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Abstract

The defect of a continuous approximate solution to an ODE is the
amount by which that approximation fails to satisfy the ODE. A number
of studies have explored the use of asymptotically correct defect estimates
in the numerical solution of initial value ODEs (IVODEs). By employing
an appropriately constructed interpolant to an approximate discrete so-
lution to the ODE, various researchers have shown that it is possible to
obtain estimates of the local error and/or the maximum defect that are
asymptotically correct on each step, as the stepsize h → 0. In this paper,
we investigate the usefulness of asymptotically correct defect estimates for
defect control in boundary value ODE (BVODE) codes. In the BVODE
context, for a sequence of meshes which partition the problem interval,
one computes a discrete numerical solution, constructs an interplant, and
estimates the maximum defect. The estimates (typically obtained by sam-
pling the defect at a small number of points on each subinterval of the
mesh) are used in a redistribution process to determine the next mesh
and thus the availability of these more reliable maximum defect estimates
can lead to improved meshes. As well, when such estimates are available,
the code can terminate with more confidence that the defect is bounded
throughout the problem domain by the user-prescribed tolerance. In this
paper we employ a boot-strapping approach to derive interpolants that
allow asymptotically correct defect estimates. Numerical results are in-
cluded to demonstrate the validity of this approach.
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1 Introduction

Systems of boundary value ordinary differential equations (BVODEs) arise in a
wide variety of applications - see [1], section 1.2. We will assume BVODEs of
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the form,
y′(t) = f(t, y(t)), g(y(a), y(b)) = 0, (1)

where t ∈ [a, b], y : R → Rn, f : R×Rn → Rn, and g : Rn×Rn → Rn. We refer
the reader to [1], section 1.1, for a description of various classes of BVODEs and
a discussion of how many of these can be converted to an equivalent problem of
the form given in (1). Necessary and sufficient conditions for the existence and
uniqueness of solutions to (1) are discussed in [1], section 3.1.

Runge-Kutta (RK) schemes (see, e.g., [5]) have been used in the numerical
solution of BVODEs for some time (see, e.g., [35]). The COLSYS/COLNEW
codes [2], [3], the COLMOD code [8] and the NAG code, D02TKF [29], are
based on collocation methods, which for (1) are equivalent to a subclass of RK
methods [36]. Another popular subclass of RK methods used for BVODEs are
the mono-implicit Runge-Kutta (MIRK) methods (see [6], [9], [10], [11], [7], [19],
[23], [4]). Specific A-stable, symmetric methods from this subclass have been
employed in the Fortran 77 BVODE packages TWPBVP [12] and MIRKDC
[19], in the MATLAB solver bvp4c [26], and in the recently developed Fortran
90/95 solver BVP SOLVER [34].

All of the above codes compute an approximate solution to the BVODE
by employing a mesh of points that partitions the problem domain into subin-
tervals. The codes iteratively adapt the mesh based on some measure of the
accuracy of the numerical solution on each subinterval, with the goal of obtain-
ing a numerical solution for which the estimated accuracy of the solution is less
than a user-provided tolerance on each subinterval. Codes such as COLSYS,
COLNEW, COLMOD, D02TKF and TWPBVP use some estimate of the global
error of the numerical solution; that is, the magnitude of the difference between
the true solution and the approximate solution as the underlying measure of
accuracy. Other codes such as MIRKDC, bvp4c, and BVP SOLVER use an es-
timate of the magnitude of the defect of the numerical solution as the underlying
measure of accuracy. Letting u(t) be a continuous approximate solution gener-
ated by the method, then, for the ODE (1), the defect is δ(t) = u′(t)−f(t, u(t)),
i.e., the amount by which the approximate solution fails to satisfy the ODE. For
a method that controls an estimate of the defect, it is also useful to efficiently
estimate the sensitivity or conditioning of the BVODE [33] since the product of
the associated conditioning constant and the maximum defect can be shown to
give a bound on the global error [1].

The goal in defect control is to compute a numerical solution by adaptively
choosing a mesh so that the maximum defect over the entire problem domain
is bounded by a user-provided tolerance. In order to do this, one needs an
estimate of the maximum defect on each subinterval. While it is straightforward
to compute δ(t) at any point in the domain, the challenge is to determine in an
efficient manner, the maximum value of the defect on each subinterval. When
a standard interpolant is employed for u(t) the usual approach is to simply
sample the defect at a few points on each subinterval with the hope that one
of the points will be close enough to the location of the true maximum defect.
When the number of samples is small (and this must be the case in order for the
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estimation process to be reasonably efficient) there is no particular justification
for this hope. Since such sampling will essentially always underestimate the
maximum defect, it is easy to see that defect control codes can return solutions
whose defects do not meet the user tolerance. When standard defect estimation
is employed we have observed in some cases that the estimated maximum defect
can be exceeded by the true maximum defect by an order of magnitude. Thus
a defect control code may accept a numerical solution for which the defect is
in fact larger than the user-tolerance. Furthermore, the underestimate of the
maximum defect can impact negatively on the performance of the mesh selection
algorithm because it will not have access to a good “profile” of the defect over
the subintervals of the mesh.

