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Abstract

A basket default swap (BDS) is a credit derivative with contingent payments that

are triggered by a combination of default events of the reference entities. A forward-

starting basket default swap (FBDS) is a BDS starting at a specified future time.

Existing analytic or semi-analytic methods for pricing FBDS are time consuming due

to the large number of possible default combinations before the BDS starts. This paper

develops a fast approximation method for FBDS based on the conditional independence

framework. The method converts the pricing of a FBDS to an equivalent BDS pricing

problem and combines Monte Carlo simulation with an analytic approach to achieve an

effective method. This hybrid method is a novel technique which can be viewed either as

a means to accelerate the convergence of Monte Carlo simulation or as a way to estimate

parameters in an analytic method that are difficult to compute directly. Numerical

results demonstrate the accuracy and efficiency of the proposed hybrid method.
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1 Introduction

The credit derivative market has grown explosively during the last 10 years. Among these

credit derivatives, the most sophisticated ones are the products associated with a portfolio

of underlying assets, such as basket default swaps (BDS) and collateralized debt obligations

(CDOs). Recently, new credit derivatives have emerged in more exotic forms, including,

for example, forward-starting BDS (FBDS), forward-starting CDOs (FCDOs), options on

tranches and leveraged super senior tranches. In this paper, we concentrate on the valuation

of FBDS based on the conditional independence framework.

A basket default swap (BDS) is a credit derivative, the underlying assets of which are

corporate bonds or other assets subject to credit risk. In an mth-to-default BDS, the pro-

tection buyer pays a specified rate (known as the premium or spread) on a specified notional

principal periodically until the mth default occurs among the reference entities or until the

maturity of the contract. If the mth default happens prior to the maturity of the BDS, the

protection seller pays the losses caused by the mth default only to the protection buyer.

A forward-starting BDS is a forward contract obligating the holder to buy or sell a BDS

at a specified future time. For example, such a contract might obligate the holder to buy

five-year protection on a second-to-default BDS with 10 underlying assets. Suppose that the

contract starts one year later and the premium is 100 basis points (bps) per year. During the

first year, there is no payment between the buyer and seller. At the end of the first year, if

three names in the underlying pool have defaulted, the forward contract obligates the holder

to enter a five-year second-to-default BDS on the remaining seven reference entities. The

premium is 100 bps per year on the outstanding notional value.

In this paper, we denote the maturity date of the forward contract, or equivalently the

starting date of the BDS, by T ; the maturity date of the BDS by T ∗; and the premium
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dates by Ti, i = 1, . . . , n, where T = T0 < T1 < . . . < Tn = T ∗. Figure 1 illustrates possible

scenarios for an mth-to-default FBDS. Whether the BDS starts or not is determined by the

number of entities left in the basket at T : if less than m names survive till T , the contract

terminates without any payments as shown in case (a); if at least m entities survive till T ,

the BDS starts, and the cash flows are the same as those for a BDS starting at T , as shown

in cases (b) and (c).

(a) Less than m entities survive till T

| |

0 T0 = T

(b) At least m entities survive till T and the mth default does not occur in [T, T ∗]

| |

0 T0 = T Tn = T ∗T2T1

Spreads

(c) At least m entities survive till T and the mth default occurs in [T, T ∗]

Spreads

| | |

0 T0 = T T2T1

Terminal

Default Payment

Tn = T ∗

Figure 1: Cash flows for an mth-to-default FBDS

In this paper, if all the underlying names in the reference pool have identical loss-given-

defaults, identical default correlations and identical risk-neutral default probabilities, the

pool is called completely homogeneous. If the loss-given-defaults are the same, the pool is

termed homogeneous. Otherwise, the pool is referred to as inhomogeneous or heterogeneous.

