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Estimating parameters for system of ODEs that best fit observed data can be chal-

lenging. The evaluation of the objective function for the parameter estimation usually

involves numerically simulating the system of ODEs, which can be computationally ex-

pensive and may even suffer from simulation failure. Previous investigation suggested the

use of a two-stage procedure by first determining promising candidate parameters using

a related objective function that is easy to evaluate before applying a gradient-based

optimizer using the full simulation objective function. In this investigation, techniques

are considered for the first stage in the two-stage procedure for the parameter estimation

problem. These techniques include physics-informed neural networks, Gaussian process

regression, Koopman-based lifting methods and unscented Kalman filtering. Other mod-

ifications to these techniques that improve the initial guesses for a better chance of

converging to the global optimum are also investigated. Experimental results for a set of

test problems from the literature are included for comparison between these approaches.
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Chapter 1

Introduction

Ordinary Differential Equations (ODEs) are commonly used in mathematical modelling

in several application areas such as investigations of population dynamics [2], enzyme

kinetics [14], cell signaling and biochemical pathways [21, 25], etc. Parameters are usually

contained in these models for them to be fully specified, and in addition, initial conditions

for the state variables are specified to form an Initial Value Problem (IVP).

A parameter estimation problem for a system of ODEs arises when we use observed

experimental data and seek to find suitable values for the parameters that best fit the

model, in the sense of seeking parameters to minimize the discrepancy between the sim-

ulated trajectory using the estimated parameters and the observed data, as measured by

a specified objective function. The evaluation of the objective function involves numeri-

cally simulating the trajectory of the model to compare the simulated state variables and

the observed data. This poses an additional challenge compared to other nonlinear opti-

mization problems, since the numerical simulation required to integrate from the initial

state until the end of the time interval of interest is usually computationally expensive

and may even suffer from occasional failures. Therefore, investigation of the numerical

techniques that are efficient yet reasonably accurate is needed for parameter estimation

of ODEs.

We first present the formulation of an ODE parameter estimation problem. We

consider the parameterized (IVP),

y′(t) = f(t, y(t), p), y(0) = y0, t ∈ [0, T ], (1.1)

where y ∈ Rny .

Given a collection of observations {ŷ(ti)}noi=1, we want to find a vector of parameters

1



Chapter 1. Introduction 2

p ∈ Rnp such that p minimizes the following least squares objective function,

L(p) =
no∑
i=1

ny∑
j=1

(ŷj(ti)− yj(ti, p))2

2σ2
ij

. (1.2)

We assume that the noise is normally distributed as N (0, σ2
ij) with variance σ2

ij, and

assume that time is measured so that time measurements {(ti)}noi=1 are accurate and do

not affect the numerical results we obtain. This allows us to formulate the problem of

minimizing (1.2) as an ordinary least-square problem. There have been several techniques

proposed to solve the above optimization problem of minimizing (1.2), and a few of

them are selected for conducting numerical experiments. Later in this investigation,

a total least-square approach will be considered to reflect the noise assumption in the

measurement data. And we may also further allow collecting measurements over a more

general distribution of the time points other than the uniform time point grids.

We consider a class of problems outlined in Section (2) that have for example been

proposed in various modelling tasks appearing in the literature, and experiments are con-

ducted over these well-known test problems using the selected techniques. The problems

include the Barnes problem previously investigated in [32, 33], the Goodwin Problem [14],

the Mendes Problem [25] and the more challenging Calcium Ion problem [21]. These test

problems are also investigated in [5] and we provide background information adopted

from [5] in Section (2). In Section (3), detailed descriptions of the techniques considered

will be presented, with some of the test problems taken as illustrating examples. We

include the numerical experiment results in Section (4) and provide discussion in Section

(5).



Chapter 2

Systems of ODEs in the Test

Problems

2.1 Calcium Ion Problem
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Figure 2.1: Plot of the true trajectory for the Calcium Ion test problem.

This system of ODEs describes the oscillations of Ca2+ ions in the cytoplasm of

eukaryotic cells, which play a role in cellular information processing. For a complete

description of this model, see [21] where this model was first proposed. The model, as

originally specified, is given by,
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G∗α
′ = k1 + k2G

∗
α − k3PLC

∗ G∗α
G∗α +Km1

− k4Cacyt
G∗α

G∗α +Km2

, (2.1)

PLC∗′ = k5G
∗
α − k6

PLC∗

PLC∗ +Km3

, (2.2)

Cacyt
′ = k7PLC

∗Cacyt
Caer

Caer +Km4

+ k8PLC
∗ + k9G

∗
α

− k10
Cacyt

Cacyt +Km5

− k11
Cacyt

Cacyt +Km6

, (2.3)

Caer
′ = −k7PLC

∗Cacyt
Caer

Caer +Km4

+ k11
Cacyt

Cacyt +Km6

, (2.4)

where the state variables are concentrations of four compounds, which interact in the

calcium-signaling pathway. For consistency with our notation, let G∗α = y1, PLC∗ = y2,

Cacyt = y3, Caer = y4, then the right-hand-side f(t, y(t), p) of (1.1) can be written as

[f1, f2, f3, f4]T . The true parameters for the problem are chosen to be k1 = 0.09, k2 = 2,

k3 = 1.27, k4 = 3.73, k5 = 1.27, k6 = 32.24, k7 = 2, k8 = 0.05, k9 = 13.58, k10 = 153,

k11 = 4.85, Km1 = 0.19, Km2 = 0.73, Km3 = 29.09, Km4 = 2.67, Km5 = 0.16,

Km6 = 0.05. Initial conditions for generating the true underlying trajectory are given by

y1(0) = 0.12, y2(0) = 0.31, y3(0) = 0.0058, y4(0) = 4.3, and they are assumed to be known

when estimating the other parameters. In this test problem, only linear parameters are

to be estimated and all of the 6 nonlinear ones are considered as fixed, resulting in a

total of 11 linear parameters to be estimated. The true trajectory is generated over

the time interval [0, 20], and a total of 201 uniformly spaced observation points along the

trajectory are taken every 0.1 time unit (∆t = 0.1). See Figure 2.1 for the plot of the true

trajectory corresponding to the choice of true parameters and initial conditions. Noise is

added relative to the magnitude of each component of the state variables and we corrupt

the true state variables with Gaussian noise whose standard deviation is proportional to

6.5% of the magnitude of the state variables, i.e, σij = 0.065 · yj(ti, ptrue), where ptrue is

the vector of true parameter values.

2.2 Barnes Problem

The Barnes Problem is often used in the parameter estimation literature for ODE models

[32, 33]. It refers to a specific parameterization of the predator-prey model, given by,
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Figure 2.2: Plot of the true trajectory for the Barnes test problem.

y′1(t) = ay1(t)− by1(t)y2(t) (2.5)

y′2(t) = by1(t)y2(t)− cy1(t) (2.6)

where y1(t) is the population of predators and y2(t) is the population of prey. The true

parameter values are given by a = 1, b = 1, c = 1, and the initial conditions are given

by y1(0) = 1 and y2(0) = 0.3. The true trajectory is simulated over the time interval

[0, 20], with a total of 41 uniformly spaced observation points taken every 0.5 time units.

See Figure 2.2 for the plot of the true trajectory corresponding to the choice of true

parameters and initial conditions. Gaussian noise relative to 10% of the magnitude of

each component of the true state variables is added to finally generate the corrupted

observation datapoints.

2.3 Goodwin Problem

This system of ODEs models a biological oscillator [14], which has been investigated in

applications including enzyme kinetics and circadian clocks [13]. This negative feedback

loop model is given by,
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Figure 2.3: Plot of the true trajectory for the Goodwin test problem.

y′1(t) =
a

A+ y3(t)σ
− by1(t) (2.7)

y′2(t) = αy1(t)− βy2(t) (2.8)

y′3(t) = γy2(t)− δy3(t) (2.9)

There are 6 linear parameters and 2 nonlinear ones, namely A and σ. The true

parameters values are given by a = 3.4884, A = 2.15, b = 0.0969, α = 0.0969, β = 0.0581,

γ = 0.0969, σ = 10, δ = 0.0775 and the initial conditions are given by y1(0) = 0.3617,

y2(0) = 0.9137, and y3(0) = 1.393. In our investigations, the nonlinear parameters A

and σ are treated to be known and fixed, and only the other 6 linear parameters are

to be estimated. The true trajectory is generated over the time interval [0, 80], and a

total of 101 uniformly spaced observation points are taken, with ∆t = 0.8. See Figure

2.3 for the plot of the true trajectory corresponding to the choice of true parameters and

initial conditions. Gaussian noise with standard deviation proportional to 6.5% of the

magnitude of each component of the state vectors is then added to generate the observed

datapoints for the parameter estimation task.
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2.4 Mendes Problem