The primary goal of this paper is to consider the development of new types
of interpolants that can replace the standard ones currently employed in defect
control BVODE solvers such as MIRKDC and BVP SOLVER. The new inter-
polants will be shown to yield defects for which the location of the maximum
defect on each subinterval can be determined à priori (at least asymptotically)
allowing a code employing these interpolants to terminate with more confidence
that the defect is within the prescribed tolerance. As well, the availability of
more reliable estimates of the maximum defect on each mesh subinterval can
improve the mesh redistribution process, thus contributing to an improvement
in the overall efficiency of the computation.

In the approach we consider in this paper for the numerical solution of a
BVODE, one begins with a MIRK formula that produces approximations at
the discrete mesh points a = t0 < t1 · · · < tN = b . One then introduces a local
interpolant, ui(t), associated with the ith subinterval [ti−1, ti], which will inter-
polate the discrete solution at the endpoints ti−1 and ti and will determine an
accurate approximation for any t ∈ [ti−1, ti]. The associated numerical solution,
u(t) is then the piecewise polynomial defined by the collection of interpolants,
{ui(t)}N

i=1 . For a given discrete MIRK formula there will be a large family
of possible interpolation schemes to adopt and we will describe and justify our
particular choice later in this paper. Our choice is primarily guided by our de-
sire to have an accurate ui(t) for which it is possible to derive an inexpensive
and asymptotically correct estimate of the maximum defect associated with the
ith subinterval.

One can analyze the error and defect associated with ui(t) by considering it
to be an approximation to the solution, zi(t), of the local IVP,

z′i = f(t, zi), zi(ti−1) = yi−1, t ∈ [ti−1, ti]. (2)

For this analysis it is convenient to introduce the interpolant, z̃i(t), of degree
at most p + 1, that interpolates the exact local solution at ti−1, ti, and the
derivative of the exact local solution at the p distinct points ti−1, ti, ti−1 +µrhi,
for r = 1, 2 · · ·(p − 2). The free parameters, 0 < µ1 · · · < µp−2 < 1 will depend
on the specific local interpolant being analyzed. This approach allows one to
analyze the error in ui(t) by considering two components – the error inherent
in polynomial interpolation (the local interpolation error) and the error that
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arises as a consequence of “inexact” values being interpolated (the data error
associated with the fact that we are interpolating approximate solution and
derivative values). This approach was first used for the analysis of continuous
Runge Kutta methods for IVPs by Shampine [31] and Gladwell et al. [22] to
investigate the local errors introduced on each step of an IVP method. It was
also subsequently used by Higham ([24], [25]) to investigate the defects and the
quality of the defect estimates for a different class of continuous Runge Kutta
methods for IVPs.

One of the first papers to consider the defect of the numerical solution in the
BVODE context was [30]. In a series of papers, [13], [14], [15], Enright considers
the use of defect control in the numerical solution of IVPs. As mentioned earlier,
defect control for BVODEs is considered in Fortran 77 MIRKDC code [20] and in
the MATLAB bvp4c code [26]; the latter employs an interpolant that allows an
asymptotically correct estimate of the maximum defect but the interpolant is not
of optimal order. The paper, [16], surveys work up to the year 2000 on the use
of defect control for the IVPs and BVODEs and also includes some discussion of
defect control for delay differential equations (DDEs) and differential algebraic
equations (DAEs). The paper, [32], discusses a new MATLAB DDE solver
that employs defect control. The recent paper, [18], considers asymptotically
correct defect control on problems where the local interpolation error is assumed
to be small relative to the data errors. In [21], the authors have derived and
justified interpolation schemes allowing asymptotically correct defect estimates
for optimal pth-order continuous Runge Kutta methods for 4 ≤ p ≤ 8 without
the assumption on the local interpolation error.

In most of these investigations, the focus has been on explicit Runge Kutta
methods; asymptotically correct expressions for the continuous local error, zi(t)−
ui(t), and for the defect, u′

i(t)− f(t, ui(t)), are derived and the relationship be-
tween these quantities and the discrete local error investigated. The basic idea
in the development of an interpolant that allows an asymptotically correct es-
timate of the defect depends on the relationship between the local error and
the defect. The key tool is the well-known error expansion for Runge-Kutta
methods - see, e.g., [5]. For the methods we consider, on the ith subinterval,
ui(t) satisfies

ui(t) − zi(t) = O(hp+1
i ),

where zi(t) satisfies (2) and hi = ti − ti−1. Similarly, the derivative of the
numerical solution satisfies

ui
′(t) − zi

′(t) = O(hp
i ).

Using the fact that zi(t) is the exact solution of (2), the defect of the numerical
solution can be written, for t ∈ [ti−1, ti], as

δi(t) = (ui
′(t) − zi

′(t)) − (f(t, ui(t)) − f(t, zi(t))) . (3)

Assuming a Lipschitz condition on f , the second term in (3) is O(hp+1
i ) and we

have
δi(t) = (ui

′(t) − zi
′(t)) + O(hp+1

i ).
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From this expression we can see that the expansion of the defect has a leading
term that is O(hp

i ) but in this paper we will examine a more detailed form of this
expression. This relationship will be used to identify those interpolation schemes
for which inexpensive asymptotically correct estimates of the maximum defect
are available. In our justification of a suitable ui(t) for use in BVODE methods
we will adopt this approach but we point out that the underlying discrete MIRK
formula used for the determination of the mesh point solution approximations,
{yi}N

i=0, will be implicit while the ui(t) will be determined afterwards from an
explicit computation.

