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A basket default swap (BDS) is a credit derivative with contingent payments that are
triggered by a combination of default events of the reference entities. A forward-starting
BDS is a basket default swap starting at a specified future time. In this paper, we study
valuation methods for a forward-starting BDS. We begin by reviewing the popular factor
copula model. The widely used Monte Carlo method and associated variance reduction
techniques are surveyed. The analytical solution of a recursive algorithm is developed.
Conditional on a specified common factor, we explore the possible combination of defaults
during the life of the forward contract; under each scenario, we evaluate the object
functions; we finish the valuation by computing the expectations of these object functions.
The possible combination of defaults results in a large combinatorial problem. In order to
overcome the inefficiency of the method outlined above, a more applicable approximation
method that omits or interpolates the unimportant scenarios is proposed. Numerical
results compare the accuracy and performance of these methods and illustrate the effect

of contract parameters.
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Chapter 1

Introduction

The credit derivative market has grown explosively during the last 10 years. Among
these credit derivatives, the most sophisticated ones are the products associated with a
portfolio of underlying assets, such as basket default swaps (BDS) and collateralized debt
obligations (CDO). In this chapter, we discuss the mechanics of forward-starting BDS,

survey the literature, state the purpose of this paper, and outline the paper structure.

1.1 The mechanics of BDS

A basket default swap (BDS) is a credit derivative, the underlying assets of which are
corporate bonds or other assets subject to credit risk. In an mth-to-default BDS, the
protection buyer pays a specified rate (known as the premium or spread) on a specified
notional principal periodically until the mth default occurs among the reference entities
or until the maturity of the contract. If the mth default happens prior to the maturity
of the BDS, the protection seller pays the losses caused by the mth default only to the
protection buyer. This arrangement is depicted in Figure 1.1.

A forward-starting BDS is a forward contract obligating the holder to buy or sell a
BDS at a specified future time. For example, such a contract might obligate the holder to

buy five-year protection on a second-to-default BDS with 10 reference entities. Suppose
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Figure 1.1: Cash flows of an mth-to-default BDS

the contract starts one year later and the premium is 100 basis points per year. During
the first year, there is no payment between the buyer and the seller. At the end of the first
year, if three reference entities have defaulted, the forward contract obligates the holder
to enter a five-year second-to-default BDS on the remaining seven reference entities. The
premium is 100 basis points per year on the outstanding notional values.

We denote
T: The maturity date of the forward contract, also the starting date of the BDS;

T*: The maturity date of the BDS;

T;: 'The swap premium dates, fori=1,... ,nand T =Ty <T1 < ... <T, =T".

Figure 1.2 illustrates the cash flows of a forward-starting mth-to-default BDS from
the protection seller’s point-of-view. Whether the BDS starts or not is determined by
the number of entities left in the basket at 7T if less than m names survive till 7', the
contract terminates without any payments as shown in case (a); if at least m entities
survive till T, the BDS starts and the cash flows are the same as those in a normal BDS
starting at 7" as shown in cases (b) and (c).

In this paper, if all the underlying names in the reference pool have identical recovery-
adjusted notional values, identical default correlations and identical risk-neutral default
probabilities, the pool is called completely homogeneous. If the recovery-adjusted notional

values are the same, the pool is termed homogeneous. Otherwise, the pool is named
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(a) Less than m entities survive till T

0 TOZT

(b) At least m entities survive till 7" and the mth default does not occur in [T, T%|

Spreads
0 T() == T T1 T2 Tn = T*

(c) At least m entities survive till 7" and the mth default occurs in [T, T%]

Spreads
, R I R |
0 T() = T T1 T2 Tn = T*

Terminal

Default Payment

Figure 1.2: Cash flows of a forward-starting mth-to-default BDS

tnhomogeneous or heterogeneous.

1.2 Literature review

The valuation methods for mth-to-default BDS can be coarsely divided into two classes:
Monte Carlo simulations and analytical approaches. The first class consists of Monte
Carlo methods (e.g., Andersen et al. [1]) and Monte Carlo methods coupled with variance
reduction techniques (e.g., Joshi and Kainth [7] and Chen and Glasserman [3]). Such
methods are flexible, but are computationally expensive. Therefore, the second class of
methods — analytical approaches — are desirable. The analytical approach computes the
expected premium and default payments using probability theory and obtains a closed-
form, or semi closed-form, solution.

Factor copula models are widely used in the analytical approach by researchers, e.g.,
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Li [11], Hull and White [5], and Laurent and Gregory [9], to name just a few. The
advantage of the factor copula model is that the default probabilities of different names
conditional on the constant common factor(s) are assumed to be independent. Under
this conditional independence assumption, computing the loss distribution, which is the
key step in the valuation of basket credit derivatives, becomes tractable. Among these
copula based models, Laurent and Gregory [9] use the fast Fourier transform to calculate
the conditional loss distribution as a convolution of the conditional default probabilities
of each reference entity. Hull and White [5] derive a recursive relationship to determine
the conditional distribution of the number of defaults, assuming the pool is homogeneous.
For the inhomogeneous case, they divide the pool into homogeneous buckets, solve them
separately and recombine them by the convolution technique. Iscoe and Kreinin [6] use
the order statistics of the default times of the names to obtain a recursive relationship for
the conditional default distribution. Their method is applicable to any kind of basket.
The models based on factor copulas are tractable and suitable for risk management, but

they are essentially static and incapable of modeling dynamic evolution.

Recently, another class of analytical or semianalytical models has been introduced by
Bennani [2], Schonbucher [13], and Sidenius et al. [14]. Instead of modeling the default
distribution of individual names, they model the aggregate portfolio loss as a jump-
diffusion process. Although such models allow for dynamic evolution, they cannot easily

produce an arbitrage-free loss distribution, and they are unsuitable for risk management.