Mendes problem is a benchmark problem that was originally posed in [25] and has been

subsequently studied [29, 28, 1, 10]. In our notation, this model can be expressed as,

y′1(t) =
k1

1 +
(
P
q1

)q2+( q3
S

)q4 − k2y1 (2.10)

y′2(t) =
k3

1 +
(
P
q5

)q6+( q7
y7

)q8 − k4y2 (2.11)

y′3(t) =
k5

1 +
(
P
q9

)q10+( q11
y8

)q12 − k6y3 (2.12)

y′4(t) =
k7y1

y1 + q13

− k8y4 (2.13)

y′5(t) =
k9y2

y2 + q14

− k10y5 (2.14)

y′6(t) =
k11y3

y3 + q15

− k12y6 (2.15)

y′7(t) =
k13y4( 1

q16
)(S − y7)

1 + ( S
q16

) + ( y7
q17

)
−
k14y5( 1

q18
)(y7 − y8)

1 + ( y7
q18

) + ( y8
q19

)
(2.16)

y′8(t) =
k14y5( 1

q18
)(y7 − y8)

1 + ( y7
q18

) + ( y8
q19

)
−
k15y6( 1

q20
)(y8 − P )

1 + ( y8
q20

) + ( P
q21

)
. (2.17)
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Figure 2.4: Plot of one of the 16 true trajectories in the Mendes test problem, corre-
sponding to P = 1, S = 0.4642.
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There are a total of 36 parameters in the model (k1, . . . , k15 and q1, . . . , q21), with 15 linear

parameters and 21 nonlinear parameters. Each parameter is assumed to lie in the range

[10−12, 106], except for the Hill coefficients (q2, q4, q6, q8, q10, q12), which are assumed

to lie in [0.1, 10]. The true parameters are given by k1−6 = 1, k7−12 = 0.1, k13−15 = 1,

q1,3,5,7,9,13−21 = 1, q2,4,6,8,10,12 = 2. Initial conditions are chosen to be,

y(0) = [0.66667, 0.57254, 0.41758, 0.4, 0.36409, 0.29457, 1.419, 0.93464],

P is chosen from {0.05, 0.13572, 0.3684, 1} and S is chosen from {0.1, 0.46416, 2.1544,

10}. These values of P ’s and S’s together form 16 combinations and simulations are run

for each of these combinations. For each of the trajectories corresponding to one pair

of P and S, a total of 21 uniformly spaced observation points are taken over the time

interval [0, 120] with ∆t = 6, and there are 16 sets of such state variable vector data

resulting in a total of 16× 21 = 336 state vector data points. See Figure 2.4 for the plot

of one of the 16 true trajectories corresponding to one pair of P and S values with P = 1

and S = 0.4642. In the test problem, all nonlinear parameters are fixed so that only

linear parameters are to be estimated, and initial conditions as well as the values of P ’s

and S’s are assumed to be known. Relative Gaussian noise with standard deviation to

be 3% of the magnitude of each component of the the state variables is added to generate

the observed data.

In addition to the experiments using observed data scattered over uniform grid of

timepoints, we also note that two of the techniques we consider INT-SME and SME, are

justified by and dependent on a reasonably good approximation to the underlying true

trajectory. This indicates that we may need more data points in the neighbourhood of

some critical points within region of interest to achieve smoother approximations. Specif-

ically, if the state variable is changing rapidly within certain region of the time interval, it

may not be enough to interpolate the observed trajectory well if we only include observa-

tions over uniformly spaced timepoints. In order to account for the potential smoothness

issue in interpolation, we allow the experiments to include additional observations points

over a finer mesh in regions where the state variables change rapidly, and where we expect

to achieve more suitable approximation.



Chapter 3

Techniques Considered

Typical gradient-based optimization with direct simulation of IVP (1.1) may suffer from

a high cost of the numerical solver used in the simulation, and the risk of failure arising

during the simulation. In addition, at best only a local minimum may be obtained

if starting with an initial guess not sufficiently close to the true optimum value. The

Smooth and Match Estimator (SME) [15] is motivated by the fact that, a good initial

guess can often be obtained by introducing a related parameter estimation problem with

the objective function,

min
p

∫ T

0

‖(ỹ′(t)− f(t, ỹ(t), p))‖2
dt, (3.1)

where is ỹ(t) a smoothed curve designed to match the observed target trajectory. Equa-

tion (3.1) involves only trajectory time derivative estimation on the smoothed curve and a

numerical quadrature rule can be used to approximate the value of this objective function

instead of a usually more expensive numerical simulation of (1.1). With the objective

function (3.1), samples drawn from larger areas of the search space can be considered

in an attempt to reduce the chance of being trapped at a local minimum. Also, as will

be discussed in the next section, if the IVP (1.1) has some special structure, some of

the parameters which appear non-linearly in the objective function (1.2) might become

linear parameters when the objective function (3.1) is applied.

A two-stage procedure has been developed to address some of the difficulties that

arises in the parameter estimation problems: in the first stage, an initial guess of the

parameter p0 is obtained by solving the optimization problem (3.1). Once a good enough

initial guess is found, full evaluation of (1.2) by simulating IVP (1.1) and gradient-based

techniques are used in the second stage to potentially achieve superlinear convergence by

employing a Newton-type optimization technique applied to (1.2).

9
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3.1 Techniques for Obtaining Suitable Initial Guesses

INT-SME Exploiting ODE Structure

Instead of using the derivative of the smoother as in SME, Dattner [8] suggested an

integral form of smooth and match estimator (called INT-SME) which is of the form,

min
p

∫ T

0

∥∥∥∥ỹ(t)−
(
y0 +

∫ t

0

f(s, ỹ(s), p) ds
)∥∥∥∥2

dt, (3.2)

Calver [5] proposed an INT-SME formulation that further exploits special structure

of the ODE when there are both linear parameters and nonlinear parameters in the

ODE. Specifically, he considered ODEs in which the right hand side function f can be

decomposed into,

f(t, y(t), p) = G(t, y(t), q)r +G(t, y(t), q), (3.3)

where r is the vector of parameters appearing linearly and q the vector of parameters

appearing nonlinearly in f . Note in the experiments reported here, G is simply zero.

When the structure in (3.3) is considered, (3.2) becomes

min
q

∫ T

0

∥∥∥ỹ(t)−
(
y0 +

[ ∫ t

0

G(s, ỹ(s), q) ds
]
r(q) +

∫ t

0

g(s, ỹ(s), q) ds
)∥∥∥2

dt, (3.4)

where r(q) is the unique linear least square solution for a given fixed q, therefore (3.4)

can be solved with respect to only the nonlinear parameters q. In test problems in which

all parameters appear linearly, the initial guess of the parameters can be obtained in one

iteration of the associated linear least square problem.

For example, for the Calcium Ion problem we introduced in Section (2), the spe-

cial structure in the system of ODEs (2.1)-(2.4) allows us to decompose the problem

into subproblems by grouping the linear and non-linear parameters according to their

appearance in the ODEs. The right-hand-side of the IVP in (1.1), f(t, y(t), p) can be

decomposed into 3 independent parts, with p = r for the case of linear parameter estima-

tion, and p = [r; q] if nonlinear parameters are to be estimated, where linear parameters

r = [k1, . . . , k11]T ∈ R11 and nonlinear parameters q = [Km1, . . . , Km6]T ∈ R6. Specifi-

cally, there are 4 linear parameters and 2 nonlinear parameters in the first subproblem

(namely, k1−4 and Km1−2), 2 linear parameters and 1 nonlinear parameter in the second

subproblem (k5−6 and Km3), and 5 linear parameters and 3 nonlinear parameters in the
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third subproblem (k7−11 and Km4−6). We refer the reader to [5] for a detailed description

of this decomposition of the Calcium Ion problem that exploits the sparsity structure in

this system of ODEs.

Once we have the observed data or its associated smoothed trajectory, an INT-SME

objective function can be formulated for each of the 3 independent subproblems. And

the least-square problem of minimizing (3.4) for each of the subproblems can be solved

independently.

Physics Informed Neural Networks (PINNs)

Neural networks have gained increasing popularity in machine learning tasks such as

classification and regression, and among the recent advances, Physics informed neural

networks [26, 27] utilize a deep learning framework for the approximate solution of non-

linear partial differential equation, as well as model parameter estimation. A neural

network consists of input units, output units as well as layers of hidden units and the

connections between these units together with nonlinear activation function. Each unit

calculates its weighted sum of the outputs passed by units from the previous layer con-

nected to it and outputs its activation function value using the calculated weighted sum,

which will then be passed to the next layer. In regression tasks, pairs of input and ex-

pected output values are collected and form a training set. A neural network is trained

with respect to the weights in the connections to approximate the true input-output

function.

