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aAbstra
tNumeri
al methods for both ordinary di�erential equations (ODEs)and delay di�erential equations (DDEs) are traditionally developed andassessed on the basis of how well the a

ura
y of the approximate solutionis related to the spe
i�ed error toleran
e on an adaptively-
hosen, dis
retemesh. This may not be appropriate in numeri
al investigations that re-quire visualization of an approximate solution on a 
ontinuous interval ofinterest (rather than at a small set of dis
rete points) or in investigationsthat require the determination of the `average' values or the `extreme'values of some solution 
omponents.In this paper we will identify modest 
hanges in the standard error-
ontrol and stepsize-sele
tion strategies that make it easier to develop,assess and use methods whi
h e�e
tively deliver approximations to di�er-ential equations (both ODEs and DDEs) that are more appropriate forthese type of investigations. The required 
hanges will typi
ally in
reasethe 
ost per step by up to 40%, but the improvements and advantagesgained will be signi�
ant. Numeri
al results will be presented for thesemodi�ed methods applied to two example investigations (one ODE andone DDE).Keywords: Runge-Kutta methods, Delay di�erential equations, Ordinary dif-ferential equations, Interpolation.AMS Subje
t Classi�
ations: 65L05, 65L10Abbreviated Title: Software for DDEs�This resear
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1 Introdu
tionIf numeri
al methods for ordinary di�erential equations (ODEs) are to be widelyused, they should meet the broadest expe
tations of potential users. Users, inmany 
ases, are interested in visualization and/or investigations of propertiesof the solution, not simply the approximation at dis
rete mesh points. Theyare likely to be working in a problem solving environment (PSE) with a 
hoi
eof methods available. The impli
ations for developers of ODE software aresigni�
ant and in
lude the following implementation issues:� The method should adopt a standard, easy to understand, interpretationof the error 
ontrol me
hanism(s) that are available and a standard pro-gram interfa
e (
alling sequen
e).� The options and additional parameters (if required) should be spe
i�edin a 
onsistent fashion for all methods. This in
ludes stepsize 
onstraintsand a

ura
y spe
i�
ation.� The method should adopt a standard representation of the approximatesolution. (For example, a ve
tor of pie
ewise polynomials.)In re
ent years there has been 
onsiderable progress made addressing theseimplementation issues as new methods have been introdu
ed and extra featuresprovided to make the 
urrent generation of ODE software more a

essible to awider audien
e of users. For example we have implemented a family of ODEmethods and asso
iated software tools ([6℄, [3℄, [1℄ and [5℄ ) and Shampine andhis 
olleagues ([13℄, [9℄, [14℄ and [12℄ ) have implemented, in the MATLAB PSE[10℄, a similar family of ODE methods. One way to view the progress that hasbeen made is to interpret it as a natural evolution of `adaptive' ODE methods,starting with a 
lassi
al �xed stepsize method and introdu
ing three features,� Variable stepsize dis
rete approximations,(with maximum stepsize, h ):fxi; yigNi=0; Nmaxi=1 jy(xi)� yij = O(hp):[Su
h methods are typi
ally based on an underlying dis
rete Runge-Kutta(RK) formula (or a formula pair). E�e
tive 
lasses of formula pairs ofthis type in
lude, for example, those derived by Fehlberg [7℄, Prin
e andDormand [11℄, and Verner [15℄.℄� Variable stepsize 
ontinuous extensions, S(x),(for visualization):S(xi) = yi; jjS(x)� y(x)jj = O(hp); for x 2 [x0; xN ℄:[Note that if the underlying dis
rete formula of su
h a method is a RKformula, su
h a 
ontinuous approximation is referred to as a 
ontinuousRK formula (CRK).℄ 2



