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A new model equation is proposed for simulating unidirectional wave propagation in
nonlinear media with dispersion. This model equation is a one-dimensional evolutionary
partial differential equation that is obtained by coupling the generalized Korteweg-de Vries
(gKdV) equation, which includes a nonlinear term of any order and cubic dispersion,
with the quintic Regularized Long Wave (qRLW) equation, which includes fifth order
dispersion. Exact solitary wave solutions are derived for this model equation. These
analytical solutions are obtained for any order of the nonlinear term and for any given
values of the coefficients of the cubic and quintic dispersive terms. Analytical expressions
for three conservation laws and for three invariants of motion for solitary wave solutions
of this new equation are also derived.

1. INTRODUCTION

The Korteweg-de Vries (KdV) equation, u; + ut, + Uze, = 0, is a well-known non-
linear partial differential equation (PDE) originally formulated to model unidirectional
propagation of shallow water gravity waves in one dimension; it describes the long time
evolution of weakly nonlinear dispersive waves of small but finite amplitude. The orig-
inal experimental observations of Scott Russell [13] in 1834 and the pioneering studies
by Boussinesq [2] in 1871 and by Korteweg and de Vries [8] in 1895 showed that when
nonlinear wave steepening, from the term wuu,, is balanced by wave dispersion, owing to
the term ..., their equation predicts a unidirectional solitary wave, (that is, a pulse
which moves in one direction with a permanent shape and constant speed). They also
found the explicit sech? expression for its solitary wave solutions.

Because of its role as a model equation in describing a variety of physical systems, and
because of its interesting mathematical properties, the KdV equation has been widely in-
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vestigated in recent decades. In the 1960’s, it was discovered that the KdV equation forms
a completely integrable Hamiltonian system and admits an infinite number of conserva-
tion laws and invariants of motion (see Miura et al. [9]). An important property of the
completely integrable system is the exact interactions of its solitary wave solutions which
retain their original shapes and speeds after collision and exhibit only a small overall
phase shift. These special solitary waves are named solitons and their clean interactions
are called elastic interactions.

More recently, similar equations to the KdV equation have been proposed. Benjamin,
Bona and Mahoney [1] advocated that the PDE, u; + u, + uu, — gz, = 0, modeled the
same physical phenomena equally well as the KdV equation, given the same assumptions
and approximations that were originally used by Korteweg and de Vries [8]. This PDE is
now often called the regularized long wave (RLW) equation, although it is also known as
the BBM equation. The dispersive term u,,; confers more expedient mathematical prop-
erties to the RLW equation and makes it a preferable model to the the KAV equation. The
RLW equation also has an explicit sech? solitary wave solutions, but is a nonintegrable
system since small dispersive effects can be observed when its solitary waves solutions
collide.

Over the years, several generalizations of the KdV equation have found applications in
many areas, including quantum field theory, plasma physics, solid-state physics, liquid-gas
bubble mixtures, and an-harmonic crystals. For instance, Kakutani and Ono [6] proposed
the generalized KAV equation u; + v, + Upps + EUpprer = 0, with both a third order and
fifth order derivative term, to model the dispersive effects of weak nonlinear hydromag-
netic waves in cold collision-free plasma. This fifth order KdV equation is also found to
be a model for long waves in liquids under ice sheets and water waves with surface tension
(capillary waves). For ¢ < 0, Yamammoto and Takizawa [14], found an explicit sech?
solitary wave solution of depression ( “dark” solitary wave) for one particular positive wave
speed. A similar quintic KdV (qKdV) equation, u; + v, + +€Ugzpzze = 0 was proposed
by Nagashima [10] for modeling waves in nonlinear LC circuits with mutual inductance
between neighboring inductors and nonlinear transmission lines. Rosenau and Hyman [12]
formulated a similar quintic regularized long wave (qRLW) equation u; + uu, + Uipppe = 0
for modeling the dynamics of dense discrete lattices and studied its multiplet solutions.
Just as the RLW equation is preferred to the KdV equation for problems with high wave
numbers, the qRLW equation is a better suited model than the qKdV equation for de-
scribing patterns involving higher gradients.