1.3 The problem

The object of this paper is to explore methods for the valuation of the forward-starting
BDS. We study not only the general Monte Carlo simulation, but also analytical methods

based on the popular factor copula model.
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1.4 Paper structure

The rest of the paper is organized as follows. Chapter 2 derives the pricing equations
for both the normal BDS and the forward-starting BDS and reviews the conditional
independence framework. Chapter 3 studies the Monte Carlo method, starting with the
naive version and then considers improvements based on one of the variance reduction
techniques. Chapter 4 gives an analytical solution for the forward-starting BDS, derives
solutions for the completely homogeneous pool and applies them to the homogeneous and
inhomogeneous cases. Chapter 5 reports the accuracy and performance of the methods.

Chapter 6 provides some conclusions and discusses future work.



Chapter 2

Background Knowledge

Because of their tractability, Gaussian factor copula models have become an industry
standard to specify the correlation of the underlying assets in multi-name credit deriva-
tives. In this chapter, we first make assumptions for the forward-starting BDS contract.
Based on these assumptions, we derive the pricing equations. Then, we review the pop-

ular Gaussian factor copula model.

2.1 Pricing equations

There are several kinds of BDS with different payment structures. The BDS considered
here is a common one. Its pricing equations can be easily modified to extend our approach

to other cases.

2.1.1 Problem assumptions

We consider a BDS containing K instruments with the recovery-adjusted notional value
N®) for name k in the original basket, where k = 1,2,..., K. Assume that the recovery
rates are constant and the interest rate process is deterministic. Let D(¢,T) be the

discount factor at t for payment at 7.



CHAPTER 2. BACKGROUND KNOWLEDGE 7

We assume no replacement of the underlying assets in the basket and constant pre-
mium® s. There are several variants of the BDS contract due to different payment
structures. For simplicity, we ignore the accrued interest at default for the premium
payments (known as the premium leg); for the protection payment (known as the default
leg), if the terminal default occurs during the life of the BDS, the compensation is paid
out at the nearest premium date following or equal to the terminal default time.

Let 7(¥) denote the default time of the kth name in the basket (7(*) = +o0, if name
k never defaults). The terminal default time 7, which triggers the default payment, can
be expressed as a function of 7(¥F), where k = 1,2,..., K. For example, in a normal

first-to-default BDS, 7 = minj <<k 7). We also define the index of the premium date

that is just before the terminal default time by
i(r) =max{i: T; < 7} (2.1)

and the default payment time by

T = (2.2)

Denote the loss of the forward-starting BDS at the terminal default time by

g(N®), 7 =71k ¢ (T, 7%
L =

0, otherwise

where ¢(-) is a payoff function. As mentioned in [6], this payoff function is flexible
enough to represent different types of default payments, e.g., mth-to-default, digital

mth-to-default, and call option on mth default.

! This assumption assists us to compute a fair BDS spread, which balances the expected revenue from
the payout of the contract. If we are interested only in computing the value of the forward-starting BDS,
the restriction can be relaxed and a nonconstant premium considered.
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2.1.2 Pricing equations for forward-starting BDS

The value of a forward-starting BDS at time 0 is given by
Viwa(0) = D(0, T)E[Viwap (T')] (2.3)
where Viwap(T), the value of the BDS at T, is defined by

Viwap(T) = Vaet (T) = Vorem(T) (2.4)

where Vier(T) and Virem(T') are the value of the default leg and the premium leg at
T, respectively. Throughout the paper, E denotes the risk-neutral expectation with
respect to the risk-neutral probability P. In order to compute the risk-neutral expectation

numerically, we introduce

® —

i|T —

P(T:T(k),TE(ﬂ_l,ﬂ]|BT)7 ’[::]_,27...,77;, kEBT

where Br denotes the set of names in the basket at T'. If we let B be the original basket at
time 0, then the set of names that default during the life of the forward contract? is B\ Br.
We also denote the number of names in Br by |Br| and the probability distribution of
Br’s composition by P(Br).
Given the loss information till 7' (which names default in [0, 7], or equivalently which
names are in Br), the value of the default leg at 7" satisfies
Vo) = BIL- DT, )] = 3 6(N) 32 DT TN = 3 DUET) - oV
keBr i=1 keBr
(2.5)
where 7 is defined in (2.2). Similarly, given the loss information till 7', the value of the
premium leg at T satisfies
i(7)
Vorer(T) = E[sNTZAT D(T, T)] = sNip ZAT DT, T)Lyr  (26)

=1 =1

2This is (0, 7).
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where i(7) is defined in (2.1); Nr is the sum of the notational values of all names in Br;

AT, =T, —T,_;; and the survival probabilities 1:Ii|T = P(r > T; | By) satisfy the relations

Mo =1

Hz‘\T = Hz‘—l\T - Hi|Ta 1=1,2,...,n

Mip = I, i=1,2...,n
keBT

In a forward-starting mth-to-default BDS, if |[Br| < m, the contract terminates with-

out any payment. Thus we need only to consider the case that m < |Br| < K. Equations

(2.3) and (2.4) imply
Viwa(0) = D(0, T) (EVaer (T)] — E[Vprem (T)])
Therefore we need to evaluate E[Vaer (17)] and E[Vprem (T7)]. From (2.5), E[Vaer ()] satisfies

