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A Collateralized Debt Obligation (CDO) is a credit derivative that creates fixed in-

come securities, which are known as tranches. A CDO is called a synthetic CDO if the

risky assets in the underlying pool are credit default swaps. An essential part of the

valuation of a synthetic CDO tranche is how to estimate accurately and efficiently the

expected value of the tranche loss function. It is known that the expected value of a func-

tion of one random variable is completely determined by the distribution of the random

variable and the function itself. A standard approach to estimate the expected value

of a function of one random variable is to estimate the distribution of the underlying

random variable, the pool loss in our case, and then to evaluate the expected value of

the given function, the tranche loss function for our problem. Following this approach,

we introduce three methods for estimating the distribution of the pool loss: a stable

recursive method for computing the distribution of the pool loss exactly, an improved

compound Poisson approximation method and a normal power approximation method

for approximating the distribution of the pool loss.

We also develop a new method that focuses on the tranche loss function directly. The

tranche loss function is expressed simply in terms of two bases functions. Each of the two

bases functions is a transformation of the hockey stick function h(x), where h(x) = 1− x

if 0 ≤ x < 1 and 0 if x ≥ 1. By approximating the hockey stick function by a sum

of exponentials, the tranche loss function is approximated by a sum of exponentials.
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The main advantage of this method is that the distribution of the pool loss need not be

estimated. A crucial part of this new method is the determination of the coefficients of an

exponential approximation to the hockey stick function. We discuss both the numerical

method for computing the exponential approximation to the hockey stick function as well

as the theoretical properties of the approximation.

Performance comparisons of the four new methods developed in this thesis and other

standard methods for synthetic CDO valuation are presented.

iii



Acknowledgements

Although many people have helped in the successful completion of this thesis, none has

done so more directly than my supervisors, Professor Ken Jackson and Professor Alex

Kreinin. Special thanks to you for your encouragement, support and patient guidance! I

am grateful for having had the opportunity to benefit from your knowledge and intuition

in facing challenging numerical problems. I have gained from you not only a better and

deeper understanding of computational finance, but, most importantly, an eagerness to

continue to study. It has been an honor to work with you!

Thanks to the members of my thesis committee, Professors Wayne Enright, Sheldon

Lin, and Marcel Rindisbacher, for reading my thesis proposal and draft thesis, and pro-

viding insightful comments and suggestions for improvements. I have benefited greatly

from your advice. Thanks also to Professor Christina Christara for very helpful dis-

cussions on theoretical properties of the exponential approximation to the hockey stick

function. My collaborations with Dr. Ian Iscoe have been very rewarding and thoroughly

enjoyable. Thanks Ian for your invaluable help.

Special thanks to Professor Tom Hurd for agreeing to be the external examiner for

my final oral examination and Professor Tom Fairgrieve for volunteering to be a member

of my final oral committee.

Thanks to Professor Chengxian Xu for his encouragement and help since 1991; to Dr.

Alexander Tchernitser for his encouragement and help over the past six years; to Dr.

Kit-Sun Ng for providing generous help in many ways since I arrived at the University of

Toronto; to Jingrui Zhang, Wanhe Zhang and Xuping Zhang for fruitful discussions on

academic research.

I would like to acknowledge the Natural Science and Engineering Research Council

(NSERC) of Canada, the Ontario Graduate Scholarship Program (OGS), the School of

Graduate Studies and the Department of Computer Science at the University of Toronto

for their generous financial assistance. Without their support this research would not have

iv



been possible. I am grateful to Professor Ken Jackson and the Department of Computer

Science at the University of Toronto for providing me the opportunity to pursue graduate

studies in Canada.

My parents have given me their unquestioning support, encouragement and love.

Their confidence in my ability to succeed has been a tremendous source of strength.

Thanks Mom and Dad! I would like to thank my daughter Zhongshu and my son Zhongru.

They are another source of strength. Special thanks to my wife, Bin, for her endless

support and love.

v



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 A synthetic CDO example . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Valuation of a synthetic CDO tranche . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Valuation equation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 One-factor model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Brief review of known methods . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Loss distribution evaluation 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Recursive method for loss distribution evaluation . . . . . . . . . . . . . 15

2.2.1 Loss distribution for a homogeneous pool . . . . . . . . . . . . . . 16

2.2.2 Loss distribution for an inhomogeneous pool . . . . . . . . . . . . 19

2.2.3 Generalization to multiple states . . . . . . . . . . . . . . . . . . 20

2.3 Approximation methods for loss distribution evaluation . . . . . . . . . . 22

2.3.1 Compound Poisson approximations . . . . . . . . . . . . . . . . . 24

2.3.2 Normal power approximation . . . . . . . . . . . . . . . . . . . . 26

2.4 Numerical Results I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Two points about the implementations . . . . . . . . . . . . . . . 28

vi



2.4.2 Test problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusions I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 A new method for approximating the expected value of the tranche loss

function 35

3.1 Approximation of the expected value of the tranche loss function . . . . . 35

3.2 Application to synthetic CDO valuation . . . . . . . . . . . . . . . . . . 40

3.3 Numerical results II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Conclusions II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Approximation of the hockey stick function 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Beylkin and Monzón’s method and its application to the HS function . . 50

4.2.1 Beylkin and Monzón’s method . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Application to the HS function . . . . . . . . . . . . . . . . . . . 53

4.3 Properties of the approximation . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Numerical results III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Conclusions and discussion 66

Bibliography 67

vii



List of Tables

2.1 CPU times (in seconds) for the generalized recursive method and the FFT

based convolution method . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Selection of notional values of K-reference-entity pools . . . . . . . . . . 30

2.3 Risk-neutral cumulative default probabilities . . . . . . . . . . . . . . . . 30

2.4 Accuracy comparison between the exact and the approximate methods . 32

2.5 The CPU times for each of HW, ASB, CPA1, CPA2 and NP divided by

that of JKM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Coefficients ωn and γn for a 25-term exponential approximation of h(x) . 38

3.2 Accuracy comparison between the exact JKM method and the exponential-

approximation method using 25 and 400 terms . . . . . . . . . . . . . . . 42

3.3 Accuracy comparison of the exact method, the saddlepoint approximation

method SPA and the exponential-approximation method using 100 terms 43

3.4 CPU time in seconds used by the JKM method to evaluate the first and

the first four tranches of the test pools . . . . . . . . . . . . . . . . . . . 46

3.5 CPU time in seconds used by the SPA method and the exponential-

approximation method with different numbers of terms to evaluate the

first and the first four tranches of the test pools . . . . . . . . . . . . . . 47

viii



List of Figures

1.1 A synthetic CDO example . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Comparison of computational speed between the recursive and the FFT

based convolution methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 The graphs from top to bottom are the plots of the relative errors of

the tranche spreads computed by our new method based on 25-, 50-, and

100-term exponential approximations compared to the exact spreads com-

puted by the JKM method for the tranches [0%, 3%], [3%, 4%], [4%, 6.1%],

and [6.1%, 12.1%], respectively. The solid line (black) is for the 25-term

approximation. The line marked with small asterisks (red) is for the 50-

term approximation. The line marked with small circles (blue) is for the

100-term approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The graphs from top to bottom are the plots of the relative errors of the

tranche spreads computed by our new method based on 100-, 200-, and

400-term exponential approximations compared to the exact spreads com-

puted by the JKM method for the tranches [0%, 3%], [3%, 4%], [4%, 6.1%],

and [6.1%, 12.1%], respectively. The solid line (black) is for the 100-term

approximation. The line marked with small asterisks (red) is for the 200-

term approximation. The line marked with small circles (blue) is for the

400-term approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



4.1 The parameters ωn and γn for the 25-term exponential approximation . . 63

4.2 The singular values associated with the 25-term exponential approximation 64

4.3 Left panel: 5-term exponential approximation; Right panel: 50-term ex-

ponential approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 The panels from top to bottom are the approximation errors of the 25-term

to 400-term exponential approximations to the HS function over [0, 30],

with the number of terms doubling in successive panels. . . . . . . . . . . 65

x



Chapter 1

Introduction

A Collateralized Debt Obligation (CDO) is a credit derivative1 that creates fixed in-

come securities with widely different risk characteristics from a pool of risky assets. The

coupon and principal payments of these securities are linked to the performance of the

underlying pool. These fixed income securities are known as tranches and divided into

senior, mezzanine and subordinated/equity tranches. Each of these tranches has a differ-

ent level of seniority relative to the others in the sense that a senior tranche has coupon

and principal payment priority over a mezzanine tranche, while a mezzanine tranche has

coupon and principal payment priority over an equity tranche. It is important to note

that a CDO only redistributes the total risk associated with the underlying pool of assets

to the priority ordered tranches. It neither reduces nor increases the total risk associated

with the pool.

A CDO is called a synthetic CDO if the risky assets in the underlying pool are credit

default swaps (CDS’)2. In this thesis, we focus on numerical methods for the valuation

1A derivative is a financial instrument whose price depends on, or is derived from, the price of another
asset, for example, an option on a stock. A credit derivative is a derivative whose payoff depends on the
creditworthiness of one or more entities, for example, a credit default swap.

2A credit default swap is a bilateral financial contract in which the CDS buyer, alternatively called
the protection buyer, pays a periodic fee, also known as premium, which is expressed in basis points
per annum on the notional amount and is called the CDS spread or the credit spread, in return for a
contingent payment by the CDS seller, alternatively called the protection seller, upon a credit event
(such as a default or restructuring) happening to the reference entity (such as a corporate bond). For

1



Chapter 1. Introduction 2

of synthetic CDO tranches.

1.1 Background

In this section, we give a very brief review of CDO markets. Besides synthetic CDOs,

there are other types of CDOs. Depending on the nature of the risky assets in the

underlying pool, a CDO may be called a collateralized loan obligation or a collateralized

bond obligation if it holds only loans or bonds, respectively. CDOs can also be categorized

based on the motivation of the issuer of a CDO. If the motivation of the issuer is to earn

the difference between the average yield of the collateral assets and the payments made

to the various tranches of the CDO, then the transaction is called an arbitrage CDO. If

the motivation of the issuer is to remove debt instruments from its balance sheet, then

the transaction is called a balance sheet CDO.

A CDO can be structured as either a cash flow or a synthetic transaction, or a hybrid

of both. In a cash flow transaction, the CDO is backed by a pool of cash assets that are

truly owned by the CDO sponsor. A synthetic CDO makes use of CDS’ to transfer the

credit risk of a pool of reference entities to tranche investors. The main difference between

a cash flow CDO and a synthetic CDO is that in the latter no transfer of securities takes

place. Cash flow CDOs dominated the CDO market in the early days, while synthetic

CDOs account for a large portion of the overall CDO market now, partially due to the

high liquidity of the CDS market and the appearance of the standard credit indexes, such

as the Dow Jones CDX for North America and emerging markets and the Dow Jones

iTraxx for Europe and Asia.

CDOs, which first appeared in the late 1980s, are considered the most important

innovation in the structured finance3 market in the past two decades. According to

more details concerning CDS, see, for example, [29].
3Structured finance is a type of financing in which the quality of the debt is assumed to be based

on a direct guarantee from a creditworthy entity or on the credit quality of the debtor’s assets, with or
without credit enhancement, rather than on the financial strength of the debtor itself [51].
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a report published by Celent [46], a research and consulting firm, the CDO market has

experienced an average annual growth rate of 150% since 1998. Data released by the Bond

Market Association shows that the gross global CDO issuance totalled US$171 billion

in the first two quarters of 2006 [54]. It was estimated by Celent that the overall size

of the CDO market in terms of outstanding contracts on a notional amount basis would

grow to nearly US$2 trillion by the end of 2006. The synthetic CDO market has grown

rapidly since the appearance of JP Morgan’s Bistro deal [43], the first synthetic CDO, in

December 1997. A survey conducted by Fitch Ratings revealed that the synthetic CDO

market grew by 234% in 2004 to US$1.1 trillion in terms of outstanding contracts on a

notional amount basis [18].

A good introduction to CDOs is The ABC of CDO by Moore [43]. More detailed dis-

cussion of CDOs can be found in the books by Banks [4], Culp [12], Deacon [15], Fabozzi

and Choudhry [17], Goodmand and Fabozzi [23], and Tavakoli [52], the product guides by

the Bank of America [6], JP Morgan [41], Lehman Brothers [44], Merrill Lynch [19], and

Wachovia Securities [10], and research papers available at http://www.defaultrisk.com.

1.2 A synthetic CDO example

The structure of a typical synthetic CDO can be explained through the following example,

which is illustrated in Figure 1.1. This synthetic CDO is based on a pool of 125 CDS’. The

notional value of each CDS is US$8 million. The total notional value of the underlying

pool is US$1 billion. The CDO has four priority ordered tranches: (i) an equity tranche

with an initial notional value of US$30 million and a credit spread of 2000 basis points

(bps) per annum; (ii) a mezzanine tranche with an initial notional value of US$50 million

and a credit spread of 800 bps per annum; (iii) a senior tranche with an initial notional

value of US$120 million and a credit spread of 100 bps per annum; and (iv) a super

senior tranche with an initial notional value of US$800 million and a credit spread of 20



Chapter 1. Introduction 4

Super

Senior

Senior

Mezzanine

Equity

Premium

Credit
Protection

  CDS

Premium

Contingent 
Payment

A Portfolio of 

125 CDS'   

 CDO

Issuer

Figure 1.1: A synthetic CDO example

bps per annum. The equity tranche is the riskiest one; the mezzanine tranche bears a

medium risk; the senior tranche is less risky and the super senior tranche has the lowest

risk. The maturity of the CDO, thus the maturity of each tranche, is five years from now

and the premiums are paid quarterly.

