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Abstract

Numerical methods for both ordinary differential equations (ODEs)
and delay differential equations (DDEs) are traditionally developed and
assessed on the basis of how well the accuracy of the approximate solution
is related to the specified error tolerance on an adaptively-chosen, discrete
mesh. This may not be appropriate in numerical investigations that re-
quire visualization of an approximate solution on a continuous interval of
interest (rather than at a small set of discrete points) or in investigations
that require the determination of the ‘average’ values or the ‘extreme’
values of some solution components.

In this paper we will identify modest changes in the standard error-
control and stepsize-selection strategies that make it easier to develop,
assess and use methods which effectively deliver approximations to differ-
ential equations (both ODEs and DDEs) that are more appropriate for
these type of investigations. The required changes will typically increase
the cost per step by up to 40%, but the improvements and advantages
gained will be significant. Numerical results will be presented for these
modified methods applied to two example investigations (one ODE and
one DDE).
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1 Introduction

If numerical methods for ordinary differential equations (ODEs) are to be widely
used, they should meet the broadest expectations of potential users. Users, in
many cases, are interested in visualization and/or investigations of properties
of the solution, not simply the approximation at discrete mesh points. They
are likely to be working in a problem solving environment (PSE) with a choice
of methods available. The implications for developers of ODE software are
significant and include the following implementation issues:

e The method should adopt a standard, easy to understand, interpretation
of the error control mechanism(s) that are available and a standard pro-
gram interface (calling sequence).

e The options and additional parameters (if required) should be specified
in a consistent fashion for all methods. This includes stepsize constraints
and accuracy specification.

e The method should adopt a standard representation of the approximate
solution. (For example, a vector of piecewise polynomials.)

In recent years there has been considerable progress made addressing these
implementation issues as new methods have been introduced and extra features
provided to make the current generation of ODE software more accessible to a
wider audience of users. For example we have implemented a family of ODE
methods and associated software tools ([6], [3], [1] and [5] ) and Shampine and
his colleagues ([13], [9], [14] and [12] ) have implemented, in the MATLAB PSE
[10], a similar family of ODE methods. One way to view the progress that has
been made is to interpret it as a natural evolution of ‘adaptive’ ODE methods,
starting with a classical fixed stepsize method and introducing three features,

e Variable stepsize discrete approximations,
(with maximum stepsize, h ):

N
{wi,yi}ilo, maxly(w:) —yil = O(h?).

[Such methods are typically based on an underlying discrete Runge-Kutta
(RK) formula (or a formula pair). Effective classes of formula pairs of
this type include, for example, those derived by Fehlberg [7], Prince and
Dormand [11], and Verner [15].]

e Variable stepsize continuous extensions, S(z),
(for visualization):

S(xi) = yi, [1S(@) —y(@)[| = O(hP), for x € [z, 2n]-

[Note that if the underlying discrete formula of such a method is a RK
formula, such a continuous approximation is referred to as a continuous
RK formula (CRK).]



e Variable stepsize CRKs with direct defect error control,
(to obtain ‘tolerance proportionality’ and a generic convergence result):
That is, the interpolant S(x) satisfies,

19" () — f(=z,S(=))I| < TOL,

which implies,

K, TOL
KyTOL.

15(2) = y(2)]]
15"(z) =o' (@)

[Note that d(z) = S'(x) — f(x,S(x)) is defined to be the defect of the
approximate solution and ‘direct defect control’ refers to the use of er-
ror control strategies that attempt to correctly estimate and bound the
dominant term in the asymptotic expansion of this defect.]

In this paper we are concerned with making the new generation of ODE
methods, in particular RK methods for DDEs, more accessible and usable by
scientists and engineers in a wide variety of research areas. We are particularly
interested in showing that this can be done without a significant increase in cost.
Although we will use numerical methods that we have implemented to make this
point, we do not want to infer that other approaches are not equally valid or
that or our methods are optimal — only that our objective can be achieved.
We use two examples to illustrate and motivate our focus. The first involves a
standard initial value problem (IVP) and is chosen because the lessons learned
and implications discussed also apply directly to DDEs.

1.1 An example IVP investigation

Consider a typical use of an IV method in a PSE, where a predator-prey rela-
tionship is modeled by the IVP:

yi =y — 0.1y1y2 + 0.022

with specified initial conditions. For example, for most of the tests reported
here we use,
y1(0) = 30, y2(0) = 20.

