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Delay differential equations (DDEs) are a class of differential equations that have re-

ceived considerable recent attention and been shown to model many real life problems,

traditionally formulated as systems of ordinary differential equations (ODEs), more nat-

urally and more accurately. Ideally a DDE modeling package should provide facilities for

approximating the solution, performing a sensitivity analysis and estimating unknown

parameters. In this thesis we propose new techniques for efficient simulation, accurate

sensitivity analysis and reliable parameter estimation of DDEs.

We propose a new framework for designing a delay differential equation (DDE) solver

which works with any supplied initial value problem (IVP) solver that is based on a

general linear method (GLM) and can provide dense output. This is done by treating a

general DDE as a special example of a discontinuous IVP. We identify a precise process

for the numerical techniques used when solving the implicit equations that arise on a

time step, such as when the underlying IVP solver is implicit or the delay vanishes.

We introduce an equation governing the dynamics of sensitivities for the most general

system of parametric DDEs. Then, having a similar view as the simulation (DDEs as

discontinuous ODEs), we introduce a formula for finding the size of jumps that appear

at discontinuity points when the sensitivity equations are integrated. This leads to an

algorithm which can compute sensitivities for various kind of parameters very accurately.
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We also develop an algorithm for reliable parameter identification of DDEs. We

propose a method for adding extra constraints to the optimization problem, changing a

possibly non-smooth optimization to a smooth problem. These constraints are effectively

handled using information from the simulator and the sensitivity analyzer.

Finally, we discuss the structure of our evolving modeling package DDEM. We present

a process that has been used for incorporating existing codes to reduce the implemen-

tation time. We discuss the object-oriented paradigm as a way of having a manageable

design with reusable and customizable components. The package is programmed in C++

and provides a user-friendly calling sequences. The numerical results are very encourag-

ing and show the effectiveness of the techniques.
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Chapter 1

Introduction

1.1 Motivation

Differential equations are one of the most frequently used tools for mathematical mod-

eling in engineering and life sciences. Numerical studies usually involve simulating with

various parameter values, assessing the sensitivity to changes in parameters and esti-

mating relevant parameters from data. The increasing processing power of computers

has encouraged scientists to use more complex and more detailed mathematical models

to study real life problems. Delay differential equations (DDEs) are a class of differ-

ential equations that have received considerable recent attention and been proven to

model many real life problems, traditionally formulated as systems of ordinary differ-

ential equations (ODEs), more naturally and more accurately. Nevertheless, required

modeling components involve more complex numerical procedures for DDEs compared

to ODEs, making a robust and reliable implementation more than a direct transformation

of the corresponding components for standard ODEs.

Several DDE solvers have been implemented during the past twenty years, based on

different traditional ODE techniques such as those based on Runge-Kutta formulas or

on linear multi-step formulas. The implementations of these solvers are usually based on

1
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adapting an existing initial value problem (IVP) solver and is usually completely redone

for every new IVP solver and hence results in a long gap between the release of an efficient

IVP formula and the corresponding DDE solver. This motivated us to look for a unified

structure for a DDE solver independent of the underlying IVP solver.

The particular issues accompanying the numerical computation of sensitivities and

parameter identification from data, which mostly originate from the discontinuous nature

of DDEs, have been studied in detail ([5], [6]). Nonetheless, nothing has been suggested

to overcome those difficulties for a general system of DDEs. This observation motivated

us to develop methods for accurate sensitivity analysis and reliable parameter estimation

in the presence of propagated discontinuities.

The techniques for sensitivity analysis and parameter estimation can be exploited by

interested users along with a DDE solver for developing practical codes. However, there

are many benefits in having these two basic functionalities accompanying the simulator in

an integrated design called a modeling package. First, sensitivity analysis and parameter

estimation have become as essential as simulation for studying a phenomenon using a

mathematical model. Second, for complex models like DDEs, sensitivity analysis and pa-

rameter estimation become much more complicated. As a result, implementing practical

codes to carry out these tasks is tedious and highly time consuming for non-specialists.

Finally, sensitivity analysis and parameter estimation are highly dependent on the sim-

ulator and hence an integrated design could lead to efficient inner communication and

prevent possible redundancies.

1.2 A Review of Mathematical Modeling

In this section we briefly describe some of the important concepts and terminologies of

mathematical modeling. These concepts will be referenced throughout the thesis and are

essential for future discussions.
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1.2.1 The Modeling Process

Figure 1.1 shows schematically the general process that is followed in developing a model

to study a physical/biological phenomenon. The process starts with a scientist looking

into the phenomenon and recognizing the governing physical laws or empirical rules. The

result is a mathematical model with some unknown parameters. Sensitivity analysis of

the model is done to determine the effect of different parameters on the behavior of

the model and then the model equations are accordingly adjusted so that the qualitative

behavior is compatible with the reality. The last task is to estimate the model parameters

by using observations from the real world. The result is a practical model that can be

used to make predictions.

Physical/Biological Phenomenon

Mathematical Model

Refined Mathematical Model

Practical Mathematical Model

Physical Laws / Empirical Rules

Sensitivity Analysis

Parameter Estimation

Observed Data

Figure 1.1: Schematic representation of the major steps that are performed to develop a

practical mathematical model.
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1.2.2 Parameterized Models

Usually a mathematical model used for the simulation of a real phenomenon contains

some parameters. These parameters are used for different purposes. They can make

the model applicable in similar situations where the only difference is the value of some

constants. Furthermore, when some constants are just approximately known, it can be

very helpful to analyze the effect of these uncertainties, which can be done by representing

those constants as parameters. Finally, parameters can be used to represent unknown

quantities.

The parameters affecting a state variable or a mathematical function are usually

distinguished by being grouped separately in the list of arguments. Table 1.1 lists the

notation commonly used to represent state variables for different types of differential

equations and their corresponding parameterized variant.

Differential Equation Traditional Form Parameterized Form

IVP ODE/DAE/DDE y(t) y(t;p)

BVP ODE y(x) y(x;p)

BVP PDE u(x) u(x;p)

IVP PDE u(x, t) u(x, t;p)

Table 1.1: State variables and their corresponding parameterized version for some classes

of differential equations. Bold symbols represent vectors.

1.2.3 Simulation

The term simulation refers to computing a numerical approximation for fixed values

of parameters and some initial/boundary conditions for a phenomenon described using

a mathematical model. Developing efficient simulation techniques is traditionally con-

sidered as the core of numerical studies and many researchers have been working on
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developing faster and more reliable methods. One of the important issues that is al-

ways involved in this effort is the generality versus efficiency tradeoff. In other words,

one wants to develop methods applicable for a broader range of problems. However, a

specialized method, tailored with respect to the properties of a certain problem, may

outperform and hence be more promising.

1.2.4 Sensitivity Analysis

The (first order) solution sensitivity with respect to the model parameter pi is defined as

the vector

si(t;p) = { ∂

∂pi

}y(t;p), (i = 1, . . . ,L), (1.1)

and the second order solution sensitivity with respect to the model parameters pi and pj

is defined as the vector

rij(t;p) = { ∂

∂pj

}si(t;p) = { ∂2

∂pj∂pi

}y(t;p), (i, j = 1, . . . ,L). (1.2)

They can be considered for all continuous time models including those defined by systems

of differential equations.

Sensitivities of higher orders can be defined in a similar way but are rarely used in

practice.

1.2.5 Parameter Estimation

Given a set of data {Y (γi) ≈ y(γi;p)} corresponding to a parameterized model (Table

1.1) the parameter estimation problem is that of estimating the best choice for vector

p. This is generally achieved by minimizing an objective function involving the data

{Y (γi)} and the corresponding values of the parameterized solution {y(γi;p)}.

A common objective function is based on the squared two-norm,

W (p) =
∑

i

[Y (γi)− y(γi;p)]2 . (1.3)



Chapter 1. Introduction 6

because it is generally continuous (and hopefully smooth) with respect to variations in

p.

1.3 Definitions and Notations

• An Initial Value Problem (IVP) for Ordinary Differential Equations (ODEs) is a

system of differential equations defined by

y′(t) = f(t, y(t)), for t0 ≤ t ≤ tF ,

y(t0) = y0,

(1.4)

where y and f areM-vector functions.

• A retarded delay differential equation (RDDE) is a system of differential equations

defined by

y′(t) = f(t, y(t), y(t− σ1), . . . , y(t− σν)), for t0 ≤ t ≤ tF ,

y(t) = φ(t), for t ≤ t0,

(1.5)

where y, f , and φ are M-vector functions and σi = σi(t, y(t)) ≥ 0, i = 1, 2, . . . , ν

are scalar functions and in general time and state dependent, but for some problems

they are only time dependent or even constants.

• A neutral delay differential equation (NDDE) is a system of differential equations

defined by

y′(t) = f(t, y(t), y(t− σ1), . . . , y(t− σν),

y′(t− σν+1), . . . , y
′(t− σν+ω)), for t0 ≤ t ≤ tF ,

y(t) = φ(t), y′(t) = φ′(t), for t ≤ t0.

(1.6)

The term DDE refers to both an RDDE and an NDDE.

We call each of the functions σi(t, y(t)) a delay, each of the arguments t−σi(t, y(t))

a delay argument, a value of the solution delay term y(t−σi(t, y(t))) the (solution)
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delay value and a value of the derivative delay term y′(t−σi(t, y(t))) the derivative

delay value. If a delay is a constant, it is called a constant delay. If it is a function

of only time, then it is called a time dependent delay. If a delay is a function of

the solution y(t), it is called a state dependent delay. A delay argument that passes

the current time, i.e. t − σi(t, y(t)) > t, is called an advanced delay. (Note that

delays are always considered to take positive values and advanced delays are only

numerical artifacts.) We call φ(t) the history function.

• A parameterized IVP is defined by

y′(t;p) = f(t, y(t;p);p), for t0 ≤ t ≤ tF ,

y(t0) = y0(p),

(1.7)

where p is an L-vector of parameters.

1.4 Some Areas of Application of DDEs

Table 1.2 lists some areas where systems of DDEs are used for modeling some real life

phenomena. (Interested readers can find more details in reference [1] and references

therein.)

1.5 A Review of Previous Work

1.5.1 Existing DDE Simulators

Neves [47] proposed a general approach for the conversion of an ODE solver to a corre-

sponding DDE solver. Based on that, he implemented the code DMRODE [46]. Corwin

et al. [19] developed DKLAG6 following Neves’s approach. More recently, Thompson

and Shampine [59] released a newer version (of DKLAG6) called DDE SOLVER. Butcher

[12] modified the code STRIDE [14], originally designed for ODEs, to make it usable for
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Area Example

Ecology predator-prey

Epidemiology spread of infections [28]

Immunology immune response models [25]

HIV infection [44]

Physiology human respiration system [18], nervous system [24]

Neural Networks

Cell Kinetics [35]

Chemical Kinetics The Oregonator [23]

Physics Ring Cavity Lasers [61], two-body problem of electrodynamics

Table 1.2: Some areas of applications of DDEs.

DDEs. Bocharov et al. [9] developed the code DIFSUB-DDE based on Gear’s DIFSUB

[27]. RADAR5 code developed by Guglielmi and Hairer [30] is a modification of the code

RADAU5 [33]. Willé and Baker’s DELSOL [62], Paul’s ARCHI [50], Hayashi’s DDVERK

[34], and Zivari’s DDVERK90 [63] are other DDE solvers developed using modifications

of existing effective ODE solvers.

1.5.2 Current Sensitivity Analysis Techniques for DDEs

Baker and Rihan [6] have studied the sensitivity analysis problem for the subclass of

parameterized DDEs defined by,

y′(t;p) = f(t, y(t;p), y(t− σ(t;p));p), for t ≥ t0(p),

y(t;p) = φ(t;p), for t ≤ t0(p),

(1.8)

where p is an L-vector of parameters.

Following the method of internal differentiation (§3.3.2), by applying ∂
∂p

to (1.8) they
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obtain, after some manipulations, the governing equations for the sensitivity coefficients,

S ′(t) = J(t)S(t) + Jσ(t)S(t− σ) + B(t), (1.9)

and

R′(t) =A(t)S(t) + (IL ⊗ J(t))R(t) + Aσ(t)S(t− σ)+

(IL ⊗ Jσ(t))R(t− σ) + K(t),

(1.10)

where S(t), J(t), B(t), R(t), A(t), and K(t) are defined similar to ODEs (see §3.3.2

for details). The Jacobian matrices Jσ(t) and Aσ are correspondingly defined by taking

partial derivative of f w.r.t. the delayed term y(t− σ(t;p)).

