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Abstract. Using Differential Equation Interpolant (DEI), one can accurately approx-
imate the solution of a Partial Differential Equation (PDE) at off-mesh points. The
idea s to allocate a multi-variate polynomial to each mesh element and consequently, the
collection of such polynomials over all mesh elements will define a piecewise polynomial
approximation. In this paper we will investigate such interpolants on a three-dimensional
unstructured mesh. As reported in [1], for a tetrahedron mesh in three dimensions, tensor
product tri-quadratic and pure tri-cubic interpolants are the most appropriate candidates.
We will report on the effectiveness of these alternatives on some typical PDEs.

1 Introduction
1.1 Motivation

In many practical applications, the underlying system is modeled by Partial Differential
Equations (PDEs). In most applications, the underlying PDEs do not have a closed form
solution. In these cases, effective numerical methods can be applied to approximate the
solution at a discrete set of mesh points in the domain associated with the problem
definition. Although these approximations can be very accurate at mesh points, if one
wishes to visualize some properties of the solution on the whole domain, some extra data
at off-mesh points must be generated. In [1], Enright introduced the Differential Equation
Interpolant (DEI) which approximates the solution of a PDE such that the approximations
at off-mesh points have the same order of accuracy as those at mesh points.
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In the case that the underlying numerical method produces approximations on an
unstructured mesh, the DEI can be considered to be a scattered data interpolant. In [3],
we investigated such problems and introduced the PCI, a scattered data interpolant, for
a two-dimensional second-order elliptic PDE. The PCI is globally continuous and efficient
in terms of time and error. In this paper, we will extend the PCI to a three dimensional
tri-variate interpolant and identify and investigate the most efficient interpolants based
on the DEI approach.

1.2 Outline

In the next section, the problem of scattered data interpolation in three dimensions
will be defined followed by three candidate interpolants. In section 3, numerical results
will be presented.

2 Problem Definition

In this paper, we focus on scattered discrete data associated with the numerical solution
of a three-dimensional second-order elliptic PDE of the form

Lu = 9(30711; zZ, U, umuyauz)a

where L is a given differential operator of the form
2 2 2
L =a(x,v, z)aax2 + as(z,y, z)aay2 + az(z,y, 2)8622

We assume that there are some accurate numerical results (approximate solution values,
u(x,y, z), as well as approximate derivative values, u,(x,v, 2), u,(z,y, 2) and u.(z,y, 2))
at some mesh points that are not necessarily structured. The mesh points partition the
domain of the problem into a collection of mesh elements which are tetrahedra. Our
approach is to associate with each mesh element e, a tri-variate polynomial py.(z,y, 2)
of degree d, which approximates u(x,y,z) on mesh element e. In other words, one can
determine a polynomial py.(z,y, z) that interpolates the data values associated with the
mesh points of e and ‘almost’ satisfies the PDE at a predetermined set of collocation points
of e. The number of collocation points depends on the degree d and type of interpolant
(tensor product or pure). The collection of such polynomials over all mesh elements will
then define a piecewise polynomial approximation py(x,y, z), that is well defined for all
(z,y, z) in the domain of interest.

In [1], Enright investigated the performance of this approach for both two and three
dimensions. He reported that, for three-dimensional problems and tetrahedron meshes,
pure tri-cubic interpolants and tensor product tri-quadratic are the most appropriate
candidates. In this paper we compare the effectiveness of these alternatives on some test
problems.
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A pure tri-cubic polynomial for a mesh element e is defined by

3 3—i3—i—j
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where
R I U B C)
Dy Dy Dy
and (z1,y1, 21) is the corner of the associated enclosing box of e with the smallest values
of (x,y,2); and Dy, Dy and D3 are the dimensions of the box.

The number of unknown coefficients, c;;s, for a pure three-dimensional interpolant
of degree d can be expressed by Ei:o W Thus for a pure tri-cubic, there are 20
unknown coefficients. Since we already have 16 pieces of information (u, u,, u, and u, for
each of four nodes of a tetrahedron), we have to consider 4 collocation points to uniquely
determine the interpolant.

A tensor product tri-quadratic polynomial can be also defined by

(z,y,z ZZZCW@S tiok

i=0 j=0 k=0

For a tensor product three-dimensional interpolant of degree d, there are (d + 1)*
unknown coefficients. Therefore for a tensor product tri-quadratic, we have 27 unknowns
to identify. This results to consider 11 collocation points for each mesh elements.

Note that a pure tri-quadratic polynomial makes a total degree 2 and has only 10
unknowns. Since the number of unknowns is less than the number of linear equations
provided by the information at four mesh points of e, it is not appropriate to investigate
this type of interpolant. However we can consider a tri-quadratic polynomial of total
degree 3 as follows:

min(2,3—i) min(2,3—i—j)

@
Z Z Cijksitjvk

j=0 k=0

2
(z,y,2) =
1=0

Since p3 has only 17 unknown coefficients, it requires less time to compute rather than
po. Our results show that it also generates more accurate results than py in practice.