This paper is organized as follows. In the next section we briefly review
MIRK and continuous MIRK (CMIRK) [28] schemes, as well as a boot-strapping
approach for deriving higher order Hermite-Birkhoff interpolants. We also con-
trast the continuity of CMIRK and Hermite-Birkhoff interpolants in the BVODE
context. This is followed in Section 3 by an analysis of the form of the defect for
a standard CMIRK interpolant and for a special Hermite-Birkhoff interpolant
we derive, which is shown to allow an asymptotically correct defect estimate.
Section 4 provides numerical results which confirm the validity of our approach
and Section 5 gives our summary and conclusions.

2 MIRK and CMIRK schemes

In the MIRKDC and BVP SOLVER codes, the primary formulas used for the
discretization of the BVODEs and for the construction of the continuous solution
approximations are MIRK and CMIRK formulas, which we now briefly review.

A discrete numerical solution, yi ≈ y(ti), i = 0, . . . , N , is obtained by ap-
plying Newton’s method to the nonlinear system of equations consisting of the
boundary conditions and n equations per subinterval having the following form
(on the ith subinterval),

yi − yi−1 − hi

s∑

r=1

brkr = 0, (4)

where hi = ti−1 − ti and

kr = f


ti−1 + crhi, (1 − vr)yi−1 + vryi + hi

r−1∑

j=1

xrjkj


 . (5)

The scheme is defined by the number of stages, s, the coefficients, {vr}s
r=1 and

{xrj}r−1,s
j=1,r=1, and the weights {br}s

r=1. The abscissa, {cr}s
r=1, are defined by

cr = vr +
∑r−1

j=1 xrj . The coefficients of a MIRK scheme are usually presented
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in a (Butcher) tableau of the form,

c1 v1 0 0 . . . . . . 0
c2 v2 x21 0 . . . . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
cs vs xs1 xs2 . . . xs,s−1 0

b1 b2 . . . . . . bs

.

A MIRK scheme is of order p if the numerical solution at the ith meshpoint, yi,
obtained by solving (4), satisfies

|zi(ti) − yi| = O(hp+1
i ).

A family of MIRK schemes of order p is derived by requiring its coefficients to
satisfy a set of equations called order conditions - see, e.g., [5].

After the discrete solution is obtained, a CMIRK scheme can be used on each
subinterval to augment the discrete solution with a C1 continuous interpolant
over the whole problem interval. A CMIRK scheme applied on the subinterval
[ti−1, ti], gives,

ui(ti−1 + θhi) = yi−1 + hi

s∗∑

r=1

br(θ)kr , (6)

for 0 ≤ θ ≤ 1, where the kr’s are defined as in (5) and s∗ is the total number
of required stages. In addition to the coefficients which define its stages, the
scheme is defined by the weight polynomials, {br(θ)}s∗

r=1, which are polynomials
in θ. Some computational savings are achieved by deriving CMIRK schemes
for which have their first s stages identical to those of the MIRK scheme; the
underlying discrete MIRK scheme is then said to be “embedded” within the
CMIRK scheme. A CMIRK scheme is of order p if, with ui(t) as in (6), we have

max
0≤θ≤1

|zi(ti−1 + θhi) − ui(ti−1 + θhi)| = O(hp+1
i ).

A pth order CMIRK scheme can be derived by requiring the coefficients and
weight polynomials to satisfy continuous versions of the MIRK order conditions
(see [28]).

An alternative approach for the derivation of an interpolant for the discrete
numerical solution associated with a Runge-Kutta method is based on an algo-
rithm known as boot-strapping [17]. Such interpolants, ũi(t), are usually derived
in a Hermite-Birkhoff form: on the subinterval [ti−1, ti], and for 0 ≤ θ ≤ 1, we
have

ũi(ti−1 + θhi) = d0(θ)yi−1 + d1(θ)yi + hi

s̃∗∑

r=1

b̃r(θ)kr , (7)

where the kr’s have the same general form as in (5), the weight polynomials,
d0(θ)), d1(θ), {b̃r(θ)}s̃∗

r=1, are polynomials in θ, and s̃∗ is the total number of
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required stages. It is straightforward to convert an interpolant represented in
this form into the standard CMIRK representation (6). To see this, use the
discrete formula (4) to substitute for yi in (7), giving (7) in the CMIRK form

ũ(ti−1 + θhi) = yi−1 + hi

s∗∑

r=1

(
brd1(θ) + b̃r(θ)

)
kr, (8)

where we have made use of the fact that d0(θ) + d1(θ) = 1 (which follows from
the interpolation conditions imposed on (7)).

