
Software for Ordinary and Delay Di�erentialEquations: Aurate Disrete ApproximateSolutions are not Enough �W.H. EnrightDepartment of Computer SieneUniversity of TorontoToronto, Canada M5S 3G4enright�s.utoronto.aAbstratNumerial methods for both ordinary di�erential equations (ODEs)and delay di�erential equations (DDEs) are traditionally developed andassessed on the basis of how well the auray of the approximate solutionis related to the spei�ed error tolerane on an adaptively-hosen, disretemesh. This may not be appropriate in numerial investigations that re-quire visualization of an approximate solution on a ontinuous interval ofinterest (rather than at a small set of disrete points) or in investigationsthat require the determination of the `average' values or the `extreme'values of some solution omponents.In this paper we will identify modest hanges in the standard error-ontrol and stepsize-seletion strategies that make it easier to develop,assess and use methods whih e�etively deliver approximations to di�er-ential equations (both ODEs and DDEs) that are more appropriate forthese type of investigations. The required hanges will typially inreasethe ost per step by up to 40%, but the improvements and advantagesgained will be signi�ant. Numerial results will be presented for thesemodi�ed methods applied to two example investigations (one ODE andone DDE).Keywords: Runge-Kutta methods, Delay di�erential equations, Ordinary dif-ferential equations, Interpolation.AMS Subjet Classi�ations: 65L05, 65L10Abbreviated Title: Software for DDEs�This researh was supported by the Natural Siene and Engineering Researh Counil ofCanada. 1



1 IntrodutionIf numerial methods for ordinary di�erential equations (ODEs) are to be widelyused, they should meet the broadest expetations of potential users. Users, inmany ases, are interested in visualization and/or investigations of propertiesof the solution, not simply the approximation at disrete mesh points. Theyare likely to be working in a problem solving environment (PSE) with a hoieof methods available. The impliations for developers of ODE software aresigni�ant and inlude the following implementation issues:� The method should adopt a standard, easy to understand, interpretationof the error ontrol mehanism(s) that are available and a standard pro-gram interfae (alling sequene).� The options and additional parameters (if required) should be spei�edin a onsistent fashion for all methods. This inludes stepsize onstraintsand auray spei�ation.� The method should adopt a standard representation of the approximatesolution. (For example, a vetor of pieewise polynomials.)In reent years there has been onsiderable progress made addressing theseimplementation issues as new methods have been introdued and extra featuresprovided to make the urrent generation of ODE software more aessible to awider audiene of users. For example we have implemented a family of ODEmethods and assoiated software tools ([6℄, [3℄, [1℄ and [5℄ ) and Shampine andhis olleagues ([13℄, [9℄, [14℄ and [12℄ ) have implemented, in the MATLAB PSE[10℄, a similar family of ODE methods. One way to view the progress that hasbeen made is to interpret it as a natural evolution of `adaptive' ODE methods,starting with a lassial �xed stepsize method and introduing three features,� Variable stepsize disrete approximations,(with maximum stepsize, h ):fxi; yigNi=0; Nmaxi=1 jy(xi)� yij = O(hp):[Suh methods are typially based on an underlying disrete Runge-Kutta(RK) formula (or a formula pair). E�etive lasses of formula pairs ofthis type inlude, for example, those derived by Fehlberg [7℄, Prine andDormand [11℄, and Verner [15℄.℄� Variable stepsize ontinuous extensions, S(x),(for visualization):S(xi) = yi; jjS(x)� y(x)jj = O(hp); for x 2 [x0; xN ℄:[Note that if the underlying disrete formula of suh a method is a RKformula, suh a ontinuous approximation is referred to as a ontinuousRK formula (CRK).℄ 2