3 Results

In this section, we will first introduce two test problems. We will then present test
results comparing three mentioned candidates.
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3.1 Test Problems

Both test problems have a known closed-form solution and we use this known solution
to generate the required data at the unstructured mesh points. The first test problem is
a three-dimensional second-order elliptic PDE:

0? 0? 0?
67; 87;;; + 8721; = 27 cos(mx) sin(7y) sin(72) — 372u
on the domain
0<z<1,0<y<1,0<z<1

and its closed-form solution is
u(z,y,z) = xsin(mx) sin(my) sin(7z).

Figure 1 shows its surface and contour plots for fixed z = 0.5.
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(a) The surface plot (b) The contour plot

Figure 1: The first test problem: The surface and contour plots.

The Second test problem is also a three-dimensional second-order elliptic PDE:
2 2 2
St G+ e = 087 D D)+ (6 = )6y - D+ D) +2e )0 - )
on the domain
0<z<1,0<y<1,0<z2<1
and its closed-form solution is
u(@,y,2) = (2° = 2)(y° — y*)(z* + 1).

Figure 2 shows its surface and contour plots for fixed z = 0.5.
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Figure 2: The second test problem: The surface and contour plots.

3.2 Test Results

In this section, we compare three candidate interpolants in terms of time, accuracy
and visualization. As of accuracy, the average error over 1000 regular points in the
domain has been computed. The scattered data is generated using a random approach

and triangularized by the built-in MATLAB delaunay3 function [2].

# Mesh # Mesh Interpolant
Points Elements j21 \ P2 \ D3

4x4x4 303 8.4 x 1073 | 1.065 x 107! | 2.95 x 102
First 8x8x38 3146 [ 4.97x 107 9.6x10% | 5.8 x 1073
Test 16 x 16 x 16 | 26880 [3.76 x 10> | 1.3 x 1073 [1.31 x 107*
Problem || 32 x 32 x 32 | 219273 | 5.56 x 107% | 1.67 x 107% | 4.04 x 10~°

] Observed Order | 352 | 310 | 317 |
4x4x4 303 1.5x 1072 | 203 x107% | 8.6 x107?
Second 8 X 8x%x8 3146 542 x107° | 2.8 x 1073 2.3 x 1073
Test 16 x 16 x 16 26880 476 x 1075 | 1.72x 107* [ 3.14 x 107°
Problem || 32 x 32 x 32 | 219273 [ 4.77x 1077 | 298 x 10™® | 1.02 x 10~°

] Observed Order ‘ 3.87 ‘ 3.14 ‘ 3.24 ‘

Table 1: Average error for both test problems.

Table 1 shows the average error of the candidate interpolants for different number of
mesh points. As expected, the pure cubic interpolant p; has the most accurate results
for both test problems. Furthermore, table 2 represents the corresponding required com-
puter time for the candidate interpolants and both test problems. It can be seen that
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p3 needs less computer time than p; and p, as it includes less unknown coefficients to
identify. Considering both test problems, the required time depends on the number of
mesh elements and number of unknowns and is almost independent of the test problem.

# Mesh # Mesh Interpolant
Points Elements | py \ Do \ D3
4x4x4 303 1.021 | 2.193 | 0.621
First 8 x 8x8 3146 10.71 | 24.68 | 6.098

Test 16 x 16 x 16 26880 118.9 | 332.2 | 56.31
Problem | 32 x 32 x 32 | 219273 | 3976 | 10682 | 1143

4x4x4 303 1.091 | 2.003 | 0.711
Second 8§x 8x8 3146 10.33 | 21.87 | 6.259

Test 16 x 16 x 16 | 26880 119.3 | 291.8 | 52.81
Problem | 32 x 32 x 32 | 219273 | 3995 | 10629 | 1016

Table 2: Total required time (in seconds) for both test problems.

Unfortunately, none of these interpolants are globally continuous along the boundaries
of the mesh elements. In fact, they provide continuity on the shared edges, but on the
shared faces. Figure 3 shows the contour plots associated with the different interpolants
on a tetrahedron mesh with 512 mesh points for the second test problem. The contour
plots have been generated by the built-in MATLAB contour procedure on a fine grid of
size 40 x 40 x 40. The pure tri-cubic generates more suitable results for visualization. As
can be seen, tri-quadratic with total degree 3 generates better results rather than tensor
product tri-quadratic with total degree 6.

4 Conclusions

We compared three candidate interpolants defined for three-dimensional elliptic PDEs
over an unstructured mesh. Test results show that pure tri-cubic interpolant generates
more accurate results rather than tri-quadratic interpolants. It is also the best one in
terms of visualization.
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(a) The exact solution (b) pure tri-cubic (p;)
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Figure 3: The contour plots of the exact solution and candidate interpolants for the second test problem
on a tetrahedron mesh with 512 mesh points.
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