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Abstract

A forward starting CDO is a single tranche CDO with a specified premium starting at a

specified future time. Pricing and hedging forward starting CDOs has become an active

research topic. We present a method for pricing a forward starting CDO by converting

it to an equivalent synthetic CDO. The value of the forward starting CDO can then

be computed by the well developed methods for pricing the equivalent synthetic one.

We illustrate our method using the industry-standard Gaussian-factor-copula model.

Numerical results demonstrate the accuracy and efficiency of our method.

1 Introduction

A forward starting CDO is a forward contract obligating the holder to buy or sell protection

on a specified CDO tranche for a specified periodic premium at a specified future time. For

example, a forward starting CDO might obligate the holder to buy protection on a CDO

tranche with attachment point a and detachment point b over a future period of [T, T ∗] for a

predetermined spread s. Hence, the maturity of the forward contract is T , and the maturity
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of the forward starting CDO is T ∗. At time T , the contract turns into a single tranche CDO

over [T, T ∗] with attachment point (a+LT ) and detachment point (b+LT ), where LT is the

pool losses before T .

Pricing and hedging of forward starting CDOs has become an active research area. The

most common approach is Monte Carlo simulation. Such methods are flexible, but are com-

putationally expensive. Therefore, more efficient analytical or semi-analytical approaches

are being developed by researchers. Bennani [4], Schönbucher [14], and Sidenius, Piterbarg,

and Andersen [15] propose a dynamic modeling approach to capture the evolution of the ag-

gregate portfolio losses. In order to price forward starting CDOs, they first simulate the pool

losses LT . Conditional on the simulated path, they price the forward contract by specifying

the dynamics of the aggregated losses over [T, T ∗]. The approximation of LT constrains the

accuracy and efficiency of these methods. In addition, their models require a large amount

of data to calibrate, so they are not applicable to bespoke CDOs now.

Another class of forward starting CDOs, in which the tranche attachment and detach-

ment points remain the same as a and b at time T , is straightforward to price using methods

for synthetic CDOs, as shown in Hull and White [7]. For this type of contract, Hull and

White [6] introduce a relatively simple dynamic process. They model the dynamics of the

representative company’s cumulative default probability by a simple jump process in the

form of a binomial tree. In the homogeneous pool, all underlying companies have the same

cumulative default probability, while in the heterogenous pool, it is possible to find a rep-

resentative company matching the CDS spreads of the underlying pool. Thus, the forward

starting CDOs can be priced through the dynamics of the representative company. Walker

[17] extracts the tranche loss distributions from the market quotes, then the pricing of for-

ward starting CDOs becomes straightforward with known tranche loss distributions. For

nonstandard tranches, he employs an interpolation and extrapolation process.

In this paper, we price the first type of forward starting CDOs (with attachment point

(a+LT ) and detachment point (b+LT ) at time T ) by converting it to an equivalent synthetic

CDO and then pricing the equivalent synthetic one based on the market-standard Gaussian-
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factor-copula model. Our approach avoids the consideration of the pool losses before T

and is applicable to both index tranches and bespoke CDOs. (While preparing this paper,

we learned that Ben De Prisco and Alex Kreinin [13] developed a similar method to price

forward starting CDOs and Leif Andersen applied a similar approach to numerically test the

correlation of losses across time in forward starting CDOs in his recent paper [1], although

the method is not explained in detail there.)

The rest of the paper is organized as follows. Section 2 describes the pricing equations

for forward starting CDOs. Section 3 derives a method to convert forward starting CDOs

to equivalent synthetic CDOs. Section 4 reviews the widely used Gaussian factor copula

model. Section 5 introduces a valuation method for synthetic CDOs based on the conditional

independence framework. Section 6 tests two numerical examples. Section 7 discusses the

extension of our method. Section 8 concludes the paper.

2 Pricing equation

In a forward starting CDO, the protection seller absorbs the pool losses specified by the

tranche structure. That is, if the pool losses over [T, T ∗] are less than the tranche attachment

point a, the seller does not suffer any loss; otherwise, the seller absorbs the losses up to the

tranche size S = b − a. In return for the protection, the buyer pays periodic premiums at

specified times T1 < T2 < . . . < Tn = T ∗, where Ti > T = T0, for i = 1, . . . , n.