To find the sensitivity coefficient matrices, S and R, they solve the delay differen-

tial systems (1.9) and (1.10) simultaneously with the system (1.8), with respectively,

associated initial functions

S(t,p) =
∂

∂p
φ(t,p), and R(t,p) =

∂2

∂p∂pT
φ(t,p). (1.11)

In the case that a constant delay, σ, is a component, pj, of p or the delay is state

dependent or the original problem is an NDDE, the resulting systems (1.9, 1.10) become

slightly different and in general could be a system of NDDEs. They do not provide

an automatic sensitivity computation code and suggest users first derive the sensitivity

equations and then solve them using an existing DDE simulator.

Baker and Paul [5] have studied the continuity properties of sensitivity coefficients

for DDEs. They also classify situations where discontinuities occur.

Rihan [54] used adjoint equations and direct methods to estimate the sensitivity

functions for a class of systems modeled by DDEs of the form (in his notation),

y′(t) = f(t, y(t), y(t− τ), u(t), u(t− σ),p), for 0 ≤ t ≤ T,

y(t) = Ψ(t,p), for t ∈ [−τ, 0),

y(0) = y0,

u(t) = Φ(t,p), for t ∈ [−σ, 0),

u(0) = u0,

(1.12)
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where u(t) is a control variable that minimizes an objective function, and τ and σ are pos-

itive constant lags. He considered the sensitivity coefficients for the constant parameters

as well as the functional derivative sensitivity coefficients for Ψ(t), Φ(t), and u(t).

1.5.3 Existing Parameter Estimation Methods for DDEs

Baker and Paul [5] have studied difficulties that arise when adapting the initial value

approach (§4.2.1) for the parameter estimation of ODEs, to the parameter estimation

problem for DDEs. The code ARCHI developed by Paul [52] can be used to estimate

parameters of DDEs. In addition to the usual parameters, ARCHI is able to consider

the constant delays and the starting point as unknown parameters. There is also the

capability of handling some types of constraints on unknown parameters.

Horbert et al. [38] have extended the idea of multiple shooting (§4.2.1) to estimate

parameters of DDEs. They have shown that their method can attain a high convergence

rate in the case of noisy data.

Murphy [45] introduced a full discretization approach where he uses linear splines

to describe solution and delay functions. The problem then is treated as a very large

minimization problem.

Although initial function (history) identification can be considered as a special case

of the general parameter estimation problem, more efficient methods can be found by

applying specialized algorithms to this case. Baker and Parmuzin in a series of reports

introduced some algorithms using this idea. In [2] they studied the problem for a system

of linear DDEs with time dependent coefficients, of the form

dy(t)

dt
− A(t)y(t)−B(t)y(t− σ) = f(t), for t ∈ [0, T ], (1.13)

subject to

y(t) = φ(t), for t ∈ [−σ, 0], (1.14)

where σ is a prescribed positive constant. The solution of (1.13)-(1.14) is dependent on
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the function φ in (1.14), we can therefore write

y(t) = y(φ; t), for t ∈ [−σ, T ]. (1.15)

They show that the optimal initial function φ⋆ satisfies a coupled set of delay equa-

tions, involving “adjoint equations”, and they give an iterative technique for obtaining

successive approximations φn to φ⋆.

In [3] they analyze a discrete analogue of the problem and establish a practical algo-

rithm. They show the robustness of their method through several examples.

In [4] they apply the same ideas to a non-linear problem of the form

dy(t)

dt
= f(t, y(t), y(t− σ)), for t ∈ [0, T ], (1.16)

subject to

y(t) = φ(t), for t ∈ [−σ, 0]. (1.17)

A “Pseudo-Newton” method is introduced to solve the optimization problem. A major

difficulty with this method is its slow convergence.

1.6 Contributions of the Thesis

The contributions of this thesis fall in four different areas: simulation of DDEs, sensitivity

analysis of DDEs, parameter estimation for DDEs, and developing effective software for

DDE modeling.

We propose a new unified and effective structure for a DDE solver which is indepen-

dent of the underlying IVP formula. We discuss how a system of DDEs can be considered

as a discontinuous system of IVPs. Using this point of view, we are able to identify more

precise techniques for dealing with issues arising in the simulation of DDEs, such as

locating discontinuities and correct handling of possible irregularities. We discuss both

explicit solvers and implicit solvers in detail. We also propose a general iterative method



Chapter 1. Introduction 12

for handling vanishing delays, while respecting the independence from the underlying

IVP method.

We derive an equation governing the dynamics of sensitivities for the most general

system of parametric NDDEs. Then, having a similar view as the simulation (DDEs as

discontinuous IVPs), we derive a formula for finding the size of jumps that appear at

discontinuity points when the sensitivity equations are integrated. The formula leads

to an algorithm which can compute sensitivities for various kind of parameters very

accurately and efficiently.

We develop an algorithm for reliable parameter identification of DDEs. We propose

a method for adding extra constraints to the optimization problem, changing a possibly

non-smooth optimization to a smooth problem. These constraints are effectively handled

using information from the simulator and the sensitivity analyzer.

Finally, we present a design for a DDE modeling package including basic required

functionalities. We exploit some programming techniques and develop a package that

follows basic software development standards, such as user friendliness, thread safety,

reusability and modularity.

1.7 An Outline of the Thesis

In Chapter 2, we propose a structure for a DDE solver which is independent of the un-

derlying IVP solver. We first review the techniques used in the numerical solution of

discontinuous IVPs and show that a general DDE can be treated as a special example of

a discontinuous IVP. We then develop the details of a DDE solver based on this view and

also the required interface with an IVP solver. In Chapter 3, we first, briefly, describe

the adjoint method for sensitivity analysis, and then we study the details of the forward

sensitivity analysis approach adapted for delay differential equations. The governing

equations for sensitivities are derived and combined with an adapted jump equation and



Chapter 1. Introduction 13

an algorithm for accurate calculation of sensitivities is proposed. In Chapter 4, after re-

viewing some existing techniques for parameter estimation of problems involving systems

of ODEs and DDEs, we discuss the necessity of considering possible discontinuities in the

objective function in the DDEs case. We then introduce a new technique for handling

the resulting discontinuous least-squares problem efficiently. In Chapter 5, we describe

our designs for components of a DDE modeling package (simulation, sensitivity analysis,

parameter estimation) and propose techniques to overcome some of the difficulties arising

in the design of such a package. In Chapter 6, we present numerical results. In Chapter

7, we summarize the thesis and discuss future work.



Chapter 2

Efficient Simulation

2.1 Introduction

Several DDE solvers have been implemented during the past twenty years, based on

the extension or modification of traditional ODE techniques such as those based on

Runge-Kutta or linear multi-step formulas ([9], [19], [30], [34], [52], [59], [62]). The

implementations of these solvers are usually based on adapting an existing initial value

problem (IVP) solver. These DDE solvers use the provision for dense output, which is

a key component of most modern IVP solvers, as the base and add some strategies for

handling discontinuities and vanishing delays. During this process, special properties of

the underlying IVP solvers are usually exploited to make the overall technique efficient.

There are some drawbacks associated with this approach for developing DDE solvers.

First, it usually takes a long time for an IVP solver to be recognized and subsequently

identified as a candidate for modification for use as a DDE solver. Therefore, it is difficult

to have a timely investigation of the effectiveness of proposed new underlying formulas

(used in IVP solvers), for DDEs. Second, when some or all added components of a

DDE solver, such as step size selection strategy and discontinuity handling, rely on the

underlying IVP formula, they need to be redeveloped and recoded for every new DDE

14
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solver. This results in a lot of redundancy during the analysis and the coding, since many

concepts involved in developing these components are common.

In this chapter we propose a structure for a DDE solver which is independent of

the underlying IVP solver, with the only interactions between the two being through a

common interface. We consider a general step-by-step IVP solver that finds continuous

numerical approximations to problems of the general form (1.4). The resulting DDE

solver that we develop can be applied to approximate the solution of a system of RDDEs

(1.5), or a system of NDDEs (1.6).

There are two major complications that can cause numerical difficulties in conven-

tional approaches for solving DDEs: First, discontinuities may occur in various derivatives

of the solution. Second, a delay may vanish, i.e. σ → 0. When a delay vanishes, we call

it a vanishing delay.

The first difficulty is due to the presence of the delay terms. In general at the initial

point, the right-hand derivative y′(t0)
+, evaluated using f , does not equal the left-hand

derivative φ′(t0)
−. Furthermore, φ may have discontinuities. A discontinuity can there-

fore arise and propagate from both the initial time and the history function. In general,

the order of a derivative discontinuity (when it is propagated) increases with t for RDDEs,

but this is not the case for NDDEs.

The second complication is important because it may cause a DDE solver to fail by

forcing it to choose a sequence of very small steps.

In the remainder of this chapter we first review the techniques used in the numerical

solution of discontinuous IVPs and show that a general DDE can be treated as a special

example of a discontinuous IVP. In Section 2.5 we develop the details of a DDE solver

based on this view and also the required interface with an IVP solver.
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2.2 Discontinuous IVPs and Hybrid Systems

Hybrid systems are mathematical models that exhibit both discrete and continuous be-

havior over the time interval of interest. The continuous behavior of the model is usually

described by one or more ODEs, DDEs, or differential-algebraic equations (DAEs). The

discrete behavior, which occurs at particular points in time (events), includes phenomena

such as nonsmooth forcing, switching of the vector field and jumps in the state. This is a

new perspective, that can be compared with the traditional approach of formulating the

model in terms of discontinuous vector fields. (For more information and discussion of

hybrid systems arising in mathematical modeling see [8] or [29] and references therein.)

Consider a simple case of a hybrid system described using two sets of differential

equations and a switching function,

y′(t) =















f1(t, y(t)), for g(t, y(t)) < 0,

f2(t, y(t)), for g(t, y(t)) ≥ 0.

(2.1)

To simulate the system (2.1), one has to use an integration scheme along with a transition

handler. The integration is usually done by a Runge-Kutta method or a linear multistep

method. The transition handler is responsible for detecting events and locating switching

points and changing the integration accordingly (transition). An important aspect of the

transition handler is the correct detection of irregularities that may happen at a switching

point, such as non-uniqueness or termination of the solution.

Suppose that the integration of the hybrid system (2.1) has reached tn where we have

yn ≈ y(tn). The local solution zn(t) over [tn, tn+1] is defined by

z′n(t) =















f1(t, zn(t)), for g(t, zn(t)) < 0,

f2(t, zn(t)), for g(t, zn(t)) ≥ 0,

zn(tn) = yn.

(2.2)
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2.3 Techniques for the Efficient Simulation of Dis-

continuous IVPs

Suppose that a solver is trying to compute a numerical approximation to the solution

of (2.1) by computing a continuous approximation on each step. All standard solvers

assume that the solution is continuous enough, over the entire step, for the underlying

formulas to be applied with confidence. An accepted strategy is to detect and include

the discontinuity points in the set of mesh points. For the successful application of this

strategy, having an accurate discontinuity or switching point location is necessary.

For a state-dependent switching function, the location of discontinuities cannot be

computed à priori because their unknown locations depend implicitly on the unknown

solution.

When the solver wants to take a step from tn to tn+1, and a switching/discontinuity is

suspected to occur in [tn, tn+1], approximations based on sufficient differentiability of the

solution become unreliable. Therefore, using the local continuous approximation to the

solution in [tn, tn+1] to locate the discontinuity may lead to an inaccurate approximation

(see Figure 2.1).

A common treatment of this difficulty uses an iterative method which in turn com-

putes the approximate solution y, and the zero crossing function of an associated event

function g. Assuming that the iteration is convergent, the solution and the location of

the discontinuity become more accurate on each iteration. The drawback of this method

is the slow rate of convergence, which is linear in the best implementations.

Here we give details of a more efficient treatment introduced by Ellison [20]. The idea

is to somehow reduce the effect of locating the zero crossing of g on the computation of

y. This can be done by defining the functions z[c] and g[c] as follows. z[c] is defined as the

solution of (2.2) when we eliminate the effect of the switching point λ, by using a smooth

extension of the local solution zn(t) after λ (see Figure 2.1), that is, z[c] is the solution of
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the local IVP,

z′[c](t) = fi(t, z[c](t)), for tn ≤ t ≤ tn+1,

z[c](tn) = yn,

(2.3)

where the index i is determined using the state of the system (controlled by g) at tn and

stays the same (either i = 1 or i = 2) for tn ≤ t ≤ tn+1.

