
Efficient Contouring on Unstructured Meshes for

Partial Differential Equations∗

Hassan Goldani Moghaddam and Wayne H. Enright

Department of Computer Science

University of Toronto

April 3, 2007

Abstract

We introduce three fast contouring algorithms for visualizing the so-
lution of Partial Differential Equations based on the PCI (Pure Cubic
Interpolant). The PCI is a particular piecewise bicubic polynomial inter-
polant defined over an unstructured mesh. Unlike standard contouring
approaches, our contouring algorithms do not need a fine structured ap-
proximation and work efficiently with the original scattered data. The ba-
sic idea is to first identify the intersection points between contour curves
and the sides of each triangle and then draw smooth contour curves con-
necting these points. We compare these contouring algorithms with the
built-in Matlab contour procedure and other contouring algorithms. We
demonstrate that our algorithms are both more accurate and faster than
the others.

key words: Visualization, Scattered Data, Unstructured Mesh, Contour,
PDE.

1 Introduction

Most Partial Differential Equations (PDEs) that arise in practical applications
do not have a closed form solution. In these cases, numerical methods can be
used to approximate the solution at a discrete set of mesh points in the domain
associated with the problem definition. After approximating the solution at a
discrete set of mesh points by a numerical PDE solver, one might plot contour
lines in order to visualize the solution. Standard contouring algorithms require
knowing the function to be contoured on a regular spaced rectangular mesh. In
cases where the original mesh is unstructured, a regular rectangular mesh must
be introduced first. In addition, most standard contouring algorithms use linear

∗This research was supported by the Natural Science and Engineering Research Council of
Canada.

1

interpolation inside each element. With these algorithms the more mesh points
we have, the more accurate contour plot we obtain. To obtain a smooth contour
plot, the numerical method must provide the approximations at a very fine mesh.
In the case that we have an interpolant such as a DEI (Differential Equation
Interpolant) [2], we can obtain the refined mesh data directly from the DEI.
Bradbury and Enright [1] investigated the application of the DEI to visualize
the solution of PDEs when the underlying mesh is rectangular and structured.
In addition, they introduced three fast algorithms to compute contour lines
efficiently directly from the DEI. In this investigation, we will introduce such fast
algorithms to compute contour lines directly for a particular DEI, the PCI [4].
The PCI (Pure Cubic Interpolant) is a particular piecewise bicubic polynomial
interpolant defined over an unstructured mesh based on the DEI approach. In
addition, we will improve these algorithms to overcome some of the deficiencies
that Bradbury and Enright identified.

Note that in some applications one is interested in generating accurate sur-
face representation and surface plots as well as contour plots. In this case our
fast algorithm would not be as relevant since the cost of generating the surface
plots would dominate the cost of computing the contour plots and these two
plots could be generated simultaneously.

In the next two sections, some background and related previous investiga-
tions are presented. In section 4, fast contouring algorithms will be precisely
introduced. Finally, in section 5, numerical results will be presented.

2 Background: Differential Equation Interpolant
(DEI)

In [2], Enright introduced the DEI, an approach to accurately approximate the
solution of a Partial Differential Equation at off-mesh points. Although the
approach can be applied to any dimension, we will restrict our attention to
two dimensional problems in this investigation. These approximate solutions
at off-mesh points are designed to have the same order of accuracy as that
provided by the numerical PDE solver at mesh points. The idea is to asso-
ciate a multi-variate polynomial with each mesh element and consequently, the
collection of such polynomials, over all mesh elements, will define a piecewise
polynomial approximation. The mesh elements can be rectangles or triangles.
For each element e, the bivariate polynomial pd,e(x, y) is represented by (d+1)2

coefficients,

pd,e(x, y) =
d

∑

i=0

d
∑

j=0

cijs
itj , (1)

where

s =
(x − x1)

D1
, t =

(y − y1)

D2
(2)

and D1 and D2 depend on the size of the mesh element e in the x and y direction,
d is the degree and (x1, y1) is a mesh point associated with e (or the lower left

2

corner of the enclosing rectangle defined by e for triangular meshes).
In [2], the underlying PDE was assumed to be a two-dimensional, second-

order problem of the form

Lu = g(x, y, u, ux, uy), (3)

where L is a given semi-linear differential operator of the form

L = a1(x, y)
∂2

∂x2
+ a2(x, y)

∂2

∂y2
+ a3(x, y)

∂2

∂x∂y
. (4)

The number of unknown coefficients is determined by the degree and type
of the interpolant and might be greater than the number of independent linear
constraints defined by the information provided by the PDE solver. Conse-
quently, we might require extra independent constraints to uniquely determine
the associated piecewise polynomial. The standard approach for determining
extra constraints is based on continuity of higher derivatives (smoothness of the
piecewise polynomial) at mesh points, whereas with the DEI approach, these
extra constraints are based on almost satisfying the PDE at a prescribed set
of ‘collocation’ points. The DEI generates accurate but not necessarily smooth
global approximations [2].