� Variable stepsize CRKs with dire
t defe
t error 
ontrol,(to obtain `toleran
e proportionality' and a generi
 
onvergen
e result):That is, the interpolant S(x) satis�es,jjS0(x) � f(x; S(x))jj � TOL;whi
h implies, jjS(x)� y(x)jj � K1TOLjjS0(x) � y0(x)jj � K2TOL:[Note that Æ(x) � S0(x) � f(x; S(x)) is de�ned to be the defe
t of theapproximate solution and `dire
t defe
t 
ontrol' refers to the use of er-ror 
ontrol strategies that attempt to 
orre
tly estimate and bound thedominant term in the asymptoti
 expansion of this defe
t.℄In this paper we are 
on
erned with making the new generation of ODEmethods, in parti
ular RK methods for DDEs, more a

essible and usable bys
ientists and engineers in a wide variety of resear
h areas. We are parti
ularlyinterested in showing that this 
an be done without a signi�
ant in
rease in 
ost.Although we will use numeri
al methods that we have implemented to make thispoint, we do not want to infer that other approa
hes are not equally valid orthat or our methods are optimal { only that our obje
tive 
an be a
hieved.We use two examples to illustrate and motivate our fo
us. The �rst involves astandard initial value problem (IVP) and is 
hosen be
ause the lessons learnedand impli
ations dis
ussed also apply dire
tly to DDEs.1.1 An example IVP investigationConsider a typi
al use of an IV method in a PSE, where a predator-prey rela-tionship is modeled by the IVP:y01 = y1 � 0:1y1y2 + 0:02xy02 = �y2 + 0:02y1y2 + 0:008xwith spe
i�ed initial 
onditions. For example, for most of the tests reportedhere we use, y1(0) = 30; y2(0) = 20:In this appli
ation y1(x) represents the `prey' population at time x and y2(x)represents the `predator' population at time x. We know that solutions to thisproblem exhibit os
illatory behaviour as x in
reases. A biologist may be inter-ested in whether the solution 
omponents of this equation are `almost periodi
'(in the sense that the di�eren
e between points where su

essive maximums3



o

ur is 
onstant) and whether the lo
al maximum values approa
h a steadystate exponentially (see �gure 1).Figure 1 illustrates qualitatively the obje
tives of su
h an investigation fora typi
al set of initial 
onditions (in this 
ase y1(0) = 160) where the interval ofinterest is [0; 140℄ and the prey population is plotted vs x. The displayed solutionis an a

urate approximate solution generated using a reliable numeri
al methodwith a stringent a

ura
y request (10�10 in this 
ase). This is also the te
hniqueused to generate the `true' solution for all our numeri
al tests. We tried di�erentreliable methods at di�erent a

ura
y requests and always obtained 
onsistentresults.In �gure 1 (as in most of the �gures in this paper) the horizontal axis rep-resents the independent variable, x, and the verti
al axis represents various
omponents of the dependent variable(s), y(x).To answer the questions posed by this investigation the numeri
al methodshould be 
apable of providing an appropriate `visualization' of the prey pop-ulation on the interval of interest. Three te
hniques that 
an be used to pro-vide su
h a visualization are illustrated in �gures 2 - 4 where the underly-ing IV method is ode45 of MATLAB [10℄ and the error 
ontrol option usedis ATOL = TOL = 10�10. Note that the �rst two te
hniques do not delivere�e
tive visualizations and would not be parti
ularly suitable for lo
ating thelo
al extrema. (Although �gure 3 and �gure 4 are similar, a 
loser detailed in-spe
tion of the asso
iated errors, not reported here, revealed the o�-mesh errorasso
iated with �gure 3 to be mu
h greater than that asso
iated with �gure4. In parti
ular the lo
ation of the fourth and �fth lo
al maximum of the preypopulation is not adequate to answer the question that is being investigated.)On the other hand the third te
hnique (see �gure 4) provides suÆ
ient a

u-ra
y for the question to be answered over a range of a

ura
y requests. Variousmethods using this te
hnique will deliver 
onsistent visualizations.To see this we show, in �gure 5, an alternative visualization of an approxi-mate solution to this problem determined by an 8th order CRK method (usingan equivalent a