From the above it is easy to see that one could derive an interpolant in
Hermite-Birkhoff form (7) and convert it to the CMIRK form (6) assumed by
MIRKDC and BVP SOLVER. However, there is some advantage to employing
the Hermite-Birkhoff form (7) with a BVODE code. In the numerical solution
of a BVODE, the solution approximations at the mesh points, {yi}N

i=0, are
obtained from the solution of a large nonlinear algebraic system which consists
of the boundary conditions together with N − 1 sets of equations of the form
(4) and thus given pairs of yi−1 and yi values satisfy (4) only to within the
Newton tolerance applied to this nonlinear system. The CMIRK interpolant is
constructed with k1 = f(ti−1, yi−1) and k2 = f(ti, yi), and so that u′(ti−1) =
f(ti−1, yi−1) and u′(ti) = f(ti, yi) giving continuity of u′(t) over [a, b]. The
weight polynomials, br(θ), satisfy br(0) = 0 giving u(ti−1) = yi−1 but for θ = 1
the CMIRK interpolant reduces to the discrete MIRK formula associated with
(4), i.e., ui(ti) = yi−1 +h

∑s
r=1 brkr and as we point out above this implies only

that u(ti) ≈ yi (with a potential disagreement of the magnitude of the Newton
tolerance.) Thus u(t) may have discontinuities at the mesh points of the size
of the Newton tolerance when the CMIRK representation of the interpolant is
employed.

On the other hand, when we use the Hermite-Birkhoff representation of
the interpolant, we have k1 and k2 as above and ũ′(ti−1) = f(ti−1, yi−1) and
ũ′(ti) = f(ti, yi) so that we have continuity of ũ′(t) over [a, b] as before but
we also have ũ(ti−1) = yi−1 and ũ′(ti) = yi and thus continuity of ũ(t) is also
obtained. In summary, the explicit appearance of yi in the Hermite-Birkhoff
form ensures ũ(t) ∈ C1[a, b] but since (4) will only be satisfied to within the
Newton tolerance, we have u(t) /∈ C1[a, b] (with discontinuties in u(t) at the
mesh points of the magnitude of the Newton tolerance.)

In [17] the authors developed the boot-strapping algorithm to derive a pth

order local interpolant for an arbitrary pth order discrete Runge Kutta formula.
Starting with a 4th order local (Hermite) interpolant, u4,i(t) (easily constructed
for any RK method) they show how to define the extra explicit stages necessary
to define a sequence of more accurate local interpolants uq,i(t), q = 5, 6 · · ·p,
where uq,i(t) is an O(hq+1

i ) approximation to the local solution on the ith in-
terval. We will use a similar idea, starting with a standard pth order CMIRK,
such as that already used in MIRKDC or BVP SOLVER, and use it to derive
an “improved” local Hermite-Birkhoff interpolant that allows an inexpensive
asymptotically correct estimate of the maximum magnitude of the defect.
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3 Derivation of Interpolants Allowing Asymp-
totically Correct Defect Estimates

The BVP SOLVER code provides the user with the option of employing second
order, fourth order, or sixth order Runge-Kutta formulas. We will illustrate
our approach for the derivation of an interpolant for which the maximum defect
can be reliably estimated by considering in detail the derivation of such an
interpolant for the sixth order case, as this is the most challenging of the three
cases that need to be developed. However, for second and fourth order cases
improved local interpolants can be developed similarly, as is shown for IVPs in
[21].

The formulas that are implemented in BVP SOLVER have been optimized
with respect to their leading error coefficients. That is the free coefficients
of the Runge-Kutta formulas that remained after the order conditions were
satisfied were chosen to minimize the norm of the coefficients of the elementary
differentials appearing in the O(hp+1

i ) term of the error expansion subject to
the constraint that the ratio of this norm to the norm of the coefficients of the
elementary differentials associated with the O(hp+2

i ) term be not too small. See
[27] for details.

3.1 Analysis of the Standard Sixth Order CMIRK Inter-
polant

The sixth order discrete formula of the BVP SOLVER package uses five stages
and the local interpolant, ui(t), a polynomial in θ (θ = (t−ti−1)/hi)) of degree at
most six, requires three additional stages (s∗ = 8) with corresponding abscissa,
c6, c7, c8. Its derivative, u′

i(t), is then a polynomial of degree at most five.
The free parameters arising in the derivation of ui(t) were chosen based on an
analysis of the continuous local error, as noted above. The associated defect
satisfies (as hi → 0)

δ(t) = G(t)h6
i + O(h7

i ), (9)

with
G(t) = q0(θ)F0 + q1(θ)F1 + . . . + qρ(θ)Fρ, (10)

where the qj(θ)’s are polynomials of degree six (that are independent of the
problem or hi), the the Fj’s (elementary differentials) depend only on the prob-
lem, and ρ > 1 is the number of elementary differentials of seventh order - see
[5] for further details. As we will see in the next subsection, when we derive a
similar expansion of the defect for the new interpolant, ũi(t), our analysis will
show that the corresponding G̃(t) simplifies considerably and leads to insights
into how to select the additional abscissa necessary to define ũi(t) from ui(t).

From (9) and (10) and the above discussion we see that as hi → 0, the
value of the defect will approach a linear combination of the qj(θ) values, where
the coefficients of the linear combination depend on the Fj values. For the
ith subinterval, it is therefore impossible to know à priori where the maximum
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value of the leading term of the defect will occur. The location of the maximum
will vary from subinterval to subinterval depending on the problem. Figure 1
illustrates the typical behavior of the defect in this case.
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Figure 1: A typical plot of the normalized defect over all subintervals arising
in the numerical solution of a BVODE by BVP SOLVER using the standard
sixth order CMIRK interpolant. The location of the maximum defect on each
subinterval varies from subinterval to subinterval.