The approach can be extended in an obvious way to higher dimensional
problems as well as higher order problems. Enright also considered pure bivari-
ate polynomial approximation by restricting the approximating polynomial to
be a bivariate polynomial of total degree d. A pure bivariate polynomial can be
represented by

p̂d,e(x, y) =
d

∑

i=0

d−i
∑

j=0

cijs
itj . (5)

One of the advantages of such a polynomial is that there are fewer unknown
coefficients to be determined for the same order of accuracy. The pure bivariate

polynomial has (d+1)(d+2)
2 coefficients rather than the usual (d + 1)2. Another

advantage of a pure bivariate polynomial interpolant that could be very useful
for rendering and visualization is that better continuity properties may result.

In [5], we investigated such a polynomial for an unstructured mesh and intro-
duced the PCI (Pure Cubic Interpolant), a scattered data interpolant of degree
3. Although this general DEI approach is not designed to obtain continuity, the
PCI is globally continuous (C0).

3 Previous Work

One way to visualize the approximate solution obtained by a numerical PDE
solver is to draw contour lines of the associated approximate solution. Contour
lines help us to investigate the behavior of the solution and to analyze some of
the important characteristics of the approximate solution.

3

In order to have a relatively smooth contour plot, a fine mesh approximation
of the solution is needed. One way to obtain such a fine mesh approximation
is to require the numerical method to solve the PDE on this fine mesh. Such
a requirement might result in more accuracy than what is necessary and can
often be very expensive. A better approach is to solve the problem by the
numerical method for the requested accuracy on an associated coarse mesh and
then generate a fine mesh approximation from the coarse mesh approximation
by using the DEI associated with the underlying PDE and the coarse mesh.
Bradbury and Enright [1] investigated this approach (Matlab/DEI approach)
to generate a fine mesh approximation and then plotted contour lines using a
standard contouring algorithm like the built-in Matlab contour procedure. In
addition, they introduced three fast direct contouring algorithms based on the
use of the DEI that avoid the introduction of a fine mesh. To illustrate the
fast contouring algorithms, they considered an underlying parabolic PDE of the
form

Lu = g(x, y, u, ux), (6)

L =
∂

∂y
− β(x, y)

∂2

∂x2
(7)

where the DEI is a piecewise bicubic polynomial and the underlying mesh is
rectangular. Their results show that the fast contouring algorithms will be
better than the Matlab/DEI approach if the refining factor (the ratio of the
fine mesh to the coarse mesh) is relatively large. In section 4, we improve
their fast contouring algorithms and extend them to unstructured triangular
meshes. Furthermore, we will present some ideas to improve the fast algorithms
on arbitrary problems and meshes.

4 Fast Contouring Algorithms

The user can specify either the contour level(s) explicitly or only the desired
number of contour levels. In the latter situation, the contour levels are specified
by equally dividing the range between global minimum and maximum values
(This is the decision made in the Matlab contour procedure). In this section,
we will introduce three fast contouring algorithms for a triangular mesh. Each
algorithm has three stages with the same first two stages for all three algorithms.
These three stages are:

1. Computing the minimum and maximum values of the interpolant for each
triangle. There are at least three advantages in computing the minimum
and maximum values. First of all, it simplifies subsequent intersection
tests for all triangles where we determine whether the triangle contains a
segment of the contour line. Secondly, the situation that a contour curve
lies completely inside a triangle can be easily distinguished (as there will
be no intersection between the contour curve and the triangle’s sides).
Thirdly, global minimum and maximum values can easily be computed
from the local information and, if the contour levels are not specified by

4

the user, suitable default values can be determined dynamically based on
this global information.

2. Identifying the intersection points between contour lines and the sides of
the triangle and recursively dividing the triangles containing more or less
than two such intersections into several triangles such that all triangles
have two or zero intersections. A situation where the sides of a triangle
have exactly two intersections with a contour line is called a desired sit-
uation. Note that the heuristics we employ at this stage to accomplish
this task do not directly deal with all possible situations. Only the most
likely scenarios are addressed directly with the understanding that the less
likely (or more pathological cases) may result in skipping a sections of the
contour curve if a ‘undesirable’ triangle is still present after six recursive
refinement steps.

3. Computing a smooth and accurate contour line connecting the two inter-
section points for each triangle. We will introduce three algorithms for
this stage.

In the following, we will present the three stages of our fast contouring
algorithms in more detail.

4.1 Stage One: Computing the Minimum and Maximum
Values

Finding the minimum and maximum values of the interpolant over each trian-
gle can be the most expensive stage if we try to identify them to full machine
accuracy [1]. The most accurate method is to find the points inside of trian-
gle e such that pex

(x, y) and pey
(x, y) are simultaneously zero but this can be

very expensive in terms of computer time. A faster method is based on the as-
sumption that the extreme values will occur on the sides of the triangles. This
method is relatively fast (it involves only finding zeros of three polynomial for
each triangle) and more reliable than the Matlab contouring procedure that
assumes the extreme values occur at the mesh points [3]. We can also improve
this method to obtain better results by a simple idea. The idea is a recursive ap-
proach where the user can specify the number of recursive steps. Each recursive
step consists of forming a new (smaller) triangle by joining the extreme points
associated with each side and then determine the extreme points of this smaller
triangle. This recursive algorithm is presented in Figure 1, and Figure 2 shows
how the algorithm finds the minimum (or maximum) values of the interpolant in
a triangle through a two-level recursion. The cost of this algorithm is a multiple
(≤ 2∗ number of recursive steps) of the cost of the primary algorithm (looking
only at the sides of the triangle). Note that, in some cases, this algorithm might
only find the extreme values along the triangle’s sides and fail to search inside of
the triangle. However, when this happens, the only consequence is that a closed
segment of the contour curve which lies entirely inside of the triangle may be
skipped.