Pricing and hedging of FBDS has become an active research area. The most common

approach is Monte Carlo simulation. Such methods are flexible, but are computationally

expensive. Therefore, more efficient analytical or semi-analytical approaches are being de-
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veloped by researchers. Zhang [13] developed a “conditional squared method” for FBDS:

first conditional on the common factor, then conditional on the outstanding pool at T . For a

completely homogeneous pool, the method performs effectively. However, for a homogeneous

or inhomogeneous pool, the total number of scenarios grows exponentially with the original

pool size. Therefore, the method is extremely time consuming: for some m, it costs more

than a Monte Carlo simulation. A similar conditional squared method was introduced for

a reset tranche and a forward-starting tranche by Baheti, Mashal and Naldi [4]. Recently,

a more efficient method for pricing a FCDO, that converts it to an equivalent CDO pricing

problem, was developed by Andersen [1] and Jackson and Zhang [8], independently. How-

ever, due to the contract property, these efficient methods for FCDOs can not be applied to

the valuation of FBDS directly.

The object of this paper is to develop a fast approximation method for the valuation of

FBDS. The method converts part of the FBDS valuation to an equivalent BDS valuation

problem, thereby avoiding the large number of possible default combinations. This trans-

formation approach is a generic method applicable to any model based on the conditional

independence framework. To complete the pricing, our new method combines Monte Carlo

simulation with the analytic approach to obtain an accurate and efficient hybrid method.

The Monte Carlo method generates a coarse approximation for an important parameter in

the efficient analytic method. This parameter can not easily be computed directly. Alter-

natively, the analytic method can be viewed as a means to accelerate the convergence of

Monte Carlo simulation. We believe this is the first time that such a hybrid method has

been proposed and applied in the quantitative finance area.

The rest of the paper is organized as follows. Section 2 derives the pricing equations for

FBDS. Section 3 describes the method to convert a FBDS into an equivalent BDS. Section

4 reviews the widely used Gaussian factor copula model. Section 5 introduces a valuation

method for BDS based on the conditional independence framework. Section 6 presents two

numerical examples. Section 7 discusses method sensitivity. Section 8 concludes the paper.
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2 Pricing equations

We assume the underlying pool contains K instruments with loss-given-default Nk for name

k. Assume that the recovery rates are constant, and the interest rate process is independent

of the default process of the basket. Let di denote the expected value of the risk-free discount

factor corresponding to Ti. Suppose no replacement of the underlying assets in the pool and

a constant premium or spread1 s. Without loss of generality, we assume that the default

payment happens at the nearest premium date following (or equal to) the terminal default

time, if it occurs before the contract maturity; and no accrued interest is paid out at the

terminal default time.

Let τk denote the default time of the kth name and set τk = ∞, if name k never defaults.

The terminal default time τ , which triggers the default payment, can be expressed as a

function of individual default times τk. We denote the loss of the FBDS at the terminal

default time by

L =















g(Nk), τ = τk ∈ (T, T ∗]

0, otherwise

where g(·) is a payoff function.

Let BT denote the set of names left in the basket at T . We also denote the number of

names in BT by |BT | and the probability distribution of BT ’s composition by P(BT ). The

event m ≤ |BT | ≤ K is the event that the BDS associated with the FBDS actually starts.

In general, the valuation of a FBDS balances the expectation of the present values of

the premium payments (premium leg) against the default payments (default leg), such that

EVprem = EVdef . Throughout the paper, E denotes the risk-neutral expectation with respect

to the risk-neutral probability P. To compute the expectation numerically, we introduce the

terminal default probability

Π
(k)
i = P(τ = τk ∈ (T, Ti], m ≤ |BT | ≤ K)

1This assumption assists us to compute a fair spread. If we are interested only in computing the value of
the contracts, the restriction can be relaxed and a nonconstant spread considered.
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We also define the survival indicator function by 1̄i = 1{τ>Ti, m≤|BT |≤K}. Its probability

distribution satisfies

Π̄i = P(1̄i = 1) = P
(

m ≤ |BT | ≤ K
)

−

K
∑

k=1

Π
(k)
i (1)

Under the assumptions above, the value of the default leg satisfies

EVdef =
K

∑

k=1

g(Nk)
n

∑

i=1

di

(

Π
(k)
i − Π

(k)
i−1

)

=
n

∑

i=1

di

K
∑

k=1

g(Nk)
(

Π
(k)
i − Π

(k)
i−1

)

(2)

Similarly, the value of the premium leg satisfies

EVprem = E

[

sNT 1̄i

i
∑

j=1

∆Tj · dj

]

= s
n

∑

i=1

∆Ti · di · E
[

NT 1̄i

]

(3)

where NT is the sum of the notational values of all names in BT , and ∆Ti = Ti − Ti−1.