ura
y request). This visualization is virtually indistinguishablefrom that 
orresponding to ode45 (�gure 4). The robustness and quality of thevisualizations asso
iated with this te
hnique makes it parti
ularly appropriatefor use in a PSE.1.2 An essential requirementFor these ODE methods we 
an insist that an additional essential requirementbe satis�ed. We will �rst investigate this requirement in the 
ontext of IVPsand then 
onsider the impli
ation for DDEs. We 
onsider the standard IVP 
ase�rst as the impli
ations for methods designed for this less 
ompli
ated 
lass ofproblems also apply to the more general 
lass of DDE problems. This essentialrequirement is,� When applied to: y0 = f(x; y); y(a) = y0; on [a; b℄;4
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Figure 1: Do the lo
al maximum of the prey population de
ay exponentially?Is the time between the lo
al maximum almost 
onstant?
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(b) Phase Portrait (y2(x) vs y1(x))Figure 2: Visualizing the solution of the predator-prey problem with ode45 usingonly the dis
rete approximation and its pie
ewise linear interpolantwith a spe
i�ed a

ura
y, TOL, the method generates a pie
ewise poly-nomial, S(x), de�ned for x 2 [a; b℄ satisfying,kS(x)� y(x)k � KMTOL:5
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(b) Phase Portrait (y2(x) vs y1(x))Figure 3: Visualizing the solution of the predator-prey problem with ode45 usinga standard 
ubi
 spline approximation to the dis
rete solution
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(b) Phase Portrait (y2(x) vs y1(x))Figure 4: Visualizing the solution of the predator-prey problem with ode45 usingits asso
iated CRK, S(x)Note that KM 
an depend on the method and the problem and 
an be inter-preted as the `numeri
al 
ondition number' asso
iated with method M appliedto the problem. With an appropriate 
hoi
e of error and stepsize 
ontrol (For ex-ample, dire
t defe
t 
ontrol) we 
an ensure that KM will be almost independentof the method.Let zi(x) be the solution of the lo
al IVP on step i and 
onsider the approx-imation, fxi; yigNi=0, asso
iated with a pth- order dis
rete RK formula. We will6
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(b) Phase Portrait (y2(x) vs y1(x))Figure 5: Visualizing the solution of the predator-prey problem using an 8thorder CRKand its asso
iated CRK, S(x)
onsider three types of CRKs that 
an be asso
iated with this dis
rete RK for-mula. The asso
iated interpolants, S(x); �S(x), and ~S(x), (of in
reasing 
ost andreliability) are 
hara
terized below. Ea
h will satisfy this essential requirementfor x 2 [xi�1; xi℄:Type I: S(x) = zi(x) +O(hp) with the leading term in the asymptoti
 expan-sion of the defe
t, satisfyingÆ(x) = d(f)hp�1 +O(hp);with d(f) depending on the problem and the method.Type II: �S(x) = zi(x) +O(hp+1) with,�Æ(x) = �d(f)hp +O(hp+1);with �d(f) depending on the problem and the method.Type III: ~S(x) = zi(x) +O(hp+1) with,~Æ(x) = ~d(f)hp +O(hp+1);with ~d(f) depending only on the problem.1.3 Error and stepsize ControlWith CRK methods satisfying this essential requirement, one 
an monitor themagnitude of the defe
t asso
iated with ea
h step and a

ept the step only ifan estimate of this quantity is less than the error toleran
e, TOL.7



It should be observed that methods that use su
h defe
t 
ontrol strategies
annot employ lo
al extrapolation, either to estimate the magnitude of thedefe
t or improve the a

