
In this paper, we show that the monomial basis is generally as good as a well-conditioned
polynomial basis for interpolation, provided that the condition number of the Vander-
monde matrix is smaller than the reciprocal of machine epsilon.
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1 Introduction

Function approximation has been a central topic in numerical analysis since its inception.
One of the most effective methods for approximating a function F : [−1, 1]→ R is the
use of an interpolating polynomial PN of degree N which satisfies PN (xj) = F (xj) for a
set of (N + 1) collocation points {xj}j=0,1,...,N . In practice, the collocation points are
typically chosen to be the Chebyshev points, and the resulting interpolating polynomial,
known as the Chebyshev interpolant, is a nearly optimal approximation to F in the
space of polynomials of degree at most N [27]. A common basis for representing the
interpolating polynomial PN is the Lagrange polynomial basis, and the evaluation of
PN in this basis can be done stably using the Barycentric interpolation formula [8, 19].
Some other commonly used bases are Newton polynomials, Chebyshev polynomials, and
Legendre polynomials. Alternatively, the monomial basis can be used to represent PN ,
such that PN (x) =

∑N
k=0 akx

k for some coefficients {ak}k=0,1,...,N . The computation
of the monomial coefficient vector a := (a0, a1, . . . , aN )T ∈ RN+1 of the interpolating
polynomial PN requires the solution to a linear system V a = f , where

V :=


1 x0 x2

0 · · · xN0
1 x1 x2

1 · · · xN1
...

...
...

. . .
...

1 xN x2
N · · · xNN

 ∈ R(N+1)×(N+1) (1)

is a Vandermonde matrix, and f :=
(
F (x0), F (x1), . . . , F (xN )

)T ∈ RN+1 is a vector of
the function values of F at the (N + 1) collocation points on the interval [−1, 1]. It
is well-known that, given any set of real collocation points, the condition number of a
Vandermonde matrix grows at least exponentially as N increases [7]. It follows that
the numerical solution to this linear system is highly inaccurate when N is not small,
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and, as a result, this algorithm for constructing PN is often considered to be unstable.
But, is this really the case? Let {xj}j=0,1,...,N be the set of (N + 1) Chebyshev points
on the interval [−1, 1], and consider the case where F (x) = cos(2x + 1). We solve the
resulting Vandermonde system using LU factorization with partial pivoting. In Figure
1a, we present a comparison between the approximation error of the computed monomial
expansion (labeled as “Monomial”) and the approximation error of the Chebyshev
interpolant evaluated using the Barycentric interpolation formula (labeled as “Lagrange”).
One can observe that the computed monomial expansion is, surprisingly, as accurate
as the Chebyshev interpolant evaluated using the Barycentric interpolation formula
(which is accurate up to machine precision), despite the huge condition number of the
Vandermonde matrix reported in Figure 1b.

(a) cos(2x+ 1) (b) Condition number

Figure 1: Polynomial interpolation of cos(2x + 1) in the monomial basis. The
x-axis label N denotes the order of approximation. The y-axis label “Error” denotes the
L∞ approximation error over [−1, 1], which is estimated by comparing the approximated
function values at 10000 equidistant points over [−1, 1] with the true function values.

What happens when the function F becomes more complicated? In Figure 2, we
compare the accuracy of the two approximations when F (x) = cos(8x + 1) and when
F (x) = cos(12x+ 1). Initially, the computed monomial expansion is as accurate as the
Chebyshev interpolant evaluated using the Barycentric interpolation formula. However,
the convergence of polynomial interpolation in the monomial basis stagnates after reaching
a certain error threshold. Furthermore, it appears that, the more complicated a function
is, the larger that error threshold becomes. But what does it mean for a function to
be complicated in this context? Consider the case where the function requires an even
higher-order Chebyshev interpolant in order to be approximated to machine precision. In
Figure 3, we compare the accuracy of the two approximations when F (x) = 1

x−
√

2
and

when F (x) = 1
x−0.5i . These two functions each have a singularity in a neighborhood of the

interval [−1, 1], and Chebyshev interpolants of degree ≥ 40 are required to approximate
them to machine precision. Yet, no stagnation of convergence is observed. In Figure 4,
we consider the case where F is a non-smooth function, and we find that the accuracy
of the two approximations is, again, the same. Based on all of the previous examples,
we conclude that polynomial interpolation in the monomial basis is not as unstable as
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it appears, and has some subtleties lurking around the corner that are worth further
investigation.

(a) cos(8x+ 1) (b) cos(12x+ 1)

Figure 2: Polynomial interpolation of more complicated functions in the mono-
mial basis.

(a) 1
x−
√
2

(b) 1
x−0.5i

Figure 3: Polynomial interpolation of functions with a singularity near the
interval [−1, 1] in the monomial basis.

These seemingly mysterious experiments can be explained partially from the point
of view of backward error analysis. Indeed, the forward error ‖a− â‖2 of the numerical
solution â to the Vandermonde system V a = f can be huge, but it is the backward error,
i.e., ‖V â− f‖2, that matters for the accuracy of the approximation. This is because
a small backward error implies that the difference between the computed monomial
expansion, which we denote by P̂N , and the exact interpolating polynomial, PN , is
a polynomial that approximately vanishes at all of the collocation points. When the
Lebesgue constant associated with the collocation points is small (which is the case for
the Chebyshev points), the polynomial PN − P̂N is bounded uniformly by the backward
error times a small constant. As a result, we bound the monomial approximation error
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(a) |x+ 0.1|2.5 (b) |sin(5x)|3

Figure 4: Polynomial interpolation of non-smooth functions in the monomial
basis.