Therefore, the fair spread can be computed by

s =
EVdef

DV01
=

∑n

i=1 di

∑K

k=1 g(Nk)
(

Π
(k)
i − Π

(k)
i−1

)

∑n

i=1 ∆Ti · di · E
[

NT 1̄i

] (4)

where DV01 ≡
∑n

i=1 ∆Ti · di · E
[

NT 1̄i

]

. Alternately, if the spread is set, the value of the

FBDS is the difference between the two legs:

Vfwd = EVprem − EVdef

3 FBDS to BDS

Define Π̂
(k)
i = P(τ = τk ∈ (T, Ti]). Then

Π̂
(k)
i = P(τ = τk ∈ (T, Ti], m ≤ |BT | ≤ K) + P(τ = τk ∈ (T, Ti], |BT | < m)

= Π
(k)
i + P(τ = τk ∈ (T, Ti], |BT | < m)
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However, if |BT | < m, the mth default could never happen. Therefore,

P(τ = τk ∈ (T, Ti], |BT | < m) = 0

Hence, we obtain Π
(k)
i = Π̂

(k)
i . Therefore, we can compute Π

(k)
i through Π̂

(k)
i , which is

independent of BT . Most importantly, Π̂
(k)
i is defined in the same form as a similar probability

used to value BDS in [6] and [9] with T = 0. Therefore, we can use the method for BDS

to compute the key probability Π
(k)
i with modified default probabilities. That is, instead of

using the probability of name k defaulting before time t, we use the probability of name k

defaulting in (T, t]. The starting pool of the BDS associated with the FBDS is random in the

original problem; after the transformation, the starting pool in the equivalent BDS contains

all the K names, which becomes certain. Therefore, we avoid the large combinatorial problem

due to the consideration of all the possible starting pools in the original formulation of the

problem.

To illustrate the transformation, we compute Π
(k)
i for a simple first-to-default FBDS and

its equivalent BDS. We assume τk are independent of each other and follow an exponential

distribution with constant intensity λk over time. Then, P(τk ∈ (t, t + dt]) = λk exp(−λkt)dt

for an infinitesimal dt. Without the transformation, the event τ = τk ∈ (t, t + dt] for the

first-to-default FBDS is equivalent to the event (τk ∈ (t, t + dt])∧
(

(τj ∈ (0, T ]) ∨ (τj >

t + dt), ∀j 6= k
)

. Therefore,

P(τ = τk ∈ (t, t + dt]) = P(τk ∈ (t, t + dt])
∏

j 6=k

(

P(τj ∈ (0, T ]) + P(τj > t + dt)
)

= λk exp(−λkt)dt
∏

j 6=k

(1 − exp(−λjT ) + exp(−λj(t + dt))) (5)

With the transformation, the modified probability π̂k(t) ≡ P(τk ≤ t) − P(τk ≤ T ) satisfies

π̂k(t) = exp(−λkT ) − exp(−λkt)
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The default intensity for π̂k(t) is still λk. However, these π̂k(t) are for the equivalent BDS.

In the BDS, the event τ = τk ∈ (t, t + dt] is equivalent to the event (τk ∈ (t, t + dt]) ∧ (τj >

t + dt, ∀j 6= k). Therefore,

P(τ = τk ∈ (t, t + dt]) = P(τk ∈ (t, t + dt])
∏

j 6=k

(P(τj > t + dt))

= λk exp(−λkt)dt
∏

j 6=k

(1 − π̂j(t + dt))

which is equal to (5). Therefore, Π
(k)
i =

∫ Ti

T
P(τ = τk ∈ (t, t+dt]) in the original FBDS is the

same as that in the equivalent BDS, which supports the correctness of the transformation.