BV (7)] = E[ - D1, T) Y- (N )]

keBr

_ zn: DT, TE[ 3 g(N®)n)]

kEBT
n K
k
=) "D(I,T) > PBr) Y g(N(’“))HZ(‘,} (2.7)
i=1 |BT\:m kEeBT

Similarly, from (2.6), E[Vprem (T)] satisfies

B[ Vorem (T)] = JE[SNT Xn: AT, - D(T, Ti)ﬁ“T]

=1

=5 i AT; - D(T, Ti)lE[NTﬁﬂT]
=1

n K
=sY AT,-D(T,T;) > P(Br)NeTlir (2.8)
i=1 |Br|=m

The above derivation is straightforward, and hence the proof is omitted.
The normal BDS is a special case of the forward-starting BDS, where 7" = 0. Unlike

the unknown starting basket structure in the forward-starting BDS, the basket structure
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in the normal BDS is certain. More specifically, the normal BDS has only one possible
basket structure — the original basket B. Denoting H(|0 and M1 |o by H ) and 1:11(-]“),

respectively, we can write the pricing equations for the normal BDS as

K
E[Vaet (0)] = Vet (0) = Z N®) ZD (0, )T = ZD (0,7) 3 g(N®)I®
=1 k=1

k=1

E[Vprem (0)] = Vprem(0) = sNy Z AT; - D(0, T)TI;

=1

Similar results can be found in [8], [9], and [6]; the proof is given by Lando [8].

2.2 Gaussian factor copula model

Due to their tractability, Gaussian factor copula models are widely used to specify a
joint distribution for default times consistent with the marginal distributions. In this
section, we review the one-factor Gaussian model to illustrate the conditional indepen-

dence framework.

2.2.1 Conditional forward default probabilities

Assume the risk-neutral (cumulative) default probabilities
#®@t)=Pr® <t), k=1,2,...,K

are known®. In order to generate the dependence structure of default times, we introduce

random variables U; that satisfy
:ﬁkX—f-O'ké‘k, for k£ = 1,2,...,K (29)

where X is the systematic risk factor reflecting the health of the macroeconomic environ-

ment; €, are idiosyncratic risk factors which are independent with each other and also

3Usually, the risk-neutral default probabilities are implied from the market price of defaultable bonds
or credit default swaps. For more details, see [10].
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independent with X; the constants §; and oy satisfy
B+ol=1 fork=12... K

The random variables X and &, follow zero-mean unit-variance distributions, so the
correlation between U; and U; is 3;0;.
The default times 7(*) and the random variables U}, are connected by a percentile-to-

percentile transformation, such that
7B (1) = P(r® < t) = P(Uy < ug(t))

Thus the dependence among default times is captured by the common factor X. If we
assume X and g, follow standard normal distributions, Uy also follows a standard normal
distribution, hence we have
u(t) = (7AW (1)). (2.10)
where & is the standard normal cumulative distribution function.
Conditional on a particular value z of X, the conditional risk-neutral default proba-

bllltles are deﬁned as
) [ — k> Uk

Substituting (2.9) and (2.10) into (2.11), we have
N (&M (1) — Bur

7B (t, 2) = P[Byx + oper, < @7 (7 (1))] = @
Ok

In this framework, the default events of the names are assumed to be conditionally
independent. Thus, the problem of correlated names is reduced to the case of independent

names. From (2.7), the expected value of the default leg at time 7" can be evaluated as

ElVa (7)) = [ " B [Vau (7)) (2)
- / h XR:D(T, T,
- / b zn:D(T, T,

E[ > gV ao()
)

> Po(Br) 3 g(N)IR(2) dB(z)  (212)

‘BT‘:m keBr
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where E, denotes the risk-neutral expectation with respect to the risk-neutral probability
P,, conditional on X = z. From (2.8), the expected value of the premium leg at time T’

satisfies

o0

EVwen(T)] = [ BulVirenlT)}i0(a)

-0

= /_ ” s i AT; - D(T, T))E, [NTIZIHT} d®(z)

o 4=1
00 K
- / S AT DT Z o (Br)No(@) L (0) dB(z)  (2.13)
=1 |Br|=m
Therefore, the main challenge in pricing a forward-starting BDS lies in computing P, (Br),

Nr(x) and Hz(f%(x) To this end, we introduce the conditional forward default probabilities

H0(t,7) — 49 (T, 2
¥t x) — 7 X
®HT, z) = i ®(Ta)

fort>T (2.14)

which represents the risk-neutral probability that, conditional on a specified value = of

X and conditional on surviving till 7', name k defaults before .

2.2.2 Conditional forward default intensities

Assume the conditional forward default distribution that name k defaults in (7, ¢] follows
the Cox process

P, (7% <t|7®) > T) =1 — exp (~AP ([T, ) (2.15)
where
8 (4|7, ) = / AP ([T, 2)du (2.16)
T
and A¥)(.) is the conditional forward default intensity of the kth name. We know

P,(r® < ¢ |78 > T) = 20 (T, 2) (2.17)

where #(*)(¢|T, x) is given by (2.14). If we assume A®¥)(¢|T, z) is linear between premium

dates T, then (2.16) implies that A\(¥)(¢|T, z) is a piecewise constant function

B (T, z) = M) (x), fort € (T, T)]
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where /\E‘k%(x) represent the constant A*)(:) in (7;_;,7;]. Combining this result with

(2.16), we have
AB(TIT, z) = AO(Tiy T, ) + AE\(2) AT,

iT

Furthermore, we obtain
1
No) = g (AP TIT, 2) = AB(TT, ) (2.18)
From (2.15) and (2.17), we know

AT T, 2) = (1 = 75, 1 (2)

AO(TT, z) = —In(1 — 78 (2))

i|T

where #(z) = #0)(T}|T, z) = Po(+® < T; | 7®) > T). Substituting A®)(T,_,|T, z) and

iT

A®)(T;|T, z) into (2.18), we obtain

OIS 1n(1 _ﬁgk)”(x)) fori=1,2,...,n (2.19)
i T ATL 1—7?(2("?12(.%) ) g Ly enay



Chapter 3

Monte Carlo Simulation

Monte Carlo simulation is among the most popular computational tools for the valuation
of credit derivatives. As in other application areas, it has the advantage of being flexible,
but the disadvantage of being inefficient. This motives the investigation of methods to
accelerate simulations through variance reduction. In this chapter, we discuss the naive
Monte Carlo method before we describe a more sophisticated method that incorporates

stratified sampling — one of the variance reduction techniques.