3.2 Derivation and Analysis of a New Sixth Order Hermite-
Birkhoff Interpolant

In this subsection we demonstrate the application of the boot-strapping al-
gorithm in the development of a new sixth order interpolant, ũi(t), that will
be shown to allow an asymptotically correct estimate of the defect for any
t ∈ [ti−1, ti]. We will use this estimate to determine an asymptotically correct
estimate of the maximum defect on each subinterval.

As mentioned earlier, the standard computation performed by BVP SOLVER
yields, on the ith subinterval, discrete solution values, yi−1 and yi and an inter-
polant, ui(t), defined by the CMIRK formula. Considering the local problem,
(2), the yi and ui(t) values have local errors that are O(h7

i ). The boot-strapping
algorithm will construct a Hermite-Birkhoff interpolant of the form (7). From
the form of this interpolant it is easy to see that it depends on approximate so-
lution and derivative values and thus the error associated with this interpolant
has contributions from both the data values upon which it is based and from
the standard interpolation error. In what follows we will derive an interpolant,
ũi(t), that has an error that is dominated by the data error; that is, the degree
of ũi(t) will be at most seven and eight data values will be interpolated so that
the interpolation error will be one order higher than the data error.

Note that, if we were to have used the bootstrapping process, defining ũi(t)
to be a polynomial of degree at most six, using the abscissa c9, c10, c11 (as was
done in [18]) then there would be two terms contributing to the leading term in
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the expansion of the defect. The first term is q0(θ)F0h
6
i , where

q0(θ) =
d

dθ
[θ2(1 − θ)2(θ − c6)(θ − c7)(θ − c8)],

F0 =
z
(7)
i (ti−1)

7!
,

and this is the contribution that arises from the inherent interpolation error
which is a consequence of our use of a degree six interpolating polynomial to
approximate the exact local solution, zi(t). The second term contributing to
the leading coefficient in the expansion of the defect for such a ũi(t) would be
directly related to the discrete local error on this subinterval and satisifes

q̃1(θ)h6
i F1 = q̃1(θ)

[zi(ti) − yi]
hi

.

Our objective, in deriving a suitable new interpolant, ũi(t), is to have only
one term contributing to the leading coefficient in the expansion of the associated
defect. To accomplish this we must increase the degeree of the resulting ũi(t)
(to be at most degree seven) by adding an additional abscissa, c12. This will
eliminate the contribution to the inherent interpolation error (i.e., the F0 term
now becomes O(h7

i )).
The derivation of, ũi(t), the special sixth order interpolant that allows an

asymptotically correct defect estimate involves several considerations:

1. As mentioned earlier, the standard sixth order interpolant, ui(t), com-
puted by BVP SOLVER is of degree six and involves k1 = f(ti−1, yi−1),
k2 = f(ti, yi), three stages that were computed for use by the discrete
MIRK formula (4) and three additional stages needed for the CMIRK
formula (6).

2. The new interpolant will involve the same yi−1, yi, k1 and k2 values,
and will use the process of bootstrapping to define four new stages, with
corresponding abscissa c9, c10, c11, c12, based on evaluations of the standard
interpolant: That is, for j = 1, 2, 3, 4,

k8+j = f(ti−1 + c8+jhi, ui(ti−1 + c8+jhi)).

Of critical importance in selecting the new abscissa is the size of leading
coefficient in the defect expansion for the resulting ũi(t) relative to the size
of coefficients of terms in the next highest order of this defect expansion.
Assuming that the new interpolant is designed to allow an asymptotically
correct defect estimate, we want to choose any remaining free parameters
so that the leading term in the expansion of the defect is significantly larger
than those arising in the next highest order term. This will improve the
range of subinterval sizes over which the estimate remains reliable.

In [21] the choice of suitable abscissa values for any sixth order “improved”
interpolant for use with continuous Runge-Kutta formulas is discussed
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and the values 7
100 , 14

100 , 86
100 , 93

100 were found to be close to optimal. We
have used these values to define the additional stages of our new local
interpolant.

3. Then ũi(t), is the unique polynomial of degree at most seven that satisfies
ũi(ti−1) = yi−1, ũi(ti) = yi, ũ

′
i(ti−1) = f(ti−1, yi−1), ũ′

i(ti) = f(ti, yi),
and,

ũ′
i(ti−1 + c8+jhi) = k8+j for j = 1, 2, 3, 4.

This Hermite-Birkhoff representation of this interpolant has the form

ũi(ti−1 + θhi) = d0(θ)yi−1 + d1(θ)yi+

hi

(
b̃1(θ)k1 + b̃2(θ)k2 + b̃9(θ)k9 + b̃10(θ)k10 + b̃11(θ)k11 + b̃12(θ)k12

)
,

(11)

4. Since the evaluations of u(t) have an error that is O(h7
i ), the correspond-

ing stages, k9, . . . , k12, also have an error that is O(h7
i ) (with a Lipschitz

assumption on f) and thus the contributions to the error of the Hermite-
Birkhoff interpolant from the terms, hik9, . . . , hik12, are O(h8

i ). A similar
argument shows that the contribution from the hik2 term is O(h8

i ) (and
we note that the yi−1 and k1 terms are “exact” for the local solution and
therefore don’t contribute to the data error.)