� Variable stepsize CRKs with diret defet error ontrol,(to obtain `tolerane proportionality' and a generi onvergene result):That is, the interpolant S(x) satis�es,jjS0(x) � f(x; S(x))jj � TOL;whih implies, jjS(x)� y(x)jj � K1TOLjjS0(x) � y0(x)jj � K2TOL:[Note that Æ(x) � S0(x) � f(x; S(x)) is de�ned to be the defet of theapproximate solution and `diret defet ontrol' refers to the use of er-ror ontrol strategies that attempt to orretly estimate and bound thedominant term in the asymptoti expansion of this defet.℄In this paper we are onerned with making the new generation of ODEmethods, in partiular RK methods for DDEs, more aessible and usable bysientists and engineers in a wide variety of researh areas. We are partiularlyinterested in showing that this an be done without a signi�ant inrease in ost.Although we will use numerial methods that we have implemented to make thispoint, we do not want to infer that other approahes are not equally valid orthat or our methods are optimal { only that our objetive an be ahieved.We use two examples to illustrate and motivate our fous. The �rst involves astandard initial value problem (IVP) and is hosen beause the lessons learnedand impliations disussed also apply diretly to DDEs.1.1 An example IVP investigationConsider a typial use of an IV method in a PSE, where a predator-prey rela-tionship is modeled by the IVP:y01 = y1 � 0:1y1y2 + 0:02xy02 = �y2 + 0:02y1y2 + 0:008xwith spei�ed initial onditions. For example, for most of the tests reportedhere we use, y1(0) = 30; y2(0) = 20:In this appliation y1(x) represents the `prey' population at time x and y2(x)represents the `predator' population at time x. We know that solutions to thisproblem exhibit osillatory behaviour as x inreases. A biologist may be inter-ested in whether the solution omponents of this equation are `almost periodi'(in the sense that the di�erene between points where suessive maximums3



our is onstant) and whether the loal maximum values approah a steadystate exponentially (see �gure 1).Figure 1 illustrates qualitatively the objetives of suh an investigation fora typial set of initial onditions (in this ase y1(0) = 160) where the interval ofinterest is [0; 140℄ and the prey population is plotted vs x. The displayed solutionis an aurate approximate solution generated using a reliable numerial methodwith a stringent auray request (10�10 in this ase). This is also the tehniqueused to generate the `true' solution for all our numerial tests. We tried di�erentreliable methods at di�erent auray requests and always obtained onsistentresults.In �gure 1 (as in most of the �gures in this paper) the horizontal axis rep-resents the independent variable, x, and the vertial axis represents variousomponents of the dependent variable(s), y(x).To answer the questions posed by this investigation the numerial methodshould be apable of providing an appropriate `visualization' of the prey pop-ulation on the interval of interest. Three tehniques that an be used to pro-vide suh a visualization are illustrated in �gures 2 - 4 where the underly-ing IV method is ode45 of MATLAB [10℄ and the error ontrol option usedis ATOL = TOL = 10�10. Note that the �rst two tehniques do not delivere�etive visualizations and would not be partiularly suitable for loating theloal extrema. (Although �gure 3 and �gure 4 are similar, a loser detailed in-spetion of the assoiated errors, not reported here, revealed the o�-mesh errorassoiated with �gure 3 to be muh greater than that assoiated with �gure4. In partiular the loation of the fourth and �fth loal maximum of the preypopulation is not adequate to answer the question that is being investigated.)On the other hand the third tehnique (see �gure 4) provides suÆient au-ray for the question to be answered over a range of auray requests. Variousmethods using this tehnique will deliver onsistent visualizations.To see this we show, in �gure 5, an alternative visualization of an approxi-mate solution to this problem determined by an 8th order CRK method (usingan equivalent auray request). This visualization is virtually indistinguishablefrom that orresponding to ode45 (�gure 4). The robustness and quality of thevisualizations assoiated with this tehnique makes it partiularly appropriatefor use in a PSE.1.2 An essential requirementFor these ODE methods we an insist that an additional essential requirementbe satis�ed. We will �rst investigate this requirement in the ontext of IVPsand then onsider the impliation for DDEs. We onsider the standard IVP ase�rst as the impliations for methods designed for this less ompliated lass ofproblems also apply to the more general lass of DDE problems. This essentialrequirement is,� When applied to: y0 = f(x; y); y(a) = y0; on [a; b℄;4
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Figure 1: Do the loal maximum of the prey population deay exponentially?Is the time between the loal maximum almost onstant?
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(b) Phase Portrait (y2(x) vs y1(x))Figure 2: Visualizing the solution of the predator-prey problem with ode45 usingonly the disrete approximation and its pieewise linear interpolantwith a spei�ed auray, TOL, the method generates a pieewise poly-nomial, S(x), de�ned for x 2 [a; b℄ satisfying,kS(x)� y(x)k � KMTOL:5