3.1 Naive method

The main challenge of the Monte Carlo method for basket credit derivatives is to simulate
correlated default times with known marginal distributions. The Gaussian factor copula
model discussed in Section 2.2 is employed to simulate the correlated default probabilities.
Because of the percentile-to-percentile mapping, the default times can be generated from
their known marginal distributions. After that, we compute the value of the default leg
and the premium leg for this specified simulation. If we replicate the same process many
times and average the values, we obtain relatively reliable results. Based on the law of
large numbers, the more replications we perform, the more accuracy we obtain. Below we

outline Monte Carlo simulation for BDS based on the one-factor Gaussian copula model.

14
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ONE-FACTOR-GAUSSIAN-COPULA(3, )
1 Draw X ~ N(0,1) > N(0,1) is the standard normal distribution

2 fork+1to K

3 do Draw ¢, ~ N(0,1)
4 Uk(—ﬂkX—f—\/l—ﬂ,%Ek
) T ¢ 1 s.t. 7A1'(k) (t) = Cb(uk)

MONTE-CARLO-BDS(8, 71, M)

1 fori+1toM > M is number of trials

2 do7 = (71...7x) + ONE-FACTOR-GAUSSIAN-COPULA(f3, )
3 Generate path present value Vprem[i] and Vie[i]

4 Vprem — Zzﬂil %rem[i]/M§ Vater < ng f/def[i]/M

The algorithm is applicable to both normal BDS and forward-starting BDS by spec-
ifying the payment structures in Line 3 of MONTE-CARLO-BDS(). In the following, we
estimate Monte Carlo simulation error of the default leg; a similar estimate applies to
the premium leg. The Vet is an approximation to the real quantity Vger, so the error of

Monte Carlo simulation is Vdef — Vget- The law of large numbers tells us that
Vdef 25 Viet, as M — oo
and the central limit theorem states
Vet — Vaer 1

W — N(0,1), as M — oo (3.1)

where o is the standard deviation of Vje. Elementary statistics tells us that the Monte

Carlo standard error

M

o=\ v 3 (Vawtlil ~ Vi) (32)

=1

is an unbiased estimator for o. Substituting ¢ for ¢ in (3.1), we obtain

Vaer — Ve
Jdef 7 def i>N(O,1), as M — oo
5/ M
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or informally

‘A/:ief ~ N(Vdefa 62/M)

The 95% confidence interval for the actual Vg is

A A

N o A~ o
Vet — 1.96\/—M < Vier < Vet + 1.96\/—M

Therefore, the Monte Carlo standard error is O(1/v/M). So, for example, to reduce the

error by a factor of 10, the number of trials (i.e., M) must be increased by a factor of

100. This explains why Monte Carlo simulation is so computationally expensive.

3.2 Stratified Monte Carlo simulation

While increasing the sample size is one technique for reducing the standard error of a
Monte Carlo simulation, a better solution is to employ some variance reduction technique.
Standard techniques of variance reduction include antithetic variates, control variates,
importance sampling, and stratified sampling. For normal BDS, Glasserman and Li [4],
Joshi and Kainth [7], and Chen and Glasserman [3] use importance sampling to accelerate
the simulation. Here we present the stratified sampling technique, which can be applied
to more general problems, including the forward-starting BDS. In our illustration of the
method, we use the one-factor Gaussian copula model; the method can be easily extended
to a multi-factor version as shown in [3].

Recall that the one-factor Gaussian copula model is of the form

uk:ﬁkX-l—\/l—ﬁ,fek, k'Zl,,K

We apply stratified sampling to the common factor X, which follows the standard normal
distribution. We partition the real line [—o0, o] into m disjoint subintervals Dy, ..., Dy,
with equal probability 1/m by setting

S

]
m m

D,-:[cb*l( )}, i=1,...,m
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Note ;" D; = [—00,00]. Instead of drawing X randomly over the entire real line M
times, the stratified sampling method draws X in each subinterval D; M/m times. For
simplicity, we assume M is divisible by the number of strata m. In order to generate a
sample of X in D;, we first draw a unformly distributed random variable U; over [%, #],
then we set X = ®1(U;) € D;, which follows the standard normal distribution. The

algorithm for BDS is stated below.

MONTE-CARLO-STRATIFIED-SAMPLING (3, &, m, M)

1 for j<+ 1to M/m

2 dofori+ 1tom

3 do Draw U; ~ U(%2, L) > U(-) follows uniform distribution
4 X; + o 1)

5 for k< 1to K

6 do Draw ¢, ~ N(0,1)

7 we  BeXi+ /1 — Bley

8 Tt s.b. 7B () = D (uy)

9 Generate path present value Virem[d][j] and Vae[][4]

10 Vprem[j] D DA Vorem[i][7]/m; Vdef[j] — i Vaer[i][5]/m
11 Virem = 3500 Voremld]/ (M/m); - Vaer = 32520 Vaerl4]/ (M /m)

The stratified sampling method described above draws an equal number of samples
from equiprobable strata (known as proportional allocation). From Madras [12], we know
that the estimators are unbiased and the variance of the stratified sampling is smaller

than that of the naive Monte Carlo method.