ura
y of the a

epted solution. (Any attempt to do sowould require a new, more expensive CRK and/or a more expensive estimateof the asso
iated defe
t.) Note also that, with dire
t defe
t 
ontrol, one 
anderive asso
iated estimates Æ(x); �Æ(x) that have been found (through extensivenumeri
al tests) to be reliable on ea
h step `with high probability' (typi
allybased on sampling the defe
t at one or two points per step). In addition,estimates of ~Æ(x) that are reliable (asymptoti
ally justi�ed) for all steps, 
anreadily be developed.With dire
t defe
t 
ontrol one 
an prove (see for example [2℄) the desired
onvergen
e result: kS(x)� y(x)k � KMTOL;where KM depends primarily on the problem.We have implemented IVP, BVP and DDE methods (see [3℄, [1℄ for details)based on this approa
h. These methods provide, as an option to the user, the
hoi
e of either a 
ontinuous extension of type �S(x) or the more reliable butmore expensive ~S(x). The DDE method of this family is ddverk [1℄ and it isavailable through NETLIB (www.netlib.org/index.html).Table 1 identi�es the 
ost per step in terms of derivative evaluations requiredfor the di�erent types of CRKs asso
iated with some e�e
tive pth-order dis
reteRK formulas. We in
lude in our reporting of 
ost the additional derivative evalu-ation required when using defe
t 
ontrol and either �S(x) or ~S(x) (with indire
tlo
al error 
ontrol, S(x), no derivative evaluations are required to determinethe lo
al error estimate). We do not 
laim that these formulas are optimal, butrather that they illustrate that the additional 
osts of the more reliable inter-polating s
hemes are not prohibitive. The �rst two CRK formulas are based ondis
rete RK formulas derived in [7℄, with the 
orresponding CRK proposed in[6℄. The next three CRK formulas are obtained from software developed for thederivation of dis
rete formula pairs in [15℄ with the 
orresponding CRK derivedusing the algorithm given in [16℄. In this table, s is the number of stages ne
es-sary to determine an asso
iated S(x); (�s� 1) is the number of stages ne
essaryto determine an asso
iated �S(x); and (~s�1) is the number of stages ne
essary todetermine an asso
iated ~S(x). This table quanti�es the `extra 
ost' asso
iatedwith the more reliable defe
t 
ontrol strategies.For any DDE method, an asso
iated o�-mesh interpolation te
hnique (toevaluate the delayed solution approximations on step i, for x < xi�1, ) must bepart of the overall method, although this te
hnique does not have to 
orrespondto S(x). Note also that this table applies to both IVP and DDE methods basedon the respe
tive pth-order, dis
rete formula and it identi�es the `
ost' of formingthe underlying interpolant and estimating the asso
iated defe
t.
8



Dis
rete Formula p s �s ~sCRK4 4 4 6 7CRK5 5 7 9 11CVSS6B 6 9 11 14CVSS7 7 11 15 20CVSS8 8 15 21 28ode45 5 7 9 11Table 1: Cost per step of some typi
al CRK ODE methods1.4 Three versions of ode45:We have modi�ed ode45 so the user has some 
hoi
e in the sele
tion of the typeof CRK and asso
iated error 
ontrol. By setting the parameter eropt, one ofthree error 
ontrol strategies (and asso
iated interpolant) is used:eropt = I: Indire
t lo
al error 
ontrol{ using S(x). This gives the identi
alresults that the built-in routine provides at a 
ost of (see table 1) sevenderivative evaluations per step.eropt = II: Dire
t defe
t 
ontrol { using �S(x). The error estimate is basedon a single sampled evaluation of the defe
t and has a high probability ofbeing reliable. The asso
iated 
ost is nine derivative evaluations per step.eropt = III: Stri
t dire
t defe
t 
ontrol { using ~S(x). The leading term inthe expansion of this defe
t is reliably estimated and the 
ost is elevenderivative evaluations per step.There is 
learly a 
ost/reliability trade o� to be 
onsidered when sele
tingthe error 
ontrol option for a parti
ular appli
ation.We now present numeri
al results for the predator-prey investigation forthese three versions of ode45. In ea
h 
ase we invoked the method and, afterea
h step, 
he
ked the sign of the derivative of the interpolant (at xi�1 andxi) to see if the integration had passed through a lo
al maximum of the preypopulation. If it had, we then determined the lo
ation and value of this lo
almaximum (by solving for the zeros of the derivative of the interpolant { thezeros of S0(x)). After the 
ompletion of the integration a MATLAB linear leastsquares method was used to determine how well the observed 
omputed data,(the lo
ations and values of the lo
al maximums), �t the hypothesis that thesolution was almost periodi
 and that the magnitude of the lo
al maximum ofthe prey population de
ayed to its steady state value at an exponential rate.That is, if the set of lo
al maximums identi�ed by this te
hnique is fx̂j ; ŷjgMj:=1,then a linear least squares solver was used to determine the `best' exponential�t of the form, ln(ŷj) � a x̂j + b:The 
orresponding value, b, was then 
ompared to the `true' value (asso
iatedwith the data), whi
h was pre
omputed using an a

