
In this paper, we show that the monomial basis is generally as good as a well-conditioned
polynomial basis for interpolation, provided that the condition number of the Vander-
monde matrix is smaller than the reciprocal of machine epsilon. We also show that
the monomial basis is more advantageous than other polynomial bases in a number of
applications.
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1 Introduction

Function approximation has been a central topic in numerical analysis since its inception.
One of the most effective methods for approximating a function F : [−1, 1]→ R is the
use of an interpolating polynomial PN of degree N which satisfies PN (xj) = F (xj) for a
set of (N + 1) collocation points {xj}j=0,1,...,N . In practice, the collocation points are
typically chosen to be the Chebyshev points, and the resulting interpolating polynomial,
known as the Chebyshev interpolant, is a nearly optimal approximation to F in the
space of polynomials of degree at most N [32]. A common basis for representing the
interpolating polynomial PN is the Lagrange polynomial basis, and the evaluation of
PN in this basis can be done stably using the Barycentric interpolation formula [8, 22].
Some other commonly used bases are Newton polynomials, Chebyshev polynomials, and
Legendre polynomials. Alternatively, the monomial basis can be used to represent PN ,
such that PN (x) =

∑N
k=0 akx

k for some coefficients {ak}k=0,1,...,N . The computation
of the monomial coefficient vector a := (a0, a1, . . . , aN )T ∈ RN+1 of the interpolating
polynomial PN requires the solution to a linear system V a = f , where

V :=


1 x0 x2

0 · · · xN0
1 x1 x2

1 · · · xN1
...

...
...

. . .
...

1 xN x2
N · · · xNN

 ∈ R(N+1)×(N+1) (1)

is a Vandermonde matrix, and f :=
(
F (x0), F (x1), . . . , F (xN )

)T ∈ RN+1 is a vector of
the function values of F at the (N + 1) collocation points on the interval [−1, 1]. It
is well-known that, given any set of real collocation points, the condition number of a
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Vandermonde matrix grows at least exponentially as N increases [7]. It follows that
the numerical solution to this linear system is highly inaccurate when N is not small,
and, as a result, this algorithm for constructing PN is often considered to be unstable.
But, is this really the case? Let {xj}j=0,1,...,N be the set of (N + 1) Chebyshev points
on the interval [−1, 1], and consider the case where F (x) = cos(2x + 1). We solve the
resulting Vandermonde system using LU factorization with partial pivoting. In Figure
1a, we present a comparison between the approximation error of the computed monomial
expansion (labeled as “Monomial”) and the approximation error of the Chebyshev
interpolant evaluated using the Barycentric interpolation formula (labeled as “Lagrange”).
One can observe that the computed monomial expansion is, surprisingly, as accurate
as the Chebyshev interpolant evaluated using the Barycentric interpolation formula
(which is accurate up to machine precision), despite the huge condition number of the
Vandermonde matrix reported in Figure 1b.

(a) L∞ error over [−1, 1] (b) Condition number

Figure 1: Polynomial interpolation of cos(2x + 1) in the monomial basis. The
x-axis label N denotes the order of approximation. The y-axis label “Error” denotes the
L∞ approximation error over [−1, 1], which is estimated by comparing the approximated
function values at 10000 equidistant points over [−1, 1] with the true function values.

What happens when the function F becomes more complicated? In Figure 2, we
compare the accuracy of the two approximations when F (x) = cos(8x + 1) and when
F (x) = cos(12x+ 1). Initially, the computed monomial expansion is as accurate as the
Chebyshev interpolant evaluated using the Barycentric interpolation formula. However,
the convergence of polynomial interpolation in the monomial basis stagnates after reaching
a certain error threshold. Furthermore, it appears that, the more complicated a function
is, the larger that error threshold becomes. But what does it mean for a function to
be complicated in this context? Consider the case where the function requires an even
higher-order Chebyshev interpolant in order to be approximated to machine precision. In
Figure 3, we compare the accuracy of the two approximations when F (x) = 1

x−
√

2
and

when F (x) = 1
x−0.5i . These two functions each have a singularity in a neighborhood of the

interval [−1, 1], and Chebyshev interpolants of degree ≥ 40 are required to approximate
them to machine precision. Yet, no stagnation of convergence is observed. In Figure 4,
we consider the case where F is a non-smooth function, and we find that the accuracy
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of the two approximations is, again, the same. Based on all of the previous examples,
we conclude that polynomial interpolation in the monomial basis is not as unstable as
it appears, and has some subtleties lurking around the corner that are worth further
investigation.

(a) cos(8x+ 1) (b) cos(12x+ 1)

Figure 2: Polynomial interpolation of more complicated functions in the mono-
mial basis.

(a) 1
x−
√
2

(b) 1
x−0.5i

Figure 3: Polynomial interpolation of functions with a singularity near the
interval [−1, 1] in the monomial basis.

These seemingly mysterious experiments can be explained partially from the point
of view of backward error analysis. Indeed, the forward error ‖a− â‖2 of the numerical
solution â to the Vandermonde system V a = f can be huge, but it is the backward error,
i.e., ‖V â− f‖2, that matters for the accuracy of the approximation. This is because
a small backward error implies that the difference between the computed monomial
expansion, which we denote by P̂N , and the exact interpolating polynomial, PN , is
a polynomial that approximately vanishes at all of the collocation points. When the
Lebesgue constant associated with the collocation points is small (which is the case for
the Chebyshev points), the polynomial PN − P̂N is bounded uniformly by the backward
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(a) |x+ 0.1|2.5 (b) |sin(5x)|3

Figure 4: Polynomial interpolation of non-smooth functions in the monomial
basis.

error times a small constant. As a result, we bound the monomial approximation error
‖F − P̂N‖L∞([−1,1]) by the following inequality:

‖F − P̂N‖L∞([−1,1]) ≤ ‖F − PN‖L∞([−1,1]) + ‖PN − P̂N‖L∞([−1,1]). (2)

We refer to the first and the second terms on the right-hand side of (2) as the polynomial
interpolation error and the backward error, respectively. When the backward error is
smaller than the polynomial interpolation error, the monomial approximation error is
dominated by the polynomial interpolation error, and the use of a monomial basis does not
incur any additional loss of accuracy. Once the polynomial interpolation error becomes
smaller than the backward error, the convergence of the approximation stagnates. For
example, in Figure 3a, we verify numerically that the backward error is around the
size of machine epsilon for all N ≤ 43, so stagnation is not observed, and polynomial
interpolation in the monomial basis is as accurate as polynomial interpolation in the
Lagrange basis, evaluated by the Barycentric interpolation formula. On the other hand,
in Figure 2a, the backward error is around the size of 10−13 for N ≥ 20, which leads to
stagnation once the polynomial interpolation error is less than 10−13.