0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

(a) Solution Plot 10 20 30 40 50 60 70 80 90 100 110
2

4

6

8

10

12

14

16

18

20

22

(b) Phase Portrait (y2(x) vs y1(x))Figure 3: Visualizing the solution of the predator-prey problem with ode45 usinga standard ubi spline approximation to the disrete solution
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(b) Phase Portrait (y2(x) vs y1(x))Figure 4: Visualizing the solution of the predator-prey problem with ode45 usingits assoiated CRK, S(x)Note that KM an depend on the method and the problem and an be inter-preted as the `numerial ondition number' assoiated with method M appliedto the problem. With an appropriate hoie of error and stepsize ontrol (For ex-ample, diret defet ontrol) we an ensure that KM will be almost independentof the method.Let zi(x) be the solution of the loal IVP on step i and onsider the approx-imation, fxi; yigNi=0, assoiated with a pth- order disrete RK formula. We will6
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(b) Phase Portrait (y2(x) vs y1(x))Figure 5: Visualizing the solution of the predator-prey problem using an 8thorder CRKand its assoiated CRK, S(x)onsider three types of CRKs that an be assoiated with this disrete RK for-mula. The assoiated interpolants, S(x); �S(x), and ~S(x), (of inreasing ost andreliability) are haraterized below. Eah will satisfy this essential requirementfor x 2 [xi�1; xi℄:Type I: S(x) = zi(x) +O(hp) with the leading term in the asymptoti expan-sion of the defet, satisfyingÆ(x) = d(f)hp�1 +O(hp);with d(f) depending on the problem and the method.Type II: �S(x) = zi(x) +O(hp+1) with,�Æ(x) = �d(f)hp +O(hp+1);with �d(f) depending on the problem and the method.Type III: ~S(x) = zi(x) +O(hp+1) with,~Æ(x) = ~d(f)hp +O(hp+1);with ~d(f) depending only on the problem.1.3 Error and stepsize ControlWith CRK methods satisfying this essential requirement, one an monitor themagnitude of the defet assoiated with eah step and aept the step only ifan estimate of this quantity is less than the error tolerane, TOL.7



