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2004

There are many standard numerical methods for initial value problems (IVPs) for or-

dinary differential equations (ODEs). Compared with these methods, validated methods

for IVPs for ODEs produce bounds that are guaranteed to contain the true solution of a

problem, if the true solution exists and is unique.

The main result of this thesis is a formula to bound the global error associated with

the numerical solution of a stiff IVP for an ODE. We give the complete proof of this result.

Moreover, we derive Dahlquist’s formula and Neumaier’s formula from this formula. We

also give alternative (and possibly simpler) proofs of some known related results.
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Chapter 1

Introduction

We consider the initial value problem (IVP) for an ordinary differential equation (ODE)

y′ = f(t, y), y(t0) = y0, t ∈ [t0, T ], (1.1)

where y ∈ Rm and f : R × Rm → Rm. Throughout this thesis, we assume that f is

smooth and that a unique solution to (1.1) exists on [t0, T ].

Given the grid t0 < t1 < · · · < tN = T , hn = tn+1 − tn is the stepsize on the nth step.

Denote the true solution to (1.1) by y(t), and let yn be an approximation to y(tn). The

global error at the mesh point tn is

en = yn − y(tn).

A validated numerical method for the IVP (1.1) generates guaranteed bounds on the

global errors {en : n = 0, . . . , N}. Validated numerical methods often use interval arith-

metic (reviewed in §2.2) to accomplish this goal.

Let z(t) be a vector of piecewise polynomial approximate solution to (1.1), where

z(t) = zn(t) on [tn, tn+1).

Such a vector of piecewise polynomials z(t) can be generated, for example, by computing

a discrete numerical solution {yn : n = 0, . . . , N} at mesh points {tn : n = 0, . . . , N}
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Chapter 1. Introduction 2

and constructing an interpolant to obtain a vector of polynomials zn(t) on the interval

[tn, tn+1). Note that z(tn) = yn and z(t) is continuous on [t0, T ].

The global error associated with the approximate solution z(t) is

e(t) = z(t)− y(t), t ∈ [t0, T ].

The defect associated with (1.1) is defined by

δ(t) = z′(t)− f(t, z), t ∈ [t0, T ].

(Since the approximate solution z(t) discussed above is a vector of piecewise polynomials,

δ(t) will be computable and continuous everywhere except posssibly at the mesh points,

{tn : n = 1, . . . , N − 1}, but this does not affect our analysis.)

We will focus on the global error e(t). The main result of our thesis is that

e(tn+1) ∈ exp([A](tn+1 − tn))e(tn) +

∫ tn+1

tn

exp([A](tn+1 − s))δ(s)ds, (1.2)

where [A] is an interval matrix and exp([A]ϕ(t))δ(t) is an interval vector function (to be

defined later).

This result should be particularly well-suited for stiff IVPs, a subclass of IVPs in

which some solution components decay rapidly compared to the time-scale of the problem.

Except for Neumaier’s results [24], which we expand upon in this thesis, none of the

published validated numerical methods that we know of now are suitable for stiff problems

in the sense that the existing validated numerical methods all suffer from a severe stepsize

restriction on this class of problems, similar to that encountered by traditional nonstiff

methods for IVPs for ODEs. For a further discussion of this deficiency, see [20].

Neumaier uses logarithmic norms (reviewed in §2.5) to prove that, if we take t0 = 0

in (1.1), ‖e(0)‖ ≤ ε0, µ(fy(t, y)) ≤ µ for all t ∈ [0, T ] and all y in a suitable domain, and

‖δ(t)‖ ≤ ε for all t ∈ [0, T ], then

‖e(t)‖ ≤





ε0e
µt + ε

µ
(eµt − 1) if µ 6= 0

ε0 + εt if µ = 0
(1.3)
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for all t ∈ [0, T ].

When the differential equation (1.1) with (t0 = 0) satisfies the uniform dissipation

condition µ < 0, (1.3) gives an effective global bound for all times. Moreover, although

Neumaier has not yet implemented these schemes, it appears that they should be able to

solve stiff systems without the severe stepsize restriction noted above from which other

existing validated numerical methods for IVPs for ODEs suffer.

Our original goal was to use interval arithmetic to compute sharp enclosures of the

right side of (1.2) directly, in the hope that this might produce better bounds than

Neumaier’s. However, this has proven more difficult than we originally expected and so

we leave this task to future work.

An outline of this thesis follows. Chapter 2 contains background material that we

need later. In particular, we introduce interval arithmetic on real intervals, interval

vectors, and interval matrices, as well as the logarithmic norm and Hausdorff distance.

In addition, we review several results that are used later in this thesis. We also provide

a simpler proof of one of these related results concerning the logarithmic norm.

The proof of formula (1.2) is not immediate, as far as we know. In Chapter 3, we

prove formula (1.2) using the Hausdorff distance and interval arithmetic.

Formula (1.3) is a special case of Theorem 1.1 of [5] and the Main Theorem of [11],

both of which imply that, if ‖e(0)‖ ≤ ε0, µ(A(t)) ≤ c(t) for all t ∈ [0, T ] and ‖δ(t)‖ ≤ ρ(t)

for all t ∈ [0, T ], then

‖e(t)‖ ≤ ε0e
∫ t
0 c(s)ds + e

∫ t
0 c(s)ds

∫ t

0

ρ(s)e−
∫ s
0 c(u)duds (1.4)

for all t ∈ [0, T ].

In Chapter 4, we compare our results to Dahlquist’s and Neumaier’s. In particular,

we derive Dahlquist’s formula (1.4) from our formula (1.2). Our motivation for this is

not to have another proof of Dahlquist’s important result, but rather to show that our

approach yields bounds that are as tight or tighter than those that can be obtained by

Dahlquist’s and Neumaier’s approaches. On the other hand, we give a simple example
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which shows that formula (1.2) may sometimes yield bounds that are tighter than those

given by formulas (1.3) and (1.4).

We summarize our conclusions and discuss future work in Chapter 5.



Chapter 2

Preliminaries

In this chapter, we review some mathematical background that is used later in this thesis.

2.1 Vector Norms and Matrix Norms

2.1.1 Vector Norms

For x = (x1, · · · , xm)T ∈ Rm, the p−norms are defined by

‖x‖p = (|x1|p + · · ·+ |xm|p)
1
p , p ≥ 1.

In particular, the 1, 2, and ∞ norms are

‖x‖1 = |x1|+ · · ·+ |xm|,

‖x‖2 = (|x1|2 + · · ·+ |xm|2) 1
2 = (xT x)

1
2 ,

‖x‖∞ = max
1≤i≤m

|xi|.

All vector norms on Rm are equivalent in the sense that, if ‖ · ‖a and ‖ · ‖b are any

two vector norms on Rm, then there exist positive constants α and β ∈ R such that

α‖x‖a ≤ ‖x‖b ≤ β‖x‖a for all x ∈ Rm (α, β may depend on m).
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2.1.2 Matrix Norms

For A ∈ Rm×m, the matrix norm ‖ · ‖ subordinate to a vector norm ‖ · ‖ is defined by

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ . (2.1)

The matrix p−norms are related to the vextor p−norms in this way. If follows easily

from (2.1) that

‖Ax‖p ≤ ‖A‖p‖x‖p

‖I‖p = 1

For

A =




a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

...
...

am1 am2 . . . amm




the 1, 2, and ∞ matrix norms are given by

‖A‖1 = sup
x6=0

‖Ax‖1

‖x‖1

= max
1≤j≤m

m∑
i=1

|aij|,

‖A‖2 = sup
x6=0

‖Ax‖2

‖x‖2

= max{
√

λ : λ is an eigenvalue of AT A},

‖A‖∞ = sup
x6=0

‖Ax‖∞
‖x‖∞ = max

1≤i≤m

m∑
j=1

|aij|.

It also follows easily from (2.1) that

‖AB‖ ≤ ‖A‖‖B‖, A ∈ Rm×m, B ∈ Rm×m.

In particular, for any k = 1, 2, 3, . . ., we have

‖Ak‖ ≤ ‖A‖k.

All matrix norms on Rm×m are equivalent in the sense that, if ‖ · ‖a and ‖ · ‖b are any

two matrix norms on Rm×m, then there exist positive constants α and β ∈ R such that

α‖A‖a ≤ ‖A‖b ≤ β‖A‖a for all A ∈ Rm×m (α, β may depend on m).
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Let {Ak : k = 1, 2, 3, . . .} and {Bk : k = 1, 2, 3, . . .} be two sets of m×m matrices. If

there exists an m ×m matrix A, such that ‖Ak − A‖ → 0 as k → ∞, then we say that

Ak converges to A and we denote this by Ak → A. If ‖∑∞
i=k+1 Bi‖ → 0 as k →∞ , then

Ak =
∑k

i=1 Bi converges to some matrix A, and we denote this by A =
∑∞

i=1 Bi.