Once Π
(k)
i is known, the computation of EVdef is straightforward following (2). To com-

pute EVprem or DV01, we need to compute the expectation E
[

NT 1̄i

]

. Suppose we know the

correlation ρi between NT and 1̄i, then E
[

NT 1̄i

]

can be computed from

ρi =
E
[

NT 1̄i

]

− E
[

NT

]

E
[

1̄i

]

√

var
(

NT

)

var
(

1̄i

)

(6)

where E
[

1̄i

]

= Π̄i and var
(

1̄i

)

= Π̄i

(

1 − Π̄i

)

. Once Π
(k)
i is known, the computation of Π̄i

defined in (1) is straightforward, since the term P
(

m ≤ |BT | ≤ K
)

can be computed by

the pool loss distribution methods for CDOs, e.g., [3], [10], [5] and [7]. Similarly, the terms

E
[

NT

]

and var
(

NT

)

are easy to compute with known pool loss distribution. Therefore,

E
[

NT 1̄i

]

can be computed by

E
[

NT 1̄i

]

= E
[

NT

]

Π̄i + ρi

√

var
(

NT

)

Π̄i

(

1 − Π̄i

)

(7)

Hence, we can compute the premium leg value and complete the valuation.

The only unknown variable in (7) is the correlation coefficient ρi. We propose to use

Monte Carlo simulation to approximate ρi. As we show later, the spread is not sensitive

to the value of the correlation coefficients. Therefore, a rough approximation only to the

ρi is needed. This is an important property of this application which contributes to the
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effectiveness of our hybrid method.

To compute the value of Π̂
(k)
i for FBDS, we need to compute the joint distribution of

K correlated random variables 1{T<τk≤Ti}. One effective approach is the conditional inde-

pendence framework. In the next section, we review the market-standard Gaussian factor

copula model — one example of the conditional independence framework.

4 Gaussian factor copula model

Due to their tractability, Gaussian factor copula models are widely used to specify a joint

distribution for default times consistent with their marginal distribution. A one factor model

was first introduced by Vasicek [12] to evaluate the loan loss distribution, and the Gaussian

copula was first applied to multi-name credit derivatives by Li [11]. After that, the model

was generalized by Andersen, Sidenius and Basu [3], Andersen and Sidenius [2], Hull and

White [5], and Laurent and Gregory [10], to name just a few.

Assume the risk-neutral (cumulative) default probabilities

πk(t) = P(τk ≤ t), k = 1, 2, . . . , K

are known. To generate the dependence structure of default times, we introduce random

variables Uk satisfying

Uk = βkX + σkεk, for k = 1, 2, . . . , K (8)

where X is the systematic risk factor reflecting the health of the macroeconomic environment;

εk are idiosyncratic risk factors, which are independent of each other and also independent

of X; the constants βk and σk, satisfying β2
k + σ2

k = 1, are assumed to be known. The

random variables X and εk are assumed to follow zero-mean unit-variance distributions, so

the correlation between Ui and Uj is βiβj.

The default times τk and the random variables Uk are connected by a percentile-to-
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percentile transformation, such that

πk(t) = P(τk ≤ t) = P(Uk ≤ uk(t))

where each uk(t) can be viewed as a default barrier. Thus the dependence among default

times is captured by the common factor X. In the Gaussian factor copula model, we assume

X and εk follow standard normal distributions. Consequently, each Uk also follows a standard

normal distribution. Hence we have

uk(t) = Φ−1(πk(t)). (9)

where Φ is the standard normal cumulative distribution function.

Conditional on a particular value x of X, the conditional risk-neutral default probabilities

are defined as

πk(t, x) ≡ P(τk ≤ t | X = x) = P(Uk ≤ uk(t) | X = x) (10)

Substituting (8) and (9) into (10), we have

πk(t, x) = P
[

βkx + σkεk ≤ Φ−1(πk(t))
]

= Φ

[

Φ−1(πk(t)) − βkx

σk

]

(11)

This is an example of a conditional independence framework: the default events of the

names are assumed to be conditionally independent. Thus, the problem of correlated names

is reduced to the problem of independent names. By (2) and (3), the mean values of the

default leg and premium leg for a FBDS can be evaluated as

EVdef =

∫ ∞

−∞

Ex[Vdef ]dΦ(x) =

∫ ∞

−∞

n
∑

i=1

di

(

K
∑

k=1

g(Nk)
(

Π
(k)
i (x) − Π

(k)
i−1(x)

)

)

dΦ(x) (12)
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EVprem = s

n
∑

i=1

∆Ti · di

(

E
[

NT

]

Π̄i + ρi

√

var
(

NT

)

Π̄i

(

1 − Π̄i

)

