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We consider the formulation and solution of the inverse problem that arises when fit-

ting systems of ordinary differential equations (ODEs) to observed data. This parameter

estimation task can be computationally intensive if the ODEs are complex and require

the use of numerical methods to approximate their solution. The thesis focuses on ad-

dressing a common criticism of the single shooting approach, which is that it can have

trouble converging to the globally optimal parameters if a sufficiently good initial guess

for the parameters is unavailable. We demonstrate that it is often the case that a good

initial guess can be obtained by solving a related inverse problem. We show that gradient

based shooting approaches can be effective by investigating how they perform on some

challenging test problems from the literature. We also discuss how the approach can be

applied to systems of delay differential equations (DDEs). We make use of parallelism

and the structure of the underlying ODE models to further improve the computational

efficiency.

Some existing methods for the efficient computation of the model sensitivities required

by a Levenberg-Marquardt least squares optimizer are compared and implemented in a

parallel computing environment. The effectiveness of using the adjoint approach for the

efficient computation of the gradient required by a BFGS optimizer is also investigated

for both systems of ODEs and systems of DDEs. The case of unobserved components of

the state vector is then considered and we demonstrate how the structure of the model

and the observed data can sometimes be exploited to cope with this situation.
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Chapter 1

Introduction

1.1 Motivation

Throughout the sciences, mathematical models are developed to help us better under-

stand the world around us. In order to accurately reproduce complex phenomena, such

models are often nonlinear and do not permit closed form analytical solutions. This

means that the models must be approximately solved using numerical methods imple-

mented on computers. In this thesis, we consider models formulated as parameterized

initial value problems (IVPs). These models consist of model dynamics specified by a

system of ordinary differential equations (ODEs) and initial conditions specifying the

initial state of the model. IVPs are used in a wide range of applications, including Lotka-

Volterra predator-prey models of population dynamics [6], enzyme kinetics [19, 18], the

spread of disease [26], chemical reactions [30], neuron signalling [16, 53], and many more.

The solution of an IVP is approximated by simulating the model state from the initial

time to some final time of interest. The solution of the IVP over an interval of inter-

est is referred to as a trajectory. Numerous numerical methods exist for approximating

these trajectories. In this thesis, we focus on the use of high order reliable Continuous

Runge-Kutta (CRK) methods, which are appropriate for ODEs that are at most mildly

stiff.

Due to model simplifications and measurement noise, models tend not to exactly fit

observed data. Parameter estimation seeks to find the set of model parameters such that

the model best fits the collected data, as defined by an appropriate objective function.

For example, the sum of squared errors (SSE) between the data and the model prediction

is often used. Parameter estimation is often referred to as an inverse problem.

Estimating the best fit parameters can be computationally intensive. In the case of

IVPs, evaluating the SSE for a candidate set of model parameters requires a trajectory

1



Chapter 1. Introduction 2

simulation. If the model is complex or the interval of interest is large, this simulation can

be computationally expensive. This observation has led to a variety of techniques being

developed to reduce the number of model trajectory simulations required to estimate

the best fit model parameters. In this thesis, we describe several of these techniques

and demonstrate how they can be used to reduce the computational cost of performing

parameter estimation for IVPs.

1.2 Definitions and Notation

We now introduce notation used throughout the thesis. Additional notation will be

introduced in specific sections as it is needed.

1.2.1 ODE definition

We consider the parameterized initial value problem (IVP),

y′(t) = f(t, y(t), p),

y(0) = y0, (1.1)

t ∈ (0, T ),

where y(t) is the state vector of dimension ny, p is a constant vector of model parameters

of dimension np, and y0 are the initial conditions of the state vector, y(0). For ease of

notation, we assume each component of y0 is a model parameter that appears in p. We

will denote the solution of (1.1) for a specific p by y(t, p).

In general, f is a nonlinear map from R1×Rny×Rnp → Rny . In some applications, a

subset of the parameters only appear linearly in f and one can often exploit this structure.

In these situations,

p = [q, r, y0], (1.2)

where q is the vector of nq parameters that appear nonlinearly in f and r is the vector of

nr parameters that only appear linearly in f (e.g. rate constants in chemical kinetics).

This allows us to decompose f(t, y(t), p) as,

f(t, y(t), p) = G(t, y(t), q)r + g(t, y(t), q), (1.3)

where G maps R×Rny ×Rnq → Rny ×Rnr and g maps R×Rny ×Rnq → Rny .
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1.2.2 DDE definition

We also consider IVPs where the underlying system of ODEs is replaced with a system

of delay differential equations (DDEs). In this thesis, we restrict ourselves to systems of

DDEs with constant lags, in which case we are considering the IVP,

y′(t) = f(t, y(t), y(t− τ1), . . . , y(t− τnd), p),

y(t) = h(t, p) ; t < 0, (1.4)

t ∈ (0, T ),

where each τr, r = 1, . . . , nd, is a constant delay that appears in the parameter vector,

p, and h(t, p) is a history function. Note that, as with (1.1), y and h are vector valued

functions of dimension ny.

1.2.3 Least Squares Parameter Estimation

We assume that a set of observations of the state vector is known and given by,

ŷj(ti) = yj(ti) +N (0, σ2
ij), for i = 1, . . . , no; j = 1, . . . , ny, (1.5)

where no is the number of observation points, yj(ti) denotes the jth component of the true

state vector at time ti, and N (0, σ2
ij) is normally distributed noise with variance σ2

ij. In

some applications, the state vector is not directly observed, but rather the observations

are functions of the state vector, specified by a measurement function. We do not consider

such cases in this thesis.

Given such data, parameter estimation for ODEs is traditionally done using maximum

likelihood estimation (MLE). This leads to solving the following non-linear least squares

(NLS) problem,

min
p

no∑
i=1

ny∑
j=1

(ŷj(ti)− yj(ti, p))2

2σ2
ij

, such that y(t, p) satisfies (1.1). (1.6)

If the σij’s are not known, an iterative reweighted approach may be used to solve this

problem. Throughout this thesis, we will make the simplifying assumption that all ob-

servations have the same variance, so each σij = σ, where σ is a constant.

Given this simplification, the objective function (1.6) reduces to,

O(p) =
no∑
i=1

ny∑
j=1

(ŷj(ti)− yj(ti, p))2

2
, (1.7)
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and the parameter estimation problem we consider is to determine the optimal value of

p, call it p̂, such that y(t, p) satisfies (1.1) and minimizes O(p). We focus on models

and data for which this problem is well posed. The issues of structural and practical

identifiability [41] are important themselves, but they are not directly investigated in

this thesis. There are two ways to view this NLS optimization problem (1.7), which have

received considerable attention in the literature. We will primarily consider the single

shooting approach [4], where an IVP solver is used to approximate the trajectory of

y(t, p), to within a user specified tolerance, whenever we evaluate the objective function.

That is, we satisfy (1.1) on each iteration of the optimization. Alternatively, approaches

like Ramsay’s functional data analysis [40] can be used. In these approaches, the ODE

constraint is not strictly satisfied on each iteration during the optimization, but it is

instead treated by the inclusion of a penalty term in the objective function, which will

ensure that, at convergence, y(t, p) satisfies the IVP. This approach is discussed in Section

2.5.3.

In order to solve (1.7) using a gradient based optimizer and the single shooting approach,

we require the sensitivity information,

∂O

∂p
= J(p) =

no∑
i=1

ny∑
j=1

−∂yj
∂p

(ti)
(
ŷj(ti)− yj(ti, p)

)
. (1.8)

As we will discuss in detail in Chapter 3, this requires us to either approximate the

model sensitivities, ∂y
∂p

, at each observation point, ti, or approximate J(p) directly using

an approach such as the adjoint method, which we discuss in Chapter 4.

A common criticism of using a gradient based optimizer and the single shooting

approach is that, since the problem is nonlinear, it relies on the user being able to specify

an initial p, call it p0, that is sufficiently close to the best fit p̂. In Chapter 2, we discuss

several ways to use the observed data and structure of the model to obtain a suitable p0.

1.2.4 Approximating Model Sensitivities

There are several ways to accurately approximate the required model sensitivities. In

this thesis, we consider the use of finite differences and two ways to approximate the

variational equations. The variational equations can be directly approximated using a

forward simulation of the variational IVP [15, 57] or a Green’s Function method can be

used [25, 28]. Depending on the level of accuracy required and the size of the problem, the

relative performance of these methods will vary. Also, if parallelism is being employed,

the relative costs of these methods will change. Other approaches that we do not consider
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include the complex step method [37, 3], automatic differentiation [7], and the internal

numerical differentiation (IND) method of Bock [31].

1.2.5 Adjoint Method

The adjoint method is distinguished in that it calculates J(p) without explicitly calcu-

lating the model sensitivities. This is accomplished by introducing a vector of adjoint

variables, λT (t), which has the same dimension as y(t). Since the adjoint method only

calculates the vector J(p) and not the matrix of model sensitivities, it cannot be used

in conjunction with a Gauss-Newton type least squares optimization algorithm. Instead,

it can be applied to directly determine the solution of J(p) = 0 using a quasi-Newton

method, such as BFGS.

1.2.6 Numerical Solutions of IVPs

It is important to understand that the objective of a numerical algorithm for solving this

parameter estimation problem is, when given a user specified accuracy parameter (TOL),

to determine an approximate best fit solution, p̂approx, such that,

‖p̂− p̂approx‖ < K TOL, (1.9)

where K depends on the conditioning of the problem. In order to achieve this, we have

to use a reliable ODE solver with a well justified step size control strategy, as well as a

carefully chosen stopping criterion for the least squares optimization.

Many reliable methods exist for solving ODEs, but here we will briefly mention a

continuous Runge-Kutta (CRK) solver that is particularly well suited to our application.

This solver is a standard Runge-Kutta (RK) solver , except that it additionally computes

a local interpolant between time steps. This allows for reliable high accuracy off-mesh

interpolation of y(t), as well as its derivative. In addition, for values of t between time

steps, we define the defect of the local interpolant in terms of how well it satisfies the

underlying ODE. The user specified tolerance, TOL, controls the defect of the computed

solution, such that the method attempts to ensure it is bounded by a small multiple of

TOL on each step. Throughout this thesis, we use the DDEM [55] package to simulate

IVPs using a 6th order CRK with defect control. In some situations we also use the

standard ode45, ode15s, and dde23 solvers of MATLAB.
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1.3 Contributions of the Thesis

The main contribution of the thesis is the development of a two stage algorithm for effi-

ciently and robustly estimating the parameters in systems of ODEs that directly attempts

to produce an approximate p̂approx that satisfies (1.9). Our algorithm draws on ideas de-

veloped and rediscovered over the last 50 or more years. The algorithm we propose and

justify is the only method for parameter estimation that we are aware of that directly

and adaptively attempts to ensure that the approximation solution satisfies (1.9). We

demonstrate the effectiveness of our approach on several test problems from the literature

and emphasize how each stage of our two stage algorithm can be computed efficiently.

The first stage involves computing the initial guess, p0, of the parameters. The pro-

posed procedure is based on an approach dating back to Varah [49], which has been

recently rediscovered and further developed in several disciplines. We apply the ap-

proach used by Dattner [14] to the case of nonlinear parameters and problems where

the underlying IVP is a delay differential equation (DDE). We also emphasize how the

structure of the system of ODEs can lead to even more computational efficiency.

The second stage involves finding the minimizer of (1.7), with p0 coming from the

first stage. To improve the computational efficiency of this stage, we investigate several

methods for approximating ∂y
∂p

(t). Through numerical experiments, we find that using

the Levenberg-Marquardt algorithm is more efficient than either using BFGS and adjoint

gradients or using a full Newton method. We then explore several approaches for ap-

proximating the Jacobian required by Levenberg-Marquardt and demonstrate how each

approach can be efficiently computed in parallel. In particular, we find that the parallel

Green’s Function method can be more efficient than the parallel variational approach

in some situations. Efficient computation of the gradient via the adjoint method is also

investigated. We identify and propose ways to address a limitation of the adjoint method

which arises when the number of observations is large.

We go on to discuss what can be done when data are not available for all components

of the state vector. We consider several techniques for handling this difficulty and suggest

an improvement to a method recently proposed by Dattner [13]. Other general ways to

improve the efficiency of the parameter estimation task are also identified and their

performance evaluated through numerical experiments.
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1.4 Outline of the Thesis

In Chapter 2, we introduce our two stage estimation procedure and describe the first

stage of our estimation procedure in detail. We present numerical results demonstrating

the performance of the initial procedure when the quantity and quality of the observed

data is varied. We then present numerical results demonstrating the performance of our

two stage estimation procedure on several challenging test problems, including a DDE

model. We also consider other ways to reduce the total computational cost. In Chapter

3, we discuss how to efficiently perform the minimization of (1.7) in the second stage of

our estimation procedure. Several methods to compute the required model sensitivities

are investigated and implemented in a parallel computing environment. In Chapter

4, we discuss the adjoint method for computing gradients and numerically explore its

limitations when applied to ODEs and constant lag DDEs. Chapter 5 considers other

techniques that can be used when data are not available for all components of the state

vector. Chapter 6 concludes the thesis and discusses potential directions for future work.



Chapter 2

Two Stage Procedure

2.1 Motivation

A straightforward way to efficiently determine the minimizer of (1.7) is to use a gradient

based optimizer. For example, since this is an NLS problem, one might use a Gauss-

Newton or Levenberg-Marquardt [32] algorithm. In order to apply these methods, the

user must provide an initial guess, p0 for the vector of unknown parameters. If p0 is not

sufficiently close to p̂, the optimizer may converge to a suboptimal local minimizer of

the objective function or the optimizer may converge slowly. Furthermore, if very little

is known about the parameters, it might be challenging just to find a p0 such that the

underlying ODE solver is able to successfully simulate the model over the entire interval

of interest (and evaluate O(p0)).

If a suitable p0 is readily available, then determining the minimizer of (1.7) with a

gradient based optimizer works quite well. In the case where it is somewhat difficult to

find a suitable p0, applying a multi-start method may be possible. Multi-start methods

simply sample the parameter space and run a gradient based optimizer from each sample

- starting with the most promising samples. When a suitable p0 is not known, it is quite

common to attempt to apply a heuristic based, derivative free, global search algorithm to

minimize (1.7). While genetic algorithms, particles swarms, and other such algorithms

are likely to eventually find a solution, they are often impractically slow. This has led

to the development of hybrid optimizers, which combine a global search heuristic with

a local optimizer. Hybrid optimizers run the global search algorithm and periodically

attempt to run a local optimizer from a candidate p0. If a sufficiently good minimizer of

(1.7) is not found, the hybrid optimizer returns to the global search algorithm. Hybrid

optimizers have been shown to speed up global search algorithms by several orders of

magnitude [44] in some cases.

8
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However, if the search space is large, these hybrid optimizers may still be computa-

tionally expensive. The high cost comes from two factors. First, global search algorithms

repeatedly evaluate the objective function. In this application, evaluating the objective

function requires reliably simulating a system of ODEs. Second, as the number of pa-

rameters increases, the size of the search space grows exponentially. Since global search

algorithms generally treat the objective function as a black box, a natural question is

whether or not the structure of the objective function can be exploited to aid in finding

the minimizer of (1.7). Specifically, we will look at how the structure of the ODE, along

with the observed data, can allow alternative, less expensive minimization problems to

be formulated, whose minimizers are good initial guesses for the minimizer of (1.7).

2.1.1 Log Hypercube Sampling

Latin hypercube sampling (LHS) [42] is a commonly used technique for sampling. For

our application, it has been suggested that it is better to sample from the log of the

parameter space [36] (that is, if the parameter space is [10−b, 10b]np , then we perform

Latin hypercube sampling over the space [−b, b]np instead). This transformation can be

helpful in cases where the parameters are known to be positive and may vary in scale by

several orders of magnitude. Combining LHS and the log transformed parameter space

is often found to work quite well, although it can still perform poorly when the number

of model parameters is large [17]. This technique can be used as the sampling algorithm

for a multi-start method being applied to solve our original problem or in any of the

approaches we describe next whenever sampling is required.

2.2 Methods for obtaining a suitable p0

2.2.1 Using a Crude ODE solver

One way to generate p0 is to use a crude ODE solver instead of the reliable CRK solver

we use in the final optimization. For example, we might use a low order method with a

fixed step size, such as Euler’s method. Alternatively, if a reliable ODE solver with error

control is required in order to simulate the IVP with any level of accuracy, we might

choose a relaxed tolerance to reduce the computational effort being used to approximate

the ODE.
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2.2.2 Smooth and match estimator

It has been observed that the above mentioned approaches can still be computationally

expensive. As we mentioned, the expensive part is often due to having to repeatedly

simulate the underlying IVP numerically. Varah [49] and others [5, 20, 14] recognized

that if one uses the observed values of y(t) to approximate y′(t), then one can formulate

a related least squares problem,

min
p

∫ T

0

‖(ỹ′(t)− f(t, ỹ(t), p))‖2
dt, (2.1)

where ỹ(t) is an approximation of y(t) over the interval, [0, T ], based on the observed data.

Note, in the work of Varah [49], a sum over the observation times was used, rather than

an integral. An estimate for p obtained in this way is referred to as a smooth and match

estimator (SME) [20]. Recently, a similar approach has appeared in the computational

statistics and machine learning literature, which is referred to as Gradient Matching [34].

Another similar approach is used in large, underdetermined systems arising in systems

biology [27]. Their approach differs in that they assume f is of the form,

f(t, y(t), p) = Sv(t, y(t), p), (2.2)

where S is a stoichiometric matrix of constants and v(t, y(t), p) is a rate vector. For their

approach, one requires measurements of not only y(t), but also v(t).

In terms of computation, a major benefit of SME is that the numerical derivatives to

be approximated can be significantly faster to compute than a simulation of an ODE. We

also do not have to worry about what happens when a set of parameters would cause the

simulation to fail. As with our original least squares problem, several techniques exist

for performing the minimization in (2.1).

Note that while this approach cannot estimate initial conditions, we can try to esti-

mate initial conditions directly from the observations. For example, on problems with

some observations close to t = 0, we might extrapolate based on these observations.

Alternatively, Dattner has suggested estimating initial conditions using the integral form

of the ODE,

min
y0

∫ T

0

∥∥∥∥ỹ(t)−
(
y0 +

∫ t

0

f(s, ỹ(s), psme) ds
)∥∥∥∥2

dt, (2.3)

where psme are the initial estimates from (2.1) and y0 are the initial conditions to be

estimated. Note, this formulation is linear in y0.
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2.2.3 Numerical discretization-based estimation methods

Wu et al. [54] have proposed a similar family of methods, which they call numerical

discretization-based estimation (DBE) methods. Briefly, these methods are based on

one-step discretization methods of the form,

y(ti+1) = y(ti) + (ti+1 − ti)F (t, y(ti), y(ti+1), p), (2.4)

where F (t, y(ti), y(ti+1), p) is determined by the discretization method. For example, if

Euler’s method is used,

F (t, y(ti), y(ti+1), p) = f(ti, y(ti), p). (2.5)

The objective function for DBE is given by,

min
p

no∑
i=1

ny∑
j=1

( ŷj(ti+1)− ŷj(ti)
ti+1 − ti

− Fj(t, ŷ(ti), ŷ(ti+1), p)
)2

. (2.6)

Note, in the case of Euler’s method, this is precisely the divided differences approximation

we have used in the past [10]. We also note that their work differs from ours in that we

use IVP solvers with error control (variable step size), whereas they use fixed step size

methods with no error control.

2.2.4 Choice of Smoother

To apply these smooth and match methods, we require a smooth estimate of the observed

state variables. A variety of approaches have been used in similar applications. For

example, cubic splines by Varah [49] and Bellman and Roth [5]. For problems where the

data are not very dense and contain relatively small amounts of noise, cubic splines are

a suitable choice. If the data are sufficiently dense, it may be better to use a bandwidth

smoother, such as local polynomial estimation (LPE). This approach was used in [13]. If

the data are sparse and noisy, penalized cubic splines may be more appropriate. We have

used these various approaches in our numerical experiments, depending on the density of

the observations and the amount of noise. One limitation of using a bandwidth smoother,

like LPE, is that it requires the user to choose a suitable bandwidth. For example, if the

data contain some regions with sharp peaks and other flat regions, then a balance must

be found between oversmoothing the peaks and undersmoothing the flat regions. In [47],

the authors investigate ways to get around this issue.
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Local Polynomial Estimation

Given observations ŷ(ti), i = 1, . . . , no, we seek a smoothed estimate, ỹ(t). To estimate

the jth component of ỹ(t), for a given t, we use local polynomial estimation of order l.

This involves solving the weighted least squares (WLS) problem,

ṽj(t) = arg min
vj∈R(l+1)

(Yj − Uvj)TW (Yj − Uvj),

where,

vj =
[
ỹj(t) ỹ′j(t)b . . . ỹ

(l)
j b

l
]T
,

U =


1 t1−t

b
. . . (t1−t)l

bll!

1 t2−t
b

. . . (t2−t)l
bll!

. . .

1 tno−t
b

. . . (tno−t)l
bll!

 ,
Yj is the vector of observed values of state j, b is the bandwidth of the kernel, and W

is a diagonal matrix of weights, where Wii = K( ti−t
b

), and K(·) is an appropriate kernel

function. For example, as was done in [13], we use the Epanechnikov kernel,

K(t) =

3
4
(1− t2) if |t| ≤ 1

0 otherwise
.

Note, we can also determine ỹ′(t), since ṽ(t)e2
b

= ỹ′(t).

2.2.5 Limitation

A significant limitation of the above mentioned approaches is that they require data to be

available for all components of y(t). In some applications, the measured data are actually

a function of y(t) or only include a subset of the components of y(t). In both of these

cases, the approaches above are not directly applicable. In Chapter 5 we investigate

ways to handle the case where only a subset of the components of y(t) are observed.

We now turn our attention to how the structure of the ODE can be used to reduce the

computational cost of the first stage.
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2.3 Exploiting ODE Structure

The structure of the system of ODEs can be used in two specific ways. First, some

parameters may appear linearly in f . If we use the structure of the ODE assumed in

(1.3), (2.1) becomes,

min
q

∫ T

0

‖(ỹ′(t)−G(t, ỹ(t), q)r(q)− g(t, ỹ(t), q)‖2
dt. (2.7)

Since r appears linearly in (2.1), we can view this as a minimization over only the

nonlinear parameters, q. That is, for any given q, the best fit r is uniquely determined

as,

r(q) =

(∫ T

0

G(t, ỹ(t), q)TG(t, ỹ(t), q) dt

)−1 ∫ T

0

G(t, ỹ(t), q)T (ỹ′(t)− g(t, ỹ(t), q)) dt,

(2.8)

which is the well known solution of a linear least squares (LS) problem. If we again use

the structure of the ODE assumed in (1.3), (2.3) can be reformulated to take advantage

of the fact that the integral form of the ODE is linear in both r and y0. In this case, we

have,

min
q

∫ T

0

∥∥∥∥ỹ(t)−
(
y0 +

[∫ t

0

G(s, ỹ(s), q) ds

]
r(q) +

∫ t

0

g(s, ỹ(s), q) ds

)∥∥∥∥2

dt. (2.9)

Since this least squares problem is linear in both r and y0, the nonlinear optimization

is only over q. Unlike SME, this does not actually require us to approximate y′(t), since

the IVP has been integrated. We will refer to this approach as integral smooth and match

estimator (INT-SME).

