper bounds
for the solutions of (2), for t ∈ [t0, t1].

Suitable values u, u can be computed by Picard iteration [36]. Using the Picard-
Lindelöf operator and the Banach fixed-point theorem, one can show that if h0 and
v0 ⊇ u0 satisfy

ũ0 = u0 + [0, h0]f(v0) ⊆ v0,

then (2) has a unique solution u(t; u0) for each u0 ∈ u0. Moreover, u(t; u0) ∈ ũ0 holds
for all t ∈ [t0, t0 + h0] and all u0 ∈ u0. The interval bound ũ0 is called a coarse enclosure
of the flow of u0, for t ∈ [t0, t1], where t1 = t0 + h0.

Picard iteration is easily performed, but it has the disadvantage that if often restricts
the step size of verified integration methods. More advanced schemes for computing
coarse enclosures are discussed in [12, 26].

Once a coarse enclosure is available, it can be used for obtaining improved bounds on
the flow by some kind of refinement procedure. For example, inserting ũ0 in the formula
for the truncation error of the Taylor series in (3), the inclusion

u(t1) ∈ u1 = u0 +
n−1∑
k=1

hk
0f

[k](u0) + hn
0f

[n](ũ0) (4)

is obtained. Usually, u1 is a tighter enclosure for the flow of (2) at t = t1 than the coarse
enclosure ũ0. Nevertheless, the refinement procedure (4) is not very useful for practical
computations, because the latter formula is width increasing in time. We have

w(u1) = w(u0) + w

(
n−1∑
k=1

hk
0f

[k](u0) + hn
0f

[n](ũ0)

)
≥ w(u0).

Tighter enclosures can be achieved by applying the mean value form to f [k] in (4).
For any û0 ∈ u0 it holds that

u(t1) ∈ û0 +
n−1∑
k=1

hk
0f

[k](û0) + hn
0f

[n](ũ0) +

(
I +

n−1∑
k=1

hk
0J
(
f [k](u0)

))
(u0 − û0), (5)

where I denotes the identity matrix and J
(
f [k]
)

is the Jacobian of f [i]. As was mentioned
before, values of these Jacobians can be computed via automatic differentiation.

Letting

S0 = I +
n−1∑
k=1

hk
0J
(
f [k](u0)

)
, z1 = hn

0f
[n](ũ0),

we obtain an enclosure for the flow of (2):

u(t1; u0) ∈ u1 = û0 +
n−1∑
k=1

hk
0f

[k](û0) + z1 + S0(u0 − û0). (6)
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This iteration has been introduced by Moore [34, 35, 36]. It is called the direct method.
Its main disadvantage is that the interval vector S0(u0 − û0) may significantly overesti-
mate the set

S = {S0(u0 − û0) | S0 ∈ S0, u0 ∈ u0}.

To obtain a valid enclosure method for the flow of (2), it would be sufficient to compute
a bound on S. Wrapping S into S0(u0 − û0) may result in significant overestimation
of S, which also causes overestimation in the initial set of the next integration step (cf.
Section 1).

The so-called wrapping effect was first observed by Moore in 1965 [35]; a recent
analysis has been given by Lohner [25]. To reduce wrapping in interval methods for
the verified integration of IVPs, several schemes have been proposed in the literature
[35, 14, 21, 23, 24]. On a general scale, interval arithmetic has also been extended with
symbolic computations [13, 18, 27] to diminish the wrapping-effect. Starting in the 1990s,
Berz and his group developed a rigorous multivariate Taylor arithmetic [2, 27, 30]. Taylor
model arithmetic has been defined in [2, 5, 27, 29, 30]. A software implementation of
Taylor model arithmetic has been developed by Berz and Makino [3, 28] in the COSY
Infinity package [4]. Using COSY Infinity, Taylor models have been applied with success
to a variety of problems, including global optimization [38], verified multidimensional
integration [7], and the verified solution of ODEs and DAEs [6, 16].