PINNs act as such function approximators in a regression task, which by the uni-

versal approximator theorem [16] of neural networks, are capable of approximating gen-

eral systems with physical laws encoded by differential equations. PINNs are used to

approximate the solution of the differential equations, with temporal/spatial variables

as inputs, and temporal/spatial derivatives calculated through automatic differentia-

tion. The neural networks are trained to minimize an objective function that enforces

the differential equation constraints at a set of specified collocation points {tid, xid}
Nd
i=1

as well as at initial and boundary points {tiu, xiu}Nui=1. In particular, in the PDE case,

we denote the solution function approximated by the neural network as u(t, x), and

d(t, x) = ∂u
∂t
−f(t, x, u(t, x), p) (p assumed to be known) is the residual of the right-hand-

side function evaluation and time derivative determined by automatic differentiation.

The objective function is set to

MSE = MSEu +MSEd, (3.5)
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where

MSEu =
1

Nu

Nu∑
i=1

|u(tiu, x
i
u)− ui|2, MSEd =

1

Nd

Nd∑
i=1

|d(tid, x
i
d)|2,

and ui is the solution function value given at the initial/boundary point (tiu, x
i
u).

The setup of the neural network for a parameter estimation problem is similar, but

with the objective set to minimize simultaneously the difference between the output of the

network and the observed data as well as the degree to which the governing differential

equation fails to be satisfied at the sampled points. In the specific case of applying the

technique to ODE parameter estimation, the solution function approximated by neural

network is denoted u(t) with d(t) = ∂u
∂t
−f(t, u(t), p), and the objective function becomes

MSE = MSEu +MSEd, (3.6)

where

MSEu =
1

no

no∑
i=1

|u(ti)− ŷ(ti)|2, MSEd =
1

no

no∑
i=1

|d(ti)|2,

in which {ti, ŷ(ti)}noi=1 are the collected data and both the shared neural network weights

in u(t) and d(t) as well as ODE parameters p are optimized with respect to (3.6).

In the experiments conducted in Section (4), the PINN-approximated trajectory is

used as a smoother which is obtained by optimizing neural network parameters with

respect to only MSEu and then employed in the INT-SME framework to obtain a suitable

initial guess. However, since parameter estimation is provided by PINN as well, those

estimated parameters could also be interpreted as an alternative initial guess.

Koopman-based Lifting Techniques

The Koopman-based lifting techniques [23] for nonlinear system identification are based

on the Koopman Operator [3, 19], and several extensions to Dynamic Mode Decomposi-

tion [37, 22, 38].

It approximates the evolution of nonlinear observable functions of the states by defin-

ing and approximating linear infinite-dimensional operators (the Koopman Operator)

on the observables. We assume the vector field function f(t, y(t), p) in (1.1) can be ex-

pressed as a vector-valued function F(y) ∈ Rny in the form of a weighted combination of

known/prescribed library functions. Specifically we assume, the system to be identified

has a simpler structure and can be written as
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y′ = F(y), y ∈ Rny , (3.7)

where the vector field F(y) is a weighted combination of NF scalar library functions hk(y),

F(y) =

NF∑
k=1

wkhk(y), (3.8)

with wk = [w1
k, . . . , w

ny
k ]T ∈ Rny to be identified. If we consider separating the vector of

parameters p into a vector of linear parameters r and a vector of nonlinear parameters q

(see equation (3.3) for definition of r and q), wk will be composed of elements of r, while

in the nonlinear parameter estimation case, the library function hk could also depend on

q. Our investigation currently considers only the linear parameter estimation case.

Assume we have collected snapshot pairs of observed state variables,

[ŷ(ti), ŷ(ti+1)] ∈ Rny×2, i ∈ {1, . . . , no − 1},

based on Koopman theory, nonlinear evolution can be approximated by finite-dimensional

projection of the Koopman operator. In the main lifting method proposed in [23], N basis

functions [g1(y), . . . , gN(y)]T ≡ g(y) ∈ RN (treated as observable functions) are chosen

to approximate the discrete evolution of (3.7) over uniformly spaced observation time

points (with ∆t = ti+1 − ti),

g(ŷ(ti+1))T ≈ g(ŷ(ti))
TU (3.9)

where U ∈ RN×N and ŷ(ti) is the ith observation state variable in time. If we stack each

g(ŷ(ti)), g(ŷ(ti+1)) and construct the matrices

M1 =


g(ŷ(t1))T

...

g(ŷ(tno−1))T

 , M2 =


g(ŷ(t2))T

...

g(ŷ(tno))
T

 , (3.10)

then the linear least-square solution to equation (3.9) can be written as: U ≈ M1
†M2,

where † denotes the Moore-Penrose pseudo-inverse.

The matrix U is approximated from the observed data, and a matrix logarithm

L = 1
∆t

log U is introduced as the matrix such that exp{∆tL} = U. L is used to re-

construct the coefficients {wk}nk=1 of the library functions {hk}nk=1. Specifically, with L

we have an approximation of the vector field in terms of the basis functions chosen, and

to recover the coefficients wk in (3.8), we adopt the straightforward method of projecting
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the approximated vector field values at the sampled points by a weighted combination of

basis function values onto the space spanned by the library functions. Taking into con-

sideration the sparsity structure of right-hand-side of (1.1) (i.e., not all library functions

appear in every component of the function f(t, y(t), p)), the space spanned by a subset of

library functions is considered for each state variable. Solving the least-square problem

arising from this linear regression of projecting basis function space onto library function

space will provide an initial guess of the ODE parameters. Note [23] also suggests ways

to perform identification of the coefficients {wk}nk=1 for non-polynomial vector field, but

it may not enforce certain sparsity structure (see (3.11) for example coefficients in the

Calcium Ion problem below) for the library functions. Other vector field identification

techniques suggested in [23, 22] using least-square solution over a set of overdetermined

set of equations together with sparsity promoting techniques could be further investigated

and is left for future work.

In the above derivation of the methods, state variable observations are assumed to

be exact and the matrices M1 and M2 contain no noise. However, the methods proposed

could also suffer from the difficulty of noise in the observation data and denoising in this

case could be more complicated than is the case for ordinary least-squares when obtaining

an approximation of U. Noise in matrices M1 and M2 come from both the measurements

and (non-)linear basis functions: the noise term σ2
ij in (1.2) can affect M1 and M2 either

appearing as direct entries (through identity basis functions) or through (non-)linear

function transformations. Several denoising techniques have been considered to address

this issue of noisy observations in the data. There are three denoising techniques proposed

in [9], namely 1) noise-corrected DMD (ncDMD), which includes a direct correction of the

bias caused by noise and identified using known noise properties, 2) forward/backward

DMD (fbDMD), which combines the DMD results in both forward pass and backward

pass, and 3) total least-squares DMD (tlsDMD) that accounts for noise involved in both

the previous and the next time step when finding the least-squares solution to (3.9).

In the experiments reported here, fbDMD seems to be more effective, thus results are

presented only for the fbDMD Koopman-based lifting technique.

To illustrate the usage of the Koopman-based lifting technique, the Calcium Ion

problem is used to instantiate some of the key matrices/variables introduced above.

The system of ODEs in this problem can be expressed in the form of equation (3.8) as

F(y) =
∑NF

k=1 wkhk(y) with NF = 11 and the library functions include monomials of the

state variables of degree up to 1, together with 6 non-polynomial terms appearing in the

right-hand-side of the system of ODEs (2.1)-(2.4), namely y2
y1

y1+Km1
, y3

y1
y1+Km2

, y2
y2+Km3

,

y2y3
y4

y4+Km4
, y3
y3+Km5

and y3
y3+Km6

. The true coefficients w = [w1,w2, . . . ,w11] ∈ R4×11 for
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the vector field in this test problem can then be represented as,

w =


k2 · · · k1 −k3 −k4 · · · ·
k5 · · · · · · −k6 · · ·
k9 k8 · · · · · · k7 −k10 −k11

· · · · · · · · −k7 · k11

 , (3.11)

where dots represent zero entries in the matrix.