5

for each triangle e of the mesh
lMin(e) ← recFindMin(e,1)
lMax(e) ← recFindMax(e,1)

end for
gMin ← min(lMin)
gMax ← max(lMax)

function recFindMin(e,level)
recFlag ← False
for each of three side of triangle e (i=1, 2, 3)

find the extreme of pe(x, y) along the ith side
minPoint(i) ← select the minimum point from the extreme points and two end points
if minPoint(i) is selected from the extreme points

recFlag ← True
end if

end for
if level < maxLevel and recFlag=True

newTriangle ← the triangle generated by connecting minPoint(i) (i=1, 2, 3)
minValue ← recFindMin(newTriangle,level+1)

else
minValue ← the minimum value of pe(x, y) in minPoint

end if
return minValue

end function

function recFindMax(e,level)
...

Figure 1: The recursive algorithm to approximate the extreme values.

6

Figure 2: Finding the minimum (or maximum) values of the interpolant.

4.2 Stage Two: Identifying Intersection Points and Divid-
ing Triangles

After computing the minimum and maximum values of the interpolant over each
triangle, we can determine whether a given contour line intersects a triangle by
simply comparing the contour level with the minimum and maximum values.
Then, for each triangle e, if the contour level is between the minimum and
maximum values over e, an intersection test is performed for each of three sides
of triangle e. The result of this test can then be used to classify the triangle in
terms of total number of intersections and the most likely situations are:

• No intersection: the contour line completely lies inside of the triangle.

• One intersection: the contour line is either an inner or outer tangent to
one side at the intersection point.

• Two intersections: a single contour line passes through the triangle con-
necting these two intersection points.

• Three intersections: a single contour line passes through the triangle and
it is also tangent to one side.

• Four intersections: two contour lines pass through the triangle.

• More than four intersections: more than two contour lines pass through
the triangle.

Our fast algorithms are based on drawing a contour line between two in-
tersection points (stage three). Therefore, the ‘two intersections’ case is our
desired situation and for all cases except ‘two intersections’, the triangle should
be divided into two or more triangles such that each new triangle has exactly
two intersections with the contour level (or zero if a new triangle contains no
segment of the contour line). We implement this approach using a recursive
function that takes a triangle and the contour level and other necessary param-
eters and then computes the contour line. Note that our classification scheme

7

ignores pathological (and unlikely cases) such as two intersection points of a tri-
angle corresponding to two tangent points (associated with different segments of
the contour curve). Moreover, at most six recursive steps are applied and after
that, any triangle which is not in a desired situation will be skipped and its
contribution to the overall contour ignored. This could happen in the regions in
which the triangulation is too coarse to accurately resolve a curvy contour. For
each of the above six cases, excluding the ‘two intersections’ case, an appropri-
ate strategy or heuristic is adopted which attempts to replace the undesirable
triangle with a set of desirable triangles. The respective strategy we adopt is:

1. For no intersection: The contour curve will completely lie inside a
triangle. The strategy is to find a line between a vertex of the triangle
and its corresponding opposite side such that it intersects the contour
curve at two points. This is easy to do since the location of the maximum
and minimum values of the interpolant on this triangle is known. Figure 3
shows the solution where the value at the vertex is less than the contour
value. We will then have, in all but some rare or pathological cases, two
triangles in a desired situation (each has exactly two intersections with
the contour curve) and we will determine the contour segments for each
new triangle, separately. Note that, in the unlikely event that more than
two intersections are detected, we recursively apply the appropriate stage
2 strategy to each of the new triangles.

Max

Figure 3: No intersection: Two new triangles.

2. For one intersection: Figure 4 illustrates the situations that can result
for one intersection corresponding to an inner tangent or an outer tan-
gent. There should be considered two different treatments for these two
situations. In order to distinguish between the inner tangent and outer
tangent situations, we consider the line connecting the intersection point
and the corresponding opposite vertex. Then, we compute the number of
intersections between this line and the contour curve. In case that there

8

is only one intersection (outer tangent), we will do nothing as the contour
segment will be considered by the neighbor triangle. In the other case,
when there are two or more intersection points (inner tangent), we divide
the triangle into two new triangles (see Figure 4(a)) and then call the
recursive function for each of them separately. In most cases, each new
triangle will have exactly two intersections with the contour curve and
consequently we have a desired situation for each of the new triangles.
In a rare case, the contour can be curvy enough to create triangles with
more than two intersections and, again, the recursive application of the
appropriate stage 2 strategy will handle this situation.