The explanation above brings up a new question: when will the backward error be
small? When a backward stable linear system solver (e.g., LU factorization with partial
pivoting) is used to solve the Vandermonde system V a = f , it is guaranteed that the
numerical solution â is the exact solution to the linear system

(V + δV )â = f, (3)

for a matrix δV ∈ R(N+1)×(N+1) that satisfies ‖δV ‖2 ≤ u · γ, where u denotes machine
epsilon and γ = O(‖V ‖2). It follows that the backward error, ‖V â− f‖2, of the numerical
solution is bounded by u · γ‖â‖2. We note that γ is typically small, so the backward error
is essentially determined by the norm of the computed monomial coefficient vector. In
fact, so long as κ(V ) . 1

u , one can show that the norm of the monomial coefficient vector
computed by a backward stable solver is around the same size as the norm of the exact
monomial coefficient vector of the interpolating polynomial. Therefore, in this case, the
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monomial approximation error can be quantified a priori using information about the
interpolating polynomial, which implies that a theory of polynomial interpolation in the
monomial basis can be developed.

The rest of the paper is organized as follows. In Section 2, we analyze polynomial
interpolation in the monomial basis over a smooth simple arc in the complex plane,
with the interval as a special case, along with a number of numerical experiments. Our
analysis shows that the monomial basis is similar to a well-conditioned polynomial basis
for interpolation, provided that the condition number of the Vandermonde matrix is
smaller than the reciprocal of machine epsilon. In Section 3, we present applications
where the use of a monomial basis for interpolation offers a substantial advantage over
other bases. In Section 4, we review related work, and discuss the generalization of our
theory to higher dimensions.

2 Polynomial interpolation in the monomial basis

Let Γ ⊂ C be a smooth simple arc, and let F : Γ → C be an arbitrary function. The
Nth degree interpolating polynomial, denoted by PN , of the function F for a given
set of (N + 1) distinct collocation points Z := {zj}j=0,1,...,N ⊂ Γ can be expressed

as PN (z) =
∑N

k=0 akz
k, where the monomial coefficient vector (a0, a1, . . . , aN )T is the

solution to the Vandermonde system
1 z0 z2

0 · · · zN0
1 z1 z2

1 · · · zN1
...

...
...

. . .
...

1 zN z2
N · · · zNN



a0

a1
...
aN

 =


F (z0)
F (z1)

...
F (zN )

 . (4)

For ease of notation, we denote the Vandermonde matrix by V (N), the monomial coefficient
vector by a(N), and the corresponding right-hand side vector by f (N).

In order to study the size of the residual of the numerical solution to the Vandermonde
system, we require the following lemma, which provides a bound for the 2-norm of the
solution to a perturbed linear system.

Lemma 2.1. Let N be a positive integer. Suppose that A ∈ CN×N is invertible, b ∈ CN ,
and that x ∈ CN satisfies Ax = b. Suppose further that x̂ ∈ CN satisfies (A+ δA)x̂ = b
for some δA ∈ CN×N . If there exists an α > 1 such that

‖A−1‖2 ≤
1

α · ‖δA‖2
, (5)

then the matrix A+ δA is invertible, and x̂ satisfies

α

α+ 1
‖x‖2 ≤ ‖x̂‖2 ≤

α

α− 1
‖x‖2. (6)

Proof. By multiplying both sides of (A+ δA)x̂ = b by A−1, we have that

(I +A−1δA)x̂ = x, (7)
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where I denotes the identity matrix. By (5), the term A−1δA satisfies

‖A−1δA‖2 ≤ ‖A
−1‖2‖δA‖2 ≤

1

α
< 1. (8)

Thus, it follows that the matrix A+ δA is invertible, and ‖x̂‖2 satisfies

‖x̂‖2 ≤ ‖(I +A−1δA)−1‖2‖x‖2 ≤
1

1− ‖A−1δA‖2
‖x‖2 ≤

α

α− 1
‖x‖2. (9)

In addition, by (8), ‖x‖2 satisfies

‖x‖2 ≤ ‖I +A−1δA‖2‖x̂‖2 ≤
(

1 +
1

α

)
‖x̂‖2. (10)

The proof is complete by combining (9) and (10). �

The following theorem provides upper bounds for the monomial approximation error.

Theorem 2.2. Let Γ ⊂ C be a smooth simple arc, and let F : Γ → C be an arbitrary
function. Suppose that PN is the N th degree interpolating polynomial of F for a given
set of (N + 1) distinct collocation points Z := {zj}j=0,1,...,N ⊂ Γ. Clearly, the monomial
coefficient vector a(N) of the polynomial PN is the solution to the Vandermonde system
V (N)a(N) = f (N), where V (N) and f (N) have been previously defined in (4). Suppose
further that there exists some constant γN ≥ 0 such that the computed monomial coefficient
vector â(N) = (â0, â1, . . . , âN )T satisfies(

V (N) + δV (N)
)
â(N) = f (N), (11)

for some δV (N) ∈ C(N+1)×(N+1) with

‖δV (N)‖2 ≤ u · γN , (12)

where u denotes machine epsilon. Let P̂N (z) :=
∑N

k=0 âkz
k be the computed monomial

expansion. The monomial approximation error is bounded by

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + u · γNΛN‖â(N)‖2, (13)

where ΛN denotes the Lebesgue constant for Z. If, in addition,

‖(V (N))−1‖2 ≤
1

2u · γN
, (14)

then the 2-norm of the numerical solution â(N) is bounded by

2

3
‖a(N)‖2 ≤ ‖â

(N)‖2 ≤ 2‖a(N)‖2, (15)

and the monomial approximation error can be quantified a priori by

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + 2u · γNΛN‖a(N)‖2. (16)
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Proof. By the triangle inequality, the definition of the Lebesgue constant ΛN , equa-
tion (11) and inequality (12), the monomial approximation error satisfies

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + ‖P̂N − PN‖L∞(Γ)

≤‖F − PN‖L∞(Γ) + ΛN‖V (N)â(N) − f (N)‖2
≤‖F − PN‖L∞(Γ) + u · γNΛN‖â(N)‖2. (17)

If ‖(V (N))−1‖2 ≤
1

2u·γN , then by Lemma 2.1, the 2-norm of the computed monomial

coefficient vector â(N) is bounded by

2

3
‖a(N)‖2 ≤ ‖â

(N)‖2 ≤ 2‖a(N)‖2, (18)

and (17) becomes

‖F − P̂N‖L∞(Γ) ≤‖F − PN‖L∞(Γ) + 2u · γNΛN‖a(N)‖2. (19)

�

When the Vandermonde system is solved by a backward stable linear system solver,
the set of assumptions (11) and (12) is satisfied with constant γN = O(‖V (N)‖2), from
which it follows that the precondition (14) becomes κ(V (N)) . 1

u . Without loss of
generality, one can assume that Γ is inside the unit disk D1 centered at the origin, such
that ‖V (N)‖2 is small. In this case, we observe that γN . 1 for at least N ≤ 100 when
LU factorization with partial pivoting (which is backward stable) is used to solve the
Vandermonde system.