It should be observed that methods that use suh defet ontrol strategiesannot employ loal extrapolation, either to estimate the magnitude of thedefet or improve the auray of the aepted solution. (Any attempt to do sowould require a new, more expensive CRK and/or a more expensive estimateof the assoiated defet.) Note also that, with diret defet ontrol, one anderive assoiated estimates Æ(x); �Æ(x) that have been found (through extensivenumerial tests) to be reliable on eah step `with high probability' (typiallybased on sampling the defet at one or two points per step). In addition,estimates of ~Æ(x) that are reliable (asymptotially justi�ed) for all steps, anreadily be developed.With diret defet ontrol one an prove (see for example [2℄) the desiredonvergene result: kS(x)� y(x)k � KMTOL;where KM depends primarily on the problem.We have implemented IVP, BVP and DDE methods (see [3℄, [1℄ for details)based on this approah. These methods provide, as an option to the user, thehoie of either a ontinuous extension of type �S(x) or the more reliable butmore expensive ~S(x). The DDE method of this family is ddverk [1℄ and it isavailable through NETLIB (www.netlib.org/index.html).Table 1 identi�es the ost per step in terms of derivative evaluations requiredfor the di�erent types of CRKs assoiated with some e�etive pth-order disreteRK formulas. We inlude in our reporting of ost the additional derivative evalu-ation required when using defet ontrol and either �S(x) or ~S(x) (with indiretloal error ontrol, S(x), no derivative evaluations are required to determinethe loal error estimate). We do not laim that these formulas are optimal, butrather that they illustrate that the additional osts of the more reliable inter-polating shemes are not prohibitive. The �rst two CRK formulas are based ondisrete RK formulas derived in [7℄, with the orresponding CRK proposed in[6℄. The next three CRK formulas are obtained from software developed for thederivation of disrete formula pairs in [15℄ with the orresponding CRK derivedusing the algorithm given in [16℄. In this table, s is the number of stages nees-sary to determine an assoiated S(x); (�s� 1) is the number of stages neessaryto determine an assoiated �S(x); and (~s�1) is the number of stages neessary todetermine an assoiated ~S(x). This table quanti�es the `extra ost' assoiatedwith the more reliable defet ontrol strategies.For any DDE method, an assoiated o�-mesh interpolation tehnique (toevaluate the delayed solution approximations on step i, for x < xi�1, ) must bepart of the overall method, although this tehnique does not have to orrespondto S(x). Note also that this table applies to both IVP and DDE methods basedon the respetive pth-order, disrete formula and it identi�es the `ost' of formingthe underlying interpolant and estimating the assoiated defet.
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Disrete Formula p s �s ~sCRK4 4 4 6 7CRK5 5 7 9 11CVSS6B 6 9 11 14CVSS7 7 11 15 20CVSS8 8 15 21 28ode45 5 7 9 11Table 1: Cost per step of some typial CRK ODE methods1.4 Three versions of ode45:We have modi�ed ode45 so the user has some hoie in the seletion of the typeof CRK and assoiated error ontrol. By setting the parameter eropt, one ofthree error ontrol strategies (and assoiated interpolant) is used:eropt = I: Indiret loal error ontrol{ using S(x). This gives the identialresults that the built-in routine provides at a ost of (see table 1) sevenderivative evaluations per step.eropt = II: Diret defet ontrol { using �S(x). The error estimate is basedon a single sampled evaluation of the defet and has a high probability ofbeing reliable. The assoiated ost is nine derivative evaluations per step.eropt = III: Strit diret defet ontrol { using ~S(x). The leading term inthe expansion of this defet is reliably estimated and the ost is elevenderivative evaluations per step.There is learly a ost/reliability trade o� to be onsidered when seletingthe error ontrol option for a partiular appliation.We now present numerial results for the predator-prey investigation forthese three versions of ode45. In eah ase we invoked the method and, aftereah step, heked the sign of the derivative of the interpolant (at xi�1 andxi) to see if the integration had passed through a loal maximum of the preypopulation. If it had, we then determined the loation and value of this loalmaximum (by solving for the zeros of the derivative of the interpolant { thezeros of S0(x)). After the ompletion of the integration a MATLAB linear leastsquares method was used to determine how well the observed omputed data,(the loations and values of the loal maximums), �t the hypothesis that thesolution was almost periodi and that the magnitude of the loal maximum ofthe prey population deayed to its steady state value at an exponential rate.That is, if the set of loal maximums identi�ed by this tehnique is fx̂j ; ŷjgMj:=1,then a linear least squares solver was used to determine the `best' exponential�t of the form, ln(ŷj) � a x̂j + b:The orresponding value, b, was then ompared to the `true' value (assoiatedwith the data), whih was preomputed using an aurate approximation to9