2.2 Interval Arithmetic

The set of intervals on the real line R is defined by

R = {[a] = [a, ā]|a, ā ∈ R, a ≤ ā}.

If a = ā, then [a] is a thin interval. If a ≥ 0, then [a] is nonnegative, which we denote

by [a] ≥ 0. If a = −ā, then [a] is symmetric. Two intervals [a] and [b] are equal if a = b

and ā = b̄.

The four operations of real arithmetic, addition (+), subtraction (−), multiplication

(∗) and division (/), can be extended to intervals as follows. For any such operator,

denoted by ◦, define

[a] ◦ [b] = {x ◦ y : x ∈ [a], y ∈ [b]}. (2.2)

For any intervals [a] and [b], it is easy to see that the following properties are satisfied

[a] + [b] = [a + b, ā + b̄],

[a]− [b] = [a− b̄, ā− b],

[a] ∗ [b] = [min{ab, ab̄, āb, āb̄}, max{ab, ab̄, āb, āb̄}],

[a]/[b] = [a, ā] ∗ [1/b̄, 1/b], if 0 6∈ [b].

The width of any interval [a] is defined by

w([a]) = ā− a.

The midpoint (or center) of any interval [a] is defined by

m([a]) = (ā + a)/2.



Chapter 2. Preliminaries 8

The magnitude of any interval [a] is defined by

|[a]| = max{|a|, |ā|}.

If t is a real number, and [a] is an interval, then

t[a] = {tx : x ∈ [a]}.

An interval vector [a] is an element of IRm, defined by

[a] =




[a1]

[a2]

...

[am]




where [ai] = [ai, āi] ∈ IR, for i = 1, . . . ,m.

An m×m interval matrix [A] is an element of IRm×m defined by

[A] =




[a11] [a12] . . . [a1m]

[a21] [a22] . . . [a2m]

...
...

...
...

[am1] [am2] . . . [amm]




where [aij] = [aij, āij] ∈ IR for i = 1, . . . , m and j = 1, . . . , m.

We define the width and midpoint of an interval matrix componentwise as follows:

w([A]) = (w([aij]))1≤i≤m,1≤j≤m,

mid([A]) = (mid([aij]))1≤i≤m,1≤j≤m.

The width and midpoint of an interval vector are defined similarly.

Since we use the infinity norm only for interval vectors and matrices in this thesis, we

do not append the standard subscript ∞ to identify it. The infinity norm of an interval

vector [a] ∈ IRm is defined by

‖[a]‖ = max
1≤i≤m

{|[ai]|}
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and the infinity norm of an interval matrix [A] ∈ IRm×m is defined by

‖[A]‖ = max
1≤i≤m

m∑
j=1

|[aij]|.

The standard matrix norm inequalities hold for interval matrices as well. Let [A], [B] ∈
IRm×m, and [v] ∈ IRm, then it is easy to show

‖[A] + [B]‖ ≤ ‖[A]‖+ ‖[B]‖,

‖[A][v]‖ ≤ ‖[A]‖‖[v]‖,

‖[A][B]‖ ≤ ‖[A]‖‖[B]‖. (2.3)

It follows immediately from (2.3) that

‖[A]k‖ ≤ ‖[A]‖k

for k = 1, 2, 3, . . .

2.3 Matrix Functions

A matrix function is a matrix whose elements are functions:

A(t) =




a11(t) a12(t) . . . a1m(t)

a21(t) a22(t) . . . a2m(t)

...
...

...
...

am1(t) am2(t) . . . amm(t)




.

If aij(t) is continuous on [t0, T ] for all i = 1, . . . ,m and j = 1, . . . , m, then we say

that A(t) is continuous on [t0, T ]. It is easy to check that, if A(t) is continuous on [t0, T ],

{tk ∈ [t0, T ]} and tk → t ∈ [t0, T ], then ‖A(tk)− A(t)‖ → 0.

If aij(t) is differentiable on [t0, T ] for all i = 1, . . . , m and j = 1, . . . , m, then we say
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that A(t) is differentiable on [t0, T ] and we denote the derivative of A(t) by

A′(t) =




a′11(t) a′12(t) . . . a′1m(t)

a′21(t) a′22(t) . . . a′2m(t)

...
...

...
...

a′m1(t) a′m2(t) . . . a′mm(t)




.

If aij(t) is integrable on [t0, T ] for all i = 1, . . . , m and j = 1, . . . , m, then we say that

A(t) is integrable on [t0, T ] and we denote the integral of A(t) by

∫ T

t0

A(t)dt =




∫ T

t0
a11(t)dt

∫ T

t0
a12(t)dt . . .

∫ T

t0
a1m(t)dt

∫ T

t0
a21(t)dt

∫ T

t0
a22(t)dt . . .

∫ T

t0
a2m(t)dt

...
...

...
...

∫ T

t0
am1(t)dt

∫ T

t0
am2(t)dt . . .

∫ T

t0
amm(t)dt




.

Let {Bi(t) : i = 1, 2, 3, . . .} be a set of m × m matrix functions, and assume each

Bi(t) is continuous on [t0, T ]. Let Ak(t) =
∑k

i=1 Bi(t), k = 1, 2, 3, . . . If there exists

an m × m matrix function A(t) such that, for any ε > 0, there exists a K such that

‖Ak(t) − A(t)‖ < ε for k ≥ K and any t ∈ [t0, T ], then we say that Ak =
∑k

i=1 Bi(t) is

uniformly convergent to A(t) on [t0, T ] and we denote this by A(t) =
∑∞

i=1 Bi(t).

If A is an m ×m matrix, then the matrix series I + A
1!
t + A2

2!
t2 + · · · + Ak

k!
tk + · · · is

convergent for any t ∈ R. We denote the sum of this series by eAt.

2.4 Mean Value Theorem for Functions of Several

Variables

If F : D ⊂ Rn → Rm is differentiable at every point in a convex set D, then for any two

points x and y ∈ D

F (y)− F (x) =

∫ 1

0

F ′(y − t(y − x))(y − x)dt
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where F ′(y − t(y − x)) = ∂F (z)
∂z

|z=y−t(y−x). This result follows from the observations that

∫ 1

0

F ′(y − t(y − x))(y − x)dt = −
∫ 1

0

(
d

dt
F (y − t(y − x)))dt

= −F (y − t(y − x))|t=1
t=0

= F (y)− F (x).

2.5 The Logarithmic Norm

The logarithmic norm (also known as the log norm, the logarithmic derivative or the

measure of a matrix) was introduced in 1958 separately by Dahlquist [5] and Lozinskij

[17] as a tool to study the growth in numerical solutions of differential equations. For

any matrix norm subordinate to a vector norm and A ∈ Rm×m, define the logarithmic

norm of A by

µ(A) = lim
h→+0

‖I + hA‖ − 1

h
. (2.4)

We use the following three well-known lemmas [30] later.

Lemma 2.1

(1) µ(A) ≤ ‖A‖;

(2) µ(A + B) ≤ µ(A) + µ(B);

(3) µ(αA) = αµ(A), for any α ≥ 0;

(4) |µ(A)− µ(B)| ≤ ‖A−B‖.

Lemma 2.2 If An → A, then µ(An) → µ(A).

Proof. From Lemma 2.1 (4), it follows that

|µ(An)− µ(A)| ≤ ‖An − A‖ → 0.

¤
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Lemma 2.3 ‖eA‖ ≤ eµ(A) ≤ e‖A‖.

We provide below what we consider to be a simpler proof than the standard proof

that appears for example in [3].

Proof. From the definition of the log norm, (2.4), it follows that, for any ε > 0, there

exists a δ1 > 0, such that, for all h satisfying 0 < h < δ1, we have that

‖I + hA‖ − 1

h
− µ(A) <

ε

4

or equivalently

‖I + hA‖ < 1 + hµ(A) +
hε

4
.

Since

ehA = I + hA +
∞∑

k=2

hkAk

k!

it follows that

‖ehA‖ ≤ ‖I + hA‖+
∞∑

k=2

hk‖A‖k

k!
= ‖I + hA‖+ h2M1(h)

where

M1(h) =
∞∑

k=2

hk−2‖A‖k

k!

is a convergent series. Therefore, there exists δ2 > 0, satisfying δ2 < δ1, such that, for all

h satisfying 0 < h < δ2, we have hM1(h) < ε
4
. Thus

‖ehA‖ < ‖I + hA‖+
hε

4
< 1 + hµ(A) +

hε

2
. (2.5)

Similarly,

ehµ(A) = 1 + hµ(A) +
∞∑

k=2

hk[µ(A)]k

k!

≥ 1 + hµ(A)−
∞∑

k=2

hk|µ(A)|k
k!