)

= s
n

∑

i=1

∆Ti · di

(

∫ ∞

−∞

Ex

[

NT

]

Π̄i(x) dΦ(x) + ρi

∫ ∞

−∞

√

varx(NT )Π̄i(x)
(

1 − Π̄i(x)
)

dΦ(x)
)

=

∫ ∞

−∞

s

n
∑

i=1

∆Ti · di

(

Ex

[

NT

]

Π̄i(x) + ρi

√

varx(NT )Π̄i(x)
(

1 − Π̄i(x)
)

)

dΦ(x) (13)

=

∫ ∞

−∞

Ex[Vprem]dΦ(x)

where Ex denotes the risk-neutral expectation with respect to the risk-neutral probability

Px, conditional on X = x. For simplicity, we denote the integrand of (13) by Ex[Vprem].

However, it is essential for computational efficiency that we use the unconditional ρi in (13),

rather than the conditional ρi(x), as would be expected from the definition of Ex[Vprem].

To approximate the integrals (12) and (13), we use a quadrature rule, such as the

Gaussian-Legendre rule or the Gaussian-Hermite rule. Thus, for example, the integral (12)

reduces to

EVdef ≈
M

∑

m=1

wmExm
[Vdef ] (14)

where the wm and xm are the quadrature weights and nodes, respectively. Therefore, the

main challenge in pricing a FBDS lies in computing Px(|BT |), Px(NT ), Π
(k)
i (x) and Π̄i(x),

conditional on a given value x of X.

4.1 Conditional forward default probabilities

Conditional on a given x, to compute the distribution of Π̂
(k)
i , we need to specify the distri-

bution of 1{T<τk≤Ti}, which is equal to the conditional distribution of 1{uk(T )<Uk≤uk(Ti)}. To

this end, we introduce conditional forward default probabilities

π̂k(t, x) = πk(t, x) − πk(T, x), for t ≥ T (15)

so that the conditional distribution of 1{T<τk≤Ti} satisfies Px(1{T<τk≤Ti} = 1) = π̂k(Ti, x).

Armed with the conditional forward default probabilities, the conditional terminal default
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probability Π̂
(k)
i for a FBDS can be computed using the methods developed for BDS discussed

in the next section. With the conditional default probabilities πk(T, x), the conditional

distribution of NT and |BT | can also be computed using the methods for CDOs or by brute

force to explore all the possible combinations.

4.2 Conditional forward default intensities

Besides the conditional forward default probabilities, to compute the conditional probability

Π̂
(k)
i (x) by the methods for BDS, we need to introduce the conditional forward default in-

tensities. Assume the conditional forward default distribution that name k defaults in (T, t]

follows the Cox process

Px(T < τk ≤ t) = 1 − exp (−Λk(t, x)) (16)

where

Λk(t, x) =

∫ t

T

λk(u, x)du (17)

and λk(·) is the conditional forward default intensity of the kth name. We know

Px(T < τk ≤ t) = π̂k(t, x) (18)

where π̂k(t, x) is given by (15). If we assume Λk(t, x) is linear between premium dates Ti,

then (17) implies that λk(t, x) is a piecewise constant function, such that

λk(t, x) = λk(Ti, x), for t ∈ (Ti−1, Ti]

Combining this result with (17), we have

Λk(Ti, x) = Λk(Ti−1, x) + λk(Ti, x) · ∆Ti
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from which, we obtain

λk(Ti, x) =
1

∆Ti

(

Λk(Ti, x) − Λk(Ti−1, x)
)

(19)

From (16) and (18), we know

Λk(Ti−1, x) = − ln
(

1 − π̂k(Ti−1, x)
)

Λk(Ti, x) = − ln
(

1 − π̂k(Ti, x)
)

Substituting these expressions for Λk(Ti−1, x) and Λk(Ti, x) into (19), we obtain

λk(Ti, x) =
1

∆Ti

ln
(1 − π̂k(Ti−1, x)

1 − π̂k(Ti, x)

)

, for i = 1, 2, . . . , n (20)

5 Terminal default probabilities

Available methods for BDS include the convolution technique by Laurent and Gregory [10]

and the recursive method based on the order statistics of individual default times by Iscoe

and Kreinin [6]. Here we review the recursive method in [6] and use it in our numerical

examples.