y(x). This aurate approximation to y(x) was also used to determine thereported measures of error: ger, ymerr and experr. Similarly a best least squares�t of the form, x̂j � x̂j�1 � R, for j = 2; 3 � � �M was determined.Note that the tehnique we have used to allow the biologist to explore thevalidity of his/her hypothesis is only one generi approah that ould be used.Other equally e�etive tehniques ould be used, partiularly if the underlyingnumerial method allows a user to speify `events' or `g-stops' (see, for example,[12℄).Table 2 reports the following statistis:steps: The number of time steps.fn: The number of derivative evaluations.ger: The maximum magnitude of the error in the solution, measured in unitsof TOL.ymerr: The maximum magnitude of the error in the identi�ed loal maximums(of the prey population), measured in units of TOL.experr: The error in the reported value of the `best' exponential �t to thedeay exhibited by the mathematial model, measured in units of TOL.R(res): Best least square �t and residual for determining whether the preypopulation is almost periodi.These results show that the type II and type III CRK versions of ode45provide onsistent and aurate answers to the questions the biologist is inves-tigating (over a range of auray requests) while the type I version does notdo so at the most relaxed error tolerane (TOL = 10�2).2 General purpose DDE softwareAs for IVP software, a new generation of numerial methods for DDEs is nowpossible and is being developed. These new methods address the issues we haveidenti�ed for IVPs as well as other issues that are partiular to DDEs.Any method that an be applied to DDE problems with multiple delays,and both retarded and neutral delays must inherently have a omplex allingsequene just to speify the `mathematial' problem,y0 = f(x; y(x); y(x � �1) � � � y(x� �k);y0(x� �k+1); � � � y0(x� �k+`))where y(x) = �(x); y0(x) = �0(x); for x � x0;and �i � �i(x; y(x)) � 0 for i = 1; 2 � � � k + `:10



eropt TOL 10�2 10�4 10�6I steps 71 148 367fn 511 961 2239ger 30. 8.3 3.9ymerr 12. 1.1 2.2experr 24.8 2.9 5.6R(res) 6.43 (.4) 6.37 (.05) 6.37 (.05)II steps 92 184 397fn 921 1769 3385ger 4.1 2.3 4.3ymerr .70 1.1 3.5experr 2.2 1.7 5.4R(res) 6.36 (.07) 6.37 (.05) 6.37 (.05)III steps 92 185 408fn 1171 2131 4441ger 1.5 1.7 2.6ymerr .78 .82 2.2experr 2.7 1.7 3.7R(res) 6.36 (.06) 6.37 (.05) 6.37 (.05)Table 2: Results for the 3 versions of ode45 on the predator-prey investigationTo speify this problem the user must supply, in addition to the subroutine toevaluate the di�erential equation and the range of integration, [a; b℄,� subroutines to evaluate eah �i(x; y).� subroutines to evaluate �(x); and �0(x).With this generality in speifying the mathematial problem, diÆulties anarise with well de�ned mathematial problems that are inherently expensive toapproximate numerially. Examples of suh problems are those that involvemultiple state-dependent delays and neutral problems that do not satisfy,x � �x ) x� �(x; y(x)) � �x� �(�x; y(�x)):2.1 An example DDE investigationConsider a typial appliation, similar to our IVP example, based on a modelof the spread of an infetious disease (this is a well-known problem disussed,for example, in [8℄ p.295).Let y1 represent the suseptible portion of the population, y2 represent theinfeted portion of the population and y3 represent the immunized portion ofthe population. Assume that the immunized group beomes suseptible after11