= 1 + hµ(A)− h2M2(h) (2.6)
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where

M2(h) =
∞∑

k=2

hk−2|µ(A)|k
k!

is also a convergent series. Therefore, there exists δ > 0, satisfying δ < δ2, such that, for

all h satisfying 0 < h < δ, we have hM2(h) < ε
2
. Thus from (2.6)

1 + hµ(A) < ehµ(A) +
hε

2
. (2.7)

Combining inequalities (2.5) and (2.7), we get

‖ehA‖ < 1 + hµ(A) +
hε

2
< ehµ(A) + hε (2.8)

for all h satisfying 0 < h < δ.

Choose a positive integer N such that h = 1
N

< δ. It follows from (2.8) that

‖e A
N ‖ < e

µ(A)
N +

ε

N

Therefore

‖eA‖ = ‖(e A
N )N‖

≤ ‖e A
N ‖N

<
(
e

µ(A)
N +

ε

N

)N

= eµ(A) +
N∑

k=1

(
N

k

) ( ε

N

)k

e
(N−k)µ(A)

N

≤ eµ(A) +
N∑

k=1

1

Nk

(
N

k

)
εke|µ(A)|.

Since

1

Nk

(
N

k

)
=

N(N − 1) · · · (N − k + 1)

Nkk!
≤ 1

k!

for k = 1, . . . , N , it follows that

‖eA‖ < eµ(A) + εe|µ(A)|
N∑

k=1

εk−1

k!
.
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Without loss of generality, we may assume ε < 1. Hence,

N∑

k=1

εk−1

k!
<

N∑

k=1

1

k!
< e.

Therefore,

‖eA‖ < eµ(A) + εe|µ(A)|+1. (2.9)

Since ε is an arbitrary positive constant, inequality (2.8) implies that ‖eA‖ ≤ eµ(A).

Moreover, since µ(A) ≤ ‖A‖ from Lemma 2.1 (1), ‖eA‖ ≤ eµ(A) ≤ e‖A‖.

¤

Note that µ(A) = limh→0+
‖I+hA‖−1

h
depends on the matrix norm we use for ‖I +hA‖.

In this thesis, we use ‖I + hA‖∞ throughout. Thus for

A =




a11 a12 . . . a1m

a21 a22 . . . a2m

. . . . . . . . . . . .

am1 am2 . . . amm




we get

I + hA =




1 + ha11 ha12 . . . ha1m

ha21 1 + ha22 . . . ha2m

. . . . . . . . . . . .

ham1 ham2 . . . 1 + hamm




.

Hence,

‖I + hA‖∞ = max
1≤i≤m

(|1 + haii|+
∑

j 6=i

|haij|).

For h > 0 small enough, 1 + haii > 0. So |1 + haii| = 1 + haii. Thus,

‖I + hA‖∞ = 1 + h max
1≤i≤m

(aii +
∑

j 6=i

|aij|).

Therefore,

µ(A) = lim
h→+0

‖I + hA‖∞ − 1

h
= max

1≤i≤m
(aii +

∑

j 6=i

|aij|).

Note that µ(A) may be negative. Also note that, if aii ≥ 0 for i = 1, . . . , m, then

µ(A) = ‖A‖.
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2.6 Hausdorff Distance

Let (X, d) be a metric space and P0(X) be the set of all nonempty subsets of X. For

A ∈ P0(X), and x ∈ X, define the distance from x to A as

d(x,A) = inf
a∈A

d(x, a).

If x ∈ A, then d(x,A) = 0, but, if d(x,A) = 0, we can not conclude that x ∈ A. For

example, if x = 0, A = (0, 1), then d(x,A) = 0, but x 6∈ A. However, if d(x,A) = 0, then

x ∈ Ā, where Ā is the closure of A.

For A and B ∈ P0(X), define the distance from A to B as

d(A,B) = inf
a∈A,b∈B

d(a, b).

If A ∩ B 6= ∅, then d(A,B) = 0, but if d(A,B) = 0, then we can not conclude that

A ∩B = ∅. For example, if A = (0, 1) and B = (1, 2), then d(A,B) = 0, but A
⋂

B = ∅.
However, if d(A,B) = 0, then Ā ∩ B̄ 6= ∅.

For λ ∈ R+ = {x ∈ R : x > 0} and A ∈ P0(X), define

λ + A = {x ∈ X : d(x,A) < λ} = {x ∈ X : ∃a ∈ A s.t. d(x, a) < λ}.

For A and B ∈ P0(X), define the Hausdorff distance [14] [15] between A and B as

H(A,B) = inf{λ > 0 : A ⊂ λ + B and B ⊂ λ + A}. (2.10)

The following results follow immediately from definition (2.10).

• If λ > 0, A ⊂ λ + B and B ⊂ λ + A, then H(A,B) ≤ λ.

• For any ε > 0, A ⊂ (H(A,B) + ε) + B and B ⊂ (H(A,B) + ε) + A.

• If A = B, then H(A,B) = 0, but if H(A,B) = 0, we can not conclude that A = B.

For example, if A = (0, 1] and B = [0, 1), then H(A,B) = 0, but A 6= B. However,

if H(A,B) = 0, then Ā = B̄.
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The Hausdorff distance between A and B can also be defined as

H1(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}. (2.11)

Definitions (2.10) and (2.11) are equivalent. To see this, choose any ε > 0. As noted

above, it follows from (2.10) that

A ⊂ (H(A,B) + ε) + B.

Therefore, for any x ∈ A, there exists y ∈ B, such that d(x, y) < H(A,B) + ε. Thus,

inf
y∈B

d(x, y) < H(A,B) + ε.

Since the last inequality holds for all x ∈ A,

sup
x∈A

inf
y∈B

d(x, y) ≤ H(A, B) + ε.

Similarly, we can show that

sup
y∈B

inf
x∈A

d(x, y) ≤ H(A,B) + ε.

Thus, H1(A,B) ≤ H(A,B) + ε. Since ε is arbitrary, H1(A,B) ≤ H(A,B).

On the other hand, for any ε > 0, by definition (2.11) of H1(A,B),

sup
x∈A

inf
y∈B

d(x, y) < H1(A,B) + ε.

Thus, for any x ∈ A, infy∈B d(x, y) < H1(A,B) + ε. Hence, there exists y ∈ B, such that

d(x, y) < H1(A,B) + ε. Therefore, A ⊂ (H1(A, B) + ε) + B.

Similarly, we can show that B ⊂ (H1(A,B)+ε)+A. Hence, H(A,B) ≤ H1(A,B)+ε.

Since ε is arbitrary, H(A,B) ≤ H1(A,B).

Therefore, H(A,B) = H1(A,B).

Indeed, in [19], for X = Rm, and A and B compact sets, the authors define the

Hausdorff distance as

H2(A, B) = max{max
x∈A

min
y∈B

‖x− y‖, max
y∈B

min
x∈A

‖x− y‖}.
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In this case, since A and B are compact, d(x, y) = ‖x − y‖ can obtain its sup and inf

values. Thus, H2(A,B) = H1(A,B) = H(A,B).

Lemma 2.4 Let A and B ∈ P0(X) with B compact. Then, for any x ∈ A, there exists

y ∈ B such that d(x, y) ≤ H(A,B).

Proof. Combining H1(A,B) = H(A,B) with definition (2.11) of H1(A,B), we get

that

sup
x∈A

inf
y∈B

d(x, y) ≤ H1(A,B) = H(A, B).

Hence, for any x ∈ A, infy∈B d(x, y) ≤ H(A,B). Since B is compact, there exists

ŷ ∈ B such that d(x, ŷ) = infy∈B d(x, y) ≤ H(A,B). That is, for any x ∈ A, there exists

y ∈ B such that d(x, y) ≤ H(A,B).

¤

Lemma 2.5 If X is a normed linear space, then for any A1, A2, B1, B2 ∈ P0(X),

H(A1 + A2, B1 + B2) ≤ H(A1, B1) + H(A2, B2).

See [15], Proposition 4.3.15(ii) and Remark 4.3.17.

Proof. For any x, y ∈ X, we define d(x, y) = ‖x−y‖, where ‖·‖ is the norm associated

with the linear space X.

From definition (2.10) of the Hausdorff distance H, for any ε > 0,

A1 ⊂ (H(A1, B1) + ε) + B1,

B1 ⊂ (H(A1, B1) + ε) + A1,

A2 ⊂ (H(A2, B2) + ε) + B2,

B2 ⊂ (H(A2, B2) + ε) + A2.

