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In this thesis two frameworks are considered to value convertible bonds with credit risk:
the TF model (Tsiveriotis and Fernandes) and the AFV model (Ayache, Forsyth and
Vetzal). Both models are associated with a pair of coupled partial differential equations
(PDEs) with free boundary constraints. In practice, the projected overrelaxation method
and the penalty method are widely used to solve such free-boundary value problems, and
the Crank-Nicolson time-stepping scheme is adopted as the underlying discretization
method to achieve quadratic precision. However, due to the complexity of the PDEs in
these two models and discontinuities in practice present in the boundary conditions, only
linear convergence is observed in many cases. The objective of this thesis is to investigate
the difficulties related to convergence and stability when solving these coupled PDEs with
the Crank-Nicolson scheme, and to suggest some modifications of the basic schemes to

improve stability and restore quadratic convergence.
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Chapter 1

Introduction

Two important investment markets are the fixed-income market and the equity market.
The former includes instruments such as government bonds and corporate bonds, while
the latter includes stocks. A bond is a debt instrument issued for a period of time with
the purpose of raising capital for the issuing institution by borrowing. Generally, a bond
holder receives the principal at the bond maturity and interest regularly during the bond
life. The interest usually is in terms of coupons paid annually or semiannually. Unlike
bonds, a stock is an instrument which gives the holder ownership in a company and
entitles the holder to a share in the company’s assets and profits. These two instruments
are subject to different risks and rewards. Generally speaking, bonds are associated with

interest and credit risk while stocks are subject to price movements.

A derivative is a financial instrument whose value depends on the values of one or
more underlying securities, such as a commodity, bond, equity or currency. An example
of a derivative is an option. A call (put) option, for example, gives the holder the right to
buy (sell) the underlying by a certain date for a certain price. Two common subclasses of
options are European options and American options. American options can be exercised
any time up to and including the maturity date while European options can be exercised

at maturity only. A bond also can be considered to be a derivative. For example, we
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can view a government bond as a derivative of the interest rate; a corporate bond’s value
depends not only on the prevailing interest rate, but also on other factors such as credit
risk. Thus, a corporate bond can be regarded as a derivative of the company’s assets, as

discussed in [BS77, BS80, Ing77], when taking the company’s credit quality into account.

In recent decades, the market for convertible bonds has grown rapidly. A convertible
bond (CB) is a bond issued by a company for which the holders have the option to ex-
change the bond for the company’s stock at any time of their choosing until the maturity
of the bond. It is essentially a bond embedded with an American-style call option on the
underlying stock. Before a CB is converted to a stock it behaves like an ordinary bond.
Upon conversion, it behaves like a stock. Thus, a convertible bond is a hybrid instrument
combining features of fixed-income instruments and equity instruments, bearing some of
the risks of both classes. Two features often added to CBs are callability and puttability.
The issuer of a callable bond has the right to purchase back the bond at a predetermined
price during specified periods. The holder of a puttable bond has the right to sell the
bond back to the issuer at a predetermined price at specified times. They are essentially

options on bonds.

Pricing CBs is a difficult problem not only because of their hybrid nature described
above, but also because corporate bonds expose the holder to credit risk. Ingersoll [Ing77]
and Brennan and Schwartz [BS77, BS80] propose a structured approach for valuing risky
CBs. They use the total value of the issuing company as the underlying variable. How-
ever, because this is not a traded asset, it is difficult to estimate. Alternatively, McConnell
and Schwartz [MS86] suggest a pricing model based on the traded stock price as the un-
derlying variable, but their model of credit risk is based simply on a risky discount rate.
The models created by Cheung and Nelken [CN94] and Ho and Pfeffer [HP96] handle
credit risk in a similar way. However, applying the same risky discount rate to both the

bond and equity elements is highly questionable.

More recently, Tsiveriotis and Fernandes [TF98] introduced an effective model, which
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we refer to as the TF model, for pricing CBs with credit risk. The TF model is also based
on the stock price, but has the significant advantage that it models the hybrid nature
of a CB in a reasonable fashion. More specifically, it splits a CB into two components:
a cash-only part, which is subject to credit risks and requires that a risky discount rate
be applied to this component, and an equity part, which is not subject to credit risks
and requires that a risk-free discount rate be applied to this component. This splitting
leads to two coupled Black-Scholes-like partial differential equations (PDEs). Ayache,
Forsyth and Vetzal [AFV02, AFV03] extend the TF model by incorporating a more
sophisticated model for credit risks. We refer to their model as the AFV model. It
explicitly describes the behavior of the equity and fixed-income components of a CB in
the event of a default by the issuing company. The model assumes that default events
follow a Poisson process, and that the underlying stock price erodes with time prior to
a default and declines dramatically at a critical time, such as the announcement of a
default. This contrasts with the TF model in which the stock price remains constant at
a default event. Consequently, splitting a CB into equity and fixed-income components is
slightly different in the TF and AFV models. This is discussed in more detail in Chapter

2.

Both the TF and AFV models rely on the Black-Scholes analysis [BS73, Mer73]. Not
surprisingly, they produce a similar pair of coupled one-factor Black-Scholes-like PDEs.
The American-style options embedded in CBs lead to a free boundary problem, which
can be transformed into a differential linear complementarity problem (LCP). Closed-
form analytic solutions are not known for this problem. Therefore, effective numerical
methods are required. In this thesis, we consider finite difference methods to solve the

associated LCPs.

Many numerical methods are available to discretize the PDEs associated with the
TF and AFV models. Explicit methods are easy to implement, but suffer from stability

issues; the implicit method based on the backward Euler time-stepping scheme is un-
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conditionally stable, but exhibits only linear convergence. The Crank-Nicolson method
combines features of explicit and implicit methods, and is unconditionally stable with
quadratic convergence. Thus, it is widely adopted for time discretization. However, the
presence of discontinuities in final conditions and boundary conditions, together with
free boundaries, makes quadratic convergence difficult to attain in practice. Many of
the numerical results listed in [AFV03], [Li05], and [Mo06] exhibit approximately linear

convergence.

Two popular iterative methods to solve LCPs are the projected overrelaxation method
(PSOR) and the penalty method. The PSOR method is a classical method which is easy
to implement, but we have found it to be inefficient for solving complicated pricing
problems associated with CBs. In part, this inefficiency is related to the difficulty of
selecting an optimal relaxation factor. The penalty method is suggested in [FV02] for
solving the LCPs associated with pricing American-style derivatives. Implemented with
a Newton-like iteration, it is often fast and effective, but in some cases can suffer from

oscillations that greatly reduces its effectiveness.

Li [Li05] and Mo [Mo06] have applied the Crank-Nicolson method to convertible bond
problems using the TF and AFV models, and used the PSOR and penalty methods as
the iterative solvers. Both demonstrate convergence and stability difficulties in their ex-
periments, but did not study these difficulties in depth. This thesis explores many issues
associated with pricing convertible bonds using the TF and AFV models. In particu-
lar, we investigate the convergence and stability difficulties in solving these PDEs. We
restrict our attention to discontinuous boundary/final conditions, free boundaries, far
field selection, and convection problems. We suggest some remedies to enhance stability,
restore quadratical convergence, and achieve high accuracy effectively. Illustrative exam-
ples are provided for European and American stock options and for CBs. Furthermore,
we compare our numerical results with those in other papers, such as [Li05] and [Mo06].

In this thesis, a divide-and-conquer technique is used to demonstrate the difficulties step
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by step, starting with simple plain-vanilla European puts and American puts then pro-
gressing to more complicated convertible bonds with additional features such as coupon
payments, callability and puttability.

The thesis is structured as follows. Chapter 2 introduces options and convertible
bonds, along with their mathematical pricing models and the associated PDEs, final
conditions and boundary conditions. Emphasis is put on the pricing models for convert-
ible bonds. In particular, the TF model and the AFV model are examined in detail.
Chapter 3 discusses numerical methods for the problems described in Chapter 2. The
general form of the PDE is given first and then a simple transformation is suggested
to simplify the problem. In section 3.3, we discuss the space discretization and time
discretization of a general parabolic partial differential equation, and then derive the
constrained linear systems associated with the TF and AFV models. Some special issues
are reported in section 3.4. In Chapter 4, we describe the algorithms for solving the
constrained linear systems obtained in Chapter 3. Two methods are considered: the
PSOR method and the penalty method. In Chapter 5, we present the numerical results,
analyze the convergence and stability problems associated with the TF and AFV models,
and suggest some modifications to the numerical methods to improve stability and the

convergence rate. Finally, we draw some conclusions and discuss future work in Chapter

6.



Chapter 2

The Pricing Models

The primary assumption underlying the Black-Scholes analysis for options and other
derivatives concerns the stochastic process governing the price of the underlying asset.
More specifically, the price of the underlying asset, .S, is assumed to follow a geometric

Brownian Motion process,

dS = pSdt + 0Sdz, (2.1)

where p denotes the expected return of the underlying asset, o denotes the volatility,
and z is a Brownian motion. In the risk-neutral world, y is equal to the risk-free interest
rate r. More detailed background on Brownian motion and risk-neutral valuation can be
found in [Shr04].

Based on the assumptions that there are no arbitrage opportunities, there are no
dividends paid on the underlying asset S, and an investor can trade continuously, Black
and Scholes [BS73] and Merton [Mer73] show that the price of any derivative driven by
the movement of the asset S must satisfy the partial differential equation (PDE)

ov. 1 , ,0°V oV _

We refer to this equation as the Black-Scholes PDE. Here V' is the price of the derivative
and is a function of £ and S. For simplicity, we assume r and o are constants in this

thesis, but more generally they may be functions of ¢ and/or S.
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If the underlying asset S pays continuous dividends during the life of a derivative,

then the Black-Scholes equation can be extended to

v 1, 8%V oV
Yoz _ - = 2.
5 +208 852+(r q)SaS rV =0, (2.3)

where ¢ is the continuous dividend yield.

The Black-Scholes equation (2.2) is a parabolic PDE. It may have many solutions. To
obtain a unique solution for a particular pricing model, the Black-Scholes equation must
be associated with additional constraints, which usually take the form of final conditions,
boundary conditions, and/or free boundary conditions.

In the following sections, we introduce European options, American options, and

convertible bonds, as well as the pricing models for valuing them.

2.1 Plain-Vanilla European Options

An option is a financial instrument which gives the holder the right, but not the obliga-
tion, to exercise the option by a certain date for a certain price. Two main categories
of options are European options and American options. A European option can be ex-
ercised at its maturity only, while an American option can be exercised any time up to
and including its maturity. A plain-vanilla option is a simple option for which the un-
derlying asset doesn’t pay any dividends. In this section, we describe the pricing model
for plain-vanilla European options; the model for American options is discussed in the
next section.

Two types of European options are European call options, which give the holder the
right to buy the underlying asset S for the strike price, E, at the maturity time, 7', and
European put options, which give the holder the right to sell the underlying asset at the
maturity time, 7', for the strike price, E. Both are derivatives driven by the movements

of the underlying asset S. Thus, their prices must satisfy the Black-Schole equation (2.2).
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To distinguish a call option from a put option, we need to specify their final conditions
and boundary conditions in the pricing models.

Because the pricing model of a European call and a European put are similar (both
are governed by the same PDE), we consider the European call only here. The pricing
model for a European put is similar and can be found in [WHD95]. The following model
is the pricing model for a plain-vanilla European call on a non-dividend-paying stock.

If S > E at maturity 7', the option holder should exercise the call option, thereby
buying the asset for E. If they immediately sell the asset for S, they will make a profit
of (S—FE). If S < E, the holder should not exercise the option: the option expires
worthlessly. Thus, the value of the option at maturity is max(S — E,0). Therefore, the
final condition for the European call option is V(S,7T) = max(S — F,0). This is often
called the payoff function.

The boundary conditions can be derived from financial arguments. If S is ever zero,
we can see from (2.1) that dS is also zero and therefore S never changes. Therefore, at
maturity 7', S is zero and the call option expires worthlessly. Thus, if S = 0 at any time
t, the value of the option equals zero, i.e., V(0,t) = 0. As S tends to infinity, the option
will be exercised almost surely. Therefore, the value of the option is the stock price, S,

"(T—t)_ Because the discounted strike price is so

minus the discounted strike price, Fe™
small relative to the stock price, the value of the option is well approximated by stock
price, S. That is, V(S,t) = S as S — .

Summarizing the discussion above, the price of an European call option, V(S,t), can

be determined by solving the Black-Scholes PDE

ov 1, ,0*V oV
27 4= h Z _ = 2.4
8t+205852+r585 rV =0 (2.4)

subject to the boundary conditions
V(0,t) =0, (2.5)

V(S,t) =S —FEe T~ g, as S — oo, (2.6)
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and the final condition

V(S,T) = max(S — E, 0). (2.7)

In [WHD95], the analytic solution is given by

V(S,t) = SN(dy) — Ee " T=YN(d,), (2.8)
where
_ In(S/E) + (r+ 30°)(T — t)
dy = T (2.9)
and

d2 :d1 —O'\/T—t. (210)

Here, the function N(z) is the cumulative probability distribution function for the stan-
dard normal distribution with mean 0 and variance 1. Equations (2.8)-(2.10) are often
referred to as the Black-Scholes formula for a plain-vanilla European call option. A sim-

ilar formula exists for a plain-vanilla European put option. See [WHD95| for example.

2.2 Plain-Vanilla American Options

Unlike European options, American options can be exercised at any time up to and
including the maturity date 7. This added flexibility over European options results in an
American option having a value that is greater than or equal to that of a similar European
option. Often the value of an American option is close to that of the corresponding
European option because the American option optimal exercise date is close to or equal
to the expiry date. Hull [Hul06] shows that it is never optimal to exercise early an
American call on a non-dividend-paying stock. Thus, its value is the same as that of
a similar European call option. However, it is sometimes optimal to exercise early a
plain-vanilla American put option. In this section, we consider a pricing model for a

plain-vanilla American put option.
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The early exercise feature complicates the valuation of American put options. As a
result, no closed-formed analytical solution is known for these options, because the point
at which early exercise is optimal is unknown in advance. Thus, we need to compute
the optimal exercise point simultaneously with the option price V. This results in a free
boundary problem for V. An effective way to solve such a free boundary problem is to
reformulate it as a linear complementarity problem (LCP) and then solve it numerically.

Consider a plain-vanilla American put option on a non-dividend-paying stock. In
[WHD95], the authors show that the early exercise feature leads to the price of an Amer-

ican put option satisfying the Black-Scholes inequality

ov. 1, ,0°V oV
— 4 — - R < 2.11
8t+205852+r568 rV <0, ( )

together with the additional constraint that the option price is always greater than or

equal to the payoff G(S) = max(F — S,0) at any time during the life of the option:
V(S,t) > G(S). (2.12)

We call (2.12) the free boundary condition. At each time that we compute the option
price V(S,t), we also need to find the optimal exercise point S;(¢). By implication from
(2.12), S¢(t) is the point at which (2.12) changes from an equality to an inequality. As
the notation indicates, the free boundary varies with time, t. Figure 2.1 sketches the
curve Sy as a function of ¢.

Note that S divides the solution domain into two regions. Define the operator

01y, O 9

If the option price V > @, the option should be held and LV = 0 must be satisfied.
If LV < 0, the option should be exercised early and V' = G in this case. This can be

formulated as the LCP

LV =0 LV <0
v , (2.14)

V>d V-G=0
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Hold the option

Sqt

Exercise the option

Figure 2.1: American put option: free boundary

where the notation (z = 0) V (y = 0) means that either (z = 0) or (y = 0) at each point
in the solution domain.
Using an argument similar to that for a European put option, we can conclude that

the final condition for an American put is

V(S,T) = max(E — S,0). (2.15)

The boundary conditions are as follows. If S tends to infinity at some time ¢, the option
shouldn’t be exercised at time ¢t. However, it is very unlikely that the option will ever be
in the money. So we should take its value to be zero. If S equals zero, the option should
be exercised and its value is determined by the payoff at that time. Thus, we have the

Dirichlet boundary conditions

V(0,t) = G(0) = E, (2.16)

V(S,t)=0, S — oc. (2.17)

We give other boundary conditions in Chapter 3 that are linear boundary conditions
derived from the PDE itself to replace the Dirichlet boundary conditions (2.16) and

(2.17).



CHAPTER 2. THE PRICING MODELS 12
2.3 Convertible Bonds

A convertible bond (CB) is a corporate bond that gives the holder the right, but not
the obligation, to exchange or convert the bond for common shares of the issuer at a
fixed ratio during a particular period. It possesses features of both bonds and equity
options. Before conversion, it is a normal bond and may receive coupon payments. Upon
conversion, it becomes a stock and may receive dividends. Investors usually compare the
value of the CB if not converted to the value if converted to decide when it is optimal
to exercise. Therefore, a CB is regarded as a combination of a normal bond and an
American call option on the underlying stock. Like a normal bond, its value depends on
the level of the prevailing interest rate. Also, like a stock option, its value is driven by
movements of the stock price. From this perspective, a CB can be viewed as a derivative
of the underlying stock and interest rate.

CBs may have two other important features: a call feature and a put feature. The
call feature gives the issuer the right to purchase back the CB at a predetermined price
during specified periods. Once it has been called, the holder can either sell it back to the
issuer or convert it to the underlying stock, depending on which choice is more beneficial
to the holder. Thus, the call feature can be used by the issuer to force conversion earlier
than the holder would otherwise choose. This feature benefits the issuer and decreases
the value of the CB. On the other hand, the put feature permits the holder to sell back
the CB to the issuer at a predetermined price at specified times, protecting the holder
from CB price decreases. Therefore, a CB with a put feature is more valuable than a CB
without one.

As corporate bonds, CBs are subject to higher credit risks than government bonds.
Generally, the credit risk is not negligible. Thus, the credit quality of the issuer should
be taken into account in a pricing model. However, because a CB is a hybrid of a bond
and an equity option, with each component bearing different risks, we need to distinguish

which part of the CB is associated with the credit risk and which part is not. Also we
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need to apply different discount factors to those different parts. A risky discount factor
should be applied to the risky corporate bond part of the CB and a risk-free discount
factor should be applied to the equity part of the CB. In the following, we introduce two

pricing models for valuing CBs with credit risk: the TF model and the AFV model.

2.3.1 TF Model

As discussed earlier, a CB can be viewed as a derivative of the underlying stock and the
interest rate. To price such a derivative, a two-factor Black-Scholes-like model could be
used. However, we make the simplifying assumption that the stochastic movements of
the interest rate have much less influence on the value of the CB than the variation in
the underlying stock price. Under this assumption, a CB is treated as a derivative of
the underlying stock only. Consequently, the pricing models are simplified, and we use a
single-factor Black-Scholes-like model to value a CB. Extending the single-factor model
to a two-factor model is straightforward but beyond the scope of our study.

Tsiveriotis and Fernandes [TF98] constructed the TF model based on a single-factor
Black-Scholes-like analysis. The model produces a Black-Scholes-like PDE for the whole
value of a CB. However, they realized that a part of the CB only is subject to credit
risk. As noted above, different components of the CB bear different risks. In [TF98, page
95], the authors stat that “the equity upside has zero default since the issuer can always
deliver its own stock [while] coupon and principal payments and any put provisions ...
depend on the issuer’s timely access to the required cash amounts, and thus introduce
credit risk.”

In order to apply credit risk to the appropriate parts, the TF model separates a CB
into two components: one component which bears the credit risk and one component
which does not. However, how to split the two components is not obvious. Tsiveriotis
and Fernandes define the component bearing credit risk as the part for which the value

accrues from the issuer’s liability, either promised or contingent cash flows; they define
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the component not bearing credit risk as the part for which the value can always be
delivered by the issuer [AFV02]. The former component is considered as a hypothetical
security, labeled the “cash-only part of the CB” (COCB). Notice that not all cash flows
are subject to credit risk. For example, when a call is triggered under upside situations,
the cash flow can always be delivered and thus belongs to the risk-free component. In
this model, we think of the COCB as a derivative of the underlying stock that can be
valued with a Black-Scholes-like model. This leads to an additional Black-Schole-like

equation. Thus, we have a pair of coupled Black-Scholes-like PDEs:

ou 1 02U oU
B: — + —0252—— — = — - = .
C T +50 S 952 +7'gSaS r(U—B)—(r+r.)B+h(t)=0, (2.18)
and
0B 1, ,0?B 0B _

Here, U denotes the value of the CB, B the value of the COCB, S the price of underlying
stock, 7 the risk-free interest rate, r, the growth rate of the stock, r. the observed credit
spread, and h(t) describes various predetermined external flows (in cash or equity) of
the derivative such as coupons. These two equations, (2.18) and (2.19), should be solved
simultaneously, since, although (2.19) appears to be independent of (2.18), the former is
coupled to the latter through its boundary conditions, which are discussed below.
Notice that r, associated with in the first derivative terms of 3% and 22 and r associ-
ated with the terms of U and B of equations (2.18) and (2.19) are different. Recall that
the r associated with all these terms is the same in the Black-Scholes equation (2.2). We
assume that r, = r in the risk-neutral world, but 7, is typically not zero, since it is the
credit spread for a risky bond, such as a corporate bond, compared to a risk-free bond,
such as a government bond. Usually r, is implied by the normal bonds of the same issuer
with similar maturity as the CB, and can be obtained from historical data. To avoid

complications, we assume that h(t) represents discrete cash flows only, given by

h(t) = K;6(t —t;), (2.20)



CHAPTER 2. THE PRICING MODELS 15

where ¢ is the Dirac delta function and K is the cash flow at time ¢;. We consider h(t)
in more detail in section 2.3.4. Now, let us discuss the final condition and boundary
conditions associated with equations (2.18) and (2.19).

We consider the general case described in [TF98]. Let F' be the face value of the bond
and T be the maturity date. Assume for now that the stock doesn’t pay any dividends.
The CB pays a fixed coupon amount K at times ¢;, and it can be converted at any time
to shares of the underlying stock S at a conversion ratio of x shares per bond, and it
pays F'+ K at expiration if not converted. Furthermore, the CB is callable by the issuer
at a price B, at any time after 7, and puttable by the holder for a cash amount B, < B,
at any time after 7),. Notice that B, and B, are functions of time unless there are no
coupon payments made. We elaborate on this issue in section 2.3.4. Now, we have the

following conditions.

1. Final conditions at maturity 7"

)
F+K it F+ K > kS,
US,T) =«
kS otherwise,
. (2.21)
F+ K if F+ K > kS,
B(S,T) =<
0 otherwise.
\

The final conditions are obvious. If F'+ K > kS, the holder of the CB should not
convert, but instead receive the principal and last coupon at maturity. Thus, both
U(S,T) and B(S,T) equal F + K. Otherwise the holder should convert the CB to
k shares of the stock. In this case, U(S,T) = kS and B(S,T) = 0.

2. Upside constraints due to conversion for ¢ € [0, T]:

U(S,t) > kS, (2.22)

B(S,t)=0 ifU < &S,



CHAPTER 2. THE PRICING MODELS 16

where U is the value of U if U were not converted to stock. The holder of a CB
should convert the CB to stock if the value of the CB falls below xS. Therefore,
U(S,t) > S holds for all t. Moreover, if the holder does convert, then the COCB

1S zero.