‖F − P̂N‖L∞([−1,1]) by the following inequality:

‖F − P̂N‖L∞([−1,1]) ≤ ‖F − PN‖L∞([−1,1]) + ‖PN − P̂N‖L∞([−1,1]). (2)

We refer to the first and the second terms on the right-hand side of (2) as the polynomial
interpolation error and the backward error, respectively. When the backward error is
smaller than the polynomial interpolation error, the monomial approximation error is
dominated by the polynomial interpolation error, and the use of a monomial basis does not
incur any additional loss of accuracy. Once the polynomial interpolation error becomes
smaller than the backward error, the convergence of the approximation stagnates. For
example, in Figure 3a, we verify numerically that the backward error is around the
size of machine epsilon for all N ≤ 43, so stagnation is not observed, and polynomial
interpolation in the monomial basis is as accurate as polynomial interpolation in the
Lagrange basis, evaluated by the Barycentric interpolation formula. On the other hand,
in Figure 2a, the backward error is around the size of 10−13 for N ≥ 20, which leads to
stagnation once the polynomial interpolation error is less than 10−13.

The explanation above brings up a new question: when will the backward error be
small? When a backward stable linear system solver (e.g., LU factorization with partial
pivoting) is used to solve the Vandermonde system V a = f , it is guaranteed that the
numerical solution â is the exact solution to the linear system

(V + δV )â = f, (3)

for a matrix δV ∈ R(N+1)×(N+1) that satisfies ‖δV ‖2 ≤ u · γ, where u denotes machine
epsilon and γ = O(‖V ‖2). It follows that the backward error, ‖V â− f‖2, of the numerical
solution is bounded by u · γ‖â‖2. We note that γ is typically small, so the backward error
is essentially determined by the norm of the computed monomial coefficient vector. In
fact, so long as κ(V ) . 1

u , one can show that the norm of the monomial coefficient vector
computed by a backward stable solver is around the same size as the norm of the exact
monomial coefficient vector of the interpolating polynomial. Therefore, in this case, the
monomial approximation error can be quantified a priori using information about the
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interpolating polynomial, which implies that a theory of polynomial interpolation in the
monomial basis can be developed.

The rest of the paper is organized as follows. In Section 2, we analyze polynomial
interpolation in the monomial basis over a smooth simple arc in the complex plane,
with the interval as a special case, along with a number of numerical experiments. Our
analysis shows that the monomial basis is similar to a well-conditioned polynomial basis
for interpolation, provided that the condition number of the Vandermonde matrix is
smaller than the reciprocal of machine epsilon. In Section 3, we present applications
where the use of a monomial basis for interpolation offers a substantial advantage over
other bases. In Section 4, we review related work, and discuss the generalization of our
theory to higher dimensions.

2 Polynomial interpolation in the monomial basis

Let Γ ⊂ C be a smooth simple arc, and let F : Γ → C be an arbitrary function. The
Nth degree interpolating polynomial, denoted by PN , of the function F for a given
set of (N + 1) distinct collocation points Z := {zj}j=0,1,...,N ⊂ Γ can be expressed

as PN (z) =
∑N

k=0 akz
k, where the monomial coefficient vector (a0, a1, . . . , aN )T is the

solution to the Vandermonde system
1 z0 z2

0 · · · zN0
1 z1 z2

1 · · · zN1
...

...
...

. . .
...

1 zN z2
N · · · zNN



a0

a1
...
aN

 =


F (z0)
F (z1)

...
F (zN )

 . (4)

For ease of notation, we denote the Vandermonde matrix by V (N), the monomial coefficient
vector by a(N), and the corresponding right-hand side vector by f (N).

In order to study the size of the residual of the numerical solution to the Vandermonde
system, we require the following lemma, which provides a bound for the 2-norm of the
solution to a perturbed linear system.

Lemma 2.1. Let N be a positive integer. Suppose that A ∈ CN×N is invertible, b ∈ CN ,
and that x ∈ CN satisfies Ax = b. Suppose further that x̂ ∈ CN satisfies (A+ δA)x̂ = b
for some δA ∈ CN×N . If there exists an α > 1 such that

‖A−1‖2 ≤
1

α · ‖δA‖2
, (5)

then the matrix A+ δA is invertible, and x̂ satisfies

α

α+ 1
‖x‖2 ≤ ‖x̂‖2 ≤

α

α− 1
‖x‖2. (6)

Proof. By multiplying both sides of (A+ δA)x̂ = b by A−1, we have that

(I +A−1δA)x̂ = x, (7)

where I denotes the identity matrix. By (5), the term A−1δA satisfies

‖A−1δA‖2 ≤ ‖A
−1‖2‖δA‖2 ≤

1

α
< 1. (8)
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Thus, it follows that the matrix A+ δA is invertible, and ‖x̂‖2 satisfies

‖x̂‖2 ≤ ‖(I +A−1δA)−1‖2‖x‖2 ≤
1

1− ‖A−1δA‖2
‖x‖2 ≤

α

α− 1
‖x‖2. (9)

In addition, by (8), ‖x‖2 satisfies

‖x‖2 ≤ ‖I +A−1δA‖2‖x̂‖2 ≤
(

1 +
1

α

)
‖x̂‖2. (10)

The proof is complete by combining (9) and (10). �

The following theorem provides upper bounds for the monomial approximation error.
It can be viewed as a special case of frame approximation theory [3, 4]

Theorem 2.2. Let Γ ⊂ C be a smooth simple arc, and let F : Γ → C be an arbitrary
function. Suppose that PN is the N th degree interpolating polynomial of F for a given
set of (N + 1) distinct collocation points Z := {zj}j=0,1,...,N ⊂ Γ. Clearly, the monomial
coefficient vector a(N) of the polynomial PN is the solution to the Vandermonde system
V (N)a(N) = f (N), where V (N) and f (N) have been previously defined in (4). Suppose
further that there exists some constant γN ≥ 0 such that the computed monomial coefficient
vector â(N) = (â0, â1, . . . , âN )T satisfies(

V (N) + δV (N)
)
â(N) = f (N), (11)

for some δV (N) ∈ C(N+1)×(N+1) with

‖δV (N)‖2 ≤ u · γN , (12)

where u denotes machine epsilon. Let P̂N (z) :=
∑N

k=0 âkz
k be the computed monomial

expansion. The monomial approximation error is bounded by

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + u · γNΛN‖â(N)‖2, (13)

where ΛN denotes the Lebesgue constant for Z. If, in addition,

‖(V (N))−1‖2 ≤
1

2u · γN
, (14)

then the 2-norm of the numerical solution â(N) is bounded by

2

3
‖a(N)‖2 ≤ ‖â

(N)‖2 ≤ 2‖a(N)‖2, (15)

and the monomial approximation error can be quantified a priori by

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + 2u · γNΛN‖a(N)‖2. (16)