Then, g[c] is defined as the switching (zero crossing) function computed using z[c],

g[c](t) = g(t, z[c](t)), (2.4)

which is a function of only t, because z[c](t) is defined as a usual IVP without any

switching functions over [tn, tn+1].

The governing systems of differential equations for zn(t) and z[c](t) are the same before

the switching point. Hence, we have,

zn(t) = z[c](t), for tn ≤ t < λ. (2.5)

Then, it is not hard to see that,

g[c](t) = g(t, zn(t)), for tn ≤ t < λ. (2.6)

Considering the limit case,

lim
tրλ

g[c](t) = lim
tրλ

g(t, zn(t)), (2.7)

or (using the continuity of g[c]),

g[c](λ) = g(λ, lim
tրλ

zn(t)), (2.8)

which gives us,

g[c](λ) = 0, (2.9)

because λ is a switching point for zn(t).
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Equation (2.9) defines another function that crosses zero at λ. However, there is a big

difference which makes Equation (2.9) very attractive. The difference is that g[c] is time

dependent and also differentiable. This eliminates the possibility of computing a false

solution (see Figure 2.1), and gives us a direct way of computing λ, by first computing

z[c] and then applying a root finding algorithm to the associated g[c].

The differentiability of g[c], which results from the differentiability of z[c], enables us

to apply efficient root finding methods such as Newton’s method or its variations.

Standard numerical methods for IVPs compute an accurate approximation only for

z[c](tn+1). Therefore, an IVP method which provides an accurate continuous approxima-

tion is required for our root finding process. Those methods have been developed and

are widely available. However, a numerical method used in practice only provides z̄[c](t),

an accurate approximation to z[c](t) over [tn, tn+1]. As a result, the function investigated

by the root finder is actually

ḡ[c](t) = g(t, z̄[c](t)). (2.10)

If g(t, y) is Lipschitz continuous and z̄[c](t) ≅ z[c](t), then any discrepancy between the

computed roots of ḡ[c](t) and g[c](t) will be within the accepted numerical error.

A similar idea has been used by Park and Barton [48] for handling transitions in

hybrid systems of differential algebraic equations.

2.4 DDEs as Discontinuous IVPs

Consider a simple state-dependent retarded delay differential equation (RDDE) defined

by

y′(t) = f(t, y(t), y(α(t, y(t)))), for t ≥ t0,

y(t0) = y0,

y(t) = φ(t), for t < t0,

(2.11)
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tn tn+1λ

 

 

true local solution
false computed solution
smooth extension of the solution
discontinuity(switching) point

Figure 2.1: A typical situation for a state-dependent switching function. The true lo-

cal solution refers to the exact solution of Equation (2.2); the false computed solution

refers to the continuous approximate solution of Equation (2.2) (produced by a standard

IVP method); and smooth extension refers to z[c](t) (Equation (2.3)). Different ap-

proximations to the switching function g are computed using the corresponding solution

approximations and are identified accordingly.
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where α(t, y(t)) = t− σ(t, y(t)), and f(t, y, v) is sufficiently differentiable with respect to

t, y and v.

With this assumption, the only discontinuities in the solution or its low order deriva-

tives will be associated with the propagation of discontinuities introduced by the initial

function or at the initial point.

Now assume that jumps in one of the derivatives of y(t) with respect to t occur at

the points

· · · < λ−2 < λ−1 < λ0 = t0 < λ1 < λ2 < · · · (2.12)

where λj, j < 0, are discontinuities in the initial function. Then, artificial event functions

gi(t, y(t)) = α(t, y(t))− λi, i = . . . ,−2,−1, 0, 1, 2, . . . (2.13)

can be defined accordingly and used to write the equation characterizing the propagation

of a discontinuity to λr, r ≥ 1,

λr = min{λ > λr−1 : λ is a root of odd multiplicity of gi(t, y(t)), i ≤ r − 1}. (2.14)

In other words, λr, r ≥ 1, is the leftmost discontinuity of all propagated discontinuities

arising from {. . . , λ−1, λ0, λ1, . . . , λr−1} and lying in (λr−1, +∞). The roots of gi(t, y(t))

with even multiplicity do not cause discontinuities and they do not need to be identified,

since the delay argument, α(t, y(t)), crosses a previous discontinuity point only for roots

which have odd multiplicity.

Note that for the special case involving a single increasing delay argument and a

smooth history function, φ(t); each discontinuity is caused by propagation from the most

recent previous discontinuity point, namely,

α(λr, y(λr)) = λr−1, r ≥ 1. (2.15)

Using the explicit identification of all sources of non-smoothness, it is not hard to see

that the solution of the system (2.11) also satisfies the following system of discontinuous
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IVPs,

y′(t) = fr(t, y(t)) = f(t, y(t), y[r](α(t, y(t)))),

for λr ≤ α(t, y(t)) < λr+1,

y(t0) = y0.

(2.16)

where

y[r](α) =















y(α), for λr ≤ α < λr+1,

smooth extension from [λr, λr+1), for α < λr or α ≥ λr+1,

(2.17)

The value of y[r](α) outside [λr, λr+1) is not required to be defined, as the right hand

side of (2.16) switches if α goes outside this interval. Therefore, the smooth extension in

(2.17) is only defined and used to facilitate the root-finding process during the numerical

computations.

Now, using (2.13), Equation (2.16) can be rewritten in the standard form for discon-

tinuous IVPs as

y′(t) = fr(t, y(t)),

for gr(t, y(t)) ≥ 0 and gr+1(t, y(t)) < 0,

y(t0) = y0.

(2.18)

While (2.18) defines the switching functions, due to the (possible) presence of a C0

discontinuity (i.e. discontinuity in the value), the transition still needs to be clarified when

there are different choices for the value at a discontinuity point. In a hybrid system, those

discontinuities can come from jumps in the state which are triggered by specially defined

events. Traditionally, due to the correspondence of systems with real phenomena, all C0

discontinuities are considered as transitions in state or control variables. Hence, the exact

value of state or control variables at the point of discontinuity is not important, and can

be considered to be evaluated using left or right segments. In this view, a discontinuity

point is mainly considered as a border between two continuous segments. Therefore, if a
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value of a variable needs to be evaluated at a discontinuity point λ, the segment used for

the evaluation is picked with respect to the underlying transition. This means that if λ is

approached from left(right) and we need the value before the (possible) transition, then

the left(right) segment is used, and if the value after the (possible) transition is needed

then the right(left) segment is used.

2.5 Interfacing with IVP Integrators

Assume that an approximate solution has been computed using a step-by-step IVP inte-

grator over [t0, tn] and now a step is to be taken from tn to tn+1. If θ[r](α) is an associated

accurate continuous approximation to y[r](α) (usually a piecewise polynomial), (2.18) can

then be numerically integrated using the associated perturbed IVP,

f(t, y(t), y[r](α(t, y(t)))) ≅ f(t, y(t), θ[r](α(t, y(t)))). (2.19)

2.5.1 Explicit IVP Integrators and Small/Vanishing Delays

Preserving explicit structure of the underlying IVP formula requires that the delay value,

y(α), be independent of the values introduced in the current step [tn, tn+1]. The associated

explicitness condition

α(t, y(t)) ≤ tn, ∀ t ∈ [tn, tn+1],

can be monitored by introducing the local switching function,

gn
e (t, y(t)) = α(t, y(t))− tn,

(where ‘e’ denotes “explicit”) and can be added to the system, (2.18),

y′(t) = fr(t, y(t)), for

gr(t, y(t)) ≥ 0, gr+1(t, y(t)) < 0,

gn
e (t, y(t)) ≤ 0,

y(tn) = yn.

(2.20)
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This formulation when combined with the approach for handling switching functions

described in the previous section would impose the restriction that the step size tn+1− tn

be smaller than the minimum delay. In other words, if gn
e is triggered, say at te, then the

current step is partitioned at te, and the next step starts at tn+1 = te.

To avoid taking a series of extremely small steps in the case of a vanishing delay, we

add the constraint,

α(t, y(t)) < t− ǫ,

where ǫ is a lower bound for small delays. The associated transition function is then,

gv(t, y(t)) = α(t, y(t))− t + ǫ, (2.21)

and can be used to rewrite (2.20) as,

y′(t) = fr(t, y(t)), for

gr(t, y(t)) ≥ 0, gr+1(t, y(t)) < 0,

gn
e (t, y(t)) ≤ 0,

gv(t, y(t)) < 0,

y(tn) = yn.

(2.22)

If gv(t, y(t)) is triggered, continuing with the explicit integration is not numerically feasi-

ble as it will result in an excessive number of small steps. There are two possible strategies

for resolving this difficulty: taking a few special steps with the explicit integrator to pass

the vanishing neighborhood or temporarily switching to an implicit integrator. Here we

describe a possible approach for taking the special steps. After gv(t, y(t)) is triggered,

replace (2.20) with,

y′(t) = fr(t, y(t)) = f(t, y(t), θ[r](α(t, y(t)))), for

gr(t, y(t)) ≥ 0, gr+1(t, y(t)) < 0,

gv(t, y(t)) > 0,

y(tn) = yn,

(2.23)
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where the component of θ[r] in [tn, tn+1], which is needed during the current step, has

not been computed yet. Considering the fact that this component can be approximated

using the computed y, we observe a potential loop. A common approach to terminate

this loop is to treat it as a system of nonlinear equations. For the numerical solution of

the resulting system of nonlinear equations, fixed point iterations or a modification of

Newton-Raphson can be used. Here we give the details of fixed point iterations. (Note

that this iteration is similar to the Picard iteration or the waveform relaxation iteration

arising in the analysis of IVPs.)

1. Choose an initial guess for the interpolant Pn in [tn, tn+1].

2. Compute the solution using the interpolant Pn as a part of the history.

3. Update the interpolant Pn using the last computed solution.

4. If the sequence of updated interpolants has converged, stop.

5. Continue with (2).

A good initial guess for the interpolant is usually obtained by extrapolation of the

interpolant from the previous step. If there is not a previous step associated with the

current step, or the previous step is not connected to the current step with sufficient

continuity, then using extrapolation may not be possible or may give a poor result. In

such cases an alternative is to treat the equations for the first iteration as specified below,

y′(t) = f̃(t, y(t)) = f(t, y(t), (1− ξ)y(tn) + ξy(t)), for

gr(t, y(t)) ≥ 0, gr+1(t, y(t)) < 0,

gv(t, y(t)) > 0,

y(tn) = yn,

(2.24)

where

ξ =
α(t, y(t))− tn

t− tn
,
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and then, after we compute y, use it to define the initial guess for Pn in [tn, tn+1] and

switch back to our original equations (2.23) for further iterations.

The first order approximation (1− ξ)y(tn) + ξy(t), usually leads to a more accurate

starting approximation than the case when a constant approximation like y(tn) is used.

This formula can be justified using backward error analysis in form of the associated

defect (assuming the Lipschitz continuity of f) or, in other words, by observing that the

residual after the first iteration will be at worse O(h2
n).

2.5.2 Implicit IVP Integrators

Since implicit integrators are usually used when the system of ODEs is stiff, taking large

steps with these integrators is not unusual. Therefore, we may encounter the case with an

unknown interpolant for the current step arises on a large fraction of the attempted steps.

Furthermore, in this situation a vanishing delay need not be treated as a special case.

We can consider the interpolant on the current step to be represented by the implicitly

defined stages introduced on this step, and try to find it in a similar way that we solve for

the discrete solution yn itself. Here we give the details for Runge-Kutta (RK) methods

and linear multistep methods (LMMs). Since RK methods and LMMs are special cases

of general linear methods (GLMs), we use the standard formulation [13] for GLMs. The

details for RK methods or LMMs can be derived by standard translations from GLMs

(see [13] for details).

The associated system of ODEs for [tn, tn+1] is

y′(t) = fr(t, y(t)) = f(t, y(t), y[r](α(t, y(t)))), for

gr(t, y(t)) ≥ 0, gr+1(t, y(t)) < 0,

y(tn) = yn.

(2.25)

After defining the equations for the unknown stage values Yj, j = 1, . . . , s, a modification

of Newton-Raphson is usually used to solve for these unknown vectors. This nonlinear
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iteration will involve the computations of

Fj = fr(tj, Yj), j = 1, 2, . . . , s (2.26)

and

∂Fj

∂Yk

, j = 1, 2, . . . , s

k = 1, 2, . . . , s

(2.27)

in an iterative scheme, attempting to converge to the solution of the nonlinear equations

defining the unknown stage values. In the case of an unknown interpolant (α(t, y(t)) > tn

for some t in [tn, tn+1]), the theory of ODEs is not applicable directly. In the following we

discuss a way to treat this case as a system of ODEs, even when an unknown interpolant

is introduced.