Since X is linear space, for any u ∈ A1 + A2, there exist a1 ∈ A1 and a2 ∈ A2 such

that u = a1 + a2. Moreover, since A1 ⊂ (H(A1, B1) + ε) + B1, there exists b1 ∈ B1
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such that d(a1, b1) < H(A1, B1) + ε. Similarly, there exists b2 ∈ B2 such that d(a2, b2) <

H(A2, B2) + ε. Let v = b1 + b2 ∈ B1 + B2. Then

d(u, v) = ‖u− v‖

= ‖(a1 + a2)− (b1 + b2)‖

≤ ‖a1 − b1‖+ ‖a2 − b2‖

= d(a1, b1) + d(a2, b2)

< H(A1, B1) + H(A2, B2) + 2ε.

Therefore, A1 + A2 ⊂ (H(A1, B1) + H(A2, B2) + 2ε) + (B1 + B2). Similarly, B1 + B2 ⊂
(H(A1, B1) + H(A2, B2) + 2ε) + (A1 + A2). Hence,

H(A1 + A2, B1 + B2) ≤ H(A1, B1) + H(A2, B2) + 2ε.

Since ε is arbitrary,

H(A1 + A2, B1 + B2) ≤ H(A1, B1) + H(A2, B2).

¤

Let [A] ∈ IRm×m be an interval matrix and ϕ : [t0, T ] → R and δ : [t0, T ] →
Rm be continuous functions. We define the integral of an interval vector function

exp([A]ϕ(t))δ(t) as follows. Consider a sequence of meshes t0 = t
(p)
0 < t

(p)
1 < · · · <

t
(p)
p = T where ∆t

(p)
i = t

(p)
i+1 − t

(p)
i , i = 0, 1, . . . , p − 1, and let ξ

(p)
i be any point in

[t
(p)
i , t

(p)
i+1], i = 0, 1, . . . , p − 1. Moreover, assume that max0≤i<p ∆t

(p)
i → 0 as p → ∞. If

there exists an interval vector [I] ∈ IRm such that, for any such sequence of meshes, the

Hausdorff distance

H(

p−1∑
i=0

exp([A]ϕ(ξ
(p)
i ))δ(ξ

(p)
i )∆t

(p)
i , [I]) → 0 as p →∞,

then we say that [I] is the integral of the interval vector function exp([A]ϕ(t))δ(t) on

[t0, T ] and we denote this by

[I] =

∫ T

t0

exp([A]ϕ(t))δ(t)dt.



Chapter 3

Main Results

Our goal in this chapter is to show that formula (1.2) holds. The proof is straightforward

in the case that A(t) commutes for all t ∈ [t0, T ] in the sense that A(t′)A(t′′) = A(t′′)A(t′)

for all t′, t′′ ∈ [t0, T ], where A(t) =
∫ 1

0
fy(t, z(t)−s(z(t)−y(t)))ds, y(t) is the true solution

to (1.1) and z(t) is an approximate solution to (1.1). Therefore, using the notation

introduced at the start of Chapter 1 and the mean value theorem from §2.4, we see that

e′(t) = z′(t)− y′(t)

= (f(t, z(t))− f(t, y(t))) + δ(t)

= A(t)(z(t)− y(t)) + δ(t)

= A(t)e(t) + δ(t).

If A(t′)A(t′′) = A(t′′)A(t′) for all t′, t′′ ∈ [t0, T ], then

e(tn+1) = exp

(∫ tn+1

tn

A(ξ)dξ

)
e(tn) +

∫ tn+1

tn

exp

(∫ tn+1

s

A(ξ)dξ

)
δ(s)ds

∈ exp([A](tn+1 − tn))e(tn) +

∫ tn+1

tn

exp([A](tn+1 − s))δ(s)ds,

where A(ξ) ∈ [A] for all ξ ∈ [tn, tn+1]. In particular, if A(t) = A for all t ∈ [t0, T ], this

simplifies to the well-known formula

e(tn+1) = exp(A(tn+1 − tn))e(tn) +

∫ tn+1

tn

exp(A(tn+1 − s))δ(s)ds. (3.1)

19
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However, if A(t′)A(t′′) 6= A(t′′)A(t′) for some t′, t′′ ∈ [tn, tn+1], it may happen that

e(tn+1) 6= exp

(∫ tn+1

tn

A(ξ)dξ

)
e(tn) +

∫ tn+1

tn

exp

(∫ tn+1

tn

A(ξ)dξ

)
δ(s)ds.

Formula (1.2) is a generalization of (3.1) that holds even if A(t′)A(t′′) 6= A(t′′)A(t′)

for some t′, t′′ ∈ [tn, tn+1]. We prove formula (1.2) using Hasudorff distance and interval

arithmetic.

Assume that we have a grid t0 < t1 < · · · < tN = T on [t0, T ] and that we know e(0),

or at least have a bound on it. Then we can use formula (1.2), which we are about to

derive, to inductively bound e(tn+1) in terms of e(tn).

To this end, consider the ODE

e′ = A(t)e + δ(t), t ∈ [tn, tn+1]. (3.2)

To derive our formula (1.2), we consider the application of Euler’s method, with stepsize

h
l
, to integrate (3.2) from tn to tn+1. This numerical integration is used only to develop

our bound (1.2) on e(tn); it is not used in actual computation.

Let e
(l)
n,0 = e(tn). Then

e
(l)
n,1 = e

(l)
n,0 +

h

l
(A1e

(l)
n,0 + δ1)

= (I +
h

l
A1)e

(l)
n,0 +

h

l
δ1

where A1 = A(tn) and δ1 = δ(tn). Similarly,

e
(l)
n,2 = e

(l)
n,1 +

h

l
(A2e

(l)
n,1 + δ2)

= (I +
h

l
A2)e

(l)
n,1 +

h

l
δ2

= (I +
h

l
A2)(I +

h

l
A1)e

(l)
n,0 +

h

l
[(I +

h

l
A2)δ1 + δ2]

where A2 = A(tn + h
l
) and δ2 = δ(tn + h

l
). Continuing in this way, we see that

e
(l)
n,l = e

(l)
n,l−1 +

h

l
(Ale

(l)
n,l−1 + δl)

= (I +
h

l
Al)e

(l)
n,l−1 +

h

l
δl

= (I +
h

l
Al) · · · (I +

h

l
A1)e

(l)
n,0 +

h

l

l∑

k=1

[(I +
h

l
Al) · · · (I +

h

l
Ak+1)δk]
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where Al = A(tn + (l−1)h
l

) and δl = δ(tn + (l−1)h
l

).

Denote

Sn,l = (I +
h

l
Al) · · · (I +

h

l
A1)e(tn)

σn,l =
h

l

l∑

k=1

[(I +
h

l
Al) · · · (I +

h

l
Ak+1)δk].

Then e
(l)
n,l = Sn,l + σn,l. When l →∞, the stepsize h

l
→ 0 and e(tn+1) = liml→∞ e

(l)
n,l.

Let

A(t) =




a11(t) a12(t) . . . a1m(t)

a21(t) a22(t) . . . a2m(t)

. . . . . . . . . . . .

am1(t) am2(t) . . . amm(t)




.

Since we assumed the function f associated with the IVP (1.1) is smooth and A(t) =
∫ 1

0
fy(t, z(t)− s(z(t)− y(t)))ds, each aij(t) is continuous on [tn, tn+1]. Let

aij = min
tn≤t≤tn+1

aij(t), āij = max
tn≤t≤tn+1

aij(t)

and define

[A] =




[a11, ā11] [a12, ā12] . . . [a1m, ā1m]

[a21, ā21] [a22, ā22] . . . [a2m, ā2m]

. . . . . . . . . . . .

[am1, ām1] [am2, ām2] . . . [amm, āmm]




.

[A] is a closed convex set in an m2-dimension linear space,

‖[A]‖ = max
1≤i≤m

m∑
j=1

|[aij]| = a∗ < +∞.

To derive formula (1.2), let us first focus on Sn,l. To this end, let

B(l)
n = (I +

h

l
Al) · · · (I +

h

l
A1).

Since

Ak = A(tn +
(k − 1)h

l
) =

(
aij(tn +

(k − 1)h

l
)

)

i,j=1,...,m
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it follows that

‖Ak‖ = max
1≤i≤m

m∑
j=1

|aij(tn +
(k − 1)h

l
)|

≤ max
1≤i≤m

m∑
j=1

max(|aij|, |aij|)

= max
1≤i≤m

m∑
j=1

|[aij]|

= a∗

for k = 1, . . . , l. Therefore,

‖B(l)
n ‖ ≤ ‖I +

h

l
Al‖ · · · ‖I +

h

l
A1‖

≤ [1 +
h

l
‖Al‖] · · · [1 +

h

l
‖A1‖]

≤ (1 +
a∗h
l

)l

≤ ea∗h.

Since {B(l)
n }∞l=1 is a bounded set in m2-dimension linear space, there exists a subse-

quence {B(lk)
n }∞k=1 of {B(l)

n }∞l=1 such that B
(lk)
n → Bn as lk →∞. Let Sn = Bne(tn). Then

Sn,lk = B
(lk)
n e(tn) → Sn as lk →∞.