3. Upside constraints due to callability by the CB issuer for t € [T, T:

U(S,t) < max(B.(t), kS), (2.23)

B(S,t) =0 if U > B,(t).
If U > B,(t), then the issuer will call the bond. The holder then has to sell it back
to the issuer or convert it to shares, depending on which is more beneficial to the
holder. Thus, U(S,t) < max(B.(t),kS) should always be satisfied for ¢ € [T, T).
If the issuer calls the bond back, cash flows are assumed to be available to be

delivered (since the issuer is favored in the market) and thus there is no credit risk.

Therefore, the COCB equals zero.

4. Downside constraints due to puttability by the CB holder for ¢t € [T, T:

U(S,t) > By(t), (2.24)

B(S,t) = By(t) if U < By(t).
If the value U of the CB falls below B,(t), the holder should sell it back to the
issuer for B,(t). Thus, the value of the CB is at least B,(¢). In this downside
situation, the issuer is unfavored in market and may have problems to deliver the
cash flow. Therefore this cash flow is subject to credit risk and thus belongs to the

bond component. Consequently, the COCB equals B,(t) too.

From the discussion above, we can see that the conditions (2.22), (2.23) and (2.24)
are the free boundary conditions. They determine when it is optimal to make an early

conversion, call or put.
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When S = 0 and S — oo, it is not easy to derive the Dirichlet boundary condi-
tions from financial arguments, but we can derive them from the PDEs themselves. We
postpone this discussion until Chapter 3.

Now, we reformulate the problem (2.18)-(2.24) as a LCP. Considering the value U of
the CB in two regions: B.(t) > kS and B.(t) < kS. If B.(t) > kS, we can reformulate
(2.18) and (2.22)-(2.24) as a LCP. If B.(t) < kS, the issuer will call the CB back and
the holder would convert immediately in this situation. Thus, U = kS. In summary, U

in the TF model satisfies the following relations:
e B.(t) > kS
LU —r.B=0 LU —r.B<0 LU —-r.B>0
U > max(B,(t),kS) | V | U=max(B,(t),xS) | V | U > max(B,(t),«S) | >
U < Bc(t) U < Bc(t) U = B.(t)

(2.25)
e B.(t) < kS

U =kS. (2.26)

The function U also satisfies the final condition (2.29) below. The value of B is de-
termined by the PDE (2.19) and the associated free boundary conditions (2.22)-(2.24),
which depend on U. We do not give a LCP formula for B here since in our algorithms,
the penalty method is applied to U only, while the artificial component B is calculated
solely for the purpose of substituting B into (2.18). We discuss the algorithms in detail
in Chapter 4.

From (2.25) and (2.26), the problem also can be summarized as

8U 1 9 282U oU
-~ _ r.B = 2.2
8t o°S 752 7“585 rU — 0, (2.27)

subject to the constraints

U > max(B,(t), kS), (2.28)

U < max(B.(t), kS),



CHAPTER 2. THE PRICING MODELS 18

and the final condition (2.21)
U(S,T) = max(F + K, kS). (2.29)

B in (2.27) satisfies

oB 1 , ,0°B 0B
9B 1 95 _ B = 2.
T +205 652-1—7“585 (r+re) 0 (2.30)

and the relevant constraints in (2.21), (2.22), (2.23) and (2.24).

2.3.2 AFV Model

Analogous to the TF model, the AFV model [AFV03] also relies on a single-factor Black-
Scholes-like analysis. However, it splits the CB in a slightly different way than the TF
model, and it incorporates a more sophisticated credit risk model. Instead of adopting a
simple credit spread r. only, as in the TF model, the AFV model introduces a probability,
p, of default in the period from ¢ to ¢ + dt conditional on no defaults prior to t (i.e., the
hazard rate); a recovery rate, R, of the bond after defaults; and a stock price jump rate,
1, when defaults take place. These parameters specify the behavior of the bond and stock
in the event of a default. Moreover, the model allows the holder to choose to keep the CB
or convert it to shares upon default. Consequently, separation of a CB into the equity
and fixed-income components cannot follow the same criteria as in the TF model. The
AFV model splits a CB into a bond part B and an equity part C. Detailed descriptions
of the two components can be found in [AFV02] and [AFV03]. Similar to the COCB in
the TF model, B and C are regarded as hypothetical derivatives of the underlying stock,
and can be valued using a Black-Scholes-like model.

Ayache, Forsyth and Vetzal prove that the AFV model follows the self-financing no-
arbitrage theory, and they claim that the model is more consistent than the TF model.
Their arguments and examples are presented in [AFV03]. Since comparison of the two
models from the financial point-of-view is not the focus of this thesis, we restrict our

attention to the PDEs and constraints associated with the AFV model.
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The model proposes that

oU 1, ,0%U oU B

5 T3 S gz T (r +p77)5% — (r+p)U 4+ pmax(kS(1 —n), RB) =0, (2.31)
oB 1, ,0°B OB B

5 T30 5 55 + (r+pn)Sa= — (r+p)B+pRB =0, (2.32)
ac 1, ,0°C aC

e e et — - 1—1n)— = .

ot 30 S et (r+pn)S 55 (r +p)C + pmax(kS(1 —n) — RB,0) =0, (2.33)

where U denotes the value of the CB, B the value of its bond component, and C' the value
of its equity component. From those equations, it is easy to verify that U = B + C. In
(2.31)-(2.33), r is the risk-free interest rate, as usual, and p is the hazard rate associated
with defaults that follow a Poisson process. That is, pdt is the probability of default
during the period [t,t + dt]. Moreover, R is the recovery rate of the bond. That is, RB
is the value of the bond after default. Furthermore, n quantifies how far the stock price
declines after a default. More specifically, S(1 — n) is the stock price after a default.
These parameters can be constants or functions of t and/or S. For simplicity, we assume

that they are constants.

If a default occurs, the holder of the bond can choose to either convert the CB to
stock at a post-default value of KS(1 —n) or accept the recovered value of the bond, RB.
Thus, RB appears in the PDE (2.32) of the bond component representing the case that
the holder accepts the recovered value of the bond, while kS(1 —n) — RB appears in the

PDE (2.33) for the equity component of the CB in this case.

For convenience, we introduce the operator

M= QJFL;Z’S“?—Q+(r+pn)$i — (r+p) (2.34)
at 20 7 89 83 ' '

Consider the same general case of the CB described in the TF model. Similarly, we divide

U into two regions: B.(t) > kS and B,(t) < kS.
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e If B.(t) > kS,

(MU + pmax(kS(1 —n),RB) = 0\

U > max(B,(t), kS)

\ U < B(t) )

/MU-I—pmaX(/-cS(l -n),RB) <0

v U = max(B,(t), £S) (2.35)
\ U < B,(t) )
( MU+ pmax(kS(1 —n), RB) > 0

% U > max(B,(t)), &S5)
\ U = B.(t)

o If B.(t) < kS,
U = kS. (2.36)
The final condition is

U(S,T) = max(kS, F + K), (2.37)

for all S > 0 at time 7. Relations (2.35) and (2.36) can be expressed in the following

way. The value U of the CB is given by the solution to
MU + pmax(kS(1 —n), RB) =0, (2.38)

subject to the free boundary conditions

U > max(B,(t), kS),
(2.39)
U < max(B.(t), kS),

as well as the final condition (2.37).
The derivation of the free boundary constraints (2.39) and the final condition (2.37)

are analogous to the similar constraints in the TF model. The boundary conditions for

S =0 and S — oo are discussed in Chapter 3. As usual, B.(t) and B, (t) stand for the
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call price and put price, respectively, discussed in the following section. B in (2.38) is
obtained by solving (2.32) with its associated constraints. We discuss it in more detail
shortly.

Solving the problem (2.35)—- (2.37) for U requires solving for B too. Since U = B+C,
we can obtain the value of U by solving for B and C' instead and then summing them.

Thus, the pricing problem can be reformulated as

MC + pmax(kS(1 —n) — RB,0) =0, (2.40)

subject to the free boundary conditions

B + C < max(B.(t), kS), (2.41)
B+ C > &S, (2.42)
and the final condition
C(S,T) = max(kS — (F + K),0); (2.43)
and
MB+pRB =0, (2.44)

subject to the free boundary conditions

B < B.(1), (2.45)
B + C > B,(t), (2.46)

and the final condition
B(S,T)=F+K. (2.47)

The functions B and C' are artificial derivatives of the underlying stock, and their exis-
tence is postulated only for the purpose of incorporating the credit risk into the calcula-

tion for the value of the CB, U. Only U is observable in the market and has meaningful
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constraints. The constraints on B and C' are derived from the constraints on U. There-
fore, there is no explicit way of splitting the constraints into two independent parts.
Rather, the constraints on B and C' in the AFV model are coupled together. Therefore,
we need to solve for B and C' simultaneously.

The equations for B and C' can be reformulated as a LCP

(MC'—I—pmax(/iS(l —n)—RB,0)=0

C>kS—B
\ C < max(B.(t),kS) — B /
(MC’ + pmax(kS(1 —n) — RB,0) < 0\ (2.48)
V
\ C=xS-B
(MC'—I—pmaX(/{S(l —n)—RB,0) >0
V )
\ C = max(B.(t),kS) — B )
and
MB+pRB =0
MB +pRB <0 MB+pRB >0
B>B,(t)-C |V v . (2.49)
B=B,(t)-C B = B,(t)
B < B.(t)

The corresponding final conditions are (2.43) and (2.47).

2.3.3 Connection Between the TF Model and the AFV Model

Both the TF and AFV models are used to price CBs. Thus it is natural to ask how
they relate to each other. It is tempting to view the TF model as a special case of the
AFV model, since the AFV model supports a more sophisticated credit risk model than
the TF model. To clarify this relationship, let us try to fit the TF model into the AFV
framework.

Set the credit spread r. in the TF model to p(1 — R) and let n = 0 in the AFV model.
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Then the PDEs from (2.31) and (2.32) for the AFV model reduce to

o*U ou

1 2 2 _
0B 1 ,,0°B OB -

The corresponding equations (2.27) and (2.30) for the TF model reduce to

8U 1 ;2 282U oU

— 4z — — — = .02
5 2 S 532 rSaS rU —p(l — R)B=0, (2.52)
8B 1 ,,0°B 0B _

5 T3¢ o°S 557 S% —(r+p(l—R))B =0, (2.53)

Notice that the PDEs (2.51) and (2.53) for B are equivalent, but the PDEs (2.50) and
(2.52) for U are different. The reason is obvious: the splitting strategies in the TF model
and the AFV model are different. Moreover, the AFV model assumes the CB holder has
the option of converting to stock or retaining the bond at the reduced value of RB upon
default, while the TF model doesn’t. Further differences arise from slight differences in
the conditions for B. However, the constraints in both models for both U, (2.28) and
(2.39), are the same, as well as the final conditions (2.29) and (2.37). Hence we can
expect that the solutions for the TF and AFV models to be similar in the special case
re = p(1—R) and n = 0. We perform some numerical experiments in chapter 5 to explore

this relationship further.

2.3.4 Issues Concerning Cash Flows

In both the TF and AFV pricing models for CBs, we assume that cash flows are discrete.
Generally, discrete cash flows are referred to as coupon payments and modeled with
dirac Delta functions as in (2.20). We describe here in more detail how to handle coupon
payments.

Consider the forward time horizontal line depicted in Figure 2.2. Let t1,%o,...,%, be
the coupon payment dates, t; be the instant of time immediately before the i*" coupon

payment, and ¢; be the instant of time immediately after the i* coupon payment. If K;
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1] f

v

Figure 2.2: Coupon payments

is the amount of the i coupon payment, then U must satisfy
U(S,t;) =U(S,tf) + K; (2.54)

to enforce continuity in the value of the bond and cash flows in the portfolio. If (2.54)

did not hold, there would be an obvious arbitrage opportunity. Similarly, we require
B(S,t;) = B(S,tf) + K; (2.55)

for the bond component B. On the other hand, the equity component C' satisfies
C(S,t;7) = C(S,t) (2.56)

since the equity component of the CB is unaffected by the coupon payment.

Coupon payments also affect the call and put prices through accrued interest. Accrued
interest is the amount of interest deemed to be earned since the last coupon payment.
Commonly call and put prices are quoted as the clean prices without including accrued

interest, denoted as B.. and B

be, respectively.  When computing the bond price, we

should use the call and put prices that include accrued interest rather than the clean
prices. We refer to these modified prices as the dirty call price B, and the dirty put price
B,, respectively.

Let Accl(t) be the accrued interest associated with the pending coupon payment. It

is standard practice to take
t—1i1

Accl(t) = Ki———,
t; — 1t

(2.57)
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where ¢ is the current time, ¢; and ¢;,_; are times of the next pending and previous coupon
payment dates, respectively, and ¢;_; < ¢t < t;. Thus, Accl(t) has a “sawtooth” shape,
growing from zero after one coupon payment date to K; at the instant before the next
payment date. Therefore, the dirty prices B, and B, are
B.(t) = Bee + Accl (t), (2.58)
B,(t) = By, + Accl (t). (2.59)
Assuming the clean prices B, and B, are constants, B, and B, are also “sawtooth”

shaped, as depicted in Figure 2.3 for B,.
Bc ¢

Beec+K

Bee

{ | | -

] I T i

|
0 [} === t; livg ===t 1 rn=T 4

Figure 2.3: Dirty call price including accrued interest as a function of time

Usually we compute the CB price backwards in time, starting from the final condition
at time 7. Let 7 =T —t and 7; = T — t;. Then equation (2.57) for the accrued interest

can be reformulated as

Tit1 — T
Accl (1) = K,_j———— 2.
ccl () L (2.60)
and equations (2.54), (2.55) and (2.56) become
U(S,7") =U(S,77) + K- (2.61)
B(Sa Ti+) = B(Sa Ti_) +Kn—z (262)
C(S, 7,7y =C(S,7;), (2.63)

respectively.



Chapter 3

The Finite Difference Methods

As discussed in Chapter 2, the Black-Scholes analysis for pricing vanilla European or
American call or put options leads to the Black-Scholes PDE, a parabolic partial dif-
ferential equation in time, ¢, and the stock price, S. Both the TF and AFV models
for pricing convertible bonds (CBs) require solving a pair of coupled Black-Scholes-like
two-dimensional parabolic PDEs. Final conditions and boundary conditions are also
provided to guarantee a unique solution. For simple pricing problems, such as those for
European call or put options, a closed-formed analytic formula is relatively easy to derive,
but for free boundary problems, such as those for American put options and convertible
bonds, no closed-form analytic solution is known. Thus effective numerical solutions are

required.

Finite difference methods (FDMs) are a well-known class of numerical method for
solving PDEs. In this chapter, we explore the use of FDMs to solve the PDEs associ-
ated with the TF and AFV models for pricing CBs. More specifically, we begin with a
generalized Black-Scholes-like PDE, and consider some transformations to simplify the
problem. After applying finite difference space and time discretization schemes to that
transformed PDE, we obtain a general linear system of equations. In section 3.4, we

discuss far-field problems and form linear boundary conditions for the far-field. At the

26
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end of the chapter, for each of the models for pricing European call options, American
put options and CBs, we generate a constrained linear system associated with a FDM

for the model.

3.1 General Black-Scholes PDE

The two-dimensional parabolic PDEs given in the previous chapter are each of the form

ov ,0*V v
i - = T]. 1
5 +a S 52 +a2585 +a3V + f(S,t) =0, Sel0,00), te€][0,T] (3.1)

Each individual PDE in the pricing models can be distinguished by substituting the
particular coefficients a1, as, a3, and auxiliary function f(S,t). More specifically, each

particular pricing model is determined by the following choice of parameters.

1. European and American option pricing model (equation (2.2)):

0.2

a1=§, ap=r, az=-r, [f(S,t)=0.

2. The TF model (equations (2.27) and (2.30)):

2

U: a; = %, as =, as = —r, f(S,B,t) = —r.B;
o2

B: a; = 7’ as =, a,3:—(7‘+’r'c), f(S,B,t) = 0.

3. The AFV model (equations (2.31), (2.32) and (2.33)):

U a1=—, a=r+pg a=—(r+p),

| 9,

/(S,B,1) = pmax(kS(1 - n), RB);
0.2
Cm=T, wm=rip, a=—(+p),

f(S,B,t) = pmax(kS(1 —n) — RB,0);

0.2

B: a1:?7 az =1+ pn, (13:_(7+p(1_R))a

f(S7B7t) :07
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From the general PDE (3.1), we can conveniently derive a numerical solution tech-
nique. Substituting each parameter set above into that general system and combining the
associated free boundary constraints, we can generate the individual constrained linear

systems for each pricing problem.

3.2 Variable Transformation for PDEs

Usually a pricing problem is expressed as a PDE with a final condition V'(S,T). To
integrate such an equation, we start with the final condition and solve the equation back-
ward in time. To many readers, it is more natural to introduce the time transformation
7 =T —t and integrate forward in 7.

To this end, we let 7 =T — ¢ and rewrite equation (3.1) as

oV L0V oV
E = 0,15 ﬁ +a25% +G,3V+ f(S, 7'), S € [0, OO), T € [O,T] (32)

Defining the operator

E_—aSQa—Z-i-aSi-l—a (3.3)
I e ‘

we can rewrite equation (3.2) in the more compact form

ov

5= LV + f(S,7). (3.4)

3.3 Discretization

Next, we discretize equation (3.2). The idea underlying finite difference methods is to
approximate partial derivatives with finite difference expressions. We call this proce-
dure discretization. Two kinds of discretizations are employed on equation (3.2): space

discretization and time discretization.
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3.3.1 Space Discretization
Non-Uniformly-Spaced Discretizations

We define an array of unequally spaced grid points S = {Sy, S1,...,S,} with h;; =
Sit1 — Si and h; _; = S; — S;_1, and introduce the notation V; = V(S;, 7). Figure 3.1

shows the space-steps in the non-uniform grid.

: : T T T T i >
S,_g Sa-.? S:—T Sr SHJ‘ SH-? SH;S’ S
h,l‘_’lf h;‘!
h,_.g = hl.2

Figure 3.1: A non-uniform grid

For convenience, we write h;; as h;, and h; 1 as h_;. Then the second derivative
with respect to S is discretized as

0V,

952 =aViit+teaVitaVin—TE, i=1,...,n—1, (3.5)
where
2
c b
YT (b + hy)
-2
Co A 1h,1 = —(Cl —+ 03),
2
& ;
T hi(h 1+ hy)

and the first derivative is discretized as

Vi

aS :dl‘/;'_1+d2v;+d3‘/i+1 —TEQ, 7= 1,...,”—1, (36)
where
—hy
d=—,
YT hoy (b + hy)
hi —h_y
dy= —— = —(d; +d
2 I (dy + d3),
h_
d3 — !

~ hi(hoy + hy)’
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TFE, and TE, are the respective truncation errors: the terms in the Taylor series expan-
sion of the finite difference expressions that must be subtracted to recover the derivatives
exactly. The finite difference expression in equation (3.5) is the first-order central dif-
ference approximation and that in equation (3.6) is the second-order central difference
approximation, meaning that the leading order terms in 7'F and T'F, are proportional to
h and h?, respectively. Usually we denote this by writing TE; = O(h) and TEy = O(h?).
Actually TE; in (3.5) can be bounded in terms of (hy —h_1)+max(h;)%. If h_y = hy = h,
then TE), is proportional to h% and the central difference approximation for the second

9%v

, $gr» becomes second order. That is, TE, in (3.6) is proportional to max(h;)?

derivative
if hy =h_y.

We refer to these discretizations as three-point non-uniformly spaced discretizations.
The V;,2 =1,...,n — 1 are referred to as interior points. The Vj and V,, are referred to
as boundary points, corresponding to S = 0 and S = oo, respectively. Here, we restrict
our attention to the interior points, and leave the boundary points to section 3.4.

We also give another two difference approximations for the first derivative — the

forward and backward finite difference approximations, respectively:

Vi _ Vig -V

55 = p t Olhmas), (3.7)
V; _ Vi= Vi
95 =+ Olhmas). (3.8)

These two finite difference approximations are first-order accurate.

Uniformly-Spaced Discretizations

Uniformly-spaced discretizations use equally spaced grids. By setting h_y = hy = h,
(3.5) becomes

0%V,
052 =c Vi + &V + Vi +O(R?), i=1,...,n—1, (3.9)
where
1 -2 1
C,1 :ﬁ: cg_ﬁ:_(cll_{—cg)a and cg:ﬁ'
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Similarly, setting h_y = h; = h in (3.6) yields

Vi .
5 =d\Vi +dyVi+dyVi + O, i=1,...,n—1, (3.10)

where

~1 1
o5 dy=0=—(d, +di), anddy=—

r__
d = o

In this case, both finite difference expressions (3.9) and (3.10) are second-order central

differences, i.e., their truncation errors can be bounded in terms of h2.

Space Discretization for LV

Now we are ready to derive the discretization formula for £V. Ignoring the discretization
errors, we substitute the the finite difference approximates for the first and second partial

derivatives, equations (3.5) and (3.6), into £V;(i = 1,...,n — 1), where LV denotes

LV (S;,7), to get
LV;=a15(c1Vi1 + Vi + c3Vig1) + a2Si(di Vi1 + doV; + d3Viy) + a3V
= (@118} + apd1S;)Vie1 + (a1¢2S? + azdsS; + a3)V; + (a1¢3S? + aadsS;) Vi
= (a1¢157 + a2d1.S;)Vic1 + (a3 — a1(c1 + ¢3)S7 — az(di + d3)Si) Vi + (a1¢35F + azd3S;) Vig1.
Let
o = a1¢1S7 + aydy,S;, (3.11)

Bi = a1c3S7 + apd3S;. (3.12)

We have the non-uniformly-spaced discretization formula

LVi=0oVii1+ (a3 — (s + B;))Vi+ BiVisr, i=1,...,n—1. (3.13)
Recall that the finite difference approximation to the second derivative ZQT‘Q/ is first order

if h_y # hy. Thus so is (3.13). If the space discretization is uniform, i.e., h_y = hy = h,
then (3.13) becomes second order. If we apply uniform spacing at some points and non-

uniform spacing at other points, then first-order accuracy should be expected overall.
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However, experimental results show that, if we employ non-uniform spacing at very few
points and uniform spacing at all other points, then the convergence of (3.13) approaches

second order.

3.3.2 Time Discretization

Applying the spacial discretizations discussed in the previous subsection transforms equa-
tion (3.4) into a system of ordinary differential equations with the unknowns V(1) =
V(S;,7),i = 0,...,n. More specifically, by substituting equation (3.13) into equation

(3.4), we obtain the system of ordinary differential equations

N _ AV + F+ €, (3.14)
dr

where V = (Vo, Vi,...,V,)T, A is the coefficient matrix, F is the vector representing
the forcing terms f(S,7), and € is the truncation error vector. If the error terms in the
vector £ is ignored, an approximation to the solution of equation (3.2) can be obtained

from

dVv
— =AV + F. (3.15)
dr

The next step is to solve (3.15) numerically. To accomplish this, we need to discretize
the time derivative %—‘T/. To this end, define an array of equally spaced grid points in the
time dimension 7 = {1y = 0,7,...,7, = T} for the interval [0,7] with the time step
ATj = 7j41 — 7j. The time step, A7; could vary from step to step, but we use a constant
time throughout this thesis, so we usually drop the subscript j from A7; and refer to it
as A7. To indicate time dependency, we use the convenient notation V;j =V(S;,7;) and

£ = f(Sim).