Note that the second term on the right-hand side of (16) is an upper bound of the
backward error ‖PN − P̂N‖L∞(Γ), i.e., the extra loss of accuracy caused by the use of a
monomial basis. Additionally, the absolute condition number of the evaluation of PN (z)
in the monomial basis is around ‖a(N)‖2 when |z| ≈ 1. Therefore, even if the monomial
coefficients of PN were known analytically, the cancellation error associated with the
evaluation of PN in the monomial basis over Γ is expected to be of comparable magnitude
to this upper bound of the backward error, provided that: (1) the Lebesgue constant ΛN
is not large; (2) a backward stable linear system solver is used to solve the Vandermonde
system; and (3) ‖(V (N))−1‖2 ≤

1
2u·γN . Meeting the first two conditions is straightforward,

since any well-chosen set of collocation points results in a small ΛN , and essentially any
standard linear system solver is backward stable. The third condition requires further
attention, and we address it in Section 2.2.

The rest of this section is structured as follows. First, we review a classical result
on function approximation over a smooth simple arc Γ ⊂ C by polynomials. Next, we
study the backward error ‖PN − P̂N‖L∞(Γ) by bounding the 2-norm of the monomial

coefficients of the interpolating polynomial. Finally, we study the growth of ‖(V (N))−1‖2,
which determines the validity of the precondition on the a priori error estimate (16).

Below, we define a generalization of the Bernstein ellipse, to the case of a smooth
simple arc in the complex plane.
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(a) Γ = [−1, 1] (b) Γ = {t+ 0.3i sin(3t) : t ∈ [−1, 1]}

Figure 5: The level set Eρ corresponding to Γ, for various values of ρ. The
colorbar indicates the value of ρ. The smooth simple arc Γ is the white curve in the
figure. The plots were made using the source code provided in [2].

Definition 2.1. Given a smooth simple arc Γ in the complex plane, we define Eρ to be
the level set {x+ iy ∈ C : G(x, y) = log ρ}, where G : R2 → R is the unique solution to
the exterior Laplace equation

∇2G = 0 in R2 \ Γ,

G = 0 on ∂Γ,

G(x) ∼ log |x| as |x| → ∞. (20)

Furthermore, we let Eoρ denote the open region bounded by Eρ.

We note that, when Γ = [a, b] ⊂ R, the level set Eρ is a Bernstein ellipse with
parameter ρ, with foci at a and b. In Figure 5, we plot examples of level sets Eρ for an
interval and for a sine curve, for various values of ρ.

The following lemma demonstrates the feasibility of function approximation by
polynomials over a smooth simple arc Γ in the complex plane. We refer the readers to
Section 4.5 in [33] for the proof.

Lemma 2.3. Let Γ be a smooth simple arc in the complex plane. Suppose that the function
F : Γ→ C is analytically continuable to the closure of the region Eoρ corresponding to Γ,
for some ρ > 1. Then, there exists a sequence of polynomials {Qn} satisfying

‖F −Qn‖L∞(Γ) ≤ Cρ
−n, (21)

for all n ≥ 0, where C ≥ 0 is a constant that is independent of N .

Remark 2.1. When Γ is a line segment, the magnitude of the constant C in (21) is
proportional to ‖F‖L∞(Eoρ) (see Lemma 2.8 in Section 2.3). We conjecture that the same

holds in the general case.

The parameter ρ∗ defined below appears in our bounds for both the 2-norm of the
monomial coefficient vector of the interpolating polynomial, and the growth rate of the
2-norm of the inverse of a Vandermonde matrix. It denotes the parameter of the smallest
region Eoρ that contains the open unit disk centered at the origin.
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Definition 2.2. Given a smooth simple arc Γ ⊂ C, define ρ∗ := inf{ρ > 1 : D1 ⊂ Eoρ},
where D1 is the open unit disk centered at the origin, and Eoρ is the region corresponding
to Γ (see Definition 2.1).

The following lemma provides upper bounds for the 2-norm of the monomial coefficient
vector of an arbitrary polynomial.

Lemma 2.4. Let PN : C→ C be a polynomial of degree N , where PN (z) =
∑N

k=0 akz
k for

some a0, a1, . . . , aN ∈ C. The 2-norm of the coefficient vector a(N) := (a0, a1, . . . , aN )T

satisfies

‖a(N)‖2 ≤ ‖PN‖L∞(∂D1) ≤ ρ
N
∗ ‖PN‖L∞(Γ), (22)

where D1 denotes the open unit disk centered at the origin, and ρ∗ is given in Definition 2.2.

Proof. Observe that

PN (eiθ) =
N∑
k=0

ake
ikθ. (23)

By Parseval’s identity, we have that

‖a(N)‖2 =
( 1

2π

∫ 2π

0
|PN (eiθ)|2 dθ

)1/2
≤ ‖PN‖L∞(∂D1) ≤ ‖PN‖L∞(Eoρ∗ ), (24)

where the last inequality comes from the fact that D1 ⊂ Eoρ∗ (see Definition 2.1). Finally,
based on one of Bernstein’s inequalities (see Section 4.6 in [33]), we have that

‖PN‖L∞(Eoρ∗ ) ≤ ρ
N
∗ ‖PN‖L∞(Γ). (25)

�

The following theorem provides an upper bound for the 2-norm of the monomial
coefficients of an arbitrary interpolating polynomial.

Theorem 2.5. Let Γ be a smooth simple arc in the complex plane, and let F : Γ→ C

be an arbitrary function. Suppose that there exists a finite sequence of polynomials
{Qn}n=0,1,...,N , where Qn has degree n, which satisfies

‖F −Qn‖L∞(Γ) ≤ CNρ
−n, 0 ≤ n ≤ N, (26)

for some constants ρ > 1 and CN ≥ 0. Define PN (z) =
∑N

k=0 akz
k to be the N th

degree interpolating polynomial of F for a given set of distinct collocation points Z =
{zj}j=0,1,...,N ⊂ Γ. The 2-norm of the monomial coefficient vector a(N) := (a0, a1, . . . , aN )T

of PN satisfies

‖a(N)‖2 ≤ ‖F‖L∞(Γ) + CN

(
ΛN

(ρ∗
ρ

)N
+ 2ρ∗

N−1∑
j=0

(ρ∗
ρ

)j
+ 1
)
, (27)

where ρ∗ is given in Definition 2.2, and ΛN denotes the Lebesgue constant for Z.
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Proof. Given n ≥ 0, let M (n) : Rn+1 → Pn be the bijective linear map associating each
vector (u0, u1, . . . , un)T ∈ Rn+1 with the nth degree polynomial

∑n
k=0 ukz

k ∈ Pn. It
follows immediately from Lemma 2.4 that, given any polynomial P ∈ Pn,∥∥(M (n))−1[P ]

∥∥
2
≤ ρn∗‖P‖L∞(Γ). (28)

Therefore, by the triangle inequality, the 2-norm of the monomial coefficient vector of
the polynomial QN satisfies

∥∥(M (N))−1[QN ]
∥∥

2
≤
∥∥(M (N))−1[Q0]