Now note that

B(l)
n = (I +

h

l
Al) · · · (I +

h

l
A1)

= I +

(
l

1

)(
h

l

)
C1 +

(
l

2

)(
h

l

)2

C2 + · · ·+
(

l

l

)(
h

l

)l

Cl

where Ck =
(

l
k

)−1× the sum of the
(

l
k

)
products of any k out of the l Ai’s in the order

they appear in B
(l)
n .

Since [A]k is convex and Ck is the convex combination of
(

l
k

)
points in [A]k, Ck ∈ [A]k.

Thus

B(l)
n = (I +

h

l
Al) · · · (I +

h

l
A1)
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= I +
l∑

k=1

(
l

k

)(
h

l

)k

Ck

∈ I +
l∑

k=1

(
l

k

)(
h

l

)k

[A]k

=
l∑

k=0

(
l

k

)(
h

l

)k

[A]k.

Since
∑l

k=0

(
l
k

)
(h

l
)k[A]k is an interval matrix and

‖
l∑

k=0

(
l

k

)
(
h

l
)k[A]k‖ ≤

l∑

k=0

(
l

k

)
(
a∗h
l

)k = (1 +
a∗h
l

)l ≤ ea∗h,

∑l
k=0

(
l
k

)
(h

l
)k[A]k is a bounded closed subset in m2-dimension linear space.

Define exp([A]) =
∑∞

k=0
[A]k

k!
. We want to show that Bn ∈ exp(h[A]). To this end, we

prove the following six lemmas.

Lemma 3.1 If
∑∞

k=0 ak and
∑∞

k=0 bk are convergent series, then

∞∑

k=0

[ak, bk] =

[ ∞∑

k=0

ak,

∞∑

k=0

bk

]
.

Proof. Choose any ξ ∈ ∑∞
k=0[ak, bk]. Then there exists ξk ∈ [ak, bk], k = 0, 1, 2, . . .,

such that ξ =
∑∞

k=0 ξk. Since
∑∞

k=0 ak ≤
∑∞

k=0 ξk ≤
∑∞

k=0 bk, ξ ∈ [
∑∞

k=0 ak,
∑∞

k=0 bk].

Therefore,
∞∑

k=0

[ak, bk] ⊂
[ ∞∑

k=0

ak,

∞∑

k=0

bk

]

To show [
∑

ak,
∑

bk] ⊂
∑

[ak, bk],we first prove
∑∞

k=0[ak, bk] is convex. To this end,

choose any c and d ∈ ∑∞
k=0[ak, bk]. Then note that c =

∑∞
k=0 ck and d =

∑∞
k=0 dk for some

ck and dk ∈ [ak, bk], k = 0, 1, 2, . . .. Now observe that, for any t ∈ [0, 1], tc + (1 − t)d =

∑∞
k=0[tck + (1− t)dk]. Since [ak, bk] is convex, tck + (1− t)dk ∈ [ak, bk] for k = 0, 1, 2, . . ..

Therefore, tc+(1− t)d ∈ ∑∞
k=0[ak, bk]. Thus,

∑∞
k=0[ak, bk] is convex. Consequently, since

∑∞
k=0 ak,

∑∞
k=0 bk ∈

∑∞
k=0[ak, bk], any convex combinations of

∑∞
k=0 ak and

∑∞
k=0 bk is in

∑∞
k=0[ak, bk]. Hence [

∑∞
k=0 ak,

∑∞
k=0 bk] ⊂

∑∞
k=0[ak, bk].
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Therefore,
∞∑

k=0

[ak, bk] =

[ ∞∑

k=0

ak,

∞∑

k=0

bk

]
.

¤

Lemma 3.2 exp([A]) is closed.

Proof. It is sufficient to prove exp([A]) is an interval matrix. To this end, let [A]k =

([a
(k)
ij , ā

(k)
ij ])i,j=1,...,m, k = 0, 1, 2, . . .. Since ‖[A]‖ = a∗,

max
1≤i≤m

m∑
j=1

|[a(k)
ij , ā

(k)
ij ]| = ‖[A]k‖ ≤ ‖[A]‖k = (a∗)k

for k = 0, 1, 2, . . . Hence |[a(k)
ij , ā

(k)
ij ]| ≤ (a∗)k for i, j = 1, . . . , m and k = 0, 1, 2, . . .. Since

max(|a(k)
ij |, |ā(k)

ij |) = |[a(k)
ij , ā

(k)
ij ]| ≤ (a∗)k, |a(k)

ij | ≤ (a∗)k and |ā(k)
ij | ≤ (a∗)k, k = 0, 1, 2, . . ..

Therefore

∞∑

k=0

|a(k)
ij |
k!

≤
∞∑

k=0

(a∗)k

k!
= ea∗

∞∑

k=0

|ā(k)
ij |
k!

≤
∞∑

k=0

(a∗)k

k!
= ea∗

Hence,
∑∞

k=0

a
(k)
ij

k!
and

∑∞
k=0

ā
(k)
ij

k!
are convergence series for each i, j = 1, . . . , m.

Thus, by Lemma 3.1, exp([A]) = ([eij, eij])i,j=1,2,...,m where eij =
∑∞

k=0

a
(k)
ij

k!
and eij =

∑∞
k=0

ā
(k)
ij

k!
. That is, exp([A]) is an interval matrix.

¤

Now we give three lemmas on Hausdorff distance.

Lemma 3.3 If X is a normed linear space and B ∈ P0(X), then

H(0, B) ≤ sup
b∈B

‖b‖

where 0 denotes the zero element of X.
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Proof. For any ε > 0, since 0 ⊂ [supb∈B ‖b‖ + ε] + B and B ⊂ [supb∈B ‖b‖ + ε] + 0.

Therefore, H(0, B) ≤ supb∈B ‖b‖+ ε. Since ε is arbitrary, H(0, B) ≤ supb∈B ‖b‖.
¤

Lemma 3.4 If X is a normed linear space, A,B1, B2 ∈ P0(X), then

H(A,B1 + B2) ≤ H(A,B1) + sup
b∈B2

‖b‖.

Proof. By Lemma 2.5 and Lemma 3.3,

H(A,B1 + B2) = H(A + 0, B1 + B2)

≤ H(A,B1) + H(0, B2)

≤ H(A,B1) + sup
b∈B2

‖b‖

¤

Lemma 3.5 . If X is a normed linear space, A is a nonempty convex subset of X and

λ ≥ µ > 0, then H(µA, λA) ≤ (λ− µ) supa∈A ‖a‖.

Proof. First, we want to show λA = µA+(λ−µ)A. Obviously, λA ⊂ µA+(λ−µ)A.

On the other hand, for any w ∈ µA + (λ − µ)A, there exist a1, a2 ∈ A such that

w = µa1+(λ−µ)a2 = λ[µ
λ
a1+

λ−µ
λ

a2]. Since A is convex, µ
λ
a1+

λ−µ
λ

a2 = v ∈ A. Therefore,

w = λv ∈ λA. Hence λA ⊃ µA + (λ− µ)A. Consequently, λA = µA + (λ− µ)A.

By Lemma 2.5 and Lemma 3.3,

H(µA, λA) = H(µA + 0, µA + (λ− µ)A)

≤ H(µA, µA) + H(0, (λ− µ)A)

≤ sup
a∈A

‖(λ− µ)a‖

= (λ− µ) sup
a∈A

‖a‖

¤
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Theorem 3.1

H(
l∑

k=0

(
l

k

)
(
h

l
)k[A]k, exp([A]h)) → 0 as l →∞.

Proof. First note that

1

k!
− 1

lk

(
l

k

)
=

1

k!
− 1

k!
· l(l − 1) · · · (l − k + 1)

lk
≥ 0.

By Lemma 2.5, Lemma 3.4 and Lemma 3.5, we obtain that

H(
l∑

k=0

(
l

k

)(
h

l

)k

[A]k, exp([A]h))

= H(
l∑

k=0

(
l

k

)(
h

l

)k

[A]k,
∞∑

k=0

hk

k!
[A]k)

= H(
l∑

k=0

(
l

k

)(
h

l

)k

[A]k + 0,
l∑

k=0

hk

k!
[A]k +

∞∑

k=l+1

hk

k!
[A]k)

≤ H(
l∑

k=0

1

lk

(
l

k

)
hk[A]k,

l∑

k=0

1

k!
hk[A]k) + H(0,

∞∑

k=l+1

hk

k!
[A]k)

≤
l∑

k=0

[
1

k!
− 1

lk

(
l

k

)]
(a∗h)k +

∞∑

k=l+1

(a∗h)k

k!