Second, while the solution of a general system of ODEs will be coupled, it may be the

case that the system of ODEs can be decoupled. That is, subsets of the parameters may

appear in f , such that each subset can be independently determined. Similar remarks

about the benefits of decoupling are discussed in [27]. To illustrate this decoupling, we

consider the Mendes Problem, which we describe in more detail in Section 2.6.6. For now,

we are simply interested in the structure of G(t, y(t), q) for this model (note, g(t, y(t), q) =

0 for this model). The sparsity of G(t, y(t), q) is shown in Figure 2.1. For this problem, we

see that G consists of 7 blocks. It turns out that each of these blocks is also independent

with respect to q, so the SME requires the approximate solution of 7 independent NLS
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problems. This significantly reduces the computational burden of attempting any kind of

global search over p, where np = 36 for this example. The 7 subproblems are summarized

in Table 2.1. We see that the largest subproblem now requires a global search over only 6

nonlinear parameters, whereas if we only took advantage of the fact that some parameters

are linear, we would have been attempting a global search over all 21 of the nonlinear

parameters. If no structure was used, we would have to search over all 36 parameters.

Figure 2.1: Each dot denotes a non-zero entry in G for the Mendes test problem. The
matrix is sparse and contains 7 independent blocks.

Subproblem # |r| |q| # of components of f
1 2 4 1
2-3 2 4 1
4-6 2 1 1
7 3 6 2
total 15 21 8

Table 2.1: Summary of the 7 subproblems for the Mendes Problem

2.3.1 B3 Test Problem Example

To further motivate the potential gains of exploiting structure, we consider a larger model

from systems biology. This is one of six test problems fully specified in BioPreDyn-

bench [50], which is a set of benchmark problems from systems biology. While this

thesis focuses on parameter estimation problems where the parameters are identifiable, a

common complication that often arises when estimating parameters in large models from

systems biology is that the parameters are not all identifiable. No numerical experiments

are performed for this problem, but we mention this problem simply to demonstrate how

the structure of a model can still be used to divide the problem into subproblems.

The B3 test problem is a metabolic model of E. coli, consisting of 47 states and 178

parameters. Of these parameters, 82 are linear and 96 are nonlinear. The structure of
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the model can be seen in Figure 2.2. The sizes of the subproblems are summarized in

Table 2.2. We see that the first subproblem is quite large, due to four parameters that

appear in almost all components of f(t, y(t), p). If we assume fixed values for these four

parameters, then the model can be broken into more manageable subproblems (Figure 2.3

and Table 2.3). Note, these four parameters actually appear together in one component of

f without any other parameters, so it may be possible to estimate these four parameters

from the available data to obtain appropriate values to fix them at. If this is done,

we are left with several small subproblems, a couple medium size subproblems, and the

largest subproblem is reduced from 91 down to 51 nonlinear parameters. Given the large

number of parameters in this subproblem, identifiability issues would likely require more

parameters to be fixed, allowing for potentially more decoupling. We now present an

algorithmic description of our two stage procedure.

Figure 2.2: Sparsity pattern of the linear and nonlinear parameters for Problem B3. The
(i,j) entry is coloured if ∂fi

∂pj
is non-zero. The linear parameters are red and the nonlinear

parameters are black.

Subproblem # |r| |q| # of components of f
1 79 90 36
2-4 1 2 2
total 82 96 42

Table 2.2: Summary of the Subproblems for Problem B3
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Figure 2.3: Sparsity pattern of the linear and nonlinear parameters for Problem B3 with
decoupling. The (i,j) entry is coloured if ∂fi

∂pj
is non-zero. The linear parameters are red

and the nonlinear parameters are black.

Subproblem # |r| |q| # of components of f
1 40 51 15
2,4,5,9 2 2 1
3 5 8 3
6 4 2 1
7,8,11-16 2 1 1
10 4 11 2
17-19 1 2 2
total 80 94 39

Table 2.3: Summary of the Subproblems for Problem B3 when we fix the four parameters
coupling the first subproblem

2.4 Full Procedure

We assume that, for the initial procedure being used, the parameters can be split into K

independent sets of parameters. Obtaining an initial guess for the kth set of parameters,

pk, will be referred to as subproblem Sk. We refer to the nonlinear parameters in each set

as qk. Sk may be any one of the initial guess generation procedures previously described.

The full procedure is given in Algorithm 1.

We found that Nbest = 10 and Nrepeat = 3 seemed to give a reasonable balance between

speed and robustness. We also tried various values for Nk
samples and found that choosing

Nk
samples proportional to the square of the number of nonlinear parameters in subproblem

Sk seemed to work well for the test problems considered in this thesis.
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Stage I :

foreach subproblem Sk, k = 1, . . . , K do
obtain Nk

samples samples of qk from the log of the parameter space using LHS

calculate the subproblem objective function (and hence optimal rk) for each
sample and sort based on this

run local optimizer from the Nbest samples of qk or fewer if the same
minimizer is found Nrepeat times

let Pk be the set of unique minimizers found for subproblem Sk

end
let P0 = P1 × P2 × ...× PK
compute the objective function for each p0 ∈ P0 and sort based on this

Stage II :

run local optimizer on p0’s from P0 until satisfied that best fit parameters have
been found

Algorithm 1: Two Stage Parameter Estimation Procedure

2.5 Related Methods

We now briefly discuss several methods that are related to our two stage procedure.

2.5.1 Accelerated Least Squares

The accelerated least squares (ACCEL) procedure proposed by Dattner [13] also consists

of two stages. The first stage can either be the SME or INT-SME previously mentioned.

The second stage is to perform a single iteration of Newton’s method, from this initial

estimate for the parameters, to minimize the objective function (1.7). Under certain

conditions, one is guaranteed that the estimated parameters obtained in this way will be

statistically the same as if one were to explicitly minimize (1.7). While this is somewhat

expensive, as it requires computation of the matrix of second partials of (1.7), it only

needs to be done once and, in the case of ODEs, it is straightforward to approximate

these partials. ACCEL closely resembles our proposed procedure, but differs in how we

perform the final estimation, which we discuss in detail in the next chapter, and in the

fact that we explicitly exploit the structure of the system of ODEs in the first stage.

2.5.2 Multiple Shooting

In this thesis we only consider simple shooting in our numerical experiments, but it is

worth mentioning multiple shooting briefly. Multiple shooting is a more robust form of
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simple shooting. This method is widely used for the numerical solution of boundary value

problems in ODEs (see, for example [29, 9]). It has also been suggested for estimating

the parameters in systems of ODEs [48, 39].

In multiple shooting, the interval over which the system is simulated is divided into

NMS subintervals, where the first interval is I0 = [0, t̃1], the rth interval is Ir = [t̃r, t̃r+1],

and INMS−1 = [t̃NMS−1, T ]. Additional parameters are added to specify the state vector

at the beginning of each subinterval after I0 (assuming initial conditions are already

included as parameters). This means we have (NMS − 1)ny additional parameters to

estimate. Finally, we introduce equality constraints at the boundary of each interval,

y(t̃r, p; t̃r+1) = y(t̃r+1) , for r = 0, . . . , NMS − 2, (2.10)

where y(t̃r, p; t̃r+1) is the value of the state vector at the right end point of Ir, and y(t̃r+1)

is the value of the state vector at the left end point, which are the additional parameters

to be estimated. Note, these additional constraints are added to the optimization problem

(1.7).

One advantage of this approach is that it allows discontinuities in the intermediate

trajectories (i.e. violation of the introduced equality constraints) to exist during the

optimization. Also, since it restarts the simulation at the start of each subinterval, it is

less likely that the IVP solver will fail. The presence of the additional equality constraints

ensures that the trajectory at convergence will be continuous almost everywhere. When

used in conjunction with a gradient based optimizer, a downside of multiple shooting

is that each iteration is generally more computationally expensive than simple shooting.

We note that the simulations on each subinterval can be done in parallel on each iteration.

Multiple shooting was extended in [23] to a class of DDEs with constant delays.

2.5.3 Method of Ramsay

As we mentioned in Section 1.2.3, there is another way to approach solving the NLS prob-

lem (1.7). In the approach of Ramsay [40], the ODE constraint is treated by the inclusion

of a penalty term in the objective function (1.7). The state vector is approximated by

x(t), which is represented using B-splines,

xi(t) =

NB∑
k=1

cikBik(t) = cTi Bi(t), (2.11)

where NB is the number of basis functions used and ci is the vector of coefficients intro-
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duced to parameterize xi(t). The penalty term for the ith component is given by,

PENi(x) =

∫ T

0

λi(x
′
i(t)− fi(t, x, p))2dt, (2.12)

where λi determines how much weight the ith penalty term has. For simplicity, we’ll

assume each λi = λ. The full objective function is then,

no∑
i=1

ny∑
j=1

(ŷj(ti)− xj(ti, p))2

2
+

ny∑
j=1

PENj(x) (2.13)

Since an ODE solver is not being used to evaluate the objective function, the state vector

is allowed to violate the ODE constraint on intermediate iterations of the optimization,

similar to multiple shooting. Also, there is no requirement to explicitly simulate the

ODE across the interval of interest. Instead, each time point of interest may be handled

simultaneously. In [40], the authors go on to discuss how to use parameter cascades

to efficiently solve this optimization problem. We note that their approach requires

several additional partial derivative expressions to be provided by the user and rather

complicated expressions arise.

If the B-splines used are not able to satisfy the ODE to sufficient accuracy, then the

parameter estimates may become skewed, depending on the value of λ chosen, as shown

in Figure 2.4. Note, this will also depend on the quadrature rule used to estimate the

integral in the penalty term. For these figures, we estimated the parameters for the

Barnes problem, with no = 40, a B-spline knot placed at every second observation, and

the trapezoidal rule used to approximate the penalty term with a spacing of 0.05.

We see that with this setup, the choice of λ can significantly alter the final fit and

estimated parameter values. When λ is chosen too small, the ODE constraint is not

being satisfied and the data fitting part of the objective function dominates. When λ is

chosen too large, the ODE constraint begins to skew the final fit. Ideally, the spline would

be flexible enough to exactly match the ODE and the quadrature rule used accurately

approximates the penalty term. This would result in the penalty term not contributing

to the objective function at convergence. However, in our example, the spline is unable

to match the ODE and instead influences the parameter estimates.

As this example demonstrated, it is essential that an appropriate smoothing pa-

rameter, λ, be chosen, as well as an appropriate mesh for the B-splines being used to

approximate the solution of the ODE. If the solution of the ODE varies rapidly at some

points and is flat in others, a non-uniform mesh should be used. One could use the

observed data to estimate the rate of change in the trajectory to inform the choice of the
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Figure 2.4: Parameter estimates obtained using Ramsay’s approach for the Barnes prob-
lem, for varying values of the smoothing parameter, λ. The true parameter vector is
[1, 1, 1].

B-spline mesh. We note that by using an ODE solver with error control and a continuous

interpolant, we are constructing such a non-uniform mesh, with confidence that the ODE

is being satisfied over the interval. Thus, we don’t have to worry about this difficulty.

Lastly, it is interesting to note that we can easily adapt Ramsay’s approach to view

it as an approach for obtaining p0. If we solve (2.13) with λ = 0, then this means that

we are fitting the B-splines to the observed data. If we then fix the coefficients of the

B-splines, the first term in (2.13) becomes a constant and the second term is precisely

(2.1), with x(t) playing the role of ỹ(t). So, applying Ramsay’s approach in this way is

equivalent to applying SME, with B-splines used to smooth the data.

2.6 Numerical Experiments

We now present results for several numerical examples to demonstrate the performance

of the methods we have discussed.

2.6.1 Comparison of approaches to obtain p0

To compare the performance of the approaches discussed earlier for obtaining a suitable

p0, we perform the following experiment using the FitzHugh-Nagumo model.
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FitzHugh-Nagumo Model

The FitzHugh-Nagumo equations model potentials of squid neurons [16]. The model is

given by,

y1
′(t) = c

(
y1(t)− y1(t)3

3
+ y2(t)

)
, (2.14)

y2
′(t) =

− (y1(t)− a+ by2(t))

c
, (2.15)

where y1(t) is a voltage across the neuron and y2(t) is a response current, inversely related

to y1(t). The initial conditions and parameters are chosen to be y1(0) = −1, y2(0) = 1,

a = 0.2, b = 0.2, and c = 3.5, for t ∈ [0, 20]. This parameterization of the model

is considered a challenging test problem due to the observation that the corresponding

objective function has many local minima [51]. The true trajectories corresponding to

these parameters are shown in Figure 2.5. Both the parameters and initial conditions

are estimated in this problem.

Figure 2.5: True trajectories for FitzHugh-Nagumo model, along with a sample of noisy
data with σ = 0.5.

For the purposes of this experiment, we have fixed the nonlinear parameter, c, so

we are only estimating the two linear parameters, a and b. This allows us to more

easily visualize the quality of the p0’s being generated. As in [40], we assume both

state variables are observed every 0.05 time units over the interval [0, 20]. This results

in 400 observations. The true trajectory is generated using an accurate ODE solver

and noise with a standard deviation of 0.5 is added at each observation time. This is
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done multiple times to give us 200 sets of noisy observations. For each data set, several

approaches are used to generate p0. For INT-SME and SME, an LPE smoother is used

with a reasonable bandwidth chosen based on the number of data points. For Euler, the

solver uses a fixed step size of 0.05 to simulate the IVP. The results are summarized in

Figure 2.6 and Table 2.4. We see that all the approaches are able to get us sufficiently

close to the true parameter values, so that a quasi-Newton optimizer was able to rapidly

converge. However, the quality of the p0’s do vary between the methods. For example,

when we use Euler’s method to crudely solve the IVP, we see that the guesses don’t

vary as much between data sets, but they are very clearly skewed. Furthermore, using

Euler’s method will be more expensive than using the other three approaches, since it is a

nonlinear optimization, whereas the other approaches are all linear optimizations. INT-

SME, SME, and DBE all perform similarly, but INT-SME provides noticably tighter

guesses, which may save one or two iterations on the final optimization. Since each

iteration of the final optimization is generally much more expensive than INT-SME, it is

expected that the additional cost of INT-SME compared to DBE may be worth it. DBE

performs surprisingly well here, since others have noted that divided difference based

estimates of the derivative perform poorly when there is a high level of noise. We did

find that if forward differences (FD) was used, the results were quite poor, so we have

used centered differences (CD) to obtain these results.

Figure 2.6: Comparison of p0’s generated by various approaches for the FitzHugh-
Nagumo example. The 95% confidence ellipses are based on the mean and covariance of
the p0’s and p̂’s generated for each of the 200 simulated data sets. The confidence ellipses
are overlaid over a contour map of the full objective function.
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method p0 cost (s)
SME 0.081

INT-SME 0.084
DBE 0.012

Euler 1 -

Table 2.4: Cost in seconds of procedures for generating p0 for the FitzHugh-Nagumo
example. DBE is roughly 7 times faster than INT-SME and SME, since it doesn’t
require any smoothing of the noisy data. This experiment was run on an Intel X5675
(3.08 GHz).

σ no SME INT-SME DBE Euler
0.1 25 1.0e-01 (5.4e-02) 1.2e-01 (5.9e-02) 6.6e-02 (3.9e-02) 1.3e-01 (2.1e-02)
0.1 100 7.1e-02 (3.9e-02) 6.2e-02 (3.3e-02) 4.1e-02 (2.5e-02) 6.9e-02 (7.6e-03)
0.1 400 5.5e-02 (2.7e-02) 2.3e-02 (1.4e-02) 2.7e-02 (1.5e-02) 4.9e-02 (1.6e-03)
0.5 25 3.6e-01 (2.4e-01) 3.4e-01 (2.3e-01) 2.6e-01 (1.4e-01) 1.5e-01 (8.1e-02)
0.5 100 2.3e-01 (1.6e-01) 1.6e-01 (1.2e-01) 1.6e-01 (8.9e-02) 8.2e-02 (3.5e-02)
0.5 400 1.4e-01 (8.6e-02) 7.7e-02 (4.8e-02) 1.1e-01 (6.3e-02) 5.4e-02 (9.5e-03)

Table 2.5: The average distance between p0’s and the true parameter vector for varying
levels of noise and number of observations, with standard deviation in brackets, for the
FitzHugh-Nagumo example.

We also further investigate how these approaches perform when we vary the noise

level and number of observations. These results are shown in Figure 2.7 and Table 2.5.

From Figure 2.7, we observe that when there is less noise, the initial guesses are closer to

the true parameter values for all methods except Euler. In the case of Euler, the variance

of the estimates is reduced, but the bias in the estimate is not reduced. In Table 2.5,

we report the average distance from the initial guesses generated to the true parameter

vector. We see that as the number of observations decreases, all methods perform worse,

although SME and INT-SME seem to be more affected by a small number of observations

than DBE and Euler. This seems to be caused by the reduced number of observations

available to the bandwidth smoother.

Cost of Final Estimation from the generated p0’s

We also report how long the final optimization takes from some of the initial guesses. As

we noted, all p0’s generated lie within the basin of attraction of the true parameters, so

the final estimation converges to the global minimum. The results are shown in Table

1 Since Euler results in a nonlinear optimization problem, the actual cost is dependent on how the
problem is specified. To generate these results, we started the local minimizer sufficiently close to the
minimizer to obtain fast convergence, so we don’t report timing results for this method.
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Figure 2.7: Comparison of p0’s generated by various approaches for varying level of noise
and number of observations for the FitzHugh-Nagumo example. The 95% confidence
ellipses are based on the means and covariances of the p0’s generated for each of the 200
simulated data sets. The true parameter vector of [0.2, 0.2] is denoted by a circle and the
mean guesses by solid dots (centers of ellipses). Note, the scale is different between the
two rows. (25 observations (solid line), 100 observations (dashed line), 400 observations
(dotted line), top row is σ = 0.1, bottom row is σ = 0.5)

2.6. As expected, all methods perform about the same, although Euler consistently

requires exactly four iterations in the case of low noise and a large number of observations

available, since there is so little variance in the p0 generated by Euler in that case. In

the case of more noise and fewer observations, DBE and Euler require around 1 iteration

less than SME and INT-SME on average.

As we saw in the timing comparison in Table 2.4, all of the approaches cost a similar

amount, although DBE is somewhat cheaper since it is neither simulating the IVP nor

using a smoother. However, we note that in the case where some parameters appear

nonlinearly, some kind of global optimization strategy must be used. In such a case, the

relative cost of running the smoother becomes much less important, since the smoothing

of the data only has to be done once. Ignoring the fixed cost of smoothing the data, the

cost of evaluating SME, INT-SME, and DBE is practically the same. This is not the case

with Euler, since evaluation of its objective function is inherently more expensive. For

the FitzHugh-Nagumo example considered here, one iteration of the final optimization

takes about 0.1s. This means that all of these initial procedures only cost a fraction of

an iteration of the final optimization, with DBE only costing about 10%.
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σ no SME INT-SME DBE Euler
0.1 25 0.44 (0.09) 0.46 (0.09) 0.41 (0.09) 0.43 (0.07)
0.1 400 0.36 (0.05) 0.33 (0.04) 0.34 (0.02) 0.43 (0.004)
0.5 25 0.82 (0.39) 0.88 (0.50) 0.70 (0.34) 0.68 (0.44)
0.5 400 0.43 (0.12) 0.38 (0.09) 0.41 (0.07) 0.38 (0.05)

Table 2.6: The time taken to perform the final optimization for the FitzHugh-Nagumo
example. We report the average time taken from the guesses generated by each approach
for 50 of the 200 simulated data sets (standard deviation in brackets). One iteration of
the final optimization takes about 0.1 seconds.

2.6.2 Effect of the Number of Observations on Initial Proce-

dures

To further investigate how the initial procedures behave when the number of observations

is varied, we consider the Barnes problem.

Barnes Problem

The Barnes Problem is often used in the parameter estimation literature for ODE models

[51, 49]. It refers to a specific parameterization of the predator-prey model, given by,

y1
′(t) = ay1(t)− by1(t)y2(t), (2.16)

y2
′(t) = by1(t)y2(t)− cy2(t), (2.17)

where y1(t) is the population of predators, y2(t) is the population of prey. The true

parameters and initial conditions are specified to be a = 1, b = 1, c = 1, y1(0) = 1, and

y2(0) = 0.3, for t ∈ [0, 20]. The true trajectories corresponding to these parameters are

shown in Figure 2.8. Both the parameters and initial conditions are estimated in this

problem.

For this experiment, we fix the noise level at σ = 0.1. A uniform mesh of observation

points between t = 0 and t = 20 is used, but we vary the spacing of the mesh. The finest

mesh has a spacing of 0.25 and we use meshes with integer multiples of this spacing, up to

a coarsest spacing of 2.5. The results are summarized in Table 2.7, where we report the

mean bias for each of the three methods for ten mesh spacings. For INT-SME, we report

results where no smoothing was done (results when a smoother is used look similar). For

SME, an LPE smoother was used. For DBE, we report results for two different centered
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Figure 2.8: True trajectories for the Barnes Problem

discretizations to approximate the derivative,

y′(ti) ≈ f(ti, ȳ(ti), p) ≈
ȳ(ti+1)− ȳ(ti−1)

(ti+1 − ti−1)
, i = 2, . . . , no − 1, (2.18)

or,

y′(
ti + ti+1

2
) ≈ f(

ti + ti+1

2
,
ȳ(ti) + ȳ(ti+1)

2
, p) ≈ ȳ(ti+1)− ȳ(ti)

(ti+1 − ti)
, i = 1, . . . , no− 1. (2.19)

For this example, we see that (2.19) gives better estimates than (2.18). As expected,

all methods perform well when there are a large number of observations available, with

the estimates becoming poor as the number of observations is reduced. We note that

in terms of computational cost, SME, INT-SME, DBE take roughly 0.12s, 0.059s, and

0.017s, respectively.

Lastly, we note that not only is the number of observations important, but also the

placement of the observations. We see that even though spacings of 2.5 and 2.25 result

in no = 8, we get very different estimates in the two cases. This is due to the periodic

nature of the trajectories of the Barnes IVP and where the observations end up being

located along the oscillating trajectories.

For this test problem, the initial conditions are also parameters. For the SME and

DBE procedures, initial conditions are estimated to be the observed values at t = 0.

Given the noise level used, this results in asymptotic estimates of y1(0) = 1(0.1) and
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dt no SME INT-SME CD-DBE(2.18) CD-DBE(2.19)
0.25 80 -0.030 (0.021) -0.006 (0.019) -0.057 (0.020) -0.010 (0.021)
0.5 40 -0.036 (0.031) 0.003 (0.030) -0.126 (0.027) 0.010 (0.030)
0.75 26 -0.081 (0.030) 0.020 (0.033) -0.256 (0.027) 0.026 (0.030)

1 20 -0.133 (0.034) 0.028 (0.046) -0.390 (0.030) 0.056 (0.035)
1.25 16 -0.150 (0.031) 0.032 (0.080) -0.466 (0.028) 0.101 (0.035)
1.5 13 -0.196 (0.038) -0.147 (0.127) -0.587 (0.032) 0.143 (0.042)
1.75 11 -0.303 (0.029) -0.173 (0.111) -0.678 (0.019) 0.213 (0.041)

2 10 -0.395 (0.043) -0.634 (0.086) -0.772 (0.023) 0.213 (0.061)
2.25 8 -0.367 (0.048) 0.040 (0.117) -0.647 (0.019) 0.850 (0.099)
2.5 8 -0.556 (0.049) -0.822 (0.054) -0.879 (0.020) 0.126 (0.102)

Table 2.7: Mean bias of the 3 non-initial condition parameters for the Barnes test prob-
lem, for varying numbers of observations (standard deviation in brackets). This is based
on 100 simulated data sets.

dt no Y1(0) Y2(0)
0.25 80 0.994 (0.134) 0.293 (0.109)
0.5 40 1.020 (0.182) 0.277 (0.139)
0.75 26 1.008 (0.219) 0.283 (0.174)

1 20 1.009 (0.247) 0.276 (0.198)
1.25 16 1.048 (0.285) 0.360 (0.249)
1.5 13 0.896 (0.225) 0.567 (0.188)
1.75 11 0.909 (0.179) 0.536 (0.212)

2 10 1.406 (0.122) 0.408 (0.131)
2.25 8 1.396 (0.214) 0.706 (0.216)
2.5 8 1.386 (0.081) 0.892 (0.091)

Table 2.8: Mean estimate of initial condition parameters for the Barnes test problem using
INT-SME, for varying numbers of observations (standard deviation in brackets). This is
based on 100 simulated data sets. As reference, y1(0) = 1(0.1) and y2(0) = 0.29(0.08) is
the estimate obtained from the simulated data.

y2(0) = 0.3(0.1). For INT-SME, the estimates of the initial conditions are given in Table

2.8. These results suggest that initial conditions should be estimated from the data

directly, rather than by INT-SME, at least with this level of noise.