∥∥
2

+
N−1∑
j=0

∥∥(M (N))−1[Qj+1 −Qj ]
∥∥

2

= ‖Q0‖L∞(Γ) +
N−1∑
j=0

∥∥(M (j+1))−1[Qj+1 −Qj ]
∥∥

2

≤
(
‖F‖L∞(Γ) + CN

)
+

N−1∑
j=0

ρj+1
∗ ‖Qj+1 −Qj‖L∞(Γ)

≤
(
‖F‖L∞(Γ) + CN

)
+ 2CNρ∗

N−1∑
j=0

(ρ∗
ρ

)j
, (29)

from which it follows that ‖a(N)‖2 satisfies

‖a(N)‖2 ≤
∥∥(M (N))−1[PN −QN ]

∥∥
2

+
∥∥(M (N))−1[QN ]

∥∥
2

≤ ρN∗ ‖PN −QN‖L∞(Γ) +
∥∥(M (N))−1[QN ]

∥∥
2

≤ ρN∗ ΛN‖F −QN‖L∞(Γ) +
∥∥(M (N))−1[QN ]

∥∥
2

≤‖F‖L∞(Γ) + CN

(
ΛN

(ρ∗
ρ

)N
+ 2ρ∗

N−1∑
j=0

(ρ∗
ρ

)j
+ 1
)
, (30)

where the third inequality comes from the observation that PN −QN is the interpolating
polynomial of F −QN for the set of collocation points Z. �

Remark 2.2. The assumption (26) made in the theorem above can be satisfied for any
function F by choosing CN to be sufficiently large.

The following theorem bounds the growth of the 2-norm of the inverse of a Vander-
monde matrix.

Theorem 2.6. Suppose that V (N) ∈ C(N+1)×(N+1) is a Vandermonde matrix with (N+1)
distinct collocation points Z = {zj}j=0,1,...,N ⊂ C. Suppose further that Γ ⊂ C is a smooth
simple arc such that Z ⊂ Γ. The 2-norm of (V (N))−1 is bounded by

‖(V (N))−1‖2 ≤ ρ
N
∗ ΛN , (31)

where ρ∗ is given in Definition 2.2, and ΛN denotes the Lebesgue constant for the set of
collocation points Z over Γ.
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Proof. Let f (N) = (f0, f1, . . . , fN )T ∈ CN+1 be an arbitrary vector. Suppose that PN is
an interpolating polynomial of degree N for the set {(zj , fj)}j=0,1,...,N . By Lemma 2.4,
the 2-norm of the monomial coefficient vector a(N) of PN satisfies

‖a(N)‖2 ≤ ρ
N
∗ ‖PN‖L∞(Γ) ≤ ρ

N
∗ ΛN‖f (N)‖∞ ≤ ρ

N
∗ ΛN‖f (N)‖2, (32)

where the second inequality follows from the definition of the Lebesgue constant. Therefore,
the 2-norm of (V (N))−1 is bounded by

‖(V (N))−1‖2 = sup
f (N) 6=0

{‖(V (N))−1f (N)‖2
‖f (N)‖2

}
= sup

f (N) 6=0

{‖a(N)‖2
‖f (N)‖2

}
≤ ρN∗ ΛN . (33)

�

Note that the bound above applies to any smooth simple arc Γ ⊂ C that contains the
set of collocation points Z.

Observation 2.3. In the case where the set of (N + 1) collocation points Z ⊂ Γ are
chosen such that the associated Lebesgue constant ΛN is small, we observe in practice
that the upper bound ρN∗ ΛN is reasonably close to the value of ‖(V (N))−1‖2 (see Figures 6
and 11b for numerical evidence).

2.1 When is the monomial basis as good as a well-conditioned polyno-
mial basis?

Without loss of generality, we assume that the smooth simple arc Γ is inside the unit
disk centered at the origin (such that ‖V (N)‖2 is small and γN . 1), and that F : Γ→ C

satisfies ‖F‖L∞(Γ) ≤ 1. Furthermore, we choose a set of (N + 1) collocation points Z ⊂ Γ

with a small Lebesgue constant ΛN , and let V (N) denote the corresponding Vandermonde
matrix. Recall from Theorem 2.2 that, if

‖(V (N))−1‖2 ≤
1

2u · γN
, (34)

then the monomial approximation error ‖F − P̂N‖L∞(Γ) is bounded a priori by

‖F − P̂N‖L∞(Γ) . ‖F − PN‖L∞(Γ) + u · ‖a(N)‖2, (35)

where u denotes machine epsilon, P̂N is the computed monomial expansion, PN is the
exact Nth degree interpolating polynomial of F for the set of collocation points Z,
and a(N) is the monomial coefficient vector of PN .

By Theorem 2.5, if there exists a constant CN ≥ 0 and a finite sequence of polynomials
{Qn}n=0,1,...,N such that ‖F −Qn‖L∞(Γ) ≤ CNρ−n∗ for 0 ≤ n ≤ N , where Qn has degree

n and ρ∗ is given in Definition 2.2, then the monomial coefficient vector a(N) of PN
satisfies

‖a(N)‖2 . CNΛNN ≈ CNN, (36)
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and inequality (35) becomes

‖F − P̂N‖L∞(Γ) . ‖F − PN‖L∞(Γ) + u · CNN. (37)

In practice, one can take {Qn}n=0,1,...,N to be a finite sequence of interpolating polynomials
{Pn}n=0,1,...,N of F for sets of collocation points with small Lebesgue constants, and
define CN by the formula

CN = min{C ≥ 0 : ‖F − Pn‖L∞(Γ) ≤ Cρ
−n
∗ for 0 ≤ n ≤ N}. (38)

In the case where CN . 1, the inequality above shows that the extra error caused
by the use of a monomial basis is around machine epsilon in size. Furthermore, by
Theorem 2.6, we have that in this case ‖(V (N))−1‖2 . ρN∗ , from which it follows that
the interpolation error ‖F − PN‖L∞(Γ) attains a size of approximately machine epsilon

before ‖(V (N))−1‖2 reaches 1
2u·γN . Thus, the precondition ‖(V (N))−1‖2 ≤

1
2u·γN on the a

priori error bound does not weaken the aforementioned result.

Remark 2.4. By Lemma 2.3 , if the function F : Γ→ C is analytically continuable to
the closure of the region Eoρ∗ corresponding to Γ, then there exists a finite sequence of
polynomials {Qn}n=0,1,...,N , where Qn has degree n, such that ‖F −Qn‖L∞(Γ) ≤ Cρ−n∗
for some C ≥ 0. We conjecture that C . 1 when ‖F‖L∞(Eoρ∗ ) . 1 (see also Remark 2.1).