Recently, the authors [5] presented exact solitary wave solution for general types of the
RLW equation with nonlinear terms of any order p, u; + auPu, — puy; = 0. The solu-
tions were obtained by integrating a first order nonlinear ODE with symbolic computation
using the mathematical software Maple. In this study, we show how this approach can
be applied to derive the exact solutions for the classical generalized Korteweg-de Vries
(gKdV) equation, which includes a nonlinear term of any order p and cubic dispersion,

U + auPuy + gz, = 0 . (1)
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By coupling this gKdV equation with the quintic regularized long wave (QRLW) equation,
which includes fifth order dispersion, we obtain a new evolution equation that we will
call the gKdV-qRLW equation, which can model the effects of a high order singular
perturbation (in the limit ¢ — 0) to the gKdV equation,

U + aupum + UUgry + EUtzaza = 0. (2)

Exact solitary wave solutions will be derived for this new model equation. These analytical
and explicit solutions are obtained for any p, u and . The approach presented in this
work is general and can also be applied for finding exact solitary wave solutions for similar
nonlinear wave equations such as KdV-like and Boussinesqg-like equations (see Hamdi et
al. [4,5]). The exact solitary wave solutions can be used to specify initial data for the
incident waves in the numerical model and for the verification of the associated computed
solution (Hamdi et al. [3]). We also derive analytical expressions for three conservation
laws and for three invariants of motion for solitary wave solutions of this new equation.
The invariants of motion can be used as verification tools to investigate the conservation

properties and performance of numerical schemes for the approximate solution of this new
class of PDEs.

2. DERIVATION OF THE EXACT SOLUTIONS
We concentrate on finding an exact solitary wave solution of (2) of the form
u(z,t) = u(z —xg — Ct) = u(é) . (3)

This corresponds to a traveling-wave propagating with steady celerity C. We are inter-
ested in solutions depending only on the moving coordinate £ = © —x¢y — Ct. Substituting
into (2), the function u(&) satisfies a fifth order nonlinear ordinary differential equation

(ODE),
—Cu + avPu + qu/// U =0 : (4)
where the derivatives are defined with respect to the coordinate &.

Integrating once, we obtain

a
—Cu+ ——u 4 pu —eCu"" =k, 5
p+1 H 1 (5)
where k; is a constant of integration. If we assume that the solitary wave solution and its
derivatives have the following asymptotic values,

u(é) — uy as € — +oo, and for n > 1, u™(€) — 0 as &€ — +o0, (6)

(where the superscript denotes differentiation to the order n, with respect to &), and if
we also assume that uy satisfies the following algebraic equation

a
—C’ui+p+1upi+1 :O, (7)




4 S. Hamdi, W. H. Enright, W. E Schiesser and J. J. Gottlieb
then the constant of integration k; is equal to zero and (5) reduces to

—Cu+ ;%“pﬂ +pu’ —eCu" =0. (8)

From (7) we also have the relation

s Rl )

To allow another integration, we first multiply (8) by 2u’. Then each term can be inte-
grated separately to obtain,

2a

O T DY)

w2 () — e Cu")? = ky, (10)
where ks is a second constant of integration.

Using the asymptotic boundary conditions (6) at infinity we have

2a
—Cul 4+ ——— P =k 11
u++(p+l)(p+2)u+ 2, as & — +o00, (11)
and
2 2a p+2
—CuZ + ul" =ko, as £ — —00. (12)

(p+1(p+2)

By equating (11) and (12) we obtain,

2a p+2 p+2\ 2 2
TETE L A R GRS (13)

From relations (9) and (13) we conclude that (u2 —u?) =0.

Therefore, the traveling wave solutions for (2) that satisfy the assumptions (6) and (7)
should also satisfy the condition |u_| = |u,|. This condition suggests seeking bell shaped
solitary wave solutions that can be expressed as a polynomial of the hyperbolic secant.
Moreover, these traveling wave solutions could not have kink-profiles since such profiles
require |u_| # |u,|.