Cost of Methods for Barnes example

In terms of computational cost, we consider both the cost of generating p0 and the cost

of performing the final estimation. The results are summarized in Table 2.9. We see

that INT-SME and DBE(2.18) take a bit longer in the final optimization. For INT-

SME, this can be attributed to the fact that its initial guess for the initial conditions is

not as reliable as the other methods. For DBE(2.18), this is probably due to the worse
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initial guess for the other 3 parameters. SME and DBE(2.19) perform about the same in

the final estimation, but the cost of the smoother in SME makes it the most expensive

approach in this example. Note, these timing results are for 50 simulated data sets. All

4 approaches converged to the global minimum on 49 of the 50 data sets. Interestingly,

the data set that INT-SME found a local minimizer was not the same as the data set

the other 3 approaches all converged to a local minimizer. The local minimizer found

corresponds to another periodic solution of lower frequency in both cases.

SME INT-SME DBE(2.18) DBE(2.19)
Initial (s) 0.118 0.059 0.017 0.018
Final (s) 0.200 0.235 0.255 0.195
Total (s) 0.318 0.294 0.272 0.213

Table 2.9: Cost in seconds of procedures for generating p0 for the Barnes problem. This
is for 50 of the simulated data sets from the case of no = 80.

2.6.3 Calcium Ion Example

This system of ODEs describes the oscillations of Ca2+ ions in the cytoplasm of eukaryotic

cells, which play a role in cellular information processing. For a complete description

of this model, see [30] where this model was first proposed. The model, as originally

specified, is given by,

G∗α
′ = k1 + k2G

∗
α − k3PLC

∗ G∗α
G∗α +Km1

− k4Cacyt
G∗α

G∗α +Km2

, (2.20)

PLC∗′ = k5G
∗
α − k6

PLC∗

PLC∗ +Km3

, (2.21)

Cacyt
′ = k7PLC

∗Cacyt
Caer

Caer +Km4

+ k8PLC
∗ + k9G

∗
α

− k10
Cacyt

Cacyt +Km5

− k11
Cacyt

Cacyt +Km6

, (2.22)

Caer
′ = −k7PLC

∗Cacyt
Caer

Caer +Km4

+ k11
Cacyt

Cacyt +Km6

, (2.23)

where the state variables are concentrations of four compounds, which interact in the

calcium-signaling pathway. In our notation, [y1 y2 y3 y4] = [G∗α PLC
∗ Cacyt Caer]. Pa-

rameters are chosen to be k1 = 0.09, k2 = 2, k3 = 1.27, k4 = 3.73, k5 = 1.27, k6 = 32.24,

k7 = 2, k8 = 0.05, k9 = 13.58, k10 = 153, k11 = 4.85,Km1 = 0.19,Km2 = 0.73,Km3 =

29.09,Km4 = 2.67,Km5 = 0.16,Km6 = 0.05. Initial conditions are treated as known,

and given by y1(0) = 0.12, y2(0) = 0.31, y3(0) = 0.0058, and y4(0) = 4.3. The model
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is simulated for t ∈ [0, 20]. For this specific parameterization, the solution exhibits a

limit cycle [39]. The true trajectories corresponding to these parameters are shown in

Figure 2.9. Usually the nonlinear parameters are considered as fixed and only the linear

parameters are estimated for this problem.

Figure 2.9: True trajectories for the Calcium Ion test problem

This model contains 11 linear parameters to be estimated, with 6 nonlinear parameters

whose values are held fixed. For this experiment, we take observations every 0.1 time

units, from t = 0 to t = 10. Noise is added relative to the magnitude of each component

of the state vector, such that each observation has roughly 6.5% error. The results are

shown in Figure 2.10. We only show results for SME and INT-SME, as the results of

SME and DBE are very similar. For SME and INT-SME, we do not use a smoother in

this example. We report the initial guesses generated by each method for each of the 11

parameters for 200 sets of simulated data. Both methods generate good guesses for most

parameters, but they both struggle somewhat with the first and eighth parameters, while

SME also produces guesses for parameters 9 and 10 that are consistently about half of

their true value. On average, SME takes 0.0021s and INT-SME takes 0.0032s for this

example.

As noted in [21], the choice of smoother can bias the estimates generated by procedures

like SME. This is the case in this example, due to the sharp peaks in the trajectory. This

can be addressed to some degree by attempting to put weights on the observations. One

way to think of this is that since we only have a small number of samples near the peaks,

they need to be given more weight if we hope to fit them. For example, we tried putting
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more weight on the observations at times corresponding to the peaks and were able to

reduce the bias in the estimates of parameters 9 and 10, but the estimates for parameter

11 became worse (results not shown) and the variance in the estimates of parameters 9

and 10 increased.

Figure 2.10: Boxplot of p0’s obtained for the Calcium Ion test problem using SME(left)
and INT-SME(right) for 200 simulated data sets. Parameters have all been rescaled to
be equal to one in this plot.

Given these initial guesses, we then attempted to perform the final estimation proce-

dure for 50 of the 200 data sets. For these data sets, we note that the median objective

function value at the generated initial guesses was around 670 for INT-SME and 2240

for SME.

Levenberg-Marquardt is used to perform the optimization, as implemented in lsqnon-

lin. We used the DDEM IVP solver to simulate the model trajectories and we used

centered divided differences to approximate the required sensitivities, as described in

Section 3.2. Using the initial guesses generated by SME and INT-SME, the final opti-

mization converged to the global minimum in all cases, except once for SME, where a

local minimum was found. The cost of the optimizations are summarized in Table 2.10.

We see that SME took significantly more time to converge than INT-SME. The average

time taken by INT-SME was 2.05s, while it was 3.91s for SME.
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time <1 s <2 s <3 s <4 s <5 s ≥5 s
SME 0 3 7 20 10 10

INT-SME 18 9 12 6 3 2

Table 2.10: Summary of time taken to converge to the global minimizer for the Calcium
Ion test problem, using the p0’s generated by SME and INT-SME for 50 sets of simulated
data.

2.6.4 DDE Examples

We now consider how these approaches perform on two constant lag DDE models.

Hutchinson’s model

This is a DDE model of population dynamics, given by,

y′(t) = ry(t)

(
1− y(t− τ)

K

)
, (2.24)

where r is the growth rate, K is the carrying capacity, y(t) is the population, and τ is the

time lag. This model was introduced in [24] and is commonly studied in ecology. We use

parameters similar to those used in [52]. The values are r = 1, τ = 1.9, K = 2000, and

y(t) = y(0) = 1000, for t ≤ 0. The true trajectory corresponding to these parameters is

shown in Figure 2.11. The parameters and initial condition are estimated in this problem.

Figure 2.11: True trajectory for Hutchinson’s model

The state vector is observed every time unit over the interval [0, 20]. This results in
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21 observations. The true trajectory is generated using an accurate DDE solver and noise

with a standard deviation of 10% of the average value of the state vector is added at each

observation time. This is done multiple times to give us 50 sets of noisy observations.

For each data set, DBE (with formula (2.19) ) and INT-SME (without any smoother)

are used to generate p0. The results are shown in Figure 2.12. These p0’s are then used

to obtain the final parameter estimates. The final optimization is performed using LM,

as implemented in lsqnonlin, with the required sensitivities approximated using forward

divided differences. Both DBE and INT-SME are able to give us sufficiently good p0’s

to allow LM to quickly converge to the best fit parameters. We note that DBE tends

to underestimate the lag parameter, τ , while INT-SME has significant variance on its

initial guess for y(0). In terms of timing, generating p0 took 0.014s and 0.019s for DBE

and INT-SME, respectively. The total time taken by each approach was 1.42s and 1.22s,

on average.

Figure 2.12: Boxplot of p0’s for DBE and INT-SME when applied to Hutchinson’s model.
Parameters are normalized in this plot. This is for 50 sets of simulated data.

Kermack-McKendrick model

The Kermack-McKendrick model is our second example of a DDE model and it contains

two lags. This DDE system models the spread of disease within a population, using

a Susceptible-Infected-Recovered (SIR) compartment model. It is a more complicated

version of the standard ODE Kermack-McKendrick model [26]. The model is specified
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by the system of DDEs,

y1
′(t) = −y1(t)y2(t− τ1) + y2(t− τ2), (2.25)

y2
′(t) = y1(t)y2(t− τ1)− y2(t), (2.26)

y3
′(t) = y2(t)− y2(t− τ2), (2.27)

where y1 is the number of susceptible individuals, y2 is the number of infected individuals,

and y3 is the number of recovered individuals. As in [51], the parameters are chosen to

be τ1 = 1, τ2 = 10, and y(t) = y(0) = [5, 0.1, 1], for t ≤ 0. The true trajectories

corresponding to these parameters are shown in Figure 2.13. Both the parameters and

initial conditions are estimated in this problem.

Figure 2.13: True trajectories for the Kermack-McKendrick model

When estimating lag parameters, as we saw in our first example, it is often straight-

forward to determine reasonable initial bounds on the values they can take. First, since

this model is simulated from t = 0 to t = 55, the lags must lie in this range. Further-

more, the model trajectory is close to being periodic, with a period of around 15 time

units. Since the history function is constant, it is reasonable to assume that the lags

must lie in (0, 15). Of course, one can further refine this assumption using knowledge of

the biological meaning of the lags (τ1 being the incubation time and τ2 being the recovery

time). We note that if we do not use these refined bounds, then we might encounter a

local minimum in the SME objective function (Figure 2.14) at a multiple of τ2. This

local minimum is not present in the INT-SME objective function, but there is a local
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minimum at a multiple of τ1 (Figure 2.14).

Figure 2.14: Contours of the objective function for SME and INT-SME when applied
to the Kermack-McKendrick example. Note, this is with initial conditions fixed at their
true values, so only τ1 and τ2 are varied. Contours of the objective function for DBE
(not shown) are similar to those of SME.

The initial guesses generated by SME, INT-SME, and DBE (with formula (2.19) )

are shown in Figure 2.15. All three approaches give p0’s that are sufficiently close to the

true parameter values, although DBE results in the least biased initial guesses in this

example. For the initial conditions, the guesses are shown in Figure 2.16. Unlike the

case of ODEs, DBE and SME could be used to estimate initial conditions for any states

whose lagged values appear in f . In this example, only y2(0) can be estimated in this

way. We see that the best initial guesses are obtained by simply using the observation at

the initial time. INT-SME’s estimate of y1(0) has slightly less variance, but the estimate

is also slightly biased.

2.6.5 Goodwin Example

This system of ODEs models a biological oscillator [19], which has been investigated in

applications including enzyme kinetics and circadian clocks [18]. This negative feedback
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Figure 2.15: 95% confidence ellipse for the p0’s generated by each approach for the
Kermack-McKendrick example. Note, this is with initial conditions fixed at their noisy
values for SME and DBE, while INT-SME is also estimating the initial conditions.

Figure 2.16: Boxplot of the p0’s generated using different approaches for the Kermack-
McKendrick example. Since SME can only estimate the initial condition on the second
component of the state vector, the estimates for the other two components are based on
the noisy data directly.
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loop model is given by,

y′1(t) =
a

A+ y3(t)σ
− by1(t), (2.28)

y′2(t) = αy1(t)− βy2(t), (2.29)

y′3(t) = γy2(t)− δy3(t), (2.30)

where y1(t) is the product being synthesized, y2(t) is an intermediate product, and y3(t)

exerts a negative feedback on the synthesis of y1(t). Initial conditions and other pa-

rameters are chosen to be a = 3.4884, A = 2.15, b = 0.0969, α = 0.0969, β = 0.0581,

γ = 0.0969, σ = 10, δ = 0.0775, y1(0) = 0.3617, y2(0) = 0.9137, and y3(0) = 1.3934, for

t ∈ [0, 80]. These values are chosen so that the true trajectories exhibit oscillatory be-

haviour [2]. The true trajectories corresponding to these parameters are shown in Figure

2.17. Both the parameters and initial conditions are estimated in this problem.

Figure 2.17: True trajectories for the Goodwin model

While it is not the topic of this thesis, we will briefly consider the identifiability of this

model. It turns out that, while the parameters are structurally identifiable, they are not

practically identifiable. Roughly speaking, this means that some of the parameters may

have very large confidence intervals if the data are not sufficiently accurate. We demon-

strate this through a simple experiment, where we vary to scale of the noise on a single set

of observations. We first accurately simulated the model with the true parameters. We

then generated a single set of observations by adding normally distributed noise, with an

observation every time unit across the interval. For this set of observations, we found the
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best fit parameters and calculated the confidence intervals (using nlparci in MATLAB).

We then scaled the noise on the observations and recomputed the best fit parameters

and their confidence intervals. This was repeated several times to demonstrate how the

level of noise affects the results. This whole procedure is repeated several times and we

plot the average values in Figure 2.18. For practically identifiable parameters, we expect

the size of the confidence intervals to grow linearly with the level of noise. We see that

parameters p1 and q1 do not behave this way, as their confidence intervals become much

larger as the level of noise increases. With this in mind, we choose a level of noise in our

next experiment that is not too large to ensure identifiability (we use noise that is 1% of

the average value of the state vector).

The main purpose of this example is to demonstrate how the structure of the model

allows us to reduce the size of the problem. We observe that all of the initial procedures

result in 3 subproblems, one for each component of the system of ODEs. Furthermore,

only one subproblem contains nonlinear parameters. This means that the problem has

been reduced from a single optimization over all 11 parameters, to 2 LS problems over 3

parameters each and 1 NLS problem over 2 nonlinear parameters and 3 linear parameters.

In our experiment, we have used INT-SME with no smoother. For the nonlinear subprob-

lem, we have used LHS and assumed that the nonlinear parameters are in [0.01, 100]. We

performed the full estimation procedure on several sets of simulated data. On average,

this resulted in the initial guess being generated in 0.076s and the final optimization tak-

ing 1.22s. The sensitivities for the final optimization were approximated using forward

differences.

2.6.6 Mendes Problem

Our last test problem is a benchmark problem that was originally posed in [38] and has

been subsequently studied [44, 43, 2, 17]. In our notation, this model can be expressed

as,
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Figure 2.18: Practical identifiability of parameters in the Goodwin model. The x-axis
is the level of noise. The dashed black lines are the 95% confidence intervals and, the
solid black line is the true value of the parameter, and the red dashed lines are the best
fit parameter estimates. All values in the plot are averaged over 50 repetitions of the
experiment.
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y′1(t) =
k1

1 +
(
P
q1

)q2+( q3
S

)q4 − k2y1

y′2(t) =
k3

1 +
(
P
q5

)q6+( q7
y7

)q8 − k4y2

y′3(t) =
k5

1 +
(
P
q9

)q10+( q11
y8

)q12 − k6y3

y′4(t) =
k7y1

y1 + q13

− k8y4

y′5(t) =
k9y2

y2 + q14

− k10y5

y′6(t) =
k11y3

y3 + q15

− k12y6

y′7(t) =
k13y4( 1

q16
)(S − y7)

1 + ( S
q16

) + ( y7
q17

)
−
k14y5( 1

q18
)(y7 − y8)

1 + ( y7
q18

) + ( y8
q19

)

y′8(t) =
k14y5( 1

q18
)(y7 − y8)

1 + ( y7
q18

) + ( y8
q19

)
−
k15y6( 1

q20
)(y8 − P )

1 + ( y8
q20

) + ( P
q21

)
.

There are 36 parameters to be estimated in total (k and q). Each parameter is as-

sumed to lie in the range [10−12, 106], except for the Hill coefficients (q2, q4, q6, q8, q10, q12),

which are assumed to lie in [0.1, 10]. The data for this test problem consists of 21 uni-

formly spaced observations of the 8 state variables, over the interval [0, 120], for each

of 16 pairs of values for P and S. The 16 pairs are formed from all combinations of

S ∈ {0.1, 0.46416, 2.1544, 10} and P ∈ {0.05, 0.13572, 0.3684, 1}. Thus, evaluation of the

objective function requires simulating the IVP 16 times, on [0, 120]. In total, there are

336 observations. One of these 16 corresponding true trajectories is shown in Figure 2.19.

The initial conditions are given by,

y(0) = [0.66667, 0.57254, 0.41758, 0.4, 0.36409, 0.29457, 1.419, 0.93464].

The initial conditions, as well as S and P , are assumed to be known. The data are

generated by simulating the model with the true parameters and adding noise relative

to the magnitude of each component of the state vector. The true parameter values are

k1−6 = 1, k7−12 = 0.1, k13−15 = 1, q1,3,5,7,9,11,13−21 = 1, and q2,4,6,8,10,12 = 2.

To demonstrate the performance of our full estimation procedure (Algorithm 1), we

report results for this benchmark problem in Table 2.11. This problem contains 21

nonlinear parameters to be estimated and 15 linear parameters. As we discussed in
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Figure 2.19: True trajectories corresponding to one of the 16 pairs of P and S for the
Mendes Problem (S = 0.46416 and P = 1)

Section 2.3, the structure of the Mendes Problem results in 7 subproblems, as summarized

in Table 2.1.

From our numerical results, we see that the choice of smoother and initial procedure

can impact the performance. For example, we see that if cubic splines are used and the

relative noise is 5%, then we fail to find the best fit parameters half of the time. If INT-

SME and a smoother are used, then we succeed more often, although we found using a

smooth spline was more successful than lpe in this example.

initial smoother
Rel initial opt total

success
Noise (%) time (s) time(s) time (s)

SME cubic spline 3 3.51 5.87 9.38 10/10
SME cubic spline 5 5.10 18.82 23.91 5/10

INT-SME lpe 5 5.3 16.6 21.9 17/20
INT-SME splinefit 5 6.5 9.5 16.0 20/20

Table 2.11: Runtimes of our implementation of Algorithm 1 for the Mendes Problem.
We also report how many of these runs succeeded. Cubic spline refers to fitting a cubic
spline with a knot at each observation time, whereas splinefit uses a coarser mesh to
smooth the data. This experiment was run on an Intel X5675 (3.08 GHz).
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This experiment was run in Matlab, but the Mex interface was used to allow efficient

simulation of the ODE using DDEM, which is written in C++. Mex was also used to

make evaluation of f in the initial procedures more efficient. Shortly after first being

proposed as a test problem in [38], the best result was around 104 seconds using a global-

local hybrid optimizer [44]. An improved time of around 300 seconds, using a global

scatter search heuristic, was reported later (on a PC Pentium-III/866 MHz) [43]. In a

more recent paper, additional heuristics reduce the time required by the scatter search

to around 30 seconds [17] (hardware not specified). As we can see, our approach is

competitive with this. Note, no parallelism is used in our results, so the timing can be

further reduced. For example, the 7 subproblems can be solved in parallel during the

first stage and the 16 IVPs can also be simulated in parallel whenever the final objective

function is evaluated. As we will see in the next chapter, parallelism can also reduce the

cost of performing the final optimization by speeding up the computation of the required

sensitivities.

2.6.7 Choice of ODE solver tolerance

The tolerance used to simulate the IVP can impact the cost of the parameter estimation

procedure. Enough accuracy should be requested to ensure that the parameter estimates

are not being skewed, but if TOL is chosen to be too strict, then extra computer time

is being used. In Table 2.12, we report the number of steps taken by DDEM in order to

simulate the true trajectory for several of our test problems, for TOL varying from 10−6

to 10−3. Assuming TOL = 10−3 is sufficiently accurate, we see that using a stricter TOL

may result in a modest increase in computer time - ranging anywhere from 1 − 3 times

the cost in this case. However, we also note that having extra accuracy in the trajectory

simulations may lead to fewer iterations for the optimization to converge.

TOL Barnes Kermack-McKendrick FitzHugh Goodwin Ca2+ Ion Hutchinson
10−6 50 139 195 45 3727 120
10−5 34 105 137 42 3233 85
10−4 25 79 101 42 2945 63
10−3 17 67 75 42 2792 45

Table 2.12: Steps per simulation with true model parameters for several test problems



Chapter 2. Two Stage Procedure 42

γ w 0.5 1 2
1 0.26 0.17 0.19

1.1 0.21 0.14 0.15
1.2 0.15 0.10 0.11
1.3 0.11 0.07 0.07
1.4 0.07 0.03 0.04

Table 2.13: Early Termination Results for Barnes Problem. The numbers across the top
indicate the value for w and the numbers in the left column indicate the threshold factor,
γ. Each entry in the table indicates the fraction of steps saved, for the given threshold
factor and value for w.

2.6.8 Early Termination

When evaluating the objective function (1.7), a model trajectory is simulated. Each time

the simulation reaches one of the observation points, that observation’s contribution

to the objective function can be determined. As the value of the objective function

accumulates, it may become apparent that the current simulation will result in a large

objective function value. Depending on the optimizer being used, one may wish to reduce

computation time by terminating such simulations and returning an artificially large

objective function value. As an example, we consider the potential gains of using this

idea in a global optimizer based on Cross Entropy (CE) [45, 51]. On each iteration of this

optimizer, N samples are drawn from the parameter space. The algorithm then computes

the objective function for each of the N samples and identifies the Nelite ’elite’ samples

with the best objective function values and uses those samples to update how the samples

will be drawn in the next iteration. This means that any sample from the parameter

space that won’t correspond to an elite can be terminated before its simulation reaches

the final observation point. To investigate the potential of using a simple threshold on

the objective function value to terminate simulations early, we draw parameters from a

uniform distribution, centered at the true value of each parameter. We then perform a

series of model simulations, where we vary the width of our uniform distribution. Our

uniform distribution is over the range (p − p
w
, p + p

w
), where w determines the width

of the distribution. Varying w allows us to simulate the different stages of CE. As the

algorithm converges to the true solution, the range it searches in becomes smaller (w

becomes larger). We perform 100 model simulations for each parameter range and for

each threshold. The threshold is taken to be a multiple of the objective function at the

true value of the parameters. The results are given in Table 2.13. In this example, we

can save about 20 out of every 100 time steps. However, this requires a good estimate of

the expected minimum to be known.
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Approximating Model Sensitivities

Once the first stage of our parameter estimation procedure has generated a suitable

p0, a local optimizer is used to obtain the final parameter estimates. In this chapter,

we first motivate our choice to use a Levenberg-Marquardt (LM) optimizer [32], then

we investigate how best to approximate the sensitivities (or gradients) required by the

optimizer. This is followed by an investigation of how to ensure that we achieve the level

of accuracy requested by the user when we use the approximate model sensitivities in

the LM optimizer. We conclude the chapter with a brief discussion of how the methods

discussed can be applied to the case of DDE IVPs.