=
∞∑

k=0

(a∗h)k

k!
−

l∑

k=0

(
l

k

)
(
a∗h
l

)k

= ea∗h − (1 +
a∗h
l

)l

→ 0 as l →∞.

¤

Theorem 3.2 Bn ∈ exp([A]h).

Proof. As noted before, there exists a subsequence {B(lk)
n }∞k=1 of {B(l)

n }∞l=1 such that

B
(lk)
n → Bn as lk → ∞. B

(lk)
n ∈ ∑lk

i=0

(
lk
i

)
( h

lk
)i[A]i and both

∑lk
i=0

(
lk
i

)
( h

lk
)i[A]i and

exp([A]h) are bounded closed subsets in m2-dimensional linear space. Therefore, by
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Lemma 2.4, there exists b
(lk)
n ∈ exp([A]h) such that

d(B(lk)
n , b(lk)

n ) ≤ H(B(lk)
n , exp([A]h)) = H(

lk∑
i=0

(
lk
i

)(
h

lk

)i

[A]i, exp([A]h)).

Hence,

d(Bn, exp([A]h)) ≤ d(Bn, b(lk)
n )

≤ d(Bn, B(lk)
n ) + d(B(lk)

n , b(lk)
n )

≤ d(Bn, B(lk)
n ) + H(

lk∑
i=0

(
lk
i

)(
h

lk

)i

[A]i, exp([A]h))

→ 0 as lk →∞.

since, as noted above, d(Bn, B
(lk)
n ) → 0 as lk →∞ and

H(

lk∑
i=0

(
lk
i

)
(
h

lk
)i[A]i, exp([A]h)) → 0 as lk →∞

by Theorem 3.1. Therefore, d(Bn, exp([A]h)) = 0. By Lemma 3.2, exp([A]h) is a closed

set, whence Bn ∈ exp([A]h).

¤

Corollary 3.1 Sn ∈ exp([A]h)e(tn).

Proof. Recall Sn = Bne(tn). Since Bn ∈ exp([A]h), Sn ∈ exp([A]h)e(tn).

¤

Now, consider σn,l. First, evaluate

H(
l−k∑
i=0

(
l − k

i

)
(
h

l
)i[A]i, exp([A](h− k

l
h))).

To this end, let D
(l)
n,l−k = (I + h

l
Al) · · · (I + h

l
Ak+1). By an argument similar to that used

above for Bl
n, we can get

D
(l)
n,l−k ∈

l−k∑
i=0

(
l − k

i

) (
h

l

)i

[A]i.
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Note that

1

i!

(
l − k

l

)i

− 1

li

(
l − k

i

)
=

1

i!

(l − k)i − (l − k) · · · (l − k − i + 1)

li
≥ 0

By Lemma 2.5, Lemma 3.4 and Lemma 3.5, we obtain that

H(
l−k∑
i=0

(
l − k

i

)(
h

l

)i

[A]i, exp([A](h− k

l
h)))

= H(
l−k∑
i=0

(
l − k

i

)(
h

l

)i

[A]i,
∞∑
i=0

1

i!

(
l − k

l

)i

hi[A]i)

= H(
l−k∑
i=0

(
l − k

i

)(
h

l

)i

[A]i + 0,
l−k∑
i=0

1

i!

(
l − k

l

)i

hi[A]i +
∞∑

i=l−k+1

1

i!

(
l − k

l

)i

hi[A]i)

≤ H(
l−k∑
i=0

1

li

(
l − k

i

)
hi[A]i,

l−k∑
i=0

1

i!

(
l − k

l

)i

hi[A]i) + H(0,
∞∑

i=l−k+1

1

i!

(
l − k

l

)i

hi[A]i)

≤
l−k∑
i=0

[
1

i!

(
l − k

l

)i

− 1

li

(
l − k

i

)
](a∗h)i +

∞∑

i=l−k+1

1

i!

(
l − k

l

)i

(a∗h)i

=
∞∑
i=0

1

i!

(
l − k

l

)i

(a∗h)i −
l−k∑
i=0

(
l − k

i

)
(
a∗h
l

)i

= e
l−k

l
a∗h − (1 +

a∗h
l

)l−k. (3.3)

Next, we will show that

e
l−k

l
a∗h − (1 +

a∗h
l

)l−k ≤ ea∗h − (1 +
a∗h
l

)l = O(
1

l
), k = 1, 2, . . . , l. (3.4)

To this end, define f(x) = ea∗h−x − (1 + a∗h
l

)l(1− x
a∗h

), and note that f(x) is continuous

and differentiable on [0, a∗h], with

f ′(x) = −ea∗h−x + (1 +
a∗h
l

)l(1− x
a∗h

) ln(1 +
a∗h
l

)
l

a∗h
.

Since (1 + a∗h
l

)
l

a∗h is increasing with l and converge to e as l →∞,

(1 +
a∗h
l

)l(1− x
a∗h

) = [(1 +
a∗h
l

)
l

a∗h ]a
∗h−x ≤ ea∗h−x.

By the mean value theorem,

ln(1 +
a∗h
l

) = ln(
l + a∗h

l
) = ln(l + a∗h)− ln l =

a∗h
ξ
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where l ≤ ξ ≤ l + a∗h. Hence,

(1 +
a∗h
l

)l(1− x
a∗h

) ln(1 +
a∗h
l

)
l

a∗h
≤ ea∗h−x · a∗h

ξ
· l

a∗h
≤ ea∗h−x.

Consequently f ′(x) ≤ 0. Thus f(x) is a nonincreasing function on [0, a∗h]. Therefore,

for any x ∈ [0, a∗h],

f(x) ≤ f(0) = ea∗h − (1 +
a∗h
l

)l.

In particular, for any k = 1, . . . , l, ka∗h
l
∈ [0, a∗h], hence

f(
k

l
a∗h) = e

l−k
l

a∗h − (1 +
a∗h
l

)l−k ≤ ea∗h − (1 +
a∗h
l

)l.

Now, we only need to show ea∗h − (1 + a∗h
l

)l = O(1
l
). To this end, let a∗h

l
= u, and

note that u → 0 as l →∞. Thus,

ea∗h − (1 +
a∗h
l

)l = ea∗h − g(u)

where g(u) = (1 + u)
a∗h

u . Using L’Hospital rule, we see that

lim
u→0

ea∗h − g(u)

u
= − lim

u→0
g′(u).

Since g(u) = (1 + u)
a∗h

u , ln g(u) = a∗h
u

ln(1 + u). Therefore,

g′(u)

g(u)
=

a∗h[ u
1+u

− ln(1 + u)]

u2

=
a∗h[u(1− u + u2 − · · ·)− (u− u2

2
+ u3

3
− · · ·)]

u2

= a∗h[−1

2
+

2

3
u− · · ·].

Thus,

g′(u) = (1 + u)
a∗h

u a∗h[−1

2
+

2

3
u− · · ·].

Consequently,

lim
u→0

ea∗h − g(u)

u
= − lim

u→0
g′(u) =

a∗h
2

ea∗h.

Recalling u = a∗h
l

, we see that

lim
l→∞

ea∗h − (1 + a∗h
l

)l

1
l

=
a2h2

2
ea∗h.
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Thus,

ea∗h − (1 +
a∗h
l

)l = O(
1

l
).

Combining this with (3.3), (3.4) and Lemma 2.4, we see that

l−k∑
i=0

(
l − k

i

) (
h

l

)i

[A]i ⊂ exp([A](h− k

l
h)) + uk(l) k = 1, . . . , l

where uk(l) ⊂ Rm×m and supu∈uk(l) ‖u‖ ≤ ea∗h − (1 + a∗h
l

)l = O(1
l
), k = 1, . . . , l.

On the other hand,

δk = δ(tn +
k − 1

l
h)

= δ(tn +
kh

l
− h

l
)

= δ(tn +
kh

l
) + vk(l)

where vk(l) ⊂ Rm and supv∈vk(l) ‖v‖ = O(1
l
), k = 1, . . . , l. Thus,

σn,l =
h

l

l∑

k=1

[(I +
h

l
Al) · · · (I +

h

l
Ak+1)δk]

∈ h

l

l∑

k=1

[
l−k∑
i=0

(
l − k

i

)(
h

l

)i

[A]i

]
δk

⊂ h

l

l∑

k=1

[
exp([A](h− k

l
h)) + uk(l)

] [
δ(tn +

kh

l
) + vk(l)

]

⊂ h

l

l∑

k=1

[
exp([A](h− k

l
h))δ(tn +

kh

l
)

]
+ r(l)

where r(l) ⊂ Rm and supr∈r(l) ‖r‖ = O(1
l
).