Proof. By the triangle inequality, the definition of the Lebesgue constant ΛN , equa-
tion (11) and inequality (12), the monomial approximation error satisfies

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + ‖P̂N − PN‖L∞(Γ)

≤‖F − PN‖L∞(Γ) + ΛN‖V (N)â(N) − f (N)‖2
≤‖F − PN‖L∞(Γ) + u · γNΛN‖â(N)‖2. (17)
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If ‖(V (N))−1‖2 ≤
1

2u·γN , then by Lemma 2.1, the 2-norm of the computed monomial

coefficient vector â(N) is bounded by

2

3
‖a(N)‖2 ≤ ‖â

(N)‖2 ≤ 2‖a(N)‖2, (18)

and (17) becomes

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + 2u · γNΛN‖a(N)‖2. (19)

�

When the Vandermonde system is solved by a backward stable linear system solver,
the set of assumptions (11) and (12) is satisfied with constant γN = O(‖V (N)‖2), from
which it follows that the condition (14) becomes κ(V (N)) . 1

u . Without loss of generality,

one can assume that Γ is inside the unit disk D1 centered at the origin, such that ‖V (N)‖2
is small. In this case, we observe that γN . 1 for at least N ≤ 100 when LU factorization
with partial pivoting (which is backward stable) is used to solve the Vandermonde system.
Therefore, given collocation points with a small Lebesgue constant ΛN , the monomial
approximation error ‖F − P̂N‖L∞(Γ) is bounded by approximately ‖F − PN‖L∞(Γ) +

u‖a(N)‖2. In Figure 5, we plot the values of ‖F − P̂N‖L∞(Γ), ‖F − PN‖L∞(Γ), and

u‖a(N)‖2, for functions appear in Section 1, in order to validate the theorem above.

Remark 2.1. The second term on the right-hand side of (16) is an upper bound of the
backward error ‖PN − P̂N‖L∞(Γ), i.e., the extra loss of accuracy caused by the use of a
monomial basis. Note that the absolute condition number of the evaluation of PN (z) in
the monomial basis is around ‖a(N)‖2 when |z| ≈ 1, so that the resulting error is bounded
by u · ‖a(N)‖2, which is always smaller than 2u · γNΛN‖a(N)‖2.

The rest of this section is structured as follows. First, we review a classical result
on function approximation over a smooth simple arc Γ ⊂ C by polynomials. Next, we
study the backward error ‖PN − P̂N‖L∞(Γ) by bounding the 2-norm of the monomial

coefficients of the interpolating polynomial. Finally, we study the growth of ‖(V (N))−1‖2,
which determines the validity of the condition on the a priori error estimate (16).

Below, we define a generalization of the Bernstein ellipse, to the case of a smooth
simple arc in the complex plane.

Definition 2.1. Given a smooth simple arc Γ in the complex plane, we define Eρ to be
the level set {x+ iy ∈ C : G(x, y) = log ρ}, where G : R2 → R is the unique solution to
the exterior Laplace equation

∇2G = 0 in R2 \ Γ,

G = 0 on ∂Γ,

G(x) ∼ log |x| as |x| → ∞. (20)

Furthermore, we let Eoρ denote the open region bounded by Eρ.

We note that, when Γ = [a, b] ⊂ R, the level set Eρ is a Bernstein ellipse with
parameter ρ, with foci at a and b. In Figure 6, we plot examples of level sets Eρ for an
interval and for a sine curve, for various values of ρ.
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(a) F (x) = cos(8x+ 1) (b) F (x) = cos(12x+ 1)

(c) F (x) = 1
x−
√
2

(d) F (x) = 1
x−0.5i

(e) |x+ 0.1|2.5 (f) |sin(5x)|3

Figure 5: Polynomial interpolation error, monomial approximation error
and u · ‖a(N)‖2. These functions are the ones that appear in Section 1.
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(a) Γ = [−1, 1] (b) Γ = {t+ 0.3i sin(3t) : t ∈ [−1, 1]}

Figure 6: The level set Eρ corresponding to Γ, for various values of ρ. The
colorbar indicates the value of ρ. The smooth simple arc Γ is the white curve in the
figure. The plots were made using the source code provided in [2].

The following theorem illustrates just one situation where function approximation by
polynomials over a smooth simple arc Γ in the complex plane is feasible. We refer the
readers to Section 4.5 in [28] for the proof.

Theorem 2.3. Let Γ be a smooth simple arc in the complex plane. Suppose that the
function F : Γ→ C is analytically continuable to the closure of the region Eoρ corresponding
to Γ, for some ρ > 1. Then, there exists a sequence of polynomials {Qn} satisfying

‖F −Qn‖L∞(Γ) ≤ Cρ
−n, (21)

for all n ≥ 0, where C ≥ 0 is a constant that is independent of N .

Remark 2.2. When Γ is a line segment, the magnitude of the constant C in (21) is
proportional to ‖F‖L∞(Eoρ) (see Theorem 2.8 in Section 2.3). We conjecture that the

same holds in the general case.

The parameter ρ∗ defined below appears in our bounds for both the 2-norm of the
monomial coefficient vector of the interpolating polynomial, and the growth rate of the
2-norm of the inverse of a Vandermonde matrix. It denotes the parameter of the smallest
region Eoρ that contains the open unit disk centered at the origin.

Definition 2.2. Given a smooth simple arc Γ ⊂ C, define ρ∗ := inf{ρ > 1 : D1 ⊂ Eoρ},
where D1 is the open unit disk centered at the origin, and Eoρ is the region corresponding
to Γ (see Definition 2.1).

The following lemma provides upper bounds for the 2-norm of the monomial coefficient
vector of an arbitrary polynomial.