The major source of overestimation in (6) is in the matrix vector product S0(u0− û0).
The amount of overestimation is effectively reduced if this product is not performed
explicitly, but if S is propagated in the verified integration scheme as a parallelepiped
instead of an interval. This is achieved by introducing local coordinate systems described
by matrices Bj. Letting û0 = m(u0), r0 = u0 − û0, B0 = I, choosing some nonsingular
matrices Bj, and performing a sequence of integration steps, formula (6) is turned into
the interval iteration

ûj = ûj−1 +
n−1∑
k=1

hk
j−1f

[k](ûj−1) + m(zj),

uj = ûj−1 +
n−1∑
k=1

hk
j−1f

[k](ûj−1) + zj + (Sj−1Bj−1)rj−1,

 j = 1, 2, . . . , (7)

in which ûj is some approximate point solution for the central IVP in (2), zj denotes
the (usually small) local error of the j-th integration step, and the global error rj is
propagated according to

rj =
(
B−1

j (Sj−1Bj−1)
)
rj−1 + B−1

j (zj −m(zj)). (8)

There is freedom of choice for the matrices Bj. In Moore’s direct method, Bj = I
is used in all steps. It is known that this method only performs well in the absence of
rotations. The parallelepiped method [14, 23] is obtained by choosing Bj = m(Sj−1Bj−1).
This method is only suitable for pure rotations, because otherwise the matrices Bj tend
to become singular after a few steps.

The hitherto most successful general scheme for reducing the wrapping effect is
Lohner’s QR method [23, 24]. In the QR method, Bj is chosen as the orthogonal matrix
Q in the QR factorization of m(Sj−1Bj−1). Thus, the matrices Bj are well-conditioned
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for all time and their inversion is achieved by transposition. In [40] it has been shown
that for linear autonomous systems, the bound on the global error of the QR method is
not much bigger than the global error of the corresponding approximate Taylor method.

As an alternative to QR factorization, one could modify the matrices Bj of the paral-
lelepiped method such that their condition number must not exceed some suitable bound.
This variant of the parallelepiped method was already mentioned by Lohner in [23], but
not implemented in his thesis. Berz and Makino [8, 32] developed this idea into a practical
algorithm which they named blunting method.

The purpose of this paper is the analysis of the blunting method and a comparison
of its asymptotic behavior with the asymptotic behavior of the QR method. The au-
thors have not been successful in developing an analysis for nonlinear or time-dependent
linear systems. We only consider the model problem of a linear system with constant
coefficients. Therefore, our analysis does not cover the full story, but on the other hand,
methods that perform badly for the model problem are likely to fail for other problems
as well.

3 Taylor Methods for a Linear Model Problem

We now consider the linear model problem

u′ = Au, (A ∈ Rm×m, m ≥ 2)

u(0) = u0 ∈ u0.
(9)

The interval Taylor method with constant order n and stepsize h for solving (9) consists
of the iteration

uj := Tuj−1 + zj, j = 1, 2, . . . ,

where

T = Tn−1(hA) =
n−1∑
ν=0

(hA)ν

ν!
,

and zj denotes the local error.

We enclose the flow of (9) by

u(tj; u0) = {u(tj; u0) | u0 ∈ u0}
⊆ {uj + Sjw + Bjr | w ∈ u0 −m(u0), r ∈ rj},

where uj, w, r ∈ Rm, rj ∈ IRm, Sj, Bj ∈ Rm×m and Bj must be nonsingular. The set

{uj + Sjw | w ∈ u0 −m(u0)}

approximates the flow {u(tj; u0) | u0 ∈ u0} at t = tj. The global error is guaranteed to
be contained in the set

{Bjr | r ∈ rj}.

We first formulate the interval methods mentioned in the previous section for the
model problem and then develop an error analysis for the blunting method.
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3.1 Propagation of the Global Error

In all interval methods that we study in this paper, the iteration is started with u0 =
m(u0), r0 = 0, S0 = B0 = I. The propagation of the global error is described by the
iteration (8),

rj = (B−1
j TBj−1)rj−1 + B−1

j

(
zj −m(zj)

)
.

For minimal overestimation, Bj should be chosen such that the inclusion

{TBj−1r + z | r ∈ rj−1, z ∈ zj −m(zj)} ⊆ {Bjr | r ∈ rj} (10)

is as a tight as possible.

There is a straightforward geometric interpretation of the inclusion (10). The sum
of a parallelepiped (containing the accumulated global error of the previous integration
steps) and an interval box (containing the local error of the current integration step) is
enclosed into a new parallelepiped, as illustrated by Fig. (3.1).

+ = ⊂

Figure 3: Propagation of the global error.

3.2 Wrapping Effect

In Moore’s direct method [34, 35, 36], Bj = I is used for all j, so that the global error is
propagated according to

rj = Trj−1 + zj −m(zj).