The #-timestepping discretization scheme applied to equation (3.4) fori=1,...,n—1
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and 7 =0,...,m — 1 can be written as
Vj+1 _ Vj o o ) )
TR = 0LV (1= 0LV 0f + (1= )]
T
= Vit - HAT(ozi%jjl + (a3 — (s + Bi))Vin + @V,ﬂl)
= VV+ 1 -0Ar(uV7 ) + (a3 — (i + 5)) V] + BiVE,) + 0ATF + (1 - 0)ATf].
Writing this in vector-matrix notation, we get

(I—0ATM)VIH! = (I+ (1 — O)ATM) VI + (074" + (1 —0) f) AT, (3.16)

where I is the identity matrix and

( 14 0 0 0 e 0 \
Q1 az — (O{1+ﬁ1) ﬁl 0 0
M — 0 o a3 — (a2 + B2)  Po 0
0 0 s Qp—1 a3 — (anfl + anl) ﬂnfl
\ 0 0 g "2 n )

Here, M is a sparse matrix, nearly tridiagonal except for 7; in the last row. The
undefined parameters ¢, 71, 72 and 73 are associated with the boundary conditions and
are discussed in section 3.4.

Depending on the value of 8, we have

e ) =0, the explicit Euler scheme,

e ) =1, the implicit Euler scheme,

e 0 = 1, the Crank-Nicolson scheme (or equivalently, the trapezoid rule).

The explicit Euler scheme is conditionally stable with truncation error in time O(AT).
The implicit Euler scheme is unconditionally stable with truncation error in time also
O(AT). The more appealing Crank-Nicolson scheme incorporates both explicit and im-

plicit features. It is unconditionally stable with truncation error in time O(A7?). In this
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thesis, we focus on the Crank-Nicolson scheme, but we use the implicit Euler scheme in

the Rannacher smoothing technique discussed in Chapter 5.

3.4 Special Issues

3.4.1 Far Field

Problem (3.2) is posed on the domain [0,00). Obviously, an infinite grid cannot be
represented in the computer, so we must truncate this domain to [0, S;,.] and replace
the boundary condition at S = oo by one at S = S;4. To minimize the deleterious
effects of this truncation, we must let S, be large enough and we must carefully choose
an appropriate boundary condition at S = Sy,45.

In [KNOO] a good choice for S, is suggested after a careful analysis. In the case of

a European option, the far field boundary satisfies
Synaw > EeV2o*TIn(to)] (3.17)

where E is the strike price and tol is the computing tolerance. An alternative suggested
in [WFVO04] is

Sap > Eelr 5ITHom/T, (3.18)
where ;1 = 3 is the usual choice for a European option. We may choose a bigger value for
1 for more complicated problems to push S,,,, further away from the region of interest.

For American options and convertible bonds, we suggest setting
Somas = max(¢X, XeV2 TGN xo(r=5)T+ouy'Ty (3.19)

where X is the strike price in the case of an American option or the face value of the
bond in the case of a convertible bond. Typically, ¢ > 4 is chosen, as in the experiments
performed in [Lee03] and [Li05]. More specifically, ¢ = 5 is chosen in [Li05] for both
American put options and convertible bonds, and ¢ = 4 is chosen for American put

options in [Lee03].
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3.4.2 Boundary Conditions

After truncating the domain to [0, S;,q.], we need to impose the boundary conditions at
the two ends S = 0and S = S,,,... The boundary condition at S = 0 is easily determined.
We can derive a Dirichlet condition though financial arguments as we did for European
call options in Chapter 2. Alternatively, we can obtain it implicitly by setting S = 0 in

equation (3.2), which leads to

Vi
- =V + f(0,7). (3.20)

Equation (3.20) is the implicit boundary condition for S = 0. We can discretize it in
time and incorporate it into (3.16), as we explain in more detail below.

The choice of an appropriate boundary condition at .S = S, plays an important role
in obtaining an accurate numerical solution. A good choice minimizes the errors caused
by the domain truncation. A Dirichlet condition at S = S,,,; may be derived from
financial arguments, but for many complicated problems it demands more knowledge
about the derivatives and thus is difficult to obtain. If the payoff is almost linear in S
and the value of derivative is driven by a well-behaved movement of the underlying asset,
then the derivative value V' is asymptotically linear in S as S — oo [WFVO04]. Thus,
we can obtain a linear boundary condition for S,,.; based on the assumption that V is

0%V

0V ~ 0 for large S. Setting 2 = 0 in

approximately linear in S as S — oo. Thus, 3z
equation (3.2) yields
Vo, g

5y~ 25 gg

+ azVy + fo (3.21)

As in the previous sections, we can incorporate a discretization of (3.21) into the system
(3.16). In Chapter 5, we present experimental results to show that this approach leads
to a good approximation to the exact boundary condition for European options. We can
use the same approach to derive boundary conditions at S = S,,4; for convertible bonds.
It is not clear how to derive appropriate Dirichlet boundary conditions from financial

arguments in this more complicated case.
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In the following we discretize equations (3.20) and (3.21) and give formulas for £ and

Y1, Y2 and 73 in the coefficient matrix M in (3.16).

Case of S = 0: the left end

If S =0, then from the definition of operator (3.3) and (3.20),
LVy = a3V. (3.22)

In the above equation, no derivatives with respect to S exist. Thus, we consider the time
discretization only. Using the #-method, we get
vty
AT
= VT = 0ATa Vi = VY + (1= 0)AraVi + (057 + (1= 0)f3) AT

=LV + (1 —0)LV] +0fT +(1—0)f]

Thus, we take

{= as (323)

in the matrix M associated with equation (3.16).

Case of S — oo: the right end

We truncate Sy, t0 S;er and assume that V' is approximately linear in S at S,,,,. That

is,

0%V,
>~ 0. 3.24
552 (3.24)
Setting 832;;" = 0, we obtain
- oV,
EVTL = CLQS 95 + 0,3Vn. (325)

Only the first derivative appears in £V,. Since S, is at the right end of the spatial

Wy .

domain, we use a second-order backward difference scheme to discretize %z

oV,
oS

~ €1Vn + €2Vn71 -+ 63Vn72, (326)
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where
2 1
e = o = —(e2+e3), ey = —5 €= op
If we use the first-order backward difference scheme, (3.7), then
1
e == —(e2+e3), e = —3 e = 0.

Discretizing the operator LV, we have
LV, = asSp(e1Vn + eV 1 + e3Vy 2) + a3V,
= fYIVn + ’YZVn—l + /Y3Vn—2; (327)
where
Y1 =age1S, + a3 =a3 — (Y2 +73), V2 =0a2e2S,, V3= a2e35,. (3.28)
Incorporating the formula above into the #-method, we have
Vitl _ i . _ . ,
% =LV + (1 =) LVI + 0fIt + (1 - 0)f!
.
= VI = 0AT(n VT + VI 4+ Vi)
= VI+ 1 =0)AT(n VI + Vi +1Via) + (0 + (1 -0)f])Ar

Now, we rewrite the matrix M associated with equation (3.16)

/as 0 0 0 - 0 \
Q1 agz — (Ckl-i-,gl) 61 0 0
M — 0 Q2 a3 — (a2 + B2)  Bo 0
O O .. Qpn_1 az — (Ckn,1 + ﬁnfl) ﬁnfl
\ 0 0 cen U,2€3Sn GQ@QSn agelSn + a::,)
(3.29)

3.4.3 A Few Additional Considerations

The numerical solution to equation (3.2) requires solving (3.16) at each time step. We

repeat equation (3.16) here for convenience:

(I OATM)VIHE = (T4 (1 — ) ATM) VI + (071 + (1 - 6) f) Ar.
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It can be rewritten in more compact notation as
Ax =Db, (3.30)

where x is an unknown vector, A is a square nearly-tridiagonal matrix, and b is a known

vector. More specifically,

x=V", A= (I-0ATM),

b= (I+(1—-0)ATM)VI + (07" + (1 - 0)f7)Ar.

Diagonal Dominance

Consider the system of linear equations (3.30). The matrix A must satisfy some prop-
erties to guarantee that the system (3.30) has a stable and accurate solution. Diagonal
dominance is one such desirable property. We give the definition of diagonal dominance

below.

Definition 1. A matriz is diagonally dominant if

lai| > Y lag] (3.31)

J=1,i#]

for each value of i. A row is strictly diagonally dominant if the inequality in (3.31) is
a strict inequality and a matriz 1s strictly diagonally dominant if each row is strictly

diagonally dominant.

A second important property of a matrix is reducibility. Before discussing this prop-
erty, we introduce the concept of a matrix permutation. By a permutation of a matrix
A, we mean a simultaneous permutation of the rows and columns of the matrix, i.e., a;;

is replaced by a) a(;) for some permutation bijective operator A.

Definition 2. A matriz A is reducible if there is a permutation A under which A has

the structure
A0
) (3.32)
A Ay
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where A1 and Ay are square matrices. A matriz is irreducible if it is not reducible.

Definition 3. A matriz A is irreducibly (row) diagonally dominant if it is irreducible

and diagonally dominant with strict diagonal dominance in at least one row.

It is well-known that an irreducibly (row) diagonally dominant matrix is nonsingular
[Str04]. We want our discretizations of (3.2) to be such that the matrix A associated with
the discretization is irreducibly (row) diagonally dominant. If A is not irreducibly diag-
onally dominant, a numerical solution to equation (3.2) may exhibit highly undesirable

properties, such as large oscillations.

M-Matrix

Consider the general PDE (3.2)

v L0V av
8—7' —0,15 W'FGQS@'FG:},V'FJE(S,T).

It is a convection-diffusion equation. If ay is large, we say (3.2) is a convection-dominated
problem. In our pricing models, convection-dominated problems arise if the volatility, o,
is small and the interest rate, r, is big. If (3.2) is a convection-dominated problem, the
numerical solution may have small spurious oscillations. These oscillations are frequently
more pronounced in the delta associated with the solution, thus making the numerical
method unsuitable for delta hedging applications. If A is an M-matrix, we can guarantee
that the numerical solution associate with (3.2) is stable without spurious oscillations
[F100].

A square matrix A is said to be an M-Matrix if it is non-singular, its inverse is

non-negative and its off-diagonal elements are less than or equal to 0:

A1t>0
(3.33)

aij <0 1#7]

Sufficient conditions for the inverse of a matrix to be non-negative are given in [F+00].
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Lemma 1. Suppose that the matriz A is irreducibly diagonally dominant and
aij <0, i#]
a; 2 0
Then A is non-singular and its inverse s strictly positive.
Stability

We can rewrite the simple matrix formulation

(I—0ATM) V7T = (I+ (1 — §)ATM) V7, (3.34)
as
VIt = (I - 0ATM) ™ (IT+ (1 - O)ATM) V7, (3.35)
or
Vit — BV, (3.36)
where
B = (I-0ATM) " (I+ (1 - §)ATM). (3.37)

If V9 is the initial data, then after j timesteps we have
Vi =BV (3.38)
Now, we define the following notions of stability [WEFV04]:
e B is strictly stable if |BY|| <1, Vj,n >0,
e B is strongly stable if |B’|| < C, Vj,n >0,
e B is algebraically stable if |B’|| < j7n!C, Vj,n >0,

where C, p,l > 0 are constants independent of 7 and n, where n is the dimension of B.
If A=1-60ATM is an M-matrix, it has been proved in [WFV04| that B of (3.37)

is strictly stable for the implicit Euler method, but B is not guaranteed to be strongly
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stable for the Crank-Nicolson method, since A may not be an M-matrix in this case.
Strong stability is a sufficient and necessary condition for the convergence of a consistent
discretization for all initial data (according to the Lax Equivalence Theorem [Str04]).
Equation (3.16), which is the focus of our interest, includes the additional term (0 fi+
(1 — 6)f7)Ar, and so it is not strictly of the form (3.34). Thus it is not clear that the
analysis above applies to (3.16). However, numerical experiments indicate that choosing
the discretization so that A is an M-matrix, or nearly an M-matrix, at each time step,

aids the stability and convergence of the numerical method.

3.5 The Constrained Linear System for Each Pricing
Model

In this section, we generate the linear system for each pricing model by substituting
the particular parameters that we gave in section 3.1 and considering the free boundary

conditions and other special issues.

As in the previous sections, S = {Sy; = 0,S51,...,S, = Spaz} and 7 = {75 =

0,71,...,7m = T}. Moveover, for j =0,...,m, define
Vi=(vg Voo i VT,
U= Ul .. Uiy U
B =B B ... B_, BT,
cl=@d ¢ ... ¢, o)

Let I to be the identity matrix of size (n+ 1) X (n+ 1). We give the matrix formulation

for our discretization of each pricing problem below.
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1. European call options:

(I—-0ATM) VIt = (I+ (1 — 6)ATM) V7, (3.39)
where 7 =0,...,m — 1 and the matrix
(—T 0 0 0 .. 0 \
(0] —(T+Q1+51) ﬁl 0 0
M — 0 Qg —(r+ay+B) P 0
0 0 s Qnp_1 _(T + o1 + ﬁn—l) Bn—l
\ 0 0 . V3 V2 m )
(3.40)

a; and f3; for i = 1,...,n—1 are defined in (3.11) and (3.12), and 71, 7, and 73 are
defined in (3.28).

The initial condition is
V¥ =max(S; — E,0), i=0,...,n, (3.41)

where F is the strike price. There is no free boundary conditions for European call

options.

. American put options:

(I—6ATM) V7T = (T+ (1 — 6)ATM) V7, (3.42)
where 7 = 0,...,m — 1 and the matrix
(—r 0 0 0 . 0 \
(6%} —(T+Ozl+ﬁ1) 51 0 0
M: O (67) —(7'+Of2+,62) ﬁg O
0 0 s Qp 1 —(7" + o1+ ﬁnfl) anl
\ 0 0 .- Y3 Y2 gt )

(3.43)
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a; and f; for i = 1,...,n—1 are defined in (3.11) and (3.12), and 71, 7, and 73 are
defined in (3.28).

Also the following constraints that arise from the early exercise option must be
satisfied:

Vi>Gy, i=1,...,n j=0,...,m, (3.44)
where G; = max(E — S;,0), and E is the strike price.

The initial condition is

V? = max(E — S;,0), i=0,...,n. (3.45)

7

3. The TF model for convertible bonds:

U is the total value of the CB and it is computed from

(I—6ATMy) U7 = (T4 (1 — )ATMy)U? — r AT(6B+ + (1 — 0)B7), (3.46)

where 7 = 0,...,m — 1 and the matrix
(—r 0 0 0 0
(65} —(7'+O{1 +ﬁ1) ﬁl 0 0
MU: 0 [6) —(T+C¥2+ﬂ2) ﬁg 0
0 0 D Qp_1 _(T + Qp_1 + ﬁnfl) ﬁnfl
\ 0 0 Vs Y 7 )

(3.47)
a; and f3; for i = 1,...,n—1 are defined in (3.11) and (3.12), and 4, 7y, and 73 are
defined in (3.28).

The initial condition for U is

U =max(F + K,kS;), i=1,...,n, (3.48)



CHAPTER 3. THE FINITE DIFFERENCE METHODS 44

where F' is the face value of the Bond, K is the coupon payment and k is the

conversion ratio.

Similarly, the COCB component value B of the CB is computed from

(I-0AT™Mp)B*! = (I+ (1 —0)ATMp)B’, (3.49)
where 7 =0,...,m — 1 and the matrix
(—(7’ +7e) 0 0 0 ... 0 \
o —(r+rc+a1+61) B 0 0
MB -
0 0 coe Oy —(r+retan 1+ Bas1) Basr
\ 0 0 . Y3 Y2 il )
(3.50)

a; and f; for i = 1,...,n—1 are defined in (3.11) and (3.12), and 71, 7, and 73 are
defined in (3.28).

The initial condition for B is,

F+K ifF+K>kS;,
BY = (3.51)

7

0 otherwise,

for i =0,...,n. The free boundary conditions (2.22), (2.23) and (2.24) should be

applied at each time step.

4. The AFV model for convertible bonds:

U is the total value of CBs and is computed from

(I—O0ATMy) U7t = (I+ (1 — 0)ATMy)U?

+pAT(0 max (kS(1 — n), RB’") + (1 — ) max (kS(1 — n), RBj)), (3.52)
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where j = 0,...,m — 1 and the matrix
(—TU 0 0 0 0 \
a1 —(T'U-i-Oq +ﬁ1) /61 0 0
My = 0 a2 —(rv+oa+pP) P 0
0 0 R Qp—1 _(TU + Qp—1 + ﬁn—l) /Bn—l
\ 0 0 e 73 "2 N /

(3.53)
Here, ry =7+ p, a; and §; for i = 1,...,n — 1 are defined in (3.11) and (3.12),

and 1, 72 and 73 are defined in (3.28). That initial condition for U is

U =max(F + K,kS;), i=0,...,n. (3.54)

7

For the equity component C' of the CB, the parameters a;, a; and as are the same

as those of U. Thus C' is computed from

(I—-0ATMc)C7* = (I+4 (1 —0)ATM()C?

—l—pAT(HmaX (kS(1—n) — RB'*',0) + (1 — ) max (kS(1 — n) — RB, 0)),

(3.55)
where j =0,...,m — 1 and the matrix M = My. The initial condition for C' is
C? = max(kS; — (F + K),0), i=0,...,n. (3.56)

Similarly, the bond component B is computed from

(I-0ATMp)B*! = (I+ (1 —0)ATMp)B, (3.57)
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where j = 0,...,m — 1 and the matrix
[ rs 0 0 0 0 )
(673} —(’I"B-f-a/l-f-ﬁl) ﬁl 0 0
MB _ 0 (07%)) _(TB+012+52) 52 0
0 0 -1 —(rB+an_1+ Bn-1) Bnar
\ 0 0 Y3 Y2 Y1 )

(3.58)
Here, rg =7+ p(1 — R), o and §; for i = 1,...,n — 1 are defined in (3.11) and

(3.12), and 1, 72 and 3 are defined in (3.28). That initial condition for B is
B)=F+K, i=0,...,n. (3.59)

The free boundary conditions (2.39), (2.41), (2.42), (2.45) and (2.46) should be

satisfied at each time step.




Chapter 4

Iterative Methods for Solving Free

Boundary Problems

In the previous chapter, we review discretizations for the Black-Scholes-like equation
(3.2) with appropriate initial and boundary conditions. Options with early-exercise op-
portunities, such as American puts and convertible bonds, have free boundary conditions.
At each step of the resulting numerical method, we must solve a large linear system of
equations with nonlinear constraints associated with the free boundary conditions. In
this chapter, we consider two iterative methods for solving such systems: the projected
successive overrelaxation (PSOR) method and the penalty method. The reason for choos-
ing iterative methods is that the nonlinear constraints associated with the free boundary

conditions make the system difficult or impossible to solve with direct methods.

The PSOR method is a well-known scheme for handling free boundary conditions. It
is an extension of the well-known successive overrelaxation (SOR) method. The penalty
method, suggested by Forsyth and Vetzal [FV02], has been applied more recently to value
American options effectively. It has been extended by Nielsen, Skavhaug and Tveito to
the continuous penalty method [NST02]. In this chapter, we investigate the application

of the PSOR and both the discrete and continuous penalty methods to value American

47
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options and convertible bonds. Firstly, we discuss the SOR/PSOR methods, and then the
discrete and continuous penalty methods. We also present the algorithms for European

call options, American put options and CBs.

4.1 SOR / PSOR Method

4.1.1 Introduction to the SOR/PSOR Method

The successive overrelaxation (SOR) method is an extension of the Gauss-Seidel method.

Both can be used to solve the linear system
Ax=b (4.1)
by splitting the matrix A into three parts
A=L+D+0T1, (4.2)

where D, L and U represent the diagonal, strictly lower triangular, and strictly upper

triangular parts of A, respectively. Thus, (4.1) can be written as
x = D7 '(~Lx — Ux +b). (4.3)

Starting with an initial guess, x°, to the solution, x, and using previously computed
results as soon as they are available, the Gauss-Seidel method calculates the sequence of

approximate solutions, ¥, as follows:
xF =D (-Lx" - UxF +b), k=0,1,2,... (4.4)

If the sequence converges to a vector x as k increases, then x is the solution to (4.1).

In component form, the Gauss-Seidel method can be written as

n

1 i—1
ilii-c_H = a_ (bz - Zaijfo - Z aijx;?). (45)
0 j=1

j=i+1
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The SOR method improves substantially the rate of convergence of the Gauss-Seidel
method in many cases by introducing a so-called relaxation parameter w. In general
0 < w < 2, but most often we have 1 < w < 2. To be more specific, SOR computes
the next iterate as a weighted average of the current iterate and the next Gauss-Seidel
iterate.

For convenience, we denote the Gauss-Seidel iterate by y and an element in y by ;.

The SOR method can be written in component format as

1 i—1 n
k+1 __ E : k+1 § : k
yi = — (bz — a'ijxj — aij:rj) y
Qi j=1

j=itl (4.6)
oith = ot w(yit -,
where 7 = 1,...,n. Notice we use the already available xf“, j=1,...,1—1, to compute

y**! to achieve faster convergence.

The Projected SOR (PSOR) method for linear complementarity problems was pro-
posed by Cryer [Cry71]. The method is an extension of the SOR method and widely used
for pricing derivatives having an early-exercise feature. The advantage of the method is
that it handles the free boundary conditions in a straightforward way and is easily im-
plemented. To illustrate the PSOR method, we consider a problem based on equation

(4.1) but subject to an additional constraint

x>g. (4.7)

We start with an initial guess x°. At each iteration of the PSOR method, we check if the
new value 771! satisfies constraint (4.7). If not, we adjust z¥*' to make the constraint
satisfied. If x* converges to x, then x is the solution to the problem. More specifically,
the PSOR method for solving the above problem is

1 2—1 n
k+1 __ § : k+1 § : k
Y; = — (bz — a'ijxj — a'ijxj)
i j=1

j=itl (4.8)

k+1
i

ot = max (gi,xf + w(yFtt — :Ef)),
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where 1 =1,...,n.

Both the SOR and PSOR methods compute successive approximations to the solution.
To be effective, the method must be augmented with a stopping criterion. An ideal
stopping criterion would measure the difference between the last iterate and the true
solution, but this is not possible in practice. Instead, we can test if the SOR/PSOR
iterates are changing significantly. We stop when no apparent progress is being made.

To be more specific, the stopping criterion we use is
||kt —x*|| < tol, (4.9)

where the norm used is typically either the 2-norm or the oco-norm, and tol is the desired
computing tolerance.

Now, consider the relaxation parameter w, which has a significant impact on the
convergence rate of the SOR method. Typically, 1 < w < 2 is used for the SOR method.
A suitably chosen w can reduce the number of iterations dramatically, and therefore
choosing an optimal or nearly optimal w is very important in the SOR method. If A is
a symmetric positive definite (spd) matrix, the unique w which maximized the rate of
convergence of the SOR method may be found [You71]. However, the matrix A is not spd
in many applications and thus it is not easy to calculate the optimal w in advance, but
methods have been developed to approximate it dynamically as the SOR/PSOR iteration
progresses. In [WHD95|, in the context of using (P)SOR in the numerical solution of
time-dependent PDEs, an adaptive approach for choosing an effective value of w at each

time-step is described.