Chapter 4

Analytical Solution

Recall that, conditional on a specified common factor x, the pricing equations satisfy

Ey [Vaer (T)] = ZD (T, T) i P.(Br) Y g(NM)TI{) () (4.1)
|Br|=m keBT
By [Virem (T)] = SZAT D(T,T;) Z o(Br) Nr(2) () (4.2)

In order to evaluate the right sides of the equations above, we need to compute P, (Br),
the conditional probability distribution of Br’s composition; Ny (z), the total notional
values of Br; and HE(CT)(:C), the conditional forward probabilities that name £’s default
triggers the terminal default payment.

We apply the recursive method for normal BDS proposed by Iscoe and Kreinin [6] to
compute HE{C%(LE) For P, (Br) and Nr(z), we consider completely homogeneous, homoge-

neous and heterogeneous cases separately. Furthermore, we complete the evaluation by

considering them separately.

4.1 Computing terminal default probabilities

Suppose the original basket B contains names 1,..., K. Conditional on a specified sce-

nario x, the basket may experience different numbers of defaults in (0,7]. Assume names

18
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1',..., K" survive till T, so Br is composed of these names. We need to explore only the
cases for which m < K’ < K, as the contract terminates at 7" without any payments if
K' < m.

In a forward-starting first-to-default contract, the conditional probabilities Hg‘kq),(x) =

P.(r =", 1 € (T, 1,T;] | Br) satisfy

)\(k)( )
I 1 =1 k=1, K 4
)\Z|T(x) ( ,‘,1|T($) - Z|T($)), 1=1,...,N; =1,..., ( 3)

k
HZ(\T)(JC) =

where )\E{f}(x) is the conditional forward default intensities defined in (2.19); A;jr(z) =

K' 3 (k)

o1/ Z-|T(x); and I:[i‘T(x) = ,i{:'l, (1 7 (K) (x)) The proof of (4.3) for normal BDS is

vy

given by Iscoe and Kreinin [6]. The proof is also valid for forward-starting BDS. Here
we explain it informally. The term IT; () in (4.3) is the conditional probability that no
name defaults in (7', T;], therefore, II;_1/7(z) — II;7() is the conditional probability that
at least one name defaults in (7; 1, 7T;], which is also the probability that the terminal
default (first-to-default) occurs in (7;—,7;]. The term Hf‘k%(x) is name k’s contribution
to the probability of the terminal default occurring in (7;-1,7;]. Since we assume the
forward default intensity )\Z(fT)(x) is piecewise constant, the probability that name k’s
default occurs in (7;_1, T;] follows an exponential distribution. Thus, the first-to-default
event in (7;_1,T;] can be treated as an arrival problem for the names in the pool, and,
from a general result for the arrival problem, the probability that name & defaults first
out of the pool is AS{CT)(:E)/)\”T(:C) Thus, (4.3) is true.

For the mth-to-default BDS, Iscoe and Kreinin [6] derive the recursive relation be-

tween the mth-to-default and the (m — 1)st-to-default contract:
(m = 1)Pu(Br) = > Pt (BE) = (K' = m + 1) Pt (Br)
J#k
where P,,(Br) = P(r = 7% 7 € (T;_1,T;] | Br) for the mth-to-default BDS; and Bg]
is the set of names obtained by excluding name j from By . Naive implementation

of this recursion causes the recalculation of the same probabilities, thus reducing the
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mth-to-default problem to the first-to-default problem as

m—1
m—v— K' —v—1 J
Paln) = X0 (D700 Y pas)
v=0 JCBr:|T|=v
where J is a subset of By and B[T‘7 I = By \ J. Here, for simplicity, we demonstrate
the recursion for the unconditional probabilities, but it is also valid for the conditional

probabilities.

4.2 Completely homogeneous case

A completely homogeneous pool has identical recovery-adjusted notional values, identical
risk-neutral default probabilities and identical default correlations. Hence, given a sce-
nario z, the number of defaults in (0, 7] follows a binomial distribution with probability
#W(T, z), which is defined in (2.11). With identical recovery-adjusted notional values,
all equal to N, the pool losses till T are Ly = v N, where v is the number of defaults
in (0,T]. Therefore, the outstanding notional at T is Np(z) = N — Ly = (K — v)NW,
where 0 < v < K — m. The conditional distribution of the basket composition at T

satisfies

P,(|Br| = K — v) = P,(Ly = vNW) = Bin(v; K, #)(T, ) (4.4)

We present two methods to evaluate the pricing equations (4.1) and (4.2) for a com-
pletely homogeneous pool: one approach is to compute the conditional expectations

exactly; the other is to evaluate them approximately.

4.2.1 Exact method

For the exact method, we explore the payout in all possible cases and compute the

associated expectations. From (4.4) and N®) = NI the conditional expectation of the
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default leg at T satisfies

Ey [Viet (T ZDTT Z P.(Br) > g(N®)I{) (z)

|BT| kEB
— k
)N D(T,Ty) Z P, (Lr =vNW) " M)
i=1 = keBr
K—m
= ZD (T,17;) Y Bin(v; K, #(T,2))(K —v)IIj)(z)  (4.5)
=1 v=0

In deriving the last equality of (4.5), we use the fact that all the names in By are identical,

so their terminal default probabilities are equal, i.e., Hl({f}(:v) =1V

ir(2). Similarly, the

conditional expectation of the premium leg at T satisfies

By [Virem (T ]—SZAT D(T,T)) Z P, (Br) Nr(2) 7 ()

i=1 |Br|=m
=5 Zn: AT; - D(T,T}) 3 P, (Lr = vNO) (K — 0) NI ()
ZAT D(T Z Bin(v; K, #(T, 2))(K — v)[yr(z) (4.6)

Conditional on a scenario x, we need to evaluate n(K — m + 1) terms in the sums (4.5)
and (4.6). If we assume the integration over X can be computed numerically using
an effective quadrature rule by evaluating M different = over the real line, the running
time of the whole method for the valuation of a forward-starting BDS for a completely

homogeneous pool is O(M - n - (K —m)).