During the life of the CDO, each tranche may receive premiums quarterly from the

CDO issuer. The premium that a tranche investor receives for a specified premium

payment period is proportional to the remaining notional value of the specified tranche

at the end of the premium payment period. Let us consider one scenario. Suppose there

is no loss in the first quarter of the CDO life. Then the equity tranche investor receives

30 ∗ 20% ∗ 0.25 =US$1.5 million from the CDO issuer; the mezzanine tranche investor

receives 50 ∗ 8% ∗ 0.25 =US$1 million, and so on. Suppose further that, in the second

quarter, the underlying pool suffers a US$6 million loss. Then the equity tranche investor

absorbs this US$6 million loss. The premium that the equity tranche investor receives

for this period is (30 − 6) ∗ 20% ∗ 0.25 =US$1.2 million. In total, the equity tranche

investor pays the CDO issuer US$(6-1.2)=US$4.8 million. The notional value of the

equity tranche for the next premium payment period is reduced to US$(30-6)=US$24
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million. The mezzanine tranche investor still receives 50 ∗ 8% ∗ 0.25 =US$1 million from

the CDO issuer, and so on. If the equity tranche’s notional value has been reduced to

zero before the maturity of the CDO, the mezzanine tranche investor would then be the

next one to suffer losses. The pool would need to suffer a loss of US$200 million before

the super senior tranche investor would suffer any loss.

1.3 Valuation of a synthetic CDO tranche

1.3.1 Valuation equation

We consider the valuation of a specified synthetic CDO tranche. Let PVD be the present

value of the expected loss of the tranche and PVP the present value of the expected pre-

mium that the tranche investor may receive over the life of the contract. Mathematically,

they are defined as

PVD = E

�Z T

0
D(t)dLt

�
, (1.1)

PVP = E

�Z T

0
D(t)dPt

�
, (1.2)

where D(t) is the risk-free discount factor4, Lt and Pt are the cumulative tranche loss

and cumulative tranche premium at time t, respectively, E denotes the expected value

calculated under a risk-neutral measure5, and T is the maturity of the contract. We

make the standard assumption of independence between D(t) and Lt.

A fair credit spread for a tranche is a constant credit spread that makes PVD = PVP .

If a credit spread of a tranche is known, then the value of the tranche to the tranche

investor, protection seller, is PVP − PVD.

4A discount factor, D(t), is a number by which a future cash flow to be received at time t must be
multiplied by in order to obtain the present value. For an annualized continuously compounded discount
rate r, D(t) = exp(−rt).

5In mathematical finance, a risk-neutral measure is a probability measure in which today’s fair, i.e.,
arbitrage-free, price of a derivative is equal to the expected value (under the measure) of the future
payoff of the derivative discounted at the risk-free rate.
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Let 0 = t0 < t1 < t2 < · · · < tn = T be the set of premium dates, where T is the

maturity of the tranche. Then PVD and PVP can be approximated by

PVD ≈ E

"
nX

i=1

(Li − Li−1)D(ti)

#
, (1.3)

PVP ≈ E

"
nX

i=1

s(S − Li)(ti − ti−1)D(ti)

#
, (1.4)

respectively, where Li is the cumulative tranche loss at time ti, s is the constant fair credit

spread of the tranche, S is the initial notional value (also known as size) of the tranche.

These discrete formulas are widely used in practice and give very good approximations

to the continuous ones (1.1) and (1.2), respectively.

Noting that D(ti) and Li are independent, it follows from (1.3) and (1.4) that the

valuation of a tranche is reduced to the estimation of E [Li] , i = 1, 2, . . . , n. In the

sequel, we use di to denote the expected value of the risk-free discount factor D(ti) in a

risk-neutral measure. Then the fair credit spread s can be estimated by

s ≈
Pn

i=1 E [Li − Li−1] diPn
i=1 E [S − Li] (ti − ti−1)di

, (1.5)

where L0 = 0, due to the natural assumption that there is no default at t0. The value of

the tranche to the tranche investor is approximately

s
nX

i=1

E [S − Li] (ti − ti−1)di −
nX

i=1

E [Li − Li−1] di. (1.6)

1.3.2 One-factor model

In this section we describe the one-factor model—the model used to estimate E [Li].

Let K be the number of CDS’ in the underlying pool. Accordingly, there are K

reference entities associated with the K CDS’. Let Nk and Rk be the notional value and

the recovery rate6 of the notional value of the reference entity k, respectively. Define

6The recovery rate of a risky asset, for example, a corporate bond, is the fraction of the exposure, for
example, the face value of the corporate bond, that may be recovered through bankruptcy proceedings
or some other form of settlement in the event the issuer defaults.
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the loss-given-default (LGD) of reference entity k as LGDk = Nk(1 − Rk). Let τk be

the default time and πk(t) = P (τk ≤ t) the risk-neutral default probability7 of reference

entity k, respectively, where τk and t take discrete values from {t1, t2, . . . , tn}.

Let ℓ and u be the attachment and the detachment points of the specified tranche,

respectively. The attachment point of a tranche is the threshold that determines whether

some of the pool losses shall be absorbed by this tranche: if the pool loss is less than the

attachment point of the tranche, then the tranche does not absorb any loss; otherwise it

absorbs some of the losses. The detachment point is the threshold that determines when

the tranche will be wiped out: if the pool loss is larger than the detachment point of the

tranche, then it is wiped out; otherwise, its remaining notional value is larger than zero.

The size of a tranche, S = u − ℓ, determines the maximum loss that the tranche can

absorb. In the previous synthetic CDO example, the attachment point, the detachment

point and the size of the mezzanine tranche are US$30 million, US$80 million, and US$50

million, respectively. As percentages of the total notional value of the underlying pool,

they are 3%, 8%, and 5%, respectively. In the remainder of this thesis, the attachment

point, the detachment point and the size of a tranche are quoted as percentages of the

total notional value of the underlying pool.

Let L P
i be the cumulative loss of the underlying pool at time ti:

L
P
i =

KX
k=1

LGDk1{τk≤ti},

where 1{τk≤ti} = 1 if the k-th reference entity defaults on or before ti, 1{τk≤ti} = 0,

otherwise. Then the cumulative tranche loss at time ti is

Li = f(L P
i ; ℓ, u) = min

�
S,max

�
L

P
i − ℓ, 0

��
,

where S = u − ℓ. In this thesis, the function f is called the tranche loss function. This

function is also associated with a special insurance policy with ordinary deductible ℓ and

7These probabilities are taken as input to a synthetic CDO tranche valuation model. They can be
estimated, for example, by bootstrapping [56].
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policy limit S in actuarial science [5], [38].

Let Yk be the creditworthiness index of reference entity k and be defined by

Yk = βkX + σkεk, (1.7)

where X is interpreted as a common risk factor, εk as an idiosyncratic risk factor, βk

and σk are constants satisfying β2
k + σ2

k = 1. The common risk factor X and the idiosyn-

cratic risk factors εk are assumed to be mutually independent. The risk-neutral default

probability and the creditworthiness index are related by

πk(t) = P (τk ≤ t) = P (Yk ≤ Hk(t)) , (1.8)

where Hk(t) is a threshold value determining whether reference entity k is in default or

not at time t: reference entity k is in default if Yk ≤ Hk(t); not in default, otherwise.

The correlation structure of default events is captured by the common risk factor X. If

we further assume, as we do in this thesis, that X and εk follow independent standard

normal distributions, then Yk also follows the standard normal distribution and from

(1.8) we have Hk(t) = Φ−1 (πk(t)), where Φ is the cumulative distribution function of

the standard normal distribution. Furthermore, the correlation between two different

creditworthiness indexes Yi and Yj is βiβj.

The conditional risk-neutral default probability of reference entity k is

πk(t;x) = P (Yk ≤ Hk(t)|X = x) . (1.9)

Thus from (1.7) and (1.9) we have

πk(t;x) = Φ

�
Hk(t) − βkx

σk

�
. (1.10)

In this conditional independence framework, we have

E [Li] =
Z ∞

−∞
Ex [Li] dΦ(x), (1.11)
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where Ex [Li] = Ex

�
f(L P

i ; ℓ, u)
�
is the expected value of Li conditional on X = x, L P

i =PK
k=1 LGDk1{Yk≤Hk(ti)} noting that 1{τk≤ti} = 1{Yk≤Hk(ti)}, and the indicator functions

1{Yk≤Hk(ti)} are mutually independent conditional on X = x.

The model just described is known as the one-factor model8. It was first introduced

by Vasicek [57] to estimate the loan loss distribution and then generalized to portfolio

derivative valuation by Li [40], Gordy and Jones [24], Hull and White [30], Iscoe, Kreinin

and Rosen [34], Laurent and Gregory [39], and Schönbucher [50], to name just a few.

In this thesis we use this model to illustrate our numerical methods. It is important to

emphasize that all four numerical methods developed in this thesis are directly applicable

to other more general models provided that the model belongs to the conditional inde-

pendence framework, such as the double t–copula model proposed by Hull and White

[30]. For a comparative analysis of different models, see the paper by Burtschell, Gregory

and Laurent [9].

Generally, the integral in (1.11) needs to be evaluated numerically using an appropri-

ate quadrature rule9:

E [Li] ≈
MX

m=1

wmExm
[Li] , (1.12)

where xm and wm are the abscissas and weights of the chosen quadrature rule. One

possible choice is Gaussian quadrature. The abscissas and weights of Gaussian quadrature

rules for small values of M can be found in Chapter 25 of [1], while parameters for large

values of M can be generated using well developed routines, such as those in [47].

Noting that Li = f(L P
i ; ℓ, u), we see from (1.12) that the fundamental numerical

problem in synthetic CDO tranche valuation is how to evaluate Exm

�
f(L P

i ; ℓ, u)
�

for

a fixed abscissa xm at a fixed time ti for the fixed attachment and detachment points

ℓ and u. In the remainder of this thesis, we focus on computing this expected value,

8This one-factor model is also known as a Gaussian copula model [30] [39].
9The improper integral in (1.11) can be efficiently approximated by partitioning the infinite interval

into a small number of subintervals and then applying special quadrature rules to each of the subintervals.
In this thesis, we do not discuss those details. Instead, we use a special 30–point quadrature rule
mentioned in [14].
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which is denoted as E
�
f(L P ; ℓ, u)

�
, dropping the abscissa xm and the time index i and

writing L P =
PK

k=1 LGDk1{k}, where 1{k} = 1{Yk≤Hk(ti)}. Let Qk be the probability that

1{k} = 1. Then Sk = 1 − Qk is the probability that 1{k} = 0. We emphasize again that

the indicator functions 1{k} are mutually independent conditional on X.

1.4 Brief review of known methods

The Monte Carlo method plays an important role in computational finance. Though it

is also used in synthetic CDO tranche valuation, it is generally used only as a benchmark

due to its inefficiency, despite its flexibility [33].

As was emphasized in Section 1.3.2, the fundamental numerical problem in synthetic

CDO tranche valuation is how to evaluate E
�
f(L P ; ℓ, u)

�
, where L P is a sum of inde-

pendent nonnegative random variables. The expected value of a function of a random

variable is completely determined by two components: the distribution of the underlying

random variable and the function itself. A standard approach to estimate the expected

value of a function of a random variable is to estimate the distribution of the underlying

random variable, L P in our case, and then to evaluate the expected value of the given

function, the piecewise linear tranche loss function f(L P ; ℓ, u) for our problem, possibly

using its special properties.

Almost all methods for synthetic CDO tranche valuation have focused on the first

component: the distribution of L P , the pool’s loss distribution. These methods can be

divided into two classes. The first class computes a pool’s loss distribution exactly. To do

this we assume that a positive loss unit is given such that each LGDk is an integer multiple

of the given unit. Without loss of generality, we still use LGDk to denote the loss-given-

default of reference entity k measured in the given loss unit. In this case, we say the

LGDs of all reference entities sit on a common lattice. If all LGDs of the reference entities

in underlying pool are the same, then we call this pool a homogeneous pool; otherwise
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we call it an inhomogeneous pool. Among these exact methods are the ASB method, a

recursive method, proposed by Andersen, Sidenius and Basu [2], the LG method, a fast

Fourier transformation (FFT) based convolution method, by Laurent and Gregory [39],

and the HW method, another recursive method, by Hull and White [30]. Note that both

the ASB and the LG methods are directly applicable to inhomogeneous pools. Although

the HW method is directly applicable to homogeneous pools only, it can be applied

indirectly to inhomogeneous pools by noting that in practice an inhomogeneous pool can

usually be partitioned into a few homogeneous subpools to which the HW method can be

applied. Then the results for the homogeneous subpools can be combined to price the full

inhomogeneous pool. Experiments show that the ASB method is generally faster than

the LG method, while the HW method is faster than the ASB method for homogeneous

or low-dispersion inhomogeneous pools (i.e., pools having a few homogeneous subpools

only). However, a naive implementation of the HW method can suffer from numerical

stability problems due to overflow and cancellation in floating-point operations.

The second class of methods evaluates a pool’s loss distribution approximately. De

Prisco, Iscoe and Kreinin’s compound Poisson approximation method [14], which also

requires that the LGDs sit on a common lattice, is an example of a method of this class.

It is shown by the authors that this method usually gives reasonably accurate results.

However, the error in the approximated loss distribution may result in an error in the

spread of as much as 20 basis points for an equity tranche. Therefore the accuracy of

this approximation is not always satisfactory.

Besides the exponential approximation based method developed in Chapter 3 of this

thesis, the only method that focuses on E
�
f(L P ; ℓ, u)

�
directly is the so-called saddle-

point approximation (SPA) method proposed by Antonov, Mechkov and Misirpashaev

[3] and Yang, Hurd and Zhang [59] independently. Note that

f(L P ; ℓ, u) = min
�
S,max

�
L

P − ℓ, 0
��

= max
�
L

P − ℓ, 0
�
− max

�
L

P − u, 0
�
,
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and

E
�
max

�
L

P − ∆, 0
��

=
1

2πi

Z c+i∞

c−i∞

exp (Γ(ζ) − ζ∆)

ζ2
dζ, (1.13)

where c > 0 and Γ(ζ) =
PK

k=1 ln (1 −Qk +Qk exp(LGDkζ)). In a SPA method, the

integrand exp(Γ(ζ)−ζ∆)
ζ2 is expanded at a fixed point, then the series is truncated and finally

the truncated series is integrated to give an analytic approximation to the integral (1.13).

Antonov, Mechkov and Misirpashaev expand the integrand at ζ∗AMM , the solution of

[Γ(ζ) − ζ∆]′ = 0;

while Yang, Hurd and Zhang expand the integrand at ζ∗Y HZ , the solution of

[Γ(ζ) − ζ∆ − 2 ln ζ]′ = 0.

A more complete discussion of these two methods can be found in [3] and [59].