The chosen coordinates are optimal for the local error, which is simply added to the
global error. However, if T describes a rotation in phase space, then the volume of Trj−1

can be much larger than the volume of rj−1.

The parallelepiped method [14, 23] uses Bj = TBj−1. Thus,

rj = rj−1 + T−j
(
zj −m(zj)

)
.

The chosen coordinates are optimal for the global error. The local errors are usually
small compared to the global error, so that a certain amount of overestimation of the
local error may be tolerable. In the parallelepiped method, the local coordinate system
is suitable for the local error, provided that cond(T j) is not too big. However, in the
presence of shear, T j becomes singular for j → ∞. In practice, the matrices Bj often
become ill-conditioned, resulting in large overestimations and finally in the breakdown of
the method.
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Lohner [23, 24] proposed the following modification of the parallelepiped method.
The QR factorization of TBj−1 is computed, QjRj = TBj−1, and Bj is chosen as the
orthogonal matrix Qj:

rj = Rjrj−1 + QT
j

(
zj −m(zj)

)
.

The coordinate system used in the QR method is not optimal for the global error, but ro-
tations occurring in T are accounted for. To minimize overestimation in the QR method,
the columns of TBj−1 must be ordered according to decreasing length in the orthogonal-
ization process [23, 24].

Since Qj is an orthogonal matrix, Bj is well-conditioned for all j. So far, the QR
method has been the most successful method for simultaneously treating rotation, con-
traction, and shear. However, there is a famous example by Kühn [21] showing that even
the QR method may fail exponentially.

In his thesis [23], Lohner mentions an alternative to the QR method, by modifying
the matrices Bj in the parallelepiped method such that their condition number must
not exceed some suitable bound. Lohner never pursued this any further, but Berz and
Makino [8, 32] developed a practical algorithm which they named the blunting method.
They also compute the QR factorization of TBj−1, but then form a linear combination
of Qj and TBj−1:

rj = (B−1
j TBj−1)rj−1 + B−1

j

(
zj −m(zj)

)
, Bj = TBj−1 + εQj.

Here, ε is a diagonal matrix of small positive entries εll, l = 1, 2, . . . ,m.

In numerical experiments, it has been observed that for certain choices of the blunting
factors εll, the local coordinates are sometimes better suited for the global error than the
coordinates used in the QR method. Like the QR method, the blunting method can
simultaneously handle rotation, contraction, and shear, but the overestimation depends
on the blunting factors.

4 The Blunting Method

In the QR method, we perform a QR factorization TBj−1 = QjRj and select Bj = Qj.
For the model problem, this choice leads to the simultaneous iteration QjRj = TQj−1

[40]. In the blunting method, we select Bj from

TBj−1 = Q∗
jR

∗
j (QR factorization of TBj),

B̂j = TBj−1Dj + QjGj,

Bj = B̂jFj.

Dj is a diagonal matrix such that TBj−1Dj is normalized (each column is of length 1 in
‖ · ‖2). Gj is a diagonal matrix with positive blunting factors [8, 32]. Fj is a diagonal

matrix such that Bj = B̂jFj is normalized. Letting

Vj = (R∗
jDj + Gj)Fj,
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obtain the simultaneous iteration

Q∗
j(R

∗
jV

−1
j−1) = TQ∗

j−1.

Choosing Q0 = Q∗
0 = I (where I is the identity matrix), the relations between the

respective matrices in the QR and in the blunting methods are

Qj = Q∗
j , Rj = R∗

jV
−1
j−1.

We are interested in the excess propagation in

(B−1
j TBj−1)rj−1.

In the QR method, we have QT
j TQj−1 = Rj, whereas the blunting method reads

B−1
j TBj−1 = V −1

j QT
j QjR

∗
j = V −1

j R∗
j = V −1

j RjVj−1.

Since the width of rj is

w(rj) = |B−1
j TBj−1|w(rj) + |B−1

j |w(zj),

the excess propagation depends on the spectral radius of a certain matrix. In the QR
method, this matrix is [40]

Hj,i = |Q−1
j TQj−1| |Q−1

j−1TQj−2| · · · |Q−1
i+1TQi| = |Rj| |Rj−1| · · · |Ri+1|,

whereas in the blunting method, it is

Pj,i = |B−1
j TBj−1| |B−1

j−1TBj−2| · · · |B−1
i+1TBi|

= |V −1
j RjVj−1| |V −1

j−1Rj−1Vj−2| · · · |V −1
i+1Ri+1Vi|.