4.1.2 Implementation for European Options

Because European options can be exercised at maturity only, the pricing model has no
free boundary condition. Thus, we use the SOR method to solve the linear systems that

arise at each step of the numerical solution of the Black-Scholes equation by a #-method.
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It would be more efficient to use a band solver to solve these linear systems, but we chose
to use SOR so that we could more easily compare our results for European options to the
more complicated problems that use PSOR to solve the associated free-boundary-value
problems.

From (3.39), the Crank-Nicolson method (i.e., set § = 1) at time 7, for a European

call option is
(21 — ATM) V7! = (21 4+ ATM) V7, (4.10)
where M is defined in (3.40). Let b = (2I+ A7M)VY. Starting with V/™10 = V4, the

(k + 1) SOR iterate for V7*! at time 7;,; is computed by the following procedure.

For:=0,...,n

if i =0, then

, 1
! 2+ rAT " ( )

if 1<i<n, then

| 1 : :
v = oo Artr ot g) T ATV 1 BArVIETY)  (412)
7 7

if i =n, then

) 1 ; j
Y = At YATVIEH gy AryZbETY) (4.13)
V;j-}—l,k-i—l _ V;j—l—l,lc n w(Y;j’Ll’kH _ Vij+1,k) (4.14)

End

Notice that we run the SOR iteration to calculate the two end values, Vi T"*™ and
VitLk+l Cinstead of setting the values explicitly as in the case of Dirichlet boundary

condition. That is because they are determined by the corresponding PDEs, and interact
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with their neighbors. For example, V/*1#+1 depends on V/""** which in turn depends

on its previous value V7 T1F,

The pseudocode for the SOR iteration to calculate V7™ at time 7;4; is given in
Algorithm 4.1, and the Crank-Nicolson method to calculate the European call options is
given in Algorithms 4.2. Notice that Algorithm 4.2 uses a constant time step, but it can

be easily generalized to a nonconstant stepsize algorithm.

Algorithm 4.1: SOR method for European call options
Vitho — v/ .

for k=0,..., Nyus do
fori=0,...,n do
if i == 0 then
calculate Y ™*! using (4.11);

else if i == n then

calculate Y/ T+ using (4.13);
else

calculate Y7 using (4.12);
end

calculate V/TF! using (4.14);

end

error = ||VITLAHL _ yitLk

|OO’

if error < tol then
break;

end

end

i+1 _ y/j+1,k+1.
Vit = YL+l
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Algorithm 4.2: Crank-Nicolson method for European call options

for:=0,...,ndo

V9 = max(0,5; — F) ; /* E is the strike price. */
end
7=0; /* T is time to maturity 1. */
AT =T/m;

for j=0,...,m—1do
T=T+AT; /* AT is the timestep size. */

use Algorithm (4.1) to calculate V7/*! from V7;

end

4.1.3 Implementation for American Options

The price of an American put option is given by the solution of a free-boundary-value
problem. We impose the free boundary condition (2.12), V'(S,t) > G(S), at each iteration
by comparing the value of the option VI+Lk that we could obtain if we didn’t exercise
the option to the payoff value G that we could obtain if we did exercise the option, and

taking the bigger value as the option price V7*+%* at this point.

From (3.42) with # = 3, the Crank-Nicolson method for an American put option is

1
29

(21 — ATM)VI*! = (214 ATM) V7, (4.15)

where M is defined in (3.43).

Analogous to the SOR method for a European call option discussed above, we start
by setting VIt = V7 and b = (2I+ A7M) V7. The PSOR iteration for calculating the

(k + 1)%t iterate of V7T1 at time 7,4, is given by
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Fori=1,...,n—1

if7=0, then

yjtLL Hﬁbi (4.16)
if 1<i<mn, then

=g AT(T1+ oy O STV BATVEE) (@)
ifi =n, then

YT = ﬁ(m + s ATVI ATV (4.18)
PIHLkRL Lk L Ly (4.19)
VI (G, ‘7;]'+1,k+1) (4.20)

End

We give the pseudocode for the PSOR iteration in Algorithm 4.3. The pseudocode
for the Crank-Nicolson method is similar to Algorithm 4.2, except that the initial vector

is V9 = max(0, E — S) and we use the PSOR method to compute V7!,

4.1.4 Implementation for Convertible Bonds

Under the TF Model

In Chapter 3, we use the #-method to derive a pair of coupled equations (3.46) and (3.49)
with free boundary conditions that are solved for U’ and B’ at time 7;. If the Crank-
Nicolson method is used to discretize in time (i.e., setting § = 1), equations (3.46) and

(3.49) become

(2T — ATMy ) U7t = (214 AMy)U? — r AT (BT + BY), (4.21)

(21 — ATMp) Bt = (21 + ATMp) B/, (4.22)
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Algorithm 4.3: PSOR method for American put options
Vitho — v/ :

for £k =0,..., Ny do
fori=0,...,n do

if 7 == 0 then

calculate Y7 TH* using (4.16);

else if 1 ==n then
calculate Y, 1AL ysing (4.18);

else

calculate Y7 TF! using (4.17);
end
calculate V7 uging (4.19);

calculate V7 TF! using (4.20);

end

error = ||[VItLATL _ 1/itLk

|OO’

if error < tol then
break;

end

end

i+1 — i+l
Vit = yitLk+l,
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where My and Mp are defined in (3.47) and (3.50), respectively.

Ignoring any constraints initially, given U’ and B?, we can solve (4.22) for B/*! first
and then use B! in (4.21) to solve for U7!. After we get the preliminary values of
Ui+! and Bi+! by ignoring the constraints, denoted by U7+! and Bi+!, respectively, we
impose the constraints and obtain the values of U’*! and B/*!.

Let the initial values U/t19 = U7 and B/*10 = BJ. We outline the procedure to solve
the (k + 1)** PSOR iterates of U7t! and B/*! at time 7;,,. For each i = 0,...,n, U/™

and Bg *1 are calculated from the following 5 steps:

1. Let bg = (2I + ATMB)Bj. Ignoring the constraints, we compute the (k + 1)%

Hi+1k+1 J+1k+1
B; for Bj

Gauss-Seidel estimate , and take the weighted average of

BITHH and BITY* to compute the SOR value E{H’Hl for BT+ as follows:

if1=0, then

_ 1
BItLE+L _ bg.; 4.23
g 24+ AT(r+7e) " (4.23)

if 1<i<n, then

_ 1 . .
B;+1,k+1 — be A Bg+1,k+1 A Bq+1,k
¢ 2+AT(T+T¢+O!i+B’i)(B,Z+az TP TOATBT)
(4.24)
if1=n, then
. 1 . .
Bg-l—l,k-l—l _ 7(bB,i + ,ygATBZJj—QLk—H + ,YQATBZJj-lLk-H)’ (4_25)
2— ’ylAT
§g+1,k+1 _ Bfﬂ’k-l—w(BfH’kH —BgH’k). (4.26)
2. Set BITVH = E{Jrl’kﬂ as the preliminary value for B/™"**' which possibly

changes later in step 5 when we apply the constraints.

3. Let bji! = (21 4+ ATMy)U? — r A7(BitbE+L + BI). Ignoring the constraints,
we then compute the (k 4 1)* Gauss-Seidel estimate U/ ™*" for U/™*™ and

compute the SOR value of (7;”1"”1 for Uf“’kﬂ by taking the weighted average of
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IR and U7THF as follows:

if1 =0, then

_ 1
ALk _ phH1 4.9
Ui 2+ rA7r Ui (4.27)

if 1<i<mn, then

y 1 , ,
giHbRt = WL 4 qu ATUITR 4 g AFUTHLE
i 2+AT(T+ai+ﬁi)(Uﬂ + oAU + BATUL)
(4.28)

if 1 =n, then

_ 1 . .

U;Hl’kﬂ = ——— (5 + ’Y?,ATUZ’]:LQI’HI + ’YZATUz'lel,k+l)’ (4.29)

2— ’YlAT ’

ﬁij+1,k+1 _ Uijﬂ’k + w(Uin,kJrl _ U,-Hl’k). (4.30)

1kl _ Tk 1,k
4. Set U/THFH = g7THFH a5 the pre-value of U7 THAH!,

5. Explicitly applying the free boundary conditions (2.22), (2.23) and (2.24) simul-
taneously to U/ ¥ and B/T'#*! (see Algorithm 4.4), we obtain the post-PSOR

+1,k+1 +1,k+1
values of U/ T"#*! and BITHAH1

After we compute the vectors V7t and B/*! from the above procedure, we check the

following stopping criteria:

||Bj+1,k+1 . Bj+1,k||oo < tol,

||+ R+ _ itk

loo < tol.

The pseudocode for the Crank-Nicolson method and PSOR iteration are given in
Algorithms 4.5 and 4.6.
Under the AFV Model

The idea behind using the PSOR method to price CBs with the AFV model is similar

to that for the TF model, but, in the AFV model, we use the Crank-Nicolson method to
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Algorithm 4.4: Explicit application of the free boundary conditions to Uij *1 and

B’*!in the TF model.
Input: Uin and Bg“

/* Check the minimum-value constraints. */

if B, > kS, then

if Uin < B, then /* the puttability constraint. */
Bt =B, UM =B,
end
else
if U/*' < kS; then /* the conversion constraint. */

BI*'=0; U/* =kS;

end
end
/* Check the maximum-value constraints. x/
if U7*" > max(B,, £S;) then /* the callability constraint. */

Bngl = 0; Uij+1 = maX(Bc, KS,');

end
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Algorithm 4.5: Crank-Nicolson method for convertible bonds using the TF model

/* F is the face value of the CB; K is the coupon payment.
T=0; ATt =T/m;

U'=F+K;B=F+K;

for:=0,...,ndo

if U < kS, then
U? = kS;; BY = 0;

end
end
for j=0,...,m—1do
/* Adjust A7 if necessary to make 7; match the coupon dates
exactly.
T =7+ AT,
calculate AcclI(7) using (2.60);

if 7 € {call period} then /* call period is in time backwards.

B. = B.. + Accl;

else
B, = o
end
if 7 € {put period} then /* put period is in time backwards.

B, = By, + Accl,

else
B, = —oc;

end
compute Bt and U7*! by calling the PSOR Algorithm (4.6);
/* coupon payment dates are in time backwards.

if 7 €{coupon payment dates} then
Uj+1 — Uj+1 + K’

Bj+1 — Bj+1 +K’
end

end

*/

*/

*/
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Algorithm 4.6: PSOR method for convertible bonds using the TF model

Uitho = Ui -
Bi+10 = pi.
for k=0,..., Ny do

for:=0,...,ndo

calculate B/T"*™" using (4.23),(4.24) and (4.25);

calculate E{H’Hl using (4.26);

J+Lk+l _ Dj+lk+1

calculate U/ using (4.27),(4.28) and (4.29);

calculate ﬁijﬂ’kﬂ using (4.30);

JHLEFL _ 7Lkl
U; =U; :

Apply the free boundary conditions explicitly to updated Uij L and

Bf“””’l using Algorithm 4.4;
end
errory = ||UITLAHL _ yitLE||
errorg = ||BItLATL — BItLE|| .

if errory < tol and errorg < tol then
break;

end
end

i+1 _ pj+1,k+1.
Bt = BJ :

i+l _ 7rit+1E+1.
Uit — i :
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solve the PDEs, (3.52), (3.55) and (3.57), associated with the AFV model, resulting in

the formulas

(21 — ATMy ) U7t = (21 + ATMy)U?
+pAT( max (/{S(l -n), RBj+1) + max (/{S(l -n), RBj)>, (4.31)
(21 — ATMp) Bt = (21 + ATMp) B, (4.32)
(21 — ATM()Cot! = (21 + ArM¢)C?
+pAT(maX (kS(1 —n) — RB™*',0) + max (kS(1 — n) — RB, 0))
(4.33)
My, Mg and M¢ are defined in (3.53), (3.58) and (3.53), respectively.
Since U = B + C, we compute B and C' at each time step and then sum them to
obtain the value U. Let 7y = r¢ =7 +p and rg = r + p(1 — R). The PSOR iteration

to compute U7, Bt and C’*! at time 7;,1 as described below. For each i =0,...,n,

Ut B and €71 are calculated from the following 6 steps:

1. Let by = (21 + ATMB)Bj. Ignoring any constraints, we compute the (k + 1)

Bi+1k+1 J+1k+1
B; for B;

Gauss-Seidel estimate , and take the weighted average of

BIFUE and BITYF to compute the SOR value Ef“’kﬂ for B/TYFH as follows:

if1=0, then

_ . 1
Bitbktl . © i 4.34
t 2 +rgAT By ( )

if 1<i<mn, then

_ 1 . )
B?—}—l,k-}—l — b ; zA Bg+1,k+1 ZA Bq-f-l,k
¢ 2+AT(7‘B+ai+ﬁi)(B’+a 771 +BATBLLT)
(4.35)
if 1 =n, then
. 1 . .
BZJH’k+1 = ——(bp; + 73A7'ij21’k+1 + VZATBf:LkH)a (4.36)

2 — ’ylAT
§g+1,k+1 — sz+1,k+w(BZj+1,k+1 _sz+1,k). (4.37)
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2. Set B/ = E{“Ll’k“ as the preliminary value of B/ T"**1,
3. Let
b = (2I+ATMC) CJ)—i-pAT(maX (kS(1—n)—RBTH**1 0)+max (kS(1—n)—RB’, O))

Ignoring any constraints, we then compute the (k + 1)* Gauss-Seidel estimate
CITYHY for CITHFand compute the SOR. value 5’5“’“1 for CITH**! by taking

the weighted average of C™"*" and ¢/ ™"

if =0, then

o aaas ﬁblgzl’ (4.38)
if 1<i<mn, then

Oy = 2+ AT(Tcl—i- a; + B;) (bR + au ATCIEE T 4 B ATCLAF)

(4.39)

ift=mn, then

o anias ﬁ(bm + B ATCL T 4 ArCIEE - (4.40)
CIATL = IR 4 o(CFFIRH _ Ol (441)

+1k+1 _ ikt 1,1
4. Set OV = CITHEH a5 the pre-value of C7 A

5. Explicitly applying the free boundary conditions (2.41), (2.42), (2.45) and (2.46)
simultaneously to B!T'**" and C/t'#*" (see Algorithm 4.7), we obtain the post-

PSOR values of B/T"**! and ¢/ T"**1,

j+1,k+1 i+1,k+1 j+1,k+1
6. Compute U7 ™FH = pITHE+ L Carbrtt

As for the TF model, we check the stopping criteria after obtaining the vectors U’*!,

Bit! and C7+1:
||Bj+1,k+1 _ Bj-HJC”oo < tol,

||Cj+1,k+1 _

o < tol.
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Algorithm 4.7: Explicit application of the free boundary conditions to Czj *1and

B/™ in the AFV model.
Input: B/*' and C/™

/* Check the minimum-value constraints. */
i+1 . i+1
B} = min(B., B/);

if B, > kS; then

B/ = max(B/™, B, — C7*) ; /* the puttability constraint. */
else

O/ = max(kS; — B/, ¢ItY ; /* the conversion constraint. */
end
/* Check the maximum-value constraints. */

O/ = min(C/™', max(kS;, B.) — B/™') ; /* the callability constraint. x/

The pseudocode for the Crank-Nicolson method and PSOR iteration for the AFV
model is similar to that for the TF model, but, for comparison, we outline it for the AFV

model in Algorithms 4.8 and 4.9.

4.2 Penalty Method

As we have seen, the free boundary conditions for American options and convertible
bonds result in a nonlinear problem that can be solved as a LCP. At each time 75, we
need to determine the optimal exercise point to compute V7. The PSOR method solves
this LCP by imposing the free boundary conditions explicitly at each iteration. Now we
introduce another iterative method to solve the LCP: the penalty method. In fact, we
consider two forms of the penalty method: the discrete and the continuous versions. Both
versions of the penalty method impose the free boundary condition implicitly by adding

a nonlinear penalty term to the original linear PDE. The nonlinear algebraic equations
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Algorithm 4.8: Crank-Nicolson timestepping for convertible bonds using the AFV

model

/¥ F is the face value of the CB; K is the coupon payment */
T=0; At =T/m;
B'=(F+0C);
C° = max(kS — (F + C),0) ;
U=B"+(CY;
for j=0,...,m—1do
/* Adjust A7 if necessary to make 7; match the coupon dates
exactly. */
T=7T+AT;
calculate Accl () using (2.60);

if 7 € {call period} then
B, = B + Accl(7);

else
B, = o

end

if 7 € {put period} then
B, = By + Accl(7);

else
B, = —oc;

calculate C**1, B¥*1 and U**! by calling Algorithm (4.9);

if 7 € {coupon payment dates} then

Bitl = Bitl 4 K
end

end
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Algorithm 4.9: PSOR Iteration for convertible bonds using the AFV model
Bit1L0 — BI ;

CIi+10 — C’j;
for k=0,..., Ny, do
fori=0,...,n do
calculate B/ using (4.34),(4.35) and (4.36);

calculate B TF ! using (4.37);

JHLE+L _ Ditlk+L
B! = BItR,

calculate C7 TH* ! using (4.38),(4.39) and (4.40);

calculate C/ T+ using (4.41);

j+1,k+1 _ ~j+1,k+1
C =

I

i+1,k+1
Bzﬁ 1 and

j+1k+1
C;

apply explicitly the free boundary condition to using

Algorithm 4.7;

end
errorg = ||BITHATL — BItLE||
errorg = ||[CITLEFL — QIFLE]

if errorg < tol and errorc < tol then
break;

end
end
Bi+l = pitlk+,
Ci+l = Ci+Lk+,

i+l — Ri+lk+1 j+1,k+1.
Ui+l = Bi 4 Y :
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that result from discretizing the PDE are solved with Newton’s iteration or some other
iterative schemes. We discuss the penalty method for an American option first, and then

extend our approach to a convertible bond.

4.2.1 Discrete Penalty Method for American Options

Consider the PDE associated with an American option problem

oV 1 , ,0%V oV
o _1 A 4.42
5 205852+T565 rV, ( )

which is subject to the free boundary condition
V>3, (4.43)

where G is the payoff condition. We can rewrite this problem as a LCP

LV =0 LV <0
vV , (4.44)

V>aG V=G

where

ov 1, ,0°V ov
_ 1 o v 4.4
LV T+205852+T585 rV. (4.45)

For an American put option, the payoff function is
G(S) = max(E — S,0). (4.46)

The discrete penalty method proposed by Forsyth and Vetzal [FV02] adds a positive
penalty term £ max(G — V,0) to the original Black-Scholes PDE (4.42) to enforce the
free boundary condition V' > GG. For £ — oo and 0 < € < 1, the penalty term effectively
ensures that the solution satisfies V' > G — e. Therefore, we solve the following nonlinear

PDE for approximating the solution to the LCP (4.44):

o 1, ,0°V ov
= - R — . 4.4
5 =5 S 532 —l—rSaS rV + Emax(G — V,0) (4.47)
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Except for the additional penalty term, the discretization of (4.47) is the same as
that for the original PDE described in Chapter 3. When calculating V7™ at time 7,1,
the penalty term is replaced with a discrete penalty term P(V/1')(G; — V71!, where
P(V7™) is defined as

, Large if V;jﬂ < Gy,
PV =
0 otherwise.
Thus, following the discretization procedure discussed in Chapter 3, we have
VIt VI = OATLVI 4 (1 = 0)ATLVY + P(VITH (G — Vit
= VP AT (VI = (r+ i+ B)VIT 4 BV + POV
= VV+(1-0)A7(wV, — (r+ i+ BV + BiVi) + POV )G

We can write this in matrix form as
[I—OATM + P(VITHVIT = [T+ (1 — O)ATM]V? + P(VITHG, (4.48)

where M is given in (3.43) and P(V?*!) is a diagonal matrix of size (n + 1) x (n + 1)
with each diagonal element defined by P(V;j H),

, Large if V;-jH < G;and i =k,
PV = (4.49)

0 otherwise.
The parameter Large is closely related to the maximum relative error in enforcing
the free boundary condition using the penalty method. This maximum relative error is

measured by the quantity

1
Err = max max{0, (Gi — V)]
irj max(1, G;)

To ensure Err is small enough, the parameter Large must be chosen large enough. In

[FV02], a practical criterion is suggested in term of the required accuracy:

1
L R — 4.50
arge s . (4.50)
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where tol is the tolerance associated with the stopping criterion for Newton’s iteration
used to solve (4.48).
Now we introduce Newton’s method to solve the discrete nonlinear equation (4.48).

Define
FVIH) = I - 0ATMVIT — [T+ (1 — O)ATM]VI — P(VIT) (G — V7T, (4.51)

Solving (4.48) is equivalent to solving F(V7/*1) = 0 for V7*1. To apply Newton’s method
to solve (4.51), we need to compute the Jacobian of F(V7*!). However, P(Vi*1) is a
discontinuous function. So we need to define its “derivative” carefully. Forsyth and

Vetzal [FV02] suggest using

oPFN (G — VIt —Large Vit <Gy, i=k,
= = (4.52)
vyt
! 0 otherwise,
whence the Jacobian of F(V7+1) is
JVITH) =1 — 0ATM + P(VITh).
Therefore, Newton’s iteration for solving F(V7*1) =0 is
VITLERL = It bh _ g oL (VI F(VITLE), (4.53)

where VIT1F is the k™ iterate for V™', Combining (4.51)-(4.53), we obtain the iteration

formula
[I— ATM + P(VITER) VI = [T 4 (1 — ) ATM]V? + P (VTR G, (4.54)
Setting § = %, we obtain the Crank-Nicolson scheme for American put options:
[21 — ATM + 2P (VITLR)VIHLEFL = DT 4 ATM VY 4 2P(VITER)G. (4.55)

Let VIitLE be the k' iterate for Vi1, P* = P(V/*tLF) and the initial iteration vector

Vi+t10 = V7. The psuedocode for Newton’s iteration to solve V7/*! at time 7,4 is given
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in Algorithm 4.10. The stopping criterion to exit Newton’s iteration is

H/;j+1,k+1 _ Vij+1,k‘

. < tol, 4.56
a1, 77 0

or
Pkt = PF, (4.57)

The pseudocode for the Crank-Nicolson method using the discrete penalty method for
an American option shown in Algorithm 4.10 is similar to that shown in Algorithm 4.2,

except that the SOR method is replaced by the penalty method to solve for V7*1,

Algorithm 4.10: Discrete penalty iteration for American put options

/* tol is the required relative error. x/
G = max(E - S,0);

Vj—|—1,0 — Vj;

calculate P° using (4.49);

for £k =0,..., Ny do
calculate V715! by solving (4.55);

calculate P**! using (4.49) ;
‘V-j+1’k+17ij+1’k‘

error = max; —= -
7 max(l"‘/ij-i-l,k-l-l‘) 3

if [error < tol] or [P¥*! == P*| then
break;

end

end

Vit — yitlk+l

4.2.2 Continuous Penalty Method for American Options

The continuous penalty method proposed in [NST02] adds a continuous penalty term to

the original Black-Scholes PDE (4.42), giving rise to the following nonlinear PDE posed
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on a fixed domain:

2
v _ 102526—‘/ + TSa—V —rV + X

A A 4.
or 2 052 oS V4+e-Q’ (4.58)

where 0 < € < 1, x is a positive constant, and @) = (E — S) for American put options.