1.5 Contributions of this thesis

For pricing and hedging of synthetic CDO tranches, accuracy is generally more impor-

tant than efficiency. While for risk management of synthetic CDO tranches, efficiency is

equally important, because a synthetic CDO tranche must be priced thousands of times

to generate a reasonable risk assessment. In this thesis we propose four efficient and accu-

rate numerical methods for estimating E
�
f(L P ; ℓ, u)

�
. The one-factor Gaussian copula

model is used throughout this thesis to illustrate these numerical methods. However,

we reemphasize that all four numerical methods developed in this thesis are directly ap-

plicable to other more general models, such as the double t–copula model proposed by

Hull and White [30], provided that the model belongs to the conditional independence

framework.

In Chapter 2, which is based largely on the results in [36], we first propose a stable

recursive method for computing the pool’s loss distribution exactly. Then we introduce
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an improved compound Poisson approximation to approximate the pool’s loss distrib-

ution. Both methods are based on the assumption that the LGDs sit on a common

lattice. Finally, we introduce a normal power approximation method that has been used

in actuarial science. Numerical results based on these three and some previously known

methods are given.

In Chapter 3, which is based largely on the results in [32], we express the tranche loss

function f as a simple expression involving two bases functions. Each of the two bases

functions is a transformation of the hockey stick function h(x), where h(x) = 1 − x if

0 ≤ x < 1 and 0 if x ≥ 1. By approximating the hockey stick function h(x) by a sum

of exponentials, the tranche loss function is approximated by a sum of exponentials. In

this way, the estimation of the expected value of the tranche loss function is reduced to

the estimation of a series of expected values of the individual reference entities in the

underlying pool. The main advantage of this method is that the distribution of the pool

loss need not be estimated. Numerical results based on our new method are reported.

A crucial part of this new method is the determination of the coefficients of an expo-

nential approximation to the hockey stick function. In Chapter 4, which is based largely

on the results in [31], we develop a numerical method to compute the coefficients of an

exponential approximation to the hockey stick function. The theoretical properties of

the exponential approximation to the hockey stick function are studied.

The thesis ends in Chapter 5 with conclusions and discussions.



Chapter 2

Loss distribution evaluation

In this chapter, which is based largely on the results in [36], we consider numerical meth-

ods for evaluating the distribution of L P conditional on a given abscissa xm at a fixed

time ti. In Section 2.1 we present an example to show that the HW method is not

stable. In Sections 2.2 and 2.3 we propose three numerical methods for evaluating the

pool’s loss distribution. We first propose a stable recursive method for computing the

exact pool loss distribution. Then introduce an improved compound Poisson approxi-

mation to approximate the pool loss distribution. Finally, we introduce a normal power

approximation method that has been used in actuarial science to approximate the pool

loss distribution. Numerical results based on these three and some known methods for

synthetic CDO tranche valuation are given in Section 2.4.

2.1 Introduction

In this section we present an example to show that the HW method is not stable, thus is

not reliable for synthetic CDO tranche valuation. Recall that L P =
PK

k=1 LGDk1{k}, and

1{k} are mutually independent conditional on a given value xm of X. Let wk = Qk

Sk
. For

a homogeneous pool, the HW method computes the distribution of L P in the following

way.

14
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The probability of exactly l defaults in the underlying pool is

pK,l = pK,0

X
wı(1)wı(2) · · ·wı(l),

where pK,0 =
QK

k=1 Sk is the probability of no default, {ı(1), ı(2), . . . , ı(l)} is a subset

of l different integers chosen from {1, 2, . . . , K} and the summation is taken over the

K!
l!(K−l)!

different ways in which the subset can be chosen. The summation is calculated

using the so-called Newton-Girard recursive formulas, which can be found, for example,

at http://mathworld.wolfram.com/Newton-GirardFormulas.html. However, this ap-

proach may cause numerical problems. More specifically, pK,0 =
QK

k=1 Sk may be too small

and
QK

k=1wk may be too large to be represented correctly in a floating-point number sys-

tem. For example, for K = 100 and Sk = 1.0e-5 for all k, we have
QK

k=1 Sk = 1.0e-500

and
QK

k=1wk ≈ 1.0e500. In a floating-point number system, the first number usually

underflows to zero and the second one overflows. Thus numerical problems arise.

2.2 Recursive method for loss distribution evalua-

tion

In this section, we propose a stable recursive method for computing the exact pool loss

distribution. The proposed method is stable from the numerical point of view and is at

least as fast as the HW method. Note that, in practice, the loss-given-defaults of the

referred entities are not necessarily the same; thus the underlying pool is not necessarily

a homogeneous pool. However, the reference entities in the pool can usually be divided

into a small number of sub-pools for which all reference entities in a sub-pool have the

same loss-given-default. Therefore, an important basic problem is how to evaluate the

loss distribution for a homogeneous pool.
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2.2.1 Loss distribution for a homogeneous pool

For a homogeneous pool the problem reduces to computing the distribution of the random

variable 1{L P } =
PK

k=1 1{k}, noting that without loss of generality we can assume that

the common LGDk = 1. Assume that the loss distribution of a homogeneous sub-pool

of k names, 1 ≤ k < K, is already known. Let pk = (pk,k, pk,k−1, . . . , pk,0)
T , where

pk,j = P
�
1{L P }(k) = j

�
, and 1{L P }(k) =

Pk
i=1 1{i}. Then the loss distribution of the

pool consisting of the first k names plus the (k + 1)-st name with default probability

Qk+1 can be calculated using the recursive formula

pk+1 =

0BBBBBBBBBBBBBB�
pk+1,k+1

pk+1,k

...

pk+1,1

pk+1,0

1CCCCCCCCCCCCCCA =

�
pk 0

0 pk

��
Qk+1

Sk+1

�
. (2.1)

In this way, pK can be computed after K − 1 iterations, starting from the initial value

p1 = (p1,1, p1,0)
T = (Q1, S1)

T .

We claim that the method based on formula (2.1) is numerically stable. Let ε be

the machine epsilon (see Golub and Van Loan [22] or Heath [25] for the definition) for a

floating-point system. Assume that the input probabilities Qk are exactly representable

in the floating-point number system1. Then the floating-point approximation to Sk is

Ŝk = Sk + δkSk, where |δk| ≤ ε. Let ǫk = pk − p̂k, k = 1, 2, . . . , K, where p̂k is the loss

distribution evaluated using formula (2.1) in a floating-point number system:

p̂k+1 = fl

��
p̂k 0

0 p̂k

��
Qk+1

Ŝk+1

��
, p̂1 =

�
Q1

Ŝ1

�
. (2.2)

Proposition 1 The error vector ǫk satisfies

‖ǫk‖∞ ≤
�
1.001k−1c− 3001

�
ε, for k = 1, 2, . . . , K, (2.3)

1Note that a claim similar to Proposition 1, but somewhat more complicated, holds without this
assumption.
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where ‖ · ‖∞ is the max norm of a vector and c = 3002, provided that 4ε ≤ 0.001.

Proof Note that for any nonnegative l-vector a = (a1, a2, . . . , al)
T and nonnegative

constants c and d, which are all exactly representable in a floating-point number system,

we have 







�a 0

0 a

��
c

d

�
− fl

��
a 0

0 a

��
c

d

��








∞

≤ (2ε+ ε2)









�a 0

0 a

��
c

d

�








∞

≤ (2ε+ ε2) (c+ d) ‖a‖∞ . (2.4)

Applying (2.4) to (2.2) results in







�p̂k 0

0 p̂k

��
Qk+1

Ŝk+1

�
− p̂k+1










∞

≤ (2ε+ ε2)
�
Qk+1 + Ŝk+1

�
‖p̂k‖∞

≤ (2ε+ ε2) (1 + ε) ‖p̂k‖∞ . (2.5)

Noting that when 4ε ≤ 0.001, we have

(2ε+ ε2) (1 + ε) ≤ 2.001ε.

Thus (2.5) can be written as







�p̂k 0

0 p̂k

��
Qk+1

Ŝk+1

�
− p̂k+1










∞

≤ 2.001ε ‖p̂k‖∞ . (2.6)

On the other hand, using the triangle inequality we have







�pk 0

0 pk

��
Qk+1

Sk+1

�
−

�
p̂k 0

0 p̂k

��
Qk+1

Ŝk+1

�








∞

≤









�pk 0

0 pk

�








∞









� 0

εSk+1

�








∞

+









�pk − p̂k 0

0 pk − p̂k

�








∞









�Qk+1

Ŝk+1

�








∞

≤ ε‖pk‖∞ + (1 + ε)‖ǫk‖∞. (2.7)
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Noting that

‖p̂k‖∞ ≤ ‖pk‖∞ + ‖ǫk‖∞ ≤ 1 + ‖ǫk‖∞,

where we used ‖pk‖∞ ≤ 1, from (2.6) and (2.7) we have

‖ǫk+1‖∞ ≤ ε‖pk‖∞ + (1 + ε)‖ǫk‖∞ + 2.001ε ‖p̂k‖∞

≤ ε‖pk‖∞ + (1 + ε)‖ǫk‖∞ + 2.001ε+ 2.001ε‖ǫk‖∞

≤ (1 + 3.001ε)‖ǫk‖∞ + 3.001ε

≤ 1.001‖ǫk‖∞ + 3.001ε.

Thus we have

‖ǫk+1‖∞ ≤ 1.001‖ǫk‖∞ + 3.001ε, for k = 1, 2, . . . , K − 1. (2.8)

Noting that ‖ǫ1‖∞ ≤ ε, (2.8) implies that

‖ǫk‖∞ ≤
�
1.001k−1c− 3001

�
ε, for k = 1, 2, . . . , K,

where c = 3002. This upper bound is obtained by using the result that the solution to

the linear recurrence equation xn+1 = axn + b, where a 6= 1, is xn = b
1−a

+ anc for n ≥ 1,

where c = x1(a−1)+b
a(a−1)

.

The proof is completed.

If it is assumed that both Qk and Sk are exactly representable in the floating-point

number system, then ‖ǫ1‖∞ = 0 and the error bound (2.8) for ‖ǫk+1‖ reduces to

‖ǫk+1‖∞ ≤ 1.001‖ǫk‖∞ + 2.001ε, for k = 1, 2, . . . , K − 1. (2.9)

In this case, the relation (2.3) reduces to

‖ǫk‖∞ ≤
�
1.001kc′ − 2001

�
ε, for k = 1, 2, . . . , K, (2.10)

where c′ = 2001/1.001.

Inequalities (2.3) and (2.10) ensure that the recursive method based on formula (2.1)

is numerically stable.
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2.2.2 Loss distribution for an inhomogeneous pool

In this section we discuss how to compute the loss distribution of an inhomogeneous

pool. Suppose that an inhomogeneous pool consists of I homogeneous sub-pools with

loss-given-defaults LGD1, LGD2, . . . , LGDI for the sub-pools sitting on a common lat-

tice2 and the loss distribution for the i-th sub-pool being (pi,0, . . . , pi,di
), i = 1, 2, . . . , I,

where di is the upper bound on the number of defaults in sub-pool i, which implies that

the largest possible loss for this sub-pool is diLGDi units. To compute the loss distrib-

ution of this inhomogeneous pool, we use the following method. Suppose that the loss

distribution of a pool consisting of the first i sub-pools has been determined, denoted by

(p
(i)
0 , p

(i)
1 , . . . , p

(i)
Ai

), where p(i)
a is the probability of a units of losses in the pool that consists

of the first i sub-pools, a = 0, 1, . . . , Ai, Ai =
Pi

j=1 djLGDj. Then the loss distribution

of the bigger pool consisting of the first i sub-pools plus the (i+ 1)-st sub-pool is

p(i+1)
a =

X
l ∈ {0, . . . , Ai}

(a− l)/LGDi+1 ∈ {0, . . . , di+1}

p
(i)
l · pi+1,(a−l)/LGDi+1

for a = 0, 1, . . . , Ai+1 = Ai + di+1LGDi+1. To start the iteration, the loss distribution

(p1,0, . . . , p1,d1
) of the first sub-pool must be mapped to (p

(1)
0 , p

(1)
1 , . . . , p

(1)
d1LGD1

):

p(1)
a =

8>><>>:p1,a/LGD1
if a/LGD1 is an integer;

0 otherwise,

where a = 0, 1, . . . , A1 = d1LGD1. After I−1 iterations, the loss distribution of the pool

is computed. We call the method based on the one described in subsection 2.2.1 and the

one outlined in this subsection, JKM.

It can be shown that JKM is equivalent to ASB [2] when the underlying pool is either

2By this we mean that LGD1, LGD2, . . . , LGDI are integer multiples of some properly chosen mon-
etary unit.
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homogeneous or completely inhomogeneous3. Since JKM exploits the property that the

pool can usually be divided into a small number of homogeneous sub-pools, we expect

it to be faster than the ASB method. Performance comparisons shown in Section 2.4

support this conjecture.

2.2.3 Generalization to multiple states

In the previous section we proposed a recursive method for computing the distribution

of a sum of mutually independent random variables that follow Bernoulli distributions4.

This method can be generalized to computing the distribution of a sum of multi-value

random variables in the following way. Suppose that, for each name k, there is a random

variable 1{k;M} that takes an integer value from {0, 1, . . . ,M − 1} with probability Qk,m,

where
PM−1

m=0 Qk,m = 1, and that 1{k;M} are mutually independent. In the context of pool

loss distributions, we interpret Qk,m as the probability that entity k has a loss of m units.

Then the probability distribution of the random variable 1{L P ;M} =
PK

k=1 1{k;M} can be

computed using the recursive formula

pk+1 =

0BBBBBBBBBB�
pk+1,(M−1)(k+1)

...

pk+1,1

pk+1,0

1CCCCCCCCCCA =

0BBBBBBBBBB�
pk 0 · · · 0

0 pk
. . .

...

...
...

. . . 0

0 0 · · · pk

1CCCCCCCCCCA
0BBBBBBBBBB�
Qk+1,M−1

...

Qk+1,1

Qk+1,0

1CCCCCCCCCCA , (2.11)

where pk,j is the probability of the pool consisting of the first k names having a loss of

j units, pk = (pk,(M−1)k, . . . , pk,1, pk,0)
T and p1 = (Q1,M−1, . . . , Q1,1, Q1,0)

T . Assume that

Qk,m are exactly representable in the computer system. Let ǫk = pk−p̂k, k = 1, 2, . . . , K,

where p̂k is the distribution evaluated using formula (2.11) in a floating-point number

system. A result similar to Proposition 1 holds:

3By completely inhomogeneous we mean that LGDk 6= LGDk′ for all k and k′ ∈ {1, 2, . . . ,K} for
which k 6= k′.