In this application y;(x) represents the ‘prey’ population at time z and y»(x)
represents the ‘predator’ population at time z. We know that solutions to this
problem exhibit oscillatory behaviour as « increases. A biologist may be inter-
ested in whether the solution components of this equation are ‘almost periodic’
(in the sense that the difference between points where successive maximums



occur is constant) and whether the local maximum values approach a steady
state exponentially (see figure 1).

Figure 1 illustrates qualitatively the objectives of such an investigation for
a typical set of initial conditions (in this case y; (0) = 160) where the interval of
interest is [0, 140] and the prey population is plotted vs z. The displayed solution
is an accurate approximate solution generated using a reliable numerical method
with a stringent accuracy request (10719 in this case). This is also the technique
used to generate the ‘true’ solution for all our numerical tests. We tried different
reliable methods at different accuracy requests and always obtained consistent
results.

In figure 1 (as in most of the figures in this paper) the horizontal axis rep-
resents the independent variable, x, and the vertical axis represents various
components of the dependent variable(s), y(z).

To answer the questions posed by this investigation the numerical method
should be capable of providing an appropriate ‘visualization’ of the prey pop-
ulation on the interval of interest. Three techniques that can be used to pro-
vide such a visualization are illustrated in figures 2 - 4 where the underly-
ing IV method is ode45 of MATLAB [10] and the error control option used
is ATOL = TOL = 1071Y. Note that the first two techniques do not deliver
effective visualizations and would not be particularly suitable for locating the
local extrema. (Although figure 3 and figure 4 are similar, a closer detailed in-
spection of the associated errors, not reported here, revealed the off-mesh error
associated with figure 3 to be much greater than that associated with figure
4. In particular the location of the fourth and fifth local maximum of the prey
population is not adequate to answer the question that is being investigated.)
On the other hand the third technique (see figure 4) provides sufficient accu-
racy for the question to be answered over a range of accuracy requests. Various
methods using this technique will deliver consistent visualizations.

To see this we show, in figure 5, an alternative visualization of an approxi-
mate solution to this problem determined by an 8" order CRK method (using
an equivalent accuracy request). This visualization is virtually indistinguishable
from that corresponding to ode45 (figure 4). The robustness and quality of the
visualizations associated with this technique makes it particularly appropriate
for use in a PSE.

1.2 An essential requirement

For these ODE methods we can insist that an additional essential requirement
be satisfied. We will first investigate this requirement in the context of IVPs
and then consider the implication for DDEs. We consider the standard IVP case
first as the implications for methods designed for this less complicated class of
problems also apply to the more general class of DDE problems. This essential
requirement, is,

e When applied to:

!

Yy = f(l',y), y(a) = Yo, On [a’b]a
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Figure 1: Do the local maximum of the prey population decay exponentially?
Is the time between the local maximum almost constant?
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(a) Solution Plot (b) Phase Portrait (y2(z) vs y1(z))

Figure 2: Visualizing the solution of the predator-prey problem with ode45 using
only the discrete approximation and its piecewise linear interpolant

with a specified accuracy, TOL, the method generates a piecewise poly-
nomial, S(x), defined for z € [a, b] satisfying,

15(z) —y(2)|| < KmMTOL.



(a) Solution Plot (b) Phase Portrait (y2(x) vs yi(z))

Figure 3: Visualizing the solution of the predator-prey problem with ode45 using
a standard cubic spline approximation to the discrete solution

(a) Solution Plot (b) Phase Portrait (y2(z) vs y1(z))

Figure 4: Visualizing the solution of the predator-prey problem with ode45 using
its associated CRK, S(x)

Note that Kj; can depend on the method and the problem and can be inter-
preted as the ‘numerical condition number’ associated with method M applied
to the problem. With an appropriate choice of error and stepsize control (For ex-
ample, direct defect control) we can ensure that K s will be almost independent
of the method.