What happens if the polynomial interpolation error decays more slowly? Suppose that
the polynomial interpolation error ‖F − Pn‖L∞(Γ) decays to the value ‖F − PN‖L∞(Γ) at

a slower rate than ρ−n∗ , i.e.,

‖F − Pn‖L∞(Γ) ≤ ρ
N−n
∗ ‖F − PN‖L∞(Γ), (39)

for 0 ≤ n ≤ N . In this case, CN = ρN∗ ‖F − PN‖L∞(Γ), so inequality (37) becomes

‖F − P̂N‖L∞(Γ) . (1 + u ·NρN∗ )‖F − PN‖L∞(Γ). (40)

When NρN∗ ≤ 1
u , we have that ‖F − P̂N‖L∞(Γ) . 2‖F − PN‖L∞(Γ). Furthermore, based

on Observation 2.3, the condition NρN∗ ≤ 1
u is generally true when ‖(V (N))−1‖2 ≤

1
2u·γN .

Therefore, the extra error caused by the use of a monomial basis, despite being large in
absolute terms, is less than the interpolation error ‖F − PN‖L∞(Γ), up until the order

N reaches the threshold value corresponding to the condition ‖(V (N))−1‖2 ≤
1

2u·γN . It
follows that polynomial interpolation in the monomial basis is, once again, no worse than
polynomial interpolation in a well-conditioned basis in this case.

Remark 2.5. The assumption (39) holds for any sufficiently badly behaved function,
e.g., functions which are not in C∞(Γ), meromorphic functions with singularities close to
Γ, and highly oscillatory analytic functions.

Stagnation of convergence, as shown in Figure 2, is observed when the interpolation
error ‖F − PN‖L∞(Γ) becomes smaller than approximately u · ‖a(N)‖2 before the order N
reaches the threshold. This occurs when the interpolation error ‖F − Pn‖L∞(Γ) decays

at a rate faster than ρ−n∗ , after previously decaying at a rate slower than ρ−n∗ . It is
worth noting that, unless the interpolation error ‖F − Pn‖L∞(Γ) decays at a rate much

faster than ρ−n∗ , ‖F − PN‖L∞(Γ) . u · ‖a(N)‖2 holds only when N is relatively close to
the threshold.
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Remark 2.6. Here we provide several a priori estimates for the value of ‖a(N)‖2. First,
consider the case where the function F is analytically continuable to the closure of the
region Eoρ corresponding to Γ (see Definition 2.1), for some ρ > ρ∗. A generalization of

Lemma 2.3 (see, for example, [10]) shows that ‖F − PN‖L∞(Eoρ∗ ) = O
(
(ρ∗/ρ)N

)
. When

N is sufficiently large that ‖F − PN‖L∞(Eoρ∗ ) ≤ ‖F‖L∞(∂D1), we can bound the 2-norm

of the monomial coefficient vector a(N) of PN by

‖a(N)‖2 ≤ ‖PN‖L∞(∂D1) ≤ ‖PN − F‖L∞(∂D1) + ‖F‖L∞(∂D1) ≤ 2‖F‖L∞(∂D1), (41)

where the first inequality comes from Lemma 2.4. When there is no information available
about ‖F‖L∞(∂D1), the value of CNN can serve as a rough estimate for ‖a(N)‖2 by
inequality (36), as its calculation only involves the quantities {‖F − Pn‖L∞(Γ)}n=0,1,...,N .
An even cruder bound is provided by inequality (32) in the proof of Theorem 2.6, i.e.,
‖a(N)‖2 ≤ ρN∗ ΛN‖f (N)‖2, which describes the largest possible value of ‖a(N)‖2, as the
right-hand side of this inequality is independent of the smoothness of the function F .

2.2 How restrictive is the monomial basis?

What are the restrictions on polynomial interpolation in the monomial basis? Firstly,
extremely high-order global interpolation is impossible in the monomial basis, because
the order N must satisfy ‖(V (N))−1‖2 ≤

1
2u·γN for our estimates to hold. In fact, even if

this condition were not required, there would still be no benefit to taking an order larger
than this threshold in almost all situations. Suppose that the function F can only be
approximated by a very high-degree interpolating polynomial to the desired accuracy.
Since, in practice, ‖(V (N))−1‖2 ≈ ρN∗ (see Observation 2.3), inequality (40) shows that
the error caused by the use of the monomial basis typically dominates the approximation
error whenever ‖(V (N))−1‖2 >

1
2u·γN .

On the other hand, piecewise polynomial interpolation in the monomial basis over a
partition of Γ can be carried out stably, provided that the maximum order of approximation
over each subpanel is maintained below the threshold, and that the size of u · ‖a(N)‖2 ≈
u · ‖â(N)‖2 is kept below the size of the polynomial interpolation error, where a(N) and
â(N) denote the exact and the computed monomial coefficient vectors, respectively. As
demonstrated in Section 2.1, the latter requirement is often satisfied automatically, and
when it is not, adding an extra level of subdivision almost always resolves the issue. In
addition, the extra error caused by the use of a monomial basis can always be estimated
promptly during computation, using the value of u‖â(N)‖2.

Since the convergence rate of piecewise polynomial approximation is O(hN+1), where
h and N denote the maximum diameter and minimum order of approximation over all
subpanels, respectively, and since the aforementioned threshold is generally not small
(e.g., the threshold is approximately equal to 43 when Γ = [−1, 1]), piecewise polynomial
interpolation in the monomial basis converges rapidly so long as we set the value of N to
be large enough. Therefore, there is no need to avoid the use of a monomial basis when
it offers an advantage over other bases.

Remark 2.7. It takes O(N3) operations to solve a Vandermonde system of size N ×N
by a standard backward stable solver, e.g., LU factorization with partial pivoting. Since
the order of approximation N is almost always not large, the solution to the Vandermonde
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matrix can be computed accurately, in the sense that γN is small, and rapidly, using
highly optimized linear algebra libraries, e.g., LAPACK. There also exist specialized
algorithms that solve Vandermonde systems in O(N2) operations, e.g., the Björck-Pereyra
algorithm [9], the Parker-Traub algorithm [16].

Observation 2.8. What happens when the order of approximation exceeds the thresh-
old? We observe that, despite that our theory is no longer applicable, the monomial
approximation error does not become much larger than the error at the threshold, when
the columns of the Vandermonde matrix are ordered as in (4) and when the system
is solved by MATLAB’s backslash operator (which implements LU factorization with
partial pivoting).

2.3 Interpolation over an interval

In this section, we consider polynomial interpolation in the monomial basis over an
interval Γ = [a, b] ⊂ R. We suggest the use of the Chebyshev points on the interval [a, b]
as the collocation points, because of the following two well-known lemmas related to
Chebyshev approximation.

The lemma below, originally proved in [12], bounds the growth rate of the Lebesgue
constant for the Chebyshev points.

Lemma 2.7. Let ΛN be the Lebesgue constant for the (N + 1) Chebyshev points on an
interval [a, b]. For any nonnegative integer N , the Lebesgue constant ΛN satisfies

ΛN ≤
2

π
log(N + 1) + 1. (42)

The following lemma provides a sufficient condition for the Chebyshev interpolant of
a function to converge geometrically. The proof can be found in, for example, Theorem
8.2 in [32]. Recall that the level set Eρ for an interval [a, b] is a Bernstein ellipse with
parameter ρ, with foci at a and b (see Figure 5a).