We consider a forward starting CDO containing K instruments with recovery-adjusted

notional value Nk for name k in the original pool. Assume that the recovery rates are

constant, and the interest rate process is deterministic. Let di denote the discount factors

corresponding to Ti. Denote the original pool losses up to time Ti by Li, then the effective

pool losses over [T, Ti] is L̂i = Li − LT . Therefore, the losses absorbed by the specified

tranche are

Li = min(S, (L̂i − a)+), where x+ = max(x, 0) (1)

In general, valuation of a CDO tranche balances the expectation of the present values of
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the premium payments (premium leg) against the effective tranche losses (default leg), such

that

E

[

n
∑

i=1

s(S − Li)(Ti − Ti−1)di

]

= E

[

n
∑

i=1

(Li − Li−1)di

]

(2)

The fair spread s is therefore given by

s =
E
[
∑n

i=1(Li − Li−1)di

]

E
[
∑n

i=1(S − Li)(Ti − Ti−1)di

] =

∑n
i=1(ELi − ELi−1)di

∑n
i=1(S − ELi)(Ti − Ti−1)di

Alternately, if the spread is set, the value of the forward starting CDO is the difference

between the two legs:

Vfwd =

n
∑

i=1

s(S − ELi)(Ti − Ti−1)di −

n
∑

i=1

(ELi − ELi−1)di

Therefore, the problem is reduced to the computation of the mean tranche losses, ELi.

3 Forward starting CDOs to synthetic CDOs

From (1), we know that the expectation of the tranche losses ELi is determined by the

distribution of the effective pool losses L̂i. If we denote the default time of name k by τk

and define the indicator function 1{τk≤t} by

1{τk≤t} =















1, τk ≤ t

0, otherwise

then we have

L̂i = Li − LT =

K
∑

k=1

Nk1{τk≤Ti} −

K
∑

k=1

Nk1{τk≤T} =

K
∑

k=1

Nk1{T<τk≤Ti} (3)

The right most sum in (3) is the expression of the pool losses in a synthetic CDO starting at

time T . Therefore, the pool losses in our forward starting CDOs are equivalent to the pool
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losses in this synthetic CDO. The distributions of the effective pool losses L̂i is determined

by whether the underlying names default in [T, Ti], and they can be computed through the

equivalent synthetic CDO with modified default probabilities. That is, instead of using the

probability that name k defaults before Ti in the synthetic CDO, we use the probability that

name k defaults during the period [T, Ti] in the equivalent synthetic CDO.

Remark: According to the argument above, a synthetic CDO can be treated as a special

case of a forward starting CDO with T = 0.

In the next section, we specify the default process for each name and the correlation

structure of the default events needed to evaluate ELi. This will allow us to price forward

starting CDOs using the well-known methods for pricing the equivalent synthetic CDO.

4 Gaussian factor copula model

Due to their tractability, Gaussian factor copula models are widely used to specify a joint

distribution for default times consistent with their marginal distribution. A one factor model

was first introduced by Vasicek [16] to evaluate the loan loss distribution, and the Gaussian

copula was first applied to multi-name credit derivatives by Li [11]. After that, the model

was generalized by Andersen, Sidenius, and Basu [3], Andersen and Sidenius [2], Hull and

White [5], and Laurent and Gregory [9], to name just a few. In this section, we review the

one-factor Gaussian copula model to illustrate the conditional independence framework and

introduce the conditional forward default probabilities.

4.1 One factor copula

Assume the risk-neutral (cumulative) default probabilities

πk(t) = P(τk ≤ t), k = 1, 2, . . . , K
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are known1. In order to generate the dependence structure of default times, we introduce

random variables Uk, such that

Uk = βkX + σkεk, for k = 1, 2, . . . , K (4)

where X is the systematic risk factor reflecting the health of the macroeconomic environment;

εk are idiosyncratic risk factors, which are uncorrelated with each other and also uncorrelated

with X; the constants βk and σk, satisfying β2
k + σ2

k = 1, are assumed to be known2. The

random variables X and εk follow zero-mean unit-variance distributions, so the correlation

between Ui and Uj is βiβj.

The default times τk and the random variables Uk are connected by a percentile-to-

percentile transformation, such that

πk(t) = P(τk ≤ t) = P(Uk ≤ uk(t))

where each uk(t) can be viewed as a default barrier. Thus the dependence among default

times is captured by the common factor X. If we assume X and εk follow standard normal

distributions, each Uk also follows a standard normal distribution. Hence we have

uk(t) = Φ−1(πk(t)). (5)

where Φ is the standard normal cumulative distribution function.

Conditional on a particular value x of X, the conditional risk-neutral default probabilities

are defined as

πk(t, x) ≡ P(τk ≤ t | X = x) = P(Uk ≤ uk(t) | X = x) (6)

1Usually, the risk-neutral default probabilities are implied from the market price of defaultable bonds or
credit default swaps. For more details, see [10].