5. Thus in the new interpolant, ũi(t) , there are data error contributions of
O(h8

i ) from all terms except the d1(θ)yi term. Furthermore because there
are eight data values that are interpolated, standard theory for Hermite-
Birkhoff interpolation shows that the interpolation error is O(h8

i ); that
is the interpolation error is dominated by the O(h7

i ) data error from the
d1(θ)yi term.

6. It then follows that the error expansion for the new interpolant has the
form

d1(θ)F1h
7
i + O(h8

i )

and then the defect satisfies

δ(t) = d′
1(θ)F1h

6
i + O(h7

i ). (12)

(Equation (12) gives us the explicit representation for the q̃1(θ) polynomial
mentioned earlier - we have q̃1(θ) = d′

1(θ).) If F1 6= 0, the defect for
t ∈ [ti−1, ti] will always approach a multiple of the polynomial d′

1(θ) and an
asymptotically correct estimate of the maximum magnitude of the defect
can be obtained by an evaluation of the defect at the location in the
subinterval corresponding to the extreme of d′

1(θ) for θ ∈ [0, 1]. That
is, as hi → 0, the maximum will occur at the same place within each
subinterval, for every problem. For the above choice of abscissa, plots of
the corresponding q1(θ) are given in [21] and its local maximum occurs at
θ = 1

2
. Figure 2 illustrates the typical behavior of the defect for this ũ(t),

when hi is sufficiently small.
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Figure 2: Typical plot of the normalized defect over all subintervals arising in
the numerical solution of a BVODE by BVP SOLVER using the new sixth order
interpolant. The location of the maximum defect changes very little from one
subinterval to the next, for sufficiently small hi.

Once the new stages, k9, . . . , k12, are computed, the new interpolant, ũ(t),
can be evaluated at the point ti−1 + θhi by first evaluating the weight polyno-
mials d0(θ), d1(θ), b̃1(θ), b̃2(θ), b̃9(θ), b̃10(θ), b̃11(θ), and b̃12(θ) at θ, and then
computing the expression on the right hand side of (11). For the indicated
choices for c9, . . . , c12, these weight polynomials are

d0(θ) =
1

2379157
(150000000 θ5 − 225000000 θ4 + 68955000 θ3 + 3022500 θ2+

4758314 θ + 2379157) (−1 + θ)2 ,

d1(θ) = − 1
2379157

θ2(−4114971 + 67668314 θ − 359887500 θ2 + 668955000 θ3−

525000000 θ4 + 150000000 θ5),

b̃1(θ) =
1

1398594579921
θ(57682725000000 θ4 − 116263550000000 θ3+

74099888682500 θ2 − 16034537281875 θ + 1398594579921) (−1 + θ)2 ,

b̃2(θ) =
1

1398594579921
θ2 (−1 + θ) (57682725000000 θ4− 114467350000000 θ3+

71405588682500 θ2 − 14105490083125 θ + 883120980546),

b̃9(θ) = − 500000
110488971813759

θ2(25671000000 θ3 − 50402285000 θ2+

29834968760 θ− 4700220651) (−1 + θ)2 ,

b̃10 =
15625

21384962286534
θ2(145692000000 θ3 − 266121140000 θ2+

135113668880 θ− 11988758061) (−1 + θ)2 ,
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b̃11(θ) =
15625

21384962286534
θ2(145692000000 θ3 − 170954860000 θ2+

39947388880 θ− 2695770819) (−1 + θ)2 ,

b̃12(θ) = − 500000
110488971813759

θ2(25671000000 θ3 − 26610715000 θ2+

6043398760 θ− 403463109) (−1 + θ)2 .

4 Numerical Results and Discussion

We have conducted numerous tests to investigate the effectiveness of the new
interpolant in providing BVP SOLVER with a more robust defect estimation
procedure. In this section we report on some of these results, providing a numer-
ical comparison of defect estimation based on the standard sixth order CMIRK
interpolant vs. the new sixth order Hermite-Birkhoff interpolant. We present
results for three test problems chosen from the literature:

• (i) This example is used to illustrate the use of the MUSN solver and is
described in [1]. The ODEs are

y′1(t) = α
y1(t)
y2(t)

(y3(t) − y1(t)), y′2(t) = −α(y3(t) − y1(t)),

y′3(t) =
1

y4(t)
(B − C(y3(t) − y5(t)) − αy3(t)(y3(t) − y1(t)))

y′4(t) = α(y3(t) − y1(t)), y′5(t) = −C

D
(y5(t) − y3(t)),

with boundary conditions,

y1(0) = y2(0) = y3(0) = 1, y4(0) = −10, y3(1) = y5(1),

and B = 0.9, C = 1000, D = 10; α is a parameter to be chosen. The initial
guesses provided with the problem description are

y1(t) ≡ y2(t) ≡ 1, y3(t) = 1 + 8.91t− 4.5t2,

y4(t) ≡ −10, y5(t) = 0.91 + 9t − 4.5t2.