Simultaneous Iterative Improvement

Assume that Pn is the local polynomial interpolant (associated with the current step

from tn to tn+1), which in the most general case has structural dependencies on Yj , j =

1, 2, . . . , s and y
[n]
i , i = 1, 2, . . . , q (input approximations), then

θ[r](α) =















independent of Y , for α < tn,

Pn[Y, y[n]](α), for α ≥ tn,

(2.28)

where Y = {Y1, Y2, Y3, . . . , Ys} and y[n] = {y[n]
1 , y

[n]
2 , . . . , y

[n]
q } are used for convenience. In

the following (∂A
∂q

) is used to indicate partial differentiation of a parametric multivariate

function A w.r.t. a parameter or variable q, and (dA
dq

) is used to indicate the total

derivative of such a function.

Computing Fj : In either case of (2.28) the continuous approximation θ[r](α) is com-

putable at all required points, provided that all components of Y are available.

In our iterative improvement scheme, these values are determined from the latest

iteration or are as the initial guess for the first iteration.
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Computing
∂Fj

∂Yk
: Differentiating (2.26) and using (2.16) and (2.19),

∂Fj

∂Yk

=
∂f

∂y
(tj, Yj, θ[r](α(tj, Yj)))× δjk+

∂f

∂v
(tj, Yj, θ[r](α(tj, Yj)))×

dθ[r](α(tj, Yj))

dYk

,

(2.29)

where δjk denotes the Kronecker symbol.

Using (2.28),

dθ[r](α(tj, Yj))

dYk

=















θ′[r](α(tj, Yj))× ∂α
∂y

(tj, Yj)× δjk, for α(tj, Yj) < tn,

dPn[Y,y[n]](α(tj ,Yj))

dYk
, for α(tj, Yj) ≥ tn,

(2.30)

where θ′[r](α) =
dθ[r](t)

dt
(α), and

dPn[Y, y[n]](α(tj, Yj))

dYk

= P ′
n[Y, y[n]](α(tj, Yj))×

∂α

∂y
(tj, Yj)× δjk+

∂Pn

∂Yk

[Y, y[n]](α(tj, Yj))

= θ′[r](α(tj, Yj))×
∂α

∂y
(tj, Yj)× δjk+

∂Pn

∂Yk

[Y, y[n]](α(tj, Yj)),

(2.31)

where P ′
n[Y, y[n]](α) = dPn[Y,y[n]](t)

dt
(α).

Combining (2.29), (2.30) and (2.31),

∂Fj

∂Yk

=

[

∂f

∂y
(tj, Yj, θ[r](α[j]))

+
∂f

∂v
(tj, Yj, θ[r](α[j]))× θ′[r](α[j])× ∂α

∂y
(tj, Yj)

]

× δjk+















0, for α[j] < tn,

∂f

∂v
(tj, Yj, θ[r](α[j]))× ∂Pn

∂Yk
[Y, y[n]](α[j]), for α[j] ≥ tn,

(2.32)

where α[j] = α(tj, Yj).

The first component of
∂Fj

∂Yk
in (2.32) has the same structure as that arising in the

corresponding IVP problem, due to the presence of δjk. For delays smaller than
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the step size, adding the second component of (2.32) results in a different structure

for the Jacobian. For an efficient implementation, usually an approximation of this

Jacobian is used. Therefore, one might ignore the second component completely,

or replace it with something with the same structure (Hδjk, for any, but usually a

heuristically chosen, matrix H).

At present, we do not know of any mathematical or numerical evidence that shows

the safety of this replacement (i.e., not causing divergence of iterations during the

solution process). The second term represents the numerical complexity inher-

ited from the presence of delays in the model. We are currently seeking possible

problems (i.e., stiff DDEs) that necessarily need this second component for the con-

vergence of the iterations. We are also looking for techniques to incorporate this

term efficiently in the computation process, while respecting a generic interface (to

be designed) between the DDE solver and IVP solvers.

2.5.3 Neutral Problems

For a system of NDDEs (1.6), including a term y′(t − σ) or y′(α) as an argument of f ,

will lead to modifications to some of our expressions. Here, we discuss the important

changes.

In the vanishing delay case for explicit formulas, if the vanishing delay appears in

a derivative term, the same process can be applied, with P ′
n playing a similar role for

y′(α) as Pn did for y(α). However, if we have to use Equation (2.24), we can use the

approximation

y′(α(t, y(t))) ≈ y′(tn).

In this case, y′(tn) should be provided as an external value. We do not consider the

case of an NDDE with accumulated discontinuities at a vanishing delay, because such

problems can be mathematically ill-posed.
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For delays appearing in derivatives, the second term in Equation (2.29) should be

changed to

∂f

∂w
(tj, Yj, θ

′
[r](α(tj, Yj)))×

dθ′[r](α(tj, Yj))

dYk

,

where f = f(t, y, w), and also all instances of θ[r] and Pn should be replaced with θ′[r] and

P ′
n, respectively, in the subsequent Equations (2.30, 2.31, 2.32).

2.5.4 Extension to Multiple Delays

For a general system of DDEs with multiple delays (1.5), one must define correspond-

ing switching functions for each delay, separately. The implementation of an effective

DDE method becomes much more complex, since we have to monitor multiple switching

functions and find the first one that is triggered on each step.

The equations for the implicit solver can then be derived by taking the sum over all

delays α of the term,

∂f

∂vα

(tj, Yj, θ[r](α(tj, Yj)))×
dθ[r](α(tj, Yj))

dYk

,

appearing in (2.29).



Chapter 3

Accurate Sensitivity Analysis for

DDEs

3.1 Introduction

Sensitivity analysis is concerned with the study of the relationship between infinitesimal

changes in model parameters and changes in model outputs. Sensitivity information can

be used to estimate which parameters are most influential in affecting the behavior of the

simulation. Such information is crucial for experimental design, data assimilation, reduc-

tion of complex nonlinear models, and evaluating optimization gradients and Jacobians

in the setting of dynamic optimization and parameter estimation.

Sensitivity analysis also plays a very important role in dynamical systems. For exam-

ple, periodic orbits, the Lyapunov exponents, chaos indicators, and bifurcation analysis

are fundamental components of a complete study of a dynamical system and their inves-

tigations require computation of the sensitivities with respect to the initial conditions of

the problem (see [7] and references therein for more details).

There are two main approaches to sensitivity analysis: Forward sensitivity analysis

and adjoint sensitivity method. The adjoint sensitivity method is advantageous where

31
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the sensitivities of a few quantities with respect to a large number of parameters are

needed. In the following we briefly describe the situation where the adjoint method is

used, and then we study the details of the forward approach adapted for delay differential

equations.

3.2 Adjoint Sensitivity Analysis

Suppose that y(t) is a solution of a differential equation and we wish to evaluate the

gradient ∂H
∂pi

of an objective function

H(p) =

∫ tf

t0

h(t, y,p)dt,

or alternatively the gradient ∂h
∂pi

of a function

h(t, y,p),

at time tf . If dim(h) < dim(y) and we need ∂
∂p

for many parameters, then the adjoint

approach that does not explicitly compute the sensitivities of state variable y with respect

to parameters is usually more efficient.

Adjoint sensitivity analysis involves integration of the original differential equations

forward in time followed by the integration of the so-called adjoint equations backwards

in time (see [16] for details).
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3.3 A Review of Sensitivity Computation Techniques

for ODEs

3.3.1 Finite Difference Approach

The simplest way of calculating sensitivity coefficients is to use the finite difference ap-

proximation,

{ ∂

∂pi

}y(t;p) ≈ y(t;p + ei∆pi)− y(t;p)

∆pi

. (3.1)

This technique is very easy to implement because it requires no extra code beyond the

original model solver, although it does require more applications of the underlying solver

(one for each partial derivative approximation and one for y(t;p)), with the same value

of a chosen tolerance Tol. However, when computations are done in finite precision, the

presence of rounding errors prevents the use of a very small perturbation, ∆pi. Therefore,

the approximation is only accurate to O(
√

Tol) with the best choice for ∆pi [32].

Higher-order finite difference approximations, such as central difference formula, can

also be used, but the problem of selecting a suitable perturbation does not have an easily

implementable answer. Moreover, the obtainable accuracy in computing these sensitivity

values will be much less than the tolerance of the numerical solution.

3.3.2 Internal Differentiation Approach

In this approach, the governing equations for the first order sensitivity coefficients are

derived by differentiation of (1.7) with respect to the model parameter pi and applying

the chain rule and Clairaut’s theorem, yielding

s′i =
∂f

∂y
si +

∂f

∂pi

, si(t0) =
∂y0(p)

∂pi

, (i = 1, . . .L), (3.2)

or in the matrix form

S ′(t) = J(t)S(t) + B(t), (3.3)
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where S(t) is the M×L sensitivity coefficient matrix (Sij ≡ ∂yi

∂pj
), J(t) is the M×M

Jacobian matrix (Jij ≡ ∂fi

∂yj
), B(t) is anM×L matrix of partial derivatives (Bij ≡ ∂fi

∂pj
).

The equations for the second order sensitivity coefficients are derived by further dif-

ferentiation, applying ∂
∂p

to (3.3), the result in terms of Kronecker products is

R′(t) = A(t)S(t) + (IL ⊗ J(t))R(t) + K(t), (3.4)

where R(t) is an (LM)×L sensitivity coefficient matrix of second order (Rij ≡ ∂si

∂pj
), A(t)

is an (LM)×M partial derivatives of the Jacobian matrix (Aij ≡ ∂Ji(t)
∂pj

, where, Ji = ∂fk

∂yi
)

and K(t) is an (LM)× L partial derivative matrix (Kij ≡ ∂bi(t)
∂pj

, where, bi = ∂fk

∂pi
).

To find the sensitivity coefficient matrices S and R, we need to solve the IVP (1.7)

simultaneously with the system (3.3 and/or 3.4) using an appropriate differential equa-

tion solver. Leis and Kramer [42] have implemented ODESSA package based on the

Fortran 77 initial value solver LSODE [53]. Serban and Hindmarsh [55] have extended

the package CVODE [17], written in C, to develop the package CVODES. Both ODESSA

and CVODES have an option for providing subroutines for the computation of partial

derivatives (∂f

∂y
and ∂f

∂pi
), otherwise these values are computed using finite difference-based

approximations. Lee and Hovald [41] have extended the package PVODE [15], which is a

parallel version of CVODE, to add the capability of sensitivity analysis. The new pack-

age SensPVODE uses the techniques of automatic differentiation (AD) to produce the

codes needed for the computation of partial derivatives. The above mentioned methods

compute only first order sensitivities. Barrio [7], using extended rules of AD, presented

a new approach based on a Taylor method for computing the sensitivities of any order.
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3.4 Sensitivity Computation for General DDEs

3.4.1 General Parameterized DDEs

Consider the general case of a system of state-dependent neutral delay differential equa-

tions (NDDEs),

y′(t;p) = f(t, y(t;p), y(α(t, y;p);p)

, y′(α(t, y;p);p);p) for t ≥ t0(p),

y(t;p) = φ(t;p), for t < t0(p),

y′(t;p) = φ′(t;p), for t < t0(p),

y(t0) = y0(p),

(3.5)

where α(t, y;p) is a {ν+ω}-vector of delay arguments, y and f areM-vector of functions

and p is an L-vector of parameters.

3.4.2 First Order Sensitivities

The governing equations for the first order sensitivity coefficients are derived by differ-

entiation of (3.5) with respect to the model parameters and applying the chain rule and

Clairaut’s theorem, yielding (in the matrix form)

S ′(t) =
∂f

∂y
S(t) +

ν
∑

k=1

[

∂f

∂y(αk)

(

y′(αk)

(

∂αk

∂y
S(t) +

∂αk

∂p

)

+ S(αk)

)]

+
ν+ω
∑

k=ν+1

[

∂f

∂y′(αk)

(

y′′(αk)

(

∂αk

∂y
S(t) +

∂αk

∂p

)

+ S ′(αk)

)]

+
∂f

∂p
,

(3.6)

where S(t) is the M× L sensitivity coefficient matrix (Sij ≡ ∂yi

∂pj
), ∂f

∂y
is the M×M

Jacobian matrix ([∂f

∂y
]ij ≡ ∂fi

∂yj
), ∂f

∂y(αk)
is theM×M delayed Jacobian matrix ([ ∂f

∂y(αk)
]ij ≡

∂fi

∂yj(αk)
), ∂αk

∂y
is a 1 ×M row-vector of partial derivatives ([∂αk

∂y
]1j ≡ ∂αk

∂yj
), ∂αk

∂p
is a 1 × L

row-vector of partial derivatives ([∂αk

∂p
]1j ≡ ∂αk

∂pj
) and ∂f

∂p
is an M× L matrix of partial

derivatives ([ ∂f

∂p
]ij ≡ ∂fi

∂pj
).
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To find the sensitivity coefficient matrix S we need to solve the delay differential

system (3.6) simultaneously with the system (3.5), with associated initial functions

S(t) =
∂φ(t;p)

∂p
, for t < t0(p),

S ′(t) =
∂φ′(t;p)

∂p
, for t < t0(p),

S(t0) =
∂y0(p)

∂p
.