10 units of time and that there is an inubation period of 1 unit. The resultingDDE is, y01 = �y1(x)y2(x � 1) + y2(x� 10);y02 = y1(x)y2(x� 1)� y2(x);y03 = y2(x)� y2(x � 10);with a typial set of initial funtions,y1(x) = 5; y2(x) = 0; y3(x) = 1 for x � 0:The solution to this problem has a disontinuity in y0(x) at the initial point,x = 0, and subsequent disontinuities in higher order derivatives at x = 1; x =2 � � � ; x = 10; x = 11; x = 20 � � � .One may be interested in investigating the loal extrema of some of thepopulations. We will onsider the use of ddverk whih provides two di�erenthoies for a Type II CRK (IIa orresponds to using one sampled point perstep to estimate the magnitude of the defet while IIb orresponds to using twosampled points) and one Type III CRK.Similar to our IVP investigation, our numerial investigation was aom-plished by heking the sign of the derivative approximations at the disretepoints, xi and signaling when a loal maximum had been passed (that is, whenthe value of the approximation S0(x) had hanged sign). At that point a bi-setion searh was invoked to aurately determine the loation and value ofthe assoiated loal maximum. It is worth noting that, if one only wanted theloation and orresponding value of the loal extrema, then the extra ost ofevaluating S(x) on a �ne mesh (for visualization) for all omponents on thewhole interval would not be neessary. This ould lead to additional savings inomputer time and storage.Table 3 reports the performane of the three versions of ddverk on this in-fetious disease investigation. Eah version provides a onsistent and hopefullyaurate answer to the loation and value of the loal extrema of the infetedpopulation (see �gures 6 and 7 ). Note that we should expet to observe tol-erane proportionality only over a reasonable range of auray requests. For`relaxed' values of TOL the asymptoti analysis that justi�es our strategieswill not be appliable while, for stringent values of TOL the ontribution ofroundo� error may dominate the trunation error (and not be proportional toTOL). [Note that the results reported here are for the version of ddverk avail-able through NETLIB. This version is known not to have full mahine aurayin the oeÆients de�ning the CRK formula. To invesigate the e�et this mighthave, we have run a modi�ed version of ddverk, where these oeÆients areaurate to full mahine preision, and observed very little hange.℄3 Summary and onlusionsWe have shown that numerial methods for DDEs that are more appropriatefor use in a PSE an be developed at a modest inrease in ost. These methods12
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(b) Phase Portrait (y2(x) vs y1(x))Figure 6: Visualizing the solution of the infetious disease problem using �S(x)with TOL = 10�4 and eropt = IIa
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Figure 7: The loal maximums of the infeted population determined using �S(x)with TOL = 10�4 and eropt = IIawill, when based on an underlying pth-order disrete RK formula, produe an ap-proximate solution as a pieewise polynomial with an auray that is uniformlypth order for all x in the interval of interest. With diret defet ontrol, thesemethods will deliver approximate solutions exhibiting tolerane proportionalitywith the `onstant of proportionality' depending primarily on the mathematialonditioning of the problem. Another advantage of these methods is that one13



eropt TOL 10�2 10�4 10�6 10�8IIa steps 44 76 140 280fn 886 1418 2090 3653ger 5.5 108 158 168ymer .14 .84 .84 180IIb steps 45 79 143 290fn 992 1700 2357 4177ger .78 71 102 96ymer .34 .51 1.2 94III steps 46 80 153 301fn 1101 1897 2898 5035ger .75 41 53 69ymer .15 .39 1.1 69Table 3: Performane of di�erent versions of ddverk on the infetious diseaseinvestigationobtains aurate approximations to both the solution and its derivative.The next step required to make these methods easier to use in a PSE involvesthe adoption of a simple hierarhial interfae and the generation of severalworked out examples (ase studies) of typial investigations so potential newusers will be able to quikly and painlessly try out the method. It is not enoughto report the results of a few typial appliations (as we have done here), butlistings of atual drivers used to arry out these investigations are needed. Thesean be used as `templates' for new users and often are the best way for a userto understand how to use existing software to solve a new problem. We areurrently produing suh examples.Referenes[1℄ W.H. Enright and H. Hayashi, A delay di�erential equation solver basedon a ontinuous Runge-Kutta method with defet ontrol, Numerial Al-gorithms, 16, 1997, pp. 349-364.[2℄ W.H. Enright and H. Hayashi, Convergene analysis of the solution ofretarded and neutral delay di�erential equations by ontinuous methods,SIAM J. Numer. Anal., 35, 2, 1998, pp.572-585.[3℄ W.H. Enright and P.H. Muir, A Runge-Kutta type boundary value ODEsolver with defet ontrol, SIAM J. Si. Comp., 17, 1996, pp.479-497.[4℄ W.H. Enright, The relative eÆieny of alternative defet ontrol shemesfor high order Runge-Kutta formulas, SIAM J. Numer. Anal., 30, 5, 1993,pp. 1419-1445. 14
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