Lemma 2.4. Let PN : C→ C be a polynomial of degree N , where PN (z) =
∑N

k=0 akz
k for

some a0, a1, . . . , aN ∈ C. The 2-norm of the coefficient vector a(N) := (a0, a1, . . . , aN )T

satisfies

‖a(N)‖2 ≤ ‖PN‖L∞(∂D1) ≤ ρ
N
∗ ‖PN‖L∞(Γ), (22)

where D1 denotes the open unit disk centered at the origin, and ρ∗ is given in Definition 2.2.
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Proof. Observe that PN (eiθ) =
∑N

k=0 ake
ikθ. By Parseval’s identity, we have that

‖a(N)‖2 =
( 1

2π

∫ 2π

0
|PN (eiθ)|2 dθ

)1/2
≤ ‖PN‖L∞(∂D1) ≤ ‖PN‖L∞(Eoρ∗ ), (23)

where the last inequality comes from the fact that D1 ⊂ Eoρ∗ (see Definition 2.1). Finally,
based on one of Bernstein’s inequalities (see Section 4.6 in [28]), we have

‖PN‖L∞(Eoρ∗ ) ≤ ρ
N
∗ ‖PN‖L∞(Γ). (24)

�

The following theorem provides an upper bound for the 2-norm of the monomial
coefficients of an arbitrary interpolating polynomial.

Theorem 2.5. Let Γ be a smooth simple arc in the complex plane, and let F : Γ→ C
be an arbitrary function. Suppose that there exists a finite sequence of polynomials
{Qn}n=0,1,...,N , where Qn has degree n, which satisfies

‖F −Qn‖L∞(Γ) ≤ CNρ
−n, 0 ≤ n ≤ N, (25)

for some constants ρ > 1 and CN ≥ 0. Define PN (z) =
∑N

k=0 akz
k to be the N th

degree interpolating polynomial of F for a given set of distinct collocation points Z =
{zj}j=0,1,...,N ⊂ Γ. The 2-norm of the monomial coefficient vector a(N) := (a0, a1, . . . , aN )T

of PN satisfies

‖a(N)‖2 ≤ ‖F‖L∞(Γ) + CN

(
ΛN

(ρ∗
ρ

)N
+ 2ρ∗

N−1∑
j=0

(ρ∗
ρ

)j
+ 1
)
, (26)

where ρ∗ is given in Definition 2.2, and ΛN denotes the Lebesgue constant for Z.

Proof. Given n ≥ 0, let M (n) : Rn+1 → Pn be the bijective linear map associating each
vector (u0, u1, . . . , un)T ∈ Rn+1 with the nth degree polynomial

∑n
k=0 ukz

k ∈ Pn. It
follows immediately from Lemma 2.4 that, given any polynomial P ∈ Pn,∥∥(M (n))−1[P ]

∥∥
2
≤ ρn∗‖P‖L∞(Γ). (27)

Therefore, by the triangle inequality, the 2-norm of the monomial coefficient vector of
the polynomial QN satisfies

∥∥(M (N))−1[QN ]
∥∥

2
≤
∥∥(M (N))−1[Q0]

∥∥
2

+
N−1∑
j=0

∥∥(M (N))−1[Qj+1 −Qj ]
∥∥

2

= ‖Q0‖L∞(Γ) +

N−1∑
j=0

∥∥(M (j+1))−1[Qj+1 −Qj ]
∥∥

2

≤
(
‖F‖L∞(Γ) + CN

)
+
N−1∑
j=0

ρj+1
∗ ‖Qj+1 −Qj‖L∞(Γ)

≤
(
‖F‖L∞(Γ) + CN

)
+ 2CNρ∗

N−1∑
j=0

(ρ∗
ρ

)j
, (28)
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from which it follows that ‖a(N)‖2 satisfies

‖a(N)‖2 ≤
∥∥(M (N))−1[PN −QN ]

∥∥
2

+
∥∥(M (N))−1[QN ]

∥∥
2

≤ ρN∗ ‖PN −QN‖L∞(Γ) +
∥∥(M (N))−1[QN ]

∥∥
2

≤ ρN∗ ΛN‖F −QN‖L∞(Γ) +
∥∥(M (N))−1[QN ]

∥∥
2

≤‖F‖L∞(Γ) + CN

(
ΛN

(ρ∗
ρ

)N
+ 2ρ∗

N−1∑
j=0

(ρ∗
ρ

)j
+ 1
)
, (29)

where the third inequality comes from the observation that PN −QN is the interpolating
polynomial of F −QN for the set of collocation points Z. �

Remark 2.3. The assumption (25) made in the theorem above can be satisfied for any
function F by choosing CN to be sufficiently large. When the function F is continuable
to the closure of the region Eoρ corresponding to Γ (see Definition 2.1), for some ρ >

ρ∗, one can show that ‖a(N)‖2 ≤ 2‖F‖L∞(∂D1), where D1 is defined in Definition 2.2.
This result comes from a generalization of Theorem 2.3 (see [10]), which says that
‖F − PN‖L∞(Eoρ∗ ) = O

(
(ρ∗/ρ)N

)
, from which it follows that

‖a(N)‖2 ≤ ‖PN‖L∞(∂D1) ≤ ‖PN − F‖L∞(∂D1) + ‖F‖L∞(∂D1) ≤ 2‖F‖L∞(∂D1). (30)

The following theorem bounds the growth of the 2-norm of the inverse of a Vander-
monde matrix.

Theorem 2.6. Suppose that V (N) ∈ C(N+1)×(N+1) is a Vandermonde matrix with (N+1)
distinct collocation points Z = {zj}j=0,1,...,N ⊂ C. Suppose further that Γ ⊂ C is a smooth
simple arc such that Z ⊂ Γ. The 2-norm of (V (N))−1 is bounded by

‖(V (N))−1‖2 ≤ ρ
N
∗ ΛN , (31)

where ρ∗ is given in Definition 2.2, and ΛN denotes the Lebesgue constant for the set of
collocation points Z over Γ.