4A Bernoulli distribution is a discrete probability distribution, which takes value 1 with success
probability p and value 0 with failure probability q = 1 − p.
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Proposition 2 The error associated with the recursive formula (2.11) satisfies

‖ǫk‖∞ ≤
�
1.001kc′ − (1000M + 1)

�
ε, for k = 1, 2, . . . , K, (2.12)

where ‖ · ‖∞ is the max norm of a vector and c′ = (1000M + 1)/1.001, provided that

(M + 2)ε ≤ 0.001.

Numerical results comparing the efficiency of this generalized recursive method with

the FFT based convolution method [11, Chapter 32] are presented in Table 2.1. Both

methods are coded in C++ and run on a Pentium III 700MHZ PC in the .NET en-

vironment. For the convolution, we used the convolution function c06ekc from the

NAG C library [55], which is optimized for .NET. A divide-and-conquer technique was

used to speed-up the implementation of the convolution method. The complexity of

the divide-and-conquer convolution method is O(MK log2M log2K). The complexity of

our recursive method is O(M2K2). Thus the FFT based convolution method should be

asymptotically faster than our recursive method.

The experiment was carried out for several combinations of K and M . Entries of the

form x:y in Table 2.1 represent the CPU time used by our generalized recursive method

and the FFT based convolution method, respectively, to compute the loss distribution

with the corresponding parameters K and M . For example, the entry 0.0006:0.0030 for

K = 200 and M = 2 means that for these values of K and M the recursive and the

FFT based convolution methods used 0.0006 seconds and 0.0030 seconds, respectively,

to compute the loss distribution of the pool.

From Table 2.1 we can see that the recursive method is faster than the FFT based

convolution method for practical problems, say when M ≤ 16 and K ≤ 200. However,

the recursive method is slower than the FFT based convolution method when K or

M is large, as is predicted by the complexities of the two methods. Curves in Figure

2.1 show the values of K and M for which the CPU time used by the two methods

is almost the same. When (K,M) lies in the region above the curves, the FFT based
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M

K 2 4 8 16 32

64 0.0001:0.0008 0.0004:0.0012 0.0006:0.0022 0.0026:0.0040 0.0122:0.0076

128 0.0004:0.0020 0.0008:0.0030 0.0028:0.0052 0.0112:0.0094 0.0495:0.0186

256 0.001:0.0044 0.0032:0.0064 0.011:0.0118 0.0439:0.0220 0.2077:0.0459

512 0.004:0.0101 0.0121:0.0140 0.0551:0.0271 0.2223:0.0531 0.9914:0.1092

100 0.0002:0.0014 0.0004:0.0026 0.0018:0.0046 0.0068:0.0086 0.0302:0.0170

200 0.0006:0.0030 0.002:0.0062 0.0068:0.0108 0.0268:0.0202 0.1208:0.0427

300 0.0012:0.0048 0.0042:0.0078 0.0152:0.0198 0.0635:0.0426 0.2976:0.0887

500 0.003:0.0081 0.012:0.0151 0.0511:0.0260 0.2103:0.0511 0.9424:0.1062

Table 2.1: CPU times (in seconds) for the generalized recursive method and the FFT

based convolution method

convolution method is faster than the recursive method; in other cases, the recursive

method is faster than the FFT based convolution method. The solid line in the bottom

plot is a linear fit in the log-log scale to the experimental data. The equation for the

line is log2M = −0.6869 log2K + 8.5185. For a given pair (K,M) one can decide, based

on this equation, which method to choose. For example for K = 200,M = 8, which is

represented by “o” in the two plots, we can see that the recursive method is faster.

2.3 Approximation methods for loss distribution eval-

uation

In Section 2.2 a stable recursive method was proposed. It is efficient if the underlying

pool is homogeneous or it has a low dispersion in terms of LGDs (i.e., the pool has a few

homogeneous sub-pools only). For a high dispersion pool, approximation methods are
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Figure 2.1: Comparison of computational speed between the recursive and the FFT based

convolution methods

preferable. A method of this kind is the compound Poisson approximation introduced for

synthetic CDO valuation by De Prisco, Iscoe and Kreinin [14], in which L P is approxi-

mated by a random variable that follows a compound Poisson distribution. It is shown

by the authors that this method usually gives reasonably accurate results. However, the

error in the approximated loss distribution may result in an error in the spread of as

much as 20 basis points for an equity tranche. Therefore the accuracy of this approxi-

mation is not always satisfactory. As a natural extension, we introduce in Section 2.3.1

an improved compound Poisson approximation method of Hipp [26] for better accuracy.

A random variable X is said to follow a compound Poisson distribution if its proba-

bility distribution function can be written in the form [5], [38]

µx =
∞X

r=0

exp(−λ)
λr

r!
ϕ∗r(x),
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where λ > 0 is known as a Poisson parameter, ϕ∗r(x) is the r-fold convolution of an

associated common probability distribution function ϕ(x). The characteristic function

of X is

φX(t) = exp (λ(ψ(t) − 1)) ,

where ψ(t) is the characteristic function of the distribution function associated with the

probability distribution function ϕ(x).

Note that both the recursive and the compound Poisson approximations require that

the LGDs must sit on a common lattice. A small loss unit may result in a high dispersion

pool, for which neither of these methods works well. To ameliorate this deficiency, we

introduce in Section 2.3.2 a normal power approximation method to approximate the

distribution of L P =
PK

k=1 LGDk1{k}.

2.3.1 Compound Poisson approximations

Instead of computing the distribution of L P exactly, we can find an approximation to

it through approximating its characteristic function and making use of the relationship

between the characteristic function and the distribution function. The characteristic

function, φk(t), of LGDk1{k} is

φk(t) = 1 +Qk (exp(it · LGDk) − 1) = 1 +Qk (gk(t) − 1) = exp (ln (1 +Qk(gk(t) − 1))) ,

where gk(t) = exp(it · LGDk). Note that LGDk1{k} are conditionally mutually indepen-

dent. Thus, the characteristic function, φL P (t), of L P can be written in product form

as

φL P (t) =
KY

k=1

φk(t).

When |x| is small,
PJ

j=1
(−1)j+1

j
xj gives a good approximation to ln(1 + x) even for a

small J . Thus, it is expected that

φ
(J)
k (t) = exp

�
JX

j=1

(−1)j+1

j
[Qk (gk(t) − 1)]j

�
(2.13)
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will be a good approximation to φk(t) if Qk is small. Based on this approximation, the

characteristic function φL P (t) is approximated by

φ
(J)
L P (t) =

Y
k

φ
(J)
k (t) = exp

�
KX

k=1

JX
j=1

(−1)j+1

j
[Qk(gk(t) − 1)]j

�
.

Choosing J = 1 we obtain the first order approximation to the original characteristic

function:

φL P (t) ≈ φ
(1)
L P (t) = exp

 
KX

k=1

Qk(gk(t) − 1)

!
= exp

" 
KX

m=1

Qm

! 
KX

k=1

QkPK
m=1Qm

gk(t) − 1

!#
.

Let λ1 =
PK

k=1Qk, ψ1 =
PK

k=1
Qk

λ1
gk(t), then

φ
(1)
L P (t) = exp (λ1(ψ1(t) − 1)) ,

which is the characteristic function of a compound Poisson distributed random variable

with Poisson parameter λ1 and common distribution function

ϕ1(L) =
X

LGDk=L

Qk

λ1

.

Thus, the distribution function of L P is approximated by

µL P = exp(−λ1)
∞X

r=0

λr
1

r!
ϕ∗r

1 , (2.14)

where ϕ∗r
1 is the r-fold self-convolution of ϕ1 defined by a) ϕ∗0

1 = (1, 0, 0, . . . , 0) of lengthPK
k=1 LGDk, and b) ϕ

∗(r+1)
1 = ϕ∗r

1 ∗ ϕ1. This approximation is also obtained in [14]. We

denote it by CPA1 in this thesis.

By choosing J > 1 in (2.13), we might expect to improve the approximation to φL P (t).

For J = 2, we obtain a compound Poisson approximation with Poisson parameter λ2 and

common distribution function ϕ2 defined by

λ2 =
KX

k=1

�
Qk +

Q2
k

2

�
,

ϕ2(L) =
1

λ2

24 X
LGDk=L

(Qk +Q2
k) −

1

2

X
2LGDk=L

Q2
k

35 .
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Similarly, for J = 3, the corresponding Poisson parameter λ3 and the common distri-

bution function ϕ3 are

λ3 =
KX

k=1

�
Qk +

Q2
k

2
+
Q3

k

3

�
,

ϕ3(L) =
1

λ3

24 X
LGDk=L

(Qk +Q2
k +Q3

k) −
X

2LGDk=L

�
Q2

k

2
+Q3

k

�
+

1

3

X
3LGDk=L

Q3
k

35 .
For these two approximations, the distribution function for L P is approximated sim-

ilarly to (2.14) except that λ1 and ϕ1 are replaced by λJ and ϕJ for J = 2 or J = 3,

respectively. The improved compound Poisson approximations corresponding to J = 2

and 3 are called CPA2 and CPA3, respectively, in this thesis.

Note that the compound Poisson approximation CPA1 matches the first moment of

the true distribution; CPA2 matches the first two moments of the true distribution; and

CPA3 matches the first three moments [16]. Some theoretical error bounds for these

compound Poisson approximations are given in [26] and [13]. However, either they are

(1) easy to estimate but too pessimistic or (2) too complicated to be computed. So we

do not make use of any error analysis results for the compound Poisson approximations

in this thesis.

2.3.2 Normal power approximation

In actuarial science, the payoff function f(L P ; ℓ, u) is associated with a special insurance

policy, called a stop-loss policy [5]. In this context, the reinsurer pays that part of the

total amount of claims L P which exceeds a certain amount, say ℓ, with the additional

constraint that the reinsurer’s liability is limited to an amount S = u − ℓ. A general

form of the central limit theorem [20, Theorem 4 on page 263] implies that when K, the

number of claims, becomes large, L P converges to a normal distribution. However, if K

is small or the actual distribution has a skew structure, then significant deviation from

normality appears. The goal in developing the normal power (NP) approximation is to

find a transformationX = v(Y ) to convert a normally distributed random variable Y into
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another variable X, which can be better fitted to the actual distribution, the distribution

of L P in our case. When the distribution of L P is approximated by a NP distribution,

E
�
f(L P ; ℓ, u)

�
can be expressed in terms of the cumulative distribution function Φ and

the probability density function φ of the standard normal distribution. In this thesis, we

give the basic formulas only; more details can be found in [5], [38], [53].

With the loss distribution being approximated by the NP formula, the expected value

of L = f(L P ; ℓ, u) is then

E [L] = ESL

�
L

P ; ℓ, S
�
= ESL

�
L

P ; ℓ+ S
�
− ESL

�
L

P ; ℓ
�
, (2.15)

where

ESL

�
L

P ; z
�
= (µ− z)(1 − Φ(yz)) + σ(1 + γyz/6)φ(yz) (2.16)

is the expected loss of a tranche with a zero attachment point and the loss capped by

z. The subscript SL stands for “Stop Loss”; Φ and φ are the cumulative distribution

function and the probability density function of the standard normal distribution, respec-

tively; µ, σ and γ are the mean, standard deviation and the skewness, respectively, of the

pool loss L P =
PK

k=1 LGDk1{k} (recall that 1{k} are mutually independent conditional

on X):

µ =
KX

k=1

LGDkQk,

σ =

Ì
KX

k=1

(LGDk − µ)2Qk,

γ =
KX

k=1

(LGDk − µ)3Qk/σ
3;

and

yz = ν−1
γ

�
z − µ

σ

�
,

where

ν−1
γ (f) =

8>><>>:f − g(f 2 − 1) + g2(4f 3 − 7f) ·H(f0 − f) if f < 1;�
1 + 1

4g2 + f
g

�1/2 − 1
2g

otherwise,
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with g = γ/6, f0 = −
È

7/4 and

H(x) =

8>><>>:0 if x < 0

1 otherwise

is the Heaviside function.

The NP approximation matches the first three moments of the true distribution and

also captures some other important properties of it, such as fat tails and asymmetry.

In contrast, the normal approximation [49] matches the first two moments only of the

true distribution. Thus, it is expected that the normal power approximation might

approximate the true distribution better than the normal approximation. For reasons

similar to those explained above for the compound Poisson approximation, we do not

make use of any error analysis results for the normal power approximation.

2.4 Numerical Results I

In this section we present numerical results that illustrate the accuracy and CPU time of

our new methods: the recursive method JKM, the improved compound Poisson approx-

imations CPA2 and CPA3 and the normal power approximation (NP). We also provide

similar numerical results for the other three known methods: the HW method, the ASB

method, and the compound Poisson approximation method CPA1.

2.4.1 Two points about the implementations

We should mention two points about the implementations of the proposed methods.

The first point concerns a truncation technique used for the loss distribution evaluation.

Suppose there are m tranches in a CDO. Note that, once the expected losses of the first

m− 1 tranches, starting from the equity tranche, are available, the expected loss of the
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last tranche can be evaluated by

E[loss of last tranche] =
KX

k=1

LGDkQk −
m−1X
i=1

E[loss of tranche i].

Thus in the remainder of this thesis, all test results are based on m − 1, rather than m

tranches. In particular, we use this result in the CPU time comparisons in this and the

next chapter.

The second point concerns the stopping criterion for evaluating the infinite sum (2.14).

In our implementation, the summation is stopped once the l1-norm of the difference

between the two distributions µ̄
(R)
L P and µ̄

(R+1)
L P is less than or equal to ǫ, where

µ̄
(R)
L P = exp(−λJ)

RX
r=0

λr
J

r!
ϕ∗r

J ,

for J = 1, 2, or 3. An alternative stopping criterion is based on the relative change of

the accumulated distribution functions. In this case, the summation is stopped once

‖µ̄(R+1)
L P − µ̄

(R)
L P ‖1

‖µ̄(R)
L P ‖1

≤ ǫ,

where ǫ is a specified tolerance. These two criteria are approximately equivalent, since

‖µ̄(R)
L P ‖1 ≈ ‖µL P ‖1 = 1. In our implementation we set ǫ = 10−4.