Let z;(x) be the solution of the local IVP on step ¢ and consider the approx-
imation, {z;,y;}¥,, associated with a p'"- order discrete RK formula. We will



(a) Solution Plot (b) Phase Portrait (y2(x) vs yi(z))

Figure 5: Visualizing the solution of the predator-prey problem using an 8"
order CRKand its associated CRK, S(x)

consider three types of CRKs that can be associated with this discrete RK for-
mula. The associated interpolants, S(z), S(x), and S(x), (of increasing cost and
reliability) are characterized below. Each will satisfy this essential requirement
for z € [z;_1,x]:

Type I: S(z) = zi(x) + O(h?) with the leading term in the asymptotic expan-
sion of the defect, satisfying

§(z) = d(f)R'~" + O(hP),
with d(f) depending on the problem and the method.
Type II: S(z) = z;(z) + O(hP*!) with,
8(z) = d(f)R? + O(h*Y),
with d(f) depending on the problem and the method.
Type IIIL: S(x) = z;(x) + O(RPT!) with,
d(x) = d(f)h¥ + O(h"*h),

with d(f) depending only on the problem.

1.3 Error and stepsize Control

With CRK methods satisfying this essential requirement, one can monitor the
magnitude of the defect associated with each step and accept the step only if
an estimate of this quantity is less than the error tolerance, TOL.



It should be observed that methods that use such defect control strategies
cannot employ local extrapolation, either to estimate the magnitude of the
defect or improve the accuracy of the accepted solution. (Any attempt to do so
would require a new, more expensive CRK and/or a more expensive estimate
of the associated defect.) Note also that, with direct defect control, one can
derive associated estimates 6(x), §(z) that have been found (through extensive
numerical tests) to be reliable on each step ‘with high probability’ (typically
based on sampling the defect at one or two points per step). In addition,
estimates of 6(x) that are reliable (asymptotically justified) for all steps, can
readily be developed.

With direct defect control one can prove (see for example [2]) the desired
convergence result:

1S(2) - y(@)l| < KnTOL,

where K; depends primarily on the problem.

We have implemented IVP, BVP and DDE methods (see [3], [1] for details)
based on this approach. These methods provide, as an option to the user, the
choice of either a continuous extension of type S(z) or the more reliable but
more expensive S(z). The DDE method of this family is ddverk [1] and it is
available through NETLIB (www.netlib.org/index.html).

Table 1 identifies the cost per step in terms of derivative evaluations required
for the different types of CRKs associated with some effective pt"-order discrete
RK formulas. We include in our reporting of cost the additional derivative evalu-
ation required when using defect control and either S(z) or S(z) (with indirect
local error control, S(z), no derivative evaluations are required to determine
the local error estimate). We do not claim that these formulas are optimal, but
rather that they illustrate that the additional costs of the more reliable inter-
polating schemes are not prohibitive. The first two CRK formulas are based on
discrete RK formulas derived in [7], with the corresponding CRK proposed in
[6]. The next three CRK formulas are obtained from software developed for the
derivation of discrete formula pairs in [15] with the corresponding CRK derived
using the algorithm given in [16]. In this table, s is the number of stages neces-
sary to determine an associated S(x); (5 — 1) is the number of stages necessary
to determine an associated S(z); and (§—1) is the number of stages necessary to
determine an associated S(x). This table quantifies the ‘extra cost’ associated
with the more reliable defect control strategies.

For any DDE method, an associated off-mesh interpolation technique (to
evaluate the delayed solution approximations on step ¢, for x < z;_1, ) must be
part of the overall method, although this technique does not have to correspond
to S(x). Note also that this table applies to both IVP and DDE methods based
on the respective pt*-order, discrete formula and it identifies the ‘cost’ of forming
the underlying interpolant and estimating the associated defect.



Discrete Formula | p | s 5| §
CRK4 41 4| 6| 7
CRK5 51 71 9|11
CVSS6B 6| 9|11 |14
CVSS7 7111 |15 | 20
CVSS8 81 15|21 |28
ode4b 51 71 911

Table 1: Cost per step of some typical CRK ODE methods

1.4 Three versions of ode45:

We have modified ode45 so the user has some choice in the selection of the type
of CRK and associated error control. By setting the parameter eropt, one of
three error control strategies (and associated interpolant) is used:

eropt = I: Indirect local error control- using S(x). This gives the identical
results that the built-in routine provides at a cost of (see table 1) seven
derivative evaluations per step.

eropt = II: Direct defect control — using S(z). The error estimate is based
on a single sampled evaluation of the defect and has a high probability of
being reliable. The associated cost is nine derivative evaluations per step.

eropt = III: Strict direct defect control — using S(z). The leading term in
the expansion of this defect is reliably estimated and the cost is eleven
derivative evaluations per step.

There is clearly a cost/reliability trade off to be considered when selecting
the error control option for a particular application.