(a) Inner tangent (b) Outer tangent

Figure 4: One intersection: Two situations, inner tangent and outer tangent.

3. For three intersections: The situation with three intersections can
be treated like the situation with one intersection if the tangent is in-
terior(5(a)) and like the situation with two intersections if the tangent
is exterior(5(b)). In the former case (inner tangent), by connecting the
tangent point to the corresponding opposite vertex, we will have two new
triangles such that each one has two or more intersections with the con-
tour curve. In the case that there are more than two intersections, we will
call the recursive function again. In the latter case (outer tangent), the
tangent point can simply be ignored and we have a desired situation. In
order to determine which intersection point is the tangent point, we can
easily find the tangent line to the contour curve at all three points and
then choose the point whose tangent is coincident to the corresponding
side of the triangle. It is also easy to determine if the tangent is inner or
outer by finding intersections between the contour curve and a line parallel
to the tangent side but slightly shifted to be ‘inside’ the triangle. If there
is no intersection, the tangent is exterior; otherwise it is interior. Note
that since the situation with three intersections happens very rarely, it is
not necessary to develop a very efficient strategy.

9

(a) Inner tangent (b) Outer tangent

Figure 5: Three intersections: Two situations, inner tangent and outer tangent.

4. For four intersections: There are several situations that can arise when
there are four intersections with the contour curve. We classify these situ-
ations into four sub-categories according to the position of the intersection
points as follows:

(a) Two intersections on one side and one intersection on each of the
other sides (2-1-1 situation): Figure 6 shows two such situations.
We apply the following strategy to compute contour lines in these
situations:

Find the middle point of two intersections that are in the

same side. Divide the triangle into two triangles by adding

a line between this point and the corresponding opposite ver-

tex and then call the recursive function for each of two new

triangles separately.

Figure 6: Four intersections: 2-1-1 situations.

Figure 7 shows the final triangles created by applying this strategy.
It works for the first situation where it results in two triangles that
are in a desired situation. For the second situation, it creates two
triangles, each of which has four intersections with the contour curve.
It can be seen from the figure that both of these new triangles are
of the first type and the contour lines will be computed by applying
the strategy one more time.

10

Figure 7: Four intersections: 2-1-1 situations (Final triangulation).

(b) Two intersections on two sides and no intersection on the other side
(2-2-0 situation): Figure 8 illustrates two such situations. We apply
the following strategy to compute contour lines in these situations:

Find the middle points of the intersections that are on the

same side. Draw a line between these two points and also

draw a line between one of the middle points and the corre-

sponding opposite vertex and then call the recursive function

for each of three new triangles separately.

Figure 8: Four intersections: 2-2-0 situations.

In the first situation, each of three triangles has exactly two intersec-
tions with the contour curve. In the second situation, one triangle
has exactly two intersections with the contour curve and the other
triangles have four intersections with contour curve (2-1-1 situation)
and obviously we need to apply the recursive function one more time.
Figure 9 shows the final triangles created by applying this strategy
recursively.

11

Figure 9: Four intersections: 2-2-0 situations (Final triangulation).

(c) Three intersections on one side, one intersection on a second side and
no intersection on the last side (3-1-0 situations): Figure 10 shows
two such situations. We apply the following strategy to compute
contour lines in these situations:

Find the middle point of two adjacent intersections that are

on the same side. Draw a line between the middle point and

the corresponding opposite vertex and then call the recursive

function for each of two triangles separately.

Figure 10: Four intersections: 3-1-0 situations.

Although this strategy does not directly convert the first case of Fig-
ure 10 into a desired situation, it converts a 3-1-0 situation into 2-1-1
and 2-2-0 situation, both of which have been discussed before. This
strategy converts the first situation into two new triangles whose cat-
egory depends on the position of two chosen adjacent intersections.
Figure 11 shows the triangles that can be created by the first situa-
tion.

In the first case of Figure 11, the triangle is divided into two new
triangles, one with exactly two intersections and the other with four

12

intersections of type 2-1-1 that can be converted to a desired situation
by calling the recursive function two more times (as discussed before).
Therefore, the first case is converted into a desired situation in at
most three recursive steps. For the second case of Figure 11, the
triangle is divided into two new triangles, both with four intersections
with the contour curve, one of type 2-1-1 and the other of type 2-2-0.
Since both new triangles can be obviously converted into a desired
situation in one step, the second case can be converted into a desired
situation in two recursive steps.

Figure 11: Four intersections: the first 3-1-0 situation (Final triangulation).

Figure 12 illustrates the two new cases that can be created by the sec-
ond situation (of Figure 10). In the first case, the triangle is divided
into two new triangles, both in a desired situation. In the second case,
the triangle is divided into two new triangles, one with four intersec-
tions of type 2-1-1 and the other with two intersections. Therefore,
this second situation is also converted into a desired situation in at
most two recursive steps.

Figure 12: Four intersections: the second 3-1-0 situation (Final triangulation).