Proof. Let f (N) = (f0, f1, . . . , fN )T ∈ CN+1 be an arbitrary vector. Suppose that PN is
an interpolating polynomial of degree N for the set {(zj , fj)}j=0,1,...,N . By Lemma 2.4,
the 2-norm of the monomial coefficient vector a(N) of PN satisfies

‖a(N)‖2 ≤ ρ
N
∗ ‖PN‖L∞(Γ) ≤ ρ

N
∗ ΛN‖f (N)‖∞ ≤ ρ

N
∗ ΛN‖f (N)‖2, (32)

where the second inequality follows from the definition of the Lebesgue constant. Therefore,
the 2-norm of (V (N))−1 is bounded by

‖(V (N))−1‖2 = sup
f (N) 6=0

{‖(V (N))−1f (N)‖2
‖f (N)‖2

}
= sup

f (N) 6=0

{‖a(N)‖2
‖f (N)‖2

}
≤ ρN∗ ΛN . (33)

�

Note that the bound above applies to any smooth simple arc Γ ⊂ C that contains the
set of collocation points Z.
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Observation 2.4. In the case where the set of (N + 1) collocation points Z ⊂ Γ are
chosen such that the associated Lebesgue constant ΛN is small, we observe in practice that
the upper bound ρN∗ ΛN is reasonably close to the value of ‖(V (N))−1‖2 (see Figures 10
and 14b for numerical evidence).

Remark 2.5. A worst case upper bound for ‖a(N)‖2 is provided by inequality (32) in
the proof of Theorem 2.6, as the right-hand side of this inequality is independent of the
smoothness of the function F .

2.1 Under what conditions is interpolation in the monomial basis as
good as interpolation in a well-conditioned polynomial basis?

Without loss of generality, we assume that the smooth simple arc Γ is inside the unit disk
centered at the origin (such that ‖V (N)‖2 is small and γN . 1). Furthermore, we choose
a set of (N + 1) collocation points Z ⊂ Γ with a small Lebesgue constant ΛN , and let
V (N) denote the corresponding Vandermonde matrix. Recall from Theorem 2.2 that, if

‖(V (N))−1‖2 ≤
1

2u · γN
, (34)

then the monomial approximation error ‖F − P̂N‖L∞(Γ) is bounded a priori by

‖F − P̂N‖L∞(Γ) . ‖F − PN‖L∞(Γ) + u · ‖a(N)‖2, (35)

where u denotes machine epsilon, P̂N is the computed monomial expansion, PN is the
exact Nth degree interpolating polynomial of F for the set of collocation points Z,
and a(N) is the monomial coefficient vector of PN .

By Theorem 2.5, if there exists a constant CN ≥ 0 and a finite sequence of polynomials
{Qn}n=0,1,...,N such that ‖F −Qn‖L∞(Γ) ≤ CNρ−n∗ for 0 ≤ n ≤ N , where Qn has degree

n and ρ∗ is given in Definition 2.2, then the monomial coefficient vector a(N) of PN
satisfies

‖a(N)‖2 . CNΛNN ≈ CN , (36)

and inequality (35) becomes

‖F − P̂N‖L∞(Γ) . ‖F − PN‖L∞(Γ) + u · CN . (37)

In practice, one can take {Qn}n=0,1,...,N to be a finite sequence of interpolating polynomials
{Pn}n=0,1,...,N of F for sets of collocation points with small Lebesgue constants. When
the Lebesgue constant ΛN is small, it follows from Theorem 2.6 that the condition
(34) is satisfied when ρN∗ .

1
u . We assume here that N is sufficiently small so that

ρN∗ .
1
u . Without loss of generality, we assume that the upper bound for ‖F − Pn‖L∞(Γ),

i.e., CNρ
−n
∗ , is tight, in the sense that there exists some integer n ∈ [0, N ] such that

‖F − Pn‖L∞(Γ) = CNρ
−n
∗ . Note that the smallest uniform approximation error we can

hope to obtain in practice is u · ‖F‖L∞(Γ).
When u · CN . max(‖F − PN‖L∞(Γ), u · ‖F‖L∞(Γ)), the use of a monomial basis for

interpolation introduces essentially no extra error. Interestingly, this happens both if
the polynomial interpolation error decays quickly and if the polynomial interpolation
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error decays slowly. Suppose that the polynomial interpolation error decays quickly, so
that the bound is tight for n = 0, i.e., ‖F − P0‖L∞(Γ) = CN . Since CN . 2‖F‖L∞(Γ),
we see that the extra error caused by the use of a monomial basis is bounded by
u · CN . 2u · ‖F‖L∞(Γ) . u · ‖F‖L∞(Γ). Examples of this situation are illustrated in
Figure 7. Suppose now that the polynomial interpolation error decays slowly, so that
bound is tight for n = N , i.e., ‖F − PN‖L∞(Γ) = CNρ

−N
∗ . Since we assumed that ρN∗ .

1
u ,

it follows that u · CN . ‖F − PN‖L∞(Γ). Examples of this situation are illustrated in
Figure 8.

When u · CN & max(‖F − PN‖L∞(Γ), u · ‖F‖L∞(Γ)), stagnation of convergence can
occur. In practice, we observe that the extra error caused by the use of the monomial basis,
i.e., u·‖a(N)‖2, is close to u·CN , so the monomial approximation error ‖F − P̂N‖L∞(Γ) gen-
erally stagnates at an error level around u ·CN . Note that a slow decay in ‖F − Pn‖L∞(Γ)

results in a larger value of CN , while a fast decay in ‖F − Pn‖L∞(Γ) favors a smaller
final interpolation error ‖F − PN‖L∞(Γ). This means that, for stagnation of convergence
to occur, the polynomial interpolation error has to exhibit some combination of slow
decay followed by fast decay. Furthermore, note that an upper bound for CN is given by
CN . ρN∗ (see Remark 2.5). This means that, the smaller the value of N , the smaller the
maximum possible value of CN , and the more rapid the rate of decay in ‖F − Pn‖L∞(Γ)

required for stagnation of convergence to occur. We present examples of this situation in
Figure 9.