3.1 Choice of optimizer

We first recall that the first order variational equations associated with our ODE IVP

are defined by taking the partial derivative of both sides of (1.1) with respect to p. This

results in,

y′p(t) = fp + fyyp, (3.1)

where yp is the ny × np matrix, (yp)ij = ∂yi
∂pj

. The associated second order variational

equations are defined (after taking the partial derivative of both sides of (3.1) with respect

to p) by,

y′ppk(t) = fppk + fyyppk + fypkyp +

ny∑
l=1

(ypk)lfpyl +

ny∑
l=1

(ypk)lfyylyp, (3.2)

for k = 1, . . . , np. Note that ypp is the ny × np × np tensor, (ypp)ijk = ∂2yi
∂pj∂pk

. Next, recall

43
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that our scalar objective function is,

O(p) =
no∑
i=1

ny∑
j=1

(
ŷj(ti)− yj(ti, p)

)2

2
.

The associated gradient is given by,

J(p) = Op(p) =
no∑
i=1

yp(ti, p)
>(y(ti, p)− ŷ(ti)

)
and the corresponding Hessian is given by,

H(p) = Opp(p) = S̄(p) + Ŝ(p),

where,

S̄(p) =
no∑
i=1

ny∑
j

(
yp(ti, p)

)>
j

(
yp(ti, p)

)
j
,

and,

Ŝ(p) =
no∑
i=1

ny∑
j

(
yj(ti, p)− ŷj(ti)

)(
ypp(ti, p)

)
j
.

The Gauss-Newton (GN) and LM algorithms both assume that S̄ dominates Ŝ. This

leads to the approximation, H ≈ S̄. Assuming we have found an appropriate p0 to start

our minimization, this should be a valid assumption and we expect to observe super

linear convergence without having to simulate the solution of the second order variational

equations. We note that the original system of ODEs consists of a state vector of length

ny, the first order variational equations (3.1) have nynp additional components, and the

second order variational equations (3.2) have another additional nynpnp components.

3.1.1 BFGS Optimizer

Another commonly used quasi-Newton algorithm is the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm. This algorithm approximates the Hessian on each iteration by

performing two rank-one updates to the approximate Hessian from the previous iteration.

The initial Hessian is often chosen to be the identity matrix, but any approximation can

be used. Unlike LM and GN, BFGS only requires J(p), not S̄(p). As such, we don’t need
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to explicitly approximate each yp(ti, p), but can apply the adjoint method to directly

approximate J(p). We discuss the adjoint method in Chapter 4.

The BFGS approximate Hessian, B, is updated from iteration k to k + 1 by the

formula,

Bk+1 = Bk +
vkv
>
k

v>k sk
− Bksks

>
k B
>
k

s>k Bksk
,

where,

vk = J(pk+1)− J(pk) and sk = pk+1 − pk.

3.1.2 Numerical Experiment

To determine which optimization algorithm we should use, we investigate their perfor-

mances when applied to two of our test problems - the Barnes problem (Section 2.6.2)

and the FitzHugh-Nagumo model (Section 2.6.1) - in Matlab. For the purposes of this

experiment, we treat the initial conditions as fixed for each of these problems, so each

problem has 3 parameters to be estimated. These two test problems have ny = 2.

We have generated 100 sets of noisy data for both test problems and performed the

least squares minimization from a different random initial p0 for each data set. Each

p0 is chosen to be close to the optimal p, such that the optimizers have little difficulty

converging. We report the average time each optimizer takes to converge in Table 3.1.

The 3 optimizers we use are BFGS, Gauss-Newton (GN), and Newton’s method (NM).

Note, we have used the variational approach to obtain the gradient for BFGS, although

the adjoint approach could be used to possibly improve its performance. For BFGS, we

try two different choices for the initial Hessian approximation. For the Barnes problem,

we try both the identity matrix and the Hessian approximation used by GN. For the

FitzHugh-Nagumo model, we only use the GN Hessian approximation.

model BFGS (H0 = identity) BFGS (H0 = S̄(p)) NM GN
Barnes 0.447s 0.132s 0.238s 0.0887s

FitzHugh – 0.530s 1.51s 0.433s

Table 3.1: Cost in seconds of BFGS, GN, and NM for the Barnes and FitzHugh test
problems.

We see that GN is the most efficient optimizer, at least for these test problems. BFGS

is about 5 times slower and NM is about 2.5 times slower. If we use BFGS with the initial

Hessian chosen to be the Hessian used by GN, then we achieve performance closer to that
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of GN - which suggests it might be using the adjoint method to compute the gradient

more efficiently. These results also indicate that the GN Hessian approximation is quite

good. We also tried using the full Hessian to initialize BFGS, but found it to be less

effective than using the GN Hessian approximation. Note, LM should perform about the

same as GN - the difference being that LM will be more robust in cases where our initial

p0 is not sufficiently close to the optimal p. In such cases, it is likely that BFGS will

not be as effective as it is here since the initial GN Hessian approximation will be less

justified.

Also, we looked at the time it takes to simulate the model, the first order variational

equations, and the second order variational equations. For the Barnes problem, the

times were 0.0039s, 0.014s, and 0.037s, respectively. For the FitzHugh-Nagumo model,

the times were 0.0097s, 0.041s, and 0.182s, respectively. The differences in cost is roughly

consistent with the fact that the systems of ODEs contain 2 components, 8 components,

and 26 components, respectively. We note that the second order variational equations

could be more efficiently implemented, due to the equality of mixed partials. That is, we

could reduce the number of components from 26 down to 20. Or more generally, reduce

it from ny + nynp + nynpnp to ny + nynp + ny
np(np+1)

2
.

Based on these results, using a GN iteration is likely to be more efficient for our

application than a full Newton iteration, due to the high cost of simulating the second

order variational equations. If the BFGS algorithm is to be used, it is advisable to choose

the initial Hessian approximation to be the GN approximation. For some problems, it is

well known that the gradient can be more efficiently computed using the adjoint method

than using the variational approach we use here. The adjoint method for computing the

gradient is described in Chapter 4. In any case, we will want to be able to efficiently

approximate the model sensitivities in order to use the GN approximation of the Hessian.

We now review several approaches for numerically approximating the model sensitiv-

ities for ODE IVPs - finite differences and two different ways to simulate the variational

equations. To demonstrate each of the methods for approximating these sensitivities, we

consider the Calcium Ion test problem (Section 2.6.3) and the Barnes problem (Section

2.6.2). We also discuss how each approach can exploit parallelism. All experiments in the

next sections are performed on a machine with two Intel E5-2697v2 12-core processors.

The computationally expensive parts of the experiments are performed in C++, with

the Mex interface used to communicate the results back to Matlab, where all timing and

visualization of the results is performed.
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3.2 Finite Differences

To approximate ypk(t), the standard forward difference (FD) approximation is,

y(t, p+ εFDek)− y(t, p)

εFD
≈ ypk(t) +O(εFD), (3.3)

and the centered difference (CD) approximation is,

y(t, p+ εCDek)− y(t, p− εCDej)
2εCD

≈ ypk(t) +O(ε2CD). (3.4)

The usual recommended values are εFD =
√
εmach and εCD = ε

1
3
mach. However, this

assumes that we have approximated y(t) to machine precision. If we have only approx-

imated y(t) with a tolerance of εODE, then these choices are not necessarily optimal, as

they can amplify the approximation error in the difference between the two simulated

trajectories. By choosing a larger perturbation, we increase the truncation error of the

finite difference approximation of the gradient, but we reduce the factor by which the

simulation approximation error is amplified. With this in mind, using εFD =
√
εODE and

εCD = ε
1
3
ODE is expected to balance the impact of these errors.

Numerical results for the Barnes problem are shown in Tables 3.2 and 3.3. We see

that these choices for εFD and εCD are too conservative for this example. This means that

the approximation errors in y(t, p+ εFDek) and y(t, p) are cancelling out and not getting

amplified by the 1
εFD

factor. This is to be expected if the simulations are taking similar

step sizes, since they are using the same underlying CRK formula. For this example,

we also note that when εFD = ε
1
2
mach, the cancellation error is small even at relaxed

tolerances. By choosing εFD = εODE, we obtain similar accuracy. Using εFD =
√
εODE,

we obtain less accuracy due to overcompensating for the potential approximation error

by increasing the truncation error.

We also repeat this for the Calcium Ion test problem, with results shown in Tables

3.4 and 3.5. For FD, when εFD = ε
1
2
mach, the cancellation error dominates at relaxed

tolerances. By using εFD = εODE, we significantly reduce the error at relaxed tolerances.

Unlike the Barnes problem, the Calcium Ion model is slightly stiff, so the step sizes used

by the ODE solver are not as similar between each perturbed trajectory. This means

that the approximation error can dominate if εFD is chosen too small relative to εODE.

At relaxed tolerances, εCD =
√
εODE results in the truncation error of CD dominating the

calculation. This can be improved by instead choosing a slightly smaller perturbation,

εCD =
√

εODE
10

.
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εODE time (s)
max error in approximation to yp(ti)

εFD =
√
εODE εFD = εODE εFD =

√
εmach

1e-03 0.0016 5.89e-01 1.89e-02 2.82e-02
1e-04 0.0017 2.06e-01 3.84e-03 4.68e-03
1e-05 0.0018 6.72e-02 1.14e-03 1.03e-03
1e-06 0.0022 2.14e-02 4.13e-05 3.44e-05
1e-07 0.0022 6.76e-03 5.02e-06 2.51e-05
1e-08 0.0025 2.14e-03 1.36e-05 1.01e-05
1e-09 0.0030 6.77e-04 1.81e-04 1.13e-05

Table 3.2: Errors of forward differences for varying simulation tolerance, εODE, and for
three different perturbations, for the Barnes test problem.

εODE time (s)
max error in approximation to yp(ti)

εCD = εODE
1
3 εCD =

√
εODE εCD = ε

1
3
mach

1e-03 0.0029 9.41e-01 9.19e-02 2.82e-02
1e-04 0.0031 2.22e-01 1.14e-02 4.67e-03
1e-05 0.0033 4.84e-02 8.53e-04 1.22e-03
1e-06 0.0036 1.05e-02 9.79e-05 3.32e-05
1e-07 0.0040 2.26e-03 1.04e-05 3.28e-06
1e-08 0.0045 4.88e-04 5.71e-07 7.31e-07
1e-09 0.0055 1.05e-04 1.04e-07 3.94e-08

Table 3.3: Errors of central differences for varying simulation tolerance, εODE, and for
three different perturbations, for the Barnes test problem.

εODE time (s)
max error in approximation to yp(ti)
εFD = εODE εFD =

√
εmach

1e-03 0.035 1.54e+00 1.28e+05
1e-04 0.039 3.15e-02 2.75e+01
1e-05 0.043 1.02e-02 7.08e+00
1e-06 0.051 1.31e-03 7.02e-02
1e-07 0.060 1.02e-04 5.03e-04
1e-08 0.076 7.02e-04 5.90e-04
1e-09 0.103 1.07e-03 9.72e-05

Table 3.4: Errors of forward differences for varying simulation tolerance, εODE, and for
two different perturbations, for the Calcium Ion test problem.

3.2.1 Parallel Finite Differences

Assuming that we divide up the work between Np processors (as evenly as possible), then

the maximum number of trajectory calculations that at least one of the processors will

have to perform will be dnp+1

Np
e for FD and d2np

Np
e for CD. Experimental results are shown

in Figure 3.1 and Figure 3.2, along with the theoretical speedups.
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εODE time (s)
max error in approximation to yp(ti)

εCD =
√
εODE εCD =

√
εODE

10
εCD = ε

1
3
mach

1e-03 0.065 1.36e+00 1.36e-01 1.93e+02
1e-04 0.070 1.34e-01 1.37e-02 2.93e-01
1e-05 0.076 1.33e-02 1.66e-03 1.20e-02
1e-06 0.087 1.34e-03 2.14e-04 1.05e-04
1e-07 0.104 1.30e-04 9.51e-05 1.11e-05
1e-08 0.131 1.32e-05 1.21e-06 7.06e-07
1e-09 0.172 2.31e-06 4.08e-07 4.13e-07

Table 3.5: Errors of central differences for varying simulation tolerance, εODE, and for
three different perturbations, for the Calcium Ion test problem.

Figure 3.1: Experimental results demonstrating how our parallel version of FD scales
with the number of processors. This is for the Calcium Ion test problem.

We see that there is good agreement between our experimental speedups and the

theoretical speedups. When Np is small relative to the number of trajectories we need to

compute, we see that we get close to optimal speedups. As expected, using finite differ-

ence approximations in parallel results in near optimal speedups whenever the number

of parameters is evenly divisible by the number of processors.
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Figure 3.2: Experimental results demonstrating how our parallel version of CD scales
with the number of processors. This is for the Calcium Ion test problem.

3.3 Variational Approach

As we discussed, the first order variational equations are given by (3.1). To fully specify

the variational IVP, we have that the initial condition for each ∂yi
∂pj

is,

∂yi
∂pj

(0) =

1, if pj is the initial condition for yi

0, otherwise.

This resulting matrix valued IVP can be approximated simultaneously with the origi-

nal system (1.1). A potential disadvantage of this approach is that the variational system

consists of ny+nynp differential equations. Numerical results for the variational approach

applied to the Calcium Ion test problem and the Barnes problem are shown in Table 3.6.

We see that the variational approach is quite effective for both of these examples. The

error in the approximation of yp(t) is consistent with the specified user tolerance (except

at the most relaxed tolerance for the Calcium Ion problem) and the cost is not drastically

increasing as more accuracy is requested.
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Calcium Ion Barnes

TOL time (s)

max error

time (s)

max error

in approximation in approximation

of yp(ti) of yp(ti)

1e-03 0.036 4.21e-02 0.0009 9.67e-04

1e-04 0.032 8.96e-05 0.0010 9.41e-05

1e-05 0.038 1.30e-05 0.0012 1.10e-05

1e-06 0.046 1.96e-06 0.0014 1.28e-06

1e-07 0.060 1.23e-07 0.0016 1.67e-07

1e-08 0.078 1.40e-08 0.0020 1.87e-08

1e-09 0.107 1.40e-09 0.0025 1.69e-09

Table 3.6: For varying simulation tolerance, we report the associated max error in the

approximation to yp(ti) for the Calcium Ion and Barnes test problems. (We simulate the

variational equations using DDEM - with the standard defect control (INT=0) and force

the solver to hit each observation time.)

3.3.1 Parallel Variational Approach

The maximum number of parameters that a single processor will be responsible for will

be d np
Np
e, where Np is the number of processors. Note that unlike the divided differences

case, where each processor is simulating the same system of ODEs, each processor is

now simulating a subset of the full variational system of ODEs. Depending on how the

parameters appear in f , it is possible that some processors will have systems of ODEs

that require more work to compute than the other processors. Also, assuming we are

doing error control on yp(t), we will obtain different numerical approximations if we vary

Np. An example of this for the Calcium Ion test problem is shown in Table 3.7.

Experimental results are shown in Figure 3.3, along with the theoretical speedups

based on fitting the cost model,

cost = c0 + c1d
np
Np

e,

to the experimental data. We see that there is fairly good agreement between our exper-

imental speedups and the theoretical model of speedups. I am not sure why we observe

the jumps in speedup between odd and even numbers of processors, but suspect it has

to do with the hardware, since it only occurs after we get above 12 processors. We note

that we don’t get as much speedup with the variational equations compared to finite
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# of Processors
max error in

approximation of yp(ti)
1 8.96e-05
2 5.99e-05

3-4 2.78e-04
5 2.76e-04

6-8 3.72e-04
9-16 3.82e-04
17 3.73e-04

Table 3.7: Experimental results demonstrating how a parallel version of the Variational
approach results in different numerical results as we vary Np. This is for the Calcium Ion
test problem, with a tolerance of 10−4.

differences, since the amount of work for each parameter is much smaller for the varia-

tional equations. This can be seen by considering the fact that our model parameters

came out to be c0 = 0.06s and c1 = 0.01s. Roughly speaking, this means that the cost of

simulating y(t) and one column of yp(t) is more expensive than each additional column

of yp(t). This makes sense, since we require the evaluation of fy(t), regardless of how

many columns of yp(t) we are approximating. For the Calcium Ion test problem, fy(t) is

fairly expensive to evaluate due to the functional form of f .

We can also verify that c0 = 0.06s and c1 = 0.01s make sense for the Calcium Ion

test problem by counting the operation counts for f , fy, fpk , fyypk , and fyyp + fpk , for

an arbitrary pk. These turn out to be roughly 50 flops, 100 flops, 4 flops, 16 flops, and

4 flops, respectively. This means that the right hand side function for the Variational

approach requires 150 flops no matter how many parameters are being considered and

the cost associated with a single parameter is roughly 24 flops. This ratio of 150
24
≈ 6 is

consistent with the experimental ratio of c0
c1
≈ 6. Breaking down the cost in this way,

it is also easy to determine what the best speedup is expected to be. In this case, we

expect the maximum speedup to be roughly 3.3, which is again in agreement with our

numerical results.
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Figure 3.3: Experimental results demonstrating how our parallel version of the Varia-
tional approach scales with the number of processors. This is done for the Calcium Ion
test problem.

3.4 Green’s Function Method (GFM)

It has been suggested that the variational equations can sometimes be simulated more

efficiently by making use of a Green’s function method (GFM) [25, 28]. The motivation

is that GFM reduces the variational equations to ny +n2
y differential equations and nynp

integrals.

The Green’s function kernel is denoted by, K(t, τ), and can be shown to satisfy,

dK(t, τ)

dt
=
∂f

∂y
(t)K(t, τ), K(τ, τ) = Iny , (3.5)

where Iny is the ny×ny identity matrix.The sensitivities can then be expressed in integral

form as,

∂y

∂p
(t) = K(t, 0)

∂y

∂p
(0) +

∫ t

0

K(t, τ)
∂f

∂p
(τ) dτ. (3.6)

What we notice with this integral formulation is that we have the difficulty that we

require both K(t, 0) (where we need the first argument to vary) and K(t, τ) (where, for
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a fixed t, we need the second argument to vary). This has led to two different ways

to use (3.6) - the forward approach and the backward (adjoint) approach. The adjoint

method discussed in the next chapter is similar to the backward GFM approach, so we

only consider forward GFM in this chapter.

3.4.1 Forward GFM

Using the fact that K(r, t) = K(r, s)K(s, t), it follows that (3.6) can be rewritten as,

yp(t+ ∆t) = K(t+ ∆t, t)yp(t) +

∫ t+∆t

t

K(t+ ∆t, τ)fp(τ) dτ. (3.7)

This gives us an explicit formula to step yp(t) forward in time, assuming we have an

approximation of y(t) available. Since we are stepping in time using this recurrence,

it is necessary to approximate the K(t + ∆t, t) on each step with sufficient accuracy

to ensure that the error in each yp(ti) is still bounded by a small multiple of the user

specified tolerance. Furthermore, we still have the difficulty that we need K(t + ∆t, τ)

in the integral term, which essentially means we need to be simulating (3.5) for a range

of values of τ when approximating the integral. We now present a standard technique

for approximating the solution of (3.5) using the Magnus expansion.

3.4.2 Piecewise Magnus method

The Magnus solution of (3.5) is given byK(t+∆t, t) = exp(Ω(t+∆t, t)), where Ω(t+∆t, t)

is the Magnus series [35]. The piecewise Magnus method (PMM) again makes use of the

fact that K(r, t) = K(r, s)K(s, t). This means that if we want K(t + ∆t, t), but our

numerical approximation of Ω(t+ ∆t, t) is too poor, we can simply compute the Magnus

solution at intermediate values of t and do a sequence of matrix multiplications to obtain

a more accurate approximation to Ω(t + ∆t, t) [12]. To approximate the Magnus series

solution of (3.5) in our implementation, we use the fourth order numerical approximation

schemes [8] for Ω(t, τ),

Ω(t+ ∆t, t) =
∆t

6

(
fy(t) + 4fy(t+

∆t

2
) + fy(t+ ∆t)

)
−∆t2

12
[fy(t), fy(t+ ∆t)] (3.8)

and,

Ω(t+ ∆t, t) =
∆t

2

(
fy(ta) + fy(tb)

)
−
√

3∆t2

12
[fy(ta), fy(tb)], (3.9)
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where ta = t+ ∆t
2

+
√

3
6

∆t, tb = t+ ∆t
2
−
√

3
6

∆t, and [A,B] denotes the commutator of A

and B, AB−BA. To do step size selection and error control on K(t+ ∆t, t), we use the

norm of the difference between the two above approximations as our error criterion.

Once we have found a ∆t such that the error estimate associated with K(t+∆t, t) is small

enough, we then approximate the integral,
∫ t+∆t

t
K(t+∆t, τ)fp(τ)dτ . We use the Gauss-

Lobatto quadrature rule with 4 points to approximate this integral. We chose this formula

since it allows endpoint values to be reused across time steps and in our experiments it was

found to give a good balance between accuracy and efficiency compared to the 3 point and

5 point quadrature rules. To compute the integrands at the interior quadrature points,

we use (3.8). Numerical results for the Calcium Ion test problem and Barnes problem

are shown in Table 3.8. For these results, we have chosen a tolerance on K(t + δt, t),

such that we achieve the expected accuracy in yp(t). Experimentally, we found that the

tolerance on K(t+ δt, t) should be roughly equal to the tolerance on y(t) divided by the

number of PMM steps. Since we are using a fourth order Magnus approximation, we see

that the method becomes inefficient when high accuracy is required, especially for the

Calcium Ion test problem.

TOL on y(t) TOL on K(t+ δt, t) time (s) max error in yp(ti) PMM steps

1e-03 5e-07 0.042 2.364025e-03 1749

1e-05 5e-09 0.052 2.391480e-05 2622

1e-07 5e-14 0.364 3.908701e-07 21060

1e-09 5e-16 0.646 4.183157e-09 40377

1e-03 1e-04 0.000486 2.256896e-03 52

1e-05 1e-06 0.000734 4.876296e-05 98

1e-07 1e-09 0.002157 9.019444e-07 369

1e-09 1e-11 0.004830 1.114407e-08 906

Table 3.8: Performance of our implementation of the forward Green’s function method

using PMM. These results are for the Calcium Ion test problem (top) and the Barnes

problem (bottom). Both problems have no = 11.

3.4.3 Parallel forward GFM

For the forward GFM, it turns out that there is very little real benefit to parallelism over

the parameters. We verified this experimentally, but it is easily seen by the fact that the

majority of the computation done in GFM involves the Green’s function kernel, which is

independent of the parameters. Roughly, only about 5% of the cost can be attributed to
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the parameters for our Calcium Ion test problem, so it is not surprising that we achieve

practically no speedup when assigning the parameters across processors.

However, since the GFM formulation takes a form like, yp(t + ∆t) = A(t)yp(t) +

B(t), it is possible to distribute time intervals across processors. That is, each processor

would be responsible for approximating A(t) and B(t) over their specified interval(s).

The processor with the first time interval would advance the solution of yp(t) to the

end of its time interval, then pass it to the next processor, which will already have its

approximations to A(t) and B(t), so it just has to use them to advance yp(t) through

the interval and then pass it to the next processor. Note, this assumes that we aren’t

controlling the error on yp(t) directly, but rather the error associated with A(t).

In our implementation, we define each time interval to be one step taken by the CRK

solver used to simulate y(t). Roughly speaking, from our experimental results for the

Calcium Ion test problem, the simulation of y(t) takes about 6% of the computer time,

computing the Green’s function kernel takes about 88%, and the propagation of yp(t)

takes about 6%. The expected (theoretical) speedup, Stheo(Np), can be calculated as,

Stheo(Np) =
1

fseq + 1−fseq
Np

,

wherefseq is the fraction of computation that is not parallelizable and Np is the number

of processors.