Lemma 2.8. Suppose that F : [a, b] → C is analytically continuable to the region Eoρ
(see Definition 2.1), and satisfies ‖F‖L∞(Eoρ) ≤ M for some M ≥ 0. The N th degree

Chebyshev interpolant PN of F satisfies

‖F − PN‖L∞([a,b]) ≤
4M

ρ− 1
ρ−N , (43)

for all N ≥ 0.

We note that the lemma above is stronger than Lemma 2.3 when Γ is an interval, as
it specifies the constant factor C.

Remark 2.9. The Legendre points exhibit similar characteristics to the Chebyshev
points, and can also be effectively utilized for interpolation over an interval.

In the rest of this section, we provide a series of numerical experiments involving
interpolation over intervals. In Figure 6, we report the 2-norm of the inverse of the
Vandermonde matrices with Chebyshev collocation points, for the domains Γ = [−1, 1] and
Γ = [0, 1]. Note that when Γ = [−1, 1], we have that ρ∗ = 1 +

√
2 and ‖(V (N))−1‖2 ≤

1
u
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for N ≤ 43; when Γ = [0, 1], we have that ρ∗ = 3 + 2
√

2 and ‖(V (N))−1‖2 ≤
1
u for

N ≤ 22. In Figure 7, we interpolate functions which can be resolved by a Chebyshev
interpolant of degree N ≤ 43 over Γ = [−1, 1]. In addition to the estimated values of
‖F − PN‖L∞([−1,1]) and ‖F − P̂N‖L∞([−1,1]), we plot two additional curves in each figure:
an a priori estimate for stagnation of convergence, i.e., u · ‖F‖L∞(∂D1) (see inequality

(41)); and the estimated values of u · ‖a(N)‖2 based on inequality (15). In Figure 8,
we provide similar experiments for the case where Γ = [0, 1]. In Figure 9, we consider
polynomial interpolation, in the monomial basis, of more complicated functions that
cannot be resolved to machine precision by a Chebyshev interpolant of degree less than
the threshold. Based on these experimental results, we make the following observations:

1. The convergence generally stagnates after the monomial approximation error
‖F − P̂N‖L∞(Γ) reaches u · ‖a(N)‖2, which implies that inequality (35) is sharp.

2. Stagnation of convergence occurs once the polynomial interpolation error decays to
u · ‖F‖L∞(∂D1), which validates the effectiveness of the prediction for stagnation of
convergence given by (41).

3. The monomial basis is generally as effective as a well-conditioned polynomial
basis for interpolation, as long as the order does not exceed the threshold. This
observation is in line with our analysis in Section 2.1.

(a) Γ = [−1, 1] (b) Γ = [0, 1]

Figure 6: The 2-norm of the inverse of a Vandermonde matrix with Chebyshev
collocation points over an interval Γ, and its upper bound, for different orders
of approximation. We note that ρ∗ = 1 +

√
2 when Γ = [−1, 1], and ρ∗ = 3 + 2

√
2

when Γ = [0, 1].

2.4 Interpolation over a smooth simple arc in the complex plane

In this section, we consider polynomial interpolation in the monomial basis over a smooth
simple arc Γ ⊂ C. In this more general setting, similar to the special case where Γ is an
interval, there exists a class of collocation points, known as adjusted Fejér points, whose
associated Lebesgue constant also grows logarithmically [34]. However, these points are
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(a) F (x) = cos(2x+ 1) (b) F (x) = cos(8x+ 1)

(c) F (x) = cos(12x+ 1) (d) F (x) = 1
x−
√
2

(e) F (x) = e−2(x+0.1)2 (f) F (x) = T20(x)

Figure 7: Polynomial interpolation in the monomial basis over Γ = [−1, 1]. The
label “Lagrange” denotes ‖F − PN‖L∞(Γ), estimated using the Barycentric interpolation

formula. The label “Monomial” denotes the estimated value of ‖F − P̂N‖L∞(Γ).
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(a) F (x) = e−x
2

(b) F (x) = 1
x+1.2

(c) F (x) = sin(6x+ 1) (d) F (x) = arctan(x)

Figure 8: Polynomial interpolation in the monomial basis over Γ = [0, 1]. See
the caption of Figure 7 for the definitions of the labels “Lagrange”, “Monomial”.
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(a) F (x) = 1
x−0.5i , Γ = [−1, 1] (b) F (x) = 1

1+25x2 , Γ = [−1, 1]

(c) F (x) = |x+ 0.1|2.5, Γ = [−1, 1] (d) F (x) = |sin(5x)3|, Γ = [−1, 1]

(e) F (x) = sin(10x2 + 1), Γ = [0, 1] (f) F (x) = 1
x+0.2 , Γ = [0, 1]

Figure 9: Polynomial interpolation, in the monomial basis, of functions that
are more difficult to resolve. See the caption of Figure 7 for the definitions of the
labels “Lagrange” and “Monomial”.
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extremely costly to construct numerically. On the other hand, the set of collocation points
constructed based on the following procedure, while suboptimal, is a good choice for
practical applications. Suppose that g : [−1, 1]→ C is a parameterization of Γ. Provided
that the Jacobian g′(t) does not have large variations, we find that the Lebesgue constant
for the set of collocation points Z = {g(tj)}j=0,1,...,N , where {tj}j=0,1,...,N is the set of
(N + 1) Chebyshev points on the interval [−1, 1], grows at a slow rate. It is worth noting
that {tj}j=0,1,...,N can also be chosen as the Legendre points on the interval [−1, 1], for
the same reason stated in Remark 2.9.

In the rest of this section, we provide several numerical experiments involving inter-
polation over smooth simple arcs in the complex plane. In particular, we consider the
scenario where Γ is a parabola parameterized by g : [−1, 1]→ C, g(t) := t+ iα(t2−1), for
α = 0.2, 0.4, 0.6. In Figure 10, we plot these parabolas, including their associated level
sets Eρ, for various values of ρ. The value of ρ∗ for each parabola is estimated from the
plots. In Figure 11, we estimate the condition numbers of the Vandermonde matrices and
the Lebesgue constants for the sets of collocation points, for different values of α. One
can observe that the Lebesgue constants are of approximately size one, which justifies our
choice of collocation points. In Figure 12, we report the monomial approximation error
‖F − P̂N‖L∞(Γ), an a priori estimate for stagnation of convergence (i.e., u · ‖F‖L∞(∂D1)),

and the estimated values of u · ‖a(N)‖2, for various functions F over Γ. Based on the
experimental results, it is clear that the observations made at the end of Section 2.3 are
also applicable to the case where Γ is a parabola. In fact, these observations apply to
any simple arc that is sufficiently smooth.

Remark 2.10. In certain applications, the function F : Γ→ C is defined by the formula
F (z) := σ(g−1(z)), where g : [−1, 1] → C is an analytic function that parameterizes
the curve Γ, and σ : [−1, 1] → C is analytic. In this case, the analytic continuation
of F can have a singularity close to Γ even when σ is entire, because the inverse of
the parameterization (i.e., g−1) has so-called Schwarz singularities at z = g(t∗), where
g′(t∗) = 0. In [2], the authors show that, the higher the curvature of the arc Γ, the closer
the singularity induced by g−1 is to Γ. As a result, the approximation of such a function
F by polynomials is efficient only when the curvature of Γ is small.