In a first-to-default BDS, the conditional probabilities ∆Π̂
(k)
i (x) = Px(τ = τk ∈ (Ti−1, Ti])

satisfy

∆Π̂
(k)
i (x) = Π̂

(k)
i (x) − Π̂

(k)
i−1(x) =

λk(Ti, x)
∑K

k=1 λk(Ti, x)

(

Π̄i−1(x) − Π̄i(x)
)

(21)

where λk(·) is the conditional forward default intensities defined in (20); and Π̄i(x) =
∏K

k=1

(

1 − π̂k(Ti, x)
)

.

For the mth-to-default BDS, Iscoe and Kreinin [6] derive the recursive relation between

the mth-to-default and the (m − 1)st-to-default contracts:

(m − 1)Pm(B) =
∑

j 6=k

Pm−1(B
[j]) − (K − m + 1)Pm−1(B)
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where Pm(B) = P(τ = τk ∈ (Ti−1, Ti]) for the mth-to-default BDS; and B[j] is the set of

names obtained by excluding name j from B . Naive implementation of this recursion causes

the recalculation of the same probabilities. To avoid the recalculation, use

Pm(B) =

m−1
∑

v=0

(−1)m−v−1

(

K − v − 1

m − v − 1

)

∑

J⊂B:|J |=v

P1(B
[J ])

where J is a subset of B and B[J ] = B \ J . Here, for simplicity, we give the recursion

for the unconditional probabilities, but a similar recursion is also valid for the conditional

probabilities.

6 Numerical results

Based on the methods described above, we propose the following steps for pricing FBDS:

1. Convert πk(Ti) to conditional default probabilities πk(Ti, x) using (11) and then com-

pute the conditional forward default probabilities π̂k(Ti, x) using (15);

2. Compute the conditional distribution Π
(k)
i (x) by the recursive method in Section 5 and

Px(m ≤ |BT | ≤ K) and Px(NT ) by the methods for CDOs as well as Π̄i(x) using (1),

Ex

[

NT

]

and varx(NT ) from Px(NT );

3. Run a Monte Carlo simulation to approximate the ρi in (6);

4. Evaluate Ex[Vdef ] and Ex[Vprem] by (12) and (13), respectively;

5. Approximate EVdef and EVprem using a quadrature rule (see (14));

6. Complete the computation using the pricing equations (4).

The numerical experiments are based on two FBDS: one is a homogeneous pool; the

other is an inhomogeneous pool. The contracts are 5-year BDS starting one year later

with quarterly premium payments, i.e., T = T0 = 1, Ti = 1 + 0.25i, for i = 1, . . . , 20.

The continuously compounded interest rates are 4% for each Ti. The recovery rate of the
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Name Notional Credit Rating βk

1 190 C4 0.5
2 80 C6 0.6
3 70 C1 0.9
4 360 C5 0.6
5 100 C2 0.5
6 200 C5 0.4
7 150 C5 0.7
8 123 C2 0.64
9 95 C5 0.55

10 107 C8 0.22

Table 1: Inhomogeneous FBDS pool

Time
Rating 1 2 3 4 5 6

C1 0.004535 0.011203 0.018947 0.027044 0.035605 0.045778
C2 0.005102 0.012604 0.021315 0.030425 0.040056 0.053843
C3 0.006802 0.016805 0.028420 0.040567 0.053408 0.070828
C4 0.009063 0.022369 0.037786 0.053868 0.070828 0.088059
C5 0.009704 0.023926 0.040369 0.057481 0.075479 0.100592
C6 0.010876 0.026843 0.045343 0.064642 0.084993 0.105671
C7 0.013586 0.033497 0.056517 0.080473 0.105671 0.132089
C8 0.013595 0.033553 0.056679 0.080802 0.106241 0.144459

Table 2: Part of risk-neutral cumulative default probabilities

instruments in the pool is 15%. The pool structure of the inhomogeneous FBDS is defined

in Table 1; the homogeneous pool has the same structure except that the notional values

are 100 for all names. Part of the risk-neutral cumulative default probabilities for different

credit ratings are listed in Table 2. The risk-neutral default probabilities for all time points

can be found at www.cs.toronto.edu/NA/DefaultProb.html.