If ¢ = 0 (no quintic dispersion) equation (2) reduces to the classical generalized KdV
equation (1). In this case, equation (10) reduces to the following nonlinear ODE,

2a

O DR Y

Pt 4 (u)? = ky . (14)
If we also assume that |u_| = |uy| = 0, then the second constant of integration ks is equal
to zero. There are several approaches for integrating this type of nonlinear ODEs [4].
These ODEs can also be solved using symbolic computation as described in Hamdi et



Exact solutions and conservation laws for gKdV-qRLW equations 5

al. [5]. Without making any assumptions regarding the mathematical form of the solution,
the ODE (14) is integrated using Maple to obtain an analytical expression of an exact
solution of the gKdV equation,

1

_[e+rvery e (1, [0 p
u(z,t) = TCsech <§p\/;(x—0t—x0)>] : (15)

This solution is a bell-profile solitary wave of amplitude [C(p + 1)(p + 2)/2a]*/? initially
centered at xg and traveling without change of shape at a steady celerity C' and a wave

number %p \/C/u. The amplitude of this solitary wave is proportional to the wave speed
C.

If ¢ # 0, the exact solution of (2) based on the direct integration of the resulting high
order dispersive and nonlinear ODEs (8) or (10) is not straightforward. The solutions
that we will derive are obtained by assuming a certain form of the solitary wave in order
to transform the fourth order ODE (8) into a fourth order polynomial that can be solved
with Maple.

Since we are seeking a bell-profile solitary wave solution that satisfies the assumptions (6)
and (7) and also the condition |u_| = |uy|, we will assume that such a solution can be
expressed as a monomial of the hyperbolic secant function (sech = 1/cosh). That is,

u(§) = up(sech(k&))™ = ups™ , where s = sech(k€) . (16)

This particular form is suggested by the previous solitary wave solution of the generalized
KdV equation (1) which is a sech?? function given by (15). This approach is similar to
the technique used by Kichennassamy and Olver [7] and in general is similar to sech-based
methods for transforming nonlinear ODESs into polynomials. A priori the exponent m,
the wave amplitude ug, the wave celerity C' and the wave number s are unknown and will
be determined in the sequel.

The hyperbolic secant function sech has an interesting recursive property: All even
derivatives of sech are polynomials in sech. Using this recursive property, we can ex-
press the even derivative v’ and «”” which appear in (8) as homogeneous polynomials of
the dependent variable s(£) only. That is,

u" = ugm?k? s™ 4 (—ugm?k? — mugk?) s
and
" = ugm*k s+ (—2uem*K* — Sugm?kt — 6miugr® — dmrtug) s

+ (Mugm?&* + ugm*sk* + 6mrtug + 6m3ugr®) s

(17)

(18)
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Now, substituting (17) and (18) into (8) leads to a homogeneous polynomial in s on its
left-hand side. After simplification by the factor uy s™, the ODE (8) reduces to

a ug?

— 5P (—1leCm?k* —eCm*k* —6eCmr* —6eCm’ k) s*
(p+1)

+ (—pm? K —pmr* +2eCm* k* + 8 COm*k* + 6 Om? k* +4eCmk*) s?

—CH+um?*r* —eCm*k* =0. (19)

In order to obtain a nontrivial solution, the power mp of the first term of equation (19)
must be equal to 4 and all the coefficients of the polynomial in s on the left-hand side
must be zero. Setting the coefficients to zero yields a nonlinear algebraic system of three
equations for the three unknowns C', xk and uy,

( (_176502m4_256€fn4_2480/@4_38483(7/{4+au0p):0,
P p P p p+1
4 512e C'k? 128 C'k?> 384¢C k%>  16eC K?
—16 0 -2 AN AR nLE. "o, (20)
p p p p p p
eCr? 16 p1 K2
| 26 - O =0,

The analytical solution of this nonlinear system (20) can be obtained using Maple. After
simplifications, we get the following exact and real expressions for the celerity C, wave
number k£ and wave amplitude ug as functions of the given parameters and coefficients p,
a, p and ¢ of the generalized quintic regularized long wave equation (2).