• (ii) This example models swirling flow between two rotating disks and
is taken from [1]. It consists of a mixed second/fourth order nonlinear
system:

εg′′(t) = f ′(t)g(t) − f(t)g′(t), εf ′′′′(t) = −f(t)f ′(t) − g(t)g′(t)),

where f ′(t), g(t), f(t) are proportional to the radial, angular, and axial
velocities of the fluid and ε is proportional to the viscosity of the fluid.
The boundary conditions are

f(0) = f(1) = f ′(0) = f ′(1) = 0, g(0) = Ω0, g(1) = Ω1,
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where Ω0 = −1 and Ω1 = 1 are angular velocities at the endpoints. The
initial guesses are

g(t) = 2t − 1, g′(t) = 2, f(t) ≡ f ′(t) ≡ f ′′(t) ≡ f ′′′(t) ≡ 0.

We convert this ODE system to a system of first order equations before
treating it with BVP SOLVER.

• (iii) This example models a shock wave in one-dimensional nozzle flow and
is taken from [1]. It consists of a single, second order, nonlinear ODE:

y′′(t) =
( 1

2
+ γ

2
− εA′(t)

εA(t)

)
y′(t) − y′(t)

εA(t)y2(t)

− A′(t)
εA2(t)y(t)

(
1 − γ − 1

2
y2(t)

)
,

where t is the normalized downstream distance, y(t) is the normalized
velocity, A(t) = 1 + t2, is the area of nozzle at t, γ = 1.4, and ε is pro-
portional to the inverse of Reynolds number. The boundary conditions
are y(0) = 0.9129 (supersonic flow in the throat) and y(1) = 0.375. The
initial guesses are

y(t) = 0.9129 + (0.375− 0.9129)t, y′(t) = 0.375− 0.9129.

We convert this ODE to a system of first order equations before treating
it with BVP SOLVER.

For each problem we make a typical choice of parameter value and tolerance
setting, as reported below. The determination of the numerical solution of each
problem involves computations over several meshes and for each subinterval
of each such mesh, we compare the estimated maximum defect based on the
standard interpolant with the estimated maximum defect based on the new
interpolant. For the standard interpolant, the maximum defect is estimated
by sampling the defect at two points within each subinterval. When the new
interpolant is employed, the defect is sampled at the point which corresponds
to the maximum value of d′

1(θ) (for the new sixth order interpolant this is at
θ = 1

2 .) We also determine a good estimate of the true maximum defect value
over each subinterval by sampling the defect at 101 uniformly distributed points
over the subinterval. In the experimental results reported below, we define the
estimate of the maximum defect to be successful if it underestimates the true
maximum defect by less than 1%. We will also report the number of Newton
iterations, NI, required by the code to achieve convergence on the given mesh
of N subintervals. In each table, %Success ≡ percentage of subintervals of each
mesh for which maximum defect estimate is within 1% of the true maximum
defect on that subinterval, and NC ≡ no convergence of the Newton iteration.
We also report

∑
j Nj × NIj where Nj is the number of subintervals in the

jth mesh and NIj is the number of Newton iterations performed to solve the
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CMIRK Interpolant New Interpolant
N %Success NI N %Success NI
9 NC 12 9 NC 9
18 NC 6 18 NC 6
36 0% 6 36 100% 1
37 0% 1 35 100% 1∑

j Nj × NIj = 467
∑

j Nj × NIj = 469

Table 1: Results for Test Problem (i) with α = 2.2 and TOL = 10−9. The
maximum defect estimate obtained using the CMIRK interpolant is never within
1% of the true defect maximum, but using the new interpolant yields a successful
estimate on every subinterval. Both versions of BVP SOLVER employ meshes
of approximately the same size and the same number of Newton iterations are
required.

CMIRK Interpolant New Interpolant
N %Success NI N %Success NI
9 NC 6 9 NC 6
18 11% 6 18 89% 6
36 3% 5 36 100% 5
75 0% 1 77 99% 1
89 0% 1 91 99% 1∑

j Nj × NIj = 506
∑

j Nj × NIj = 510

Table 2: Results for Test Problem (ii) with ε = 10−4 and TOL = 10−6.
The maximum defect estimate obtained using the CMIRK interpolant is rarely
within 1% of the true defect maximum, but using the new interpolant yields a
successful estimate on almost every subinterval. Both versions of BVP SOLVER
employ meshes of approximately the same size and the same number of Newton
iterations are required.

nonlinear system defined on that mesh; this summation gives a good machine-
independent measure of the relative cost of each computation, as we will explain
later in this section.

From Tables 1,2, and 3, we make two general observations:

• We can first observe that the standard interpolant rarely leads to a suc-
cessful estimate of the defect. Over the problems considered here and over
all subintervals of all meshes treated, the estimated maximum defect was
within 1% of the true maximum defect for, on average, about 5% of the
subintervals. In contrast, the maximum defect estimates from the new
interpolant are generally in good agreement with the true maximum de-
fects. This is particularly true on the terminal meshes where the success
rate approaches 100%. We observe that the success rates for the new in-
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CMIRK Interpolant New Interpolant
N %Success NI N %Success NI
9 NC 6 9 NC 6
18 NC 12 18 NC 12
36 NC 30 36 NC 30
72 11% 30 72 83% 30
181 5% 1 188 97% 1
221 5% 1 228 98% 1∑

j Nj × NIj = 3912
∑

j Nj × NIj = 3926

Table 3: Results for Test Problem (iii) with ε = 7.5−3 and TOL = 10−9.
The maximum defect estimate obtained using the CMIRK interpolant is rarely
within 1% of the true defect maximum, but using the new interpolant yields a
successful estimate on almost all subintervals. Both versions of BVP SOLVER
employ meshes of approximately the same size and the same number of Newton
iterations are required.

terpolant are lower, e.g., 83%, for the first mesh with a converged solution
for problem (iii). From a close examination of the computations we ob-
served that the subintervals where estimation failures occurred were ones
for which the size of the subinterval was relatively large. In such cases,
we are not in the asymptotic regime for the formula and thus the leading
term in the expansion does not dominate the higher order terms and one
can therefore not expect the one-point sampling process to be valid.