3 Applications

After justifying the use of a monomial basis for polynomial interpolation, a natural
question to ask is: why would one want to do it in the first place? For one, the monomial
basis is the simplest polynomial basis to manipulate. For example, the evaluation of
an Nth degree polynomial expressed in the monomial basis can be achieved using only
N multiplications through the application of Horner’s rule. This evaluation can be
further accelerated using Estrin’s scheme, which has distinct advantages on modern
processors. Additionally, the derivative and anti-derivative of an Nth degree polynomial
in the monomial basis can be calculated more stably in other bases, and using only N
multiplications. Besides these obvious advantages, we present several applications that
demonstrate the unique merits of polynomial interpolation in the monomial basis.
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(a) g(t) = t+ iα(t2 − 1) (b) α = 0.2, ρ∗ ≈ 2.56

(c) α = 0.4, ρ∗ ≈ 2.6 (d) α = 0.6, ρ∗ ≈ 2.6

Figure 10: The level set Eρ of a parabola, for various values of ρ. The colorbar
indicates the value of ρ. The smooth simple arc Γ is the white curve in the figure. The
value of ρ∗ (see Definition 2.2) is estimated for each arc Γ.
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(a) (b)

Figure 11: The Lebesgue constant for collocation points over a parabola, and
the 2-norm of the inverse of the corresponding Vandermonde matrix. The
collocation points are chosen to be {g(tj)}, where {tj} is a set of Chebyshev points over
[−1, 1], and g : [−1, 1] → C is the parameterization of the parabola defined in Section
2.4. The x-axis label N denotes the order of approximation. The value of ρ∗ is set to be
2.6, based on the estimate in Figure 10.

3.1 Oscillatory integrals and singular integrals

Given an oscillatory (or singular) function Ψ : Γ→ C and a smooth function F : Γ→ C

over a smooth simple arc Γ ⊂ C, the calculation of∫
Γ

Ψ(z)F (z) dz (44)

by standard quadrature rules can be extremely expensive or inaccurate due to the
oscillations (or the singularity) of Ψ. However, when F is a monomial, there exists a wide
range of integrals in the form (44) that can be efficiently computed to high accuracy by
either analytical formulas or by recurrence relations, often derived using integration by
parts. Therefore, when the smooth function F is accurately approximated by a monomial
expansion of order N , such integrals can be efficiently evaluated by the formula

N∑
k=0

ak

(∫
Γ

Ψ(z)zk dz
)
, (45)

where {ak}k=0,1,...,N denotes the coefficients of the monomial expansion.
In the rest of this section, we present examples of oscillatory integrals and singular

integrals of this kind.

Remark 3.1. When one needs to compute (44) for multiple smooth functions F , it is
unnecessary to compute a monomial expansion for each F . Instead, the adjoint method
can be used to compute a quadrature rule {(zi, wi)}i=0,1,...,N , such that∫

Γ
Ψ(z)F (z) dz ≈

N∑
i=0

wiΨ(zi)F (zi), (46)
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(a) F (z) = cos(2z + 1) (b) F (z) = cos(8z + 1)

(c) F (z) = e−z
2

(d) F (z) = 1
z−2

(e) F (z) = 1
z+i (f) F (z) = tan(tan(z)/2)

Figure 12: Polynomial interpolation in the monomial basis over a parabola.
The interpolation is performed on the parabolas shown in Figure 10a. The x-axis label N
denotes the order of approximation. The label “L∞ error” denotes the estimated value
of ‖F − P̂N‖L∞(Γ).
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for any function F that can be accurately approximated by a monomial expansion of
order N . We refer the readers to Section 2.2.2 in [2] for a detailed overview of the method.

3.1.1 Fourier integrals

Given a smooth function G : [a, b]→ C and a real number c, it takes O(c) operations to
compute the Fourier integral∫ b

a
eicxG(x) dx (47)

by a standard quadrature rule for smooth functions, as the number of points required to
resolve the integrand is proportional to the value of c. Consequently, the evaluation of
such an integral is prohibitively expensive when c is large. By a change of variables, the
integral (47) can be decomposed into the sum of the integral of a smooth function, and
an oscillatory integral of the form∫ 1

−1
eiωxF (x) dx, (48)

where ω ∈ R, and F : [−1, 1] → R is smooth. Thus, without loss of generality, it is
sufficient to consider the numerical evaluation of (48) alone. It is known that (48) can be
efficiently evaluated to high accuracy with a cost independent of ω when the function F
is a monomial and when ω & 20, using the following recurrence relations:∫ 1

−1
eiωx dx =

1

iω
(eiω − e−iω), (49a)∫ 1

−1
eiωxxk+1 dx =

1

iω

(
eiω + (−1)ke−iω − (k + 1)

∫ 1

−1
eiωxxk dx

)
, (49b)

for all k ≥ 0. The use of this recurrence relation for computing Fourier integrals
was first proposed in [14], and the resulting algorithm is known as the Filon-type
method. When this method is used, the smooth function F is typically approximated by
piecewise polynomials of low degrees (typically less than five) [14, 23], in part due to the
belief that higher-order polynomial interpolation in the monomial basis is unstable. By
approximating F by a higher-order monomial expansion as described in this paper, the
Filon-type method is made substantially more accurate.

We note that this technique also generalizes to higher dimensions and to more
complicated oscillatory functions Ψ, and we refer the readers to [24] for an overview.

3.1.2 Layer potentials

Given a target point ξ ∈ C, and a smooth simple arc Γ ⊂ C with endpoints z1 and z2,
the evaluation of the layer potentials∫

Γ
log(z − ξ)F (z) dz and

∫
Γ

F (z)

z − ξ
dz, (50)

is of great importance in the integral equation method for the numerical solution of
partial differential equations [25]. Without loss of generality, we assume that z1 = −1 and
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z2 = 1. When the target ξ is close to Γ, the integrands of (50) become nearly singular
and, as a result, standard quadrature rules cannot be used to compute the integrals
efficiently. In [20, 18], the authors observe that, when the function F is a monomial, the
integrals (50) satisfy the following recurrence relations:∫

Γ

1

z − ξ
dz = log(1− ξ)− log(−1− ξ) + 2πiNξ, (51a)∫

Γ

zk+1

z − ξ
dz = ξ

∫
Γ

zk

z − ξ
dz +

1 + (−1)k

k + 1
, (51b)∫

Γ
log(z − ξ)zk dz =

1

k + 1

(
log(1− ξ) + (−1)k log(−1− ξ)−

∫
Γ

zk+1

z − ξ
dz
)
, (51c)

for all k ≥ 0, where Nξ ∈ Z is a winding number determined by the position of ξ relative
to Γ. Moreover, these recurrence relations are stable when ξ is close to Γ. Consequently,
the layer potentials (50) can be efficiently evaluated by interpolating F in the monomial
basis. We refer the readers to Section 2.2.1 in [2] for a comprehensive overview of this
method. It is worth noting that other types of layer potentials can be computed using a
similar approach, as discussed in [19, 28].