We chose the basis functions to be the same as the library functions in this case. Then

g is a function that maps R4 to R11, and the matrix M1
T = [g(ŷ(t1)), . . . , g(ŷ(tno−1))] can

be expanded as,

M1
T =



ŷ1(t1) · · · ŷ1(tno−1)

ŷ2(t1) · · · ŷ2(tno−1)

ŷ3(t1) · · · ŷ3(tno−1)

ŷ4(t1) · · · ŷ4(tno−1)

1 · · · 1

ŷ2(t1) ŷ1(t1)
ŷ1(t1)+Km1

· · · ŷ2(tno−1) ŷ1(tno−1)
ŷ1(tno−1)+Km1

ŷ3(t1) ŷ1(t1)
ŷ1(t1)+Km2

· · · ŷ3(tno−1) ŷ1(tno−1)
ŷ1(tno−1)+Km2

ŷ2(t1)
ŷ2(t1)+Km3

· · · ŷ2(tno−1)
ŷ2(tno−1)+Km3

ŷ2(t1)ŷ3(t1) ŷ4(t1)
ŷ4(t1)+Km4

· · · ŷ2(tno−1)ŷ3(tno−1) ŷ4(tno−1)
ŷ4(tno−1)+Km4

ŷ3(t1)
ŷ3(t1)+Km5

· · · ŷ3(tno−1)
ŷ3(tno−1)+Km5

ŷ3(t1)
ŷ3(t1)+Km6

· · · ŷ3(tno−1)
ŷ3(tno−1)+Km6



, (3.12)

and the matrix M2 can be populated similarly, with data points collected over the time

points t2, . . . , tno . Once an approximation of the discrete evolution is obtained using

(3.9) with the populated M1 and M2, and the matrix logarithm L is obtained for the

approximation of the vector field in terms of the basis functions, we need to reconstruct

the coefficients [w1,w2, . . . ,w11] by projecting the approximated vector field values at

the observed time points using library functions evaluated at the same time points.

This projection is performed because of the fact that by solving (3.9), sparsity of the

weights wk’s for the vector field as illustrated in (3.11) may not be observed and the

approximated coefficients w̃k’s could contain more non-zero entries than desired. In the

Calcium Ion problem for the first state variable, the approximated vector field values

F̃1 = [F̃1(t1), ...F̃1(tno)]
T are obtained by taking a weighted combination of all 11 basis
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functions, which is [LT1 ·g(ŷ(ti)), . . . ,L
T
1 ·g(ŷ(tno))], where L1 is the column of L related to

the basis function y1. Note the true coefficients for the first state variable only involve 4

non-zero weights, namely, k1,k2,k3 and k4 (see the first row in (3.11)), while components

in L1 could all be non-zero. We then project the approximated vector field F̃1 in a least-

square way, with the 4 library functions involved in (2.1), namely 1, y1, y2(t1) y1
y1+Km1

and

y3
y1

y1+Km2
. These approximated vector field values at the observed time points are used

as right-hand-side of the least-square problem with the 4 library functions evaluated at

the datapoints as the left-hand-side, and we seek least-square solution for [k1, k2, k3, k4]T

as the approximation for the (non-zero) coefficients in first row of w. And the projections

for obtaining other coefficients in w are performed state variable by state variable.

Note the basis functions chosen in the test problem act as a way of providing good

enough approximation to the vector field. Other non-linear basis functions such as set

of higher degree monomials could also be further investigated as a way of approximating

complex vector field with higher accuracy.

As mentioned above, the Koopman-based technique could be sensitive to the obser-

vation noise. The denoising method forward/backward DMD (fbDMD) proposed in [9] is

adopted for the numerical experiments reported below. Forward/backward DMD com-

putes the matrices approximating discrete evolution of the dynamical system forward in

time as well as for the dynamics backward in time, by swapping M1 and M2 (i.e., in

forward-time each observed state variable snapshot pair transits from ti to ti+1 while in

backward-time from ti+1 back to ti). The matrix Ub approximating the linear operator

of the reverse dynamical system should be expected to be an estimate of the inverse of

the matrix U obtained in the forward pass, with U ≈ (Ub)−1. Once approximations for

the forward-time and backward-time matrices are obtained, a denoised estimate of the

discrete evolution in (3.9) can be determined by combining U and Ub in the following

way,

Ũ =
(
U(Ub)−1

) 1
2 (3.13)

To solve Ũ in (3.13), either a matrix square root finder or matrix logarithms could

be considered. Since matrix logarithms are required to obtain an approximation for the

vector field, we adopt the proposed alternative in [9] by taking the average of the matrix

logarithms, with L = 1
∆t

log U and Lb = 1
∆t

log(Ub)−1,

L̃ =
1

2

(
L + Lb

)
(3.14)

Then a denoised approximation to the vector field can be obtained and vector field
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values are calculated in the subsequent steps with L̃ to identify the coefficients w.

Unscented Kalman Filtering (UKF)

Kalman Filtering (KF) [18] was first introduced for state variable estimation and cor-

rection from noisy measurements under (known) linear dynamics. Extended Kalman

Filtering (EKF) and Unscented Kalman Filtering (UKF) [17] were later proposed to deal

with nonlinear dynamics during the process. EKF linearizes the nonlinear dynamics

by considering multi-dimensional Taylor expansions to obtain the model-predicted next

states. UKF applies the nonlinear dynamics on a set of carefully selected deterministic

points (called sigma points). These points provide approximation of the moments of the

filter density up to a certain order, which is in the class of statistical linearization schemes

[11]. Specifically, assume that Yi ≡ y(ti) ∈ Rny and Ŷi ≡ ŷ(ti) ∈ Rm are the state and

observation vectors at time ti. The discrete time difference equation is then,

Yi = T(Yi−1), (3.15)

Ŷi = V(Yi) + ηi, (3.16)

where T(Yi−1)) = Yi−1 +
∫ ti
ti−1

f(s, y(s), p)ds with f being the right-hand-side function

in (1.1), and ηi is the uncorrelated Gaussian observation noise at time ti. V is the

observation function and in our experiments, V is simply the identity and m = ny. Note

that additional process noise can be considered in (3.15), but in the current investigation,

only deterministic dynamics is studied.

The Kalman filter approach consists of a prediction and a correction step. Given the

previous observations Ŷ1:i = {Ŷ1, Ŷ2, . . . , Ŷi} up to time ti and the evolution dynamics

T, Kalman filter predicts the most likely state estimation z(ti|ti−1) and its associated

observations ẑ(ti|ti−1),

z(ti|ti−1) = E[Yi|Ŷ1:i] = E[T(Yi−1)|Ŷ1:i], (3.17)

ẑ(ti|ti−1) = E[Ŷi|Ŷ1:i] = E[V(Yi)|Ŷ1:i], (3.18)

And the associated covariances or prediction error in the estimation is given by:

P(ti|ti−1) = E[(Yi − z(ti|ti−1))(Yi − z(ti|ti−1))T |Ŷ1:i], (3.19)
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PŶŶ(ti|ti−1) = E[(Ŷi − ẑ(ti|ti−1))(Ŷi − ẑ(ti|ti−1))T |Ŷ1:i], (3.20)

PYŶ(ti|ti−1) = E[(Yi − z(ti|ti−1))(Ŷi − ẑ(ti|ti−1))T |Ŷ1:i]. (3.21)

Then in the correction step, Kalman filter updates the predictions for the state and

estimation error using the new observation ŷ(ti):

z(ti|ti) = z(ti|ti−1) + Ki(ŷ(ti)− ẑ(ti|ti−1)), (3.22)

P(ti|ti) = P(ti|ti−1)−KiPŶŶ(ti|ti−1)KT
i , (3.23)

where Ki is the Kalman gain matrix at time ti that represents the uncertainties given by

the errors of the previous prediction step and it is defined as

Ki = PYŶ(ti|ti−1)P−1

ŶŶ
(ti|ti−1). (3.24)

For linear dynamics, equations (3.17) and (3.18) can be solved analytically. For

nonlinear dynamics, the difference between EKF and UKF comes from the different

treatment of equations (3.17) and (3.18). EKF deals with the nonlinear dynamics by local

linearization and UKF applies the nonlinear dynamical transformation (i.e., performing

the integration) to the set of sigma points {Xl}2ny
l=0 selected by

X0(ti−1|ti−1) = z(ti−1|ti−1),

Xl(ti−1|ti−1) = z(ti−1|ti−1) +
√

(ny + κ)P(ti−1|ti−1),

Xl+ny(ti−1|ti−1) = z(ti−1|ti−1)−
√

(ny + κ)P(ti−1|ti−1), (3.25)

with l = 1, . . . , ny. The value of κ is tunable but was fixed to zero in the experiments

reported here for simplicity.

Nonlinear evolution and its associated observations are applied to the set of sigma points:

Xl(ti|ti−1) = T(Xl(ti−1|ti−1)), (3.26)

Yl(ti|ti−1) = V(Xl(ti|ti−1)), (3.27)

and equations (3.17) and (3.18) can be approximated by
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z(ti|ti−1) =

2ny∑
l=0

WlXl(ti|ti−1), (3.28)

ẑ(ti|ti−1) =

2ny∑
l=0

WlYl(ti|ti−1), (3.29)

and covariance

PŶŶ(ti|ti−1) =

2ny∑
l=0

Wl{Yl(ti|ti−1)− ẑ(ti|ti−1)}{Yl(ti|ti−1)− ẑ(ti|ti−1)}T , (3.30)

PYŶ(ti|ti−1) =

2ny∑
l=0

Wl{Xl(ti|ti−1)− z(ti|ti−1)}{Yl(ti|ti−1)− ẑ(ti|ti−1)}T , (3.31)

P(ti|ti−1) =

2ny∑
l=0

Wl{Xl(ti|ti−1)− z(ti|ti−1)}{Xl(ti|ti−1)− z(ti|ti−1)}T , (3.32)

where the weights Wl, l = 0, . . . , 2ny are defined as,

W0 =
κ

ny + κ
, (3.33)

Wl =
1

2(ny + κ)
, (l = 1, . . . , 2ny). (3.34)

In a subsequent investigation of [31], UKF was used in parameter estimation by

augmenting the parameters as additional state variables with zero dynamical evolution.