Let l →∞, and by the definition of the integral, we get

h

l

l∑

k=1

[exp([A](h− k

l
h))δ(tn +

kh

l
)] + r(l)

→
∫ h

0

exp([A](h− u))δ(tn + u)du as l →∞

=

∫ tn+1

tn

exp([A](tn+1 − s))δ(s)ds.
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Lemma 3.6
∫ tn+1

tn
exp([A](tn+1 − s))δ(s)ds is a bounded closed set in m-dimensional

linear space.

Proof. First, note that

exp([A](tn+1 − s)) =
∞∑

k=0

(tn+1 − s)k

k!
[A]k.

Therefore,

‖exp([A](tn+1 − s))‖ ≤
∞∑

k=0

(tn+1 − s)k

k!
‖[A]k‖

≤
∞∑

k=0

(tn+1 − s)k

k!
(a∗)k

= ea∗(tn+1−s).

Hence,

‖
∫ tn+1

tn

exp([A](tn+1 − s))δ(s)ds‖ ≤
∫ tn+1

tn

‖exp([A](tn+1 − s))‖‖δ(s)‖ds

≤ M

∫ tn+1

tn

ea∗(tn+1−s)ds

where M = maxtn≤s≤tn+1 ‖δ(s)‖. For a∗ > 0,

∫ tn+1

tn

ea∗(tn+1−s)ds =

∫ h

0

ea∗tdt =
ea∗t

a∗

∣∣∣
t=h

t=0
=

1

a∗
(ea∗h − 1)

and, for a∗ = 0, ∫ tn+1

tn

ea∗(tn+1−s)ds =

∫ tn+1

tn

1ds = h.

Therefore,
∫ tn+1

tn
exp([A](tn+1 − s))δ(s)ds is bounded.

Next, from the definition of the integral,
∫ tn+1

tn
exp([A](tn+1 − s)δ(s)ds is an interval

vector. It must be a closed set in m−dimension linear space.

¤

Theorem 3.3

e(tn+1) ∈ exp([A](tn+1 − tn))e(tn) +

∫ tn+1

tn

exp([A](tn+1 − s))δ(s)ds.
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Proof. Since σn,l = h
l

∑l
k=1[(I + h

l
Al) · · · (I + h

l
Ak+1)δk],

‖σn,l‖ ≤ h

l

l∑

k=1

(1 +
h

l
a∗)l−kM ( where M = max

tn≤t≤tn+1

‖δk(t)‖)

≤ h

l
l(1 +

h

l
a∗)lM

≤ Mhea∗h.

Therefore, {σn,l}∞l=1 is a bounded set in m-dimension linear space. From the sub-

sequence lk, k = 1, 2, . . ., that we used in the analysis of Sn, we can choose a sub-

subsequence lk̄, k̄ = 1, 2, . . . such that there exists a convergent subsequence of {σn,lk̄
}∞̄

k=1

of {σn,l}∞l=1. To simplify the notation we still denote this as {σn,lk}∞k=1. Thus, there exists

a σn such that σn,lk → σn as lk →∞.

As in the proof of Theorem 3.2 and Corollary 3.1, note that
∫ tn+1

tn
exp([A](tn+1 −

s))δ(s)ds is closed (Lemma 3.6). Therefore, as in the proof above for Sn, we can show

that

σn ∈
∫ tn+1

tn

exp([A](tn+1 − s))δ(s)ds. (3.5)

Now recall that by Corollary 3.1 and equation (3.5)

Sn,lk → Sn ∈ exp([A](tn+1 − s))e(tn) (lk →∞)

σn,lk → σn ∈
∫ tn+1

tn

exp([A](tn+1 − s))δ(s)ds (lk →∞).

Therefore,

e(tn+1) = lim
lk→∞

(Sn,lk + σn,lk)

= lim
lk→∞

Sn,lk + lim
lk→∞

σn,lk

= Sn + σn

∈ exp([A](tn+1 − tn))e(tn) +

∫ tn+1

tn

exp([A](tn+1 − s))δ(s)ds.

¤



Chapter 4

Comparison to Dahlquist’s Results

and Neumaier’s Results

The following Theorem is due to Dahlquist, see Theorem 1.1 of [5] and the Main Theorem

of [11].

Theorem 4.1 Let f : [0, T ]× Rm → Rm. Let y(t) : [0, T ] → Rm be the unique solution

of the initial value problem

y′ = f(t, y), y(0) = y0, t ∈ [0, T ], (4.1)

and let z(t) : [0, T ] → Rm be an approximate solution to (4.1) in the sense that

‖e(0)‖ ≤ ε0

‖δ(t)‖ ≤ ρ(t), ∀t ∈ [0, T ],

where e(t) = z(t)− y(t) and δ(t) = z′(t)− f(t, z(t)). If

µ(fy(t, z(t)− s(z(t)− y(t)))) ≤ c(t), ∀t ∈ [0, T ], ∀s ∈ [0, 1],

then, ∀t ∈ [0, T ],

‖e(t)‖ ≤ ε0e
∫ t
0 c(s)ds + e

∫ t
0 c(s)ds

∫ t

0

ρ(s)e−
∫ s
0 c(u)duds (4.2)

33
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We shall prove Theorem 4.1 using the analysis leading up to Theorem 3.3 in Chapter

3. Our motivation for this is not to have another proof of Dahlquist’s important result,

but rather to show that our approach yields bounds that are as tight or tighter than

those that can be obtained by Dahlquist’s approach. To this end, recall that

y′ = f(t, y(t))

z′ = f(t, z(t)) + δ(t)

e(t) = z(t)− y(t).

Hence,

e′(t) = z′(t)− y′(t)

= [f(t, z(t))− f(t, y(t))] + δ(t)

=

[∫ 1

0

fy(t, z(t)− s(z(t)− y(t)))ds

]
(z(t)− y(t)) + δ(t)

= A(t)e(t) + δ(t) (4.3)

where A(t) =
∫ 1

0
fy(t, z(t)− s(z(t)− y(t)))ds ∈ Rm×m is continuous.

To prove Theorem 4.1, we need three lemmas.

Lemma 4.1 Under the assumptions of Theorem 4.1,

µ(A(t)) ≤ c(t), ∀t ∈ [0, T ].

Proof. Since A(t) =
∫ 1

0
fy(t, z(t) − s(z(t) − y(t)))ds, it follows from the definition of

the integral that

A(t) = lim
n→∞

1

n

n−1∑
i=0

fy(t, z(t)− i

n
(z(t)− y(t))).

Let An(t) = 1
n

∑n−1
i=0 fy(t, z(t)− i

n
(z(t)− y(t))), and note that An(t) → A(t) as n →∞.

Therefore, by Lemma 2.2 in Chapter 2,

µ(An(t)) → µ(A(t)) as n →∞. (4.4)
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Also by parts (2) and (3) of Lemma 2.1 in Chapter 2,

µ(An(t)) ≤ 1

n

n−1∑
i=0

µ(fy(t, z(t)− i

n
(z(t)− y(t))))

≤ 1

n
· nc(t) = c(t) (4.5)

for any positive integer n. Combining (4.4) and (4.5), we get that

µ(A(t)) ≤ c(t), ∀t ∈ [0, T ].

¤

Lemma 4.2 Under the assumptions of Theorem 4.1, for all t ∈ [0, T ], and for all η > 0,

there is an α(t) > 0 such that, if t′ ∈ [0, T ] with |t′ − t| < α(t) and 0 < h < α(t), then

‖I + hA(t′)‖ < 1 + hµ(A(t′)) + hη.

Proof. Choose any t ∈ [0, T ] and any η > 0. Since

lim
h→+0

‖I + hA(t)‖ − 1

h
= µ(A(t)),

there exists an α1(t) > 0 such that, for 0 < h < α1(t),

‖I + hA(t)‖ − 1

h
− µ(A(t)) <

η

3
.

Hence

‖I + hA(t)‖ < 1 + hµ(A(t)) +
hη

3
.

Also, since A(t) is continuous, there is an α2(t) > 0 such that, if |t′ − t| < α2(t), then

‖A(t′)− A(t)‖ <
η

3
.

In addition, by part (4) of Lemma 2.1 in Chapter 2,

|µ(A(t′))− µ(A(t))| ≤ ‖A(t′)− A(t)‖ <
η

3
.
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Take α(t) = min(α1(t), α2(t)). Therefore, for 0 < h < α(t) and |t′ − t| < α(t),

‖I + hA(t′)‖ = ‖(I + hA(t)) + h(A(t′)− A(t))‖

≤ ‖I + hA(t)‖+ h‖A(t′)− A(t)‖

< 1 + hµ(A(t)) +
hη

3
+

hη

3

< 1 + h(µ(A(t′)) +
η

3
) +

2hη

3

= 1 + hµ(A(t′)) + hη.

¤

Lemma 4.3 Under the assumptions of Theorem 4.1, for all η > 0, there is a δ > 0 such

that, if t ∈ [0, T ] and 0 < h < δ, then

‖I + hA(t)‖ < 1 + hc(t) + hη.