4.2.2 Approximation method

From the previous subsection, we know E, [Virem(7')] can be computed as the summation

of functions h(v):
K—m

Eq [Virem (T)] = ) h(v)

v=0
where

h(v) = sNW zn: AT; D(T, T;) Bin(v; K, #(T, 7)) (K — v) Hr(z)

i=1
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We employ an effective quadrature rule, such as the M-point Gauss-Legendre or Hermite

rule, to approximate E[Vrem (T')]:

EVren(T)] = [ BulVinenlT)}i2(a)

—0o0

=/mmmm@wmm

K—m

i > flaj,v)

j=1 v=0

o

where ¢(-) is the probability density function of the standard normal distribution; w;,
is the weight factor; and z; is the associated node for the M-point quadrature rule.
Consider the second line of the equation above. The density function ¢(z) is very small
outside of the range of [—5, 5], whereas E; [Vprem (7')] is not unduly large outside of [—5, 5].
Therefore, the integral is generally approximated by a quadrature rule over [—5,5]. A
similar quadrature rule is also applied to E[Vger (T')] over the truncated range [—5, 5].

Figure 4.1 shows representative shapes of E[Vaer (7')] and E[Vyrem (1')] as functions of
the common factor X and the number of defaults v. The plot is based on a forward-
starting second-to-default BDS with 10 names in the original pool. In order to compute
E[Vprem (T)] and E[Vger (T)], we need to sum up all the heights over the coordinate.

Figure 4.1 demonstrates that most of the points (x,v) contribute little to the final
value of E[Vjrem(T')], so we can omit these nodes or approximate them to reduce the
computational workload. If the unimportant points are dropped, the computed values
for both the default leg and premium leg are less than the actual values; if they are
approximated, the computed values are almost the same as the actual ones. In either
case, the error in the computed values for the default leg and premium leg are likely
correlated. Since the value of BDS is the difference of these two legs, the error likely
cancels to some extend.

To implement the approximation method, we need a heuristic to decide which points
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Figure 4.1: Plot of E[Vjrem (T")] and E[Vger(T')] as a function of X and v

to drop or approximate. To this end, we choose a tolerance, which can be either ab-
solute or relative. If the object value at the current point is below the tolerance, we
omit or interpolate it. With this heuristic, we need an algorithm to determine these
ignorable points cheaply. From the pricing equations (4.5) and (4.6), we find that the
values of E; [Vprem(T')] and E; [Vaer(T)] are determined mostly by P,(Br) or equivalently
the binomial distribution Bin(v; K, 7 (T, x)). Figure 4.2 plots the value of the default
leg versus the number of defaults under different scenario values of X on the left side
and the relevant binomial distribution of the number of defaults in (0,77 versus the
number of defaults under the same scenario values of X on the right side. The figure
clearly demonstrates that the binomial distribution determines the shape of E, [Vger(T')].
This observation underpins the following algorithm. A similar relationship holds for the

premium leg.

The peak probability of the binomial distribution occurs around its expected value
K#M(T, x). Therefore, when evaluating the object function, we compute its value at the
point (z, | K7W (T, z)]) first. We continue the evaluation process on either side of that
point until the object function value is below the tolerance or the evaluation reaches the
boundary of the possible number of defaults. The algorithm POINT-EVALUATION() on

page 25 gives the evaluation process under a specified scenario z. A similar algorithm
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The relation between the default leg value and the binomial distribution
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PoINT-EVALUATION(m, K, 71(x), tol)

1
2
3

© oo N O

10
11
12
13
14
15
16
17

Init < | K#W(T, z)| i> Initial evaluation point
Evaluate the value of object function V' (z, Init)
if V(z, Init) < tol
then V(z) < 0
else V(z) < V(z, Init)
Left < Init —1 > Evaluate the left hand side
while Left > 0
do Evaluate the value of object function V' (x, Left)
if V(z, Left) < tol
then Break
else V(z) < V(z)+ V(x, Left)
Right < Init +1 > Evaluate the right hand side
while Right < K —m
do Evaluate the value of object function V (x, Right)
if V(z, Right) < tol
then Break
else V(z) + V(z)+ V(x, Right)
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for the interpolation method can be implemented by modifying lines 4, 10 and 16.

4.3 Homogeneous and inhomogeneous cases

Unlike a completely homogeneous pool, a homogenous or inhomogeneous pool has dif-
ferent default probabilities and correlations. Therefore, the default leg and the premium
leg depend on the composition of the basket at 7', not just the number of names in the
basket. Therefore, we need to explore not only the number of defaults in (0,7], but
also, for each number of defaults v, the different subcases due to the actual names in Br.
Thus, the total number of subcases is proportional to 2X. The evaluation process inside

of each subcase is the same as that described above for the completely homogeneous case.