In our implementation, we used the Matlab function conv to compute the convolution

of two vectors in the sum (2.14). As an alternative, one can use Panjer’s recursive method

to evaluate it [45].

2.4.2 Test problems

The results presented below are based on a sample of 15 pools. For each pool, the

number of reference entities K is either 100, 200, or 400. The number of homogeneous

sub-pools in each pool is either 1, 2, 4, 5, or K/10, and all homogeneous sub-pools in a

given pool have an equal number of reference entities. The notional values for each pool

are summarized in Table 2.2. For example, the 200-reference-entity pool with local pool
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ID = 3 consists of four homogeneous sub-pools with the notional values of 50, 100, 150,

and 200, respectively. For convenience, we also labeled each pool with a global pool ID.

For each of the 100-reference-entity pools, the global and the local IDs coincide. For each

of the 200- and 400-reference-entity pools, its global pool ID (GID) is its local pool ID

plus 5 or 10, respectively. For example, a 200-reference-entity pool with local ID = 3 has

GID = 8.

Local Pool ID 1 2 3 4 5

Notional values 100 50, 100 50, 100, 150, 200 20, 50, 100, 150, 200 10, 20, . . . , K

Table 2.2: Selection of notional values of K-reference-entity pools

For each reference entity, the risk-neutral cumulative default probabilities are ran-

domly assigned one of two types, I or II, as defined in Table 2.3.

Type 1 yr. 2 yrs. 3 yrs. 4 yrs. 5 yrs.

I 0.0007 0.0030 0.0068 0.0119 0.0182

II 0.0044 0.0102 0.0175 0.0266 0.0372

Table 2.3: Risk-neutral cumulative default probabilities

The recovery rate is assumed to be 40% for all reference entities. Thus the LGD of

reference-entity k is 0.6Nk. The maturity of a CDO deal is five years (i.e., T = 5) and

the premium dates are ti = i, i = 1, . . . , 5 years from today (t0 = 0). The continuously

compounded risk-free rates are r1 = 4.6%, r2 = 5%, r3 = 5.6%, r4 = 5.8% and r5 =

6%. Thus the corresponding risk-free discount factors, defined by di = exp(−tiri), are

0.9550, 0.9048, 0.8454, 0.7929 and 0.7408, respectively. All CDO pools have five tranches

that are determined by the attachment points (ℓ’s) of the tranches. For this experiment,

the five attachment points are: 0, 3%, 4%, 6.1% and 12.1%, respectively. The constants

βk lie in [0.3, 0.5]. In practice, the βk’s are known as tranche correlations and are taken
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as input to the model.

All methods for this experiment were coded in Matlab and the programs were run

on a Pentium III 700 PC. The results presented in Tables 2.4 and 2.5 are based on the

pricing of the first four tranches of each pool, as explained above.

2.4.3 Analysis of results

The accuracy results are presented in Table 2.4. Since CPA2 and CPA3 produce the same

numerical results to the basis point level, so in the table, we use CPA2(3) to represent

the spreads obtained from these two methods. The four numbers in each pair of brackets

in the main part of the table are the spreads, in basis points, for the first four tranches

of the corresponding pool. For example, (2248, 928, 606, 248) are the spreads, evaluated

by an exact method for the first four tranches of the 200-reference-entity homogeneous

pool (GID=6). Since all exact methods produce the same set of spreads for each pool,

we use “Exact” in the table to represent the spreads obtained from all the exact meth-

ods: ASB, HW and JKM. From the table we can see that CPA1 produces reasonably

accurate spreads, though for most pools the spreads differ somewhat from those of the

exact methods. For example, for the 100-reference-entity pool with GID=5, the spread

difference is 21 basis points, or about 0.6%, for the equity tranche. Also from the table

we can say that CPA2(3) produces very accurate results, except for the homogeneous

pools with GID=6 and GID=11, where the spreads for the 4-th tranches are 7 and 14

basis points higher than the exact ones, respectively. Fortunately, for a homogeneous

pool we can use our efficient recursive method JKM. The last two columns in the table

illustrate that neither the normal power nor the normal approximation is suitable for

high-spread tranche pricing. If accurate results are required, the exact methods, CPA2

and CPA3 are recommended.

The CPU times are presented in Table 2.5. Since CPA2 is generally faster than CPA3

and produces essentially the same result and NP requires almost the same CPU times
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GID Exact CPA1 CPA2(3) NP Normal

1 (2168, 926, 617, 256) (2159, 922, 614, 256) (2168, 926, 617, 256) (2200, 939, 616, 256) (2230, 940, 615, 255)

2 (2142, 945, 616, 257) (2133, 941, 613, 257) (2142, 945, 616, 257) (2186, 941, 618, 257) (2223, 941, 617, 257)

3 (2128, 941, 619, 259) (2119, 936, 616, 259) (2128, 941, 619,259) (2175, 942, 619, 259) (2217, 943, 619, 258)

4 (2098, 943, 622, 262) (2087, 937, 619, 261) (2097, 943, 622, 262) (2153, 945, 623, 262) (2205, 946, 623, 261)

5 (3069, 1166, 639, 154) (3048, 1157, 637, 157) (3069, 1166, 639, 154) (3117, 1168, 640, 155) (3188, 1180, 642, 154)

6 (2248, 928, 606, 248) (2244, 926, 604, 248) (2248, 928, 606, 255) (2261, 931, 606, 248) (2272, 931, 605, 248)

7 (2238, 931, 606, 249) (2233, 929, 605, 249) (2238, 931, 606, 249) (2252, 932, 607, 249) (2267, 932, 607, 249)

8 (2229, 932, 607, 250) (2224, 929, 606, 250) (2229, 932, 607, 250) (2246, 933, 608, 250) (2262, 933, 607, 250)

9 (2213, 934, 609, 251) (2206, 931, 608, 251) (2213, 934, 609, 251) (2233, 934, 609, 251) (2254, 935, 609, 251)

10 (3350, 1172, 606, 127) (3337, 1167, 605, 129) (3350, 1172, 606, 127) (3350, 1172, 606, 127) (3391, 1177, 607, 126)

11 (2291, 926, 600, 244) (2289, 925, 600, 245) (2291, 926, 601, 258) (2295, 927, 600, 244) (2300, 927, 600, 244)

12 (2286, 927, 601, 245) (2283, 926, 600, 245) (2286, 927, 601, 245) (2291, 927, 601, 245) (2296, 927, 601, 245)

13 (2282, 927, 601, 245) (2279, 926, 601, 245) (2282, 927, 601, 245) (2288, 928, 601, 245) (2294, 928, 601, 245)

14 (2273, 928, 602, 246) (2270, 927, 602, 246) (2273, 928, 602, 246) (2280, 928, 602, 246) (2288, 928, 602, 246)

15 (3428, 1158, 591, 122) (3420, 1155, 591, 123) (3428, 1158, 591, 122) (3432, 1158, 592, 122) (3440, 1159, 592, 122)

Table 2.4: Accuracy comparison between the exact and the approximate methods
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as the normal approximation, we list only the CPU times for each of HW, ASB, CPA1,

CPA2 and NP divided by that of JKM. From the table we can see that for all tested

pools JKM is always faster than HW and CPA2, and much faster than ASB. For most

cases JKM is slightly faster than CPA1, but slower than NP. As expected, CPA1 is faster

than CPA2.

Based on both the accuracy and the CPU time of each method, we suggest using either

the recursive method JKM or the second order compound Poisson approximation method

CPA2 for pricing, where accuracy is generally more important than CPU time, and NP

for risk management, where CPU time is generally more important than accuracy.

2.5 Conclusions I

Two types of methods for the evaluation of the loss distribution of a synthetic CDO

pool are introduced in this chapter. Error analysis and numerical results show that

the proposed exact recursive method JKM is stable and efficient. It can be applied

to synthetic CDO tranche pricing and risk management when the underlying pool is

homogeneous or has a low dispersion of loss-given-defaults. For high dispersion pools, the

second order compound Poisson approximation CPA2 is recommended for pricing where

accuracy is generally more important than CPU time. The normal power approximation

is useful for risk management where CPU time is as important as accuracy.
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GID HW/JKM ASB/JKM CPA1/JKM CPA2/JKM NP/JKM

1 1.24 4.26 1.39 1.52 1.98

2 1.44 4.13 1.56 1.56 1.90

3 1.51 3.67 1.23 1.37 1.60

4 1.97 3.50 1.36 1.71 1.30

5 1.75 2.56 0.99 1.11 1.08

6 1.34 5.56 1.35 1.42 1.30

7 1.41 5.34 1.30 1.45 1.21

8 1.48 4.93 1.24 1.35 0.98

9 1.89 4.29 1.30 1.84 0.71

10 2.12 2.36 0.74 1.02 0.39

11 1.37 5.66 1.04 1.13 0.66

12 1.36 5.38 1.01 1.19 0.58

13 1.33 4.91 0.97 1.14 0.50

14 2.38 4.54 1.11 2.31 0.27

15 3.07 2.02 0.56 1.01 0.08

Table 2.5: The CPU times for each of HW, ASB, CPA1, CPA2 and NP divided by that

of JKM



Chapter 3

A new method for approximating

the expected value of the tranche

loss function

In Chapter 2 we proposed three numerical methods for evaluating the distribution of L P .

In this chapter, which is based largely on the results in [32], we focus on the tranche loss

function f itself and propose a new method for approximating the expected value of the

tranche loss function. First we describe a general result and then apply it to the valuation

of a synthetic CDO tranche.

3.1 Approximation of the expected value of the tranche

loss function

First we give a general expression of the expected value of the tranche loss function in

the conditional independence framework. A central problem in this framework is how to

evaluate

E[f(Z; ℓ, u)] =
Z

M
EM [f (Z; ℓ, u)] dΦ(M),

35
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where Φ(M) is the distribution of an auxiliary factor M (which can be a scalar or a

vector),

EM [f (Z; ℓ, u)] ≡ E [f (Z; ℓ, u) |M = M ] ,

where Z =
PK

k=1 Zk and Zk ≥ 0 are mutually independent random variables, conditional

on M . It is obvious that Z is nonnegative. We denote by ΨM the distribution of Z

conditional on M = M , so that

EM [f (Z; ℓ, u)] =
Z

z
f (z; ℓ, u) dΨM(z). (3.1)

Due to the piecewise linearity of f , it is clear that once the distribution ΨM is ob-

tained, the expected value
R
z f (z; ℓ, u) dΨM(z) can be readily computed. Most research

has focused on how to evaluate the conditional distribution of Z given the conditional

distributions of Zk; all the methods proposed in Chapter 2 are of this type. Those meth-

ods are generally superlinear in K in complexity. In this chapter, we propose a different

type of method for which the computational complexity is linear in K. More specifically,

we focus on the tranche loss function f , instead of the distribution ΨM of Z.

The tranche loss function can be expressed simply in terms of two transformed hockey

stick functions:

f(z; ℓ, u) = min (S,max (z − ℓ, 0)) = u
�
1 − h

�z
u

��
− ℓ

�
1 − h

�z
ℓ

��
, (3.2)

where z ≥ 0, 0 ≤ ℓ ≤ u, S = u− ℓ, the hockey stick function h(x) is defined on [0,∞) by

h(x) = 1 − x if 0 ≤ x < 1 and 0 if x ≥ 1. In particular,

f(z; 0, u) = u
�
1 − h

�z
u

��
.

The basic idea of our new method is to approximate the hockey stick function by

a sum of exponentials first, then to use (3.2) together with this approximation to the

hockey stick function to approximate the expected value of the tranche loss function

conditional on M without having to estimate the loss distribution. To see this key point
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more clearly, let

h(x) ≈
NX

n=1

ωn exp(γnx), (3.3)

where ωn and γn are complex numbers. Then from (3.2) we can see that f(z; ℓ, u) can

be approximated by a sum of exponentials:

f(z; ℓ, u) ≈ u

"
1 −

NX
n=1

ωn exp
�
γn
z

u

�#
− ℓ

"
1 −

NX
n=1

ωn exp
�
γn
z

ℓ

�#
= (u− ℓ) − u

NX
n=1

ωn exp
�γn

u
z
�

+ ℓ
NX

n=1

ωn exp
�γn

ℓ
z
�
. (3.4)

Based on this expression, EM [f (Z; ℓ, u)] defined in (3.1) can be approximated as follows:

EM [f (Z; ℓ, u)] =
Z

z
f (z; ℓ, u) dΨM(z)

≈
Z

z

"
(u− ℓ) − u

NX
n=1

ωn exp
�γn

u
z
�

+ ℓ
NX

n=1

ωn exp
�γn

ℓ
z
�#

dΨM(z)

=(u− ℓ) − u
NX

n=1

ωn

Z
z
exp

�γn

u
z
�

dΨM(z)

+ ℓ
NX

n=1

ωn

Z
z
exp

�γn

ℓ
z
�

dΨM(z)

=(u− ℓ)

− u
NX

n=1

ωn

Z
z1,...,zK

KY
k=1

exp
�γn

u
zk

�
dΨM,1(z1) · · · dΨM,K(zK)

+ ℓ
NX

n=1

ωn

Z
z1,...,zK

KY
k=1

exp
�γn

ℓ
zk

�
dΨM,1(z1) · · · dΨM,K(zK)

=(u− ℓ) − u
NX

n=1

ωn

KY
k=1

EM

�
exp

�γn

u
Zk

��
+ ℓ

NX
n=1

ωn

KY
k=1

EM

�
exp

�γn

ℓ
Zk

��
, (3.5)

where ΨM,k is the distribution of Zk, EM [exp (cZk)] is the expected value of exp (cZk),

for c = γn

ℓ
or γn

u
, respectively. The last equality holds since Zk, thus cZk, are mutually

independent conditional on a given value of M . In this way we can see that, to compute

EM [f (Z; ℓ, u)], we need only to compute EM [exp (cZk)] for each individual reference

entity. That is, unlike the methods discussed in Chapter 2, we do not need to compute

the distribution of Z.
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For this approach to be effective, the coefficients ωn and γn should be computed in

advance; the real part of each γn should be nonpositive so that all the expected values

appearing in (3.5) exist; and the approximation error of h(x) should be small. Listed in

Table 3.1 are the coefficients ωn and γn for a 25-term exponential approximation of h(x)

obtained using the method described in Chapter 4. The error of this approximation is

about 1.0e−2. From the table we can see that the real part of each γn is negative.