It starts with observation point at the initial time, with both the original state variables

and the augmented parameters updated as in UKF, and the filtering process proceeds

until the end of the trajectory.

For example in the Calcium Ion problem, the transition dynamics T on the state

variables with the linear parameters as the augmented states can be written as,
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T(Yi−1) = T(



y1(ti−1)

y2(ti−1)

y3(ti−1)

y4(ti−1)

k1

...

k11


) =



y1(ti−1)

y2(ti−1)

y3(ti−1)

y4(ti−1)

k1

...

k11


+



∫ ti
ti−1

f1(s, y(s), p)ds∫ ti
ti−1

f2(s, y(s), p)ds∫ ti
ti−1

f3(s, y(s), p)ds∫ ti
ti−1

f4(s, y(s), p)ds

0
...

0


, (3.35)

where the last 11 components of Yi−1 are the linear parameters (augmented states) with

zero dynamics (i.e., parameters in the system of ODEs (2.1)-(2.4) are assumed to be

constant throughout the interval of interest). Once the transition dynamics T is specified,

other steps in the UKF approach can be followed to provide estimation of the predicted

state variables including the parameters, and the uncertainty of the estimation.

A natural way to combine UKF with INT-SME is to use UKF to refine the crude

initial guess obtained by INT-SME. However, this approach trades a higher cost for a

nonlinear dynamics simulation in every timestep during the filtering to obtain a more

accurate initial guess for the second stage.

Gaussian Process (GP)

A Gaussian process [36] can be viewed as a distribution over functions, while its infer-

ence takes place directly in the function space. It is a collection of random variables,

any finite number of which have a joint Gaussian distribution. It is a non-parametric

probabilistic model for function estimation that is widely used in tasks such as regres-

sion and classification, and in our case, the random variables are the function values

at specific locations. A Gaussian process is completely specified by its mean function

µ(t) and covariance function or kernel : k(t, t′). For a multi-dimensional state variable,

a Gaussian process regression could be used as smoother for each state variable with

function values at points outside of recorded time points inferred in the following way.

For a specific state variable yj, with zero mean and squared exponential covariance prior

(k(t, t′) = exp(−1
2
|t− t′|2)) and all the available training input points (stacked recorded

time points) D = [t1, . . . , tno ]
T ∈ Rno , to infer function values on new test points (time

points outside of recorded timestamps) D∗ = [t∗1, . . . , t
∗
nt ]

T ∈ Rnt , function values at

training points s = [yj(t1), . . . , yj(tno)]
T as well as the approximated function values at

test points s∗ = [ỹ(t∗1), . . . , ỹ(t∗K)]T satisfy the prior distribution:
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[
s

s∗

]
∼ N (0,

[
K(D,D) K(D,D∗)

K(D∗, D) K(D∗, D∗)

]
), (3.36)

where K(D,D∗) denotes the matrix with each entry being the covariances evaluated

at all pairs of training and test points, and similarly for the other matrices K(D,D),

K(D∗, D∗) and K(D∗, D). The posterior distribution of s∗ is then given by

s∗|D∗, D, s ∼ N (K(D∗, D)K(D,D)−1s,

K(D∗, D∗)−K(D∗, D)K(D,D)−1K(D,D∗)). (3.37)

When considering noisy observations ŷ(t) = y(t) + ε where ε ∼ N (0, σ2), distribution

(3.36) is replaced by

[
ŝ

s∗

]
∼ N (0,

[
K(D,D) + σ2I K(D,D∗)

K(D∗, D) K(D∗, D∗)

]
), (3.38)

where ŝ = [ŷj(t1), . . . , ŷj(tno)]
T and the posterior distribution is derived accordingly. The

mean function of the posterior distribution can be used as a smoother for the observed

data.

The kernel of choice reflects the covariance assumptions for the underlying process

to be modeled. There have been several investigations [4, 35, 34] of applying GP to

parameter estimation that were largely inspired by the SME approach to parameter

estimation by treating the Gaussian process approximated curve as a smoother for the

observed trajectory.

In our experiments, Gaussian process regression is used to obtain smoothed curves

for each state variable. The standard MATLAB Gaussian Regression Regression routine

fitrgp is used as a way for smoothing the observed trajectories. Take the Calcium

Ion problem as an example, regression values for the state variables are sought at their

original observed time points, i.e., t∗i is set to be ti. Focus on the first state variable

for example, and stack the observed state variables over the interval of interest as s =

[ŷ1(t1), . . . , ŷ1(tno)]
T . A Gaussian process regression is then conducted by first populating

the matrix K(D,D) (and similarly K(D∗, D)) as,
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
exp(−1

2
|t1 − t1|2) exp(−1

2
|t1 − t2|2) . . . exp(−1

2
|t1 − tno|2)

exp(−1
2
|t2 − t1|2) exp(−1

2
|t2 − t2|2) . . . exp(−1

2
|t2 − tno|2)

...
...

. . .
...

exp(−1
2
|tno − t1|2) exp(−1

2
|tno − t2|2) . . . exp(−1

2
|tno − tno |2)

 (3.39)

with the simple squared exponential kernel for illustrating purpose. And the regression

values s∗ of the state variable y1 at the observed times points can then be obtained by

performing inference over the probability distribution (3.38).

Once the regression values s∗ is obtained for the first state variable y1, similar regres-

sion process can be performed for the other state variables. Note that in the Gaussian

process approach, no model information from the system of ODEs is incorporated into

the regression model. Further investigation could be left as future work to explore a more

informed inference process combining the specific parameter estimation task for a system

of ODEs with the Gaussian process regression.

3.1.1 Techniques to include a wider range of initial guesses

Even with the two-stage procedure and a cheaper objective function to evaluate so that

suitable parameters can be obtained in the first stage, there is still a chance of only

finding suboptimal local minimum as can be observed in the results for the Calcium Ion

problem in Chapter (4). One could also consider running the first stage optimization

over a subset of observations, or even statistically generated trajectories to provide more

candidate initial guesses to consider before starting the second stage.

Progressive Shooting (PS)

Integration of the IVP (1.1) with parameter values far from the true ones often leads to

a numerical solution that only remains close to observation points near the initial time.

Based on this observation, Incremental Shooting [24] and Progressive Shooting [20] have

been motivated and introduced to circumvent the potential risk of failure of the simulation

with certain parameter values before the final time T or the discovery of a poor local

minimum that would otherwise occur if further fitting with those inappropriate parameter

values were continued. In implementation, Progressive shooting proceeds by optimizing

parameters over a subset of the observation points near the initial observation, and

progressively include increasing observation points over a longer interval in the definition

of the objective function until the end of the interval of interest is included.
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Calver et al. [6] proposed the use of INT-SME combined with the ideas from PS

(named, PS-INT-SME) and the proposed technique effectively improved the performance

on problem such as the linear parameter estimation in the Calcium Ion problem.

Datapoint Perturbation

One of the major benefits of PS-INT-SME is that they can provide multiple promising

candidate starting vector to consider for the second stage optimization. These initial

guesses are obtained by having different but related objective functions that depend on

different parts of the trajectory. A different approach for providing additional initial tri-

als could be to perturb the datapoints, either the smoothed/estimated trajectory or the

originally collected observations, according to the probability distribution of the noise as-

sumption or the probability model of the smoothed trajectory. The smoothed trajectory

acts as an approximation to the underlying true trajectory, and generating additional

trajectory samples is a process of obtaining additional sets of similar observations. These

generated trajectory samples could be used to form different objective functions, thus

giving rise to additional initial trials for better chance of escaping suboptimal local min-

imum if considering only the original noisy observations. A collection of initial guesses,

including the one obtained with the original observations, will be ranked according to

the objective function involving full simulation, to run in the second stage.