256 64 € p? + 256
C:i\/ €+ 064deps + 5p7 (21)
d4e (P> +4p+38)

K=+ P (22)

T /2565 + 6dep? + 256ep

1

o 2p (25p° +70p° +-80p + 32+ 3p?) p
a (p?+4p+8)\/256¢e+ 64ep? +256ep|

From (16) and the previous relation for the celerity C', wave number x and wave amplitude
ug , we finally deduce an explicit expression for this exact solution,

4

u(z,t) = ug [sech (k(x — zg — Ct))|P . (24)

Ug (23)

It is easy to verify that (24) satisfies the generalized quintic regularized long wave equa-
tion (2) and also satisfies the assumptions (6) and (7). Unlike solitary wave solution of the
gKdV equation (1), which are possible for all wave speeds, the solitary wave (24) exists
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for only one particular wave speed (21), for any specified values of the parameters and
coefficients p, a, p and €. Moreover, the wave number & is independent of the coefficient u
and depends only on p and e. Although equation (2) can be considered for modeling the
effects of a high order singular perturbation (in the limit ¢ — 0) to the gKdV equation,
its solitary wave solution (24) is fairly localized and definitely is a nonperturbative solu-
tion in the sense that this solution does not converge to the gKdV solitary wave solution
as given by (15).

3. CONSERVATION LAWS AND INVARIANTS OF MOTION

A conservation law in differential equation form can be written as T; + X, = 0, in which
the “density” T and the “flux” X are polynomials in the solution u and its xz-derivatives.
If both 7" and X, are integrable over the domain (—oco,+00), then the assumption that
X — 0as|z] — oo, implies that the conservation law can be integrated over all z
to yield

d +o0 +o0
T (/ de) =0 or / T'dx = constant. (25)

—00 —0C

The intergral of 7', over the entire spatial domain is therefore invariant with time and
usually called an invariant of motion or a constant of motion. The KdV equation itself
is already in conservation form (i.e. T = u, X = ug + 3u?). In the late 1960’s Miura
et al. [9] discovered that the KdV equation admits an infinite number of conservation
laws and forms a completely integrable Hamiltonian system. Olver [11] has shown that
the RLW equation, (u; + u, + wu, — pug; = 0), has only three non-trivial conservation
laws and therefore is not an integrable PDE. These conservation laws for water waves
are the equivalents of the conservation of mass, momentum and energy. Recently, Hamdi
et al. [5]) identified three conservation laws for the generalized equal width (EW) wave
equation, u; + auPu, — puL: = 0, and derived analytical expressions for the corresponding
invariants of motion.

In this section, we first derive three conservation laws for the generalized quintic reg-
ularized long wave equations (2) . The first conservation law is obtained directly from (2)
by rewriting it in the form 7; + X, = 0 as follows,

(u); + ( uP o g, + 8umm) =0. (26)

T

(p+1)

The second conservation law is derived by multiplying the equation (u; + auPu, + ptyq +
EUtzzze = 0) by 2u. After performing several integrations by parts and simplifications we
have,

2a
(u2 + 5u§m)t + (muer2 + 2 Uy — JU2 A+ 26U Upggy — 26Uy utm) =0. (27)

T

The third conservation law is more complicated to derive as it requires less obvious sub-
stitutions. After several integrations by parts and tedious manipulations the resulting
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quantity can be expressed in conservation form 7; + X, = 0 as,

2a/up+2 2 a u (p+1) 2aup+]_

— 2% Uy Uy + p2U2, + 200 UP UZ — 20E Uy Utggaw + 2IE Uy Utpg + € utmw> =0. (28)

T

These three conservation laws can now be integrated easily with respect to x over a large
but finite spatial domain [z, zy| instead of [—00, +00] to obtain the intermediate results

8 *u a 1 1
_ d ( (p+1) (p+ )> =0
at/“ U x+(p+1) Ugs —uj ,

o [™ 2
5 / (u* +eul,)dz + T J:L2) <ug)+2) u%’“)) =0, (29)
TL

0 / v ( 2aurt? 2> a’ 2p+1) _ 2pH)
— —— — uu; dx—l——(u —u >:0,
0t Joy \(P+1)(p+2) (p+1)2 \Y -

after simplifications. In these equations, u; = u(xp,t) and uy = u(zy,t) are time-

invariant constants at the domain boundaries. In the simplifications, the terms [u,,|;V,