Note that we use @ = (E — S) instead of the payoff function @ = max(F — S,0) since

ex

Vieg 18 of order € if

the Black-Scholes equation ensures that V' > 0. The penalty term
V =V(S,t) > @, and increases towards x as V — Q.

In [NST02], it is recommended that we treat the penalty term explicitly by replacing
V with V;j when we discretize the penalty term, but the conditions x > rE and A7 < -5
must be satisfied to ensure that the method is stable. Discretizing the penalty term as

suggested above and the other terms in (4.58) as usual, we have

V;j—f—l _ V;j — 0A7’EV;~j+1 + (1 _ H)ATE_V'ZJ + L
VIi4e—Q;
— V;-j_H — OAT(O!Z‘/{TEI - (7" + (07} + ﬁi)‘/;j+1 + Bzv;ijl)
ex

= V/+(1-0)Ar(V] = (r+oi+B)V] +BV)) + —F—.
i ( ) ( 1 ( /B) /6 +1) ‘/;7 + € — Qz
We can write this in matrix form as
[T — OATM]VIT = [I+ (1 — O)ATM]VI 4 R(VY), (4.59)

where M is given in (3.43). R(V7) is the function associated with the penalty term:

RVi= 0 o (4.60)

Solving (4.59) is straightforward. We use the direct method to compute VI*!.

4.2.3 Implementation of the Discrete Penalty Method for the

TF Model

In this subsection, we discuss a procedure to price a convertible bond using the discrete

penalty method in the TF model. To begin, we ignore any constraints and solve B/*! from
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(4.22) and then solve U™ from (4.21) using the direct method. We then explicitly impose
the free boundary conditions on U’*! and B’*! to obtain approximations to U and B at
time 7;,1. We could now proceed to the next time step. However, even though we use the
Crank-Nicolson method, we would not achieve a second-order rate of convergence with
this scheme since we enforce the free boundary conditions explicitly. Thus, an additional
step is suggested in [AFV03] to enhance the convergence. By computing U’*! with the
penalty method, we enforce the free boundary conditions in an implicit way and then
adjust B! according to the current U/*!. We expect the convergence of this numerical
method incorporating the penalty method to be better than the explicit method outlined
above, but quadratic convergence still is not attained since we apply the penalty method
to U only, and B is still computed explicitly. The convergence of B directly affects the
convergence of U.

In the following, we describe the method to compute U using the discrete penalty

method, and then present the procedure to solve the whole problem.

The Penalty Method for Computing U

Under the TF model, the PDE governing the convertible bond value U is

U 1 ,,0%U0  _0U
5, = 37 S 532 +7‘SaS rU —r.B (4.61)

subject to the free boundary conditions

U > max(B,, kS),

(4.62)
U < max(B,, kS).
The problem (4.61)-(4.62) can be written as the LCP
LU —r.B=0 LU —r.B<O0 LU —r.B>0
U > max(B,,kS) | V | U=max(B,,xS) | V | U > max(B,, «S) | - (4.63)

U < max(B,, kS) U < max(B,, kS) U = max(B,, kS)
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It can be solved with the discrete penalty method. The description of the algorithm and
experiments are presented in [Mo06]. Here, we introduce a slightly different way to solve
(4.61)-(4.62), and describe the algorithm in the next subsection. The experiments and
comparison with the results in [Mo06] are presented in Chapter 5. Instead of applying
the penalty method directly to (4.63), we separate the solution domain into two regions:
B, > kS and B, < &S, and solve the LCP only in domain of B, > &S, using penalty

method. More explicitly, we reformulate the problem as follows:

e B.> kS
LU —r.B=0 LU —r.B<0 LU —-r.B>0
U > max(B,,kS) | V | U=max(B,,xS) | V | U>max(B,,«S) |, (4.64)
U<B, U<B, U =B,
e B.<kS
U = kS. (4.65)

Clearly, (4.64) is a LCP and thus we can solve it with the penalty method. We can
enforce (4.65) directly.
Now, we describe the discrete penalty method for solving the LCP (4.64). Define the

lower boundary and the upper boundary as follows:

Gi(S) = max(By, kS),
(4.66)
Gu(S) = B..

Since (4.64) is restricted by two boundary conditions, we need to add two penalty terms
to the original Black-Scholes-like PDE (4.61) to enforce these two conditions. Thus, we

propose the following nonlinear PDE to approximate the solution to the LCP (4.64):

ou 1 0*U oUu
5 = 50252@ + 7"5'% —rU —r.B+ & max(G, — U, 0) — &max(U — G, 0). (4.67)

From the analysis in [FV02], as & — oo and & — oo, we expect the solution to (4.67)
to satisfy G; — ey < U <G, +¢6 for 0 < e €1 and 0 < e < 1. In other worlds, the

solution U approaches the solution to the LCP (4.61) when & — oo and & — oo.
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Analogously to the discretization of (4.47) in the previous section, we introduce
the discrete penalty terms P(U7™)(G, — U’*!) and P,(UtY) (Ut — G,) to replace

& max(G; — U, 0) and & max(U — Gy, 0) in (4.67). They are given by

- Large; if UijJr1 < G,
pUI™) =

0 otherwise,

and

Larges if Ug“ > Gy
0 otherwise,
respectively. Thus, we have
Uit = U = 0ATLUI + (1 — 0)ATLUY — r AT(0B] ™ + (1 - 0)B])
+ R(U7T)(Gri = U™ = Pu(UT) (U] = Glg),
which can be written in matrix form as
[I - 0ATMy + P (U7 + P, (U U7
= [I+(1-0ArMyU? — r AT[B*' + (1 — 0)BY) (4.68)
+ P (UG + Py (UG,
where My is defined in (3.47), and P;(U’*') and P, (U’*!) are diagonal matrices of size

(n+1) x (n+1) with diagonal elements defined by B,(U?*") and P,(U/™), respectively.

That is,

_ Large, if Uf“ < Gy; and 1 =k,
Py(U7H)i = (4.69)

0 otherwise,

and

, Large, if Uf“ > Gy, and ¢ =k,
P, (U )i = (4.70)

0 otherwise,
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respectively. Similar to the case of American options, we set Large; = Larges =~ t—il,
where tol is the tolerance associated with Newton’s iteration used to solve (4.68).
We use Newton’s method to solve (4.68). To this end, define
FU) =1 - 0ATMy |0 — [T+ (1 — O)ATMy|U? + r AT(0BH + (1 — ) BY)
+ P, (U U - G,) = P(UT)(G, - U,
(4.71)
As in subsection 4.2.1, we define the “derivatives” of the penalty terms to be
OP NGy — UM —Large, iU/ <G, i=k,
i N
oU; 0 otherwise,
and
apgir]:(Uij“ — Gui) Larges if Uin > Gy, 1=k,
j+1 -
ou; 0 otherwise.
Thus, the Jacobian of F(U’*!) is
J(UIY) =1- 0ATMy + P, (U7 + P, (U, (4.72)
and Newton’s iteration is
Uj+1,k+1 — Uj—l—l,k _ J_l(Uj+1’k)f(Uj+1’k). (473)
We can rewrite (4.71)-(4.73) in the simpler form
[T — 0ATMy + Py (U7THF) 4 P, (U HLF) U7t LA+
= [T+ (1 - 0)ATMy|U’ — r AT[B*! + (1 - 6) BY) (4.74)

+ P (U7TH)G 4+ Py (UTF)G.
The Algorithm for Pricing CBs Under the TF Model

Based on the Crank-Nicolson method, the coupled equations (4.21) and (4.22) can be

used to approximate the price of a convertible bond. In the following we present an
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algorithm to decouple (4.21) and (4.22) and solve for U’*! at time 7;;1. The psuedocode

is given in Algorithm 4.12.

Given the initial values for U’/ and B, the method proceeds as follows:

1.

Ignoring the constraints, we estimate the value of B! by solving (4.22) using a

direct method. Denote this estimate by BJ*!:

(21 — ATM) Bt = (21 + ATM3) BY. (4.75)

. Ignoring the constraints, we estimate the value of U’*! by solving (4.21) using a

direct method. Denote this estimate by U7+

(21— ATMy) U7+ = (214 ATMy)U? — r AT (BT + BY). (4.76)

. Apply the free boundary conditions explicitly to the estimates U7*! and B/*! using

Algorithm 4.4 to obtain the estimates U7+! and B/*! for U/*! and B/*!, respec-

tively.

Given Ej“, compute U7*! using the penalty method described in the previous

section. Setting ) = %, we have the Crank-Nicolson formula for the region B, > k.S
[2I — ATMy + 2P (U7+HF) + 2P, (U7 THF) U7 thk+

= [2I+ ATMy|U? — r A7T[BI 4+ BI] 4 2P, (U9 G, + 2P, (U759 G,.
(4.77)

Let U7TL* be the k' estimate for U't!, PF = Py(UT1*) and Pk = P, (UIT1F).
Starting with the initial value U7*%0 = U7, the psuedocode for Newton’s iteration

to solve U7 at time 7 is given in Algorithm 4.11. The stopping criterion is

JHLk+1 41,k

max : < tol, 4.78
" max(1, [U7 ) )

or
P/ =P} and PF =Pk (4.79)

If B. < kS, set Uij+1 = KS;.
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5. Adjust B/*! with U7+,
B! = min(B/, U7, (4.80)

Pseudocode for the Crank-Nicolson method is similar to Algorithm 4.5.

Algorithm 4.11: Discrete penalty iteration to solve for U’*! in the TF model

/* Apply the penalty method only to U’*!. */
/* Apply the free boundary constraints to U’F! implicitly. */
[i+i0 — Uj;

compute the penalty matrix P;(U7T19) using (4.69);
compute the penalty matrix P, (U/10) using (4.70);

for k=0,..., Ny, do
calculate U7+HF+1 by solving (4.77) ;

calculate P;(U7FH*+1) using (4.69) ;

calculate P, (U7T14+1) using (4.70) ;
IRt

error = max; — 7
1 max(1,|Uik+l’]+l|) ’

if [error < tol] or [Pk*! == P and P;*' == P}] then
break;

end

end

i+1 — [7i+Lk+1.
Ui+l = yi+Lk+l,

4.2.4 Implementation of the Discrete Penalty Method for the

AFV Model

Our approach to computing the price U of a CB using the AFV model is similar to
that described above for the TF model, but we solve for the two components B and
C in the AFV model instead of solving for U and B in the TF model. To begin, we

compute B*! and C/*! from (4.32) and (4.33) using the direct method, and then set
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Algorithm 4.12: Discrete penalty iteration for the TF model
G, = max(B,, kS); G, = Bg;

calculate B/*! using (4.75) ;
calculate U/+! using (4.76);

for i =0,...,ndo

calculate U/*! and B/ by applying constraints explicitly to 07! and BT

using Algorithm 4.4;

end

/* The additional step to calculate U’'! using the penalty method */
compute U7t by calling Algorithm 4.11 given Bi*!;

forv=0,...,ndo

if B, < kS; then
U-j+1 = K,SZ"

end

end

Bt = min(Bi+!, Uitl);
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Uitl = Bi+l 4 O+, Next, we impose the free boundary conditions explicitly on U7+,
B’*! and C7*!. We could now proceed to the next step, but instead we compute U7+!
by the penalty method to enhance the convergence. After computing U’/*! with the
penalty method, we adjust B/*! and C’*!, then proceed the next time step. Clearly,
this procedure to compute U has similar problems as those described above for the TF
model. As a result, quadratic convergence may not be attained.

In the following, we describe how to compute U using the penalty method, and then

describe how to solve the whole problem.

The Penalty Method for Computing U

Under the AFV model, the PDE governing the convertible bond price U is

oU 1, ,0%U oU
5y =37 9 ggqe T (r+m)Soe — (r+p)U + pmax(kS(1 — 1), RB) (4.81)

with the free boundary conditions

U > max(B,, kS), (482)
4.82

U < max(B,, kS).

As we did for the TF model, we separate the solution domain into two regions:
B, > kS and B, < kS. Then we solve the LCP (2.35) for U using the penalty method
if B. > kS and enforce the Dirichlet boundary condition (2.36) on U directly otherwise.

Following the same approach as discussed for the TF model, we apply the penalty

method to the LCP (2.35) only, giving rise to the nonlinear PDE

U 1,.,0% au
5 =3 S a5t (r +p77)5g — (r +p)U + pmax(kS(1 — n), RB)
+ & max(G; — U,0) — & max(U — Gy, 0), (4.83)

where &; and & are positive penalty parameters, and G; and G, are defined in (4.66).

We discretize equation (4.83) in our usual manner and write the resulting equation in
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matrix form as
[T — OATMy + Py (U7 + P, (U TH]U7 T
= [+ (1 -0)ATMyU? + Py(UT)G, + P, (UG, (4.84)
+ pAr[fmax (kS(1 — n), RB™) + (1 — §) max (kS(1 — n), RB?)],

where My is defined in (3.53), and P, and P, are defined in (4.69) and (4.70), respectively.

We solve (4.84) using Newton’s method. Newton’s iteration at each time step is
[I— 0ATMy + Py(U7THF) + P, (U7 HHR) 7 1R+
= [I+ (1 - 0)ATMIU? + P (U9 G, + P, (UG, (4.85)

+ pAr[f max (kS(1 — n), RB’™) + (1 — §) max (kS(1 — n), RB’)].
The pseudocode for using Newton’s method to solve (4.85) for U’T! is the similar to
Algorithm 4.11. The only difference is that we compute U715+ using (4.85) instead of
(4.77).
The Algorithm for Pricing CBs Under the AFV Model

Unlike the TF model, in the AFV model, we solve for the two components B and C
instead of U, and then compute U using (4.84) based on the estimated value of B. Given
the initial values of B, CV and U7, the descriptions of the algorithm for solving for U7+!

at time 7,4, under the AFV model is as follows.

1. Ignoring the constraints, we compute B/*!, an estimate for B/*!:
(21 — ATM3) B/t = (21 + ATM3) B’. (4.86)
2. Ignoring the constraints, we compute C/*!, an estimate for CJ1:

(21 — ATM()Cot! = (21 + ATM¢) C?

—i—pAT(max (kS(1—mn) — RB™*',0) + max (kS(1 —n) — RB, 0)) (4.87)
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3. Apply the free boundary conditions explicitly to the estimates B+ and C7*! using
Algorithm 4.7 to obtain the estimates Bi*+! and C/*! for Bi+! and C9+!, respec-

tively.

4. Compute U9+! using the penalty method (4.84), given Bi+!. The psuedocode for
Newton’s iteration to solve (4.84) is given in Algorithm 4.11, and the psuedocode

for computing U7*! at time 7 is given in Algorithm 4.13.
5. Adjust B’*! and C’*! based on U’*!,
B! = min(B/*, U, (4.88)

Citl = ittt — pitt, (4.89)

The pseudocode for the Crank-Nicolson method is similar to Algorithm 4.8.
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Algorithm 4.13: Discrete penalty iteration for the AFV model
G = max(B,, kS); Gy, = Bg;

calculate B7*! using (4.86);
calculate C/*! using (4.87);

for i =0,...,ndo

apply the constraints to B/*" and C/*! to obtain Ef 1 and @J 1 using

Algorithm 4.7;
end
/* The additional step to calculate U’'! using the penalty method */
compute U/*! by calling Algorithm 4.11 given B/*;
for:=0,...,ndo

if B, < kS; then

Uij“ = KkS;;

end
end
Uitl = it
Bitl = min(éj“, Uithy;

i+1 _ pri+l j+1.
Citl = yitl — Bitl,




Chapter 5

Observations and Improvements

The numerical experiments performed in this chapter explore the effectiveness of the
Crank-Nicolson method used to solve the parabolic PDEs and associated boundary con-
ditions that arise in the TF and AFV models. Because the PDEs in both models are
Black-Scholes-like equations, the analysis of the difficulties associated with pricing con-
vertible bonds is similar to that for pricing European and American options, such as
the far-field linear boundary conditions, discontinuities in the payoff functions, and free
boundary conditions. Thus, even though we are primarily interested in pricing convert-
ible bonds, we start by testing our methods on much simpler European and American

call or put options.

After studying the effectiveness of our numerical methods for the European and Amer-
ican options, we recommend some techniques to enhance the stability and convergence
of the Crank-Nicolson method, and then apply these techniques to convertible bonds to

achieve more stable and accurate solutions.

In the following sections, unless we explicitly specify otherwise, we use the test pa-
rameter settings shown in Tables 5.1, 5.2 and 5.3. Those parameter settings are chosen

to allow us to conveniently compare our experimental results with those that appear in

other papers, such as in [TF98], [FV02], [AFV03], [Li05] and [Mo06]. Table 5.1 lists
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the parameters we used for pricing a European call option and an American put option.
Table 5.2 lists the parameters we used for pricing a convertible bond using the TF model,
and Table 5.3 for pricing a convertible bond using the AFV model. In Chapter 2, we
discussed the relationship between the TF and AFV models. We noted that these two
models are similar if » = 0 and r. = p(1 — R). We use this choice of parameters in
our experiments to exploit this relationship, thereby making it easier to compare the
numerical results for the two models.

In addition to testing our numerical methods for pricing derivatives, we also need
to test the effectiveness of our schemes for computing the Delta and Gamma associated
with the derivatives because an accurate Delta and Gamma are needed in practice for

important applications such as hedging. Delta and Gamma are defined by

Delta = g—‘S/’ (5.1)
2
Gamma = ZTZ, (5.2)

and approximated using the formulas (3.6) and (3.5), respectively. However, in some
situations, even though the value of derivatives appears smooth, oscillations appear in
Delta (particularly near the strike price) and are magnified in Gamma when we use
simple numerical methods to solve pricing problems. Thus, testing Delta and Gamma is
necessary.

In the following, we define some conventions used in connection with our experimental
results. “Value” is the price of a derivative (a European option, an American option,
ora CB) at t =0 and S = 100; “Grid Size” is the number of gridpoints in the spatial
dimension; “Time-Steps” is the number of steps in the time dimension; “No. of Iter-
ations” is the number of (P)SOR or Newton’s iterations for each time-step; “Max” is
the maximum number of (P)SOR or Newton’s iterations used over all time-steps; “Min”
is the minimum number of (P)SOR or Newton’s iterations; and “Avg.” is the average

number of (P)SOR or Newton’s iterations over all time-steps. Moreover, the average
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value of w over all time-steps for a certain “Grid Size” , as computed by the adaptive
technique described in [WHD95] is denoted by “Avg w ” . We double the “Grid Size”
and “Time-Steps” at each refinement.

For European options, we can use the analytical solution to calculate errors and
convergence rates for the numerical methods, but, for American options and convertible
bonds, we do not have such an analytical solution. Thus, we use the difference between
the numerical solutions computed with different grid sizes to approximate the convergence
rate of the numerical solution. However, since we are more interested in calculating
the price when at-the-money, we study the properties of the solutions for that single
point. Thus, we use the difference between the numerical solutions for the exercise price
computed with different grid sizes to approximate its convergence rate. More specifically,
let V(1) denote the numerical solution for the exercise price S obtained with grid size 2kn,
k =0,...,1 — 1. For example, V(3) denote the numerical solution for an American put

option at S = 100 computed with £k = 3 and n = 8 (i.e., grid size is 64). We calculate

(Difference), = Vigr1)y — Viey k=0,...,1—1, (5.3)
. (Difference) . 1

= =0,...,1—2 A4

(Ratio), (Difference); ’ k=0,...,1=2, (54)

and denote these quantities by “Diff.” and “Ratio”, respectively.
We also calculate the matrix condition number associated with the pricing problems.

The condition number of a matrix is defined by
Condition number = ||A[| - [|A7Y]|. (5.5)

It measures the sensitivity of the solution of the linear system Ax = b with respect to
changes in the vector b and in the matrix A. A problem with a small condition number
(close to 1) is said to be well-conditioned. That is, small changes in b or A produce small
changes in x. On the other hand, a problem with a large condition number is said to be
ill-conditioned. That is, small changes in b or A may produce large changes in x. Thus,

a numerical solution to such a system cannot be trusted. In the extreme situation, when
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the condition number approaches infinity, the matrix is almost singular and the solution

of the linear system is prone to large numerical errors. We denote the condition number

by “Cond. No.”.

Table 5.1: Model parameters for pricing the European/American options

Parameter Value
Time to maturity | 0.25 years
Interest rate r | 10% or 0.10
Strike price £ 100
Volatility 80% or 0.8




CHAPTER 5. (OBSERVATIONS AND IMPROVEMENTS

Table 5.2: TF model parameters for pricing the convertible bond

Parameter

Value

Time to maturity
Conversion
Conversion ratio k
Bond face value F
Clean call price B,
Clean put price By,
Coupon payments K
Coupon dates
Risk-free interest rate r
Credit risk 7,

Volatility o

5 years

0 to 5 years into 1 share
1.0

100

110 from year 3 to year 5
105 at year 3 (during the third year)
4.0

0.5,1.0,1.5,....5.0

5% or 0.05

2% or 0.02

20% or 0.20
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Table 5.3: AFV model parameters for pricing the convertible bond

Parameter

Value

Time to maturity
Conversion
Conversion ratio k
Bond face value F
Clean call price B,
Clean put price By,
Coupon payments K
Coupon dates
Risk-free interest rate r
Hazard rate p
Recovery factor R

Stock price jump factor n

Volatility o

5 years

0 to 5 years into 1 share
1.0

100

110 from year 3 to year 5
105 at year 3 (during the third year)
4.0

0.5,1.0,1.5,...,5.0

5% or 0.05

2% or 0.02

0.0

0.0

20% or 0.20
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5.1 Observations

5.1.1 M-matrix

Consider a European call option or an American put option. The PDE (2.2) governing
the option price is a convection-diffusion equation. The Crank-Nicolson method for PDE

(2.2) written in matrix formula is given by

(21 — ATM) V7t = (2T + ATM) V7, (5.6)
where
(—r 0 0 0 0 \
ap —(r+a+p1) B 0 0
M — 0 e%) —(r+ax+pB2) P 0
0 0 HE On—1 _(T + o1 + ﬁn—l) Bn—l
\ 0 0 . o V2 " )
(5.7)
Here,
0'251-2 rhlSi
o; = h,_lDi - h_lDi’ (58)
O'QS,L-2 T'h_lsi
Bi = D, + WD, (5.9)

where D; = (h;_1+h;1). As usual, h; 1 = S;— S;_1 and h;; = S;11 — S;, and we denote
them as h; and h_y, respectively, for the node ¢ for convenience. At the rightmost node
n, we assume that h_; = h_, = h. If we use the second-order backward difference scheme
for node n, then

38, S, 1S,
"= 2h T, Y2 = h ) Y3 = 2h

(5.10)

Now, we discuss some properties of the matrix M. If the convection term g—g domi-

nates the diffusion term ‘?;T‘; in (2.2), the use of the central difference approximation for
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the convection term g—g may lead to negative off-diagonal elements «; in M, thus resulting
in positive off-diagonal elements in A = 2I— A7M. As discussed in section 3.4.3, if A has
positive off-diagonal elements, we cannot guarantee that it is an M-matrix. Therefore,
we replace the central difference approximation (3.6) for g—‘é by the forward difference ap-
proximation (3.7). This ensures the off-diagonal elements in A are non-positive , whence

rows 1 through n — 1 in A are strictly diagonally dominant (Row 0 is strictly diagonally

dominated). Thus, we have

o?S?