3.1.3 Hadamard finite-part integrals

Integrals of the form∫ b

a
(x− a)ν logm(x− a)G(x) dx, (52)

where G : [a, b] → C is smooth, ν ∈ R, and m ≥ 0 is an integer, appear in numerous
applications. By a change of variables, the integral (52) can be written as a combination
of integrals of the form∫ 1

0
xν logm(x)F (x) dx, (53)

where F : [0, 1]→ C is smooth. When ν ≤ −1, this integral is divergent, in which case
we can consider only its “finite part” (see, for example, [13]). Let ε > 0, and write∫ 1

ε
xν logm(x)F (x) dx = F0(ε) + F1(ε), (54)

where F0(ε) remains bounded as ε→ 0, and

F1(ε) = a1Ψ1(ε) + a2Ψ2(ε) + · · ·+ anΨn(ε) (55)

is a combination of given functions Ψ1,Ψ2, . . . ,Ψn which become infinite as ε → 0.
Discarding the “infinite part” F1(ε), we define the Hadamard finite part of (53) by

f.p.

∫ 1

0
xν logm(x)F (x) dx = lim

ε→0
F0(ε). (56)

It is possible to show that the finite part of (53) is equal to its meromorphic continuation
in ν to the region {ν ∈ C : ν 6= −1,−2, . . . }.
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When F (x) is a monomial, we can evaluate the finite part explicitly using the formula

f.p.

∫ 1

0
xν logm(x) · xk dx =

(−1)mm!

(ν + k + 1)m+1
. (57)

Therefore, the finite part integral (53) can be accurately and efficiently evaluated for all
ν /∈ {−1,−2, . . .}, once F (x) is approximated by monomials.

3.2 Root finding

Given a smooth simple arc Γ ⊂ C and a function F : Γ→ C, one method for computing
the roots of F over Γ is to first approximate it by a polynomial PN (z) =

∑N
j=0 ajz

j to
high accuracy, and then to compute the roots of PN by calculating the eigenvalues of the
companion matrix

C(PN ) :=


0 0 . . . 0 − a0

aN
1 0 . . . 0 − a1

aN
0 1 . . . 0 − a2

aN
...

...
. . .

...
...

0 0 . . . 1 −aN−1

aN

 . (58)

Recently, a backward stable algorithm that computes the eigenvalues of C(PN ) in O(N2)
operations with O(N) storage has been proposed in [5]. This algorithm is backward stable
in the sense that the computed roots are the exact roots of a perturbed polynomial P̂N (z) =∑N

j=0(aj + δaj)z
j , so that the backward error satisfies ‖δa(N)‖2 . u‖a(N)‖2, where u

denotes machine epsilon, δa(N) := (δa0, δa1, . . . , δaN )T and a(N) := (a0, a1, . . . , aN )T . It
follows that

‖PN − P̂N‖L∞(Γ) ≤ u‖δa
(N)‖1 . u

√
N + 1‖a(N)‖2. (59)

When ‖a(N)‖2 ≈ ‖PN‖L∞(Γ), the computed roots are backward stable in the polyno-
mial PN . This condition, however, does not hold for all polynomials PN . Furthermore,
the calculation of the coefficients a(N) from the function F , which involves the solution
of a Vandermonde system of equations, is highly ill-conditioned.

In this paper, we show that, when F is sufficiently smooth, it is possible to compute the
coefficients of an interpolating polynomial PN (z) =

∑N
j=0 ajz

j , with ‖a(N)‖2 ≈ ‖F‖L∞(Γ),
which approximates F uniformly to high accuracy, even when N is moderately large.
From this, we see that a backward stable root finder can be constructed by combining
the piecewise polynomial approximation procedure described in Section 2.2 with the
algorithm presented in [5],

Remark 3.2. We note that, in the case when Γ is an interval, the Chebyshev polynomial
basis is more advantageous than the monomial basis for interpolation in the context of
root finding, since the relationship between the values of a polynomial and its Chebyshev
coefficients is stable, and there exist backward stable algorithms which likewise compute
the roots of an Nth degree polynomial in the Chebyshev polynomial basis in O(N2)
operations with O(N) storage [29].
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4 Discussion

Since the invention of digital computers, most research on the topic of polynomial
interpolation in the monomial basis focuses on showing that it is a bad idea. The
condition number of Vandermonde matrices has been studied extensively in recent
decades (see [15] for a literature review), and it is known that its growth rate is at least
exponential, unless the collocation nodes are distributed uniformly on the unit circle
centered at the origin [27]. As a result, the computed monomial coefficients are generally
highly inaccurate when the dimensionality of the Vandermonde matrix is not small. For
this reason, other more well-conditioned bases are often used for polynomial interpolation
[32, 11]. However, the fact that the monomial coefficients are computed inaccurately does
not imply that polynomial interpolation in the monomial basis is unstable, since it is the
backward error ‖V â− f‖2 of the numerical solution â to the Vandermonde system V a = f
that determines the accuracy of the approximation, and ‖V â− f‖2 can be small even
when the condition number κ(V ) is large (similar situations also occur in the method
of fundamental solutions [6, 31] and in frame approximations [3, 4]). It has long been
observed that, as a result, polynomial interpolation in the monomial basis produces highly
accurate approximations for sufficiently smooth functions (see, for example, [17, 20]), and
many interesting applications have appeared, for example, [21, 28, 1, 26]. Yet, the general
attitude towards it has remained skeptical, in part because a complete theory has been
unavailable until now. We show in this paper that, so long as κ(V ) . 1

u and a backward
stable linear system solver is used, the approximation error of the computed monomial
expansion is bounded by approximately the sum of the exact polynomial interpolation
error and an extra error term u‖a‖2. Our key observation is that this extra error term
generally does not cause the monomial basis to be inferior to a well-conditioned basis for
interpolation, given that the order is no larger than the maximum order allowed by the
constraint κ(V ) . 1

u . Since this maximum order is not small in practice, we find that the
monomial basis is a useful basis for interpolation, especially when it is used to construct
a piecewise polynomial approximation. Besides showing that the monomial basis can be
used stably, we present a number of applications where the use of a monomial basis for
interpolation offers a substantial advantage over other bases.

While not discussed in this paper, our theory can be easily generalized to higher
dimensions if an analogue of Lemma 2.4 is available. We conjecture that such an analogue
exists, as we observe that, similar to the univariate case, the monomial basis is generally as
good as a well-conditioned polynomial basis for multivariate interpolation, provided that
the order is below a certain threshold analogous to the one described in the univariate
case. Our recent work on Newtonian potential evaluation [30] relies heavily on this
observation, where the monomial basis is used for the approximation of the anti-Laplacian
of a 2-D function.
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