Now we consider the case when T has eigenvalues λi of distinct magnitudes, i.e.
|λ1| > |λ2| > · · · |λn| > 0. In the QR method, the diagonal of |Rj| converges to
(|λ1|, |λ2|, · · · , |λn|), as j →∞. As j becomes sufficiently large, vj,i behaves like(

|λ1|j−i+1, |λ2|j−i+1, . . . , |λn|j−i+1
)
.

The diagonal of Pj,i behaves like(
|λ1|j−i+1, α

(2)
i,j |λ2|j−i+1, . . . , α

(n)
i,j |λn|j−i+1

)
,

where

α
(k)
i,j =

(Vi)k,k

(Vj)k,k

.

Now let αk := α
(k)
1,j . Similar error propagations hold in the QR and in the blunting

methods, if αk ≈ 1 for k = 2, . . . , n. In the case of a scalar blunting factor ε, explicit
bounds for αk are obtained, namely

ε

1 + ε
≤ αk ≤ 1 +

1

ε
.

For ε = 10−3, we have

10−3 ≈ 10−3

1 + 10−3
≤ αk ≤ 1001,

whereas for ε = 1, the estimation is

0.5 ≤ αk ≤ 2.

At least for ε ≈ 1, the QR and in the blunting methods have the same asymptotic
behavior.
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4.1 Condition numbers of Bj

The matrices Bj in the blunting method are nonsingular, but little is known about
their condition numbers. Using scalar blunting factors again, from Bj = QjVj for some
orthogonal matrix Qj, we obtain∥∥V −1

j

∥∥
1,∞ ≤ (1 + 1/ε)n−1

ε
.

For ε = 10−3, this bound reads∥∥V −1
j

∥∥
1,∞ ≤ 103(103 + 1)n−1,

which is huge even for moderate values of n. For ε = 1, the more practical bound∥∥V −1
j

∥∥
1,∞ ≤ 2n−1

is obtained, which ensures that the matrices Bj are well-conditioned for ε ≈ 1.

4.2 Remarks

The blunting method and the QR method both work well for our simple test problem
u′ = Au (assuming T has eigenvalues of distinct magnitude). The suggested blunting
factor 10−3 [8, 32] may not always be a good choice. It seems reasonable for u′ = Au to
start with small blunting factors and increase them as j increases. The optimal choice of
the blunting factors is still an open question.

At present, we do not know how to analyze the case that T has two or more eigenvalues
of the same magnitude (this includes the important case the T has a pair of complex
conjugate eigenvalues) or how to accommodate permutations in the QR and blunting
methods. Also, the quality of upper bounds for cond( Bj ), which sometimes are huge,
is not known. These questions will be the subject of future research.

4.3 Example: Influence of the blunting factors

We conclude this paper with a numerical experiment. For selected scalar blunting factors,
we show the resulting overestimation of a linear model problem. If the blunting factors
are small, then the blunting method resembles the parallelepiped method. For larger
blunting factors, the blunting method behaves very similar to the QR method.

In Figures 4-6, the dashed lines belong to the parallelepiped method with resetting.
The solid lines denote the enclosure sets computed with the QR method. The enclosure
sets of the blunting method are displayed in red.

Conclusion

We have studied the blunting method in the verified integration of ordinary IVPs. For
a linear model problem, we showed that the blunting method performs asymptotically
as the QR method, if the matrix T in the Taylor method has eigenvalues of distinct
magnitude. An extension of our analysis to linear problems with eigenvalues of the same
magnitude and to nonlinear problems will be the subject of future research.



Analysis of the Blunting Method · April 27, 2009 11

Figure 4: Blunting factor 1.0E-2.
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Figure 5: Blunting factor 1.0E-1.
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Figure 6: Blunting factor 1.0.
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ihre Anwendung auf Differentialgleichungen mit unstetiger rechter Seite. PhD thesis,
Universität Karlsruhe, Karlsruhe, Germany, 1993.

[49] R. Rihm. Interval methods for initial value problems in ODEs. In J. Herzberger, ed-
itor, Topics in Validated Computations, pages 173–207. Elsevier, Amsterdam, 1994.

[50] H. J. Stetter. Validated solution of initial value problems for ODE. Notes Rep. Math.
Sci. Eng., 7:171–193, 1990.