[utxxm}g;La [Uum]ﬁg, [UQUmm]xLa [uutmmm]xLa [uaxutmx}mLa [uxux:c:c]va [u2ux]x ) [Upu?c]x ’ [ua:utzz:m:]zg

and [UyeUsees]30 are zero at the boundaries (assumptions (6)). Equation (29) can now be
integrated with respect to t to yield

TU
i = / wdz +

(ug)ﬂ) B u%u-l—l)) .

o (p+1)
vy 2 2a (p+2) (p+2)
Cy = (v’ +eul,)de + —— (uU —uy >t, (30)
or (p+2)
Ty 2aup+2 2 5 1 9 1
O:/ (— )dx+—(u(p+>—u(p+))t.
YL, \ D +2) (p+1)2 \7 r

These invariants of motion are determined over a large but finite length spatial domain
when the solution u(z,t) of (2) is constant but not necessarily zero at the domain bound-
aries (assumptions (6)). The extra terms stem directly from the convection of mass,
momentum and energy into and out of the lower and upper boundaries of the spatial
domain. During the whole period of time in the course of which the waves propagate
inside the domain [z, zy], these invariants of motion remain conserved and equal to their
original values that are well determined initially at ¢ = 0. Note that during numeri-
cal computations that provide solutions to (2), €y, Cy and C3 can be calculated after
each successive time step over the entire spatial domain x; < x < zy that contains the
wave motion, such that the conservation properties of the numerical algorithm can be
monitored and thereby assessed. This approach for the derivation of these invariants of
motion (30) is general and can be easily applied for finding similar invariants of motion
for other general types of KAV and RLW equations.
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In this last section we will derive analytic expressions for the three invariants of motion
corresponding to the solitary wave solutions (24) of (2). For simplicity, the invariants are
given for p = 1. However, the evaluation of these invariants for any given value of the or-
der p (p > 1) is straightforward (consists in a simple change of the value of p in the Maple
script). Since these invariants are independent of time and therefore have the same value
at any time t, they will be evaluated at the initial state t = 0 for solitary waves initially
located at any arbitrary position 2 o. We will suppose that z o = 0 and [z, zy] = [ L, L].

The first invariant of motion corresponds to the conservation of mass. It can be computed
in Maple for the solitary wave profile (24) over the entire spatial domain (—oo, +00) as
described in Hamdi et al. [5],

/°° 73571’\/6/1

u(z,t) do = g - (31)

o

The second invariant of motion represents the conservation of energy, which can be also
evaluated using Maple,

+oe 2118515 p? V6
/ e al @)

2 2
(u* +euiy) dv = Soo0es o

o

Using Maple, the third invariant is given by

/+°° 2aut? ) de — 1225 (=13 +1057) V6 i
_ (p+1)(p+2) @ 158184 £(5/4) g2

o0

4. CONCLUSION

In this study, a new evolution model equation is derived by coupling the generalized
Korteweg-de Vries equation, which includes nonlinear terms of any order and cubic disper-
sion, with the quintic regularized long wave equation, which includes fifth order dispersion.
A simple and direct method using Maple is devised for finding exact and explicit solitary
wave solutions for this new equation. The analytical construction of such solitary waves
is an obvious proof of existence of solutions for this equation. These solitary waves are
localized traveling waves that tend asymptotically to zero at large distances and are non-
pertubative solutions (in the sense that for small perturbations they do not converge to
the generalized Korteweg-de Vries equation solitary wave solutions). Analytical expres-
sions for three conservation laws and for three invariants of motion for these solitary wave
solutions are also derived. The accuracy and stability of numerical schemes for the solu-
tion of these general model equations can be assessed using, as test problems, the new
exact solutions. Their conservation properties can also be verified using the analytical
expressions of the constants of motion. These verification tools for these evolutionary
partial differential equations are implemented in a method of lines solver that is available
from the authors [3]. The approach that we introduced for finding exact solitary wave
solutions and conservation laws, is general and can be used for a wide class of nonlinear
dispersive wave equations, such as general types of KdV-like and RLW-like equations.
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