4.3.1 Exact method

Based on the assumption that names 1’,..., K’ survive till T, we have

I #@,2) [] @ -2%(T,2))

keB\Br keBrp

and
-y
keBT

Therefore, conditional on a scenario z, the expectation of the default leg and premium

leg at T are
n K
E:[Vaer(D)] = Y D(T,T) Y Po(Br) Y g(NO)IH()
i=1 \Bp|=m keBr

K
B [Virem (T ]—SZAT D(T,T,) Z o(Br) Nr(2) ()
=1 |=m

These expressions can be computed by brute force. If we explore M different scenarios of

X in the quadrature, the running time of the whole algorithm is proportional to M -n-2%.
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4.3.2 Approximation method

Similar to the completely homogenous case, we omit or approximate the unimportant
points. Due to the different marginal default probabilities and correlations associated
with a homogeneous or inhomogeneous pool, the conditional default probabilities #*) (T, z)
are different. Therefore the point evaluation algorithm POINT-EVALUATION() for the
completely homogeneous pool is not valid here. However, the idea underpinning the al-
gorithm for the completely homogeneous case is still useful, i.e., whether a point should
be omitted is determined by whether it is below the tolerance.

To extend the algorithm for the completely homogeneous case to the homogeneous
or inhomogeneous case, we change the initial evaluation point and consider the subcases
inside of each point. If we approximate the distribution of the number of defaults in (0, 7’|
by a Poisson distribution with A = Y71, #®) (T, z), the relationship between the object
function and the distribution of the number of defaults are similar to that shown in Figure
4.2. The peak probability of the Poisson distribution occurs around |AT'|. Therefore,
we start the evaluation at point (z,|AT]) and explore its subcases, then extend the
process to both sides, exploring all subcases for each point, until the terminal condition

is satisfied.
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Numerical Results

In this chapter, we compare the naive Monte Carlo method and Monte Carlo with strat-
ified sampling for pricing a forward-starting BDS associated with a completely homo-
geneous pool. For the same contract, we exam the accuracy and performance of the
analytical method described in Chapter 4. The effect of BDS parameters is also studied
for the same contract. The approximation method for a forward-starting inhomogeneous

BDS is also tested.

5.1 Comparison of the Monte Carlo methods

The first basket is a completely homogeneous pool containing 10 names. The parameters
of each name are shown in Table 5.1. The contract is a 5-year BDS starting one year
later, so T =1, T*=6,and T; =i+ 1, for = 0,...,5. The recovery rate of each name

is 15%. The risk-neutral cumulative default probabilities are listed in Table 5.2. The

Notional 100
Credit Rating C4

Correlation 0.5

Table 5.1: Parameters of the BDS for a completely homogeneous pool

28
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Credit Time

rating 1Y 2Y 3Y 4Y 5Y 6Y
C1 0.0041 0.0052 0.0069 0.0217 0.0288 0.0323
C2 | 0.0071 0.0185 0.0328 0.0495 0.0682 0.0801
C3 | 0.0072 0.0225 0.0439 0.0692 0.0967 0.1262
C4 | 0.0258 0.0575 0.0930 0.1304 0.1683 0.1852
C5 | 0.0305 0.0616 0.0936 0.1464 0.1702 0.1945
C6 | 0.0420 0.0713 0.0953 0.1661 0.1950 0.2210
C7 | 0.0501 0.0802 0.1062 0.2171 0.3030 0.3911
C8 0.0571 0.0872 0.1132 0.2241 0.3100 0.4032

Table 5.2: Risk-neutral cumulative default probabilities

continuously compounded interest rates are listed in Table 5.3.

Rate

time 1Y

2Y

3Y

0.046 0.050 0.056 0.058 0.06 0.061

4 5Y  6Y

Table 5.3: Risk-free interest rates

29

Figure 5.1 illustrates the standard error comparison between the naive Monte Carlo

method and the stratified Monte Carlo simulation, where the standard error is computed

by (3.2). We use the total number of 10° replications in the naive method and 10 strata

in the stratified sampling method with 103 replications within each stratum. We compute

the standard errors for forward-starting mth-to-default contracts (m =1, ..., 4) and plot

them against m. The left panel is the standard error of the default leg, while the right

panel is the standard error of the premium coefficient, which is the value of the premium

leg with premium s = 1. From the description of the algorithms in Chapter 3, we can

see that the complexity of each method is proportional to M K, so the running time of

each method is almost the same. However, as shown in Figure 5.1, the stratified method

achieves a smaller standard error.
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Figure 5.1: Comparison of naive and stratified Monte Carlo methods

5.2 Accuracy of the exact solution

We compare the accuracy of the analytical solution with stratified Monte Carlo simulation
using the same contract as above. We compute the premium for the forward-starting
mth-to-default BDS (m = 1,...,4) and show the 95% confidence interval of the BDS
premium. The 95% confidence interval is computed as follows: we repeat each of the
Monte Carlo experiments 500 times; then, we compute the 95% confidence interval from
the empirical distribution of those 500 samples. Table 5.4 presents the results for different
numbers of scenarios for the stratified Monte Carlo method and the analytical technique.
From the table, we can conclude that the premium computed by the analytic method is
reliable; in the stratified Monte Carlo simulation, if the number of scenarios is less then

105, the relative error of the premium estimation may be greater than 0.5%.