2Generally, the correlation factors βk are calculated from the correlation matrix by principal component
analysis as proposed by Andersen, Sidenius, and Basu [3]. The correlation matrix is usually estimated from
the historical correlations of asset returns.
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Substituting (4) and (5) into (6), we have

πk(t, x) = P
[

βkx + σkεk ≤ Φ−1(πk(t))
]

= Φ

[

Φ−1(πk(t)) − βkx

σk

]

In this framework, the default events of the names are assumed to be conditionally inde-

pendent. Thus, the problem of correlated names is reduced to the problem of independent

names. The mean tranche losses ELi satisfies

ELi =

∫ ∞

−∞

Ex[Li]dΦ(x) (7)

where Ex[Li] = Ex[min(S, (L̂i − a)+)] is the expectation of Li conditional on a specified

value x of X; and L̂i =
∑K

k=1 Nk1{uk(T )<Uk≤uk(Ti)}, where 1{uk(T )<Uk≤uk(Ti)} are mutually

independent, conditional on X = x. Therefore, if we have the conditional distributions of

1{uk(T )<Uk≤uk(Ti)}, the conditional distributions of L̂i can be computed easily, as can Ex[Li].

To approximate the integral (7), we use a quadrature rule, such as the Gaussian-Legendre

rule or the Gaussian-Hermite rule. Thus, the integral (7) reduces to

ELi ≈
M

∑

m=1

wmExm
[min(S, (L̂i − a)+)]

where the wm and xm are the quadrature weights and nodes, respectively. Therefore, the

main challenge in CDO pricing lies in the evaluation of the distribution of L̂i, conditional

on a given value x of X.

4.2 Conditional forward default probabilities

Conditional on a given x, to compute the distributions of L̂i, we need to specify the distri-

butions of 1{T<τk≤Ti}, which are equal to the conditional distributions of 1{uk(T )<Uk≤uk(Ti)}.

To this end, we introduce conditional forward default probabilities

π̂k(t, x) = πk(t, x) − πk(T, x), for t ≥ T (8)
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so that the conditional distributions of 1{T<τk≤Ti} satisfy

Px(1{T<τk≤Ti} = 1) = π̂k(Ti, x)

Px(1{T<τk≤Ti} = 0) = 1 − π̂k(Ti, x)

where Px is the probability conditional on X = x. Armed with the conditional forward

default probabilities, the conditional distribution of L̂i for a forward starting CDO can be

computed using the methods developed for synthetic CDOs.

5 Valuation methods for synthetic CDOs

Based on the conditionally independent framework, researchers have developed many meth-

ods to evaluate the conditional loss distribution for synthetic CDOs. There are generally

two kinds of approaches: the first one computes the conditional loss distribution exactly

by a recursive relationship or the convolution technique, e.g., Andersen, Sidenius, and Basu

[3], Hull and White [5], Laurent and Gregory [9], Jackson, Kreinin, and Ma [8]; the second

approach computes the conditional loss distribution approximately by, for example, the nor-

mal power or compound Poisson approximations, e.g., De Prisco, Iscoe, and Kreinin [12] and

Jackson, Kreinin, and Ma [8]. Here we review one of the exact methods – JKM proposed by

Jackson, Kreinin, and Ma [8] – and employ it to solve our numerical examples in the next

section. Other methods for pricing synthetic CDOs are equally applicable.

A homogeneous pool has identical recovery-adjusted notional values, denoted by N1,

but different default probabilities and correlation factors. Hence, conditional on a specified

common factor x, the pool losses satisfy

L̂i =

K
∑

k=1

Nk1{T<τk≤Ti} = N1

K
∑

k=1

1{T<τk≤Ti}

Therefore, we can compute the conditional distribution of L̂i through computing the condi-
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tional distribution of the number of defaults
∑K

k=1 1{T<τk≤Ti}.

Suppose the conditional distribution of the number of defaults over a specified time

horizon [T, Ti] in a homogeneous pool with k names is already known. Denote it by Vk =

(pk,k, pk,k−1, . . . , pk,0)
T , where pk,j = Px(

∑k
l=1 1{T<τl≤Ti} = j). The conditional distribution

of the number of defaults in a homogeneous pool containing these first k names plus the

(k + 1)st name with conditional forward default probability Qk+1 = π̂k+1(Ti, x) satisfies

Vk+1 =

























pk+1,k+1

pk+1,k

...

pk+1,1

pk+1,0

























=







Vk 0

0 Vk













Qk+1

1 − Qk+1







Using this relationship, VK can be computed after K − 1 iterations with initial value V1 =

(p1,1, p1,0)
T = (Q1, 1 − Q1)

T . The method has been proved numerically stable by Jackson,

Kreinin, and Ma [8].