We now present numerical results for the predator-prey investigation for
these three versions of ode45. In each case we invoked the method and, after
each step, checked the sign of the derivative of the interpolant (at z;_; and
x;) to see if the integration had passed through a local maximum of the prey
population. If it had, we then determined the location and value of this local
maximum (by solving for the zeros of the derivative of the interpolant — the
zeros of S’(x)). After the completion of the integration a MATLAB linear least
squares method was used to determine how well the observed computed data,
(the locations and values of the local maximums), fit the hypothesis that the
solution was almost periodic and that the magnitude of the local maximum of
the prey population decayed to its steady state value at an exponential rate.

That is, if the set of local maximums identified by this technique is {Z;, g; }j'\./lea
then a linear least squares solver was used to determine the ‘best’ exponential
fit of the form,

In(g;) = az; + b

The corresponding value, b, was then compared to the ‘true’ value (associated
with the data), which was precomputed using an accurate approximation to



y(z). This accurate approximation to y(z) was also used to determine the
reported measures of error: ger, ymerr and experr. Similarly a best least squares
fit of the form, ; — ;1 = R, for j =2,3--- M was determined.

Note that the technique we have used to allow the biologist to explore the
validity of his/her hypothesis is only one generic approach that could be used.
Other equally effective techniques could be used, particularly if the underlying
numerical method allows a user to specify ‘events’ or ‘g-stops’ (see, for example,
12)).

Table 2 reports the following statistics:
steps: The number of time steps.
fcn: The number of derivative evaluations.

ger: The maximum magnitude of the error in the solution, measured in units
of TOL.

ymerr: The maximum magnitude of the error in the identified local maximums
(of the prey population), measured in units of TOL.

experr: The error in the reported value of the ‘best’ exponential fit to the
decay exhibited by the mathematical model, measured in units of TOL.

R(res): Best least square fit and residual for determining whether the prey
population is almost periodic.

These results show that the type II and type III CRK versions of ode4s
provide consistent and accurate answers to the questions the biologist is inves-
tigating (over a range of accuracy requests) while the type I version does not
do so at the most relaxed error tolerance (TOL = 1072).

2 General purpose DDE software

As for IVP software, a new generation of numerical methods for DDEs is now
possible and is being developed. These new methods address the issues we have
identified for IVPs as well as other issues that are particular to DDEs.

Any method that can be applied to DDE problems with multiple delays,
and both retarded and neutral delays must inherently have a complex calling
sequence just to specify the ‘mathematical’ problem,

!

y = flzy(@),y(@—o01) -y(z—ow),
y'(iﬂ —Okt1),"" 'Z/(CU — Ok+e))

where

y(I) = QS('T): y’(ﬁ?) = ¢,('T)7 for @ S Zo,
and

o; = oi(x,y(x)) >0 for i=1,2---k+ L.

10



eropt ~TOL 102 10-* 10
I steps 71 148 367
fen 511 961 2239

ger 30. 8.3 3.9

ymerr 12. 1.1 2.2

experr 24.8 2.9 5.6

R(res) 6.43 (.4) | 6.37 (.05) | 6.37 (.05)

1I steps 92 184 397
fen 921 1769 3385

ger 4.1 2.3 4.3

ymerr .70 1.1 3.5

experr 2.2 1.7 5.4

R(res) || 6.36 (.07) | 6.37 (.05) | 6.37 (.05)

III steps 92 185 408
fen 1171 2131 4441

ger 1.5 1.7 2.6

ymerr .78 .82 2.2

experr 2.7 1.7 3.7

R(res) || 6.36 (.06) | 6.37 (.05) | 6.37 (.05)

Table 2: Results for the 3 versions of ode45 on the predator-prey investigation

To specify this problem the user must supply, in addition to the subroutine to
evaluate the differential equation and the range of integration, [a, ],

e subroutines to evaluate each o;(z,y).

e subroutines to evaluate ¢(z), and ¢'(z).

With this generality in specifying the mathematical problem, difficulties can
arise with well defined mathematical problems that are inherently expensive to
approximate numerically. Examples of such problems are those that involve
multiple state-dependent delays and neutral problems that do not satisfy,

r<I = T-— U(w,y(&?)) <z-—- U(iay(j))

2.1 An example DDE investigation

Consider a typical application, similar to our IVP example, based on a model
of the spread of an infectious disease (this is a well-known problem discussed,
for example, in [8] p.295).