% =3 (5.11)
oS rS;
= 2 a3 5.12

This modification may result in first-order convergence overall, but, if a few nodes only
are modified and they are far away from the region of interest, the rate of convergence
may still be approximately second-order. Alternatively, we may require that the spatial

stepsize satisfies
o 2 Sz

T

hiy < i=1,2,..., (5.13)

which ensures that «; > 0. For the constant spatial step sizes, if node 1 satisfies (5.13),
then nodes 2,3, ... satisfy it too. Therefore, we need only check the inequality "72 >1,
since Sp = 0 and S; = hy;. For the problems associated with Table 5.1 for both the
European and American options, r = 0.1 and ¢ = 0.8, whence "T—2 > 1 is ensured. Thus,
rows 1 through n — 1 of the matrix A are diagonally dominant. If r = 0.05 and o = 0.2,
as in Tables 5.2 and 5.3, "72 > 1 is not satisfied at node 1, but (5.13) is satisfied for
nodes n = 2,3, .... In this situation, we use the forward difference scheme to replace the
central difference scheme for the convection term at the node 1, as we discussed above.
So far we have discussed how to ensure rows 1 through n—1 are diagonally dominant.
Now, we consider the nth row. Notice that in (5.10), v < 0, y3 > 0, and S,, > 0 and thus

we normally have that |y | = |=r—(7y2+73)| < |72|+]|73|. Hence, we cannot guarantee the

last row in A is diagonally dominant. Therefore, A may not be an M-matrix when we use
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the linear boundary condition for S = S,,,,. This may cause convergence and stability
problems, but our numerical experiments show that this is not the case in practice. It can
be seen from Table 5.4 for the European call option and Table 5.5 for the American put
option that our numerical method for the price of the option at S = E = 100 is stable
and approximately second-order. Moreover, Figure 5.1 shows that the computed value,
Delta, and Gamma are well behaved for the range of S values of interest. This excellent
performance is obtained despite the nth row of A not being diagonally dominant. We
believe this is because the right end is far away from the region of interest (.S, = 400
vS. Sinterst = 100) and thus the potential loss of accuracy at the right end does not have
a significant effect on the region of interest. Therefore, we believe we can safely use this

linear boundary approximation to solve Black-Scholes-like problems.

Table 5.4: Numerical results for a European call option at S = 100 using the SOR
method (1 < w < 2) to solve the associated linear equations. The numerical method
uses the linear boundary condition (5.10), tol = 1.0e7, and S,,,, = 400. The analytical
solution is 16.92091465.

Grid | Time- | Value at Error Error | Avg. No. of Iterations
Size | Steps S =100 Ratio | w | Min. | Max. | Avg.
40 40 16.80412510 | 1.173e-001 1.13 16 20 16.425

80 80 16.89195291 | 2.942e-002 | 3.988 | 1.23 | 22 34 | 23.038
160 160 | 16.91368848 | 7.341e-003 | 4.008 | 1.36 | 29 99 | 30.975
320 320 | 16.91910899 | 1.834e-003 | 4.002 | 1.49 | 40 102 | 42.525
640 640 | 16.92046328 | 4.586e-004 | 4.000 | 1.60 | 52 174 | 55.080
1280 | 1280 | 16.92080178 | 1.147e-004 | 3.999 | 1.70 | 69 288 | 72.464
2560 | 2560 | 16.92088633 | 2.873e-005 | 3.992 | 1.77 | 88 451 | 91.925

We apply techniques similar to those discussed above to the TF and AFV models,
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Table 5.5: Numerical results for an American put option at S = 100 using the PSOR
method (1 < w < 2) to solve the nonlinear equations associated with the free-boundary
condition. The numerical method uses linear boundary conditions (5.10), tol = 1.0e™’

and Sy.; = 400. Compare our results with the solution 14.67883348 in [Li05] and the

solution 14.67882 in [FV02].

Grid | Time Value at Difference | Ratio | Avg. No. of Tterations
Size | Steps S =100 w | Min. | Max. | Avg.
40 40 | 14.54681346 1.12 6 11 7.875
80 80 | 14.64461606 | 9.780e-002 1.24 6 13 9.088
160 | 160 | 14.66999545 | 2.538e-002 | 3.854 | 1.37 7 16 | 10.656
320 | 320 | 14.67656676 | 6.571e-003 | 3.862 | 1.51 8 19 | 12.400
640 | 640 | 14.67826506 | 1.698e-003 | 3.869 | 1.64 9 27 | 14.313
1280 | 1280 | 14.67870874 | 4.437e-004 | 3.828 | 1.74 | 11 45 | 17.698
2560 | 2560 | 14.67881773 | 1.090e-004 | 4.071 | 1.78 | 12 79 | 23.569
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Value
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Figure 5.1: The value V(S,0) and the associated Delta and Gamma functions for an

American put option at time ¢ = 0 using PSOR with n = 1280 and m = 1280.
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since each of the PDEs in each of these models is similar to the PDE (2.2). Under the
TF model, the setting of M, «;, 8; and 7, 2 and ~3 for U are the same as those defined
in (5.7)-(5.10). The constants are also the same for B, except that 7, 72 and ~3 for B

are
_ 3rS,

2rS, _ TS5y
"= oh

n 73—ﬁ-

—(r+re), 12=- (5.14)

For the parameters given in Table 5.2, node 1 only in the discretization suffers from

convection-dominance. As discussed above, we use a forward difference for this node

only to maintain diagonal dominance. In the later chapters, we see that applying the

lower-order approximation at node 1 only does not affect the convergence rate for the

the region of interest if the left end is far away from it. We still obtain approximately

second-order convergence as expected. (See Tables 5.9 and 5.10.) As for European and
3rSy

American options, |vi| = [*5> — (7 +1.)| < |72| + |73 at the right end.

Under the AFV model, the parameters «;, 3; for each of U, B and C are

_ 0’S;  (r+pn)hsS;

= . , 1
R ) h D, (5.15)
o28?  (r+pn)h_1S;
. — L ) 1
b= D T D, (5.16)
The v, 72 and 3 for U and C' are
_ 3(r +pn)Sn __2(r+pn)Sn _ (r+pn)Sy
,Yl — 2h ('f' +p)7 72 — h ) /Y3 — 2h, , (517)
For B, they are
3(r +pn)S, 2(r +pn)S, r+pn)Sy,
o= P 1Ry, gy = 2P RIS

However, as noted in Table 5.3, in our experiments we use n = 0 and R = 0. Thus, «;, 5;,
~v9 and 3 are the same as those used for European and American options. Similarly, node
1 suffers from convection-dominance. We apply the lower-order approximation at this
node only. As for the other problems discussed above, |v1| = |32 — (r + p)| < | 72| + |73

at the right end.
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5.1.2 Numerical Results for Linear Boundary Conditions

Usually, we apply Dirichlet boundary conditions at the two ends of [0, Sy..] When solving
a Black-Scholes-like PDE. However, the Dirichlet boundary conditions are not always
easy to derive from financial arguments for complicated derivatives, such as Convertible
Bonds. In these more complicated cases, we recommend using linear boundary conditions
instead. In Chapter 3, we discussed imposing the conditions (3.20) at the left end S = 0
and (3.21) at the right end S = 5,4, to approximate the two boundary conditions. These
two boundary conditions (3.20) and (3.21) are derived implicitly from the Black-Scholes
PDE itself, rather than from financial arguments directly. The right boundary condition
is based on the assumption that V' is approximately linear in S as S — oo.

Now, we want to test how well these linear boundary conditions approximate the real
boundary conditions. To keep things simple, we consider a European call option with the
parameters shown in Table 5.1, since an analytic solution for the European call option
is available (see (2.8)) to check the accuracy of the numerical solution. We also compare
numerical solutions based on the Dirichlet boundary conditions, (2.5) and (2.6), with
those based on the linear boundary conditions, (3.20) and (3.21). The numerical results
are shown in Table 5.6.

We also test linear boundary conditions for American put options. Even though we
do not have an analytic solution for the price of an American put option, we can compare
our numerical solutions with linear boundary conditions to those based on the Dirichlet
boundary conditions, and to the solutions reported in [FV02] and [Li05]. The numerical
results are shown in Table 5.7.

From Table 5.6 and Table 5.7, we can see that the numerical values obtained using
linear boundary conditions are very close to those obtained using the Dirichlet boundary
conditions. For the European call option, the difference is 1.1 x 1077, which is of the

-7

same magnitude as tol = 10 The difference between the numerical and analytical

solution is of the magnitude of 10~® when n = m = 2560. For the American put option,
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the difference between the solution using the linear boundary conditions and Dirichlet
boundary conditions is about 107°. Both are very close to the solutions reported in
[Li05] that use Dirichlet boundary conditions. We also can see that our solutions using
the PSOR method and penalty method are close to the ones in [FV02] that use linear
boundary conditions. This supports our belief that our numerical methods are accurate.
Thus, the linear boundary conditions (3.20) and (3.21) are appropriate approximations
to the real boundary conditions. This suggests that we can follow the same approach to
approximate the boundary conditions at the ends S =0 and S = S,,,,, for a convertible
bond, as long as its payoff function is linear in S as S — oo and the value of the

convertible bond is driven by a well-behaved movement of the underlying, which is true

in the TF and AFV models.

Table 5.6: Comparison of the numerical results for a European call option at S = 100
based on the linear boundary conditions (5.10) with those based on Dirichlet boundary
conditions. In both cases, we used tol = 1.0e "7 and S, = 400. The analytical solution

at S =100 is given.

Grid Size| Time-Steps Value at S = 100
(n) (m) Linear Bound. Cond.| Dirichlet Bound. Cond.| Analytical
40 40 16.80412510 16.80412510
80 80 16.89195291 16.89195291
160 160 16.91368848 16.91368849
320 320 16.91910899 16.91910899 16.92091465
640 640 16.92046328 16.92046329
1280 1280 16.92080178 16.92080181
2560 2560 16.92088633 16.92088644
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Table 5.7: Comparison of the numerical results for an American put option at S = 100

based on the linear boundary conditions (5.10) with those based on Dirichlet boundary

conditions. In both cases, we used S, = 400 and tol = 1.0e 7.

14.67883348 from [Li05] and 14.67882 from [FV02].

The solution is

Grid Size | Time-Steps Value at S = 100

(n) (m) Linear Boundary Cond. | Dirichlet Boundary
PSOR Penalty Condition (PSOR)

40 40 14.54681346 | 14.54681347 14.54681346

80 80 14.64461606 | 14.64461610 14.64461610

160 160 14.66999545 | 14.66999558 14.66999556

320 320 14.67656676 | 14.67656709 14.67656705

640 640 14.67826506 | 14.67826609 14.67826597

1280 1280 14.67870874 | 14.67871226 14.67871199

2560 2560 14.67881773 | 14.67883127 14.67883067
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5.1.3 Far-Field Effects

In Chapter 3, we discuss the far-field effects and suggest the criterion (3.19) for selecting
S = Siae- Here, we want to test the effects of different values of S = S,,,, on numerical
solutions. See Table 5.8 for the American put option, Table 5.9 for the CB using the TF
model and Table 5.10 using the AFV model.

For the American put option, we use model parameters given in Table 5.1. Thus,

according to (3.19) with ¢ =4, u = 3 and tol = 10e™7,

Simas = max(¢X, XeV2e Tl xo(r=)T+ouVT)

= max(400, 447, 314).

We test S;q.:=200, 320, 400, and 500 on the American put option. We choose these
numbers to ensure the point of interest S = 100 is on the grid. The experimental results
are given in Table 5.8.

For the CB, we use the parameters given in Table 5.2 for the TF model and Table
5.3 for the AFV model. Choosing ¢ = 4, = 3 and tol = 10e” 7, we calculate

Smam = maX(¢X’ Xe 202T|1n(t0l)| , Xe(T—é)T—Fa'u\/T)

= max(400, 533, 444).

We choose S,,,.,=300, 400, 500, and 600 for our tests. The results are shown in Tables
5.9 and 5.10.

From Table 5.8, we can see that as S,,,; increases, the convergence rate tends to
stabilize and approaches a higher value, but after S,,,, reaches a certain level, the quality
of the solution tends to decrease as S,,,, increases further. When S,,,, = 200, the
convergence ratio is low compared with other values of S,,,, and it decreases as the grid
is refined. When S,,,, = 320, the convergence ratio is around 3.8 and it is more stable
than when S,,.; = 200. The solution at n = 1280 (14.67876091) is close to the value
observed by other authors, 14.67883348 in [Li05] and 14.67882 in [FV02]. For S,,., = 400,
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the convergence ratio is about 3.85 as the grid is refined. The solution is also close to
that reported by other authors. However, for S,,,, = 500, because the grid becomes
coarser compared with smaller S,,.., the numerical solutions tend to have bigger errors.
Thus, Spe: = 400 is a good choice for this American put option. This suggests that the
formula (3.19) gives an appropriate value for S,,,, in this case.

Consider the TF and AFV models for pricing a CB. The model settings are shown in
Tables 5.2 and 5.3, respectively. We test S, = 300, 400, 500, and 600 for the simple
CB, i.e., no coupon payments and no call or put features. See Table 5.9 for the TF model.
When S,,..= 400 or 500, the convergence tends to stable and consistent, but as S,.z
becomes bigger, the errors increase and the convergence ratio oscillates. (See the case
of n = 1280 when S,,,,.) This is due to the same reason we discussed above. Similarly,
the same phenomena appear in the AFV model, which are demonstrated in Table 5.10.
Therefore, we choose S,,.; = 400 to be the appropriate far-field. This value agrees with

the criterion we discussed earlier.
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Table 5.8: The numerical results for an American put option at S = 100 using the

discrete penalty method with different far-field values S,,.. In all cases, tol = 1.0e~".

S = Spas | Grid Size | Time-Steps | Value at Difference | Ratio
(n) (m) S =100
40 40 14.64160513
80 80 14.66703000 | 2.542¢-002
200 160 160 14.67383615 | 6.806e-003 | 3.74
320 320 14.67565057 | 1.814e-003 | 3.75
640 640 14.67614240 | 4.918e-004 | 3.69
1280 1280 14.67628527 | 1.429e-004 | 3.44
40 40 14.74429200
80 80 14.65668017 | 8.761e-002
320 160 160 14.67305465 | 1.637e-002 | 5.35
320 320 14.67734077 | 4.286e-003 | 3.82
640 640 14.67846148 | 1.121e-003 | 3.82
1280 1280 14.67876091 | 2.994e-004 | 3.74
40 40 14.54681347
80 80 14.64461610 | 9.780e-002
400 160 160 14.66999558 | 2.538e-002 | 3.85
320 320 14.67656709 | 6.572e-003 | 3.86
640 640 14.67826609 | 1.699e-003 | 3.87
1280 1280 14.67871226 | 4.462¢-004 | 3.81
40 40 14.47318686
80 80 14.62635659 | 1.532e-001
500 160 160 14.66529207 | 3.894e-002 | 3.93
320 320 14.67537425 | 1.008e-002 | 3.86
640 640 14.67796435 | 2.590e-003 | 3.89
1280 1280 14.67863609 | 6.717e-004 | 3.86
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Table 5.9: The numerical results for the price of a simple CB (without coupon payments
and without any call or put features) under the TF model at S = 100 using different

far-field values S,q;- The discrete penalty method with tol = 1.0e™7 was used in the

computation.
S = Spae | Grid Size | Time-Steps Value at Difference | Ratio
(n) (m) S =100
40 40 104.3101724
80 80 104.2927398 | -1.743e-002
300 160 160 104.2879946 | -4.745e-003 | 3.674
320 320 104.2868619 | -1.133e-003 | 4.190
640 640 104.2865719 | -2.901e-004 | 3.905
1280 1280 104.2865002 | -7.166e-005 | 4.048
40 40 104.3269714
80 80 104.2970855 | -2.989e-002
160 160 104.2892061 | -7.879¢e-003 | 3.793
400 320 320 104.2871691 | -2.037e-003 | 3.868
640 640 104.2866504 | -5.187e-004 | 3.927
1280 1280 104.2865194 | -1.309e-004 | 3.962
40 40 104.3508349
80 80 104.3032674 | -4.757e-002
500 160 160 104.2907987 | -1.247e-002 | 3.815
320 320 104.2875744 | -3.224e-003 | 3.867
640 640 104.2867527 | -8.217e-004 | 3.924
1280 1280 104.2865451 | -2.075e-004 | 3.959
40 40 104.3944690
80 80 104.3118939 | -8.258e-002
600 160 160 104.2930497 | -1.884e-002 | 4.382
320 320 104.2880888 | -4.961e-003 | 3.799
640 640 104.2868827 | -1.206e-003 | 4.113
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Table 5.10: The numerical results for the price of a simple CB (without coupon payments
and without any call or put features) under the AFV model at S = 100 using different

far-field values S,q;- The discrete penalty method with tol = 1.0e™7 was used in the

computation.
S = Spae | Grid Size | Time-Steps Value at Difference | Ratio
(n) (m) S =100
40 40 106.2979836
80 80 106.3369147 | 3.893e-002
300 160 160 106.3474130 | 1.050e-002 | 3.708
320 320 106.3499245 | 2.512e-003 | 4.180
640 640 106.3505667 | 6.422e-004 | 3.911
1280 1280 106.3507254 | 1.587e-004 | 4.047
40 40 106.2539403
80 80 106.3267315 | 7.279e-002
400 160 160 106.3447778 | 1.805e-002 | 4.034
320 320 106.3492805 | 4.503e-003 | 4.008
640 640 106.3504056 | 1.125e-003 | 4.002
1280 1280 106.3506869 | 2.813e-004 | 4.000
40 40 106.1991674
80 80 106.3132778 | 1.141e-001
500 160 160 106.3414286 | 2.815e-002 | 4.054
320 320 106.3484440 | 7.015e-003 | 4.013
640 640 106.3501966 | 1.753e-003 | 4.003
1280 1280 106.3506346 | 4.381e-004 | 4.001
40 40 106.1242338
80 80 106.2979093 | 1.737e-001
600 160 160 106.3371849 | 3.928e-002 | 4.422
320 320 106.3474410 | 1.026e-002 | 3.829
640 640 106.3499386 | 2.498e-003 | 4.107
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5.1.4 Effects of Nonsmooth Payoff Functions

Payoff functions for options and CBs are often nonsmooth. For example, for European
and American options, the payoff function is a hockey-stick function, such as (3.41) for
a European call option and (3.45) for an American put option. In the case of convertible
bonds under the TF model, the payoff function (3.48) for U is a hockey-stick function,
but that for B is a step function, (3.51). For convertible bonds under the AFV model, the
payoff functions for both U and C are hockey-stick functions, (3.54) and (3.56), and the
payoff function for B is a continuous straight line, (3.59). In this subsection and following
subsections, we define a critical point as a kink point for the hockey-stick function or a
jump point for the step function.

Now, we want to test the effects of these nonsmooth payoff functions on numerical
solutions. Before we study the effects of the payoff functions under the TF and AFV
models, we consider the simpler European call option.

In order to clearly see the effects of nonsmooth payoff functions on numerical solutions,
we test a particular European call option to exaggerate the effect: r = 0.05, o = 0.25,
E =1and T = 2. In this experiment, we put the kink in the payoff function at a
grid point to avoid interpolation, and keep the ratio A = % = 10 fixed. Also, "72 >
1 is used to ensure that rows 1 through n — 1 of the associated solution matrix are
diagonally dominant. Figure 5.2 shows the value of V(5,0) and the associated Delta
and Gamma at time ¢ = 0 obtained on a uniform grid 0 < S < S,,., = 4 using the
parameters above. Figure 5.2(A) shows the results from the Crank-Nicolson method
without any enhancements to handle the nonsmooth payoff function. We can observe
that the Delta and Gamma have sharp spikes around the region of interest, S = 1,
which is the location of the discontinuity in the first derivative of the payoff function.
Table 5.11 shows the convergence ratios for this numerical method are close to 2, whence
the rate of convergence is approximately linear. However, if we enhance our simple

Crank-Nicolson numerical method with Rannacher smoothing [Ran84], we can restore
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the quadratic convergence rate and obtain much smoother Delta and Gamma functions.
See Table 5.11 and Figure 5.2(B). A more detailed discussion on Rannacher smoothing

is in the next section.

Table 5.11: Comparison of the numerical results for a European call option at S = 1 with

Rannacher smoothing and without. We ensure that the kink point of the payoff function

is at a grid point. S =4, A =

A7 — 10, and tol = 1.0e7.

h

Gride | Time- No-Rannacher Smoothing Rannacher Smoothing
Size | Steps Value Diff. Ratio Value Diff. Ratio

80 4 0.18186118 0.18393727

160 8 0.18414572 | 2.285e-003 0.18583911 | 1.902e-003

320 16 | 0.18530699 | 1.161e-003 | 1.967 | 0.18631039 | 4.713e-004 | 4.035
640 32 | 0.18588911 | 5.821e-004 | 1.995 | 0.18643016 | 1.198e-004 | 3.935
1280 64 | 0.18618006 | 2.910e-004 | 2.001 | 0.18646053 | 3.037e-005 | 3.944
2560 | 128 | 0.18632545 | 1.454e-004 | 2.001 | 0.18646819 | 7.659e-006 | 3.965

Now we consider the initial conditions under the TF and AFV models. The initial
condition for the TF model is a hockey-stick function for U and a step function for B.
We have discussed the effects of a hockey-stick function above. Now we test the effects
of a step function on the numerical solution of the TF model using the Crank-Nicolson
method. If we place the point of discontinuity of the step function and the kink in
the hockey-stick function on the grid, only linear convergence is observed in both U
and B even though we use the Crank-Nicolson method with Rannacher smoothing. See
Table 5.12. Notice that with Rannacher smoothing, the convergence rate is enhanced
and the value of B is more accurate than the corresponding value of B in the case

without Rannacher smoothing, the associated Delta and Gamma are much smoother

around the region of discontinuity (i.e., S = 100), shown in Figure 5.3. However, the



CHAPTER 5. (OBSERVATIONS AND IMPROVEMENTS 104

Value Value
0.5 T T T T 0.5 T

0.9 1 11 12 13

oo
o]

Delta

50

Gamma
Gamma

-50 . A . . . . . . .
0.8 0.9 1 11 1.2 13 0.8 0.9 1 11 12 13
S s

(A) non-Rannacher Smoothing (n=1280 m=64) (B) Rannacher Smoothing (n=1280 m=64)

Figure 5.2: The value V(S,0) and the associated Delta and Gamma functions for a
European Call option with a nonsmooth hockey-stick payoff function. The parameters
are 7 = 0.05, 0 = 0.25, E = 1, and T=2. (A) shows the numerical results without

Rannacher smoothing; (B) is with Rannacher smoothing.
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numerical solutions for both U and B exhibit a linear rate of convergence, even though we
use Rannacher smoothing. (Recall that the convergence is restored to quadratic when
applying Rannacher smoothing for a hockey-stick initial condition in the case of the
European call option.) We believe this is because the initial condition for B is a step
function. The convergence rate for B is approximately linear whether we use Rannacher
smoothing or not. We believe the convergence rate of U is affected by that of B, since
B is coupled to U in the PDE (4.61). Thus, the convergence rate for U is linear too. We
discuss how to remedy this convergence degradation in section 5.2.2.