(d) Four intersections on one side and no intersection on the other two
sides (4-0-0 situations): Figure 13 shows the two such situations that

13

can arise. We apply the following strategy to compute contour lines
in these situations:

Figure 13: Four intersections: 4-0-0 situations.

Find the middle point of the two middle intersection points.

Draw a line between the middle point and the corresponding

opposite vertex and then call the recursive function for each

of two new triangles separately.

In the first situation, each of two triangles has exactly two intersec-
tions with the contour curve. In the second situation, each of two
triangles has four intersections of type 2-2-0 and obviously we need
to apply the recursive step one more time. Figure 14 shows the final
triangles created by applying this strategy recursively.

Figure 14: Four intersections: 4-0-0 situations (Final triangulation).

14

5. For more than four intersections: In the case that the triangulation
is relatively coarse, we might face some triangles that have more than
four intersections with the contour curve. We adopt a simple strategy in
order to convert these situations into other situations introduced before
(especially two and four intersections).

Quadrisect the triangle by connecting the midpoints of the sides.

Figure 15 illustrate an example of such a situation. It shows a triangle
with six intersections with the contour curve, and the triangles after the
initial step. In most cases, our strategy converts the triangle into four
new triangles such that three of them have only two intersections (desired
situation) and one has no intersection. In case of a more complicated con-
tour, the strategy might create triangles with more than two intersections
which will be handled by subsequent iterations of the recursive step.

Figure 15: More than four intersections.

This classification seems to be appropriate for all the cases that can arise
in contours. It is important to note that the recursive algorithm stops after
at most six steps. Therefore, some rare cases might cause slight errors in the
contour plot by omitting parts of contour curves.

4.3 Stage Three: Computing the Accurate Contour Lines

The last stage of our fast contouring algorithms is to compute the contour
line between two points located on a triangle’s sides. In the following, at first
we introduce three techniques based on those implemented in Bradbury and
Enright [1] and then we try to improve each technique separately.

15

4.3.1 The Intercept Method

The basic idea of the Intercept method is to refine each element in only one
direction, the x or y direction, depending on the location of the intersection
points. We then find intersections between new lines in the refined direction
and the contour line and finally simply connect the intersection points [1]. Since
each refined line is horizontal or vertical (i.e. parallel to the x or y axis),
pe(x, y) reduces to a univariate cubic polynomial (along the refined line). For a
triangular mesh, since we employ the PCI, the following strategy can be applied

Connect the two intersection points by a line and then consider some

regular spaced points on this line. Draw perpendicular lines to this

line at the considered points and then find the intersections between

these perpendicular lines and the contour curve and connect the in-

tersection points.

Figure 16 illustrates how this strategy approximates the contour line with a
refinement of eight.

0.52 0.54 0.56 0.58 0.6 0.62 0.64
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Figure 16: The contour curve created by the basic Intercept method. The
points on the contour curve are the intersections between the contour curve and
refinement lines.

The interpolant used for this problem, pe(x, y), is the Pure Cubic Interpolant
(PCI) of the form

pe(x, y) = SCT = (s3 s2 s 1)

0 0 0 c30

0 0 c21 c20

0 c12 c11 c10

c03 c02 c01 c00

t3

t2

t

1

.

16

Although the refined lines are not necessary horizontal or vertical (i.e., par-
allel to the x or y axis), the polynomial for each refined line will be a cubic
univariate since the PCI is of total degree three. For each arbitrary line we have
s = at + b and if we replace s with at + b, we will have

pe(x, y) = (a3 3a2b a2 3ab2 2ab a b3 b2 b 1)

c30 0 0 0
0 c30 0 0

c21 c20 0 0
0 0 c30 0
0 c21 c20 0

c12 c11 c10 0
0 0 0 c30

0 0 c21 c20

0 c12 c11 c10

c03 c02 c01 c00

t3

t2

t

1

,

(8)
and pe(x, y) will be a cubic univariate polynomial. Then for determining the
intersections between a refined line and the contour curve with contour level v,
we should find the roots of

k3t
3 + k2t

2 + k1t + k0 = v, (9)

where

(k3 k2 k1 k0) = (a3 3a2b a2 3ab2 2ab a b3 b2 b 1)

c30 0 0 0
0 c30 0 0

c21 c20 0 0
0 0 c30 0
0 c21 c20 0

c12 c11 c10 0
0 0 0 c30

0 0 c21 c20

0 c12 c11 c10

c03 c02 c01 c00

.

(10)

This strategy works properly as long as there is only one intersection between
each refined line and the contour curve. Bradbury and Enright addressed this
difficulty and showed a simple example where the whole contour curve lies inside
of one element [1]. We will not encounter this situation because in our algorithm
there will be exactly two intersections between the contour curve and a triangle
containing a part of the contours. We might still have the situation where there
is more than one intersection between a refined line and the contour curve.
Note that the PCI can find at most three intersections. Figure 17(a) shows a
simple situation and Figure 17(b) shows the result of our basic approach. As
can be seen, we lose some sections of the contour curve due to the fact that

17

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

(a) True contour curve.