ωn γn

1.68011893244425e-4 ± i3.16256620606362e-5 −5.68445124827402e-2 ± i1.44721383274924e2

2.03509915629236e-4 ± i5.97831532622499e-5 −1.72409284138836e-1 ± i1.32287063405070e2

2.69268773468033e-4 ± i1.01521815083745e-4 −3.50678415544522e-1 ± i1.19842679719888e2

3.86957625111202e-4 ± i1.70219565943991e-4 −5.98265620413281e-1 ± i1.07384279916896e2

6.01922445804571e-4 ± i2.94018119278507e-4 −9.25359017045512e-1 ± i9.49083080391091e1

1.01492774367573e-3 ± i5.39110359552288e-4 −1.34736406458070 ± i8.24123917927866e1

1.87278393479967e-3 ± i1.08500939908606e-3 −1.88780310243265 ± i6.98971865534513e1

3.86259704539165e-3 ± i2.52517420285526e-3 −2.58365332234670 ± i5.73707505516726e1

9.17405883622480e-3 ± i7.43804670289735e-3 −3.49564479197934 ± i4.48598171108201e1

2.44937222818637e-2 ± i3.18666903390892e-2 −4.72746093364059 ± i3.24436130440587e1

7.57246141516951e-3 ± i2.09501133836536e-1 −6.43667314900433 ± i2.03730372133839e1

3.81388701388286 −9.65184479672942

−1.45652522408126 ± i1.02985968459737e-1 −8.54272349552524 ± i9.38007996918211

Table 3.1: Coefficients ωn and γn for a 25-term exponential approximation of h(x)

In the remainder of this chapter, all exponential approximations to the hockey stick

function are obtained using the method described in Chapter 4. For a given approxima-

tion accuracy ǫh, the coefficients ωn and γn for (3.3) need to be computed once only and

the number of terms, N , required can be determined a priori. Roughly speaking we have

N ≈ 1

4ǫh
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as is discussed in more detail in Chapter 4.

If the sup-norm of the error in approximating the hockey stick by a sum of exponentials

is ǫh, then the error for the approximation (3.4) is at most (u+ ℓ)ǫh, since�����f(z; ℓ, u) −
 

(u− ℓ) − u
NX

n=1

ωn exp
�γn

u
z
�

+ ℓ
NX

n=1

ωn exp
�γn

ℓ
z
�!�����

=
����(u− ℓ) − uh

�z
u

�
+ ℓh

�z
l

�
−
 

(u− ℓ) − u
NX

n=1

ωn exp
�γn

u
z
�

+ ℓ
NX

n=1

ωn exp
�γn

ℓ
z
�!�����

≤u
�����h �zu�− NX

n=1

ωn exp
�γn

u
z
������+ ℓ

�����h �zl �− NX
n=1

ωn exp
�γn

ℓ
z
������

≤(u+ ℓ)ǫh.

Hence, the error for approximation (3.5) is at most

(u+ ℓ)ǫh.

Though the number of terms N may be as large as 400, we believe rounding error is not

a problem when calculating the summations in (3.5), due to moderate |ωn| and the not

so small approximation error ǫh.

It is shown in Chapter 4 that, if γn is real, then ωn is also real, and if γi and γj are a

complex conjugate pair, then the corresponding ωi and ωj are also a complex conjugate

pair, and vice versa. The data presented in Table 3.1 has this property. Exploiting this

property, we can simplify the summations in (3.5) by noting that the sum of the i-th

and j-th terms equals twice the real part of either one of these two terms. The data also

shows that the real part of each γn is strictly negative. This property guarantees that

the exponential approximation (3.3) converges to zero as x → ∞, and thus guarantees

the existence of the conditional expectation EM [exp (cZk)]. A more detailed discussion

of the exponential approximation (3.3) is given in Chapter 4.
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3.2 Application to synthetic CDO valuation

Letting Zk = LGDk1{k}, we see that synthetic CDO tranche valuation is a special case

of the problem described in the previous section. More specifically, we have

E
�
f(L P ; ℓ, u)

�
≈S − u

NX
n=1

ωnE

"
exp

 
γn

u

KX
k=1

LGDk1{k}

!#
+ ℓ

NX
n=1

ωnE

"
exp

 
γn

ℓ

KX
k=1

LGDk1{k}

!#
=S − u

NX
n=1

ωn

KY
k=1

E

�
exp

�γn

u
LGDk1{k}

��
+ ℓ

NX
n=1

ωn

KY
k=1

E

�
exp

�γn

ℓ
LGDk1{k}

��
, (3.6)

where S = u− ℓ and

E

�
exp

�γn

u
LGDk1{k}

��
= Qk exp

�γn

u
LGDk

�
+ (1 −Qk) ,

E

�
exp

�γn

ℓ
LGDk1{k}

��
= Qk exp

�γn

ℓ
LGDk

�
+ (1 −Qk) .

3.3 Numerical results II

In this section we present numerical results comparing the accuracy and the CPU time

for the exact method JKM, our new exponential-approximation method and the SPA

method proposed by Yang, Hurd and Zhang [59]. The results presented below are for the

same set of pools described in Section 2.4. For the numerical experiment, the exponential-

approximation method was run with different numbers of terms: 25, 50, 100, 200, and

400. The SPA method was run with a correction term (the so-called second order method

in [59]). Both the new method and the SPA method were coded in Matlab and run on a

Pentium III 700 PC. The results are presented in Tables 3.2, 3.3, 3.4, and 3.5.

The accuracy comparison results for the three methods are presented in Tables 3.2

and 3.3. As in Section 2.4, the four numbers in each pair of brackets in the main part

of the table are the spreads in basis points for the first four tranches of the correspond-



Chapter 3. The expected value of the tranche loss function 41

ing pool. For example, (2248.16, 927.59, 605.52, 248.31) are the spreads evaluated by the

JKM method for the first four tranches of the 200-reference-entity homogeneous pool

(with global pool ID GID = 6). The entries under “25-term” and “400-term” are the

spreads evaluated using the exponential-approximation method with 25 and 400 terms,

respectively. From Table 3.2 we can see that, as the number of terms of the exponential

approximation increases, the accuracy of the spreads improves. To better illustrate the

accuracy of our new approach, the relative errors in the spreads obtained using exponen-

tial approximations, with different numbers of terms, compared to the spreads computed

by the exact JKM method are plotted in Figures 3.1 and 3.2. From Table 3.3 we can

see that the SPA method also gives very accurate spreads, though not as accurate as our

100-term exponential-approximation method.

The CPU times used by the JKM method, the SPA method and the exponential-

approximation method using different numbers of terms for the test pools are presented

in Tables 3.4 and 3.5, respectively. In Table 3.4 the numbers under “First tranche” and

“First four tranches” are the times in seconds used by the exact JKM method to evaluate

the spread for the first tranche and the spreads for the first four tranches of each pool,

respectively. In Table 3.5 the numbers under “First tranche” and “First four tranches”

are the times in seconds used by the SPA method and the exponential-approximation

method using 25, 50, 100, 200 and 400 terms to evaluate the spread for the first tranche

and the spreads for the first four tranches of each pool, respectively. Note that the CPU

time for the SPA method depends approximately on the number of names only. For

the exponential-approximation method, the CPU time depends on the number of names

and the number of terms in the exponential approximation only. It is interesting to

note that, for a given pool, to evaluate any single tranche using either the SPA method

or the exponential-approximation method takes about as much time as to evaluate any

other tranche. On the other hand, for the exact method, estimating the spread for the

j-th tranche takes as much time as estimating the spreads for the first j tranches. Its
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GID Exact 25-term 400-term

1 (2167.69, 925.62, 616.56, 255.67) (2165.21, 930.60, 615.90, 255.66) (2167.54, 925.88, 616.56, 255.67)

2 (2142.13, 945.03, 615.79, 257.43) (2141.54, 943.15, 616.96, 257.50) (2142.08, 944.94, 615.85, 257.42)

3 (2128.39, 941.00, 618.88, 258.75) (2128.80, 940.35, 618.92, 258.89) (2128.35, 941.05, 618.86, 258.75)

4 (2097.58, 942.75, 622.30, 261.58) (2097.24, 943.30, 622.47, 261.79) (2097.55, 942.78, 622.29, 261.58)

5 (3069.39, 1165.62, 638.87, 154.37) (3069.45, 1165.84, 639.05 154.43) (3069.35, 1165.65, 638.88, 154.37)

6 (2248.16, 927.59, 605.52, 248.31) (2246.74, 930.51, 605.30, 248.64) (2248.07, 927.72, 605.52, 248.31)

7 (2237.60, 931.25, 606.10, 249.15) (2236.79, 931.45, 606.74, 249.46) (2237.54, 931.26, 606.12, 249.15)

8 (2229.45, 931.73, 607.47, 249.80) (2229.10, 932.34, 607.63, 250.12) (2229.41, 931.78, 607.47, 249.80)

9 (2212.52, 933.62, 609.33, 251.27) (2212.51, 933.93, 609.54, 251.56) (2212.50, 933.64, 609.33, 251.26)

10 (3350.42, 1171.60, 605.99, 127.05) (3350.44, 1172.09, 606.28, 127.10) (3350.40, 1171.60, 606.00, 127.05)

11 (2291.12, 925.82, 600.30, 244.49) (2290.57, 926.86, 600.67, 244.97) (2291.07, 925.88, 600.30, 244.49)

12 (2285.92, 926.99, 600.81, 244.90) (2285.72, 927.32, 601.22, 245.39) (2285.89, 926.99, 600.81, 244.90)

13 (2281.84, 927.31, 601.32, 245.25) (2281.82, 927.68, 601.66, 245.71) (2281.82, 927.33, 601.32, 245.25)

14 (2273.15, 928.22, 602.32, 245.99) (2273.27, 928.50, 602.63, 246.43) (2273.14, 928.23, 602.32, 245.99)

15 (3427.70, 1157.67, 591.47, 122.31) (3427.84, 1158.17, 591.77, 122.40) (3427.70, 1157.67, 591.47, 122.31)

Table 3.2: Accuracy comparison between the exact JKM method and the exponential-approximation method using 25 and 400

terms
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GID Exact 100-term SPA

1 (2167.69, 925.62, 616.56, 255.67) (2167.06, 926.63, 616.59, 255.65) (2163.39, 938.24, 615.22, 255.79)

2 (2142.13, 945.03, 615.79, 257.43) (2141.94, 944.66, 616.03, 257.43) (2142.81, 939.63, 617.30, 257.46)

3 (2128.39, 941.00, 618.88, 258.75) (2128.25, 941.19, 618.85, 258.77) (2128.16, 940.73, 618.94, 258.79)

4 (2097.58, 942.75, 622.30, 261.58) (2097.46, 942.90, 622.26, 261.58) (2096.66, 943.07, 622.45, 261.65)

5 (3069.39, 1165.62, 638.87, 154.37) (3069.29, 1165.80, 638.80, 154.37) (3067.94, 1165.69, 638.94, 154.53)

6 (2248.16, 927.59, 605.52, 248.31) (2247.83, 928.13, 605.50, 248.28) (2248.77, 930.88, 605.45, 248.30)

7 (2237.60, 931.25, 606.10, 249.15) (2237.36, 931.27, 606.22, 249.15) (2236.64, 931.59, 606.57, 249.15)

8 (2229.45, 931.73, 607.47, 249.80) (2229.31, 931.97, 607.44, 249.79) (2228.90, 932.26, 607.46, 249.83)

9 (2212.52, 933.62, 609.33, 251.27) (2212.45, 933.68, 609.32, 251.29) (2212.13, 933.71, 609.39, 251.30)

10 (3350.42, 1171.60, 605.99, 127.05) (3350.37, 1171.63, 606.02, 127.05) (3349.56, 1171.68, 606.11, 127.12)

11 (2291.12, 925.82, 600.30, 244.49) (2290.93, 926.17, 600.24, 244.49) (2290.61, 926.62, 600.28, 244.49)

12 (2285.92, 926.99, 600.81, 244.90) (2285.80, 926.97, 600.84, 244.92) (2285.62, 927.08, 600.87, 244.92)

13 (2281.84, 927.31, 601.32, 245.25) (2281.77, 927.40, 601.32, 245.27) (2281.64, 927.45, 601.33, 245.26)

14 (2273.15, 928.22, 602.32, 245.99) (2273.12, 928.26, 602.34, 246.01) (2272.98, 928.24, 602.35, 246.01)

15 (3427.70, 1157.67, 591.47, 122.31) (3427.70, 1157.70, 591.48, 122.31) (3427.32, 1157.71, 591.51, 122.34)

Table 3.3: Accuracy comparison of the exact method, the saddlepoint approximation method SPA and the exponential-

approximation method using 100 terms
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Figure 3.1: The graphs from top to bottom are the plots of the relative errors of the

tranche spreads computed by our new method based on 25-, 50-, and 100-term exponen-

tial approximations compared to the exact spreads computed by the JKM method for

the tranches [0%, 3%], [3%, 4%], [4%, 6.1%], and [6.1%, 12.1%], respectively. The solid

line (black) is for the 25-term approximation. The line marked with small asterisks (red)

is for the 50-term approximation. The line marked with small circles (blue) is for the

100-term approximation.

CPU time depends not only on the number of names but also on the structure of the

underlying pool.

3.4 Conclusions II

A new method based on an exponential approximation to the “hockey stick” function

has been proposed. Based on this approximation, the evaluation of the expected value

of the tranche loss function of a specified tranche can be approximated by computing

a series of expected values for individual reference entities. In Section 3.2, we applied
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Figure 3.2: The graphs from top to bottom are the plots of the relative errors of the

tranche spreads computed by our new method based on 100-, 200-, and 400-term expo-

nential approximations compared to the exact spreads computed by the JKM method

for the tranches [0%, 3%], [3%, 4%], [4%, 6.1%], and [6.1%, 12.1%], respectively. The solid

line (black) is for the 100-term approximation. The line marked with small asterisks (red)

is for the 200-term approximation. The line marked with small circles (blue) is for the

400-term approximation.

this method to synthetic CDO tranche valuation. This method could be applied to more

general models provided that they belong to the conditional independence framework.