(a) cos(2x+ 1), C = 3× 100 (b) 1
x−
√
2
, C = 3× 100

Figure 7: The extra error caused by the use of a monomial basis is negligible.
The pink region denotes the bound for u · ‖a(n)‖2

2.2 Practical use of a monomial basis for interpolation

What are the restrictions on polynomial interpolation in the monomial basis? Firstly,
extremely high-order global interpolation is impossible in the monomial basis, because
the order N must satisfy ‖(V (N))−1‖2 .

1
u for our estimates to hold, where u denotes

machine epsilon. In fact, even if this condition were not required, there would still be
no benefit in taking an order larger than this threshold. This is because, in almost all
situations, the extra error caused by the use of the monomial basis dominates the monomial
approximation error when ‖(V (N))−1‖2 >

1
u , leading to a stagnation of convergence.
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(a) 1
x−0.5i , C = 5× 107 (b) |x+ 0.1|2.5, C = 5× 1011

Figure 8: The extra error caused by the use of a monomial basis is no larger
than ‖F − PN‖L∞(Γ). The pink region denotes the bound for u · ‖a(n)‖2

(a) cos(8x+ 1), C = 1× 103 (b) F (x) = T20(x), C = 5× 107

Figure 9: Stagnation of convergence. The pink region denotes the bound for u·‖a(n)‖2.

On the other hand, piecewise polynomial interpolation in the monomial basis over a
partition of Γ can be carried out stably, provided that the maximum order of approximation
over each subpanel is maintained below the threshold arg maxN ‖(V (N))−1‖2 .

1
u , and

that the size of u · ‖a(N)‖2 ≈ u · ‖â(N)‖2 is kept below the size of the polynomial
interpolation error, where a(N) and â(N) denote the exact and the computed monomial
coefficient vectors, respectively. As demonstrated in Section 2.1, the latter requirement
is often satisfied automatically, and when it is not, adding an extra level of subdivision
almost always resolves the issue. In addition, the extra error caused by the use of a
monomial basis can always be estimated promptly during computation, using the value
of u · ‖â(N)‖2.

Based on the discussion above, we summarize the proper way of using the monomial
basis for interpolation as follows. For simplicity, we use the same order of approximation
over each subpanel, and denote the order using N . Firstly, N needs to be smaller than the
threshold arg maxN ‖(V (N))−1‖2 .

1
u . Then, given a function F : Γ → C and an error

15



tolerance ε, we subdivide the domain Γ until F can be approximated by a polynomial
of degree less than N over each subpanel to within an error of ε. Finally, we subdivide
the panels further until the norm of the monomial coefficients is less than ε/u over each
subpanel.

Since the convergence rate of piecewise polynomial approximation is O(hN+1), where
h and N denote the maximum diameter and minimum order of approximation over all
subpanels, respectively, and since the aforementioned threshold is generally not small
(e.g., the threshold is approximately equal to 43 when Γ = [−1, 1]), piecewise polynomial
interpolation in the monomial basis converges rapidly so long as we set the value of N to
be large enough. Therefore, there is no need to avoid the use of a monomial basis when
it offers an advantage over other bases.

Remark 2.6. It takes O(N3) operations to solve a Vandermonde system of size N ×N
by a standard backward stable solver, e.g., LU factorization with partial pivoting. Since
the order of approximation N is almost always not large, the solution to the Vandermonde
matrix can be computed accurately, in the sense that γN is small, and rapidly, using
highly optimized linear algebra libraries, e.g., LAPACK. There also exist specialized
algorithms that solve Vandermonde systems in O(N2) operations, e.g., the Björck-Pereyra
algorithm [9], the Parker-Traub algorithm [15].

Observation 2.7. What happens when the order of approximation exceeds the thresh-
old? We observe that, despite that our theory is no longer applicable, the monomial
approximation error does not become much larger than the error at the threshold, when
the columns of the Vandermonde matrix are ordered as in (4) and when the system
is solved by MATLAB’s backslash operator (which implements LU factorization with
partial pivoting).

2.3 Interpolation over an interval

In this section, we consider polynomial interpolation in the monomial basis over an
interval Γ = [a, b] ⊂ R. We suggest the use of the Chebyshev points on the interval [a, b]
as the collocation points, because of the following two well-known theorems related to
Chebyshev approximation.

The theorem below, originally proved in [12], bounds the growth rate of the Lebesgue
constant for the Chebyshev points.

Theorem 2.7. Let ΛN be the Lebesgue constant for the (N + 1) Chebyshev points on an
interval [a, b]. For any nonnegative integer N , the Lebesgue constant ΛN satisfies ΛN ≤
2
π log(N + 1) + 1.

The following theorem provides a sufficient condition for the Chebyshev interpolant
of a function to converge geometrically. The proof can be found in, for example, Theorem
8.2 in [27]. Recall that the level set Eρ for an interval [a, b] is a Bernstein ellipse with
parameter ρ, with foci at a and b (see Figure 6a).

Theorem 2.8. Suppose that F : [a, b]→ C is analytically continuable to the region Eoρ
(see Definition 2.1), and satisfies ‖F‖L∞(Eoρ) ≤ M for some M ≥ 0. The N th degree

Chebyshev interpolant PN of F satisfies

‖F − PN‖L∞([a,b]) ≤
4M

ρ− 1
ρ−N , (38)
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for all N ≥ 0.

We note that the theorem above is stronger than Theorem 2.3 when Γ is an interval,
as it specifies the constant factor C.

Remark 2.8. The Legendre points exhibit similar characteristics to the Chebyshev
points, and can also be effectively utilized for interpolation over an interval.