As an example, we have calculated the sensitivities for the Calcium Ion test problem

in parallel. The results are shown in Figure 3.4, along with the expected speedups

based on how much of the calculation has to be done sequentially (i.e. about 6%). The

experiments are performed on a machine with two 12-core processors. We observe good

agreement between the expected speedup and our experimental results. We repeated

this for the Barnes problem and obtained similar performance (results not shown). The

speedups are less substantial in this case, as fseq is around 30%, since approximating the

Green’s function kernel is less expensive for the Barnes problem than for the Calcium

Ion test problem. For both examples, we chose the tolerances so that the error in the

sensitivities was around 10−4.
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Figure 3.4: Experimental results demonstrating how our parallel version of the GFM
approach scales with the number of processors. This is done for the Calcium Ion test
problem.

3.5 Comparing Approaches for approximating yp(t)

We summarize the most notable costs of each approach in Table 3.9. The divided differ-

ence approaches are straightforward to implement and do not require any extra effort to

be taken by the user to provide fy and fp, but they do require y(t) to be approximated

with more accuracy. The main difference between simulating the variational equations

and GFM is that the variational equations consist of a system of ny+nynp ODEs, whereas

GFM consists of a system of nyny ODES and nynp integrals. Since quadratures can be

more efficiently approximated than ODEs, GFM can be more efficient in some situations.

Roughly speaking, if np is large compared to ny, we expect GFM to perform better than

direct simulation of the variational equations.

3.5.1 Comparing Parallel Versions

We also consider how the parallel versions of these methods compare. For each approach,

we have plotted the expected and actual computer time versus the number of proces-

sors in Figure 3.5 for the Calcium Ion test problem. For each method, we have chosen
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method TOL on y(t) remarks

FD strictest
np + 1 trajectories

most limited accuracy

CD stricter
2np trajectories
limited accuracy

Vari normal
requires fy and fp
direct error control
ny + nynp ODEs

GFM strict
requires fy and fp

indirect error control
nyny ODEs and nynp integrals

Table 3.9: Comparison of Approaches for approximating model sensitivities

appropriate tolerances such that the max error in yp(t) is around 10−4. The expected

computer times are based on the theoretical speedups discussed in the previous sections.

We see that in a sequential environment, the variational approach is significantly

faster than the other approaches for this test problem. However, once we have sufficiently

many processors, all approaches take roughly the same amount of time. If we had 34

available processors, we should find that CD would become cheaper than FD (assuming

the additional cost of that many threads doesn’t begin to dominate), since at this point

each processor would only have one trajectory to compute and CD uses a more relaxed

solver tolerance than FD. For this test problem, hardware, and tolerance, FD with 18

processors turns out to be slightly faster than the other three approaches.

Figure 3.5: Experimental results demonstrating how our parallel version of the Varia-
tional approach scales with the number of threads. This is done for the Calcium Ion test
problem. The sensitivities are approximated such that the error is around 10−4.

We then repeat this experiment with the tolerances chosen to give a max error in
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yp(t) around 10−6. The results are shown in Figure 3.6. In this case, FD is unable

to provide us with the requested accuracy, so it is not included. We again see that

the variational equations perform the best in a sequential environment, but if enough

threads are available, then the forward GFM and CD approaches would be preferred.

Experimentally, we see that CD takes longer than expected as we increase the number of

threads. The forward GFM approach again performs well, since there is a large amount

of work for the threads to share.

Figure 3.6: Experimental results demonstrating how our parallel version of the Varia-
tional approach scales with the number of threads. This is done for the Calcium Ion test
problem. The sensitivities are approximated such that the error is around 10−6.

In Table 3.10, we summarize the potential best performance of the methods based

on the assumption that we could implement them in parallel without any overhead or

communication costs associated with increasing the number of threads. The variational

approach is limited by the fact that we have to simulate y(t) along with the sensitivity

for each parameter, ypk(t), whereas forward GFM, FD, and CD are only limited by the

time taken to perform the simulation of y(t). In order to achieve the required accuracy

in all components of yp(t), each approach requires a different level of accuracy in y(t).

method
TOL = 10−4 TOL = 10−6

solver tolerance lower bound solver tolerance lower bound
for y(t) on cost (s) for y(t) on cost (s)

Variational 10−4 0.005 10−6 0.017
FD 10−8 0.0033 – –

GFM 10−5 0.0028 10−7 0.004
CD 10−6 0.0022 10−9 0.0077

Table 3.10: Comparison of lower bounds of expected costs for parallel sensitivity methods
for the Calcium Ion test problem. (For GFM, we use strict defect control in the CRK
solver when simulating y(t), since we require accurate offmesh values of y(t) in PMM.)
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3.6 Full Optimization for ODEs

As we discussed in the Introduction, the objective of a numerical algorithm for solving

this parameter estimation problem is to determine p̂approx, such that,

‖p̂− p̂approx‖ < K TOL,

for some user specified tolerance, TOL. We now demonstrate that one must be careful

when choosing the tolerances used by the IVP solver and the optimizer. For this example,

we consider the Barnes problem (Section 2.6.2). For varying values of TOL, we estimate

the best fit parameters using two different IVP solvers and report the achieved accuracy

(averaged over 5 data sets) in the left of Figure 3.7.

In both cases, we use a relative and absolute error tolerance of TOL for the IVP solver.

The two solvers we consider are Matlab’s ode45 and the CRK56 solver used in DDEM,

with strict defect control. To perform the optimization, we use Matlab’s implementation

of LM in the routine lsqnonlin, with the StepTolerance chosen to be TOL. This sets the

termination condition on the kth iteration to be ‖pk − pk−1‖ < TOL(
√
εmach + ‖pk‖).

With Variational Equation Sensitivities With CD Sensitivities

Figure 3.7: Achieved accuracy vs Requested accuracy for the Barnes Problem

To approximate the required Jacobian, we simultaneously simulate the variational

equations along with the original IVP. We found it necessary to specify a relaxed absolute

tolerance on the variational equations, otherwise both ode45 and CRK56 would simulate

the original IVP to more accuracy than the user requested. In this experiment, we set

this relaxed tolerance to be min(100TOL, 10−2). This ensures that we still have some

accuracy in the variational equations, but it doesn’t significantly impact the accuracy

achieved in the approximation of the original IVP.

We observe that both ode45 and CRK56 give estimates that are consistent with TOL,

but ode45 is consistently giving accuracy of around 10 TOL, whereas CRK56 is closer
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Method
TOL

10−3 10−4 10−5 10−6 10−7 10−8

FD 0.41 (0.05) 0.30 (0.04) 0.44 (0.07) 0.45 (0.04) 0.91 (0.08) 4.10 (0.35)
CD 0.41 (0.05) 0.30 (0.04) 0.60 (0.19) 0.35 (0.02) 0.31 (0.01) 0.47 (0.05)

Vari 0.09 (0.01) 0.21 (0.04) 0.25 (0.05) 0.22 (0.00) 0.25 (0.01) 0.42 (0.05)

Table 3.11: Average achieved accuracy in p̂approx reported in units of TOL for the Barnes
problem, with standard errors reported in brackets (averaged over 100 simulated data
sets)

to the requested TOL. At relaxed tolerances, we see that CRK56 delivers too much

accuracy. This is likely due to how we chose our minimum relaxed tolerance for the

variational equations.

We also note that these results will change depending on the optimizer used and

how any required sensitivities are approximated. For example, if we still use LM as

the optimizer, but used centered divided differences to approximate the Jacobian, we

obtain the results shown in the right of Figure 3.7. Here, ode45 and CRK56 both give

accuracy consistent with the user specified TOL. Note that ode45 does better in this

case than in the previous case, due to the fact that we have simulated all trajectories

simultaneously when simulating the required centered difference trajectories. This is

necessary in order to effectively vectorize the code in Matlab and it also results in more

reliable sensitivities, since it ensures each trajectory is simulated using the same sequence

of steps. CRK56 simulates each trajectory independently and still reliably meets the

requested error tolerance in this example.

We next repeat this experiment, but only consider using CRK56 as the IVP solver.

This is done to allow us to compare the methods in terms of both accuracy (Table 3.11)

and computational cost (Table 3.12).

In terms of cost, we quantify the cost by dividing the total time taken by the time

required to perform a single trajectory simulation with TOL=10−3. As expected, the

timing results here are consistent with the times required to approximate the model

sensitivities. However, FD begins to take more time once it reaches its limit on how

accurately it can approximate the model sensitivities.

Lastly, we consider similar results for the method of Ramsay (Section 2.5.3). In this

case, we have used cubic B-splines with a knot at each observation time. The results are

shown in Figure 3.8, for varying values of the smoothing parameter, λ. As λ increases,

we see that the accuracy achieved by Ramsay’s approach is determined by the ability

of the B-splines to satisfy the IVP. This means that in order for p̂approx to be accurate

enough, we would have to take care in how we choose the order and knot placement of
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Method
TOL

10−3 10−4 10−5 10−6 10−7 10−8

FD 36 37 48 59 76 122
CD 51 52 70 89 116 137

Vari 27 26 34 43 57 69

Table 3.12: Average cost reported in units of time taken to simulate a single trajectory
with TOL=10−3 to obtain p̂approx for the Barnes problem (averaged over 100 simulated
data sets)

the B-splines.

Figure 3.8: Achieved accuracy vs λ for Ramsay’s method applied to the Barnes problem
with no = 11

3.7 Extension to DDEs

We now briefly discuss how each of the above approaches can be applied to the case of

constant lag DDEs.

Finite Differences

Finite differences can be directly applied to the case of DDEs, but one must be careful

as the accuracy might be affected by the presence of discontinuities in the solution of

the IVP and how accurately the DDE solver locates these discontinuities. The user

also has to be sure to choose an appropriate value for εFD or εCD. For example, the

DDEM package we consider locates discontinuities to within the user provided TOL, so

the perturbations, εFD or εCD, should not be less than TOL.
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Variational Equations

For constant lag DDEs, the variational approach results in the following neutral DDE,

which we obtain by taking the time derivative of ∂y
∂p

(t),

d

dt

∂y

∂p
(t) =

∂

∂p

dy

dt
(t)

=
∂

∂p
f(t, y(t, p), y(t− τ, p), p)

=
∂f

∂y
(t)
∂y

∂p
(t) +

∂f

∂p
(t) +

∂f

∂ν
(t)
∂y

∂p
(t− τ)− y′(t− τ)

∂τ

∂p
,

where ν = y(t− τ). This matrix valued DDE can be approximated simultaneously with

the original system(1.4), with the initial conditions, ∂y
∂p

(0), whose (i, j) entry is,

∂yi
∂pj

(0) =

1, if pj is the initial condition for yi

0, otherwise
.

The corresponding history function is given by,

∂yi
∂pj

(t) =
∂hi
∂pj

(t), for t < 0.

A limitation of this approach is that the variational system consists of ny + nynp dif-

ferential equations. This approach extends in a straightforward way to general systems

of DDEs. For details, see [57]. This approach has previously been implemented in the

DDEM [55] package, which makes use of the underlying CRK interpolant to efficiently

simulate this system of neutral DDEs and appropriately handle any discontinuities that

may arise.

If we want to consider using forward GFM for DDE IVPs, we need to be able to

efficiently obtain offmesh values of yp(t). The forward approach we have described could

be considered, although an offmesh evaluation of yp(t) would be rather expensive, as it

would require us to store the mesh of yp(t) values used during our sequence of PMM

steps and then apply (3.7) each time an offmesh value is needed.

3.7.1 Full Optimization for DDEs

As in the ODE case, we now demonstrate that one must be careful when choosing the tol-

erances used by the DDE IVP solver and the optimizer. For this example, we consider the



Chapter 3. Approximating Model Sensitivities 64

Kermack-McKendrick problem (Section 2.6.4). For varying values of TOL, we estimate

the best fit parameters and report the achieved accuracy in Table 3.13 and the computa-

tional cost in Table 3.14. To perform the optimization, we use Matlab’s implementation

of LM in the routine lsqnonlin, with the StepTolerance chosen to be TOL.

Method
TOL

10−2 10−3 10−4 10−5

FD 1.69 (0.29) 0.47 (0.08) 0.68 (0.18) 0.44 (0.08)
CD 0.40 (0.09) 0.12 (0.04) 0.20 (0.05) 0.23 (0.07)

Vari 0.36 (0.10) 0.38 (0.15) 0.87 (0.33) 0.99 (0.35)
dde23 FD 0.84 (0.12) 0.34 (0.08) 0.35 (0.08) 0.25 (0.10)
ddesd FD 0.99 (0.41) 0.36 (0.12) 0.81 (0.11) 0.68 (0.09)

Table 3.13: Average achieved accuracy in p̂approx reported in units of TOL for the
Kermack-McKendrick problem, with standard errors reported in brackets (averaged over
20 simulated data sets)

Method
TOL

10−2 10−3 10−4 10−5 10−6

FD 24 38 53 106 131
CD 29 55 83 177 221

Vari 34 26 30 46 70
dde23 FD 57 329 2985 45848 -
ddesd FD 99 190 825 7151 -

Table 3.14: Average cost reported in units of time taken to simulate a single trajectory
with TOL=10−2 (using the same DDE solver as was used in the optimization) to obtain
p̂approx for the Kermack-McKendrick problem (averaged over 20 simulated data sets)

The solvers we consider in these experiments are Matlab’s dde23 and ddesd solvers,

as well as the DDEM solver with strict defect control. We see that while dde23 can

be successfully used as the DDE IVP solver, it is computationally expensive if much

accuracy is required, since it is a second order method. The ddesd solver is a fourth order

method, but we observe that it still becomes very expensive as the tolerance becomes

more strict. Since we require reasonably accurate sensitivities, it is necessary to use fairly

strict tolerances when applying FD and CD to approximate the model sensitivities. For

this example, we found it necessary to use εODE = TOL2 when simulating the FD and

CD model trajectories. Unlike the Matlab solvers, using FD or CD with DDEM remains

fairly inexpensive as we increase the accuracy requested.

For the variational approach, we used DDEM’s implementation, with a relative and

absolute error tolerance of TOL for all components. Performing the optimization using
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the variational approach to approximate the sensitivities only becomes about twice as

expensive if we go from TOL = 10−2 to 10−6. This increase is quite modest compared to

the increase in cost when using FD or CD.
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Adjoint Method

We now turn our attention to the adjoint method, which is best suited for cases where the

objective function of interest is scalar and the model consists of more parameters than

state variables. We first consider how the method is applied in the case of ODE IVPs,

then we go on to discuss how the method extends to DDE IVPs. In this chapter, our main

focus is on how the cost of the adjoint method scales with the number of observations,

no, in our least squares objective function. We investigate this dependence on no through

numerical experiments and consider ways to reduce this cost.

4.1 Adjoint Method for ODE IVPs

For a more complete discussion of the adjoint method, we refer the reader to [11]. We

present a full derivation of the adjoint method for ODEs in Appendix A.1. The derivation

considers objective functions of the form,

G(y, p) = G(y(p)) =

∫ T

0

g(y(t, p)) dt. (4.1)

The adjoint method is defined by introducing the adjoint vector, λT (t), which is the

solution of the system of IVPs,

λ̇T (t) =
∂g

∂y
(t)− λT (t)

∂f

∂y
(t) ; λT (T ) = 0, (4.2)

where λT (t) is of dimension ny, λ̇ denotes dλ
dt

, and f comes from (1.1). The sensitivities

of G(y(p)) are given by the equation,

66
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∂G

∂p
= −

∫ T

0

λT (t)
∂f

∂p
(t) dt− λT (0)

∂y

∂p
(0). (4.3)

Note that the above equations are defined with t varying from T to 0. Defining x = T−t,
we can return to the standard situation where the independent variable varies from 0 to

T . For our purposes, there are two sensitivity equations of interest. The first corresponds

to the model sensitivities and the second is the sensitivity of the NLS objective function

(1.7).

4.1.1 Case of Model Sensitivities

In this case, we are considering the model sensitivity,
∂yj(ti,p)

∂p
, where yj(ti, p) is the jth

component of the solution of the ODE at time ti. In order to approximate this quantity

using the adjoint method, we must set T = ti and λTj (ti) = 1. This corresponds to the

objective function, G(y, p) = yj(ti, p). While this is fine mathematically, it is inefficient

to actually implement. The difficulty is that since y(t) has ny components, we must

apply the adjoint approach to each component of y(t). Moreover, if we want dy
dp

(ti) for

more than one ti, then we must apply the adjoint approach at each ti. This is because we

are equivalently asking for the sensitivity of a vector valued objective function at each ti,

which is not what the adjoint method is efficient at computing. The variational approach

discussed in Section 3.3 is better suited to this task, since it directly approximates the

model sensitivities over the interval of interest.

4.1.2 Case of NLS Objective Function

We now make use of a different characterization of (1.7) that is consistent with the form of

the objective function (A.1). We re-write O(p) ≡ G(y(p)) using the Dirac delta function

as,

O(p) =

∫ T

0

g(y(t, p)) dt =

∫ T

0

[ no∑
i=1

ny∑
j=1

(ỹj(ti)− yj(ti, p))2

2
δ(ti − t)

]
dt,

where δ(t − ti) is the Dirac delta function, which is zero everywhere, except at t = ti.

δ(t− ti) has the property that,∫ b

a

q(t)δ(t− ti)dt = q(ti), (4.4)

for any sufficiently smooth function q(s), if a < ti < b. With this representation of g,
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∂g

∂y
=

no∑
i=1

(y(ti, p)− ỹ(ti))δ(t− ti).

In this case, we must evaluate the
∑

i(ỹ(ti) − y(ti, p))δ(t − ti) term accurately when

approximating the solution of (4.2). The presence of this term will lead to discontinuities

in λT (t), whenever t = ti. The natural way to account for these discontinuities is to

approximate the solution of (4.2) on each subinterval (ti, ti+1), and apply the jump,

λT (ti)
− = λT (ti)

+ + (ỹ(ti)− y(ti, p)). (4.5)

to obtain the initial conditions for the next subinterval (ti−1, ti). It is having to restart

the solver at each observation time, ti, to apply this jump condition that makes the cost

of the adjoint approach particularly sensitive to no. We will now briefly review how the

adjoint method extends to constant lag DDEs.

4.1.3 Adjoint Method for constant lag DDE IVPs

We consider here the special case of constant lag DDEs with a delay of the form α = t−τ
and constant history function, y(t) = yo, for t < 0. For simplicity, we assume there is

only one delay, but the analysis and techniques extend in a straightforward way to the

case of multiple delays. For a rigorous derivation of the adjoint method for more general

systems of DDEs, we refer the reader to [56]. We present a derivation of the adjoint

method for constant lag DDE IVPs in Appendix A.2. The difference here compared to

the ODE case is that f not only depends on y(t), but also on y(t− τ). For convenience,

we let ν = y(t − τ). Similar to the ODE case, the adjoint system for this constant lag

DDE is defined by requiring that an associated adjoint vector, λT (t), be the solution of

the system of IVPs,

λ̇T (t) =
∂g

∂y
(t)− λT (t)

∂f

∂y
(t)− λT (t+ τ)

∂f

∂ν
(t+ τ) ;λT (t) = 0, for t ≥ T . (4.6)

The sensitivities are then given by,

∂G

∂p
= −

∫ T

0

λT (t)
(∂f
∂ν

(t)y′(t− τ)
∂α

∂p
(t) +

∂f

∂p
(t)
)
dt

−λT (0)
∂y

∂p
(0)−

∫ 0

−τ
λT (t+ τ)

∂f

∂ν
(t+ τ)

∂h

∂p
(t) dt.
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where h(t) is the history function.

4.1.4 Additional Considerations for DDEs

For DDEs, we have to be careful to properly handle discontinuities and store accurate

approximations of the solution over previous subintervals. As in the ODE case, we have

to restart the IVP solver at each observation point, ti, when integrating the adjoint

system of IVPs from T to 0. However, the discontinuities introduced by (4.5) at each

ti will be encountered again, since λ̇T (t) depends on the lagged value, λT (t + τ). Also,

discontinuities in y(t) and its derivatives must be taken into consideration as well. It

is usually the case that y(t) will be continuous, but its higher derivatives may not be.

For example, if the history is constant, h(t) = y0, then the derivative to the left of the

initial time is zero, while it is f(t, y0, p) to the right of the initial time. For a fixed

lag, t − τ , we will encounter this discontinuity again when t = τ . At this point, the

discontinuity is propagated, but in a derivative of order one higher. Eventually the

propagated discontinuity is of sufficiently high order that it can be ignored. This will be

the case when the order of the derivative discontinuity is higher than the order of the

underlying CRK formula used to approximate λT (t).

To handle these additional discontinuities, we must restart the solver at each of them.

In Figure 4.1, we illustrate the impact that the discontinuities have on the behaviour of

the solution of the DDE and its associated adjoint system. As we will see, the presence

of these discontinuities makes the adjoint approach significantly more expensive for the

case of DDEs than it is for ODEs. For a detailed discussion of how discontinuities in

DDEs impact the smoothness of the sensitivities, we refer the reader to [1].

4.1.5 Using the Adjoint Method in an LM optimizer

For the LM algorithm, we require the gradient of each term in the least squares objective

function. That is, we need a Jacobian matrix, not just a gradient vector. In such cases,

we have to apply the adjoint method once for each term in the objective function (i.e.

each row of the Jacobian). This leads us to the observation that we can group terms to

reduce the number of times we have to apply the adjoint method.
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Figure 4.1: Top: Solution of each component of the Kermack-McKendrick model (see
section 2.6.4). Middle: Derivative of each component of the solution of the model.
Bottom: The first component of the adjoint vector, λT1 (t) (blue), and the cumulative
value of the sensitivity integral, ∂O

∂τ2
(t) (green). The locations of discontinuities, up to

second order, are indicated by dotted lines at the times where they occur. For this model,
τ1 = 1, and τ2 = 10. Observations are at times 5,30, and 55.

Grouping Observations

To aid with the explanation, we adopt slightly different notation for the NLS objective

function (1.7), namely,

O(p) =
1

2

no∑
i=1

ny∑
j=1

r2
ij, (4.7)

where rij = yj(ti, p)− ȳj(ti). Instead, we rewrite our objective function as,

O(p) =
1

2

no∑
i=1

d2
i , (4.8)

where di =
√∑ny

j=1 r
2
ij = ‖ri‖2. More generally, we could consider forming different di’s,
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which sum over not only components of y, but also over subsets of observation times. If

we group these di’s into nk groups, our objective function becomes,

O(p) =
1

2

nk∑
k=1

e2
k, (4.9)

where,

ek =

√∑
i∈I(k)

d2
i .

Here, each I(k) is a disjoint set of indices, such that,

∪nkk=1I(k) = {1, . . . , no}.

While mathematically equivalent, it turns out that when we attempt to optimize (4.7) or

(4.8), we observe different performance. To see this, in the next section, we consider using

Levenberg-Marquardt (or Gauss-Newton) to solve this non-linear least squares problem.

Numerical Experiment

As an example, we have taken y(t, p) to be a simple non-linear function and used Matlab’s

implementation of Levenberg-Marquardt to perform the optimization. The results shown

in Table 4.1 are for one set of noisy observations, with all optimizations started from

the same initial guess. In this experiment, we have chosen the groups such that each

Ik = {k, k + nk, k + 2nk, . . . }.
For this example, we use the more general form (4.9) and see how varying the number

of groups impacts the performance of the optimizations. For this example, we have 20

observation times. We quantify the cost by,

normalized cost =
(# of groups)(# of iterations)

(20)(# of iterations without grouping)
. (4.10)

We observe that the required number of iterations increases as we use fewer groups and

the number of iterations can vary dramatically, depending on how the observations are

grouped. This appears to be due to which observations happen to get grouped together.