Table 3 lists the premiums for the mth-to-default FBDS (m = 1, . . . , 4) computed by

the conditional squared method of Zhang [13] (column “Analytic ”), and our fast approx-

imation method described above (column “Approximation ”) with 103 trials in the Monte

Carlo simulation to approximate the correlation coefficients ρi. The table also lists the 95%

confidence interval of the spread computed by a Monte Carlo method (column “95% CI”).

The 95% confidence interval is computed as follows: each Monte Carlo experiment consists

of 106 trials; we repeat each Monte Carlo experiment 500 times; then, we compute the 95%
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Pool m 95% CI Analytic Approximation Rel Err
1 [104.66, 105.35] 105.00 105.07 6.98 × 10−4

Homogeneous 2 [35.70, 36.08] 35.90 35.92 7.00 × 10−4

Pool 3 [14.80, 15.08] 14.94 14.94 3.16 × 10−4

4 [6.29, 6.46] 6.38 6.38 2.81 × 10−5

1 [108.79, 109.75] 109.27 109.24 2.50 × 10−4

Inhomogeneous 2 [37.23, 37.72] 37.45 37.45 1.38 × 10−4

Pool 3 [15.18, 15.46] 15.32 15.32 7.52 × 10−5

4 [6.35, 6.57] 6.46 6.47 3.65 × 10−4

Table 3: FBDS premiums (bps)

Pool Method m = 1 m = 2 m = 3 m = 4
95% CI [104.66, 105.35] [35.70, 36.08] [14.80, 15.08] [6.29, 6.46]

Homogeneous 100 [104.64, 105.42] [35.82, 35.99] [14.92, 14.96] [6.37, 6.38]
Pool 1,000 [104.88, 105.11] [35.87, 35.93] [14.93, 14.95] [6.38, 6.38]

10,000 [104.96, 105.03] [35.89, 35.91] [14.94, 14.94] [6.38, 6.38]
95% CI [108.79, 109.75] [37.23, 37.72] [15.18, 15.46] [6.35, 6.57]

Inhomogeneous 100 [108.89, 109.69] [37.35, 37.55] [15.29, 15.34] [6.46, 6.47]
Pool 1,000 [109.14, 109.42] [37.42, 37.49] [15.31, 15.33] [6.46, 6.47]

10,000 [109.23, 109.31] [37.44, 37.47] [15.32, 15.33] [6.46, 6.47]

Table 4: 95% confidence interval comparison (bps)

confidence interval from the empirical distribution of those 500 samples. The last column of

Table 3 lists the relative errors of the spreads computed by our fast approximation method,

using the spreads computed by the analytic method for the exact solution. Table 4 compares

the 95% confidence interval computed by 106 trials of Monte Carlo simulation (row “95%

CI”) with those computed by our fast approximation method with 100, 1,000 and 10,000

trials (rows “100”, “1,000” and “10,000”, respectively). These tables demonstrate that our

fast approximation method is accurate for the valuation of FBDS.

For the homogeneous FBDS, the running time of the Monte Carlo simulation with 106

trials is about 400 times slower than our fast approximation method; for the inhomogeneous

FBDS, the running time of the Monte Carlo simulation is about 20 times slower than our

fast approximation method. Our fast approximation method is also faster than the analytic

method. For example, for the first-to-default homogeneous FBDS, the running time of

the analytic method is about 40 times slower than our fast approximation method. These
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comparisons demonstrate that our fast approximation method for FBDS outperforms both

the Monte Carlo method and the analytic method.

7 Sensitivity analysis

Since we use a Monte Carlo method to approximate the correlation coefficients ρi, the ρi are

usually not exact. Therefore, a natural question to ask is: how sensitive is the FBDS spread

to small changes in the ρi? If the sensitivity is weak, then our approximation method can

obtain accurate results with a modest amount of work. Weak sensitivity is a key requirement

to ensure that this kind of hybrid method is an effective computational approach.