In the rest of this section, we provide a series of numerical experiments involving
interpolation over intervals. In Figure 10, we report the 2-norm of the inverse of the
Vandermonde matrices with Chebyshev collocation points, for the domains Γ = [−1, 1] and
Γ = [0, 1]. Note that when Γ = [−1, 1], we have that ρ∗ = 1 +

√
2 and ‖(V (N))−1‖2 ≤

1
u

for N ≤ 43; when Γ = [0, 1], we have that ρ∗ = 3 + 2
√

2 and ‖(V (N))−1‖2 ≤
1
u for

N ≤ 22. In Figure 11, we interpolate functions which can be resolved by a Chebyshev
interpolant of degree N ≤ 43 over Γ = [−1, 1]. In addition to the estimated values
of ‖F − PN‖L∞([−1,1]) and ‖F − P̂N‖L∞([−1,1]), we plot three additional curves in each

figure: the estimated values of u · ‖a(N)‖2 based on inequality (15), the upper bound
CρN∗ for ‖F − PN‖L∞([−1,1]), and the upper bound u ·C for u · ‖a(N)‖2. In Figure 12, we
provide similar experiments for the case where Γ = [0, 1]. Based on these experimental
results, one can observe that the convergence stagnates after the monomial approximation
error ‖F − P̂N‖L∞(Γ) reaches u · ‖a(N)‖2, which implies that inequality (35) is sharp. In

addition, the values of u · ‖a(N)‖2 are always within the upper bound u ·C, which is inline
with our analysis in Section 2.1.

(a) Γ = [−1, 1] (b) Γ = [0, 1]

Figure 10: The 2-norm of the inverse of a Vandermonde matrix with Chebyshev
collocation points over an interval Γ, and its upper bound, for different orders
of approximation. We note that ρ∗ = 1 +

√
2 when Γ = [−1, 1], and ρ∗ = 3 + 2

√
2

when Γ = [0, 1].

2.4 Interpolation over a smooth simple arc in the complex plane

In this section, we consider polynomial interpolation in the monomial basis over a smooth
simple arc Γ ⊂ C. In this more general setting, similar to the special case where Γ is an
interval, there exists a class of collocation points, known as adjusted Fejér points, whose
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(a) F (x) = e−2(x+0.1)2 , C = 4× 100 (b) F (x) = tan(x), C = 2× 100

(c) F (x) = cos(3x8 + 1), C = 5× 107 (d) F (x) = |sin(5x)|3, C = 1× 1013

(e) cos(12x+ 1), C = 5× 104 (f) F (x) = T30(x), C = 3× 1011

Figure 11: Polynomial interpolation in the monomial basis over Γ = [−1, 1]. The
constant ρ∗ equals 1 +

√
2.
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(a) F (x) = e−2(x+0.1)2 , C = 5× 100 (b) F (x) = tan(x), C = 2× 103

(c) F (x) = cos(3x8 + 1), C = 5× 1010 (d) F (x) = sin(6x+ 1), C = 5× 102

Figure 12: Polynomial interpolation in the monomial basis over Γ = [0, 1]. The
constant ρ∗ equals 3 + 2

√
2.
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associated Lebesgue constant also grows logarithmically [29]. However, these points are
extremely costly to construct numerically. On the other hand, the set of collocation points
constructed based on the following procedure, while suboptimal, is a good choice for
practical applications. Suppose that g : [−1, 1]→ C is a parameterization of Γ. Provided
that the Jacobian g′(t) does not have large variations, we find that the Lebesgue constant
for the set of collocation points Z = {g(tj)}j=0,1,...,N , where {tj}j=0,1,...,N is the set of
(N + 1) Chebyshev points on the interval [−1, 1], grows at a slow rate. It is worth noting
that {tj}j=0,1,...,N can also be chosen as the Legendre points on the interval [−1, 1], for
the same reason stated in Remark 2.8.

In the rest of this section, we provide several numerical experiments involving inter-
polation over smooth simple arcs in the complex plane. In particular, we consider the
scenario where Γ is a parabola parameterized by g : [−1, 1]→ C, g(t) := t+ iα(t2−1), for
α = 0.2, 0.4, 0.6. In Figure 13, we plot these parabolas, including their associated level
sets Eρ, for various values of ρ. The value of ρ∗ for each parabola is estimated from the
plots. In Figure 14, we estimate the condition numbers of the Vandermonde matrices and
the Lebesgue constants for the sets of collocation points, for different values of α. One
can observe that the Lebesgue constants are of approximately size one, which justifies
our choice of collocation points. In Figure 15, we report the monomial approximation
error ‖F − P̂N‖L∞(Γ), and the estimated values of u · ‖a(N)‖2, for various functions F
over Γ. Based on the experimental results, it is clear that the observations made at the
end of Section 2.3 are also applicable to the case where Γ is a parabola. In fact, these
observations apply to any simple arc that is sufficiently smooth.

Remark 2.9. In certain applications, the function F : Γ→ C is defined by the formula
F (z) := σ(g−1(z)), where g : [−1, 1] → C is an analytic function that parameterizes
the curve Γ, and σ : [−1, 1] → C is analytic. In this case, the analytic continuation
of F can have a singularity close to Γ even when σ is entire, because the inverse of
the parameterization (i.e., g−1) has so-called Schwarz singularities at z = g(t∗), where
g′(t∗) = 0. In [2], the authors show that, the higher the curvature of the arc Γ, the closer
the singularity induced by g−1 is to Γ. As a result, the approximation of such a function
F by polynomials is efficient only when the curvature of Γ is small.

3 Applications

After justifying the use of a monomial basis for polynomial interpolation, a natural
question to ask is: why would one want to do it in the first place? For one, the monomial
basis is the simplest polynomial basis to manipulate. For example, the evaluation of
an Nth degree polynomial expressed in the monomial basis can be achieved using only
N multiplications through the application of Horner’s rule. This evaluation can be
further accelerated using Estrin’s scheme, which has distinct advantages on modern
processors. Additionally, the derivative and anti-derivative of an Nth degree polynomial
in the monomial basis can be calculated more stably in other bases, and using only N
multiplications. Besides these obvious advantages, we discuss some other applications
below.
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(a) g(t) = t+ iα(t2 − 1) (b) α = 0.2, ρ∗ ≈ 2.56

(c) α = 0.4, ρ∗ ≈ 2.6 (d) α = 0.6, ρ∗ ≈ 2.6

Figure 13: The level set Eρ of a parabola, for various values of ρ. The colorbar
indicates the value of ρ. The smooth simple arc Γ is the white curve in the figure. The
value of ρ∗ (see Definition 2.2) is estimated for each arc Γ.
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(a) (b)

Figure 14: The Lebesgue constant for collocation points over a parabola, and
the 2-norm of the inverse of the corresponding Vandermonde matrix. The
collocation points are chosen to be {g(tj)}, where {tj} is a set of Chebyshev points over
[−1, 1], and g : [−1, 1] → C is the parameterization of the parabola defined in Section
2.4. The x-axis label N denotes the order of approximation. The value of ρ∗ is set to be
2.6, based on the estimate in Figure 13.