3.4.3 Second Order Sensitivities

The equations for the second order sensitivity coefficients can be derived by further

differentiation, applying ∂
∂p

to (3.6). The result is a system of linear DDEs very similar

in structure to (3.6), but much more complicated as it contains double sums and many

mixed partial derivatives and is usually described in terms of Kronecker products.

3.4.4 Handling C0 Discontinuities in Sensitivities

The discontinuities that arise in simulation of DDEs can also propagate to the sensitivity

coefficients and a similar treatment is required to perform reliable computations. How-

ever, when we integrate a usual system of DDEs (3.5), no discontinuity of zero order

(i.e. a discontinuity in the solution values) can appear after the starting point. But for

sensitivities we may have C0 discontinuities, because the differential equations (3.6) are

not valid at some points. These are the points where Clairaut’s theorem is not applicable.

At these points we may have C0 jumps. It is the appearance of C0 discontinuities that

makes the task of computing sensitivities challenging. In this section we will describe

the source of C0 discontinuities and compute the size of the jumps at these points of

discontinuity. The integration then can be restarted with new computed starting values

for the sensitivity equations.



Chapter 3. Accurate Sensitivity Analysis for DDEs 37

Barton’s Formula for Hybrid ODE Systems

Tolsma and Barton [60] have considered extensions to the classical sensitivity theory

that define the parametric sensitivity of discontinuous systems. Consider the general

case where a transition is triggered by a zero crossing of an event function g(t, y, y′;p)

at the point λ, and let y(λ−), y(λ+) be the values of the state variables before and after

the event. If the state transition is continuous

y(λ+) = y(λ−), (3.7)

then differentiating both sides of this equation with respect to the parameter pl and some

rearrangement yields,

∂y

∂pl

(λ+) =
∂y

∂pl

(λ−) +
(

y′(λ−)− y′(λ+)
) dλ

dpl

, (3.8)

where dλ
dpl

represents the sensitivity of the event time with respect to the parameter pl.

To compute the value of dλ
dpl

, we can differentiate g(t, y, y′;p) = 0 w.r.t. pl and rearrange

terms to obtain,

∂g

∂y′

(

∂

∂t

(

∂y

∂pl

)

+ y′′ dλ

dpl

)

+
∂g

∂y

(

∂y

∂pl

+ y′ dλ

dpl

)

+
∂g

∂pl

+
∂g

∂t

dλ

dpl

= 0, (3.9)

which is a linear equation w.r.t. dλ
dpl

(Tolsma and Barton [60]).

Adapting for jumps in DDEs

In Section 2.4 we showed that DDEs can be considered as a special subclass of dis-

continuous IVPs. Here we use those results to obtain equations for the jumps in the

sensitivities.

Consider the case where a state transition arises in DDEs triggered by the propagation

of a discontinuity of the solution. Since discontinuity points are determined by the value

of parameters, we can define,

Λ(p) ≡ {· · · < λ−2(p) < λ−1(p) < λ0(p) = t0(p) < λ1(p) < λ2(p) < · · · }, (3.10)
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which is the parameterized variant of (2.12). Considering the parameterized variant of

event functions (Equation (2.13)), and letting i denote the index of the chosen minimum

of Equation (2.14), gi(t, y;p) triggers a transition of the state variables at λr. Then,

Equation (3.9) (using the fact that ∂gi

∂y′
= 0), reduces to

∂gi

∂y

∂y

∂pl

+
∂gi

∂pl

+

[

∂gi

∂y
y′ +

∂gi

∂t

]

dλr(p)

dpl

= 0. (3.11)

For the partial derivatives we have the relations

∂gi

∂y
=

∂α

∂y
, (3.12)

∂gi

∂pl

=
∂α

∂pl

− dλi(p)

dpl

, (3.13)

∂gi

∂t
=

∂α

∂t
. (3.14)

Substituting in (3.11), we obtain

∂α

∂y

∂y

∂pl

+
∂α

∂pl

− ∂λi(p)

∂pl

+

[

∂α

∂y
y′ +

∂α

∂t

]

dλr(p)

dpl

= 0. (3.15)

Assuming that ∂α
∂y

y′ + ∂α
∂t
6= 0, we are able to solve this linear equation to get

dλr(p)

dpl

= −
∂α
∂y

∂y

∂pl
+ ∂α

∂pl
− dλi(p)

dpl

∂α
∂y

y′ + ∂α
∂t

, (3.16)

and for the first discontinuity point (λ0(p) = t0(p)) we have

dλ0(p)

dpl

=
∂t0(p)

∂pl

, (3.17)

and for the discontinuities in the history,

dλr(p)

dpl

=
∂λr(p)

∂pl

, r = . . . ,−2,−1, (3.18)

are independently computable, since λr(p) is given as an input function for r = . . . ,−2,−1.

Equation (3.8) for DDEs becomes

∂y

∂pl

(λ+
r ) =

∂y

∂pl

(λ−
r ) +

(

y′(λ−
r )− y′(λ+

r )
) dλr(p)

dpl

, (3.19)

and the steps for integrating the first order sensitivity equations can be described as the

following:
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Algorithm 1: Computing First Order Sensitivities for DDEs

input : a general DDE (3.5); an approach for deriving and integrating the

sensitivity equations with discontinuity tracking capability.

output: first order sensitivity coefficients.

Initialize (λ0 = t0(p)).1.1

r ← 1.1.2

Integrate the equations up to a C1 discontinuity point (λr).1.3

Update the state variables (sensitivities) using1.4

∂y

∂pl

(λ+
r ) =

∂y

∂pl

(λ−
r ) +

(

y′(λ−
r )− y′(λ+

r )
) dλr(p)

dpl

, (l = 1, . . .L).

r ← r + 1 and restart (step 1.3).1.5

Computing y′′(αk)

The term y′′(αk) inside the Formula (3.6), needed for state-dependent and parameter-

dependent NDDEs, can be computed using a similar method, namely differentiating (3.5)

with respect to t and some rearrangements, yielding

x′(t) =
∂f

∂y
+

∂f

∂y
x(t) +

ν
∑

k=1

∂f

∂y(αk)
x(αk)

(

∂αk

∂y
x(t) +

∂αk

∂t

)

+
ν+ω
∑

k=ν+1

∂f

∂y′(αk)
x′(αk)

(

∂αk

∂y
x(t) +

∂αk

∂t

)

,

(3.20)

where x(t) = y′(t). The associated initial functions are

x(t) = φ′(t;p), for t < t0(p),

x′(t) = φ′′(t;p), for t < t0(p),

x(t0) = y′(t0).

Equation (3.20), when required, is integrated simultaneously with other equations, pro-

viding the required values of y′′(αk) = x′(αk).
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Handling Jumps in y′′

Choosing x(t) = y′(t) as a new state variable and integrating using the driven differential

equations works well if x(t) has no C0 discontinuities (i.e. discontinuities in the value)

after the starting time t0. Otherwise, these jumps in the value cannot be captured by

integrating using differential equations. In this case, which is inevitable when the original

system is a system of NDDEs, these jumps should be treated as discrete events. Each

time an event of this type is triggered, the initial values for the continued integration

must be updated using the relation x(λ+) = y′(λ+).



Chapter 4

Reliable Parameter Estimation for

DDEs

4.1 Introduction

In many applications the system of differential equations used for modeling the under-

lying phenomenon involves some unknown parameters that appear in the equations (see

§1.2.2). If we have observed the phenomenon and collected data, then we can try to de-

termine the unknown parameters, by fitting the model equation to data. This parameter

determination/estimation is an example of an “inverse” problem and may be resolved by

minimizing a least-squares objective function (see §1.2.5). However, parameter estima-

tion/fitting can be inherently complicated for many reasons. For instance the parameters

may not be identifiable, which causes numerical difficulties in the optimization process.

Furthermore, the efficiency of a numerical technique may depend strongly on the location

and number of data points.

In this chapter after reviewing some existing techniques for parameter estimation of

problems involving systems of ODEs and DDEs, we discuss the necessity of considering

possible discontinuities in the objective function in the DDEs case. We then introduce a

41
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new technique for handling the resulting discontinuous least-squares problem efficiently.

In the following, we limit our discussions to basic least-squares methods, without

regularization.

4.2 A Review of Parameter Estimation Techniques

4.2.1 Parameter Estimation Techniques for ODEs

There are two main approaches for the parameter identification problem for ODEs. Here

we give a brief description of each approach.

• The initial value approach: An optimization method is used to minimize W (p)

of Equation (1.3) with respect to p with the following steps,

1. Choose an initial guess for the parameters.

2. Solve model Equations (1.7).

3. Check optimality conditions, (if satisfied, stop).

4. Choose a better value for the parameters and continue with step (2).

The model trajectory, y(t;p), can be very sensitive to the parameters, especially

in the case of nonlinear systems, and the objective function can exhibit a strong

nonlinear dependence on the parameters p, which can introduce several local min-

ima, apart from the global one that corresponds to the true optimal parameters.

Therefore, if the initial guess for the parameters is far from the correct one, the

trial trajectory can soon lose contact with the measurements.

The gradient or the Hessian of the objective function (if required by the optimiza-

tion method) is computed using,

(

∂W (p)

∂pl

)

= −2
∑

i

[Y (γi)− y(γi;p)]

(

∂y(γi;p)

∂pl

)

, (4.1)
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or

(

∂2W (p)

∂pl∂pm

)

= 2
∑

i

[ (

∂y(γi;p)

∂pl

) (

∂y(γi;p)

∂pm

)

− [Y (γi)− y(γi;p)]

(

∂2y(γi;p)

∂pl∂pm

)]

,

(4.2)

and the sensitivity equations are usually used to provide the required values of

∂y(γi;p)
∂pl

or ∂2y(γi;p)
∂pl∂pm

. Alternately, one can use divided differences or other methods of

sensitivity computations.

• Multiple shooting: The technique of multiple shooting was developed in the

context of parameter estimation in [10] (see also Krogh et al. [39]). The fitting

interval is partitioned into many subintervals, each having its own initial values

and the measurements are used to get starting guesses for them. The parameters

of the ODE are held constant for all subintervals. This procedure leads to an

initially discontinuous trajectory which is, however, close to the measurements. In

an iterative process, the algorithm minimizes W (p) on the one hand and enforces

the continuity of the full trajectory on the other hand. The freedom of intermediate

discontinuities allows the trajectory to stay close to the data. Divergences are

avoided and the danger of local minima is reduced. For the reduction of W (p), a

generalized Gauss-Newton method is employed. Horbelt et al. [37] have used this

approach for identifying physical properties of a CO2 laser. They have shown that

this method can be very effective, especially when the data is noisy.

4.2.2 Techniques for Parameter Estimation of DDEs

Most techniques for parameter identification of DDEs are derived directly from a cor-

responding ODE approach. However, there are methods proposed specially for DDEs.

Here we discuss the adaptations of the methods of Section (4.2.1) and also one special

method.
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• The adapted initial value approach (Baker and Paul [5]): Discontinuities aris-

ing from the initial point t0(p) (and the initial function φ(t;p)), may propagate

into W (p) via the solution values {y(γi;p)}. The first and second order partial

derivatives of the objective function in the case of the parametric DDE (1.8) are

(

∂W (p)

∂pl

)

±

= −2
∑

i

[Y (γi)− y(γi;p)]

(

∂y(γi;p)

∂pl

)

±

, (4.3)

and
(

∂2W (p)

∂pl∂pm

)

±±

= 2
∑

i

[ (

∂y(γi;p)

∂pl

)

±

(

∂y(γi;p)

∂pm

)

±

− [Y (γi)− y(γi;p)]

(

∂2y(γi;p)

∂pl∂pm

)

±±

]

,

(4.4)

where the ± means right- and left-hand derivatives.