An inhomogeneous pool, which has different recovery-adjusted notional values, different

default probabilities, and different correlation factors, can be divided into I small homo-

geneous pools with notionals N1, N2, . . . , NI . The conditional loss distribution for the ith

group can be computed using the method above. We denote it by (pi,0, . . . , pi,di
), where di

is the maximum number of defaults in group i. Suppose the conditional loss distribution

of the first i groups is available. Denote it by (p
(i)
0 , . . . , p

(i)
Si

), where p
(i)
s is the probability

that s units of the pool default out of the first i groups, for s = 0, 1, . . . , Si =
∑i

j=1 djNj .

The conditional loss distribution of the pool containing these first i groups plus the (i+1)st

group satisfies

p(i+1)
s =

∑

l ∈ {0, . . . , Si}
(s − l)/Ni+1 ∈ {0, . . . , di+1}

p
(i)
l ·pi+1,(s−l)/Ni+1

, for s = 0, 1, . . . , Si+1 = Si+di+1Ni+1
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To start the iteration, we need to initialize the conditional loss distribution of the first group

(p
(1)
0 , p

(i)
1 , . . . , p

(i)
d1N1

) by setting

p(1)
s =















p1,s/N1
, s/N1 ∈ {0, 1, . . . , d1}

0, otherwise

6 Numerical examples

We compare the results generated by the Monte Carlo method to those obtained by our

analytical method. The numerical experiments are based on two forward starting CDOs:

one is a homogeneous pool; the other is an inhomogeneous pool. The contracts are 5-year

CDOs starting one year later with annual premium payments, i.e., T = T0 = 1, T1 = 2,

. . ., T5 = 6 = T ∗. The CDO tranche structures are described in Table 1. The continuously

compounded interest rates are listed in Table 2. The recovery rate of the instruments in

the pool is 40%. The risk-neutral cumulative default probabilities for two credit ratings are

listed in Table 3. The pool structure of the inhomogeneous CDO is defined in Table 4, while

the homogenous pool has the same structure except that the notional values are 30 for all

names.

Tranche Attachment Detachment
Super-senior 12.1% 100%
Senior 6.1% 12.1%
Mezzanine 4% 6.1%
Junior 3% 4%
Equity 0% 3%

Table 1: CDO tranche structure

time 1Y 2Y 3Y 4Y 5Y 6Y
Rate 0.046 0.050 0.056 0.058 0.060 0.061

Table 2: Risk-free interest rate curve

We employ Latin hypercube sampling to accelerate the Monte Carlo simulation. Each

experiment consists of 100,000 trials, and 100 runs (with different seeds) of each experiment
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Credit Time
rating 1Y 2Y 3Y 4Y 5Y 6Y
Baa2 0.0007 0.0030 0.0068 0.0119 0.0182 0.0223
Baa3 0.0044 0.0102 0.0175 0.0266 0.0372 0.0485

Table 3: Risk-neutral cumulative default probabilities

Notional Credit Rating βk Quantity
10 Baa2 0.5 5
10 Baa3 0.5 2
10 Baa2 0.6 5
10 Baa3 0.6 5
10 Baa3 0.7 4
10 Baa3 0.8 4
20 Baa3 0.5 7
20 Baa2 0.6 10
20 Baa3 0.6 8
30 Baa2 0.5 15
30 Baa3 0.5 10
60 Baa2 0.4 10
60 Baa2 0.4 8
60 Baa3 0.5 7

Table 4: Inhomogeneous pool structure

are made. Base on the results of these 100 experiments, we calculate the mean and the 95%

non-parametric confidence interval. Table 5 presents the risk premiums for these two forward

starting CDOs. The results demonstrate that our method is accurate for the valuation of

forward starting CDOs.

The performance of the two methods are compared in Matlab 7 on a Celeron 2.6GHZ

PC with 256M RAM. For the homogeneous forward starting CDO, the running time of one

Monte Carlo experiment with 100,000 trials is about 14 times that used by our method; for

the inhomogeneous forward starting CDO, the Monte Carlo method uses about 6 times the

CPU time used by our method.
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Pool Tranche Monte Carlo 95% CI Analytic
Equity 1151.57 [1148.56, 1154.66] 1151.79
Junior 380.61 [377.96, 383.35] 380.82

Homogeneous Mezzanine 232.47 [230.45, 234.18] 232.57
Senior 80.39 [79.52, 81.30] 80.40
Super-Senior 1.24 [1.18, 1.29] 1.24
Equity 1208.57 [1204.12, 1212.46] 1208.66
Junior 406.37 [403.53, 409.47] 406.30

Inhomogeneous Mezzanine 228.83 [227.06, 230.71] 228.76
Senior 68.02 [66.92, 68.95] 67.95
Super-Senior 0.77 [0.72, 0.81] 0.76

Table 5: Tranche premiums (bps)

7 Extensions of the method

Besides standard forward starting CDOs, our method works well for the exotic forward

starting contracts with prematurity underlying assets. In the normal contract, we assume

that all underlying assets mature after T ∗; in the prematurity contract, we allow some

instruments to mature before T ∗.