3.1 Oscillatory integrals and singular integrals

Given an oscillatory (or singular) function Ψ : Γ→ C and a smooth function F : Γ→ C
over a smooth simple arc Γ ⊂ C, the calculation of

∫
Γ Ψ(z)F (z) dz by standard quadrature

rules can be extremely expensive or inaccurate due to the oscillations (or the singularity)
of Ψ. However, when F is a monomial, there exists a wide range of integrals in the form
above that can be efficiently computed to high accuracy by either analytical formulas
or by recurrence relations, often derived using integration by parts. Therefore, when
the smooth function F is accurately approximated by a monomial expansion of order

N , such integrals can be efficiently evaluated by the formula
∑N

k=0 ak

(∫
Γ Ψ(z)zk dz

)
,

where {ak}k=0,1,...,N denotes the coefficients of the monomial expansion. Integrals of

this type include the Fourier integral
∫ b
a e

icxF (x) dx, and various layer potentials, e.g.,∫
Γ log(z − ξ)F (z) dz and

∫
Γ
F (z)
z−ξ dz, where ξ ∈ C is given. We refer the readers to

[20, 21] for more detailed discussion on the Fourier integral, and to [17, 2, 24] for more
detailed discussion on the application of polynomial interpolation in the monomial basis
to the evaluation of layer potentials. Some interesting applications can also be found in
[18, 1, 22].

3.2 Root finding

Given a smooth simple arc Γ ⊂ C and a function F : Γ→ C, one method for computing
the roots of F over Γ is to first approximate it by a polynomial PN (z) =

∑N
j=0 ajz

j

to high accuracy, and then to compute the roots of PN by calculating the eigenvalues
of the corresponding companion matrix. Recently, a backward stable algorithm that
computes the eigenvalues of C(PN ) in O(N2) operations with O(N) storage has been
proposed in [5]. This algorithm is backward stable in the sense that the computed roots
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(a) F (z) = cos(2z + 1) (b) F (z) = cos(8z + 1)

(c) F (z) = e−z
2

(d) F (z) = 1
z−2

(e) F (z) = 1
z+i (f) F (z) = tan(tan(z)/2)

Figure 15: Polynomial interpolation in the monomial basis over a parabola.
The interpolation is performed on the parabolas shown in Figure 13a.
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are the exact roots of a perturbed polynomial P̂N (z) =
∑N

j=0(aj + δaj)z
j , so that the

backward error satisfies ‖δa(N)‖2 . u‖a(N)‖2, where u denotes machine epsilon, δa(N) :=

(δa0, δa1, . . . , δaN )T and a(N) := (a0, a1, . . . , aN )T . It follows that ‖PN − P̂N‖L∞(Γ) ≤
u‖δa(N)‖1 . u

√
N + 1‖a(N)‖2. When ‖a(N)‖2 ≈ ‖PN‖L∞(Γ), the computed roots are

backward stable in the polynomial PN . This condition, however, does not hold for all
polynomials PN . Furthermore, the calculation of the coefficients a(N) from the function F ,
which involves the solution of a Vandermonde system of equations, is highly ill-conditioned.
In this paper, we show that, when F is sufficiently smooth, it is possible to compute the
coefficients of an interpolating polynomial PN (z) =

∑N
j=0 ajz

j , with ‖a(N)‖2 ≈ ‖F‖L∞(Γ),
which approximates F uniformly to high accuracy, even when the condition number of the
Vandermonde matrix is close to the reciprocal of machine epsilon. From this, we see that
a backward stable root finder can be constructed by combining the piecewise polynomial
approximation procedure described in Section 2.2 with the algorithm presented in [5],

4 Discussion

Since the invention of digital computers, most research on the topic of polynomial
interpolation in the monomial basis focuses on showing that it is a bad idea. The condition
number of Vandermonde matrices has been studied extensively in recent decades (see [14]
for a literature review), and it is known that its growth rate is at least exponential,
unless the collocation nodes are distributed uniformly on the unit circle centered at the
origin [23]. As a result, the computed monomial coefficients are generally highly inaccurate
when the dimensionality of the Vandermonde matrix is not small. For this reason, other
more well-conditioned bases are often used for polynomial interpolation [27, 11]. On the
other hand, it has long been observed that polynomial interpolation in the monomial
basis produces highly accurate approximations for sufficiently smooth functions (see, for
example, [16, 17]). This is because that the inaccurately computed monomial coefficients
does not imply that resulting interpolating polynomial is bad, since it is the backward
error ‖V â− f‖2 of the numerical solution â to the Vandermonde system V a = f that
determines the accuracy of the approximation, and ‖V â− f‖2 can be small even when
the condition number κ(V ) is large. It has been shown in both frame approximations
[3, 4] and the method of fundamental solutions [6, 26] that ‖V â− f‖2 . u · ‖a‖2, where u
denotes machine epsilon, from which it is easy to derive that the monomial approximation
error is bounded by the sum of the polynomial interpolation error and the extra error
term u · ‖a‖2. In this paper, we characterize the growth of ‖a‖2, and show that this extra
error term is generally smaller than the polynomial interpolation error, provided that the
order of approximation is no larger than the maximum order allowed by the constraint
κ(V ) . 1

u . Since this maximum order is not small in practice, we find that the monomial
basis is a useful basis for interpolation, especially when it is used to construct a piecewise
polynomial approximation.

While not discussed in this paper, our results can be easily generalized to higher
dimensions. In [25], we study bivariate polynomial interpolation in the monomial basis over
a (possibly curved) triangle, and demonstrate that the resulting order of approximation
can reach up to 20, regardless of the triangle’s aspect ratio.
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