For example, when we use 12 groups we required over 5 times as many iterations as when

we used 20 groups. This suggests we have to be careful when grouping observations.

Also, we note that if we group the observations into too few groups ( i.e. nk ≤ np, with

np = 2 in this example ) then the method converges very slowly). Again, these results are

just for one simple non-linear model, so some of the behaviour observed may be specific
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# of groups normalized normalized
# of iterations cost

20 1 1
19 1.2 1.14
18 1.4 1.26
17 1.5 1.275
16 2.2 1.76
15 2.1 1.575
14 3.3 2.31
13 3.9 2.535
12 5.7 3.42
11 2.8 1.54
10 3.2 1.6
9 2.7 1.215
8 2.8 1.12
7 3.5 1.225
6 3 0.9
5 4.5 1.125
4 6 1.2
3 6.5 0.975
2 10 1

Table 4.1: Experimental results demonstrating how grouping observations can impact
the performance of the optimizer.

to this problem. These results suggest that the additional number of iterations required

by the optimizer is roughly proportional to the reduction in the number of times the

adjoint method is applied per iteration, although the number of iterations is sometimes

significantly higher.

Also, if we look at the progress made by the optimizer (results not shown here), re-

gardless of how many groups are used, the first few iterations quickly reduce the residual,

but then, for some groupings of observations, the optimizer becomes very slow and begins

to follow the steepest descent direction on each iteration (the LM damping parameter, λ,

does not go to zero). This seems to indicate that the JTJ approximation to the Hessian

used in Levenberg-Marquardt is very poor for some groupings of observations. We will

now briefly discuss how grouping observations impacts the Hessian approximation.

Hessian Approximation

As we know, LM relies on JTJ being a reasonable approximation of the Hessian of O.

In the following, we’ll consider (4.9), with ny = 1. This simplifies things, so that di = ri.

If we don’t group observations, we have that the (j, l) entries of the Hessian of (4.7) are
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given by,

Hjl =
no∑
i=1

(
∂ri
∂pj

∂ri
∂pl

+ ri
∂2ri
∂pj∂pl

). (4.11)

If we group observations, we instead have,

Hjl =

nk∑
k=1

(
∂ek
∂pj

∂ek
∂pl

+ ek
∂2ek
∂pj∂pl

). (4.12)

Under the assumption that each residual, ri is small, we have that H ≈ JTJ when we

don’t group observations. However, when we group observations, we need each ek to be

small in order to ignore the second term. Since ek =
√∑

i∈I(k) r
2
i , this assumption is

less likely to hold. This means that our approximation to the Hessian is less likely to

be accurate when we optimize (4.9). We suspect this is why the optimizer requires more

iterations to converge when more observations are grouped together in our numerical

experiment above.

4.1.6 Parallel Adjoint Method

We can divide the work based on subsets of the observations (similar to the discussion

of grouping observations in section 4.1.5). Specifically, we can express the objective

function as the sum of several objective functions, each of which will have its sensitivity

computed independently. This would not help us much with the variational approach,

since the main component of the cost is in performing the simulation, not evaluating the

piecewise polynomial approximation to the model sensitivities at each observation time.

However, this could be useful in the case of the adjoint method, since the time required

to approximate the adjoint IVP may be reduced if we divide the observations between

processors. For example, consider the case of uniform observations and two processors (

P 1 and P 2). We could rewrite the NLS objective function as, O(p) = O(1)(p) + O(2)(p),

where

O(1)(p) =
∑
odd i

‖ỹ(ti)− y(ti, p)‖2

2
, andO(2)(p) =

∑
even i

‖ỹ(ti)− y(ti, p)‖2

2
,

for i = 1, . . . , no, where we have divided the observations so that O(1)(p) contains the

odd observations and O(2)(p) contains the even observations. By linearity, we have that

∂O

∂p
=
∂O(1)

∂p
+
∂O(2)

∂p
. (4.13)
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This means that we can have P 1 compute ∂O(1)

∂p
, while P 2 independently computes ∂O(2)

∂p
.

The only communication necessary is to evaluate the sum to obtain ∂O
∂p

. Since the ob-

servations are evenly spaced, say a distance ∆t apart, then each observation for a given

processor would now be 2∆t away from the neighbouring observations. We would still

have to perform the forward simulation of the original IVP on both processors, but for

the reverse simulation of the adjoint IVP, each processor will only have half as many ob-

servations that it is forced to restart the simulation at. This will have the most beneficial

effect on reducing the cost in cases where the space between observations is restricting the

step size, which would result in half as many steps being taken (per processor) as in the

single processor case, hence a potential speedup by a factor of 2 (for the approximation

of the adjoint IVP part of the computation).

To demonstrate this, we have implemented this approach for the Mendes model (see

section 2.6.6), with the parallelism implemented using MPI. We consider a case where

we have 2000 observation times and expect to see significant speedup. The results are

shown in Figure 4.2. We see that the Adjoint method scales well in this case, since we

have a large number of observations.

Figure 4.2: Experimental results for the Mendes test problem demonstrating how our
parallel version of the adjoint method scales with the number of processors. As reference,
we also show how the variational approach (bottom line) scales. The forward trajectory
and variational equations are simulated using the sixth order CRK solver used in DDEM.
For simulation of the adjoint IVP, we are using an RK solver, for reasons discussed in
section 4.2.3.
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4.2 Numerical Experiments

4.2.1 Determining the Order of Discontinuities to Track in the

adjoint DDEs

First, we investigate what order of discontinuity it is necessary to track, in order to

obtain reasonable performance when approximating the adjoint DDE. Note that since

we use reliable error control when approximating the adjoint IVP, even if we only track

the jump discontinuities occurring at each of our observations, we should still obtain

accurate sensitivities. This is illustrated in Table 4.2. However, we see that we end up

either taking extra steps in order to satisfy the error requirements or we take extra steps

when we force the integration to stop at locations of all the identified discontinuities,

which are not based on controlling the local truncation error of the adjoint IVP. Given

these results, we only track discontinuities in the solution of the adjoint DDE and its

first and second derivatives for the remainder of our experiments. (The resulting error

control for the adjoint IVP will be less reliable but adequate for most problems.)

4.2.2 Dependence on no

We also investigate how many observations we can have before the cost of the adjoint ap-

proach is prohibitively expensive, relative to that associated with solving the variational

equations. For the case of ODEs, we consider the Barnes problem (Section 2.6.2). As we

can see in Figure 4.3, the adjoint approach requires less computer time than the varia-

tional approach up to around 400 observations. We also note that for small numbers of

observations, the adjoint method performs fairly consistently, up until the spacing of the

observations begins to restrict the step size the solver is able to take. For the variational

approach, the cost remains flat, since increasing no only increases the number of off-mesh

interpolations we have to make, which is much cheaper than the cost of simulating the

variational equations.

For DDEs, we consider the Kermack-McKendrick model. As we see in Figure 4.4,

the cost of the adjoint approach depends strongly on the number of observations. For

example, with TOL = 10−5, the adjoint method is already more expensive than the

variational approach when there are more than 6 observations.
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Table 4.2: For several tolerances and maximum orders of discontinuity to track, we
report the computer time taken by the adjoint method (including the time required for
approximating the forward IVP) and the number of steps taken during the simulation of
the adjoint IVP. This is done for the Kermack-McKendrick test problem (Section 2.6.4),
with no = 5.

Max Order TOL Max Rel Error Time Adjoint Steps

0 0.001 0.00704 0.0144 106
1 0.001 0.00678 0.0135 101
2 0.001 0.00705 0.0131 106
3 0.001 0.00702 0.0145 127
4 0.001 0.00695 0.0168 159
5 0.001 0.0077 0.0183 182
6 0.001 0.00733 0.0197 204
7 0.001 0.00764 0.0214 231
8 0.001 0.00748 0.023 257

0 0.0001 0.000236 0.0228 165
1 0.0001 0.000236 0.0179 135
2 0.0001 0.000236 0.0163 131
3 0.0001 0.000236 0.0165 144
4 0.0001 0.000236 0.0176 167
5 0.0001 0.000236 0.0194 191
6 0.0001 0.000236 0.0206 213
7 0.0001 0.000236 0.0223 239
8 0.0001 0.000236 0.024 265

0 1e-05 5.39e-05 0.0369 282
1 1e-05 5.39e-05 0.0223 182
2 1e-05 5.39e-05 0.0186 163
3 1e-05 5.39e-05 0.019 175
4 1e-05 5.39e-05 0.0206 200
5 1e-05 5.39e-05 0.0223 224
6 1e-05 5.39e-05 0.0233 243
7 1e-05 5.39e-05 0.0244 263
8 1e-05 5.39e-05 0.0255 283
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Figure 4.3: For TOL = 10−6, we plot the time taken by the adjoint and variational
approaches versus the number of observations for the Barnes ODE. We also show how
using a fourth order RK method with no error control for the adjoint ODE can reduce
the computer time.

Figure 4.4: For different tolerances, we plot the time taken by the adjoint (blue) and varia-
tional (black) approaches versus the number of observations for the Kermack-McKendrick
DDE.
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4.2.3 Low Order Method for Approximating the Adjoint IVP

As discussed above, if we have a large number of observations, then our step size during

solution of the adjoint equation might be severely restricted by having to restart the

integration at each observation point rather than by only having to ensure the numerical

accuracy of the solution be obtained. In such cases, it might be more efficient to use a

lower order RK method for the adjoint ODEs or a lower order CRK method for the adjoint

DDEs. As an example, for the ODE model, we have applied a fixed step size fourth order

RK method (denoted RK4), with no associated error control, to the associated adjoint

IVP. The impact on the cost is shown in Figure 4.3. We see that by using the lower

order solver for the adjoint ODE, we are able to handle around 2400 observations before

the adjoint method requires more computer time than the variational approach. On the

other hand, the accuracy and reliability of the error in the approximate solution of the

adjoint IVP will be reduced.

4.2.4 Continuous Objective Function Approximation

We now consider reducing the adjoint method’s dependence on no by approximating our

discrete NLS objective function with a continuous function. By doing so, we will no longer

have discontinuities being introduced at each observation, but we will be introducing

approximation error. Recall that our NLS objective function can be expressed as a sum

of δ-functions. One definition of the δ-function is,

δ(ti − t) = lim
σ→0

1

σ
√
π
e−( t−tiσ )

2

. (4.14)

If we refer to this definition and choose a non-zero value of σ, then we obtain a

continuous approximation to our objective function, which may lead to reasonable per-

formance. However, if σ is too small, then we have no benefit, since the continuous

objective function will still contain sharp peaks at each observation - making the adjoint

system expensive to simulate. We also have to keep in mind that if σ is too large, then

we may introduce additional errors.

A potential limitation of this approach is that the adjoint system and the sensitivity

integrals depend on the products of λT (t) with fy(t) and fp(t). So when we modify our

objective function, we could introduce potentially large errors depending on the behaviour

of fy(t) and fp(t). Also, we still have to compute the continuous approximation during

each derivative evaluation for the adjoint system. We consider applying this approach to

the Kermack-McKendrick test problem with both a varying number of observations and
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a varying σ (results not shown). We observe that as σ increases, the runtime decreases

and the error in the approximation of yp(t) increases. The cost of the adjoint method is

less sensitive to no when this continuous approximation is used, but at the cost of less

accuracy in the sensitivities.



Chapter 5

Handling Unobserved State

Variables

While the methods discussed in Chapter 2 for obtaining a suitable initial guess for the

model parameters can work well in the case where all state variables are observed, modifi-

cations are required when some of the state variables are unobserved. In this chapter, we

consider the case where a subset of the state vector is unobserved. Specifically, we con-

sider the case where y = [yunob, yob], where yunob denotes the unobserved components and

yob denotes the observed components of the state vector. We assume that all components

of yob(t) are observed at the same set of observation times.

5.1 Methods

Dattner [13] has proposed a method for estimating linear parameters in ODEs when only

a subset of the state variables are observed. However, his proposed method requires

that initial guesses be provided for the values of an artificial parameter vector, α, intro-

duced to parameterize curves approximating the trajectories of the unobserved states.

The approach of Ramsay discussed in Section 2.5.3 has a similar limitation. We will

now briefly describe the approach taken by Dattner, then describe how we attempt to

address this difficulty. We go on to propose two other related techniques and present

results demonstrating the performance of these approaches on six test problems from the

literature.

80
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5.1.1 Dattner’s Approach

First, we review Dattner’s proposed approach. We consider the IVP (1.1). We further

restrict f to be linear in p (and only depending on t through y(t)), so we can express f

as, f(t, y, p) = g(y(t))p, where g(y(t)) is a matrix-valued function of dimension ny × np.
In this case, the integral form of the solution of the IVP (1.1) is,

y(t) = yo +

[∫ t

0

g(y(s))ds

]
p. (5.1)

Now, given our observations at no discrete times (ȳ(ti), i = 1, . . . , no), we construct

an approximation to y(t), call it ỹ(t), over the interval. This can be done using local

polynomials or splines, for example. We then define our associated objective function to

be,

M(p) =

∫ T

0

∥∥∥∥ỹ(t)− yo −
[∫ t

0

g(ỹ(s))ds

]
p

∥∥∥∥2

dt, (5.2)

which simply states that ỹ(t) should satisfy (5.1), ∀t ∈ [0, T ]. Note that since this

objective function is linear in p and yo, minimizing it is a linear least squares problem.

We denote the minimizer by p̂ and the corresponding vector of initial conditions by ŷo. In

terms of computation, this involves solving several linear systems and computing several

quadratures involving functions of ỹ (see [13] for the precise formulae). Note, this is

the same objective function used in INT-SME (2.9), but with the assumption that all

parameters appear linearly (q = ∅).

In order to apply (5.2) in the case where only a subset of the state vector is observed,

we have to introduce a technique to approximate yunob(t). The approach taken by Dattner

is to define parameterized curves, ỹunob(α, t), for some parameter vector, α. To determine

a suitable α, recall that, for a given ỹ(t), we can obtain p̂ and ŷo. For a given α, we denote

these as p̂(α)) and ŷo(α). With this in mind, the objective function proposed by Dattner

is,

M(α) =

∫ T

0

∥∥∥∥ỹ(α, t)− ŷo(α)−
[∫ t

0

g(ỹ(α, s))ds

]
p̂(α)

∥∥∥∥2

dt. (5.3)

We note that this approach can also be done for SME instead of INT-SME. This would

result in,

M(α) =

∫ T

0

‖ỹ′(α, t)− g(ỹ(α, s))p̂SME(α)‖2
dt. (5.4)
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5.1.2 Our data driven simulation to approximate yunob

In [13], Dattner discusses how the choice of basis functions used to approximate each of

the unknown states requires knowledge of the expected behaviour of the solution. To

address this, we suggest that the most natural choice should be a form that is designed

to obey the required dynamics (i.e. the ODE itself). In general, we can define ỹunob(α, t)

to be the solution of the data driven ODE,

ỹ′unob(t) = gunob(ỹ(t))α, (5.5)

where gunob contains the rows of g associated with the unobserved states. In this case, α

is the subset of parameters that are associated with gunob. While this means we have to

solve a system of ODEs to obtain each unobserved state, we note that it is only a system

of size equal to the number of unobserved states. Furthermore, in many applications we

are only interested in obtaining crude initial guesses and we can use a lower order ODE

solver to reduce the cost. For example, one might use a first order Euler approximation.

With this choice for ỹunob(α, t), note that we still need to provide an initial guess for α.

Since α is a subset of p, we don’t necessarily have to actually compute p̂(α) in (5.3).

Splitting the state into its observed and unobserved parts, we can write (5.3) as,

M(α) =

∫ T

0

∥∥∥∥ỹunob(α, t)− yunob(0)−
[∫ t

0

gunob(ỹ(α, s))ds

]
p̂(α)

∥∥∥∥2

dt

+

∫ T

0

∥∥∥∥ỹob(α, t)− yob(0)−
[∫ t

0

gob(ỹ(α, s))ds

]
p̂(α)

∥∥∥∥2

dt. (5.6)

Let p = [α pob], where pob denotes the parameters that appear only in fob (and hence not

in α). Then, let p̃(α) = [α p̂ob]. Replacing p̂(α) with p̃(α) in (5.6),

M̃(α) =

∫ T

0

∥∥∥∥ỹunob(α, t)− yunob(0)−
[∫ t

0

gunob(ỹ(α, s))ds

]
α

∥∥∥∥2

dt

+

∫ T

0

∥∥∥∥ỹob(α, t)− yob(0)−
[∫ t

0

gob(ỹ(α, s))ds

]
p̃(α)

∥∥∥∥2

dt

=

∫ T

0

∥∥∥∥ỹob(α, t)− yob(0)−
[∫ t

0

gob(ỹ(α, s))ds

]
p̃(α)

∥∥∥∥2

dt, (5.7)

where the first term is taken to be zero, due to our choice that ỹunob(α, t) satisfies (5.5).

Of course, the main downside of this data driven approach is that we have returned to the
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original problem - namely that we need initial guesses for some of the model parameters.

As noted, this difficulty may be slightly reduced, depending on how many parameters are

in α and how many are in pob. We now turn our attention to two alternative techniques,

in which we approximate the unobserved states by using the structure of the model and

the observed states.

5.1.3 Two Alternative Techniques

Given the observed state, we can approximate y′ob(t), as is done when we apply DBE or

SME. In the following, we assume that we can rewrite y′ob(t) = fob(t, y, p) as,

yunob(t) = h(t, yob(t), y
′
ob(t), p). (5.8)

That is, we can express yunob(t) as an explicit function of the observed quantities and

the parameters. For example, this should usually be possible whenever yunob(t) appears

linearly in fob.However, if too few components of the state vector are observed, this might

not be possible.

Now, since we have an expression for ỹunob(t), we can either apply SME or INT-SME.

However, we note that using (5.8) implies that the SME objective function will be zero

for the observed components. Specifically, the first technique considers,

h′(t, yob(t), y
′
ob(t), p) = funob(t, [h(t, yob(t), y

′
ob(t), p), yob(t)], p). (5.9)

While this approach is appealing due to its simplicity - approximating derivatives and

solving one least squares problem - it is limited by the fact that it requires one to approx-

imate the second derivative of the observed states. Depending on the nature of the data,

this may be difficult to do accurately. Since SME can not estimate initial conditions, one

can use observations near t = 0 to estimate yob(0) and substitute the parameter estimates

from (5.9) into (5.8) to estimate yunob(0). We will refer to this first technique as algre-

braic smooth and match estimator (ASME). We note that this technique was originally

proposed by Varah [49] and later appeared as a method for estimating parameters in

second order ODEs [46].

The second technique considers,

h(t, yob(t), y
′
ob(t), p) = yunob(0) +

∫ t

0

funob(τ, [h(t, yob(τ), y′ob(τ), p), yob(τ)], p) dτ, (5.10)

yob(t) = yob(0) +

∫ t

0

y′ob(τ) dτ, (5.11)
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where the second equation may be used to estimate the initial conditions, yob(0), or

nearby observations can be used instead. Unlike ASME, this approach only requires us

to approximate the first derivative of the observed states. It also requires an integral to

be approximated, but this is likely going to be less problematic than approximating the

second derivative. We will refer to this second technique as algrebraic integral smooth

and match estimator (AINT-SME).

The main limitation of both ASME and AINT-SME is that they rely on the assump-

tion (5.8), which will depend on the structure of the model. We will also see that they

may give poor initial guesses if the model is not consistent with the observed data. One

potential advantage is that, depending on the structure of the model, the resulting least

squares problems might in fact be able to be expressed in the form of a linear least squares

problem, with nonlinear constraints. This means that it might be possible to generate an

initial guess by first solving the linear problem, without enforcing the constraints, then

use this initial guess to solve the constrained problem. To demonstrate these approaches,

we now consider several examples.

5.2 Numerical Examples

5.2.1 SIR measles model example

As a real world example, we consider fitting a basic SIR model to weekly case reports of

measles in England and Wales from 1948 - 1949, as was done in [13]. The SIR model is

given by,

S ′(t) = −βS(t)I(t), (5.12)

I ′(t) = βS(t)I(t)− γI(t), (5.13)

R′(t) = γI(t), (5.14)

where γ = 1.4 is known. S(t), I(t), and R(t) denote the susceptible, infectious, and re-

covered populations, respectively. The parameters to be estimated are S(0), I(0), and β.

R(0) is assumed to be zero. Only I(t) is observed once every time unit (one week), from

t = 0 to t = T = 52. We denote the observed values by, Ī(ti), i = 0, . . . , 52. The data is

shown in Figure 5.1. As a starting point, we briefly consider how knowledge of the model

and data can be used to quickly come up with reasonable values for the parameters.
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Figure 5.1: Data and best fit for the SIR measles model example

Initial Bounds on Parameters

For I(0), it is reasonable to assume that it will be close to Ī(0). For S(0) we have looked

up the population at that time, which turns out to be about 50 million people. This

gives us a reasonable upper bound on S(0). We can also get a lower bound by using a

simple conservation law,

S(0) + I(0) +R(0) = S(T ) + I(T ) +R(T ) (5.15)

S(0) + I(0) = S(T ) + I(T ) + γ

∫ T

0

I(t)dt. (5.16)

If we make the simplifying assumption that S(T ) = 0, we have that,

S(0) = I(T )− I(0) + γ

∫ T

0

I(t)dt. (5.17)

Note, we could have made an assumption of the form S(T ) = µS(0), 0 ≤ µ < 1, but

this would require some expert knowledge to ensure a reasonable µ be chosen.) For this

dataset, our lower bound on S(0) works out to be around 700,000 people. Now, for any

given S(0), we can roughly estimate β. This is done by considering I ′(t) at t = 0,

I ′(0) = βS(0)I(0)− γI(0). (5.18)
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With our upper and lower bounds on S(0), we find that β ∈ (2.8 × 10−8, 2.1 × 10−6).

Note, here we roughly approximated I ′(0) by the divided difference, Ī(1)− Ī(0). Given

the data, this was fine, since we could clearly see the upward trend of Ī(t) near zero,

but if the data were too noisy, this approach could have given the wrong sign on β. As

we will see, these bounds are consistent with the initial guesses generated by Dattner’s

approach and each of the methods we have proposed.

Application of the two alternative techniques

We now turn our attention to how our alternative techniques for obtaining initial guesses

look for this example. First, we have that,

S̃(t) =
I ′(t) + γI(t)

βI(t)
. (5.19)

For ASME,

S̃ ′(t) =
I ′′(t) + γI ′(t)

βI(t)
− I ′(t)(I ′(t) + γI(t))

βI2(t)

=
I ′′(t)I(t)− [I ′(t)]2

βI2(t)
. (5.20)

Substituting (5.19) and (5.20) into (5.12),

S̃ ′(t) = −βS̃(t)I(t)

I ′′(t)I(t)− [I ′(t)]2

βI2(t)
= −βI(t)

I ′(t) + γI(t)

βI(t)

I ′′(t)I(t)− [I ′(t)]2

I2(t)
= −β (I ′(t) + γI(t))

β = − I ′′(t)I(t)− [I ′(t)]2

I2(t) (I ′(t) + γI(t))
. (5.21)

Thus, we can obtain a linear least squares estimate for β, which can be used in (5.18) to

give us an estimate for S(0). For this example, we can obtain reasonable approximations

for the required second derivatives. In this numerical experiment, we use forward finite

differences to approximate the required derivatives.