It is clear that a jump in a first or second partial derivative of W (p) can occur if

sl(γi;p) :=
∂y(t;p)

∂pl

,

or

rlm(t;p) :=
∂2y(t;p)

∂pl∂pm

,

has a jump at t = γi for some i. Investigating different scenarios for the prop-

agation of discontinuities to the objective function suggests the general rule that

if a discontinuity point λr(p) coincides with one of the data points γi, and λr(p)

varies as some parameters vary, then W (p) has a jump in its partial derivatives

that correspond to the varying parameters. It should not be surprising then, that

optimization codes that assume the smoothness of the objective function may fail,

when applied to parameter estimation on problems involving DDEs.

• Multiple shooting (Horbert et al. [38]): The problem of the matching conditions

necessary in this context is solved by using cubic splines to parameterize the initial

curves and then formulating the continuity of the trajectory in terms of these

spline variables. When the starting guesses for the dynamical parameters are far
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from the true values, a two-phase procedure is used. During the first iterations of

the optimization, the spline variables are held fixed because they are expected to

be estimated well from the data. After the algorithm has converged for the first

time, they are released and fitted together with the other variables until the final

convergence is achieved. It is shown through several examples that this method

can attain rapid convergence in the case of noisy data.

• The full discretization approach (Murphy [45]): Linear splines are used to

describe solution and delay functions. As a result, the problem becomes a very large

minimization problem. The number of mesh points is increased gradually to be able

to satisfy the specified error tolerance. Although the method has the generality of

dealing with any of several types of unknown parameters, it suffers from the heavy

computations, slow convergence rate, and possibility of being trapped in a local

minimum.

4.3 Handling the Non-smoothness in Parameter Es-

timation of DDEs

The non-smoothness issue, noticed by Baker and Paul [5] in adapting the initial value

approach for DDEs, is also present in other aforementioned parameter estimation tech-

niques. As a result, the theoretical assumptions needed for the justification of numerical

results are not satisfied for those techniques. Furthermore, in some cases the efficiency

of the numerical process is seriously affected by the non-smoothness. In this section

we discuss this issue in detail and propose a new technique for dealing with propagated

discontinuities in objective function for DDEs. Although the ideas are general and can

be incorporated in all parameter estimation methods, we only give the details for the

adapted initial value approach.



Chapter 4. Reliable Parameter Estimation for DDEs 46

4.3.1 Algorithms for Nonlinear Least-Squares Problems

There are many algorithms to solve the unconstrained nonlinear least squares problem

min
p

W (p) =
∑

i

[Y (γi)− y(γi;p)]2 , (4.5)

or constrained nonlinear least squares problem

min
p

W (p) =
∑

i

[Y (γi)− y(γi;p)]2 ,

cj(p) = 0, j ∈ E ,

cj(p) ≥ 0, j ∈ I,

(4.6)

among which the Levenberg-Marquardt algorithm for unconstrained problems and vari-

ations of sequential quadratic programming (SQP) algorithm for unconstrained and con-

strained problems have been shown to be very effective and efficient in practice.

In both cases the smoothness of functions involved in the problem (i.e., the objective

function and constraints), is a necessary assumption (at least to second order, C2). If

some of the smoothness assumptions are violated then there is no guarantee that these

algorithms will converge to a local optimum.

4.3.2 Avoiding the Non-smoothness

Figure (4.1-top) shows a typical situation for a data point γi. During the minimization

process, when we need to evaluate W (p) (or its partial derivatives) for the current value

of p, we need to have y(t;p) (or its partial derivatives) at γi. If

λr(p) ≤ γi < λr+1(p), (4.7)

then the portion of y(t;p) (or its partial derivatives) over the interval [λr(p), λr+1(p)) is

involved.

To allow changes in p to be incorporated in a way that does not allow W (p) to pass

non-smooth regions, we need to add some constraints that prevent any changes in the
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ordering of data points and discontinuity points. That is we would like to respect the

ordering (4.7), for all data points, while the underlying least-squares method is searching

for the best fit.

For these constraints to be useful in practice we need them to be differentiable. Fur-

thermore, most implementations of SQP assume that the function and constraints can

be evaluated outside the feasible set.

Differentiating the new constraints is possible as we have already shown that dλr(p)
dpl

can be computed recursively (Equation (3.16)).

If we attempt to evaluate W (p) outside the feasible region we violate the smoothness

criteria. A possible remedy is to use the continuous extension of y(t;p) and its partial

derivatives for evaluations of W (p) or its partial derivatives outside the feasible set, as

shown in Figure (4.1-bottom). This may change the actual function W (p) which we are

minimizing, but changes are only in the infeasible set which we do not consider as valid

solutions.

The whole process of optimization is then to start from a point p0 and conduct

changes in p so that we safely pass through non-smooth regions.

4.3.3 Safe Guidance of Optimization

Let

ContinuityConstraints[pbase](ptrial) = {λr[pbase](ptrial) ≤ γi ≤ λr[pbase]+1(ptrial)},

be the set of all constraints needed to respect the initial ordering coming from pbase as

starting point for the SQP optimizer. These constraints as well as their partial derivatives

can be evaluated at any ptrial inside the optimizer.

The steps for finding a local optimum can be described as the following:

1. Start with pc ← p0 and addedConstraints← ContinuityConstraints[p0].
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true solution
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discontinuity point
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λr+1(p)

Figure 4.1: top : a typical situation for a data point. bottom : evaluating a data point

outside of its initial interval.

2. Run the SQP optimizer with pc and addedConstraints , to get pnew. At this point

we have a local minimum, but with some added artificial constraints.

3. If some of addedConstraints are active, jump to (4), otherwise stop with p⋆ = pnew.

4. The computed local minimum may be improved if we relax our artificially added

constraints. In other words, the optimality of the fitted parameter is not guaranteed

for the original problem. Different strategies can be proposed at this stage for taking

steps that insure an actual local optimum.

• Combinatorial Investigation: Set all possible alternations of active artifi-

cial constraints and feed the resulting problems, one by one, to the optimizer.
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If none of these possibilities can improve the fitness of the parameter, then the

artificial constraints have no effect on the fitting process and a local optimum

is guaranteed. Otherwise, choose one of the alternatives with a better solution

and continue the process using the output of that alternative, from step (3).

• Follow The Descent Direction: Change all active constraints to the corre-

sponding reversed constraints and continue with the optimizer with pc ← pnew

from step (2).

This simulates the movement to the local optimum direction in the corre-

sponding unconstraint problem. However, the total movement in this case

is partitioned into two series of changes (before and after reversing the con-

straints), bordered by the constraints.

Convergence, Efficiency and Reliability

The combinatorial investigation approach described above is convergent and its

output is reliable. However, it may be very inefficient when the number of active

constraints/discontinuities is large, as there may be many alternatives and check-

ing all of them may be impractical. The alternate strategy of following the descent

direction is convergent and efficient, but we have to check for possible loops. A

loop may happen, meaning the optimizer cannot move away from the border point

defined by switching constraints. We should monitor for this situation and termi-

nate the process. It can easily be proven that if the objective function is convex,

the switching point is then a local minimum (in this case). Otherwise, due to the

presence of unpredictable saddle points, a more sophisticated strategy is needed to

handle the general case (see [11], [26] and the references therein for more details).



Chapter 5

Software Design

Designing a modeling package with different functionalities (simulation, sensitivity anal-

ysis, parameter estimation) is a challenging and difficult process. The time consuming

task of implementing efficient algorithms for doing core computations, designing a user-

friendly interface, balancing generality and efficiency, and manageability of the code are

just some of the issues. In this chapter we describe our designs for the three required com-

ponents of our package and show how we are able to overcome some of these difficulties

for DDEs.

5.1 Finding Dependencies

Table 5.1 shows the basic functionalities/tasks provided by our modeling package. Each

task requires some inputs and produces some outputs and also some byproducts. Un-

derstanding this information is crucial for the development of an efficient and integrated

design. For instance, the inputs and byproducts of simulation are subsets of the required

inputs and byproducts of sensitivity analysis. Therefore, data structures required for

sensitivity analysis can be an extension of those required for simulation. Another im-

portant observation is that some inputs for parameter estimation are byproducts of the

sensitivity analysis. This should be reflected in the interface design of the sensitivity

50



Chapter 5. Software Design 51

analyzer as it must be easily callable from the parameter estimator.

Task Inputs Outputs Byproducts

Simulation f, φ y {λr}

(NDDEs) (φ′) (y′)

(stiff) (∂f

∂y
, ∂f

∂y(α)
)

Sensitivity Analysis f, φ, ∂φ

∂p
, ∂y

∂p
y, y′, {λr}, {∂λr

∂p
}

∂f

∂y
, ∂f

∂y(α)
, ∂f

∂p
,∂α
∂y

, ∂α
∂p

(NDDEs) (φ′, ∂φ′

∂p
, φ′′, ∂f

∂t
, ∂α

∂t
) (y′′, ( ∂y

∂p
)′)

(second order) (all mixed ∂2f

∂...∂...
, ∂2α

∂...∂...
and ∂f

∂t
) ( ∂2y

∂p2 ) (y′′, {∂2λr

∂p2 })

(second order & NDDEs) (all mixed ∂2φ

∂...∂...
, ∂2φ′

∂...∂...
) (y′′′, ( ∂y

∂p
)′′)

Parameter Estimation y(γi;p), ∂y(γi;p)
∂p

, {∂λr

∂p
} p⋆

(large residuals) (∂2y(γi;p)
∂p2 )

Table 5.1: Dependencies Between Different Components of a Modeling Package

5.2 Software Architecture

There are three basic components in the package, which correspond to the three basic

tasks. A user should provide the required functions and data structures representing the

problem. The simulator works as an independent component and can be used directly.

The sensitivity analyzer component, when called by a user, automatically sets up a

simulation problem and then calls the simulator. The parameter estimator uses the

simulator and sensitivity analyzer for computing the objective function and its partial

derivatives (see Figure 5.1). Now, we briefly discuss the structure of each component.

Simulator: The simulator (Figure 5.2) uses an IVP solver as a basic step integrator.

This IVP solver provides the basic step of a typical IVP integration, along with

a continuous approximation and also an error control strategy, on each step. The
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Figure 5.1: User Calls: Different letters (A,B,C) are used to specify the sequence of calls

in different scenarios when using the package.

violation manager unit monitors for any possible violation of continuity assumptions

forced by the IVP solver during each step. Then, based on reported violations, the

discontinuity detector module locates the first discontinuity point. The suggested

returned step from the IVP solver is partitioned at that discontinuity point using

interpolation and the integration is then restarted.

Sensitivity Analyzer: The sensitivity analyzer (Figure 5.3) has a rather simple struc-

ture. The simulator is called to integrate the artificially created variational problem

up to a discontinuity point. The jump handler, then calculates the sensitivity val-

ues right after the discontinuity point according to the jump formulas (Equation

3.19). The integration then is restarted with newly calculated values as the initial

values.
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Figure 5.2: Simulator Structure. A → B indicates that module/component A calls

or uses module/component B. Ordinary rectangles indicate main modules/components

of the DDE solver, and double edged rectangles indicate externally provided mod-

ules/componets.



Chapter 5. Software Design 54

Figure 5.3: Sensitivity Analyzer Structure

Parameter Estimator: The master control is called with the initial parameter fitting

problem and its associated data. Then, an artificial problem with added constraints

(introduced to ensure smoothness on the iteration) is fed to a least-squares opti-

mizer. When the optimizer module asks for the function or constraints for specific

value of parameters, it is directed to a module which in turn provides the required

values by calling the simulator or sensitivity analyzer.

5.3 User Interface

The package is implemented using the object-oriented paradigm in C++. The user in-

terface is specially designed to be easy enough for nonspecialist users and controllable

enough for advanced users. We have also been careful not to use any global variables

and as a result the whole package is thread-safe, if it is to be used in parallel mode.
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Figure 5.4: Parameter Estimator Structure

Another important aspect in the interface is that there is no assumption for global mod-

ules. Therefore, it is rather easy to incorporate it into other packages/programs and also

easy to do experiments such as comparing different algorithms. As an example one can

compare the results and statistics of the simulation with different basic IVP integrators

(if available) in a single run. Another example is in the parameter fitting when a user

wants to compare the effect of imposing various constraints on the result or performance

of the optimizer. In the following we briefly discuss some of the most important aspects

of the user interface for the different components.

Simulator: As usual for DDEs, users must provide the functions/constants defining the

problem. The only important point is where the simulator is created (“mySimulator1

= new ...” in Figure 5.5). As expected, it takes an IVP solver as its under-

lying IVP integrator. In our sample code, the IVP solver is an object of class
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IVP2DDEImprovedCRK, derived from an abstract class ddemIVP2DDE, which repre-

sents a general interface for explicit IVP solvers that can be used by our simulator.