5.3 Effect of parameters

Figure 5.2 shows the error and CPU time versus M for an M-point Gauss-Legendre
quadrature rule. The reference solution is computed by a 100-point Gauss-Legendre
quadrature rule. The left panel plots the maximum relative error of an mth-to-default

contract (m = 1,..., K) against M; the right panel plots the CPU time for evaluating
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No. of Scenarios m=1 m=2 m=3 m =4
1x10° [256.43, 261.70] [100.74, 103.17] [46.74, 48.39] [21.26, 22.17]
1 x 10° [258.13, 259.74] [101.60, 102.28] [47.23, 47.62] [21.54, 21.84]
2 x 106 [258.36, 259.53] [101.69, 102.18] [47.31, 47.60] [21.59, 21.81]
Analytic 258.97 101.92 47.45 21.70

Table 5.4: Risk premium (bps) for a forward-starting BDS computed by the stratified

Monte Carlo (first three rows) and the analytic method (last row)

m from 1 to K against M. As expected, the CPU time is roughly linearly increasing
with M and the error is roughly exponentially decreasing with M. When M > 32, no
more accuracy is obtained as M increases, probably because round-off dominates the

truncation error from this point on.

=
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20 22 24 26 28 30 32 34 36 20 22 24 26 28 30 32 34 36

Figure 5.2: Error and CPU time versus M for an M-point Gauss-Legendre quadrature

rule

Figure 5.3 plots the premium of a forward-starting mth-to-default contract as a func-
tion of m. As the correlation of the names is 0.5, the premium is a decreasing function
of m.

In Figure 5.4, we plot the credit risk premium versus the correlation. The correlation

factor ranges from 0 (totally uncorrelated) to 0.9 (highly correlated).
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5.4 Accuracy and performance of the approximation

method

We test our approximation method by computing the risk premium for forward-starting
mth-to-default contracts (m = 1,...,4). The contract is a 5 year BDS which starts at
the end of the first year. The basket is a heterogeneous pool containing 10 names with
the parameters shown in Table 5.5. The risk-neutral default probabilities and the interest

rates are listed in Tables 5.2 and 5.3, respectively. The recovery rate is 15%.

Name Notional Credit Rating Correlation
1 190 oy 0.5
2 80 C2 0.6
3 70 C4 0.9
4 360 C6 0.6
5 100 Ch 0.5
6 200 C6 0.4
7 150 C6 0.7
8 123 C5 0.64
9 95 C6 0.55

10 107 C3 0.22

Table 5.5: Parameters of the BDS for a heterogeneous pool

We compute the risk premium for the contract by the exact solution and the ap-
proximation method. The reference solution is computed by the exact method with a
32-point Gauss-Legendre quadrature rule. Table 5.6 reports the reference solution and
the absolute error for the approximation method with tolerance = 107*.

Figure 5.5 compares the performance of the exact method, the approximation method,

and the stratified Monte Carlo method. We use the heterogeneous pool listed in Table
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Method m=1 m=2 m=3 m=4

Exact 274.28 114.35 57.10 28.58

Approximation | 4.70 x 107* 5.87x 107® 1.01 x 107° 5.95 x 106

Table 5.6: Accuracy of the approximation method

5.5 and compute the risk premium for the forward-starting mth-to-default BDS (m =
1,...,K). The exact solution and the approximation method are described above; the
Stratified Monte Carlo method uses 10 strata and 10° trials in each stratum. The running

time of the exact solution Tgx is set as the benchmark; for each of the other two methods,

Perf is the ratio of that method’s running time to Tgx.

T T
Monte Carlo
— - — - Approximation

Perf

100

10’1 L L L L L L L L
1 2 3 4 5 6 7 8 9 10

Figure 5.5: Performance comparison

From Table 5.6 and Figure 5.5, we can conclude that the approximation method
obtains sufficient accuracy for many applications in about half of the running time used
by the exact solution. Thus it is an effective alternative to the exact method. The Monte
Carlo method is more efficient than the exact method when m is between about 4 and
7 in this example. However, the complexity of the exact method and the approximation

method increases exponentially with the size of the basket, while the complexity of the
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Monte Carlo method increases linearly with the size of basket. Therefore, when the pool

is large, Monte Carlo simulation becomes relatively more effective.
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Conclusions

In this paper, we study valuation methods for forward-starting BDS in the conditional
independence framework. For normal BDS, we transfer the correlated marginal de-
fault probabilities to the conditionally independent ones by the factor copula model; for
forward-starting BDS, we use a similar mapping process and then convert the conditional
default probabilities to the conditional forward ones, which are the default probabilities

conditional on the name surviving till the maturity of the forward contract.

We review the flexible but inefficient Monte Carlo simulation and analyze its efficiency.
To reduce the computational expensive, we propose the stratified sampling technique.
Numerical results verify that the stratified Monte Carlo method performs better than

the naive one.

Based on the recursive method proposed by Iscoe and Kreinin [6] for normal BDS, we
develop an analytical solution for forward-starting BDS. Conditional on a specified com-
mon factor x, we first explore the possible combination of defaults during the life of the
forward contract. For each scenario, we employ the recursive method to value the default
leg and the premium leg. The risk premium or the value of forward contract is computed
from the expectation of these two legs. To evaluate the expectations, we first analysis

the exact method for a completely homogeneous pool. Due to the combinatorial nature

36



CHAPTER 6. CONCLUSIONS 37

of the problem, the exact method is computationally expensive for homogeneous and in-
homogeneous pools. We develop an approximation method, which omits or interpolates
unimportant values, to accelerate the computation.

Our numerical results compare the accuracy and computational time of these meth-
ods. The stratified Monte Carlo method is more efficient than the naive one. The
analytical solution based on the exact method is reliable. Compared with the exact
method, the approximation method is about twice as fast without losing much accuracy,
thus it is a more effective method. The influence of different contract parameters is also
studied.

In the future, we hope to explore other variance reduction techniques for Monte Carlo
simulation, more efficient approximation algorithms, other approaches for the analysis
and valuation of BDS options, and extension of our work to stochastic recovery rate and

interest rate processes.
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