In terms of how the previous techniques can be used with datapoint perturbation,

some of the models already enjoy a statistical derivation and could be directly suitable

for trajectory sample generating, for example Gaussian process. However in the following

experiments, noise with variance relative to the magnitude of the estimated trajectory is

added to generate additional trajectories. This is consistent with the noise assumption

in the test problems. To use the model itself to generate trajectory samples, additional

effort should be made to derive a variation of the model to reflect the relative noise setting

(which is left as future investigation). For UKF, the filtering process already considers the

influence of noise and produces an estimated mean and covariance of the parameters. We

will use this mean and covariance estimate to generate additional parameters to include

in the collection of initial guesses.

For PINN, Koopman and INT-SME, there is no probabilistic justification for these

techniques and they are derived from a deterministic point of view. Instead, noise rel-

ative to the magnitude of the observed trajectory (for Koopman and INT-SME) or the

smoothed trajectory (for PINN) is added to generate additional trajectories and obtain

additional promising trial parameters to consider for the initial guesses.
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3.1.2 Integration of the Above Techniques

In summary, the different techniques introduced above can be integrated into the two

stage procedure using INT-SME in the following ways,

• PINNs and GPs are used to smooth the data then run INT-SME on the smoothed

curve and/or the original observed trajectory. Note that PINNs could also provide

initial guesses for the parameters if the technique for identifying the underlying

differential equation parameters in [27] is used.

• UKF could provide both a filtered trajectory and a refined initial guess of p0.

• Koopman technique provides its own initial guess by estimating the vector field

with a different theoretical background, which is an independent way of generating

the initial guess for the parameters.

The second stage optimization with the objective function (1.2) evaluated by full

simulation of the IVP will be run after each of the above techniques.

When datapoint perturbation is used in combination with the above methods,

• For PINNs and GP, artificial relative noise is added to PINN- and GP-smoothed

curve to generate additional trajectories to obtain more promising candidates for

the initial guesses by INT-SME.

• For the Koopman technique, the observed trajectory is further perturbed by noise

relative to the magnitude of the observed state variables, before populating the

matrices.

• For UKF, additional initial guesses are drawn from the resulting probability distri-

bution that describes the uncertainty of the filtered parameters.

In all of the above cases, a total of NP sets of perturbed data points/additional initial

guesses are drawn from each individual distribution and we found that NP = 20 would

give reasonable results. Note that to encourage a larger number of promising parameter

candidates to be included in the trials, the initial guess (or the refined initial guess) by

each method running on the original observed data will be kept.

3.2 Total Least Squares

It is well-known that if the independent variables contain errors, then the results of linear

regression produce biased estimates. When formulating the linear least square matrix
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from equation (3.4), if all parameters appear linearly in (1.1) and G = 0, the least square

problem becomes,

min
r

∫ T

0

∥∥∥(ỹ(t)− y0

)
−
[ ∫ t

0

G(s, ỹ(s)) ds
]
r
∥∥∥2

dt, (3.40)

where r is the vector of linear parameters. Denote the matrix representing the integration

in (3.40) as, ∫ t

0

G(s, ỹ(s)) ds ≡ Ã(t), (3.41)

and denote ỹ(t)− y0 ≡ b̃(t). It should be noted that the ordinary least square approach

omits the fact that independent variables in (3.40) also contain errors, i.e., ỹ(t) obtained

from the noisy observations appear in both Ã(t) and b̃(t), not just b̃(t) as in ordinary least

square regression. This suggests we should consider using an error-in-variables approach,

where errors in both Ã(t) and b̃(t) of (3.40) are considered and addressed with some

form of total least square method. In addition, the formulation (3.41) may lead to the

fact that, noise originally appearing in the standalone state variables may also propagate

nonlinearly in the matrix Ã(t) through G and results in certain correlation between the

entries in Ã(t) as well as with components of b̃(t).

We start by considering a simple example, the Barnes problem, which demonstrates

the potential difficulties. In this problem, Ã(t) can be written as,

∫ t

0

[
ỹ1(s) −ỹ1(s)ỹ2(s) 0

0 ỹ1(s)ỹ2(s) −ỹ2(s)

]
ds (3.42)

The errors and correlations between y1(t), y2(t),
∫ t

0
y1(s)ds,

∫ t
0
y2(s)ds, as well as∫ t

0
y1(s)y2(s)ds could be intricate. If we choose a smoother to interpolate exactly the

observed state variable points, with ỹ(ti) = ŷ(ti), then, since y1(t) and y2(t) are assumed

to be normally distributed, it follows that their integrals exhibit Brownian motion, with

variance, t (scaled by the noise in the observations, σ). For the other integral, the product

of two normally distributed random variables is a sum of Chi-squared random variables.

Then the integral should also be Chi-squared.

For simplicity without loss of generality, sum over the integrand of the outer inte-

gration in (3.40) is used rather than a quadrature rule, i.e.,
∫ T

0
‖b̃(t) − Ã(t)r‖2 dt ≈∑no

i=1‖b̃(ti) − Ã(ti)r‖2∆t. Denote Ãj = [Ãj(t1); Ãj(t2); . . . ; Ãj(tno)], for j = 1, . . . , ny
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where Ãj(t) is the jth row of matrix Ã(t). Similarly, let b̃j = [b̃j(t1); b̃j(t2); . . . ; b̃j(tno)].

Then by stacking Ãj’s and b̃j’s, the least-square problem to be solved can be expressed in

the form of minimizing ‖Ar−b‖2, where the left-hand-side matrix A and right-hand-side

vector b become,

A ≡


Ã1

Ã2

...

Ãny

 ∈ Rny ·ny×np , b ≡


b̃1

b̃2

...

b̃ny

 (3.43)

Note for the SME approach, matrix A can be obtained following a very similar pro-

cess by stacking Gi = [Gi(t1);Gi(t2); . . . ;Gi(tno)] and the corresponding time deriva-

tive approximation by the smoother. Also, if the parameter estimation problem can be

decomposed into several independent subproblems, the matrix A and vector b can be

constructed by including only relevant terms in each subproblem and the correpsonding

least-square problems can be solved independently. Dimensions of A and b are adjusted

according to the number of linear parameters and number of state variables involved in

each subproblem respectively.

There have been investigations [12] in total least squares method for error-in-variables

models in which perturbation are allowed in both the left-hand-side data matrix and

right-hand-side observation vector. The approach proposed in [12] uses a Singular Value

Decomposition (SVD) to obtain a minimizer of the following objective function in the

Frobenius norm,

min
δA,δb
‖[δA, δb]‖2

F ,

s.t: b + δb ∈ Range(A + δA). (3.44)

Let [A, b] =
∑np+1

i=1 σiuiv
T
i be the SVD of [A, b]. Then the corresponding total least

square solution for r can be defined in terms of the associated eigenvalue problem,

[
ATA ATb

bTA bTb

]
·

[
r

−1

]
= σ2

np+1

[
r

−1

]
(3.45)

and the TLS minimizer r∗TLS is given by,
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r∗TLS = (ATA− σ2
np+1I)−1ATb. (3.46)

We present the experimental results in Section (4.2). Note that for the standard TLS

method in [12], diagonal weighting matrices are also allowed. Although improvement

can be observed in several test problems with the standard TLS technique, we also

notice that the optimization setting in the standard total least square might still not

be adequate. ‖[δA, δb]‖2
F might be minimized in a uniformly weighted way. If there

is complicated correlation between the entries in the left-hand-side matrix A or even

correlation between A and b, it may prove useful and beneficial to consider a weighted

total least square approach. We have noticed a weighted total least-squares (WTLS)

solution [30] has been proposed to deal with the problems in which the observations

can be heteroscedastic and correlated, and we leave the investigation of this alternative

approach to future work.



Chapter 4

Experimental Results

To test the aforementioned techniques, we consider a set of test problems from the ODE

parameter estimation literature (see Section (2)). In these test problems, we seek to

deduce a parameterized model using systems of ODEs with observed data from experi-

ments. The parameters for the models are estimated by optimizing the objective function

(1.2) that is obtained by comparing the simulated trajectory against the observed state

variables. The true trajectory is obtained using a reliable numerical solver such as DDEM

[39] to integrate (1.1) with true parameters. 100 sets of observed data are then generated

by adding relative noise to the exact trajectory for each test problem.

All of the above techniques will be used to generate initial guesses, and a gradient-

based optimizer will be used to minimize (1.2) in the second stage. Model sensitivities

are approximated by finite difference as provided in MATLAB lsqnonlin routine with

default settings. We use the UKF implementation in [7] in our experiments involving

UKF.

4.1 Experiment Settings and Results

The following section explains several experimental considerations and/or hyperparame-

ters used for the numerical experiments.