Also our new method could be applied to a wide class of derivatives. For example, it

can be applied to the pricing of options on spreads of a tranche of a synthetic CDO.

Compared to the saddlepoint approximation method proposed by Antonov, Mechkov,

and Misirpashaev [3] and Yang, Hurd and Zhang [59], the main advantage of our new

approach is that the coefficients can be computed in advance, whereas the saddlepoint

method must compute parameters dynamically.
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GID First tranche First four tranches

1 0.39 0.46

2 0.44 0.48

3 0.52 0.57

4 0.57 0.70

5 0.81 0.85

6 0.53 0.71

7 0.58 0.76

8 0.67 0.88

9 0.76 1.26

10 1.41 2.32

11 0.86 1.41

12 0.95 1.56

13 1.06 1.86

14 1.32 3.38

15 4.50 12.31

Table 3.4: CPU time in seconds used by the JKM method to evaluate the first and the

first four tranches of the test pools
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First tranche First four tranches

K/N SPA 25 50 100 200 400 SPA 25 50 100 200 400

100 0.76 0.45 0.63 1.01 1.76 3.36 2.37 1.03 1.77 3.83 6.22 12

200 1.45 0.57 0.81 1.29 2.34 4.41 4.31 1.39 2.40 4.51 8.29 16.52

400 1.62 0.74 1.08 1.74 3.11 5.95 4.85 1.85 3.19 5.86 11.16 22.76

Table 3.5: CPU time in seconds used by the SPA method and the exponential-

approximation method with different numbers of terms to evaluate the first and the

first four tranches of the test pools



Chapter 4

Approximation of the hockey stick

function

4.1 Introduction

In Chapter 3 we developed a new method to approximate E
�
f(L P ; ℓ, u)

�
based on an

exponential approximation to the tranche loss function, which is expressed simply in

terms of two transformed hockey stick functions. In this chapter, which is based largely

on the results in [31], we describe how to approximate the hockey stick function

h(x) =

8>><>>:1 − x if 0 ≤ x < 1;

0 if x ≥ 1,

(4.1)

by a sum of exponentials

hexp(x) =
NX

n=1

ωn exp(γnx) (4.2)

over [0,∞), where ωn and γn are complex numbers. The function (4.1) is a special case

of the more general hockey stick function

h(x; t) =

8>><>>:t− x if 0 ≤ x < t;

0 if x ≥ t,

48
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where t is a positive number. This function plays a critical role in finance, from pricing

of European options [28] to pricing and risk management of correlation-dependent deriv-

atives [32]. Since, for a fixed positive t, h(x; t) = t ·h (x/t), we can take h(x) as the basic

function. In this thesis we call function h(x) the hockey stick (HS) function.

The approximation problem considered here is an example of Chebyshev approxima-

tion. For such an approximation, the weights ωn and the exponents γn should be chosen

to solve the minimization problem

min
ωn,γn∈C






h(x) − NX
n=1

ωn exp(γnx)







∞

, (4.3)

where C denotes the set of complex numbers, and ‖f‖∞ = supx∈X|f(x)| is the Chebyshev

norm (also known as the uniform norm or the sup-norm) of f , and X = [a, b] ⊂ R. The-

oretically, the existence of such an optimal approximation is generally not guaranteed

[8, Chapters VI and VII]. Classic numerical methods for linear Chebyshev approxima-

tions, such as Remez exchange algorithm and its improvements, do not work well for

finding best nonlinear Chebyshev approximations such as (4.3) [37]. Most algorithms for

nonlinear Chebyshev approximations resort to solving discrete Chebyshev approximation

subproblems. For exponential approximation problems, such a discrete Chebyshev ap-

proximation subproblem is equivalent to an exponential fitting problem, which is often

badly-conditioned [21]. Consequently, we need to find some special methods that work

well for (4.3). In this chapter, we apply the method recently proposed by Beylkin and

Monzón [7] to determine the coefficients ωn and γn in (4.3).

The remainder of this chapter is organized as follows. Beylkin and Monzón’s method

and its application to the HS function are discussed in Section 4.2. Properties of this

exponential approximation are discussed in Section 4.3. This chapter ends with numerical

results.
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4.2 Beylkin and Monzón’s method and its applica-

tion to the HS function

4.2.1 Beylkin and Monzón’s method

In a recent paper [7], Beylkin and Monzón proposed a numerical method to find a good

exponential approximation to a function f . Instead of finding optimal ωn and γn satis-

fying (4.3), their method finds such parameters so that the exponential approximation

satisfies a given accuracy requirement. More specifically, for a given function f defined

on [0, 1] and a given ǫ > 0, their method seeks the minimal (or nearly minimal) number

of complex weights ωn and nodes exp(γn) such that�����f(x) −
NX

n=1

ωn exp(γnx)

����� ≤ ǫ, ∀x ∈ [0, 1]. (4.4)

This continuous problem is in turn approximated by a discrete problem: Given a positive

integer M, find the minimal positive integer number N ≤ M of complex weights ωn and

complex nodes ζn such that�����f � m

2M
�
−

NX
n=1

ωnζ
m
n

����� ≤ ǫ, for all integers m ∈ [0, 2M]. (4.5)

Then for the continuous problem the weights and the exponents are ωn and

γn = 2M log ζn, (4.6)

respectively, where log z is the principal value of the logarithm.

To describe their method, we introduce some additional notation. For theoretical

background and a more detailed description of the method, see [7].

For a real (2M + 1)-vector h = (h0, h1, . . . , h2M), the (M + 1) × (M + 1) Hankel
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matrix Hh defined in terms of h is

Hh =

2666666666666664
h0 h1 · · · hM

h1 · · · · · · hM+1

... . ..
...

hM−1 hM · · · h2M−1

hM · · · h2M−1 h2M

3777777777777775 .
That is, (Hh)i,j = hi+j for 0 ≤ i, j ≤ M. It is clear that Hh is a real symmetric

matrix. By the Corollary in §4.4.4 of [27, pp. 204], there exists a unitary matrix U and

a nonnegative diagonal matrix Σ such that

Hh = UΣUT ,

where the superscript T denotes transposition. This decomposition is called the Takagi

factorization [27, pp. 204].

The main steps of the method are:

1. Sample the approximated function f at 2M + 1 points uniformly distributed on

[0, 1]. That is, let hm = f
�

m
2M

�
, 0 ≤ m ≤ 2M.

2. Form h = (h0, h1, . . . , h2M) and the Hankel matrix Hh.

3. Compute the Takagi factorization of Hh = UΣUT , where Σ = diag(σ0, σ1, . . . , σM)

and σ0 ≥ σ1 ≥ . . . ≥ σM ≥ 0.

4. Find the largest σN satisfying σN ≤ ǫ.

5. Let u = (u0, u1, . . . , uM)T be the (N + 1)-st column of U.

6. Find N roots of the polynomial
PM

m=0 umz
m with the largest moduli and denote

these roots by ζ1, ζ2, . . . , ζN .
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7. Compute the N weights ωn, 1 ≤ n ≤ N , by solving the linear least squares problem

for the overdetermined Vandermonde system

hm =
NX

n=1

ωnζ
m
n , for 0 ≤ m ≤ 2M.

8. Compute parameters γn using formula (4.6).

Remark 1 This algorithm works for functions defined on [0, 1]. To apply it to a func-

tion f defined on a finite interval [a, b], a < b, we could consider the function f̂(t) =

f (t(b− a) + a) for t ∈ [0, 1]. For a function defined on an infinite interval, such as

[0,∞), the interval could first be truncated to a finite interval, say [a, b] ⊂ [0,∞), then

the finite interval could be mapped to the standard interval [0, 1] and the same approxi-

mation could be applied to [0,∞)\[a, b].

Remark 2 For a general function the number of sample points is not known in advance.

Thus M should be large enough or be increased gradually until a satisfactory accuracy is

achieved. All critical points of the approximated function should be sampled. For example,

for the HS function h(x), both x = 0 and x = 1 should be sampled.

Remark 3 In practice it is not necessary to compute Hh’s Takagi factorization explicitly.

From the spectral theorem for Hermitian matrices [27, pp. 171] we know that there is

a real orthogonal matrix V and a real diagonal matrix Λ = diag(λ0, λ1, . . . , λM), with

|λi| nonincreasing, such that Hh = VΛVT . Noting that generally Hh is not positive

semidefinite, Λ may have negative element(s). Thus VΛVT is not necessarily the Takagi

factorization of Hh. However, we could construct a Takagi factorization based on its

spectral factorization in the following way. Let Σ = diag(|λ0|, |λ1|, . . . , |λM|) and U =

(u0,u1, . . . ,uM), where um = vm if λm ≥ 0; and um =
√
−1vm, if λm < 0. It is easy to

check that U is a unitary matrix and Hh = UΣUT .

Remark 4 To compute ωn from the linear least squares problem in Step 7, the N roots

determined in Step 6 must be distinct. If this condition is not met, ωn should be computed
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by a different method [7], [35]. This condition may be difficult to verify in theory. For

numerical solutions, we should check its validity, as suggested by Beylkin and Monzón.

4.2.2 Application to the HS function

In this subsection we apply Beylkin and Monzón’s method to the hockey stick function

h(x). Recall that h(x) is defined on [0,∞). The infinite interval is first truncated to

a finite interval [0, b] for a large enough b. (In fact b = 2 is large enough as explained

below.) Then h(b · t) is sampled at 2M + 1 points:

hm = h (btm) =

8>><>>:1 − btm if btm < 1

0 otherwise

,

where tm = m
2M

and 0 ≤ m ≤ 2M. To guarantee the critical point x = 1 of h(x) is

sampled, it suffices that btm = 1 for some m. This implies that 2M
b

must be an integer.

The corresponding Hankel matrix Hh is

Hh =

2666666666664
1 1 − b

2M
1 − 2 b

2M
· · · b

2M
0 · · · 0

1 − b
2M

1 − 2 b
2M

· · · · · · 0 0 · · · 0

1 − 2 b
2M

· · · · · · · · · 0 0 · · · 0
· · · · · ·

b
2M

0 0 · · · 0 0 · · · 0
· · · · · ·
0 0 0 · · · 0 0 · · · 0

3777777777775 .
To keep the neat form of Hh it may be required that b ≥ 2. If b < 2, the last nonzero

row of Hh may have more than one nonzero element. A direct consequence of this is

that equation (4.8) may not hold, thus the properties of the approximation discussed in

Section 4.3 may not hold. Thus in the remainder of this thesis it is assumed that b ≥ 2.
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Let N = 2M
b

and

HN =

2666666666666664
N N − 1 N − 2 · · · 1

N − 1 N − 2 · · · · · · 0

N − 2 · · · · · · · · · 0

· · · · · ·

1 0 0 · · · 0

3777777777777775 . (4.7)

Then we have

Hh =
1

N

24HN 012

0T
12 022

35 . (4.8)

where 012 and 022 are zero matrices of the proper dimensions.

Let UΣUT be a Takagi factorization of HN , where Σ = diag(σN1, σN2, . . . , σNN ) and

σN1 ≥ σN2 ≥ · · · ≥ σNN ≥ 0. Then a Takagi factorization of Hh can be obtained by

Hh =
1

N

2664U 012

0T
12 I22

3775 2664 Σ 012

0T
12 022

3775 2664UT 0T
12

012 I22

3775 .
Remark 5 Proposition 4 in Section 4.3 together with Theorems 2 and 3 of [7] imply

that, for a given accuracy ǫ, M must be large enough such that 1
4

b
2M

≤ ǫ. From this

relation and noting that N = 2M
b

, we can see the only requirements are b ≥ 2, 2M
b

is an

integer and

N ≥ 1

4ǫ
. (4.9)

Thus we choose b = 2 for simplicity and N = M ≥ 1
4ǫ

.

Once HN ’s Takagi factorization is computed, we take uN = (u0, u1, . . . , uN−1)
T to

be the last column of U. Then find the N − 1 roots ζ1, ζ2, . . . , ζN−1 of the polynomialPN−1
n=0 unz

n = 0. Next the N − 1 weights ωn are obtained by solving

hm =
N−1X
n=1

ωnζ
m
n , for 0 ≤ m ≤ 2M,

in the least squares sense. Finally, parameters γn are obtained by formula (4.6).

In summary, the algorithm for determining coefficients ωn and γn is (note that b = 2):
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1. Input ǫ > 0 as given accuracy.

2. Find the smallest integer N such that N ≥ 1
4ǫ

.

3. Compute the spectral factorization of the matrix HN = VΛVT .

4. Let u = (u0, u1, . . . , u
T
N−1) be the last column of V.

5. Find all roots ζ1, ζ2, . . . , ζN−1 of the polynomial
PN−1

n=0 unz
n = 0 and check whether

they are distinct. If they are not distinct then exit.

6. Solve hm =
PN−1

n=1 ωnζ
m
n , 0 ≤ m ≤ 2N , in the least squares sense for ωn.

7. Compute γn = 2N log ζn.

Before ending this section we want to say a little more about ωn and γn. As mentioned

in Remark 3, uN is either a real vector or the product of a real vector and the imaginary

unit
√
−1. In either case, the roots of

PN−1
n=0 unz

n = 0 will always be either real or pairwise

complex conjugate. Thus ωn are also real or pairwise complex conjugate, correspondingly.

That is, if ζn is real, then ωn is real too; whereas, if ζi and ζj are a complex conjugate

pair, then ωi and ωj are a complex conjugate pair too, and vice versa. Furthermore, since

γn = 2N log ζn we can see that exp(γn) = ζ2N
n possesses the same conjugacy property.

Thus ωn exp (γnx) are either real or pairwise complex conjugate for all real x. This

result simplifies the calculation of hexp(x) =
PN−1

n=1 ωn exp(γnx). For real ωn the term

ωn exp(γnx) is evaluated as usual, whereas for the complex conjugate pair indexed by i

and j, only one term needs to be evaluated, say ωi exp (γix), and then the contribution

of the complex conjugate pair of terms is 2ℜ (ωi exp (γix)), where ℜ(z) denotes the real

part of the complex number z.
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4.3 Properties of the approximation

In this section we discuss some properties of this approximation. One of the main results

is noted above in Remark 5:

Proposition 3

N ≥ 1

4ǫ
.

Noting that the diagonal matrix Σ is the same as the diagonal matrix of HN ’s singular

value decomposition, we call σNn, n = 1, 2, . . . ,N , its singular value. Direct calculation

shows that

H−1
N =

266666666666666666666664
1

1 −2

1 −2 1

. .. . .. . ..