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

(b) The contour curve plotted by the basic In-
tercept method.

Figure 17: An illustration of the difficulty that can arise with the basic Intercept
method.

function recAddMiddlePoint(p1,p2,cnt,· · ·)
pm ← the middle point of p1 and p2

m1 ← the slope of the tangent line of the contour curve at p1

m2 ← the slope of the tangent line of the contour curve at p2

m ← m1+m2

2
p ← the intersection between the contour curve and the line passing pm with a slope m

if cnt > 0
pL ← recAddMiddlePoint(p1,p,cnt-1,· · ·)
pR ← recAddMiddlePoint(p,p2,cnt-1,· · ·)
return pL + p + pR

else
return p

end if
end function

Figure 18: The recursive algorithm to find middle points.

the refinement is performed only between two intersections. On the other hand,
refining the area outside of two intersections does not solve this difficulty because
there is more than one intersection and it is not obvious how the intersection
points should be connected. In order to resolve this difficulty, we introduce a
recursive approach that attempts to find some equally spaced points located
along the contour curve.

The idea is to first find the middle point of the contour curve between the
initial two interception points and consider this point as one of the refined points
(known to be on the contour curve) and then recursively treat each of two new
intervals (the intervals between the new point and each of the initial points).
Figure 18 presents a more detailed description of this approach. If n is the

18

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

Figure 19: The contour curve created by the improved Intercept method using
a fixed number of recursions to control the spacing.

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

Figure 20: The contour curve created by the final Intercept method using a
threshold value to control the spacing.

number of recursive levels, we will have 2n + 1 points (including the two initial
points) all lying on the contour curve.

Figure 19 illustrates how this approach draws contour curves by applying
a three-level recursion. An important advantage of this approach is that it
locates almost equally spaced points on the contour curve. However, there is
still a remaining difficulty. As can be seen in Figure 19, although the points
are located equally spaced inside of each triangle, they are not totally equally
spaced if we consider all triangles. In other words, the number of extra points

19

should not be equal for all triangles. For example in Figure 19, the number
of extra points (7 points) is not enough for the left triangle but more than
enough for the right triangle. In order to overcome this deficiency, instead of
having a fixed level of recursion for all triangles, we consider a threshold for
the distance between the extra points and try to locate the extra points such
that the distance between each two points is less than the desired threshold.
Figure 20 illustrates the effect of considering a threshold instead of the same
level of recursion for all triangles. The value of the threshold can be specified
by the user.

4.3.2 The Simple ODE Method (SODE)

The contouring problem can be characterized as an initial value problem [1].
The problem for the contour level v is to solve

u(x, y(x)) = v, (11)

where y is a function of x. If we differentiate both sides of this equation with
respect to x, we obtain

ux(x, y(x)) + uy(x, y(x)) · yx(x) = 0, (12)

or

yx(x) = −
ux(x, y(x))

uy(x, y(x))
. (13)

This ODE is satisfied for (x, y(x)) lying on the contour curve. If we consider x

as a function of y, we can similarly derive

xy(y) = −
uy(x(y), y)

ux(x(y), y)
. (14)

We can approximate u(x, y),ux(x, y) and uy(x, y) at prescribed values of x

and y using the PCI (and its partial derivatives). We can then solve equa-
tion (13) or (14) by applying a numerical IVP solver starting from a known
intersection point. Furthermore, rather than applying an IVP solver, we can
compute approximations to y(x) and yx(x) (or x(y) and xy(y)) at prescribed
values directly from the PCI. We can then interpolate the contour curve by
using an appropriate order Hermite interpolant. The minimum number of extra
points (in addition to the intersection points) necessary to define the Hermite
interpolant is dependent on the contour curve and some properties of the two
intersection points. Bradbury and Enright considered one middle point for all
situations [1]. However, for some situations that can arise, we need no middle
point and the contour curve can be approximated accurately with only the two
intersection points.

In the case that the gradient of u at the two intersection points has the same
sign (for both x and y directions), we need no middle points and the contour
curve can be computed precisely by applying a cubic Hermite interpolant. Fig-
ure 21 shows such a situation. For the other cases, we will use the approach

20

that will be introduced in the next method, the ODE with arclength. When the
magnitude of the respective derivative, (yx or xy), is much larger than one, the
Hermite interpolant may not approximate the solution of this IVP very well.
We apply the ODE with arclength method for such situations as well.

−0.1 −0.05 0 0.05 0.1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 21: The common situation in contour curves.

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

(a) True contour curve.

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

(b) The contour curve plotted by the ODEA
method with no middle point.

Figure 22: A situation where the ODEA method fails if no middle point is
considered.

21

−0.16 −0.15 −0.14 −0.13 −0.12 −0.11 −0.1 −0.09 −0.08 −0.07
−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08

−0.07

−0.06

Figure 23: The contour curve plotted by the ODEA method with one middle
point.