In our experiments using the Koopman-based lifting techniques, the Koopman basis

functions chosen for the Calcium Ion problem are monomials up to the highest degree of

terms appearing in the right-hand-side of equations (2.1)-(2.4), plus other non-polynomial

expressions in these equations (see for example the populated matrix (3.12) to be solved

in Section (3), and the nonlinear parameters are treated as known). For the Barnes

problem, monomials of degree up to 2 are used as basis functions, since 2 is the highest

polynomial degree in the right-hand-side of (2.5) and (2.6). For the Mendes problem,

28



Chapter 4. Experimental Results 29

monomials up to degree 1, and 9 non-polynomial expressions that appear in the right-

hand-side of equations (2.10)-(2.17) are chosen as basis functions, e.g., y1
y1+q13

in (2.13).

For the Goodwin problem, monomials of degree up to 1 and one non-polynomial term

(i.e., 1
A+y3(t)σ

in (2.7)) are chosen as basis functions. In addition to the choice of basis

functions, we also note that there can be an issue that arises when attempting to avoid

complex-valued matrices when calculating the matrix logarithm L. In the current im-

plementation, the real part of L is kept to provide initial guesses of the parameters for

further optimization in the second stage.

For PINNs technique, a neural network with 8 hidden layers is implemented to provide

smoothed trajectories for each state variable in each of the test problems, and the numbers

of hidden units in each hidden layer are given by 20, 20, 40, 80, 80, 40, 20, 20.

For GP, the kernel of choice is determined from experimental assessment, and we note

that for Barnes problem, the Matérn kernel with parameter 3
2

(see [36] for more detail)

would yield reasonable results. For the Calcium Ion problem, the Goodwin problem and

the Mendes problem, we choose the squared exponential kernel.

For UKF, initial guess of the parameters provided by INT-SME along with the (given)

initial conditions will be used as the starting values of the augmented state variables at

time zero and filtered until the end of the time interval for one pass. For the Mendes

problem, we find that filtering the trajectory corresponding to the pair (P = 0.05 and

S = 0.1) gives reasonable results that takes into the consideration the trade-off between

obtaining refined parameter and running UKF without spending a large amount of effort

in filtering using some of the other trajectories.

In the previous sections and the experiments, initial conditions in the test problems

are assumed to be known and simulation is run with those given initial conditions used

for the evaluation of objective function (1.2). If the initial conditions are assumed to

be unknown, they can be included as additional parameters to be estimated. With

the INT-SME technique, the initial conditions appear linearly in the objective function

(3.4), and the initial guesses for them can be obtained in one iteration of the associated

linear least square problem together with the other linear parameters. This does not

make much difference in the effort required in the first stage. For the second stage,

we also observed very little difference between whether initial conditions are unknown

or known, even if additional estimation for the initial conditions has to be performed.

The experimental results are included in Tables (4.1)-(4.5) for each technique considered

running on the Calcium Ion problem, Mendes problem, Barnes problem, and Goodwin

problem respectively. The observation points are uniformly spaced along the interval of

interest.
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INT-SME

Test Problems
INT-SME only perturbed datapoints progressive shooting

success avg iters success avg iters success avg iters
Calcium Ion 73/100 41.4247 98/100 45.4082 100/100 22.0200
Mendes 100/100 5.8400 100/100 5.8400 100/100 5.6800
Barnes 100/100 4.3800 100/100 3.3600 100/100 3.2500
Goodwin 100/100 7.2500 100/100 5.7600 100/100 5.8900

Table 4.1: Results of running parameter estimation on 100 noisy datasets using INT-
SME, with the nonlinear parameters fixed, on uniform grids. avg iters are the average
number of iterations in stage II among success runs.

PINN

Test Problems
PINN-smoothed only perturbed datapoints progressive shooting
success avg iters success avg iters success avg iters

Calcium Ion 31/100 88.1290 90/100 118.0000 78/100 273.5256
Mendes 100/100 5.9700 100/100 5.9700 100/100 5.6900
Barnes 100/100 4.3600 100/100 3.3200 100/100 3.2500
Goodwin 100/100 6.6100 100/100 6.0100 100/100 5.9400

Table 4.2: Results of running parameter estimation on 100 noisy datasets using PINN,
with the nonlinear parameters fixed, on uniform grids.

Koopman

Test Problems
Koopman only perturbed datapoints progressive shooting

success avg iters success avg iters success avg iters
Calcium Ion 89/100 34.9775 98/100 63.0714 97/100 23.2784
Mendes 96/100 8.2396 100/100 6.8400 100/100 6.0600
Barnes 100/100 4.1200 100/100 3.3100 100/100 3.6800
Goodwin 91/100 16.3297 99/100 13.3535 96/100 12.3021

Table 4.3: Results of running parameter estimation on 100 noisy datasets using Koopman,
with the nonlinear parameters fixed, on uniform grids.

GP

Test Problems
GP-smoothed only perturbed datapoints progressive shooting
success avg iters success avg iters success avg iters

Calcium Ion 45/100 45.8000 99/100 101.4949 99/100 25.8182
Mendes 100/100 6.1600 100/100 6.1600 100/100 5.0800
Barnes 100/100 4.4500 100/100 3.3700 100/100 3.2500
Goodwin 100/100 6.6800 100/100 6.1400 100/100 5.7700

Table 4.4: Results of running parameter estimation on 100 noisy datasets using GP, with
the nonlinear parameters fixed, on uniform grids.
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UKF

Test Problems
UKF-refined p0 only perturbed p0 progressive shooting
success avg iters success avg iters success avg iters

Calcium Ion 87/100 21.6437 94/100 33.4574 100/100 10.8600
Mendes 100/100 9.3500 100/100 8.6700 99/100 8.7778
Barnes 100/100 3.2700 100/100 2.8800 100/100 3.0600
Goodwin 100/100 5.4900 100/100 4.9100 100/100 5.7100

Table 4.5: Results of running parameter estimation on 100 noisy datasets using UKF,
with the nonlinear parameters fixed, on uniform grids. Note perturbed p0’s are generated
by sampling from the estimated mean and covariance of the filtered p0 in UKF.

4.2 Numerical Experiments on TLS

To demonstrate the effectiveness of considering an Error-in-Variable model and applying

the TLS approach, we present the numerical experiments conducted on the Barnes prob-

lem, Calcium Ion problem, Goodwin problem and Mendes problem. See Table (4.6) for

the results of using the INT-SME formulation and Table (4.7) using the SME formulation.

Test Problems
INT-SME INT-SME TLS

success avg iters success avg iters
Barnes 100/100 4.3800 100/100 4.2200
Calcium Ion 76/100 42.6053 100/100 21.0600
Goodwin 100/100 6.5900 100/100 5.9400
Mendes 100/100 5.8400 100/100 5.8000

Table 4.6: TLS results for various test problems, with the nonlinear parameters fixed
and using INT-SME compared with their ordinary least squares counterparts. The table
shows the result of running parameter estimation on 100 noisy datasets. avg iters are
the average number of iterations in stage II among success runs.

Test Problems
SME SME TLS

success avg iters success avg iters

Barnes 100/100 5.7000 100/100 5.3000
Calcium Ion 96/100 44.8750 95/100 26.4526
Goodwin 89/100 24.6742 100/100 9.3200
Mendes 100/100 7.5100 100/100 7.1300

Table 4.7: TLS results for various test problems, with the nonlinear parameters fixed and
using SME compared with their ordinary least squares counterparts. The table shows the
result of running parameter estimation on 100 noisy datasets. avg iters are the average
number of iterations in stage II among success runs.

In each test problem, the TLS approach could either achieve higher success rate, or
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improve the initial guess so that less effort is necessary in the second stage (in terms

of average number of iterations) before converging to an acceptable minimizer. The

improvement is especially obvious when INT-SME is applied to the Calcium Ion problem,

and SME is applied to the Goodwin problem, leading to both a significant increase in

the success rate and a more suitable parameter initial guess to start the second stage.

4.3 Experiments Allowing Further Query of Data

When the trajectory in the test problem contains regions in which the state variables

change rapidly, a denser distribution of data points may be needed for smoother approxi-

mations in those regions. To account for the potential smoothness issue in interpolation,

additional data points are allowed to be queried on regions detected by the techniques

where the state variables change rapidly. The regions are detected by considering inte-

gration errors of the integral (3.4), which is asymptotically proportional to the difference

between trapezoidal rule approximation with finer and coarser observation grids. Obser-

vation points at regions with lower estimated error will be traded for denser observation

points in regions with higher estimated error to keep the overall number of observation

points constant. See Figure (4.1) for a sample plot of the queried mesh points, true

trajectories and observed points. The experimental results on the resulting non-uniform

grids are included in Tables (4.8)-(4.11) for each techniques considered running on the

Calcium Ion problem, Mendes problem, Barnes problem, and Goodwin problem respec-

tively, except Koopman, for which further investigation is required before the approach

can be extended to a non-uniform grid.