Interested users can implement a derived class based on an existing IVP solver and

use it in their code. IVP2DDEImprovedCRK class, provided by us, is based on a

particular IVP method developed by Enright and Yan [22].

Figure 5.5: Simulator Interface

Sensitivity Analyzer: Most inputs are same as those of the simulator. The needSensitivity

array determines the selected parameters for which sensitivities are to be computed.

The DDE simulator is passed as an argument, which means it can work with dif-

ferent DDE simulators.

Parameter Estimator: In addition to the general input that defines the DDE problem,

users need to provide the data and also possible nonlinear and linear constraints.

The nonlinear constraints should be provided as a function and the linear con-

straints can be specified using a constant matrix of coefficients. However, some

simple bounds on parameters can be set by calling special built-in subroutines, as

these type of constraints appear very frequently in applications.
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Figure 5.6: Sensitivity Analyzer Interface

Figure 5.7: Parameter Estimator Interface

The communication pointer, present as the last argument of all three components, is used

to eliminate the need for global variables. It is a head pointer to all common structures

needed by a user inside the supplied subroutines. It will be passed back to the user

routines when they are called by any of the three components of our package.



Chapter 6

Numerical Experiments

In this chapter we present some detailed numerical results of our experimental package

DDEM.

6.1 Numerical Experiments with the Simulator

The package is currently able to use any explicit step-by-step IVP solver which provides

an accurate local interpolant. For our experiments we use the IVP method CRK6X, which

is an order 6 explicit continuous Runge-Kutta method with defect control (developed and

discussed in [22]), choosing relaxed defect control as its defect control strategy. For neutral

problems the derivative of the continuous approximation is required and should provide

the same order of accuracy. Although this requirement is not met by most of the contin-

uous extensions accompanying current IVP solvers, there is a “bootstrapping” process

that can be exploited to develop that kind of continuous approximation for Runge-Kutta

methods (see [22] for details). For vanishing delays, the systems of nonlinear equations is

solved by fixed point iterations. All switching functions are actively monitored on each

step for possible sign changes that indicate the presence of roots with odd multiplicity. If

the problem is declared to have state-independent delays, using an optional input, then

this information is actively used to accelerate the root-finding process. If the delays are

58
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declared to be increasing functions then gr (Equation 2.18) is not included in the set of

monitored events. We have used a vectorized implementation of the well-known Illinois

algorithm from [36], which finds the leftmost root of a set of arbitrary functions in an

interval. The roots of odd multiplicity are recognized by the changes of sign.

6.1.1 Test Problems

The following problems are used to test the effectiveness of the proposed methods. “Test

Problem 1” and “Test Problem 3” have state-dependent delays and were chosen to test

the discontinuity tracking strategy of our method. “Test Problem 2” is an NDDE with

many discontinuities and is used to test efficiency of the solver when dealing with per-

sisting discontinuities and also to show its applicability for systems of DDEs. “Test

Problem 4” and “Test Problem 5” have vanishing delays, during the integration and

at the starting point, respectively. They were chosen to test the iterative scheme for

handling vanishing delays. “Test Problem 6” is a 4-dimensional problem with two con-

stant delays. For DDEM, we have considered this problem a vanishing delay problem

by setting the lower bound constant in Equation (2.21) to be a value bigger than the

smallest constant delay; otherwise forcing the explicitness condition will require at least

(tF − t0)/(the smallest delay) = (350 − 0)/0.15 ≈ 2333 steps. All these problems are

nonstiff.

Test Problem 1 [49]:

y′ = y(y(t)),

for t in [2, 5.5]. The history function is

y = 0.5, for t < 2,

and

y(2) = 1.
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The C0 discontinuity of the solution at ξ0 = 2 introduces break points at ξ1 = 4

(C1) and ξ2 = 4 + 2 ln 2 ≈ 5.386 (C2).

The exact solution to this problem is

y(t) =























t/2, for ξ0 ≤ t ≤ ξ1,

2 exp(t/2− 2), for ξ1 ≤ t ≤ ξ2,

4− 2 ln(1 + ξ2 − t) for ξ2 ≤ t ≤ 5.5.

Test Problem 2. A neutral delay logistic Gause-type predator-prey system [40]:

y′
1(t) = y1(t)(1− y1(t− τ)− ρy′

1(t− τ))− y2(t)y1(t)
2

y1(t)2 + 1
,

y′
2(t) = y2(t)

(

y1(t)
2

y1(t)2 + 1
− α

)

,

where α = 1/10 , ρ = 29/10 and τ = 21/50, for t in [0, 30]. The history functions

are

φ1(t) =
33

100
− 1

10
t,

φ2(t) =
111

50
+

1

10
t,

for t ≤ 0. The solution is C1 discontinuous at the starting point which propagates

as C1 and C2 discontinuities to y1(t) and y2(t), respectively, at t = nτ for n ≥ 1.

The exact solution of this problem is unknown.

Test Problem 3 [47]:

y′(t) =
y(t)y(ln(y(t)))

t
,

for t in [1, 10]. The history function is

φ(t) = 1, for t ≤ 1.
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The exact solution to this problem is

y(t) =



































t, for 1 ≤ t ≤ e,

exp(t/e), for e ≤ t ≤ e2,
(

e
3−ln(t)

)e

, for e2 ≤ t ≤ e3,

not known, for e3 < t,

where e3 = exp(3− exp(1− e)).

Derivative jump discontinuities occur at t = 1 (C1), t = e (C2), t = e2 (C3) and

t = e3 (C4).

Test Problem 4 [50]:

y′(t) = y(t− t−10),

for t in [1, 10]. The history function is

φ(t) = t, for t ≤ 1.

The exact solution of this problem is unknown.

This DDE has a vanishing (but non-singular) lag (limt→+∞ t−10 = 0; however,

depending on the precision used, the vanishing behavior will first be recognized at

some finite time t⋆ and persists for all t > t⋆).

Test Problem 5 [58]:

y′(t) = y(y(t)) + (3 + µ)t(2+µ) − t(3+µ)2 ,

for t in [0, 1]. The initial value is

y(0) = 0.

The exact solution to this problem is

y(t) = t(3+µ), for 0 ≤ t ≤ 1.
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This is an initial value DDE with no discontinuities.

We use µ = 0 in our experiments. The exact solution is a low degree polynomial

and any IVP method should have no trouble with this problem.

Test Problem 6. The SEIR epidemic model of Genik & van den Driessche [28]:

S ′ = A− dS(t)− λS(t)I(t)
N(t)

+ γI(t− τ)e−dτ ,

E ′ = λS(t)I(t)
N(t)

− λS(t−ω)I(t−ω)
N(t−ω)

e−dω − dE(t),

I ′ = λS(t−ω)I(t−ω)
N(t−ω)

e−dω − (γ + ǫ + d)I(t),

R′ = γI(t)− γI(t− τ)e−dτ − dR(t),

where

N(t) = S(t) + E(t) + I(t) + R(t),

and A = 0.33, d = 0.006, λ = 0.308, γ = 0.04, ǫ = 0.06, τ = 42, ω = 0.15, for t in

[0, 350]. The history functions are

S = 15,

E = 0,

I = 2,

R = 3,

for t ≤ 0.

The exact solution of this problem is unknown.

6.1.2 Results

Here we present the numerical results for the chosen test problems. We include results

for a new version [31] of RADAR5 (Guglielmi and Hairer [30]), and DDE SOLVER

(Thompson and Shampine [59]). We have set all absolute tolerances and the relative

tolerance to TOL with TOL=10−3, 10−6,10−9 for all solvers. The analytic solution or a

very accurate approximation of it, obtained with a very small tolerance (TOL = 10−11),
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was used for computing the reported endpoint accuracy. The statistics we report in the

tables are :

STEPS: The number of successful steps.

REJECTS: The number of rejected steps.

FCN: The total number of derivative evaluations.

ABS ERR: The global absolute error at the end point of integration (maximum over

all components for multidimensional problems).

REL ERR: The global component-wise relative error at the end point of integration

(maximum over all components for multidimensional problems).
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Table 6.1: Summary Statistics for Problems 1 to 6 (TOL = 10−3).

PROBLEM SOLVER STEPS REJECTS FCN ABS ERR REL ERR

DDE SOLVER 11 0 108 7.8 · 10−9 1.8 · 10−9

1 RADAR5 7 1 80 6.7 · 10−5 1.5 · 10−5

DDEM 5 0 58 9.5 · 10−6 2.2 · 10−6

DDE SOLVER 255 226 5067 4.4 · 10−5 1.3 · 10−4

2 RADAR5 150 58 2002 6.1 · 10−4 1.8 · 10−3

DDEM 73 0 875 7.2 · 10−5 8.3 · 10−5

DDE SOLVER 19 4 225 1.2 · 10−6 3.1 · 10−8

3 RADAR5 12 2 121 8.8 · 10−4 2.1 · 10−5

DDEM 7 0 80 2.1 · 10−3 5.4 · 10−5

DDE SOLVER 15 2 405 8.6 · 10−1 1.1 · 10−4

4 RADAR5 25 1 215 5.4 7.3 · 10−4

DDEM 35 2 436 3.0 4.0 · 10−4

DDE SOLVER 13 0 153 1.1 · 10−9 1.1 · 10−9

5 RADAR5 4 0 29 0.0 0.0

DDEM 10 0 119 3.2 · 10−5 3.2 · 10−5

DDE SOLVER 140 7 3051 3.4 · 10−5 5.9 · 10−4

6 RADAR5 54 1 643 1.3 · 10−4 1.2 · 10−3

DDEM 415 0 4813 1.8 · 10−8 3.3 · 10−7
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Table 6.2: Summary Statistics for Problems 1 to 6 (TOL = 10−6).

PROBLEM SOLVER STEPS REJECTS FCN ABS ERR REL ERR

DDE SOLVER 15 6 198 1.0 · 10−11 2.5 · 10−12

1 RADAR5 13 4 120 3.1 · 10−8 7.4 · 10−9

DDEM 7 0 80 1.4 · 10−7 3.4 · 10−8

DDE SOLVER 907 947 16884 1.4 · 10−7 4.4 · 10−7

2 RADAR5 369 130 4592 8.6 · 10−8 8.8 · 10−8

DDEM 135 23 1810 6.5 · 10−7 7.4 · 10−7

DDE SOLVER 31 12 405 9.9 · 10−8 2.4 · 10−9

3 RADAR5 28 1 225 1.0 · 10−5 2.7 · 10−7

DDEM 18 2 223 9.0 · 10−6 2.2 · 10−7

DDE SOLVER 118 10 2673 9.4 · 10−3 1.2 · 10−6

4 RADAR5 73 1 608 7.8 · 10−3 1.0 · 10−6

DDEM 64 4 792 7.7 · 10−4 1.0 · 10−7

DDE SOLVER 13 0 153 1.1 · 10−9 1.1 · 10−9

5 RADAR5 4 0 29 0.0 0.0

DDEM 12 3 172 2.0 · 10−7 2.0 · 10−7

DDE SOLVER 211 12 4923 6.8 · 10−8 5.8 · 10−7

6 RADAR5 119 1 1413 6.7 · 10−7 5.2 · 10−6

DDEM 417 0 4836 1.6 · 10−8 2.9 · 10−7
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Table 6.3: Summary Statistics for Problems 1 to 6 (TOL = 10−9).

PROBLEM SOLVER STEPS REJECTS FCN ABS ERR REL ERR

DDE SOLVER 21 11 297 6.6 · 10−12 1.5 · 10−12

1 RADAR5 24 5 207 5.6 · 10−9 1.3 · 10−9

DDEM 12 3 168 2.1 · 10−9 4.9 · 10−10

DDE SOLVER 1718 1577 29655 9.5 · 10−11 4.4 · 10−11

2 RADAR5 918 123 10063 3.8 · 10−10 1.1 · 10−9

DDEM 376 150 5858 6.3 · 10−10 2.8 · 10−10

DDE SOLVER 68 18 792 1.4 · 10−10 3.6 · 10−12

3 RADAR5 70 1 525 1.0 · 10−7 2.6 · 10−9

DDEM 47 3 553 1.5 · 10−8 3.7 · 10−10

DDE SOLVER 789 18 15453 3.5 · 10−5 4.5 · 10−9

4 RADAR5 201 2 1672 1.1 · 10−5 1.5 · 10−9

DDEM 144 6 1735 4.9 · 10−6 6.7 · 10−10

DDE SOLVER 16 6 243 3.2 · 10−11 3.2 · 10−11

5 RADAR5 4 0 29 0.0 0.0

DDEM 23 6 325 3.3 · 10−10 3.3 · 10−10

DDE SOLVER 447 14 9360 3.7 · 10−11 2.5 · 10−11

6 RADAR5 281 10 3146 3.5 · 10−9 6.4 · 10−8

DDEM 480 6 5627 2.1 · 10−9 3.8 · 10−8
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6.1.3 Discussion and Observation

The numerical results clearly show that for these particular examples, the derived DDE

solver is competitive with a state of the art special purpose DDE solver. These results are

chosen from a more extensive investigation that we have performed on different problems

using standard DDE test sets [51], and confirm our claim that the generality we have

introduced does not cause a noticeable inefficiency compared to specially designed DDE

solvers. We are currently working on the details of the interface for implicit solvers and

hope to find a design that preserves this property.