4.3.3 The ODE with Arclength Method (ODEA)

In the SODE method, we assumed that y is a function of x (or x is a function
of y). An alternative method is to parameterize with respect to arclength and
assume both x and y to be functions of arclength [1]. In this case, we will have

u(x(s), y(s)) = v, (15)

where v is the contour level and s is the arclength. Then if we differentiate (15)
with respect to s, we will obtain

ux · xs + uy · ys = 0, (16)

and if we consider a normalization condition for the arclength, we will get

xs
2 + ys

2 = 1. (17)

From equations (16) and (17) we will obtain a system of ODEs,

xs =
±uy

√

ux
2 + uy

2
, (18)

ys =
∓ux

√

ux
2 + uy

2
, (19)

which is satisfied on the contour curve. Note that the sign of xs(±) differs from
the sign of ys(∓). In other words, if xs and uy have the same sign, ys and
ux should have different sign and vice versa. In order to identify the proper
sign in equations (18) and (19), an intersection test can be done along a single

22

line of refinement. Like the SODE approach, we can obtain approximations of
x(s), y(s), xs(s) and ys(s) at each arbitrary point directly from the PCI using
Hermite interpolation to approximate x(s) and y(s) separately.

In most cases, the data (x(s), xs(s), y(s) and ys(s)) from two intersection
points is adequate to accurately approximate the contour curve. However in
some cases, the Hermite interpolants fail to determine a suitable approximation
and at least one extra point is required. Figure 22(a) illustrates one of these
situations and Figure 22(b) shows the result of the Hermite interpolant if we
apply it with only the two intersection points. By analyzing the difficulty and
observing the result of some special situations, we realized that if either x(s)
or y(s) has more than one extreme point on the contour curve, the Hermite
interpolant may fail to accurately interpolate the contour curve. Note that
since the PCI is of degree 3 in x and y, the corresponding polynomial can
have at most two extreme points in each direction x or y (corresponding to one
minimum and one maximum). We can assume that the middle point of the
contour curve locates these two extreme points in two different sections.

In order to find the middle point of the contour curve, a similar approach to
that employed in the SODE method can be used. After identifying the middle
point we can use two cubic Hermite interpolants for computing the contour
curve. Figure 23 illustrates the result of the situation corresponding to Figure 22
when we consider the middle point.

One advantage of the ODEA method is its relationship to Hermite interpo-
lation of the exact contour curve. As we mentioned in the previous section, the
Hermite interpolant fails to approximate the solution of the associated IVP (13)
or (14) accurately if the derivative is much larger than one in magnitude. How-
ever, for the ODEA method, due to the normalization condition, it is guaranteed
that xs and ys are both bounded by one in magnitude.

Since the ODEA method needs fewer middle points than the Intercept
method, it computes contours much faster than the Intercept method. How-
ever, its results may not be as precise as those of the Intercept method since it
is approximating the contours of the underlying Hermit interpolant of the con-
tour curve. In order to obtain more accurate results with the ODEA method,
we can add some extra ‘middle points’ and then apply a piecewise cubic Hermit
defined over a finer mesh to compute the contour curve. We call this method,
the Alternate ODE with Arclength method (AODEA). Like with the Intercept
method, the user can specify a threshold value δ as the minimum distance sep-
arating neighbor points. For the intercept method the contribution to the error
in the contour segment will be O(δ2) while, for the AODEA method the contri-
bution to this error will be O(δ4). The appropriate threshold value for use with
AODEA will therefore be larger than that for the Intercept method.

5 Experimental Results

In this section, we will first introduce a test problem. We will then present test
results comparing our three fast contouring algorithms with other contouring

23

methods.
We consider a single test problem to illustrate the relative performance of the

three fast contouring algorithms and to confirm that the observed performance
is consistent with the theory. The problem has a known closed-form solution and
we use this known solution to generate the required data at the unstructured
mesh points.

The test problem is

∂u

∂y
−

∂2u

∂x2
= (50 − 100y)(0.75e(−

(5−10y)2

2) + 0.75e(−
(5−10x)2

2)e(−
(5−10y)2

2)) +

100(e(−
(5−10x)2

2) + 0.75e(−
(5−10x)2

2)e(−
(5−10y)2

2)) − (50 − 100x)ux (20)

and its closed-form solution is

u(x, y) = e(−
(5−10x)2

2) + 0.75e(−
(5−10y)2

2) + 0.75e(−
(5−10x)2

2)e(−
(5−10y)2

2). (21)

Figure 24 shows its surface and contour plots.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

(a) The surface plot

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) The contour plot

Figure 24: Test problem: The surface plot and the contour plot.

We have compared our fast contouring algorithms, introduced in section 4,
with the Matlab contour procedure and those addressed by Bradbury and
Enright in [1]. In order to compare the methods, a uniform distribution of the
data is considered because the Matlab contour procedure needs the data on a
rectangular mesh. It should be acknowledged the Matlab contour procedure
is more general since our contouring algorithms are based on the availability of
the PCI which needs to know the underlying PDE. Both contouring algorithms
implemented by Bradbury and Enright, FCINT and FCODE, are included for
comparison [1]. Table 1 shows the average error of applying the methods on a
rectangular mesh with different number of mesh points. For each segment of
the approximate contour curve that lies in a mesh element, a random point on

24

the curve is considered as a sample point. Therefore the total number of sample
points depends on the size of the underlying mesh and the number of contour
curves. The error reported, for each sample point, is the absolute difference
between the true value of u(x, y) and the value of the contour curve. In addition,
Table 2 shows the corresponding required computer time. From Tables 1 and 2,
it can be inferred that our algorithms can be both more accurate and faster
than the Matlab contour procedure, FCINT and FCODE.