INT-SME

Test Problems
INT-SME only perturbed datapoints progressive shooting

success avg iters success avg iters success avg iters
Calcium Ion 84/100 48.1310 100/100 60.1800 100/100 18.6100
Mendes 100/100 5.7700 100/100 5.7700 100/100 5.7700
Barnes 100/100 4.1500 100/100 3.3700 100/100 3.2600
Goodwin 100/100 6.4100 100/100 5.7400 100/100 5.5600

Table 4.8: Results of running parameter estimation on 100 noisy datasets using INT-
SME, with the nonlinear parameters fixed, on non-uniform grids that allow further query
of data on rapidly changing regions. avg iters are the average number of iterations in
stage II among success runs.
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Figure 4.1: Queried points shown as ticks in the plot for Calcium Ion test problem

PINN

Test Problems
PINN-smoothed only perturbed datapoints progressive shooting
success avg iters success avg iters success avg iters

Calcium Ion 42/100 93.5238 92/100 140.7935 85/100 315.7882
Mendes 100/100 24.9700 100/100 24.9700 100/100 46.7900
Barnes 100/100 4.1800 100/100 4.2500 100/100 3.9400
Goodwin 100/100 6.2400 100/100 6.0600 100/100 6.8100

Table 4.9: Results of running parameter estimation on 100 noisy datasets using PINN,
with the nonlinear parameters fixed, on non-uniform grids.

GP

Test Problems
GP-smoothed only perturbed datapoints progressive shooting
success avg iters success avg iters success avg iters

Calcium Ion 57/100 57.7719 100/100 92.3600 100/100 20.7700
Mendes 100/100 6.1300 100/100 6.1300 100/100 5.9900
Barnes 100/100 4.3100 100/100 3.3600 100/100 3.3300
Goodwin 100/100 6.1400 100/100 5.9800 100/100 5.0600

Table 4.10: Results of running parameter estimation on 100 noisy datasets using GP,
with the nonlinear parameters fixed, on non-uniform grids.
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UKF

Test Problems
UKF-refined p0 only perturbed p0 progressive shooting
success avg iters success avg iters success avg iters

Calcium Ion 89/100 29.4607 94/100 65.0000 100/100 13.7600
Mendes 99/100 8.1616 100/100 10.8300 99/100 8.1818
Barnes 100/100 4.2900 100/100 4.1700 100/100 4.2800
Goodwin 100/100 6.1700 100/100 6.1700 100/100 6.0000

Table 4.11: Results of running parameter estimation on 100 noisy datasets using UKF,
with the nonlinear parameters fixed, on non-uniform grids. Note perturbed p0’s are
generated by sampling from the estimated mean and covariance of the filtered p0 in
UKF.
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Discussion

With the two stage procedure, for each technique applied to each test problem, it seems

that generally progressive shooting and datapoint perturbation are able to provide cer-

tain improvement on the experimental results in most cases, either increasing the success

rate or lowering the computational effort required in the second stage. And progressive

shooting gives the best results more often. The advantage of these two ways to pro-

vide a wider range of initial guesses could be less obvious in the non-uniform grid case,

especially for datapoint perturbation in which the original initial guess by each method

usually ends up being the best, rather than those obtained from the perturbed datapoints.

That seems to be the reason for identical average number of iterations corresponding to

the same technique in some test problem (looking at experimental results in the same

row). Sometimes datapoint perturbation would give better results by having initial guess

obtained on the perturbed trajectory, and other times those additional candidates are no

better than the original initial guess. However, these candidates provide better chances

of finding a good enough starting values especially when the initial guess obtained on the

original observations is problematic, such as is the case of Calcium Ion problem.

PINN

One of the advantages of PINN is its potential applicability to a wider range of param-

eterized systems, due to the universal approximator property. For problems that have

simpler trajectories, the method works well in terms of its ability to capture the true

trajectory. However, it might not work well in problems such as the Calcium Ion prob-

lem, in which the shape of the trajectory is complicated. PINN does not also seem to

improve as much with PS as some of the other methods, especially for the Calcium Ion

problem. The reason is probably the poor approximation of the trajectory by PINN. In

35
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the Calcium Ion problem, the trajectory could exhibit multiple turning points or con-

tains several peaks and jumps, etc. It seems to have some difficulty in capturing the

true trajectory to a satisfactory level, especially near the end of the time interval. See

Figure (5.1) for the plot of the smoothed curves against true trajectories and observed

datapoints on uniform mesh. Even though PS does not seem to improve the results as

much as the other methods, by considering observations from progressively increasing

endpoints of the time interval in obtaining initial guesses, some of the initial guesses

can exclude the worse approximations near the end of the time interval. If the objective

function includes observations from the first half of the trajectory, which is usually better

approximated, the result could be better, as evidenced in the increased success rates for

PS.

Overall, although the setup of the PINN method seems to be general enough for arbi-

trary systems, it might not work well in every case and some tuning of the neural network

structure is needed for each problem. Note also the result by running the PINN-estimated

parameter as initial guess to second stage was not reported but similar behaviour could

possibly be expected with the PINN technique.
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Figure 5.1: Plot of the smoothed curves obtained by PINN against the observed data-
points for the Calcium Ion test problem on a uniform mesh.
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GP

Compared to PINN, the approximated curve by GP is better. See Figure (5.2) for the plot

of the smoothed curves against the observed datapoints. It could act as an alternative

way to provide a more reliable estimated underlying trajectory other than the original

observations, and initial guesses obtained on both the smoothed as well as the perturbed

curve can be kept as candidates.
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Figure 5.2: Plot of the smoothed curves obtained by GP against the observed datapoints
for the Calcium Ion test problem on a uniform mesh.

UKF

UKF acts as a refinement and provides complementary initial guesses different from

INT-SME. In terms of computational effort, the method makes the trade-off to spend

more time in first stage for more accurate initial guess due to the simulation cost. It may

suffer from the issue of occasional simulation failure, and occurrence of non-SPD matrices

which will break the execution of the program. Therefore, before running UKF, it already

requires a close enough initial guess, which sounds paradoxical to the goal of having UKF

to find a good initial guess. Therefore in all our experiments, the INT-SME-generated

initial guess is passed to the UKF procedure. In this linear parameter estimation case,

at least, these possible failures were not observed. However, it would become more

complicated if nonlinear parameters were to be estimated. Note it could also suffer from

the difficulty of finding suboptimal local minimum. Additional perturbed parameters
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obtained from the estimated parameter probability distribution can be considered to

help generate more initial guesses to start the second stage optimization. However, if

the estimated mean of the parameters lies at a location far from the true means and

the estimated variance is shrinking towards zero, the largely concentrated samples drawn

from the badly-behaving mean will not significantly increase the chance of getting a

good initial guess to start the second stage and one may still not be able to escape

from a local minimum. Meanwhile, there is already a high cost associated with the

simulation, preventing it from trying a large number of additional parameters. Also for

the Mendes problem, we observed worse performance than using only INT-SME, which

is expected since we try on only one pair of values for P and S, instead of all 16 pairs

because of the trade-off to spend limited amount of time in the first stage. With 16 times

fewer observations it seems likely that UKF will not result in an improved initial guess,

compared to INT-SME itself.

For the implementation of datapoint perturbation, instead of always taking their esti-

mated mean at the end of the time interval, we could also consider drawing samples from

the estimated probabilistic distribution of parameters at other timesteps. This would

later allow for multiple branches of filtered trajectories, depending on the different per-

turbed parameters used at different timesteps. But this will create additional exploration

cost during the process of filtering.

Koopman

The Koopman approch is a flexible way of getting initial guess and it is relatively easy

to implement. This technique could provide better initial guess if the curve is less cor-

rupted by noise. Additional effort may need to be made in the investigation into the

complex-valued matrix issue when the trajectory is corrupted by increasing magnitude

of noise. Moreover, further investigation includes how to extend the method to 1) nonlin-

ear parameter estimation, 2) non-uniform observation time points. PINN and GP seem

to benefit more from perturbed datapoints while neither UKF nor Koopman seem to

enjoy as much improvement from perturbed datapoints.

TLS

TLS is another approach to effectively obtain a more suitable initial guess. Its derivation

differs from ordinary least square in that it aims to fix the inherent estimation bias caused

by errors in the independent variables. The initial guess obtained with TLS improves

the results by taking into consideration the noise assumption in the matrix constructed,
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instead of increasing the number of trials and relying on a collection of different initial

guesses. TLS is able to significantly improve the results on the Calcium Ion problem and

achieve comparable results to progressive shooting.

Future Work

Future work includes investigation into integrating weighted total least-squares (WTLS)

with INT-SME, which considers imposing additional assumptions on the covariance be-

tween each independent variables. In addition, with the current formulation of the Koop-

man method, it only works with uniform grids. Future work may include extending the

Koopman method to non-uniform grids as well as estimating nonlinear parameters. Fu-

ture investigation might also include modifying GP, UKF to reflect the relative noise

assumption.
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