6.2 Numerical Experiments with the Sensitivity An-

alyzer

6.2.1 Test Cases

The following cases are used to show the effectiveness of our method. “Test Case 1” and

“Test Case 3” are interesting situations where the sensitivity of the solution is observed

with respect to parameters controlling the status of the starting point. This situation

cannot be handled using traditional approaches. “Test Case 2” is a two-dimensional

model with several parameters, including the parameters defining the components of the

history function. “Test Case 4” is chosen to study the sensitivities for a system with

chaotic behavior.

Test Case 1 Sensitivity of the solution with respect to starting jump for “Test Problem

1”,

p = [y(2)].

Test Case 2 Sensitivity of the solution with respect to all parameters and histories for
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“Test Problem 2”,

p = [τ, ρ, α, a, b, c, d].

where

φ1(t) = a + b t,

φ2(t) = c + d t.

Test Case 3 Sensitivity of the solution with respect to the starting time for “Test Prob-

lem 3”,

p = [t0].

Test Case 4 Sensitivity of the solution with respect to the delay, exponent and history

for a scalar equation that exhibits chaotic behavior. It is an example of the well

known Mackey-Glass delay differential equations which they proposed as a model

for the production of white blood cells [43]. The problem has a constant delay and

a constant history, and is defined by

y′(t) =
2y(t− 2)

1 + y(t− 2)9.65
− y(t),

for t in [0, 100]. The history function is

φ(t) = 0.5, for t ≤ 0.

The exact solution of this problem is unknown. See Figure (6.8) for an accurate

approximate solution.

The parameters are,

p = [τ, n, A],

where

y′(t) =
2y(t− τ)

1 + y(t− τ)n
− y(t),

and

φ(t) = A, for t ≤ 0.
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6.2.2 Results and Discussion

Figures 6.1–6.9 and Table 6.4 present the numerical results for the chosen cases. Some

interesting observations are made for each case in the respective captions. The results are

also compared with the finite difference approach by showing the absolute error in the

sensitivity for various parameter perturbations (∆p). For this, we have used the results

from our sensitivity analyzer code with a very tight tolerance (10−11) as the exact values.

The same tolerance (10−11) was used for the simulations required in the finite difference

approach. We also report the performance and accuracy of our code for “Test Case 1”

for different tolerances.



Chapter 6. Numerical Experiments 70

2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

t

y

2 2.5 3 3.5 4 4.5 5 5.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

t

y′

2 2.5 3 3.5 4 4.5 5 5.5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

t

y(p+ ∆p)

2 2.5 3 3.5 4 4.5 5 5.5
1

2

3

4

5

6

7

8

t

∂y

∂y(2)

Figure 6.1: Plots of the numerical solution and the sensitivity for Test Case 1. Discon-

tinuities of the solution at t = 2, 4 produces jumps in the sensitivity at those points.

(Note that y(p + ∆p) with ∆p = 0.01, has one more discontinuity point than y in the

integration interval.)
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Figure 6.2: Plots of absolute errors of the sensitivity ∂y

∂y(2)
computed using finite differ-

ences for Test Case 1. The limited accuracy of finite differences is clearly visible for

∆p = 10−9.
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Figure 6.3: Plots of the numerical solution and the sensitivities for Test Case 2 (y1).

Discontinuities of the solution produce jumps in the sensitivity. Sensitivity coefficients

for history related parameters, clearly show the transient effect of the history and the

approximate time of this fading behavior.
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Figure 6.4: Plots of the numerical solution and the sensitivities for Test Case 2 (y2). The

sensitivity coefficient for the delay τ is smoother (persistent C1 discontinuities), as well

as the function itself (persistent C2 discontinuities), compared to those of (y1).
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Figure 6.5: Plots of absolute errors of sensitivities ∂y1

∂τ
(left column) and ∂y2

∂τ
(right column)

computed using finite differences for Test Case 2. The poor accuracy for ∆p = 10−3 and

the limited accuracy for ∆p = 10−9 are clearly visible.
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Figure 6.6: Plots of the numerical solution and the sensitivities for Test Case 3. The

discontinuity of the solution at the starting point produces a jump in the sensitivity

at that point (from 0 for t < 1, to −1 for t = 1). y(p + ∆p) (∆p = 0.01) shows a

big reduction for a small change in the parameter as the sensitivity function predicts

( ∂y

∂t0
≪ 0).
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Figure 6.7: Plots of absolute errors of the sensitivity ∂y

∂t0
computed using finite differences

for Test Case 3. The limited accuracy of finite differences is clearly visible for ∆p = 10−10.

Since the value of sensitivity computed by finite difference is very inaccurate at t = t0 = 1

and the error is large, it is shown in a separate graph and excluded from the others.
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Figure 6.8: Plot of the numerical solution and the sensitivities for Test Case 4. The

chaotic sensitivities ∂y

∂τ
, ∂y

∂n
and the non-chaotic sensitivity ∂y

∂A
indicate that the chaos in

y is a combined result of having a delay (τ) and an exponent (n) and is insensitive to

the history.
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Figure 6.9: Plots of absolute errors of sensitivities ∂y

∂τ
(left column) and ∂y

∂A
(right column)

computed using finite differences for Test Case 4. The errors are extremely large; even

for values near the starting point, similar large errors (more than 100%) can be seen if

we look closely (bottom plots).
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TOL STEPS REJECTS FCN ERROR

10−3 6 0 69 1.0 · 10−6

10−5 7 0 80 3.1 · 10−5

10−7 10 1 124 6.9 · 10−8

10−9 15 2 190 5.2 · 10−9

10−11 24 3 300 -

Table 6.4: Summary Statistics of Sensitivity Analyzer for Test Case 1 with different

tolerances (absolute tolerance = relative tolerance = TOL). The output with TOL =

10−11 is used as the exact value for error calculations. The reported error is the maximum

absolute error in the sensitivities over the integration interval.

6.3 Numerical Experiments with the Parameter Es-

timator

6.3.1 Test Cases

The following cases are used to show the efficiency and reliability of our package. “Test

Case 1” is a one-dimensional NDDE and is chosen as the simplest interesting situation.

“Test Case 2” is a state-dependent RDDE where the parameter indirectly controls the

location of discontinuities. “Test Case 3” is a three-dimensional model with two pa-

rameters, both causing discontinuities. “Test Case 4” is a two-dimensional NDDE with

several parameters, where different components have different continuity properties. We

start with up to 10% random perturbation in the original targeted parameter values.

The simulator output with original parameter values is used as input Data (Y ). For γ’s

we choose 10 equally spaced points, one of which is the first discontinuity point. (In the
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following, p⋆ indicates the optimum parameter value.)

Test Case 1 Estimating the delay for a triangle wave defined by the following NDDE,

y′(t) = −y′(t− τ),

where τ ⋆ = 0.1, for t in [0, 0.9]. The history function is

φ(t) = −t + c,

where c = 8, for t ≤ 0.

The objective function is C1 discontinuous for values of τ where a data point

coincides with an integer multiple of τ .

Test Case 2 Estimating y(2) for ”Test Problem 1”.

The locations of discontinuities depend on the parameter, but they are not easy to

determine analytically.

Test Case 3 Estimating delays for a Kermack-McKendrick model of an infectious dis-

ease with periodic outbreak ([21], [32], [56], [57]). The problem is defined by

y′
1 = −y1(x)y2(x− τ) + y2(x− ρ),

y′
2 = y1(x)y2(x− τ)− y2(x),

y′
3 = y2(x)− y2(x− ρ),

where τ ⋆ = 1 and ρ⋆ = 10, for t in [0, 55]. The history function is

y1 = 5,

y2 = 0.1,

y3 = 1,

for t ≤ 0.

The exact solution of this problem is unknown.

Both delays could cause C2 discontinuities in the objective function whenever a

data point is at t = τ or t = ρ.
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Test Case 4 Estimating structure-related parameters τ , ρ, α for ”Test Problem 2”.

A C1 discontinuity is caused solely by the delay.

6.3.2 Results

We present the numerical results for the chosen cases for different variants of the param-

eter estimator as described below:

Very Simple: No additional constraints are added. The required Jacobians are calcu-

lated using divided differences.

SensJac: No additional constraints are added. The required Jacobians are calculated

using the sensitivity analyzer.

SensJac AddedCons: Additional constraints are added. The required Jacobians are

calculated using the sensitivity analyzer. Extrapolation is used for infeasible pa-

rameter values.

The statistics we report are averages for 10 runs and are as follows :

FCN: The total number of derivative (f) evaluations, including those required for ap-

proximating the Jacobians.

Iterations: The number of iterations during optimization.

Time: The total cpu time, in seconds, used by optimization.

OBJ: The value of the objective function W at the optimum point.

6.3.3 Discussions and Conclusions

The numerical results reported in Table 6.5 show a dramatic improvement in efficiency

where sensitivities are used for computing required Jacobians during the optimization
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Test Case Estimator Choice FCN Iterations Time OBJ

Very Simple 15708 139.1 6.250 2.9 · 10−21

1 SensJac 172 1.6 0.162 1.1 · 10−24

SensJac AddedCons 108 1.0 0.132 3.3 · 10−25

Very Simple 3325 40.5 0.775 1.5 · 10−322

2 SensJac 142 1.8 0.060 6.2 · 10−16

SensJac AddedCons 79 1.0 0.033 6.2 · 10−16

Very Simple 783092 393.2 54.875 7.4 · 10−13

3 SensJac 37344 13.8 2.262 1.3 · 10−9

SensJac AddedCons 5293 2.1 0.314 1.3 · 10−9

Very Simple 1003787 696.3 93.520 8.6 · 10−6

4 SensJac 60604 16.8 5.399 8.6 · 10−6

SensJac AddedCons 11708 3.2 1.056 8.6 · 10−6

Table 6.5: Summary Statistics for Test Cases 1 to 4.

process. The parameter estimator which uses added constraints performs the best, even

though the underlying optimization is of a larger dimension.
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Conclusions

7.1 Summary

We introduced a unified structure for a DDE solver and discussed the details for both

explicit and implicit IVP formulas. We compared numerical results for an implementation

based on a recently developed explicit IVP solver. By comparing these results with two

state of the art special purpose DDE solvers, we showed the effectiveness of our design.

We developed the details of an algorithm for the accurate computation of sensitiv-

ities for general DDEs. We derived the governing equations and also an equation for

calculating the size of jumps at discontinuity points. We compared our method with the

traditional finite difference approach and showed that not only does our method produces

more accurate results, but also it can handle a wider range of problems.

We proposed an algorithm for reliable parameter identification of DDEs, based on

adding extra constraints to the non-smooth optimization problem and converting it to

a smooth problem. We used our sensitivity analysis module for computing the required

Jacobians and compared our method with two other possible methods. Numerical results

clearly supported the superiority of our approach over the others.

Finally, we developed and justified an implementation for the three basic components

83
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(simulation, sensitivity analysis, parameter estimation) of a DDE modeling package and

showed that our proposed integrated design could be efficiently programmed and the

resulting C++ code had most of the desirable properties demanded for a modern software

package.

7.2 Future Work

Designing and implementing the simulator for an implicit IVP solver (such as RADAU5

[33]) and investigating and comparing the results with other DDE solvers is an area for

future investigations.

Computing accurate second order sensitivities and using automatic differentiation to

obtain the required partial derivatives for user provided functions are other areas that

require further research.

For the parameter estimation problem we implemented our techniques for adapta-

tion of a simple parameter fitting method (the initial value approach). Adaptations of

more advanced parameter fitting methods with a similar strategy for preventing non-

smoothness is also a subject for future study.
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