For the AFV model, the Crank-Nicolson method without any enhancement to handle
nonsmooth initial functions achieves a linear rate of convergence for U and C, even though
it attains a second-order rate of convergence for B. See Table 5.13 and Figure 5.4. We
believe this is because the initial functions for U and C' are hockey-stick functions and
hence only linear convergence is obtained for reasons similar to those discussed above for
the European and American options. On the other hand, we believe a second-order rate
of convergence is attained for B because its initial function is smooth and the coupling
from U and C to B is weak. (The coupling is through the boundary conditions only, not
through the PDE (2.32) for B.) However, unlike the TF model, a quadratic convergence
rate is achieved in the AFV mode when we apply Rannacher smoothing to the Crank-
Nicolson method, because the initial condition for B is smooth and the initial conditions
for U and C are hockey-stick functions. With Rannacher smoothing, U, B and C all
achieve a quadratic convergence rate. Moreover, with Rannacher smoothing, Figure
5.4(B) shows that the Delta and Gamma functions associated with U are smooth around

the region of interest.



CHAPTER 5. (OBSERVATIONS AND IMPROVEMENTS 106

Table 5.12: Comparison of the numerical results for the Crank-Nicolson method with
Rannacher smoothing and without for a simple CB (without coupon payments and with-
out any call/put features) at S = 100 under the TF model. We put the critical points of

the initial functions at a grid point, and keep A = 0.25 constant. Here, tol = 1.0e™".

Grid | Time- No-Rannacher Smoothing Rannacher Smoothing
Size | Steps U U
(n) (m) Value Diff. Ratio Value Diff. Ratio
80 4 103.4072213 103.9181577
160 8 103.8394829 | 4.323e-001 104.1562642 | 2.381e-001
320 16 104.0615871 | 2.221e-001 | 1.946 | 104.2341716 | 7.791e-002 | 3.056
640 32 104.1737489 | 1.122e-001 | 1.980 | 104.2635891 | 2.942e-002 | 2.648
1280 | 64 | 104.2300502 | 5.630e-002 | 1.992 | 104.2758665 | 1.228e-002 | 2.396
2560 | 128 | 104.2580250 | 2.797e-002 | 2.013 | 104.2813402 | 5.474e-003 | 2.243
Grid | Time- B B
Size | Steps Value Diff. Ratio Value Diff. Ratio
80 4 46.7777373 28.0884960
160 8 45.6834053 | -1.094e+-000 26.8641499 | -1.224e+4000
320 16 45.1145209 | -5.689e-001 | 1.924 | 26.3844959 | -4.797e-001 | 2.553
640 32 44.8254119 | -2.891e-001 | 1.968 | 26.1729041 | -2.116e-001 | 2.267
1280 | 64 44.6798063 | -1.456e-001 | 1.986 | 26.0737563 | -9.915e-002 | 2.134
2560 | 128 | 44.6060374 | -7.377e-002 | 1.974 | 26.0256462 | -4.811e-002 | 2.061
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(A) Non-Rannacher smoothing (n=1280 m=64) (B) Rannacher smoothing (n=1280 m=64)

Figure 5.3: Comparison of U(S,0) and the associated Delta and Gamma functions for
a simple CB (without coupon payments and without any call/put features) at S = 100
under the TF model computed by the Crank-Nicolson method with Rannacher smoothing
and without. We put the critical points of the initial functions at a grid point, and keep
A = 0.25 constant. (A) shows the numerical results without Rannacher smoothing; (B)

is with Rannacher smoothing.
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Table 5.13: Comparison of the numerical results for the Crank-Nicolson with Rannacher

smoothing and without for a simple CB (without coupon payments and without any

call/put features) at S = 100 under the AFV model. We put the discontinuity points of

the initial functions at a grid point, and keep A = 0.25 constant. Here, tol = 1.0e ™"

Grid | Time- No-Rannacher Smoothing Rannacher Smoothing
Size | Steps U U
(n) | (m) Value Differ. | Ratio Value Diff. Ratio
80 4 105.6195104 106.2478855
160 8 105.9799950 | 3.605e-001 106.3258636 | 7.798e-002
320 16 | 106.1644959 | 1.845e-001 | 1.954 | 106.3443383 | 1.847e-002 | 4.221
640 32 | 106.2574730 | 9.298e-002 | 1.984 | 106.3491197 | 4.781e-003 | 3.864
1280 | 64 | 106.3040930 | 4.662e-002 | 1.994 | 106.3503573 | 1.238e-003 | 3.863
2560 | 128 | 106.3274155 | 2.332e-002 | 1.999 | 106.3506642 | 3.069e-004 | 4.033
Grid | Time- B B
Size | Steps Value Diff. Ratio Value Diff. Ratio
80 4 70.4530564 70.9727099
160 8 70.4648739 | 1.182e-002 70.5970465 | -3.757e-001
320 16 70.4678254 | 2.951e-003 | 4.004 | 70.5011924 | -9.585e-002 | 3.919
640 32 70.4685631 | 7.377e-004 | 4.001 | 70.4769481 | -2.424e-002 | 3.954
1280 | 64 70.4687475 | 1.844e-004 | 4.000 | 70.4708493 | -6.099e-003 | 3.975
2560 | 128 | 70.4687936 | 4.610e-005 | 4.000 | 70.4693198 | -1.530e-003 | 3.987
Grid | Time- C C
Size | Steps Value Differ. Ratio Value Differ. Ratio
80 4 35.1664539 35.2751756
160 8 35.5151211 | 3.487e-001 35.7288170 | 4.536e-001
320 16 35.6966706 | 1.815e-001 | 1.921 | 35.8431460 | 1.143e-001 | 3.968
640 32 35.7889099 | 9.224e-002 | 1.968 | 35.8721716 | 2.903e-002 | 3.939
1280 | 64 35.8353455 | 4.644e-002 | 1.986 | 35.8795080 | 7.336e-003 | 3.956
2560 | 128 | 35.8586219 | 2.328e-002 | 1.995 | 35.8813444 | 1.836e-003 | 3.995
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Figure 5.4: Comparison of U(S,0) and the associated Delta and Gamma functions for
a simple CB (without coupon payments and without any call/put features) at S =
100 under the AFV model computed by the Crank-Nicolson method with Rannacher
Smoothing and without. We put the discontinuity points of the initial functions at a grid
point, and keep A = 0.25 constant. (A) shows the numerical solutions without Rannacher

smoothing; (B) is with Rannacher smoothing.
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5.2 Improvements

5.2.1 Rannacher Smoothing and Controlling A = % or I' =57

Even though the second-order accurate Crank-Nicolson is unconditionally stable, it is not
strongly A-stable [FV02]. That means that the method does not rapidly damp out high
frequency oscillatory components in the initial values, whence it may produce oscillations
in the numerical solution, especially when the initial condition is a non-smooth function.
This is the source of the spikes in the Delta and Gamma functions in Figure 5.2. To avoid
these undesired oscillations associated with the Crank-Nicolson method, we augment the
basic method with Rannacher time-stepping [Ran84]. That is, we take the first few
time-steps of the numerical integration with the fully implicit method and then switch
to the the Crank-Nicolson method for the remaining time-steps. This enhanced method
damps out the high frequency error components, and thus helps to eliminate oscillations
in the solutions that arise from the nonsmooth initial conditions. Moreover, it restores
the second-order rate of convergence associated with the Crank-Nicolson method since it
damps the high frequency errors and only a few first-order fully-implicit steps are taken.
However, if the initial function is a step function, only first-order accuracy is observed
for the Crank-Nicolson method even if Rannacher smoothing is used, as we have seen in
section 5.1.4. This degradation in the order is not due solely to the high frequency error
components discussed above; other errors are also important here, as we discuss in more

detail in the next section.

In subsection 5.1.4, we discussed the effects of the two types of nonsmooth initial func-
tions on numerical solutions. When we take constant time-steps with the Crank-Nicolson
method, two ways are recommended in [FV02] to reduce oscillations while maintaining
second-order accuracy depending on the type of the initial function: (i) Rannacher time-
stepping should be used for a nonsmooth function, i.e., first we take two fully implicit

time-steps after each nonsmooth initial state, and then we use Crank-Nicolson time-steps
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thereafter; and (ii) if the initial condition can be approximated by a continuous piecewise
linear function such as a hockey-stick function in our case, we choose the grid so that the

kink points occur at grid points.

From Table 5.11 for the European call option, we see that Rannacher smoothing helps
to eliminate the oscillations and restores the convergence rate to second-order. From
Figures 5.2(B), we can see that the option price and associated Delta and Gamma are
smooth after applying the Rannacher time-stepping, in contrast to Figure 5.2(A), where
Rannacher smoothing is not used. Even though we put the kink point at a grid point
(i.e., method (ii)), the oscillations still occur in Figure 5.2(A) and only linear convergence
is observed. Thus, (ii) may not be as effective as (i) in reducing oscillation problems but
it may help to a limited extent. Similar observations apply to our numerical results for
convertible bonds under both the TF and AFV models. See Table 5.12 and Figure 5.3
for the TF model, and Table 5.13 and Figure 5.4 for the AFV model.

Now, we study the effects of the ratio A = % on convergence and oscillations. Using
the same parameters as in subsection 5.1.4 for the European option, we test different
values of A\. The results for A =5, 3 and 2.5 are shown in Table 5.14. The results
for A = 10 are given in Table 5.11. We can see that if A > 3, the convergence rate
is approximately linear and oscillations occur around the kink point. If A < 3 in this
particular case, the convergence rate is enhanced and is approximately quadratic. As well,
we see from Figure 5.5 that the Delta and Gamma approximations become smoother as A
decreases. In plots (A) of Figure 5.5, the Delta approximation is smooth, but the Gamma
approximation is rough around the kink point. In plots (B), both the Delta and Gamma
approximations are smooth. Thus, we can conclude that the smaller A helps to reduce
oscillations. In the previous experiments for the European and American options with

the parameters listed in Table 5.1, we chose Spap = 400, therefore A = $2% = (.000625

when n = m. For this small value of )\, the experiments show that numerical solutions

converge, and the Delta and Gamma approximations are smooth at the kink point, even
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without Rannacher smoothing. (See Figure 5.1.)

Besides studying A, we also are interested in [' = %. Table 5.15 and Figure 5.6
show the numerical results for the same European option discussed above, but, we keep
I fixed, rather than A, this time. The numerical results show that the Delta and Gamma
approximations are smooth and convergence rate is effectively restored to quadratic.
Thus, this is also considered to be an alternative to reduce oscillations. Notice that A is
cut in half when n and m are doubled. Thus, keeping I' constant, reduces A as the grid
is refined. This approach of keeping I' constant as the grid is refined is generally much

more expensive than the other approaches to reduce oscillations discussed in this section.

Hence, we recommend it as a last resort only.
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Table 5.14: Comparison of the numerical results using the Crank-Nicolson method for a
European call option at S = 1 with and without Rannacher smoothing and with different
values of the ratio A = %. We put the kink point of the payoff function at a grid point.

Simaz = 4 and tol = 1.0e77.

A | Grid | Time- No-Rannacher Smoothing Rannacher Smoothing
% Size | Steps Value Diff. Ratio Value Diff. Ratio
40 4 0.18484582 0.18287543
80 8 0.18588186 | 1.036e-003 0.18558598 | 2.711e-003
5 | 160 16 | 0.18623657 | 3.547e-004 | 2.921 | 0.18624774 | 6.618e-004 | 4.096
320 32 | 0.18636938 | 1.328e-004 | 2.671 | 0.18641453 | 1.668e-004 | 3.968
640 64 | 0.18642409 | 5.470e-005 | 2.428 | 0.18645662 | 4.209e-005 | 3.962
1280 | 128 | 0.18644844 | 2.435e-005 | 2.478 | 0.18646721 | 1.059e-005 | 3.975
24 4 0.18292849 0.18034360
48 8 0.18560609 | 2.678e-003 0.18498528 | 4.642e-003
3 96 16 | 0.18625485 | 6.488e-004 | 4.127 | 0.18609925 | 1.114e-003 | 4.167
192 32 | 0.18641638 | 1.615e-004 | 4.016 | 0.18637749 | 2.782e-004 | 4.004
384 64 | 0.18645694 | 4.056e-005 | 3.983 | 0.18644737 | 6.988e-005 | 3.982
768 128 | 0.18646719 | 1.025e-005 | 3.957 | 0.18646490 | 1.753e-005 | 3.986
20 4 0.18114364 0.17838958
40 8 0.18519185 | 4.048e-003 0.18456419 | 6.175e-003
25| 80 16 | 0.18615396 | 9.621e-004 | 4.208 | 0.18599657 | 1.432e-003 | 4.311
160 32 | 0.18639172 | 2.378e-004 | 4.047 | 0.18635197 | 3.554e-004 | 4.030
320 64 | 0.18645100 | 5.928e-005 | 4.011 | 0.18644100 | 8.902e-005 | 3.992
640 128 | 0.18646581 | 1.481e-005 | 4.001 | 0.18646331 | 2.231e-005 | 3.990
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Figure 5.5: The value V(S,0) and the associated Delta and Gamma functions for a
European call option with a piecewise linear payoff function. The parameters are r =
0.05, ¢ = 0.25, E = 1, and T=2. The Crank-Nicolson method without Rannacher
smoothing is used. We put the kink point of the payoff function at a grid point and keep

A= % constant. For plots (A), A = 3. For plots (B), A = 2.5.
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Figure 5.6: The value V(S,0) and the associated Delta and Gamma functions for a
European call option with a piecewise linear payoff function. Parameters are » = 0.05,
o =0.25, F =1, and T=2. The Crank-Nicolson method without Rannacher smoothing
is used and we put the kink point of the payoff function at a grid. Here, ' = 3.125 and
A =0.039.
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Table 5.15: The numerical results for the Crank-Nicolson method without Rannacher
smoothing for a European call option at S = 1. We put the kink point of the payoff

function at a grid point and keep I' = A7 constant. Spee = 4 and tol = 1.0e7.
h

Gride | Time- No-Rannacher Smoothing
% % Size | Steps Value Diff. Ratio
1.250 | 10 4 0.16163256
0.625 | 20 16 | 0.18078626 | 1.915e-002
3.125 | 0.313 40 64 0.18511910 | 4.333e-003 | 4.421
0.156 | 80 256 | 0.18613627 | 1.017e-003 | 4.260
0.078 | 160 | 1024 | 0.18638734 | 2.511e-004 | 4.051
0.039 | 320 | 4096 | 0.18644992 | 6.258e-005 | 4.012

5.2.2 Grid Positioning

From subsections 5.1.4 and 5.2.1, we can see that using Rannacher time-stepping, con-
trolling A or I'; or putting the kink in a piecewise linear payoff function at a grid point
helps remove the oscillations occurring in the numerical solutions, and thus improves
the convergence rate to the method. However, if the initial function is a step function,
the Rannacher smoothing may eliminate the oscillations, but it does not help much to
improve the convergence rate. Even with Rannacher smoothing, first-order accuracy is
observed when the initial function is a step function. This is shown in Tables 5.16 and
5.12 for a convertible bond under the TF model. When ) is reduced from 0.25 to 0.01,
the oscillations are removed (See Figures 5.7(A) and 5.3(A)), but the convergence rate re-
mains first-order, even if Rannacher smoothing is applied. However, for the AFV model,
after reducing A to 0.01, even without applying Rannacher smoothing, the oscillations
are removed and the convergence rate is restored to the second-order. (See Table 5.17

and Figure 5.8.) This is because the TF model is associated with a step initial function
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while the AFV model is not.

Tavella and Randall conclude in [TR00] that quantization errors caused by non-
smooth initial functions seriously degrade convergence rates of numerical method. They
suggest that grid positioning can increase accuracy. By shifting the grid such that discon-
tinuities occur midway between grid points and at each grid refinement aligning the grid
once again to maintain this desired property of the grid, the quantization error can be
reduced substantially and quadratic convergence can be restored. The numerical results
shown in Table 5.18 illustrate the effectiveness of this approach. After applying grid
positioning for the step function, the convergence rates for U and B are approximately
quadratic. This should be contrasted to the approximately linear convergence rate shown
in Table 5.16, where grid positioning is not used. Also, grid positioning does not affect
the approximate Delta and Gamma functions. They remain smooth as illustrated in

Figure 5.9.
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Table 5.16: Comparison of the numerical results for the Crank-Nicolson with and with-

out Rannacher smoothing for a simple CB (without coupon payments and without any

call/put features) at S = 100 under the TF model. We put the critical point of the initial

functions at a grid point, and keep A = 0.01 constant. Here, tol = 1.0e~".

Grid | Time- No-Rannacher Smoothing Rannacher Smoothing

Size | Steps U U

Value Diff. Ratio Value Diff. Ratio

40 40 103.8694109 103.8669642

80 80 104.1045491 | 2.351e-001 104.1039814 | 2.370e-001

160 160 | 104.2019810 | 9.743e-002 | 2.413 | 104.2018439 | 9.786e-002 | 2.422
320 320 | 104.2458269 | 4.385e-002 | 2.222 | 104.2457933 | 4.395e-002 | 2.227
640 | 640 | 104.2665488 | 2.072e-002 | 2.116 | 104.2665406 | 2.075e-002 | 2.118
1280 | 1280 | 104.2766113 | 1.006e-002 | 2.059 | 104.2766093 | 1.007e-002 | 2.061
Grid | Time- B B

Size | Steps Value Diff. Ratio Value Diff. Ratio

40 40 28.9369847 28.9449665

80 80 27.4585776 | -1.478e+000 27.4601910 | -1.485e+4000

160 | 160 | 26.7198612 | -7.387e-001 | 2.001 | 26.7202185 | -7.400e-001 | 2.007
320 | 320 | 26.3497815 | -3.701e-001 | 1.996 | 26.3498641 | -3.704e-001 | 1.998
640 | 640 | 26.1644492 | -1.853e-001 | 1.997 | 26.1644688 | -1.854e-001 | 1.998
1280 | 1280 | 26.0716957 | -9.275e-002 | 1.998 | 26.0717004 | -9.277e-002 | 1.998
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Figure 5.7: Comparison of U(S,0) and the associated Delta and Gamma functions of
a simple CB (without coupon payments and without any call/put features) at S =
100 under the TF model computed by the Crank-Nicolson method with and without
Rannacher smoothing. We put the critical point of the initial functions at a grid point,
and keep A = 0.25 constant. Plots (A) show the numerical results with Rannacher

smoothing; Plots (B) are without Rannacher smoothing.
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Table 5.17: Numerical results for the Crank-Nicolson method without Rannacher smooth-
ing for a simple CB (without coupon payments and call/put features) at S = 100 under

the AFV model. We put the critical point of the initial functions at a grid point, and

keep A = 0.01 constant. Here, tol = 1.0e~".

Grid Size | Time-Steps U
(n) (m) Value Difference | Ratio
40 40 106.2539403
30 30 106.3267315 | 7.279e-002
160 160 106.3447778 | 1.805e-002 | 4.034
320 320 106.3492805 | 4.503e-003 | 4.008
640 640 106.3504056 | 1.125e-003 | 4.002
1280 1280 106.3506869 | 2.813e-004 | 4.000
Grid Size | Time-Steps B
(n) (m) Value Difference | Ratio
40 40 70.4740237
30 30 70.4701155 | -3.908e-003
160 160 70.4691360 | -9.795e-004 | 3.990
320 320 70.4688908 | -2.452e-004 | 3.995
640 640 70.4688294 | -6.134e-005 | 3.997
1280 1280 70.4688141 | -1.534e-005 | 3.999
Grid Size | Time-Steps C
(n) (m) Value Difference | Ratio
40 40 35.7799167
80 80 35.8566160 | 7.670e-002
160 160 35.8756418 | 1.903e-002 | 4.031
320 320 35.8803897 | 4.748e-003 | 4.007
640 640 35.8815762 | 1.186e-003 | 4.002
1280 1280 35.8818728 | 2.966e-004 | 4.000
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Figure 5.8: The value U(S,0) and the associated Delta and Gamma functions for a
simple CB (without coupon payments and without any call/put features) under the
AFV model. We used the Crank-Nicolson method without Rannacher smoothing and
we put the critical point of the initial function at a grid point. F' = 100, n = 1280, and

m = 1280.
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Figure 5.9: The value U(S,0) and the associated Delta and Gamma functions for a CB
under the TF model for which the associated U has a piecewise linear initial function and

B has a step initial function. The Crank-Nicolson method with Rannacher smoothing is

used. A\ = % = 0.01.
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Table 5.18: Numerical results for the Crank-Nicolson method without Rannacher smooth-
ing, but using grid positioning for B for a simple CB (without coupon payments and

without any call/put features) under the TF model at S = 100. Here, A = 0.01 and

tol = 1.0e 7.
Grid | Time- U B
Size | Steps Value Diff. Ratio Value Diff. Ratio
40 40 104.3269714 26.0958267
80 80 104.2970855 | -2.989¢-002 26.0080977 | -8.773e-002
160 160 | 104.2892061 | -7.879e-003 | 3.793 | 25.9862282 | -2.187¢-002 | 4.011
320 | 320 | 104.2871691 | -2.037e-003 | 3.868 | 25.9807240 | -5.504e-003 | 3.973
640 | 640 | 104.2866504 | -5.187e-004 | 3.927 | 25.9793410 | -1.383e-003 | 3.980
1280 | 1280 | 104.2865194 | -1.309e-004 | 3.962 | 25.9789944 | -3.466e-004 | 3.990

5.2.3 Removing Oscillations in Penalty Methods

The PSOR method is often used in numerical schemes for pricing American-style options,
but the big disadvantage of the PSOR method is that the number of iterations may grow
rapidly as the discretization is refined, as reported in [Li05, Mo06]. This makes the
PSOR method computationally inefficient for finer discretizations. On the other hand,
the discrete penalty method transforms a constrained linear system into a nonlinear
system, and solves it using Newton’s method at each time-step. The discrete penalty
method is often much more efficient than PSOR. However, the discrete penalty method
may excite oscillations in the numerical solution which affect the convergence rate of the
numerical method. Moreover, in some situations, Newton’s method does not converge
due to oscillations appearing in the penalty matrix P. Thus, we suggest using the
continuous penalty method [NST02] to avoid this problem. We implemented the discrete

and the continuous penalty methods for an American put option and present the results
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in Tables 5.19 and 5.20, respectively. Using the continuous penalty method results in a
better convergence rate than using the discrete penalty method. The convergence rate is
quadratic for the continuous penalty method. From Tables 5.19 and 5.20, we notice that
the two solutions are different in the first decimal, with the value of the solution by the
continuous method being smaller. This disagreement of the two results may be caused
by the different numerical methods. Unfortunately, [NST02] does not give option values
computed; it only reports errors and convergence rates. Therefore, we cannot compare
the values we calculated with any values in [NST02]. Thus, we just report the results here
for future reference. Furthermore, we can see from these two tables that the number of
iterations using the continuous penalty method is close to that using the discrete penalty

method. We believe that the continuous penalty method warrants further research.