urate approximation to9



y(x). This a

urate approximation to y(x) was also used to determine thereported measures of error: ger, ymerr and experr. Similarly a best least squares�t of the form, x̂j � x̂j�1 � R, for j = 2; 3 � � �M was determined.Note that the te
hnique we have used to allow the biologist to explore thevalidity of his/her hypothesis is only one generi
 approa
h that 
ould be used.Other equally e�e
tive te
hniques 
ould be used, parti
ularly if the underlyingnumeri
al method allows a user to spe
ify `events' or `g-stops' (see, for example,[12℄).Table 2 reports the following statisti
s:steps: The number of time steps.f
n: The number of derivative evaluations.ger: The maximum magnitude of the error in the solution, measured in unitsof TOL.ymerr: The maximum magnitude of the error in the identi�ed lo
al maximums(of the prey population), measured in units of TOL.experr: The error in the reported value of the `best' exponential �t to thede
ay exhibited by the mathemati
al model, measured in units of TOL.R(res): Best least square �t and residual for determining whether the preypopulation is almost periodi
.These results show that the type II and type III CRK versions of ode45provide 
onsistent and a

urate answers to the questions the biologist is inves-tigating (over a range of a

ura
y requests) while the type I version does notdo so at the most relaxed error toleran
e (TOL = 10�2).2 General purpose DDE softwareAs for IVP software, a new generation of numeri
al methods for DDEs is nowpossible and is being developed. These new methods address the issues we haveidenti�ed for IVPs as well as other issues that are parti
ular to DDEs.Any method that 
an be applied to DDE problems with multiple delays,and both retarded and neutral delays must inherently have a 
omplex 
allingsequen
e just to spe
ify the `mathemati
al' problem,y0 = f(x; y(x); y(x � �1) � � � y(x� �k);y0(x� �k+1); � � � y0(x� �k+`))where y(x) = �(x); y0(x) = �0(x); for x � x0;and �i � �i(x; y(x)) � 0 for i = 1; 2 � � � k + `:10



eropt TOL 10�2 10�4 10�6I steps 71 148 367f
n 511 961 2239ger 30. 8.3 3.9ymerr 12. 1.1 2.2experr 24.8 2.9 5.6R(res) 6.43 (.4) 6.37 (.05) 6.37 (.05)II steps 92 184 397f
n 921 1769 3385ger 4.1 2.3 4.3ymerr .70 1.1 3.5experr 2.2 1.7 5.4R(res) 6.36 (.07) 6.37 (.05) 6.37 (.05)III steps 92 185 408f
n 1171 2131 4441ger 1.5 1.7 2.6ymerr .78 .82 2.2experr 2.7 1.7 3.7R(res) 6.36 (.06) 6.37 (.05) 6.37 (.05)Table 2: Results for the 3 versions of ode45 on the predator-prey investigationTo spe
ify this problem the user must supply, in addition to the subroutine toevaluate the di�erential equation and the range of integration, [a; b℄,� subroutines to evaluate ea
h �i(x; y).� subroutines to evaluate �(x); and �0(x).With this generality in spe
ifying the mathemati
al problem, diÆ
ulties 
anarise with well de�ned mathemati
al problems that are inherently expensive toapproximate numeri
ally. Examples of su
h problems are those that involvemultiple state-dependent delays and neutral problems that do not satisfy,x � �x ) x� �(x; y(x)) � �x� �(�x; y(�x)):2.1 An example DDE investigationConsider a typi
al appli
ation, similar to our IVP example, based on a modelof the spread of an infe
tious disease (this is a well-known problem dis
ussed,for example, in [8℄ p.295).Let y1 represent the sus
eptible portion of the population, y2 represent theinfe
ted portion of the population and y3 represent the immunized portion ofthe population. Assume that the immunized group be
omes sus
eptible after11