In such cases it is then important to be able to detect the failure of the
estimation process and then respond with an alternative strategy for es-
timation of the maximum defect. In order to allow the code to be able to
detect when its estimate of the maximum defect may not be reliable, we
are currently investigating an auxiliary process which we call a validity
check. This involves a further sampling of the defect on each subinterval
at a point where, assuming we are in the asymptotic regime, the value
of the defect should be approximately half of what it is at the first sam-
ple point. When this validity check fails, we then flag the subinterval as
suspect, and can then perform an auxiliary computation to improve the
quality of the defect estimate. For example one might sample the defect
at several additional points on each subinterval and choose the maximum
of these as the estimate of the maximum defect.

• Since the estimates of the maximum defect on each subinterval for the
new interpolant are closer to the true maximum defects, they can also be
larger, and it may therefore be more demanding (i.e., smaller hi required)
to compute a numerical solution for which the estimated maximum defect
is less than the user tolerance. On the other hand, from (12) and (9),(10),
we can see that ũ(t) has only one coefficient, d′

1(θ), contributing to the
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leading term in the expansion of its defect while u(t) has many coefficients
contributing to its leading term (qj(θ), j = 0, 1, . . . , ρ) and therefore the
magnitude of the leading term in the expansion of the defect is expected to
be smaller for ũ(t) than it is for u(t). A similar argument applied to the ex-
pansion of the respective continuous local errors can be used to show that
the size of the local errors associated with ũ(t) are expected to be smaller
than those for u(t) (for the same hi value.) A second observation we can
draw from the above numerical results is that the number of meshes and
the number of subintervals per mesh employed by BVP SOLVER when
it uses the new interpolant are about the same as those employed by the
code when it uses the standard interpolant. The most significant com-
putational costs incurred by BVP SOLVER in the numerical solution of
a BVODE are associated with the construction and factorization of the
large Newton matrices that arise from the discretization of the ODEs on
a given mesh, each of which has a cost that is O(Nn3) for each Newton
matrix considered. Thus the sum of terms of the form Nj ×NIj , where j
ranges over the meshes employed in the solution of a given problem, gives
a good machine-independent measure of the overall computational cost for
a given problem. Because the meshes employed by BVP SOLVER when
it uses the new interpolant to get an improved defect estimate are about
the same as the ones it uses when it employs the standard interpolant,
the overall costs for both computations are comparable. The defect esti-
mation computation is relatively inexpensive - its cost is O(Nn) - and it
is performed only after we have obtained a converged discrete solution on
a given mesh. An increase in the cost of the defect estimation process by
a few function evaluations required to construct the new interpolant does
not result in a significant increase in the overall cost.

5 Summary and Conclusions

The BVP SOLVER code employs discrete and continuous Runge-Kutta formu-
las of orders two, four, and six, for the numerical solution of BVODEs. For the
sixth order case we have derived a new interpolant that allows an asymptotically
correct estimate of the defect. The derivation employs a boot-strapping algo-
rithm to obtain the desired interpolant. Numerical results show that the maxi-
mum defect estimates for the new interpolant are much more robust that than
those currently obtained by BVP SOLVER, based on a CMIRK interpolant. On
almost all subintervals of the meshes considered by the code in the numerical
solution of the test problems, the computation based on the new interpolant is
able to estimate the maximum defect to within 1% of the true maximum defect,
while the computation based on the original interpolant is rarely able to obtain
this level of success. Furthermore, the numerical results show that the compu-
tation based on the new interpolant employs about the same meshes as for the
original computation and thus the overall computational costs are comparable
to those of the original algorithm. One reason for this is that the better defect
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information allows the mesh selection algorithm to do a better job of adapting
the mesh to the defect profile. A second reason is that the defect expansion for
the new interpolant has a leading expression that involves only one term and
thus we can expect that the numerical solutions computed using this interpolant
will have a smaller true defect than will the numerical solution computed using
the original interpolant.

The more reliable estimates of the maximum magnitudes of the defect we
can obtain using our improved interpolants have been used in our modified
version of BVP SOLVER. This change has resulted in a more reliable and ro-
bust adaptive mesh strategy that is effective even at coarse meshes where the
asymptotic analysis is not applicable. We have also modified the code to imple-
ment the Hermite-Birkhoff form of the interpolant in order to obtain a smoother
representation of the numerical solution.

Future work involves the development of interpolants that lead to asymp-
totically correct defect estimates for the more straightforward cases of second
and fourth order. More significant future tasks include (i) further investigation
of validity checking for the detection of subintervals for which the estimation
of the maximum defect may be larger than expected, and (ii) investigation and
implementation of new algorithms for effective estimation of the maximum de-
fect on subintervals which are flagged by the validity check and thus for which
the asymptotically correct estimate has failed.
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