The sensitivity of the spread with respect to small changes in the ρi is determined by

∂s

∂ρi

=
∂s

∂DV01

∂DV01

∂ρi

=
∂(E[Vdef ]/DV01)

∂DV01
∆Ti · di

√

var(NT )Π̄i(1 − Π̄i)

= −
E[Vdef ]

DV012∆Ti · di

√

var(NT )Π̄i(1 − Π̄i)

= −s
∆Ti · di

√

var(NT )Π̄i(1 − Π̄i)
∑n

j=1 ∆Tj · dj(E[NT ]Π̄j + ρj

√

var(NT )Π̄j(1 − Π̄j))
(22)

The term var(NT ) in (22) is usually much smaller than E[NT ], as the underlying names

usually have credit qualities above the investment grade and the difference between the

investment grade level and the best credit level is small. For example, in our numeri-

cal experiments,
√

var(NT )/E[NT ] ≈ 4%. Because of the good credit qualities, Π̄i > 0.5.

Therefore,
√

Π̄i(1 − Π̄i) < Π̄i. To obtain an intuitive feeling for the size of ∂s/∂ρi, we omit

the relatively small terms in the denominator and the minor effects of Π̄i and ∆Ti · di, and

approximate (22) by

∂s

∂ρi

≈ −s
∆Ti · di

√

var(NT )
√

Π̄i(1 − Π̄i)
∑n

j=1 ∆Tj · djE[NT ]Π̄j

≈ −s

√

var(NT )

nE[NT ]
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Pool ρi Spreads (bps) Rel Err (%)
-1 [107.37, 36.31, 15.03, 6.40] [2.26, 1.14, 0.63, 0.35]

Homogeneous 0 [105.36, 35.97, 14.96, 6.38] [0.34, 0.21, 0.11, 0.05]
1 [103.42, 35.65, 14.88, 6.36] [1.50, 0.70, 0.41, 0.25]
-1 [112.03, 37.93, 15.43, 6.49] [2.56, 1.26, 0.70, 0.39]

Inhomogeneous 0 [109.66, 37.53, 15.34, 6.47] [0.36, 0.21, 0.11, 0.05]
1 [107.39, 37.15, 15.25, 6.45] [1.72, 0.81, 0.47, 0.29]

Table 5: Sensitivity result

Therefore, the relative error in the spread due to the error in ρi is

|∆s|

s
≈

|∆ρi|
√

var(NT )

nE[NT ]
≤

2
√

var(NT )

nE[NT ]

as |∆ρi| ≤ 2. Furthermore, the relative error due to the errors in all ρi is bounded by

n
∑

i=1

2
√

var(NT )

nE[NT ]
=

2
√

var(NT )

E[NT ]
(23)

To further illustrate the weak dependence of the spread, s, on the correlation coefficients,

ρi, we compute the spreads with all ρi set to −1, 0 or 1, respectively. The results are listed

in Table 5, where the values inside each parenthesis correspond to the spreads and relative

errors for m = 1, 2, 3, 4, respectively, for the homogeneous and inhomogeneous mth-to-default

FBDS considered above. From the table, we see that the maximum relative error for both

FBDS is smaller than 3%, which is less than the bound given by (23). Moreover, note that

taking all the ρi to be 0 gives a fairly good rough approximation to the spread for these two

examples.

8 Conclusion

In this paper, we introduce a fast hybrid approximation method for FBDS. The terminal

default probabilities for the FBDS are converted to the form of the terminal default probabil-

ities for BDS. Based on the conditional independence framework, computing the conditional

terminal default probabilities for FBDS are similarly converted to computing the equivalent
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terminal default probabilities for BDS. After we obtain the terminal default probabilities, the

default leg is straightforward to compute. For the premium leg, we combine a Monte Carlo

simulation for the correlation coefficients ρi with an analytic method. The transformation

method avoids the large combinatorial problem associated with existing analytic methods.

Our approach is a generic method applicable to any model based on the conditional inde-

pendence framework. The method is particularly effective for FBDS because the spread

is not very sensitive on the values of the ρi. The numerical results for both homogeneous

and inhomogeneous FBDS show that our method is more effective than both Monte Carlo

simulation and existing analytic methods.

We believe that this hybrid approach is applicable to the valuation of other financial

instruments. Moreover, we avoid the large combinatorial problem by applying a transfor-

mation to the terminal default probabilities in FBDS. This technique can also be applied to

other products with similar properties.
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