10 units of time and that there is an in
ubation period of 1 unit. The resultingDDE is, y01 = �y1(x)y2(x � 1) + y2(x� 10);y02 = y1(x)y2(x� 1)� y2(x);y03 = y2(x)� y2(x � 10);with a typi
al set of initial fun
tions,y1(x) = 5; y2(x) = 0; y3(x) = 1 for x � 0:The solution to this problem has a dis
ontinuity in y0(x) at the initial point,x = 0, and subsequent dis
ontinuities in higher order derivatives at x = 1; x =2 � � � ; x = 10; x = 11; x = 20 � � � .One may be interested in investigating the lo
al extrema of some of thepopulations. We will 
onsider the use of ddverk whi
h provides two di�erent
hoi
es for a Type II CRK (IIa 
orresponds to using one sampled point perstep to estimate the magnitude of the defe
t while IIb 
orresponds to using twosampled points) and one Type III CRK.Similar to our IVP investigation, our numeri
al investigation was a

om-plished by 
he
king the sign of the derivative approximations at the dis
retepoints, xi and signaling when a lo
al maximum had been passed (that is, whenthe value of the approximation S0(x) had 
hanged sign). At that point a bi-se
tion sear
h was invoked to a

urately determine the lo
ation and value ofthe asso
iated lo
al maximum. It is worth noting that, if one only wanted thelo
ation and 
orresponding value of the lo
al extrema, then the extra 
ost ofevaluating S(x) on a �ne mesh (for visualization) for all 
omponents on thewhole interval would not be ne
essary. This 
ould lead to additional savings in
omputer time and storage.Table 3 reports the performan
e of the three versions of ddverk on this in-fe
tious disease investigation. Ea
h version provides a 
onsistent and hopefullya

urate answer to the lo
ation and value of the lo
al extrema of the infe
tedpopulation (see �gures 6 and 7 ). Note that we should expe
t to observe tol-eran
e proportionality only over a reasonable range of a

ura
y requests. For`relaxed' values of TOL the asymptoti
 analysis that justi�es our strategieswill not be appli
able while, for stringent values of TOL the 
ontribution ofroundo� error may dominate the trun
ation error (and not be proportional toTOL). [Note that the results reported here are for the version of ddverk avail-able through NETLIB. This version is known not to have full ma
hine a

ura
yin the 
oeÆ
ients de�ning the CRK formula. To invesigate the e�e
t this mighthave, we have run a modi�ed version of ddverk, where these 
oeÆ
ients area

urate to full ma
hine pre
ision, and observed very little 
hange.℄3 Summary and 
on
lusionsWe have shown that numeri
al methods for DDEs that are more appropriatefor use in a PSE 
an be developed at a modest in
rease in 
ost. These methods12
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(b) Phase Portrait (y2(x) vs y1(x))Figure 6: Visualizing the solution of the infe
tious disease problem using �S(x)with TOL = 10�4 and eropt = IIa
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Figure 7: The lo
al maximums of the infe
ted population determined using �S(x)with TOL = 10�4 and eropt = IIawill, when based on an underlying pth-order dis
rete RK formula, produ
e an ap-proximate solution as a pie
ewise polynomial with an a

ura
y that is uniformlypth order for all x in the interval of interest. With dire
t defe
t 
ontrol, thesemethods will deliver approximate solutions exhibiting toleran
e proportionalitywith the `
onstant of proportionality' depending primarily on the mathemati
al
onditioning of the problem. Another advantage of these methods is that one13



eropt TOL 10�2 10�4 10�6 10�8IIa steps 44 76 140 280f
n 886 1418 2090 3653ger 5.5 108 158 168ymer .14 .84 .84 180IIb steps 45 79 143 290f
n 992 1700 2357 4177ger .78 71 102 96ymer .34 .51 1.2 94III steps 46 80 153 301f
n 1101 1897 2898 5035ger .75 41 53 69ymer .15 .39 1.1 69Table 3: Performan
e of di�erent versions of ddverk on the infe
tious diseaseinvestigationobtains a

urate approximations to both the solution and its derivative.The next step required to make these methods easier to use in a PSE involvesthe adoption of a simple hierar
hi
al interfa
e and the generation of severalworked out examples (
ase studies) of typi
al investigations so potential newusers will be able to qui
kly and painlessly try out the method. It is not enoughto report the results of a few typi
al appli
ations (as we have done here), butlistings of a
tual drivers used to 
arry out these investigations are needed. These
an be used as `templates' for new users and often are the best way for a userto understand how to use existing software to solve a new problem. We are
urrently produ
ing su
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