Suppose name j’s maturity tj satisfies T < tj < T ∗. Before tj , the contract is the same as

the normal one. Therefore, conditional on X = x, the computation of L̂i’s distribution is the

same. After tj , we still have L̂i =
∑K

k=1 Nk1{T<τk≤Ti}, but we need to modify the conditional

distribution of 1{T<τj≤Ti} to reflect the prematurity of name j. After maturity, name j

will never default, so its default probability will never change. Therefore, the conditional

distribution of 1{T<τj≤Ti} for tj ≤ Ti satisfies

Px(1{T<τk≤Ti} = 1) = Px(1{T<τk≤tj} = 1)

Px(1{T<τk≤Ti} = 0) = Px(1{T<τk≤tj} = 0)

The modification can be realized by changing the conditional forward default probabilities

of name j in (8) to

π̂j(t, x) =















πj(t, x) − πj(T, x), t ≤ tj

πj(tj , x) − πj(T, x), t > tj
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8 Conclusions

In this paper, we study a valuation method for forward starting CDOs based on the Gaussian

factor copula model. The effective pool losses in forward starting CDOs are converted to

the pool losses in the equivalent synthetic CDOs. Based on the conditional independence

framework, computing the conditional distribution of the effective pool losses in forward

starting CDOs is converted to computing the conditional pool loss distribution in the equiv-

alent synthetic CDO. The latter problem is well studied by researchers. We apply one of

the loss distribution evaluation methods in our numerical examples. The numerical results

for both homogeneous and inhomogeneous forward starting CDOs demonstrate the accuracy

and efficiency of our method. The method can also be applied to the prematurity problem

by modifying the conditional forward default probabilities.

Our method cannot be applied directly to all other classes of credit derivatives. For

example, it does not apply to forward starting basket default swaps (BDS), because, in a

forward starting BDS, the distribution of the terminal default time depends on the pool

losses before T . Our method works for forward starting CDOs, because, the pool losses

before T do not influence the effective pool losses, and hence the tranche losses.

Future work includes calibrating the correlation factors from market quotes and pricing

options on a CDO tranche.

Acknowledgments

The authors thank Alex Kreinin for proposing this interesting topic, for several very infor-

mative discussions that lead to the development of our method, and for his helpful comments

on earlier drafts of the paper.

13



References

[1] L. Andersen. Portfolio losses in factor models: Term structures and intertemporal loss

dependence. Working paper, September 2006.

[2] L. Andersen and J. Sidenius. Extensions to the Gaussian copula: Random recovery and

random factor loadings. Journal of Credit Risk, 1:29–70, 2004.

[3] L. Andersen, J. Sidenius, and S. Basu. All your hedges in one basket. Risk, 16(11):67–72,

2003.

[4] N. Bennani. The forward loss model: A dynamic term structure approach for the pricing

of portfolio credit derivatives. Working paper, 2005.

[5] J. Hull and A. White. Valuation of a CDO and an nth to default CDS without Monte

Carlo simulation. Journal of Derivatives, 12(2):8–23, Winter 2004.

[6] J. Hull and A. White. Dynamic models of portfolio credit risk: A simplified approach.

Working paper, December 2006.

[7] J. Hull and A. White. Forwards and European options on CDO tranches. Working

paper, December 2006.

[8] K. Jackson, A. Kreinin, and X. Ma. Loss distribution evaluation for synthetic CDOs.

Working paper, December 2005.

[9] J. Laurent and J. Gregory. Basket default swaps, CDOs and factor copulas. Journal of

Risk, 7:103–122, 2005.

[10] D. Li. Constructing a credit curve. Credit Risk, pages 40–44, 1998.

[11] D. Li. On default correlation: A copula approach. Journal of Fixed Income, 9:43–54,

2000.

[12] B. De Prisco, I. Iscoe, and A. Kreinin. Loss in translation. Risk, June 2005.

14



[13] B. De Prisco and A. Kreinin. Valuation of forward-starting CDOs. Working paper,

September 2006.
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