Although the Intercept method is not as accurate as the SODE and ODEA
methods for this rectangular mesh, it was more accurate than the others for
the unstructured triangular meshes we investigated. However the total required
time for the Intercept method is more. Tables 3 and 4 show the average error
and corresponding required time of applying our fast contouring algorithms on
an unstructured triangular mesh with 900, 1600 and 2500 mesh points. In sec-
tion 4, an alternate ODEA algorithm, the AODEA, was introduced to improve
the accuracy of ODEA method. The results of the AODEA method are also
presented in Tables 3 and 4. As can be seen, the AODEA method is more accu-
rate than the ODEA but needs more time as well. The accuracy of the AODEA
method can be controlled by the value of the applied threshold. Figure 25 shows
the contour plots generated by the Intercept method on unstructured triangular
meshes with 900 and 2500 mesh points. The plots for the other methods are
the same and visually indistinguishable.

Mesh Algorithm

Points Matlab FCINT FCODE Intercept SODE ODEA
30*30 0.3066 0.001900 0.002300 0.00001270 0.00001060 0.00001010
40*40 0.4522 0.000741 0.000811 0.00000798 0.00000291 0.00000235
50*50 0.4605 0.000273 0.000234 0.00000766 0.00000213 0.00000183

Table 1: Average error for the different methods for a rectangular mesh with
30*30, 40*40 and 50*50 mesh points.

Mesh Algorithm

Points Matlab FCINT FCODE Intercept SODE ODEA
30*30 14.66 9.78 9.50 9.61 5.33 5.54
40*40 23.18 17.19 16.59 13.40 9.33 9.50
50*50 35.40 22.08 21.75 18.95 14.77 15.21

Table 2: Total required time (in terms of seconds) for the different methods for
a rectangular mesh with 30*30, 40*40 and 50*50 mesh points.

25

Mesh Algorithm

Points Intercept SODE ODEA AODEA
900 0.00000903 0.000687 0.000687 0.0000247
1600 0.00000655 0.0000299 0.0000226 0.0000156
2500 0.00000546 0.0000128 0.0000123 0.00000663

Table 3: Average error for the different methods for an unstructured triangular
mesh with 900, 1600 and 2500 mesh points.

Mesh Algorithm

Points Intercept SODE ODEA AODEA
900 10.98 5.43 5.55 6.65
1600 14.11 9.28 9.39 10.49
2500 18.35 13.62 13.79 15.54

Table 4: Total required time (in terms of seconds) for the different methods for
an unstructured triangular mesh with 900, 1600 and 2500 mesh points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Intercept (900 points)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Intercept (2500 points)

Figure 25: The contour plots of the test problem generated by the Intercept
method on triangular meshes with 900 and 2500 mesh points.

6 Conclusions

In this investigation we have focussed on improving the accuracy and efficiency
of existing contouring algorithms. We have not considered how best to address
known difficulties such as the detection (and avoidance) of intersecting contour
segments or the effect on the contour segments of “local saddle points” (asso-
ciated with the specified contour level). These difficulties are a challenge for

26

any contour algorithm and the effective handling of them will be left for future
study.

We introduced three fast contouring algorithms based on the PCI. These
contouring algorithms were compared to the built-in Matlab contour proce-
dure and the contouring algorithms introduced by Bradbury and Enright. For
rectangular meshes, we demonstrated that our algorithms can be both more
accurate and faster than the others. We also showed that they are fast and ac-
curate for unstructured data sets. Among our algorithms, the ODEA method is
much faster than the Intercept method. However, it may not compute contours
as accurate as the Intercept method. We therefore modified this approach and
introduced the AODEA method to obtain more accurate results at a modest
increase in the required computer time.

7 Acknowledgement

The authors would like to thank the referees for their helpful suggestions and
comments.

References

[1] Emma L. Bradbury and Wayne H. Enright. Fast contouring of solutions to
partial differential equations. ACM Transaction on Mathematical Software,
29(4):418–439, December 2003.

[2] Wayne H. Enright. Accurate approximate solution of partial differential
equations at off-mesh points. ACM Transaction on Mathematical Software,
26(2):274–292, June 2000.

[3] MathWorks. MATLAB online documentation, 12 edition.

[4] Hassan Goldani Moghaddam. Efficient contouring on unstructured meshes.
Master’s thesis, University of Toronto, 2004.

[5] Hassan Goldani Moghaddam and Wayne H. Enright. The PCI: A Scattered
Data Interpolant For the Solution of Partial Differential Equations. In Pro-

ceedings of International Conference on Adaptive Modeling and Simulation,
ADMOS 2005, Barcelona, Spain, September 2005.

27