Table 5.19: Numerical results at S = 100 using the Crank-Nicolson method with the

discrete penalty method for an American put option. Here, tol = 1.0e~".

Grid | Time- No. of Iterations

Size | Steps Value Difference | Ratio | Min. | Max. | Avg. (A)

40 40 14.54681348 1 2 1.100
80 80 14.64461610 | 9.780e-002 1 2 1.113
160 160 | 14.66999558 | 2.538e-002 | 3.85 1 3 1.106
320 320 | 14.67656709 | 6.572e-003 | 3.86 1 3 1.109
640 640 | 14.67826609 | 1.699e-003 | 3.87 1 3 1.111
1280 | 1280 | 14.67871226 | 4.462e-004 | 3.81 1 4 1.113

5.2.4 Adaptive Spatial Grids

We adapt the spatial grid in the region around the discontinuity, to reduce errors and

more accurately locate the free boundary point. At each time step, we must find the free
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Table 5.20: Numerical results at S = 100 using the Crank-Nicolson method with the

continuous penalty method for an American put option. Here, tol = 1.0e~" and x = 27F.

Grid | Time- No. of Iterations

Size | Steps Value Difference | Ratio | Min. | Max. | Avg.

40 40 14.33250099 2 3 2.025
80 80 14.42229483 | 8.979e-002 2 3 2.013
160 160 | 14.44451510 | 2.222e-002 | 4.04 2 3 2.006
320 320 | 14.45005696 | 5.542e-003 | 4.01 2 3 2.013
640 640 | 14.45143903 | 1.382e-003 | 4.01 2 6 2.028
1280 | 1280 | 14.45178546 | 3.464e-004 | 3.99 2 6 2.014

boundary point and calculate the solution V' simultaneously. The accuracy with which
we locate the free boundary is related to the quality of the computed price. To locate the
free boundary in a more accurate way, we refine the grid near the free boundary, leaving

a coarse grid in other regions. See Figure 5.10.

In brief, we refine the grid as follows. At time 7 = 0, we know the free boundary
coincides with the exercise price, F, which is normally a grid point, say S;, on the original
coarse grid. We typically refine the grid in the interval [S;_o, S;12], where S; 5 and S;9
are grid points on the original coarse grid. That is, we typically start by refining the
grid in two intervals on either side of E = S;. The refined grid normally has one new
grid point halfway between every two original grid points. Thus the distance between
grid points in the refined region is half the distance between grid points in the unrefined
region. Figure 5.10 shows a refined grid on the interval [S; 1, S;;1], where S; ; and S;;;

are grid points on the original coarse grid.

As 7 increases, we keep the number of additional grid points fixed, but, as explained

in more detail below, we move the refined region to follow the free boundary and also
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Figure 5.10: Adaptive spatial grids.

narrow the refined region as the free boundary curve flattens. See Figure 5.11. We
leave the grid in other regions unchanged, putting the additional points around the free
boundary only.

Now, we describe in more detail how to determine how to move the refined region to
follow the free boundary and how to narrow the refined region as the free boundary curve
flattens. At 7 = 0, we choose an initial refined region centered at £ = S;, as described
above. We refer to this point as S;, below to emphasize that it is a point on the free
boundary curve at time 7 = 0. For the lack of a better choice, we predict that the free
boundary will remain at S;, at time 7;. Then we take the time step from time 7 = 0
to time 7; and find the approximation S;, to the free boundary at time 7. The point
S;; will be a grid point typically in the refined region, [S; 2, S;y2]. However, S;, may be

either a point on the original grid or a new point on the refined grid.

Figure 5.11: The spatial grid near the free boundary is refined as 7 increases.

On the next step to time 75, we use linear interpolation through the points S;, at time
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7 =0 and 5;, at time 7, to predict the free boundary position 5’,~2 at time 75. Normally
S’,-2 is a grid point either on the original grid or the refined grid. For the time step to
Ty, we center the refined grid at S’,-Z and decrease its width if |S;, — S;, | is less than half
the distance between grid points on our original unrefined spatial mesh. This allows the
refined region to narrow as the free boundary curve flattens. See Figure 5.11. Then we
take the time step from time 7y to time 7» and find the approximation S;, to the free
boundary at time 7. The point S;, will be a grid point typically in the refined region.

However, S;, may be either a point on the original grid or a new point on the refined

grid.

Each time step from 7; to 7;41 for j > 2 follows the approach described in the
preceding paragraph. We first use the approximations to the free boundary curve at
times 7;_; and 7; to predict the free boundary point at time 7;;;, we then possibly
adjust the refined region and finally we take the time step from 7; to 7;;1 and find an

approximation to the free boundary at time 7.

Table 5.21 shows the numerical results computed on a uniform spatial grid for the
American put option which uses the parameters in Table 5.1. Table 5.22 shows the
numerical results for the same option but with the adaptive spatial grid described above.
Using the adaptive spatial grid with m = 84, we compute V = 14.67871967, which
compares favorably with V' = 14.67871226 computed on a uniform grid with m = 1280.
Both have about four digits of accuracy. Thus, using a refined grid around the free
boundary can produce accurate solutions efficiently. Moreover, we see that the average
iteration number is about 1.3 only to get four digits accuracy. This may be related to
the accurate location of the free boundary at each time step. See Figure 5.12. Each
point in the figure is the computed free boundary point found at each time step. The
free boundary moves downward as 7 moves to the right end. Comparing the computed
boundary in these two graphs, we see that free boundary points are located more precisely

when using the adaptive spatial grid than when using a uniform spatial grid. For example,
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for m = 160, the free boundary curve is both more accurate and much smoother for the
adaptive grid than for the uniform grid.

However, after the fourth digit of accuracy is reached, we cannot get more accuracy as
the grids are refined. Notice that the value computed with m = 160 decreases instead of
increasing compared with the previous two values. That is, the values start to fluctuate.
We believe this is because the condition number of the associated linear system is large.
The machine epsilon for the computer we used is about 107! and the condition number is
about 10%. Thus, we expect about 8 digits accuracy in the solution of the linear systems.
Other errors arise as well, limiting precision to about 7 digits accuracy. Thus, after 1075,
the errors reduce very slowly. In more complicated cases, such as CBs, the situation is
even worse. Moreover, locating the free boundary for a CB is more difficult, since the
problem involves a “sawtooth” accrued interest function. We leave the development of

better methods to track the free boundary associated with CBs to future research.

Table 5.21: Numerical results for the Crank-Nicolson method using the discrete penalty

method for an American put option at § = 100 using uniform grid spacing and tol =

1.0e78.
Grid | Time- No. of Iterations | Cond. Num.
Size | Steps Value Difference | Ratio | Min. | Max. | Avg. (A)
40 40 14.54681348 1 2 1.100 | 1.82e4008
80 80 | 14.64461610 | 9.780e-002 1 2 | 1.113 | 2.32e4+008
160 | 160 | 14.66999558 | 2.538e-002 | 3.85 1 3 | 1.106 | 3.04e+008
320 | 320 | 14.67656709 | 6.572e-003 | 3.86 1 3 |1.109 | 4.07e+008
640 | 640 | 14.67826609 | 1.699e-003 | 3.87 1 3 | 1.111 | 5.54e+008
1280 | 1280 | 14.67871226 | 4.462e-004 | 3.81 1 4 1.113 | 7.63e+008
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Figure 5.12: Comparison of the free boundary curves using uniform spatial grids and

adaptive spatial grids with refinement around the free boundary.
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Table 5.22: Numerical results for the Crank-Nicolson method using the discrete penalty

method for an American put option at S = 100 using adaptive spatial grids and tol =

1.0e8.
Grid | Time- No. of Iterations | Cond. Num.
Size | Steps Value Difference | Ratio | Min. | Max. | Avg. (A)
42 40 14.65240859 1 2 1.200 | 1.82e4008
84 80 | 14.67871967 | 2.631e-002 1 3 | 1.300| 2.32e4+008
168 | 160 | 14.67810374 | -6.159e-004 | -42.72 | 1 5 | 1.488 | 3.04e+008
336 | 320 | 14.67857919 | 4.755e-004 | -1.30 1 12 | 1.906 | 4.07e+008
672 | 640 | 14.67875437 | 1.752e-004 | 2.71 1 22 | 2.720 | 5.54e+008
1344 | 1280 | 14.67883331 | 7.894e-005 | 2.22 1 39 [ 4.399 | 7.63e+008

5.2.5 Adaptive Time-Stepping

Forsyth and Vetzal [FV02] extend the time-step selector suggested in [Joh87] to better
handle American options. Given an initial time-step A7/*! a new time-step is deter-

mined by the formula

; dnorm .
+2 _ ; Jj+1
ATt = (miln [ V(S0 + ATV (577) )AT ; (5.19)
max(D,|V(S;,mI +ATIFL)[ |V (S;,79)])

where dnorm is a target relative change (during the time-step), and D is a scalar. The
value D = 1 is recommended in [FV02]. From (5.19), we can see that the new time-step is
selected based on changes observed over the last time-step, with the goal that the change
in the solution (relative to D and the size of the solution) should be about dnorm.

In [FV02], the authors explain that the error should be proportional to dnorm? for
smooth problems when using the time-step selector (5.19). We select an initial stepsize

for the coarsest grid, (A7)°, and then reduce the initial (A7)° by a factor of four at each
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grid refinement. We used (A7)° = 10~% and dnorm = 0.2 on the coarsest grid. The
value of dnorm was divided by two at each grid refinement. The numerical results are
shown in Tables 5.23 and 5.24. From these two tables, it is clear that the method with the
adaptive time-stepping has a smooth convergence ratio of about 4.0, as expected, and the
value of “Difference” is slightly smaller than with constant time-stepping. Certainly, the
results with adaptive time-stepping are not significantly better than those with constant

time-stepping.

Table 5.23: Numerical results for the Crank-Nicolson method using a constant time-

step and the discrete penalty method for an American put option at S = 100. Here,

tol = 1.0e™".
Grid Size | Time-Steps No. of Iterations
(n) (m) Value Difference | Ratio | Min. | Max. | Avg.
40 40 14.54681347 1 2 1.100
80 80 14.64461610 | 9.780e-002 1 2 1.113
160 160 14.66999558 | 2.538e-002 | 3.85 1 3 1.106
320 320 14.67656709 | 6.572e-003 | 3.86 1 3 1.109
640 640 14.67826609 | 1.699¢-003 | 3.87 1 3 1.111
1280 1280 14.67871226 | 4.462¢-004 | 3.81 1 4 1.113
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Table 5.24: Numerical results for the Crank-Nicolson method using an adaptive time-step

scheme and the discrete penalty method for an American put option at S = 100. Here,

tol = 1.0e”".
Grid Size | Time-Steps No. of Iterations

(n) (m) Value Difference | Ratio | Min. | Max. | Average
40 29 14.54842150 1 2 1.138
80 72 14.64527502 | 9.685e-002 1 2 1.125
160 159 14.67031183 | 2.504e-002 | 3.87 1 2 1.113
320 332 14.67671245 | 6.401e-003 | 3.91 1 2 1.111
640 677 14.67833366 | 1.621e-003 | 3.95 1 2 1.111

1280 1364 14.67874175 | 4.081e-004 | 3.97 1 2 1.111

5.3 Numerical Results for CBs

In this section, we present the final set of numerical results for the CB using the TF and

the AFV models using the parameters in Tables 5.2 and 5.3, respectively.

5.3.1 TF Model

Table 5.25 lists the numerical results for a simple CB without coupon payments and
without any call/put features. Table 5.26 is for a “semi-full” CB with coupon payments
only. We can see from these two tables that the convergence rate is quadratic. We believe
we achieve the expected rate of convergence in these two cases because the free boundary
(due to convertibility only in these two cases) is not overly complicated. However, when
call and put features are added, the convergence rate degrades to approximately linear.
See Table 5.27. We believe this is mostly because the accrued interest is a “sawtooth”
function, which causes both the lower free boundary condition and upper free boundary

condition to vary with time. To deal effectively with these discontinuous free boundary
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conditions, we must apply the techniques discussed in the previous sections more carefully.
For example, grid positioning requires adjusting the critical points with time, rather
than using fixed critical points all the time, as we did in the examples given above. The
nonsmooth free boundaries make the problems much more complicated. In this thesis, we
do not apply grid positioning dynamically. Therefore, only linear convergence is achieved
for the full CB problem. We leave the important question of how to handle discontinuous

free boundary value problems to future work.

Table 5.25: Numerical results for a simple CB (without coupon payments and without any

call/put features) at S = 100 using the TF model. We used A = 0.01 and tol = 1.0e ".

Grid | Time- Value Difference | Ratio CPU No. of Iterations
Size | Steps U Time (Average)
100 | 100 | 104.3034176 3.281e-001 1.610

200 | 200 | 104.2905909 | -1.283e-002 7.344e-001 1.755

400 | 400 | 104.2875199 | -3.071e-003 | 4.177 | 1.969e+000 1.915

800 | 800 | 104.2867346 | -7.853e-004 | 3.911 | 6.797e+000 2.000

1600 | 1600 | 104.2865405 | -1.941e-004 | 4.046 | 2.533e+001 2.000

3200 | 3200 | 104.2864918 | -4.879e-005 | 3.978 | 1.007e+002 2.000
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Table 5.26: Numerical results for a semi-full CB (with coupon payments but without

any call and put features) at S = 100 using the TF model. We used A = 0.01 and

tol = 1.0e™".
Grid | Time- Value Difference | Ratio CPU No. of Iterations
Size | Steps U Time (Average)
100 | 100 | 135.4694530 1.719e-001 1.100
200 | 200 | 135.4650858 | -4.367e-003 4.375e-001 1.100
400 | 400 | 135.4639711 | -1.115e-003 | 3.918 | 1.188e+000 1.100
800 | 800 | 135.4636854 | -2.857e-004 | 3.901 | 5.547e+000 1.100
1600 | 1600 | 135.4636138 | -7.168e-005 | 3.986 | 2.027e+001 1.100
3200 | 3200 | 135.4635957 | -1.803e-005 | 3.975 | 7.984e+001 1.100

Table 5.27: Numerical results for a full CB (with coupon payments and with call and

put features) at S = 100 using the TF model. We used A = 0.01 and tol = 1.0e™".

Grid | Time- Value Difference | Ratio CPU No. of Iterations
Size | Steps U Time (Average)
100 | 100 | 124.2518066 1.563e-001 1.620

200 | 200 | 124.0998017 | -1.520e-001 5.156e-001 1.725

400 | 400 | 124.0416281 | -5.817e-002 | 2.613 | 1.719e+000 1.780

800 | 800 | 124.0075138 | -3.411e-002 | 1.705 | 6.547e+000 1.855

1600 | 1600 | 123.9876613 | -1.985e-002 | 1.718 | 2.631e+001 1.938

3200 | 3200 | 123.9779560 | -9.705e-003 | 2.046 | 1.123e+-002 2.069
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5.3.2 AFV Model

As in the previous subsection, we test the simple CB, semi-full CB and full CB for the
AFV model. Table 5.28 lists the numerical results for the simple CB, Table 5.29 for the
semi-full CB, and Table 5.30 for the full CB. Similar to the TF model, the convergence
rates for the simple and semi-full CBs using the AFV model are quadratic, while it
is linear for the full CB. The reasons are similar to those discussed in the previous
subsection. It is interesting to note that the value of the CB given by the AFV model is
larger than that given by the TF model. We believe that this is because of differences in
the two models and is not due to numerical errors. As discussed in Chapter 2, by setting
n =0 and r. = p(1 — R), we can expect the results to be similar, but not exactly the

same. The experiments support this conclusion.

Table 5.28: Numerical results for a simple CB (without coupon payments and without any

call/put features) at S = 100 using the AFV model. We used A = 0.01 and tol = 1.0e™".

Grid | Time- Value Difference | Ratio | CPU | No. of Iterations
Size | Steps U Time (Average)
100 | 100 | 106.3702061 1.590 1.590

200 | 200 | 106.3555190 | -1.469e-002 1.490 1.490

400 | 400 | 106.3519793 | -3.540e-003 | 4.149 | 1.468 1.468

800 | 800 | 106.3510784 | -9.009e-004 | 3.929 | 2.000 2.000

1600 | 1600 | 106.3508553 | -2.231e-004 | 4.039 | 1.848 1.848
3200 | 3200 | 106.3507992 | -5.605e-005 | 3.980 | 1.981 1.981
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Table 5.29: Numerical results for a semi-full CB (with coupon payments but without any

call/put features) at S = 100 using the AFV model. We used A = 0.01 and tol = 1.0e™".

Grid | Time- Value Difference | Ratio CPU No. of Iterations
Size | Steps U Time (Average)
100 | 100 | 137.7893187 1.406e-001 1.100
200 | 200 | 137.7833560 | -5.963e-003 3.906e-001 1.100
400 | 400 | 137.7818094 | -1.547e-003 | 3.855 | 1.438e+000 1.100
800 | 800 | 137.7814204 | -3.891e-004 | 3.975 | 5.688e+000 1.100
1600 | 1600 | 137.7813223 | -9.810e-005 | 3.966 | 2.242e+001 1.100
3200 | 3200 | 137.7812977 | -2.457e-005 | 3.992 | 8.650e+001 1.100

Table 5.30: Numerical results for a full CB (with coupon payments and with call/put

features) at S = 100 using the AFV model. We used A = 0.01 and tol = 1.0e™".

Grid | Time- Value Difference | Ratio CPU No. of Iterations
Size | Steps U Time (Average)
100 | 100 | 124.9570542 1.563e-001 1.620

200 | 200 | 124.9300469 | -2.701e-002 6.250e-001 1.735

400 | 400 | 124.9224035 | -7.643e-003 | 3.533 | 1.781e+000 1.817

800 | 800 | 124.9196067 | -2.797e-003 | 2.733 | 7.516e+000 1.936

1600 | 1600 | 124.9185711 | -1.036e-003 | 2.701 | 2.814e+001 2.097

3200 | 3200 | 124.9181387 | -4.325e-004 | 2.394 | 1.267e+002 2.307




Chapter 6

Conclusions and Future Work

Convertible bonds with credit risks are difficult to price because they are hybrids of debt
and equity instruments. Additional features, such as callability and puttability, make the
problem even more complicated. Currently, most models in the literature adopt a single-
factor Black-Scholes analysis (i.e., they use the stock price as the underlying stochastic
variable with the interest rate assumed to be deterministic) to build the pricing frame-
works for convertible bonds. Such models generally result in a complex coupled system
of PDEs with free boundary conditions that are often solved as linear complementarity
problems (LCPs). Two such models were studied in this thesis: the TF model and the

AFYV model.

These two models differ in their splitting strategies, which result in different PDEs
as well as different initial conditions and boundary conditions. This has a significant
effect on convergence when solving the associated parabolic PDEs numerically. In the
AFYV model, the initial conditions are either a hockey-stick function or a continuous func-
tion, while in the TF model, they are either a hockey-stick function or a step function.
The numerical experiments show that the step function degrades convergence rates dra-
matically: with Crank-Nicolson time-stepping, the convergence rate for the TF model

is approximately linear only, rather than quadratic, as we would expect for a smooth
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problem. Moreover, oscillations around the critical point (e.g., the kink point for the
hockey-stick function or the jump point for the step function) appear in the numerical
solutions. Also the experiments show that the degradation in the convergence rate is
less for the hockey-stick function than for the step function (the convergence rate is close
to quadratic for the American put option considered in our examples), and oscillation
problems caused by the nonsmooth initial conditions in the numerical solution computed
by the Crank-Nicolson method are even more pronounced for the associated Delta and
Gamma functions than for the CB price itself. We do not see this degradation in the
convergence rate or spurious oscillations when solving similar smooth problems with the

Crank-Nicolson method.

This thesis investigates several techniques to alleviate convergence and oscillation
problems cased by nonsmooth initial conditions. Rannacher smoothing, which takes one
or two fully implicit steps at the start of the numerical integration and then uses Crank-
Nicolson steps thereafter, can smooth out the oscillations in the numerical solutions
effectively and restore the convergence rate back to quadratic when the initial condition
is a hockey-stick function, as is the case for vanilla European and American call and put
options, and convertible bonds under the AFV model. However, if the initial condition
is a step function, as is the case for the COCB for convertible bonds under the TF
model, Rannacher smoothing cannot restore convergence back to quadratic. Similarly,

AT

the technique of controlling A = ST or I' =

AT
B

can effectively eliminate oscillations
caused by the nonsmooth initial conditions, but cannot effectively restore convergence
back to quadratic for the discontinuous initial functions. Thus, we use grid positioning to
remedy convergence problems in such cases. We position the grid so that the discontinuity
is midway between two grid points. As we refine the grid, we do so in a way that
ensures that the discontinuity remains midway between two grid points. With this grid

positioning technique, the errors can be dramatically reduced and the convergence rate

restored back to quadratic. The experimental results for convertible bonds under the
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TF model demonstrate that this grid positioning approach is highly successful without

sacrificing any efficiency.

The thesis also discusses the effectiveness of linear boundary conditions to approx-
imate the real boundary conditions at the truncated end of the domain. We test the
at-the-money price of derivatives using linear boundary conditions and compare the nu-
merical results to those using Dirichlet boundary conditions or the analytical solution
for a European option and an American option. The numerical results are similar in all
cases, which shows that our linear boundary condition is an appropriate choice. Thus we

can safely apply such a linear boundary condition to convertible bonds.

Far-field approximation is another issue associated with the truncated end of the
domain. When we replace an infinite domain by a finite one, we need to choose the
truncation point to be large enough to maintain good accuracy in the region of interest,
but not so large as to make the computation too costly. We discuss the far-field selection

criterion and test our strategy on American options and convertible bonds.

In the numerical solution of convection-diffusion problems, it is very desirable that
the matrices associated with the numerical method are M-matrices. To guarantee that
the numerical solution is stable and free from oscillation, we adjust the spatial step size
or replace the central difference scheme with a one-sided difference scheme to ensure
the associated matrix is a M-matrix. This greatly improves the numerical solutions of

convection-dominated problems.

The thesis also investigates difficulties associated with the penalty method. Oscilla-
tions may appear in the penalty matrices when solving linear systems using the discrete
penalty method, especially when the grid spacing and time-steps approach zero. In such
cases, the number of iterations becomes very large and it is impossible to guarantee a
stable and convergent solution. We recommend a continuous penalty scheme instead to
solve this oscillation problem. We tested the continuous penalty scheme on American

options, but haven’t applied it yet to convertible bonds due to the complexity of convert-
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ible bonds. In particular, to apply the continuous penalty scheme to convertible bonds,
we need to prove that the continuous penalty terms we construct can guarantee the ap-
proximation satisfies the lower and upper free-boundary conditions. This is a subject for
future research.

Adaptive spatial grids and time-stepping methods are discussed with the goal of
developing more effective numerical methods. Our schemes perform well on simple free
boundary problem, such as American put options. However, for the more complicated
convertible bonds, the difficulties of locating the free boundary points make it hard to
apply similar adaptive spatial grids and time-stepping schemes to convertible bonds.
Adaptive time-stepping can improve the convergence rate to some extent, but is not
that effective. We did not obtain good results for convertible bonds. Further study on

adaptive spatial grids and adaptive time-stepping is needed.
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