. .. . .. . ..

1 −2 1

1 −2 1

377777777777777777777775
(4.10)

Proposition 4 As N tends to infinity, the smallest singular value σNN of the matrix

HN tends to 1/4.

Proof Since HN is nonsingular, its singular values are positive. Proving that σNN tends

to 1/4 as N tends to infinity is equivalent to proving that σ−1
NN , the largest singular value

of H−1
N , tends to 4 as N tends to infinity.

From Gerschgorin’s theorem [22, pp. 320] [27, pp. 344] [58, pp. 71], we know that all

eigenvalues of H−1
N lie in the disc

D = {z ∈ C : |z| ≤ 4}.

Since H−1
N is real symmetric, we can conclude that all singular values of H−1

N are bounded

by 4. Therefore, it suffices to prove that σ−1
NN approaches 4. To this end, note that, if A
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is a symmetric matrix, then maxx 6=0
x

T
Ax

xT x
= λmax, where λmax is the largest eigenvalue

of A. Hence, if for each N , we can find a vector xN such that the Rayleigh quotient

x
T
N

H
−T
N

H
−1

N
xN

xT
N

xN
→ 16 as N → ∞, then we can conclude that σ−1

NN → 4 as N → ∞.

For even N ≥ 6, let N = 2n. Define a vector xN = (x1, x2, . . . , xN )T by

x1 = 1,

xi = xN−i+2 = (−1)i−1(i− 1), for i = 2, 3, . . . , n,

xn+1 = −xn.

Through direct calculation we obtain

xT
NxN = 1 + 2

n−1X
i=1

i2 + (n− 1)2, (4.11)

and

H−1
N xN =

26666666666666666666666666664

−1
4
−8
...

(−1)n−14(n− 2)

(−1)n(4n− 5)

(−1)n+14(n− 1)

(−1)n(4n− 5)

(−1)n−14(n− 2)

...
−8
5

37777777777777777777777777775
,

which implies

xT
NH−T

N H−1
N xN = 10 + 2 · 42

n−2X
i=1

i2 + 42(n− 1)2 + 2(4n− 5)2.

This result together with (4.11) implies that for large even N

xT
NH−T

N H−1
N xN

xT
NxN

≈ 2 · 42Pn−1
i=1 i

2

2
Pn−1

i=1 i
2

= 16.

Therefore, the largest singular value of H−1
N approaches 4 as N → ∞.
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For odd N ≥ 7, let N = 2n+ 1. Construct an N -vector xN = (x1, x2, . . . , xN )T with

xi = xN−i+1 = (−1)ii, for i = 1, 2, . . . , n,

xn+1 = −xn.

Similar to the case for even N , we have

xT
NxN = 2

nX
i=1

i2 + n2, (4.12)

H−1
N xN =

26666666666666666666666664

−1
4
−8
...

(−1)n4(n− 1)

(−1)n+1(4n− 1)

(−1)n4n

(−1)n+1(4n− 1)

(−1)n4(n− 1)

...
−8

37777777777777777777777775
,

xT
NH−T

N H−1
N xN = 17 + 2 · 42

nX
i=3

(i− 1)2 + 2(4n− 1)2 + 42n2. (4.13)

Thus, from (4.12) and (4.13) we have that for large odd N

xT
NH−T

N H−1
N xN

xT
NxN

≈ 2 · 42Pn
i=1 i

2

2
Pn

i=1 i
2

= 16.

The proof is completed.

As explained before, uN is either a real vector or the product of a real vector and

the imaginary unit. In either case, the next three propositions hold. For simplicity we

assume in the proofs that uN is a real vector.

Proposition 5 The smallest singular value σNN satisfies the relation σN+2,N+2 < σNN ,

N ≥ 2.
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Proof Let λN be the eigenvalue of HN corresponding to σNN and uN = (u0, u1, . . . , uN−1)
T ∈

R
N be a corresponding eigenvector. Thus HNuN = λNuN . Without loss of generality,

assume ‖uN‖2 = 1. Consequently, uT
NH−2

N uN = σ−2
NN .

Now we show that u0 and u1 cannot both be zero. Suppose u0 = u1 = 0 for some

N > 2. Note that H−1
N uN = λ−1

N uN . That is266666666666666666666664
1

1 −2

1 −2 1

. .. . .. . ..

. .. . .. . ..

1 −2 1

1 −2 1

377777777777777777777775
266666666666666666666664
u0

u1

u2

...

...

uN−2

uN−1

377777777777777777777775
= λ−1

N

266666666666666666666664
u0

u1

u2

...

...

uN−2

uN−1

377777777777777777777775
. (4.14)

By comparing the two sides of the system of equations, we obtain uN−1 = 0 from the

first row; then uN−2 = 0 from the second row; and then u2 = u3 = 0 from the last two

rows. Continuing this process we end with uN = 0, which contradicts uN 6= 0.

Let uN+2 = (0, 0, u0, u1, . . . , uN−1)
T , then ‖uN+2‖2 = 1, and

H−1
N+2uN+2 =

26666664 H−1
N uN

−2u0 + u1

u0

37777775 .
Furthermore we have

σ−2
N+2,N+2 = max

‖x‖=1
xTH−2

N+2x
T ≥ uT

N+2H
−2
N+2uN+2

= uT
NH−1

N H−1
N uN + (u1 − 2u0)

2 + u2
0

= σ−2
NN + (u1 − 2u0)

2 + u2
0

> σ−2
NN .

The last inequality follows from the observation above that u0 and u1 cannot both be

zero. This completes the proof.
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Proposition 6 u0 6= 0 and uN−1 6= 0 for N ≥ 4.

Proof From equation (4.14) we know that u0 = 0 implies uN−1 = 0, and vice versa. We

will finish the proof by way of contradiction. Suppose that for some N we have u0 = 0.

Then by equation (4.14) we have26666666666664
1

1 −2
1 −2 1

. .. . .. . ..

. .. . .. . ..

1 −2 1
1 −2 1

37777777777775
26666666666664

u0

u1

u2

...

...
uN−2

uN−1

37777777777775 = λ−1
N

26666666666664
u0

u1

u2

...

...
uN−2

uN−1

37777777777775 .
Since u0 = uN−1 = 0, deleting the first and the last rows (columns) of the matrix and

correspondingly the first and the last elements of uN , i.e., u0 and uN−1, results in a new

system of equations 2666666664 1
1 −2

. .. . ..

. .. . ..

1 −2 1

3777777775
2666666664 u1

u2

...

...
uN−2

3777777775 = λ−1
N

2666666664 u1

u2

...

...
uN−2

3777777775 ,
which says that λN is an eigenvalue of HN−2. Note (u1, . . . , uN−2)

T 6= 0, otherwise uN =

0, which contradicts the definition of an eigenvector. By definition, σN−2,N−2 ≤ |λN |.

However, σNN = |λN |, whence σNN ≥ σN−2,N−2, which contradicts Proposition 5. Thus

we conclude that u0 6= 0. This completes the proof.

Since u0 6= 0, zero is not a root of
PN−1

n=0 unz
n = 0, i.e., ζn 6= 0. To locate ζn we apply

Schur’s Theorem:

Theorem 1 (Schur) [48, pp. 220] [42, pp. 109] The roots of the polynomial

c0 + c1z + · · · + cn−1z
n−1 + cnz

n = 0

are on or within the unit circle if and only if the quadratic form

n−1X
i=0

�
(cnxi + cn−1xi+1 + · · · + ci+1xn−1)

2 − (c0xi + c1xi+1 + · · · + cn−i−1xn−1)
2
�

(4.15)
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is positive semidefinite.

Proposition 7 All the roots ζ1, ζ2, . . . , ζN−1 of the polynomial
PN−1

n=0 unz
n = 0 are on or

within the unit circle and they are either real or pairwise complex conjugate.

Proof Let N̂ = N −1; then the polynomial of interest can be written as
PN̂

n=0 unz
n = 0.

As explained in Section 4.2.2, all its roots ζ1, ζ2, . . . , ζN−1 are either real or pairwise

complex conjugate. To prove that all roots are on or within the unit circle, it suffices to

prove the quadratic form

N̂−1X
n=0

h�
uN̂xn + uN̂−1xn+1 + · · · + un+1xN̂−1

�2 − �
u0xn + u1xn+1 + · · · + uN̂−n−1xN̂−1

�2i
(4.16)

is positive semidefinite. Note that this claim is implied by the positive semidefiniteness

of the quadratic form

N̂X
n=0

h�
uN̂xn + · · · + un+1xN̂−1 + unxN̂

�2 − �
u0xn + · · · + uN−n−1xN−1 + uN̂−nxN̂

�2i
,

or equivalently the positive semidefiniteness of the matrix

CTC − DTD,

where

C =

266666666664
uN̂ uN̂−1 · · · u0

uN̂ · · · u1

· · · · · ·

uN̂

377777777775 , D =

266666666664
u0 u1 · · · uN̂

u0 · · · uN̂−1

· · · · · ·

u0

377777777775 . (4.17)

From Proposition 6 we know that uN̂ 6= 0, so C−1 exists. Therefore

CTC − DTD = CT
�
I − C−TDTDC−1

�
C.
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Let Y = DC−1. It is easy to verify that

Y = λN

26666666666666666664
1 −2 1

· · · · · ·

· · · · · ·

1 −2 1

1 −2

1

37777777777777777775 = λNPH−1
N ,

where λN 6= 0 is the eigenvalue of HN that corresponds to the eigenvector uN , i.e.,

HNuN = λNuN , and

P =

266666666664
1

1

. ..

1

377777777775
is a permutation matrix. Consequently,

YTY = λ2
NH−T

N P · PH−1
N = σ2

NNH−T
N H−1

N = σ2
NNH−2

N

since |λN | = σNN and P−1 = P. Let HN = VΛVT be the spectral decomposition of

HN , where Λ = diag(λ1, λ2, . . . , λN ), |λn| = σNn, for 1 ≤ n ≤ N , and VTV = I. Thus

I − YTY = V
�
I − σ2

NNΛ−2
�
VT = V

�
I − σ2

NN [diag(σN1, σN2, . . . , σNN )]−2
�
VT .

Since σN1 ≥ σN2 ≥ . . . ≥ σNN > 0, I − σ2
NN [diag(σN1, σN2, . . . , σNN )]−2 is positive

semidefinite. Thus CTC − DTD is positive semidefinite. This completes the proof.

Since γn = 2M log ζn, Proposition 7 implies that ℜ(γn) ≤ 0, but all our numerical

results show that all roots ζn are strictly within the unit circle, whence ℜ(γn) < 0. Thus

exp(γnx) converges to zero as x goes to infinity. This leads to the following conjecture.

Conjecture 1 All the roots ζ1, ζ2, . . . , ζN−1 of the polynomial
PN−1

n=0 unz
n = 0 are strictly

within the unit circle.
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4.4 Numerical results III

Presented below are plots related to different numbers, N , of terms in the exponential

approximation hexp(x) to the hockey stick function h(x). In Figure 4.1 we plot the

parameters for the 25-term exponential approximation. Conjugacy of ωn and also γn is

clearly shown in the plot. In Figure 4.2 we present the singular values of the Hankel

matrix 1
N

HN associated with this 25-term exponential approximation.
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Figure 4.1: The parameters ωn and γn for the 25-term exponential approximation

In Figure 4.3 we illustrate the hockey stick function and its approximations. The left

panel shows the hockey stick function and its 5-term exponential approximation. The

right panel shows the hockey stick function and its 50-term exponential approximation.

From the plots we can see that a sum of 50 exponential terms approximates the hockey

stick function very well.

Finally in Figure 4.4 we plot the approximation errors of the 25-, 50-, 100-, 200-, and

400-term approximations over the interval [0, 30]. From these plots we can see that the

approximation errors for all five choices of N converge to zero as the variable x increases.
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Figure 4.2: The singular values associated with the 25-term exponential approximation
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Figure 4.3: Left panel: 5-term exponential approximation; Right panel: 50-term expo-

nential approximation
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Figure 4.4: The panels from top to bottom are the approximation errors of the 25-term

to 400-term exponential approximations to the HS function over [0, 30], with the number

of terms doubling in successive panels.



Chapter 5

Conclusions and discussion

In this thesis we proposed four new numerical methods for estimating the expected value

of a synthetic CDO tranche loss. We first proposed three new numerical methods for

estimating the loss distribution of the underlying pool: a stable recursive method, an

improved compound Poisson approximation method, and a normal power approximation

method. The recursive method computes the exact loss distribution, whereas the other

two methods approximate the loss distribution. We showed that the recursive method is

stable. Numerical experiments illustrate that it is efficient when the underlying pool is

homogeneous in terms of loss-given-defaults or has a low dispersion of loss-given-defaults.

The improved compound Poisson approximations are efficient for high dispersion pools

while the normal power approximation is an alternative for large pools or when computa-

tional cost is generally more important than accuracy, as is the case in risk management.

We also proposed a new method that focuses on the tranche loss function itself. The

tranche loss function is expressed simply in terms of two basis functions. Each of the two

basis functions is a transformation of the hockey stick function. By approximating the

hockey stick function by a sum of exponentials, the tranche loss function is approximated

by a sum of exponentials. In this way, the estimation of the expected value of the tranche

loss function is reduced to the estimation of a series of expected values of the individual

66
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reference entities in the underlying pool. A main advantage of this method is that the

distribution of the pool loss need not be estimated.

In the thesis we also studied theoretical properties of the exponential approxima-

tion to the hockey stick function. Some of the results presented in Chapter 4 could be

strengthened. In particular, we hope to find a proof of Conjecture 1 on page 62.

As noted above, the hockey stick function h(x) is approximated by a sum of expo-

nentials:

h(x) ≈ hexp(x) =
NX

n=1

ωn exp(γnx).

Based on this approximation, the cost of computing E
�
f(L P ; ℓ, u)

�
grows linearly with

K, the number of reference entities in the underlying pool. On the other hand, as shown

in Chapter 4, the error associated with this approximation is also a linear function of N ,

the number of terms in the approximation. This is a disadvantage of this approximation,

though for a reasonably large N , say N = 100, the computed spreads are accurate enough

for practical applications. We hope to find similar approximations that converge faster.
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