Let y; represent the susceptible portion of the population, y» represent the
infected portion of the population and ys represent the immunized portion of
the population. Assume that the immunized group becomes susceptible after

11



10 units of time and that there is an incubation period of 1 unit. The resulting
DDE is,

vy = —yn(@)ya(z — 1) + y2(z - 10),
yy = y(x)ya(r —1) —ya(x),
Y3 y2(z) — y2(z — 10),

with a typical set of initial functions,

yl(x) = 57 yz(l“) = 07 y3($) =1 for x S 0.

The solution to this problem has a discontinuity in y’(z) at the initial point,
x = 0, and subsequent discontinuities in higher order derivatives at x =1, x =
2.5 2=10, 2 =11, 2 =20 ---.

One may be interested in investigating the local extrema of some of the
populations. We will consider the use of ddverk which provides two different
choices for a Type II CRK (IIa corresponds to using one sampled point per
step to estimate the magnitude of the defect while IIb corresponds to using two
sampled points) and one Type IIT CRK.

Similar to our IVP investigation, our numerical investigation was accom-
plished by checking the sign of the derivative approximations at the discrete
points, z; and signaling when a local maximum had been passed (that is, when
the value of the approximation S'(z) had changed sign). At that point a bi-
section search was invoked to accurately determine the location and value of
the associated local maximum. It is worth noting that, if one only wanted the
location and corresponding value of the local extrema, then the extra cost of
evaluating S(z) on a fine mesh (for visualization) for all components on the
whole interval would not be necessary. This could lead to additional savings in
computer time and storage.

Table 3 reports the performance of the three versions of ddverk on this in-
fectious disease investigation. Each version provides a consistent and hopefully
accurate answer to the location and value of the local extrema of the infected
population (see figures 6 and 7 ). Note that we should expect to observe tol-
erance proportionality only over a reasonable range of accuracy requests. For
‘relaxed’ values of TOL the asymptotic analysis that justifies our strategies
will not be applicable while, for stringent values of TOL the contribution of
roundoff error may dominate the truncation error (and not be proportional to
TOL). [Note that the results reported here are for the version of ddverk avail-
able through NETLIB. This version is known not to have full machine accuracy
in the coeflicients defining the CRK formula. To invesigate the effect this might
have, we have run a modified version of ddverk, where these coefficients are
accurate to full machine precision, and observed very little change.]

3 Summary and conclusions

We have shown that numerical methods for DDEs that are more appropriate
for use in a PSE can be developed at a modest increase in cost. These methods

12
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(a) Solution Plot (b) Phase Portrait (y2(x) vs yi(z))

Figure 6: Visualizing the solution of the infectious disease problem using S(x)
with TOL = 10~* and eropt = Ila
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Figure 7: The local maximums of the infected population determined using S(x)
with TOL = 10~* and eropt = Ila

will, when based on an underlying pt?-order discrete RK formula, produce an ap-
proximate solution as a piecewise polynomial with an accuracy that is uniformly
p!" order for all x in the interval of interest. With direct defect control, these
methods will deliver approximate solutions exhibiting tolerance proportionality
with the ‘constant of proportionality’ depending primarily on the mathematical
conditioning of the problem. Another advantage of these methods is that one

13



eropt TOL [[ 1072 ]10°* [ 1075 ] 10°®
IIa steps 44 76 140 280
fen 886 | 1418 | 2090 | 3653

ger 5.9 108 158 168

ymer .14 .84 .84 180

ITb steps 45 79 143 | 290
fen 992 | 1700 | 2357 | 4177

ger .78 71 102 96

ymer .34 .0l 1.2 94

11 steps 46 80 | 153 | 301
fen || 1101 | 1897 | 2898 | 5035

ger .75 41 53 69

ymer 15 .39 1.1 69

Table 3: Performance of different versions of ddverk on the infectious disease
investigation

obtains accurate approximations to both the solution and its derivative.

The next step required to make these methods easier to use in a PSE involves
the adoption of a simple hierarchical interface and the generation of several
worked out examples (case studies) of typical investigations so potential new
users will be able to quickly and painlessly try out the method. It is not enough
to report the results of a few typical applications (as we have done here), but
listings of actual drivers used to carry out these investigations are needed. These
can be used as ‘templates’ for new users and often are the best way for a user
to understand how to use existing software to solve a new problem. We are
currently producing such examples.
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