For AINT-SME, the integral form of (5.12) is given by,
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S̃(t) = S(0)−
∫ t

0

βS̃(τ)I(τ) dτ. (5.22)

Substituting in (5.19), we have,

I ′(t) + γI(t)

βI(t)
= S(0)−

∫ t

0

I ′(τ) + γI(τ) dτ

I ′(t) + γI(t)

βI(t)
= S(0)− I(t) + I(0)− γ

∫ t

0

I(τ) dτ

I ′(t)

I(t)
+ γ = βS(0) + β

(
−I(t) + I(0)− γ

∫ t

0

Ī(τ) dτ

)
(5.23)

While this expression is not linear in β and S(0), it is linear in b = [βS(0), β]. Once we

obtain a linear least squares estimate of b, we can recover β and S(0) from, S(0) = b1
b2

and β = b2. As with ASME, the main advantage of this approach is that it is very

simple - only requiring us to approximate I ′(t) and
∫ t

0
I(τ) dτ . We again note that both

of these techniques result in linear least squares problems and hence require no nonlinear

optimization at all.

Experimental Results

For this example, we consider the cost of the approaches we have discussed for obtaining

the initial guesses for the parameters and using lsqnonlin in Matlab to obtain the final

estimates (Tables 5.1 and 5.2). The Jacobian required by the optimizer is approximated

by simultaneously simulating the variational equations along with the state vector. For

the Random column, we drew 50 uniform random values for S(0), based on the initial

bounds we obtained above. For each value of S(0), we obtain our initial guess for β using

(5.18). We report the range of times the optimizations took for these 50 random guesses.

Stage Dattner2 ASME AINT-SME Data Driven (5.7) Random
Initial Guess 0.52 0.0004 0.056 0.21 0.17 0
Optimization 0.66 0.74 0.53 0.65 0.65 1.24-2.55

Total 1.18 0.74 0.59 0.86 0.82 1.24-2.55

Table 5.1: Timing results in seconds for the approaches described above for the Measles
model. The times reported in all cases are obtained in Matlab, running on the same
hardware.

2 Note, the code provided in the supplementary material of Dattner’s original paper [13] contained a
coding error, so the results presented here are for the corrected code.
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We observe that Dattner’s approach spends almost as much time generating the

initial guess as it does performing the final optimization. While ASME quickly produces

an initial guess that results in a better than average initial guess, the extra time spent

by AINT-SME is justified here, as it provides us with an excellent initial guess. All of

these methods are able to generate initial guesses that are better than the 50 random

guesses we tried. Our data driven approach produces a similar initial guess to Dattner’s

approach, but requires less time to generate the initial guess. Using the (5.7) version of

our data driven approach saves a small amount of time in generating the initial guess

(about 20%). As reference, the initial guesses generated by each method are shown in

Table 5.2.

Parameter Dattner2 ASME AINT-SME
Data

(5.7)
Final

Driven Estimates
I(0) 2.550e3 2.610e3 2.610e3 2.345e3 2.281e3 2.1975e3
S(0) 4.276e6 2.049e6 3.976e6 4.185e6 4.191e6 4.1100e6
β 3.554e-7 6.832e-7 3.829e-7 3.638e-7 3.632e-7 3.7116e-7

Table 5.2: Initial guesses obtained by each method and the final parameter estimates for
the Measles example.

Results for additional years

The dataset contains data for about two decades, with every second year exhibiting a

clear peak in the incidence of measles. This gives us 8 additional years to compare these

methods on. The results (not shown) are similar to the above. All of the approaches,

except ASME, are able to provide initial guesses that are sufficiently accurate to allow

the final optimization to succeed. ASME appears to have trouble in some years where

the model does not match the data as well, since ASME requires a reasonably accurate

approximation to I ′′(t). In terms of cost, Dattner’s approach is still the most expensive,

since α contains 7 parameters in its nonlinear optimization, while our approaches have

fewer. The relative costs of the other methods are similar.

5.2.2 Influenza model example

Our second example is a simple model of influenza. The model is given by,
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x′1(t) = −θ1x1(t)x3(t), (5.24)

x′2(t) = θ1x1(t)x3(t)− θ2x2(t), (5.25)

x′3(t) = θ3x2(t)− θ4x3(t) (5.26)

where θ1−4 and the initial conditions are the parameters to be estimated. The model is

simulated from t = 0 to t = 10. For this example, we consider how ASME and AINT-

SME perform. As in [13], we consider two cases - one where only x1 is unobserved and

one where only x2 is unobserved.

Case of x1 unobserved

First, we have that,

x̃1(t) =
x′2(t) + θ2x2(t)

θ1x3(t)
. (5.27)

For ASME,

x̃′1(t) =
x′′2(t) + θ2x

′
2(t)

θ1x3(t)
− x′3

x′2(t) + θ2x2(t)

θ1x2
3(t)

=
x3(t)

(
x′′2(t) + θ2x

′
2(t)
)
− x′3

(
x′2(t) + θ2x2(t)

)
θ1x2

3(t)
. (5.28)

Substituting (5.27) and (5.28) into (5.24),

x̃′1(t) = −θ1x̃1(t)x3(t)

x3(t)
(
x′′2(t) + θ2x

′
2(t)
)
− x′3

(
x′2(t) + θ2x2(t)

)
θ1x2

3(t)
= −θ1x3(t)

(
x′2(t) + θ2x2(t)

θ1x3(t)

)
x3(t)

(
x′′2(t) + θ2x

′
2(t)
)
− x′3

(
x′2(t) + θ2x2(t)

)
θ1x2

3(t)
= −x′2(t)− θ2x2(t).

Rearranging and simplifying, this reduces to,

x′′2(t)− x′3(t)x′2(t)

x3(t)
= −θ1x3(t)x′2(t) + θ2

(
x2(t)x′3(t)

x3(t)
− x′2(t)

)
− θ1θ2x2(t)x3(t) (5.29)

Thus, we can obtain a linear least squares estimate for b = [θ1, θ2, θ1θ2], with the nonlinear



Chapter 5. Handling Unobserved State Variables 90

constraint that b1b2 = b3. The initial condition, x1(0) can be estimated from (5.27), with

t = 0.

For AINT-SME, the integral form of (5.24) is given by,

x̃1(t) = x1(0)−
∫ t

0

θ1x̃1(τ)x3(τ) dτ. (5.30)

Substituting in (5.27), we have,

x′2(t) + θ2x2(t)

θ1x3(t)
= x1(0)−

∫ t

0

x′2(τ) + θ2x2(τ) dτ

x′2(t) + θ2x2(t)

x3(t)
= θ1x1(0)− θ1

(
x2(t)− x2(0) + θ2

∫ t

0

x2(τ) dτ
)

Rearranging and simplifying, this reduces to,

x′2(t)

x3(t)
= θ1x1(0)− θ1

(
x2(t)− x2(0)

)
− θ1θ2

∫ t

0

x2(τ) dτ − θ2
x2(t)

x3(t)
. (5.31)

This results in an equation that is not linear in the original parameters, but is linear in

b = [θ1x1(0), θ1, θ1θ2, θ2], with the nonlinear constraint that b2b4 = b3. Once we obtain

a linear least squares estimate of b, we can recover our original 3 parameters, since

x1(0) = b1
b2

. Lastly, we note that since θ3 and θ4 only appear in (5.26), and we have data

for both x2(t) and x3(t), we can obtain initial guesses for these two parameters using

either SME or INT-SME.

Case of x2 unobserved

First, we have that,

x̃2(t) =
x′3(t) + θ4x3(t)

θ3

. (5.32)

For ASME,

x̃′2(t) =
x′′3(t) + θ4x

′
3(t)

θ3

(5.33)

Substituting (5.32) and (5.33) into (5.25),
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x̃′2(t) = θ1x1(t)x3(t)− θ2x̃2(t)

x′′3(t) + θ4x
′
3(t)

θ3

= θ1x1(t)x3(t)− θ2

θ3

(
x′3(t) + θ4x3(t)

)
x′′3(t) + θ4x

′
3(t)

θ3

= −x′1(t)− θ2

θ3

(
x′3(t) + θ4x3(t)

)
.

Note that above we have used the fact that x′1(t) = −θ1x1(t)x3(t). Rearranging and

simplifying, this reduces to,

x′′3(t) = −θ3x
′
1(t)− (θ2 + θ4)x′3(t)− θ2θ4x3(t). (5.34)

Thus, we can obtain a linear least squares estimate for b = [θ3, θ2 + θ4, θ2θ4], with the

constraint that b ≥ 0. Since θ2 and θ4 appear identically in this equation, we assume it

is known that θ2 ≤ θ4 so that we can distinguish between them. With θ2 + θ4 = b2 and

θ2θ4 = b3, it follows that θ2
4 − b2θ4 + b3 = 0. Solving this quadratic in θ4, we can take θ4

to be the largest root and θ2 is then the smallest root.

For AINT-SME, the integral form of (5.25) is given by,

x̃2(t) = x2(0)−
∫ t

0

θ1x1(τ)x3(τ) dτ − θ2

∫ t

0

x̃2(τ) dτ. (5.35)

Substituting in (5.32) and again using the fact that x′1(t) = −θ1x1(t)x3(t), we have,

x′3(t) + θ4x3(t)

θ3

= x2(0)− x1(t) + x1(0)− θ2

θ3

∫ t

0

(
x′3(τ) + θ4x3(τ)

)
dτ

x′3(t) + θ4x3(t) = θ3x2(0)− θ3

(
x1(t)− x1(0)

)
− θ2

(
x3(t)− x3(0)

)
− θ2θ4

∫ t

0

x3(τ) dτ.

Rearranging and simplifying, this reduces to,

x′3(t) = θ3

(
− x1(t) + x1(0)

)
+ θ3x2(0)− θ2

(
x3(t)− x3(0)

)
− θ2θ4

∫ t

0

x3(τ) dτ − θ4x3(t).

(5.36)

Again, this results in an equation linear in b = [θ3, θ3x2(0), θ2, θ2θ4, θ4]. As noted by

Dattner, the case of x2 unobserved has some identifiability issues, so one might consider

fixing the initial condition on x2. In this case, the nonlinear constraints for our problem
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are b2
b1

= x2(0) and b3b5 = b4. We note that θ1 can be estimated from (5.24), since we

have data for both x1(t) and x3(t), using either SME or INT-SME.

Experimental Results

In these experiments, to smooth the data and approximate the required derivatives, we

have used splinefit [33], with cubic splines and the placement of knots chosen to give a

reasonable fit. For varying no, we have generated 100 sets of noisy data, with σ = 0.05,

as was done in [13]. For the optimizations with nonlinear constraints, we use fmincon in

Matlab, with an interior point algorithm.

Our results for the case of x1 unobserved are shown in Table 5.3. The quality of the

estimates we obtain using AINT-SME are similar to those reported by Dattner in [13],

although we have a lower bias in θ3. This difference appears to be due to the quality

of the smoothing of the observed states. Dattner used LPE, with a fixed bandwidth

of 1 and first order polynomials. For AINT-SME and ASME we used slightly different

meshes for our cubic splines used in splinefit and observe different results, especially for

the cases with fewer observations. The guesses for θ1−2 and x1(0) generated using ASME

are rather poor. ASME appears to systematically underestimate θ1, which in turn leads

to overestimating x1(0) in (5.27). AINT-SME takes about 0.063s to generate an initial

guess and ASME takes about 0.033s, while Dattner’s approach takes around 0.48s. We

also note that ASME and AINT-SME both do not require an initial guess to be provided

for any of the parameters, while Dattner’s approach requires an initial guess for the

parameter α defining the unobserved state.

Our results for the case of x2 unobserved are shown in Table 5.4. For smoothing the

data and approximating the required derivatives, we have used splinefit [33], with cubic

splines and one knot every 2 time units. The quality of the estimates we obtain using

AINT-SME are similar to those reported in the supplementary material of [13]. The

guesses for θ2−4 generated using ASME are noticeably worse, although still reasonably

close to their true values. AINT-SME takes about 0.035s to generate an initial guess and

ASME takes about 0.011s, while Dattner’s approach takes around 0.39s. We again note

that ASME and AINT-SME both do not require an initial guess to be provided for any

of the parameters, while Dattner’s approach requires an initial guess for the parameter

α defining the unobserved state.
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Value no = 12 no = 21 no = 51 no = 101
x1(0) 1 0.483 (0.078) 0.288 (0.055) 0.172 (0.031) 0.116 (0.035)
x2(0) 0.05 0.050 (0.005) 0.045 (0.002) 0.051 (0.001) 0.051 (0.002)
x3(0) 2 0.051 (0.001) 0.052 (0.002) 0.050 (0.004) 0.052 (0.001)
θ1 0.3 0.113 (0.089) 0.111 (0.101) 0.065 (0.000) 0.036 (0.021)
θ2 0.3 0.103 (0.038) 0.078 (0.038) 0.056 (0.015) 0.038 (0.019)
θ3 1 0.337 (0.297) 0.213 (0.117) 0.170 (0.028) 0.160 (0.013)
θ4 0.5 0.119 (0.107) 0.072 (0.041) 0.059 (0.011) 0.057 (0.005)

x1(0) 1 1.947 (1.475) 1.840 (1.560) 1.849 (1.694) 1.923 (1.802)
x2(0) 0.05 0.047 (0.004) 0.051 (0.002) 0.037 (0.002) 0.031 (0.007)
x3(0) 2 0.053 (0.001) 0.053 (0.001) 0.037 (0.010) 0.035 (0.010)
θ1 0.3 0.183 (0.166) 0.191 (0.183) 0.196 (0.192) 0.201 (0.199)
θ2 0.3 0.195 (0.071) 0.163 (0.071) 0.162 (0.114) 0.163 (0.131)
θ3 1 0.264 (0.051) 0.242 (0.008) 0.149 (0.036) 0.113 (0.032)
θ4 0.5 0.090 (0.016) 0.082 (0.002) 0.050 (0.014) 0.039 (0.011)

Table 5.3: Summary of results for the Influenza model, with x1(t) unobserved, using
AINT-SME (top) and ASME (bottom). As in [13], we report the mean squared error
and bias (in brackets) for each parameter.

Value no = 12 no = 21 no = 51 no = 101
x1(0) 1 0.046 (0.001) 0.047 (0.001) 0.044 (0.009) 0.031 (0.004)
x3(0) 2 0.046 (0.003) 0.045 (0.012) 0.043 (0.011) 0.033 (0.011)
θ1 0.3 0.037 (0.008) 0.037 (0.002) 0.030 (0.010) 0.021 (0.008)
θ2 0.3 0.051 (0.017) 0.042 (0.012) 0.031 (0.005) 0.023 (0.006)
θ3 0.3 0.298 (0.135) 0.246 (0.134) 0.205 (0.099) 0.180 (0.093)
θ4 0.3 0.080 (0.037) 0.071 (0.039) 0.061 (0.034) 0.052 (0.030)

x1(0) 1 0.051 (0.006) 0.046 (0.005) 0.037 (0.001) 0.033 (0.006)
x3(0) 2 0.050 (0.001) 0.049 (0.000) 0.041 (0.013) 0.031 (0.007)
θ1 0.3 0.041 (0.003) 0.032 (0.008) 0.025 (0.003) 0.022 (0.008)
θ2 0.3 0.222 (0.200) 0.187 (0.151) 0.158 (0.122) 0.116 (0.082)
θ3 1 0.626 (0.288) 0.542 (0.038) 0.317 (0.042) 0.250 (0.049)
θ4 0.5 0.382 (0.107) 0.338 (0.174) 0.327 (0.283) 0.284 (0.254)

Table 5.4: Summary of results produced using AINT-SME (top) and ASME (bottom)
for the case of unobserved x2 (x2(0) fixed at 0.05) for the Influenza model. As in [13], we
report the mean squared error and bias (in brackets) for each parameter.

5.2.3 CSTR test problem with Cout unobserved

This is a test problem considered in [40]. The continuously stirred tank reactor (CSTR)

model is given by,
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C ′out(t) = −β(t)Cout(t) + Fin(t)(Cin(t)− Cout(t)), (5.37)

T ′out(t) = 130β(t)Cout(t) + Fin(t)(Tin(t)− Tout(t)) + α(t)(Tcool(t)− Tout(t)), (5.38)

= 130β(t)Cout(t) +X(t) (5.39)

where the coefficients β(t) and α(t) are given by,

β(t) = κ exp

(
−104τ

(
1

Tout(t)
− 1

Tref

))
, (5.40)

α(t) =
aFcool(t)

b+1

Fcool(t) + aFcool(t)b

2

, (5.41)

and Tref is a fixed reference temperature chosen to be 350. The model parameters are

κ, τ , a, and b; with values of 0.461, 0.83301, 1.678, and 0.5, respectively. Parameter

b is considered known, due to identifiability issues. The initial conditions need to be

estimated and their true values are Cout(0) = 1.5965 and Tout(0) = 341.3754. These

values correspond to a steady state of the system at t = 0. The model runs from t = 0 to

t = 64. Every 4 time units, one of the five inputs is stepped up or down, as summarized

in Table 5.5. Observations are made every 1
3

time units, resulting in 192 observation

times. Simulated data is generated by adding white noise with standard deviations of

0.0223 for Cout and 0.79 for Tout. As discussed in [40], this level of noise is typical in many

chemical engineering processes. The true trajectories corresponding to these parameters

are shown in Figure 5.2.

Figure 5.2: True trajectories for the CSTR test problem

In [40], Ramsay reported results for the case where the model is fully observed and the
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time Fin Cin Tin Tcool Fcool
0 1 2 323 335 15
4 1.5 2 323 335 15
8 0.5 2 323 335 15
12 1 2 323 335 15
16 1 2.2 323 335 15
20 1 1.8 323 335 15
24 1 2 323 335 15
28 1 2 343 335 15
32 1 2 303 335 15
36 1 2 323 335 15
40 1 2 323 340 15
44 1 2 323 330 15
48 1 2 323 335 15
52 1 2 323 335 20
56 1 2 323 335 10
60 1 2 323 335 15

Table 5.5: Summary of how the inputs are stepped up and down every 4 time units in
the CSTR test problem.

case where only Tout is observed. In this second case, we can apply one of our techniques

in order to obtain an initial guess. We have used AINT-SME in this example. Specifically,

since (5.39) is linear in Cout(t), we can simply rearrange to obtain,

C̃out(t) =
T ′out(t)−X(t)

130β(t)
. (5.42)

Following the AINT-SME procedure, if we integrate (5.37), we obtain,

T ′out(t)−X(t)

130β(t)
− Cout(0) =

1

130

∫ t

0

X(τ) dτ − Tout(t)− Tout(0)

130
+

∫ t

0

Fin(τ)Cin(τ) dτ

(5.43)

−
∫ t

0

Fin(τ)T ′out(τ)

130β(τ)
dτ +

∫ t

0

Fin(τ)X(τ)

130β(τ)
dτ.

Unlike our previous examples, this expression can not be formulated as a linear least

squares problem with nonlinear constraints. We do note though that κ appears linearly.

For this experiment, we generated 100 sets of noisy data as described above. We then used

AINT-SME and our data driven approach to obtain initial guesses for the parameters.

Since both of theses approaches result in non-linear least squares problems, we use LHS to
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obtain a suitable starting point for Matlab’s lsqnonlin routine (using the default Trust-

Region-Reflective algorithm). In order to apply LHS and fully specify the problem,

we have assumed lower bounds on the model parameters, [κ, τ, a, C(0)], to be given

by [0.01, 0.01, 0.1, 0.3] and upper bounds of, [2, 2, 2.5, 3.2]. We do not specify a bound

on T (0), since we have an observation available. The final estimates were then found by

running an LM optimizer, with the required sensitivities approximated using FD. Results

are presented in Table 5.6.

We see that our initial guesses appear to be quite close to the true parameter values,

allowing the final optimization to quickly converge to the true solution in most cases.

For AINT-SME, we originally found that some initial guesses were leading to poor lo-

cal minima being found. To prevent this, we made the code more robust by checking

what value of the objective function was obtained with the initial guess. If the objective

function was too large (in this example, we choose 1700), then we ran several iterations

of fminsearch before performing the final gradient based optimization. This modifica-

tion resulted in only 2 cases where the initial guesses led to poor local minima, so we

exclude these 2 cases from the summary results we report. We left in this modification

when we ran our data driven approach and found that it is only occasionally required.

As mentioned, this modification makes the code more robust, but it does increase the

computer time somewhat. On average, AINT-SME required 0.16s to generate the initial

guess and 1.96s to perform the full procedure. Our data driven approach took 0.23s to

generate the initial guess and only 0.78s to perform the full procedure. We see that our

data driven approach takes a bit longer to generate the initial guess, but the quality of

the guess results in the final optimization only taking about 30% as long, compared to

when AINT-SME was used to generate the initial guess.

κ τ a C(0) T(0)
mean guess 0.44532 0.91377 1.47161 1.83897 339.15659
stdev of guess 0.03491 0.04038 0.12359 0.14134 1.88204
mean guess 0.42926 0.84455 1.49866 1.66196 341.15355
stdev of guess 0.02612 0.03412 0.09714 0.18818 1.73612
mean estimate 0.46003 0.83151 1.67580 1.57860 341.49138
stdev of estimate 0.00879 0.00815 0.03839 0.09148 0.80550

Table 5.6: Estimation results for the CSTR problem with only Tout observed, for AINT-
SME (top), our data driven approach (middle) and the final estimates (bottom).
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5.2.4 Fitz-Hugh Nagumo test problem with R(t) unobserved

We now consider the Fitz-Hugh Nagumo model, with R(t) unobserved. The experimental

setup is the same as described in Section 2.6.1, but with R(t) unobserved and the true

values of parameters a, b, and c set to 0.2, 0.2, and 3, respectively (as used in [40]). For

this example, we have,

R̃(t) =
V ′

c
− V (t) +

V 3(t)

3
. (5.44)

This results in ASME being, after some manipulation,

V ′′(t) + V (t) = a+ b
(
V (t)− V 3(t)

3

)
− b

c
V ′(t) + cV ′(t)

(
1− V 2(t)

)
. (5.45)

This equation is linear in α = [a, b, b
c
, c], with the constraint that α2

α4
= α3. Note, the

initial condition, R(0) can be recovered from (5.44) evaluated at t = 0. We also have

that AINT-SME is given by,

∫ t

0

V (τ) dτ + V ′(t) = at+ b
( ∫ t

0

V (τ) dτ −
∫ t

0

V 3(τ)

3
dτ
)

(5.46)

− b

c

(
V (t)− V (0)

)
+ c
(
V (t)− V 3(t)

3

)
+ cR(0).

This equation is linear in α = [a, b, b
c
, c, cR(0)], with the constraint that α2

α4
= α3.

Numerical results are shown in Figure 5.3. For this experiment, we have added noise

with σ = 0.05 to the true trajectory for 20 sets of simulated data. This is done for two

different values of no. For ASME, we have used LPE to smooth the data and approximate

V ′(t) and V ′′(t). For AINT-SME, we have used central finite differences to approximate

V ′(t) and have not smoothed the data. For our data driven approach, all parameters

appear in α, except V (0), so we still have to provide initial guesses (we have used the

initial guesses generated by AINT-SME in this case).

ASME’s initial guess for R(0) is quite poor, since it is only using a single observation of

(5.44) at t = 0. AINT-SME slightly overestimates R(0), while our data driven approach

slightly underestimates R(0). ASME provides the worst initial guesses, while the other

two approaches provide similarly good initial guesses, although all 3 approaches provide
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Figure 5.3: Boxplot of initial guesses for the Fitz-Hugh Nagumo model with R(t) unob-
served. The left plot is for the case of ∆t = 0.1 (no = 201) and the right plot is for the
case of ∆t = 0.2 (no = 101).

worse initial guesses as the number of observations decreases, with noticeable biases.

In terms of computer time, the data driven approach takes about 0.147s, AINT-SME

takes 0.022s, and ASME takes 0.065s. ASME takes more time than AINT-SME due to

the fact that we used LPE to smooth the data in ASME and not in AINT-SME. For our

data driven approach, we have included the time taken by AINT-SME, since it was used

to generate the initial value for α.

5.2.5 Zebrafish model with R(t) unobserved

This is an example that was also considered in [13], which uses real data that was studied

in [22]. The model describes the behaviour of a neuron [53] and is given by,

V ′(t) = p1 + p2V (t) + p3V
2(t) + p4V

3(t) + p5R(t) + p6V (t)R(t), (5.47)

R′(t) = a1 + a2V (t) + p7R(t). (5.48)

The parameters to be estimated are V (0), R(0), and p. We fix a to be [0.7934, 0.0411],

as was done in [22], due to identifiability issues. Data is only available for V (t) once

every time unit, from t = 0 to t = 1000. Similar to what was done in [22], we impose

the constraint that 10 ≤ R(t) ≤ 60. This constraint is enforced by the inclusion of an

appropriate penalty function. We found this to be necessary to help avoid uninteresting
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local minima.

ASME and AINT-SME

From (5.47), we have that,

R(t) =
V ′(t)− p1 − p2V (t)− p3V

2(t)− p4V
3(t)

p5 + p6V (t)
. (5.49)

ASME then becomes,

(
a1 + a2V (t)

)(
p5 + p6V (t)

)
+

p6(V ′(t))2

p5 + p6V (t)
= p1V

′(t)
(
p7 +

p6

p5 + p6V (t)

)
+ p2

(
p7V (t) +

p6V (t)

p5 + p6V (t)
− V ′(t)

)
+ p3

(
p7V

2(t) +
p6V

2(t)

p5 + p6V (t)
− 2V (t)V ′(t)

)
+ p4

(
p7V

3(t) +
p6V

3(t)

p5 + p6V (t)
− 3V 2(t)V ′(t)

)
,

− V ′′(t)

and AINT-SME becomes,

V ′(t)

p5 + p6V (t)
= R(0) + a1t+ a2

∫ t

0

V (s) ds (5.50)

− p7

∫ t

0

−p1 − p2V (s)− p3V
2(s)− p4V

3(s)

p5 + p6V (s)
ds

+
p1 + p2V (t) + p3V

2(t) + p4V
3(t)

p5 + p6V (t)
.

In both cases, we are left with equations that are linear in p1−4 and nonlinear in p5−7.

For our data driven approach, we need only search over values of p7 to simulate the

unobserved state.

Experimental Results

For these results, we have considered the intial conditions fixed at the values of V (0) =

−20.5693 and R(0) = 28.1786 used in [22]. We found that ASME and AINT-SME do

not work well for this example and are only able to find poor local minima. An example
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of this is shown in the right of Figure 5.4. We see that the initial guess generated by

AINT-SME leads to a poor local minimum. Upon investigation, we found the problem

arises in the denominator of (5.49). Since we know that the unobserved state should

be bounded, we will encounter problems whenever the denominator is near zero. That

is, if −p5 ≈ p6V (t). Given the data, we have that V (t) ∈ (−21.5515, 17.5446). If we

substitute in the best fit values for p5 and p6, we find that the zero of this line is at

−21.2335, which is in the range that the observed values of V (t) take. This means that

ASME and AINT-SME are unlikely to provide us with initial guesses for the parameters

that put us close enough to the best fit parameters for a gradient based optimizer to

converge to the global minimum. Our data driven approach avoids this problem, since it

simulates R(t) using (5.47).

Parameter Best Fit
Initial Guess

Data Driven AINT-SME
p1 5.007e+00 4.953e+00 4.894e+00
p2 2.860e-01 2.862e-01 2.681e-01
p3 -5.095e-03 -1.426e-03 -4.406e-03
p4 -3.748e-04 -1.803e-04 -3.387e-04
p5 -1.255e-01 -1.278e-01 -1.190e-01
p6 -5.919e-03 -6.176e-03 -5.068e-03
p7 -5.737e-03 -5.243e-03 -5.770e-03

Table 5.7: Initial guesses and best fit parameter estimates for the zebrafish example.

The initial guesses and final parameter estimates found using our data driven approach

are shown in Table 5.7, along with the initial guess generated using AINT-SME. We notice

that the initial guesses obtained using AINT-SME actually look quite good. However, as

noted above, the guesses for p5 and p6 are such that a gradient based optimizer converges

to a poor local minimum. This demonstrates the challenge of fitting IVPs with sharp

peaks. Generating the initial guesses took about 0.5s for both methods, while the full

optimization took about 36s for our data driven approach and 60s for AINT-SME. The

objective function has a value of 6710.46 for the best fit parameters, which is consistent

with the parameters reported in [22]. The observed data and trajectories corresponding

to the best fit parameters and initial guess parameters generated using our data driven

approach are shown in the left of Figure 5.4.

5.2.6 Enzyme Effusion Problem

Our final test problem is a model of enzyme effusion [48, 49, 46]. The model is given by,
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Figure 5.4: Model trajectories for the zebrafish example using our data driven approach
(left) and AINT-SME (right) to obtain the initial guess for the parameters.

y′1(t) = p1(27.8− y1(t)) +
p4

2.6
(y2(t)− y(1)) +

4991

t
√

2π
exp
(
−0.5(

ln t− p2

p3

)2
)

(5.51)

y′2(t) =
p4

2.7
(y1(t)− y2(t)) (5.52)

where y1 and y2 are the intravascular and extravascular enzyme activities, respectively.

This model attempts to capture the peak of enzyme activity in the blood that occurs fol-

lowing a heart attack. The initial condition is that both states are initially equal to 27.8,

which corresponds to normal enzyme activity, at t = 0.1. The other four parameters are

to be estimated in this problem. The data for this test problem consists of measurements

of y1. The data are shown in Figure 5.5 and available in tabular form in [48]. Looking at

the data, we observe that y1 does not return to the normal value of 27.8, which it will in

the model. This kind of inconsistency between the model and the data may cause ASME

or AINT-SME to give poor initial guesses.

For ASME and AINT-SME, we have that the unobserved state can be written as,

ỹ2(t) =
2.6

p4

(
y′1(t)− p1(27.8− y1(t))− 4991

t
√

2π
exp(−0.5(

ln t− p2

p3

)2)
)
+y1(t). (5.53)

Applying the ASME procedure and simplifying, we end up with,
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y′′1(t) = −p1y
′
1(t)− p4

2.6
y′1(t) + p1p4(27.8− y1(t))

+
4991

t2
√

2π

( p4

2.7
t− 1− ln t− p2

p2
3

)
exp(−0.5(

ln t− p2

p3

)2). (5.54)

For this example, rather than obtaining an analytical form for AINT-SME, we simply use

numerical quadrature to integrate the above ASME formula to approximate the AINT-

SME formula.

For our data driven approach, we consider applying it to both INT-SME (5.3) and

SME (5.4). We only need an intitial guess for p4 in order to simulate the unobserved

state, but since only p1 appears linearly in SME and INT-SME, we still need to provide

guesses for 3 of the 4 parameters.

To compare how the methods perform on this problem, we look at the shapes of their

objective functions (Figure 5.5). To visualize the objective functions, we consider how

the minimum of each objective function varies as a function of p4. We first observe that

for the final optimization, we have two solutions with similar objective function values

(trajectories and objective function shown in the top of Figure 5.5). The global minimizer

has an objective function value of around 63.48. The local minimizer has an objective

function value of around 66.23. This second minimum corresponds to the case where p4

is very large - essentially resulting in y1(t) = y2(t) - and is not really of interest.

We observe that ASME contains two local minima, but they are both sufficiently

close to the global minimum, although the shape of the objective function is of course

dependent on the smoother used when approximating the required derivatives. AINT-

SME is only able to find the uninteresting minimum corresponding to large values of p4.

This appears to be due to the data inconsistency we identified above. ASME does not

have this problem, since the discrepancy is in the value of the state, not its derivative.

When our data driven approach is used to approximate the unobserved state, we observe

similar behaviour in the objective functions. The most notable difference is the existence

of a minimizer at p4 = 0, which is in the basin of attraction of the global minimizer of

interest, for both SME and INT-SME. SME also still exhibits a global minimum close

to the solution of interest. While INT-SME with our data driven approach does have a

clear global minimizer at p4 = 0, there is still a local minimum corresponding to large

values of p4. We note that AINT-SME and ASME do not have this minimizer at p4 = 0,

due to p4 being in the denominator of (5.53). One might view this case of p4 = 0 as an

example of why it is sometimes useful to first fit the parameters of a simpler model, then

use those parameters as an initial guess when fitting the more complex model.
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Figure 5.5: Top: Trajectories and Shape of objective function for the Enzyme Effusion
Problem. Bottom: Shape of objective functions for initial guess procedures.



Chapter 6

Conclusion

In this thesis, we considered the computationally efficient solution of the parameter es-

timation problem that arises when fitting ODE and DDE IVPs to observed data. We

reviewed several approaches for solving problems of this type and focused our investiga-

tions on the single shooting approach, where an effective IVP solver is used to accurately

approximate the model trajectory when evaluating the objective function. Using several

different approaches from the literature, we demonstrated that it is often the case that

a good initial guess p0 (for the associated NLS problem) can be efficiently obtained by

solving a simpler related inverse problem. With a good p0 available, a gradient based

single shooting approach can then often be quite effective for approximating the solution

of these parameter estimation problems.

Throughout the thesis we emphasized how the structure of the underlying ODE model

could be leveraged. When obtaining p0, we can make use of the model structure to reduce

the cost of approaches like SME and INT-SME by considering subsets of parameters that

appear independently in f(t, y, p). Furthermore, we used the linearity of some parameters

to reduce the dimensionality of the search space when searching for p0. To perform the

search over the nonlinear parameters, we recommended using LHS, which was previously

suggested for use with searching for the minimizer of (1.7). In the case of unobserved

components of the state vector, we demonstrated that the structure of the model can

often be used to reduce the difficulty introduced by having unobserved states. Specifically,

we gave several examples where ASME and AINT-SME resulted in linear least squares

problems with non-linear constraints. In these cases, we can obtain initial guesses on

the parameters by first ignoring the constraints, then enforcing them. We compared our

approaches with a recent technique proposed by Dattner [13], which suffers from having

to provide initial guesses for the parameter vector, α, parameterizing the unobserved

states.
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Several methods for the efficient computation of the model sensitivities required by

a Levenberg-Marquardt least squares optimizer were compared and implemented in a

parallel computing environment. Numerical experiments suggested that using forward

GFM can be the most efficient of these methods in a parallel environment, due to the

fact that it can be parallelized across the time domain rather than dividing the work

into subsets of parameters, as is naturally done for the other methods. In applications

where not much accuracy is required, and there are as many processors available as there

are parameters, simply using divided differences is found to be quite effective. If high

accuracy is required, we found that simulating the variational equations is recommended.

We also investigated the effectiveness of the adjoint method for both ODEs and DDEs

when approximating the gradient of (1.7). We found that the adjoint approach is quite

sensitive to the number of observations. In the case of ODEs, we consider using a lower

order IVP solver to simulate the adjoint IVP or using parallelism to reduce the cost

associated with a large number of observations. For DDEs, this sensitivity is due to the

propagation of the jump discontinuities introduced at each observation time.

6.1 Future Work

Applying these approaches to other classes of differential equations is a potential direc-

tion for future research. Partial differential equations (PDEs) and stochastic differential

equations (SDEs) are two such classes that are widely studied. In the future, more focus

will be on how to adapt these methods to problems with a large number of parameters,

where some parameters may not be identifiable. The B3 test problem discussed in Section

2.3.1 is one such example from the systems biology literature. Further work is needed to

make this method of parameter estimation more generally available to practitioners as

an easy to use set of MATLAB routines and C++ classes.



Bibliography

[1] C.T.H. Baker and C.A.H. Paul. Pitfalls in parameter estimation for delay differential

equations. SIAM Journal on Scientific Computing, 18(1):305–314, 1997.

[2] E. Balsa-Canto, M. Pfeifer, J. Banga, J. Timmer, and C. Fleck. Hybrid optimization

method with general switching strategy for parameter estimation. BMC Systems

Biology, 2(1), 2008.

[3] H. T. Banks and C. Wang. Sensitivity via the complex-step method for delay dif-

ferential equations with non-smooth initial data. Technical report, North Carolina

State University. Center for Research in Scientific Computation, 2016.

[4] Y. Bard. Nonlinear parameter estimation. Academic press, 1974.

[5] R. Bellman and R.S. Roth. The use of splines with unknown end points in the identi-

fication of systems. Journal of Mathematical Analysis and Applications, 34(1):26–33,

1971.

[6] A. A. Berryman. The origins and evolution of predator-prey theory. Ecology,

73(5):1530–1535, 1992.

[7] C.H. Bischof, P.D. Hovland, and B. Norris. On the implementation of automatic

differentiation tools. Higher Order Symbol. Comput., 3(21):311–331, 2008.

[8] S. Blanes, F. Casas, J.A. Oteo, and J. Ros. The Magnus expansion and some of its

applications. Physics Reports, 470(56):151 – 238, 2009.

[9] H.G. Bock and K.J Plitt. A multiple shooting algorithm for direct solution of optimal

control problems. Proceedings 9th IFAC World Congress Budapest, pages 243–247,

1984.

[10] J. Calver. Improving a Cross Entropy approach to parameter estimation for ODEs

and DDEs. MSc. thesis, Department of Computer Science, University of Toronto,

2014.

106



Bibliography 107

[11] Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint sensitivity analysis for differential

algebraic equations: The adjoint DAE system and its numerical solution. SIAM J.

Sci. Comput., 3(24):1076–1089, 2003.

[12] S. Chan, JC Light, and J. Lin. Inelastic molecular collisions: Exponential solution of

coupled equations for vibration–translation energy transfer. The Journal of Chemical

Physics, 49(1):86–97, 1968.

[13] I. Dattner. A model-based initial guess for estimating parameters in systems of

ordinary differential equations. Biometrics, 71(4):1176, 2015.

[14] I. Dattner and S. Gugushvili. Accelerated least squares estimation for systems of

ordinary differential equations. arXiv preprint arXiv:1503.07973, 2015.

[15] R. P. Dickinson and R. J. Gelinas. Sensitivity analysis of ordinary differential equa-

tion systemsa direct method. Journal of computational physics, 21(2):123–143, 1976.

[16] R. FitzHugh. Impulses and Physiological states in theoretical models of nerve mem-

brane. Biophysical Journal, 1(6):445 – 466, 1961.
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Appendix A

Derivation of Adjoint Method

A.1 Adjoint Method for ODE IVPs

In the following, we consider objective functions of the form,

G(y, p) = G(y(p)) =

∫ T

0

g(y(t, p)) dt, (A.1)

where we are restricting ourselves to objective functions that only depend on p through

y(s, p). Let λT (t) be any vector valued function of dimension ny, defined for t ∈ [0, T ].

Now, consider the perturbed objective function,

J(p) = G(y(p)) +

∫ T

0

λT (t)
(
y′(t, p)− f(t, y(t, p), p)

)
dt. (A.2)

Note that the term we have added is zero, since y(t) satisfies the ODE, (1.1). Taking the

derivative with respect to the parameters, we obtain,

∂J

∂p
=

dG

dp
+

∫ T

0

λT (t)

(
dy′

dp
(t)− ∂

∂p

[
f(t, y(t, p), p)

])
dt

=
dG

dp
+

∫ T

0

λT (t)
(∂y′
∂p

(t)− ∂f

∂y
(t)
∂y

∂p
(t)− ∂f

∂p
(t)
)
dt. (A.3)

From (A.1),
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dG

dp
=

∂

∂p

[ ∫ T

0

g(y(t, p)) dt
]

=

∫ T

0

∂g

∂y
(t)
∂y

∂p
(t) dt,

and therefore, from (A.3),

∂J

∂p
=

∫ T

0

(
∂g

∂y
(t)
∂y

∂p
(t) + λT (t)

(∂y′
∂p

(t)− ∂f

∂y
(t)
∂y

∂p
(t)− ∂f

∂p
(t)
))

dt. (A.4)

Using integration by parts, we can express the integral term involving λT (t)∂y
′

∂p
(t) as,

∫ T

0

λT (t)
∂y′

∂p
(t) dt =

(
λT (t)

∂y

∂p
(t)
)∣∣∣T

0
−
∫ T

0

λ̇T (t)
∂y

∂p
(t) dt, (A.5)

where λ̇ denotes dλ
dt

. From (A.5) and (A.4), we obtain, after re-arranging terms,

∂J

∂p
=

∫ T

0

(∂g
∂y

(t)− λT (t)
∂f

∂y
(t)− λ̇T (t)

)∂y
∂p

(t) dt−
∫ T

0

λT (t)
∂f

∂p
(t) dt+

(
λT (t)

∂y

∂p
(t)
)∣∣∣T

0
.

(A.6)

The adjoint system is defined by requiring that λT (t) be the solution of the IVP:

λ̇T (t) =
∂g

∂y
(t)− λT (t)

∂f

∂y
(t) ;λT (T ) = 0. (A.7)

This choice for λT (t) eliminates the integral involving ∂y
∂p

(t) in (A.6) and results in the

sensitivities being given by,

∂J

∂p
= −

∫ T

0

λT (t)
∂f

∂p
(t) dt+

(
λT (t)

∂y

∂p
(t)
)∣∣∣T

0

= −
∫ T

0

λT (t)
∂f

∂p
(t) dt− λT (0)

∂y

∂p
(0). (A.8)

In some applications, we might not be interested in the sensitivity of G, but rather

in the sensitivity of g at time T . In this case, if we take derivatives of (A.7) and (A.8)
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with respect to T , we obtain,

λ̇TT (t) = −λTT (t)
∂f

∂y
(t) ;λTT (T ) =

∂g

∂y
(T ), (A.9a)

dg

dp
= −

∫ T

0

λTT (t)
∂f

∂p
(t) dt+ λTT (0)

dy

dp
(0), (A.9b)

Note that the above equations are defined with t varying from T to 0. Defining x = T−t,
we can return to the standard situation where the independent variable varies from 0 to

T .

A.2 Adjoint Method for constant lag DDE IVPs

We consider here the special case of constant lag DDEs with a delay of the form α = t−τ
and constant history function, y(t) = yo, for t < 0. For simplicity, we assume there is

only one delay in the following derivation, but everything extends in a straightforward

way to multiple delays. For convenience, let ν = y(t − τ) and let λT (t) be any vector

valued function of dimension ny, defined for t ∈ [0, T + τ ]. Similar to the ODE case, we

define a perturbed objective function,

J(p) = G(y(p)) +

∫ T

0

λT (t)
(
y′(t, p)− f(t, y(t), y(t− τ), p)

)
dt. (A.10)

Taking the derivative with respect to the parameters, we obtain,

∂J

∂p
=

dG

dp
+

∫ T

0

λT (t)

(
dy′

dp
(t)− ∂

∂p

[
f(t, y(t, p), y(t− τ, p)

])
dt

=
dG

dp

+

∫ T

0

λT (t)
(∂y′
∂p

(t)− ∂f

∂y
(t)
∂y

∂p
(t)− ∂f

∂ν
(t)
(∂y
∂p

(t− τ) + y′(t− τ)
∂α

∂p
(t)
)
− ∂f

∂p
(t)
)
dt

=

∫ T

0

(
∂g

∂y
(t)
∂y

∂p
(t) + λT (t)

(∂y′
∂p

(t)− ∂f

∂y
(t)
∂y

∂p
(t)− ∂f

∂ν
(t)
∂y

∂p
(t− τ)

))
dt

−
∫ T

0

λT (t)
(∂f
∂ν

(t)y′(t− τ)
∂α

∂p
(t) +

∂f

∂p
(t)
)
dt.
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In a similar way to the derivation of (A.5), we can re-write the above expression as,

∂J

∂p
=

∫ T

0

(∂g
∂y

(t) + λT (t)
∂f

∂y
(t)− λ̇T (t)

)∂y
∂p

(t) dt−
∫ T

0

λT (t)
∂f

∂ν
(t)
∂y

∂p
(t− τ) dt

−
∫ T

0

λT (t)
(∂f
∂ν

(t)y′(t− τ)
∂α

∂p
(t) +

∂f

∂p
(t)
)
dt−

(
λT (t)

∂y

∂p
(t)
)∣∣∣T

0
.

(A.11)

Now, after a change of variables and rewriting the second integral in (A.11) as,

∫ T

0

λT (t)
∂f

∂ν
(t)
∂y

∂p
(t− τ) dt =

∫ T−τ

−τ
λT (t+ τ)

∂f

∂ν
(t+ τ)

∂y

∂p
(t) dt

=

∫ T

0

λT (t+ τ)
∂f

∂ν
(t+ τ)

∂y

∂p
(t) dt

+

∫ 0

−τ
λT (t+ τ)

∂f

∂ν
(t+ τ)

∂y

∂p
(t) dt.

The second equality follows from being able to extend the integral to T by requiring that

λT (t) = 0 for t ≥ T , and splitting the interval of integration. We now see that we can

combine the first integral in this expression, with the first integral in (A.11), and after

rearranging,

∂J

∂p
=

∫ T

0

(
−λ̇T (t) +

∂g

∂y
(t)− λT (t)

∂f

∂y
(t)− λT (t+ τ)

∂f

∂ν
(t+ τ)

)∂y
∂p

(t) dt

−
∫ T

0

λT (t)
(∂f
∂ν

(t)y′(t− τ)
∂α

∂p
(t) +

∂f

∂p
(t)
)
dt

+
(
λT (t)

∂y

∂p
(t)
)∣∣∣T

0
+

∫ 0

−τ
λT (t+ τ)

∂f

∂ν
(t+ τ)

∂y

∂p
(t) dt.

The adjoint system for this constant lag DDE is defined by requiring that λT (t) be the

solution of the IVP,

λ̇T (t) =
∂g

∂y
(t)− λT (t)

∂f

∂y
(t)− λT (t+ τ)

∂f

∂ν
(t+ τ) ;λT (t) = 0, for t ≥ T . (A.12)

As in the ODE case, this choice for λT (t) eliminates the integral involving ∂y
∂p

(t) and

results in the sensitivities being given by,
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∂J

∂p
= −

∫ T

0

λT (t)
(∂f
∂ν

(t)y′(t− τ)
∂α

∂p
(t) +

∂f

∂p
(t)
)
dt

+
(
λT (t)

∂y

∂p
(t)
)∣∣∣T

0
+

∫ 0

−τ
λT (t+ τ)

∂f

∂ν
(t+ τ)

∂y

∂p
(t) dt

∂J

∂p
= −

∫ T

0

λT (t)
(∂f
∂ν

(t)y′(t− τ)
∂α

∂p
(t) +

∂f

∂p
(t)
)
dt

−λT (0)
∂y

∂p
(0)−

∫ 0

−τ
λT (t+ τ)

∂f

∂ν
(t+ τ)

∂h

∂p
(t) dt. (A.13)

Note that because the last integral is for t ≤ 0, we have replaced ∂y
∂p

(t) with ∂h
∂p

(t) (recall

that h is the history function).
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