Proof. Choose any η > 0 and any t ∈ [0, T ]. By Lemma 4.2, there is an α(t) > 0 such

that, if t′ ∈ (t− α(t), t + α(t)) ∩ [0, T ] and 0 < h < α(t), then

‖I + hA(t′)‖ < 1 + hµ(A(t′)) + hη.

Since [0, T ] is compact and

⋃

t∈[0,T ]

(t− δ(t), t + δ(t)) ⊃ [0, T ],

by Borel’s open covering theorem, there exists a finite set of points t1, . . . , tM ∈ [0, T ]

such that
M⋃
i=1

(ti − δ(ti), ti + δ(ti)) ⊃ [0, T ].

Let δ = min(α(t1), . . . , α(tM)) > 0. For any t ∈ [0, T ], there is some i ∈ {1, . . . , M}
such that t ∈ (ti − α(ti), ti + α(ti)). For 0 < h < δ ≤ α(ti), by Lemma 4.1 and Lemma

4.2, we obtain that

‖I + hA(t)‖ < 1 + hµ(A(t)) + hη

≤ 1 + hc(t) + hη.
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¤

Now, we prove Theorem 4.1 using the analysis leading up to Theorem 3.3 in Chapter

3. Take tn = 0, tn+1 = t and h = tn+1 − tn. Then we showed in Chapter 3 that

e(t) = S + σ

where for convenience we have dropped the subscript n from S and σ in the last equation,

as we shall do throughout the rest of this Chapter for S, σ and similar expressions from

Chapter 3.

Recall that

S = Be(0)

B = lim
lk→∞

B(lk) = lim
lk→∞

(I +
t

lk
Alk) · · · (I +

t

lk
A1)

Ai = A(
i− 1

lk
t), i = 1, . . . , lk,

and

σ = lim
lk→∞

t

lk

lk∑
j=1

[(I +
t

lk
Alk) · · · (I +

t

lk
Aj+1)δj]

δj = δ(
j − 1

lk
t), j = 1, . . . , lk.

By Lemma 4.3, for any η > 0, there is a δ > 0 such that whenever 0 < h < δ, then

‖I + hAi‖ < 1 + hc(
i− 1

lk
t) + hη, i = 1, . . . , lk.

Choose K large enough such that, if k ≥ K, then

0 <
t

lk
< δ.

Using the inequality ex ≥ 1 + x, for all t ∈ [0, T ] we have

‖B(lk)‖ ≤ ‖I +
t

lk
Alk‖ · · · ‖I +

t

lk
A1‖

≤ (1 +
t

lk
c(

lk − 1

lk
t) +

ηt

lk
) · · · (1 +

t

lk
c(0) +

ηt

lk
)

≤ e
t

lk
[c(

lk−1

lk
t)+η+···+c(0)+η]

.
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Therefore,

‖B‖ = lim
lk→∞

‖B(lk)‖

≤ e
∫ t
0 [c(s)+η]ds. (4.6)

Since η is an arbitrary positive constant, (4.6) implies that

‖B‖ ≤ e
∫ t
0 c(s)ds

whence

‖S‖ = ‖Be(0)‖ ≤ ‖B‖‖e(0)‖ ≤ ε0e
∫ t
0 c(s)ds. (4.7)

Next, using the inequality ex ≥ 1 + x again, for all t ∈ [0, T ], we have

‖ t

lk

lk∑
j=1

[
(I +

t

lk
Alk) · · · (I +

t

lk
Aj+1)δj

]
‖

≤ t

lk

lk∑
j=1

‖I +
t

lk
Alk)‖ · · · ‖(I +

t

lk
Aj+1)‖ρ(

j − 1

lk
t)

≤ t

lk

lk∑
j=1

(1 +
t

lk
c(

lk − 1

lk
t) +

ηt

lk
) · · · (1 +

t

lk
c(

j

lk
t) +

ηt

lk
)ρ(

j − 1

lk
t)

≤ t

lk

lk∑
j=1

e
t

lk
[c(

lk−1

lk
t)+η+···+c( j

lk
t)+η]

ρ(
j − 1

lk
t)

≤ e
t

lk
[c(

lk−1

lk
t)+η+···+c(0)+η] t

lk

lk∑
j=1

ρ(
j − 1

lk
t)e

− t
lk

[c(0)+η+···+c( j−1
lk

t)+η]
.

Also,

lim
lk→∞

e
t

lk
[c(

lk−1

lk
t)+η+···+c(0)+η]

= e
∫ t
0 [c(s)+η]ds

and

lim
lk→∞

t

lk

lk∑
j=1

ρ(
j − 1

lk
t)e

− t
lk

[c(0)+η+···+c( j−1
lk

t)+η]
=

∫ t

0

ρ(s)e−
∫ s
0 [c(u)+η]duds.

Therefore

‖σ‖ ≤ e
∫ t
0 [c(s)+η]ds

∫ t

0

ρ(s)e−
∫ s
0 [c(u)+η]duds. (4.8)
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Since η is an arbitrary positive constant, (4.8) implies that

‖σ‖ ≤ e
∫ t
0 c(s)ds

∫ t

0

ρ(s)e−
∫ s
0 c(u)duds. (4.9)

From (4.7) and (4.9), we obtain that, ∀t ∈ [0, T ],

‖e(t)‖ ≤ ε0e
∫ t
0 c(s)ds + e

∫ t
0 c(s)ds

∫ t

0

ρ(s)e−
∫ s
0 c(u)duds.

¤

Corollary 4.1 Let f : [0, T ]× Rm → Rm. Let y(t) : [0, T ] → Rm be the unique solution

of the initial value problem (4.1) and let z(t) : [0, T ] → Rm be an approximate solution

to (4.1) in the sense that

‖e(0)‖ ≤ ε0

‖δ(t)‖ ≤ ε, ∀t ∈ [0, T ],

where e(t) = z(t)− y(t) and δ(t) = z′(t)− f(t, z(t)). If

µ(fy(t, z(t)− s(z(t)− y(t)))) ≤ µ, ∀t ∈ [0, T ], ∀s ∈ [0, 1],

then, ∀t ∈ [0, T ],

‖e(t)‖ ≤ ε0e
µt + εeµt

∫ t

0

e−µsds =





ε0e
µt + ε

µ
(eµt − 1) if µ 6= 0

ε0 + εt if µ = 0.

Neumaier’s similar result, Corollary 4.5 in [24], can be summarized as follows.

Theorem 4.2 Let f : [0, T ] × Rm → Rm and assume S ∈ Rm×m is invertible. Let

y(t) : [0, T ] → Rm be the unique solution of the initial value problem

y′ = f(t, y), y(0) = y0, t ∈ [0, T ], (4.10)

and let z(t) : [0, T ] → Rm be an approximate solution to (4.10) in the sense that

‖S−1e(0)‖ ≤ ε0

‖S−1δ(t)‖ ≤ ε, ∀t ∈ [0, T ],
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where e(t) = z(t)− y(t) and δ(t) = z′(t)− f(t, z(t)). If

µ(S−1fy(t, y)S) ≤ µ, ∀t ∈ [0, T ], ∀y ∈ Rm,

then, ∀t ∈ [0, T ],

‖S−1e(t)‖ ≤





ε0e
µt + ε

µ
(eµt − 1) if µ 6= 0

ε0 + εt if µ = 0.
(4.11)

For S = I, the above result simplifies as follows. If

‖e(0)‖ ≤ ε0

‖δ(t)‖ ≤ ε, ∀t ∈ [0, T ],

µ(fy(t, y)) ≤ µ, ∀t ∈ [0, T ], ∀y ∈ Rm,

then, ∀t ∈ [0, T ],

‖e(t)‖ ≤





ε0e
µt + ε

µ
(eµt − 1) if µ 6= 0

ε0 + εt if µ = 0
(4.12)

This result follows immediately from Corollary 4.1.

Now, we prove Theorem 4.2. Since S is an invertible matrix, we may define u = S−1y,

or equivalently y = Su. Substituting this change of variables into (4.10), we get

Su′ = f(t, Su)

or equivalently

u′ = S−1f(t, Su) = F (t, u)

giving rise to the IVP

u′ = F (t, u), u(0) = S−1y(0) = S−1y0. (4.13)

Note that y(t) is the true solution of (4.10) if and only if u(t) = S−1y(t) is the true

solution of (4.13).
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Let z(t) be an approximate solution of (4.10). Then

z′ = f(t, z) + δ(t)

or equivalently

δ(t) = z′(t)− f(t, z(t)).

Let v = S−1z, or equivalently z = Sv. Hence,

Sv′ = f(t, Sv) + δ(t)

or equivalently

v′ = S−1f(t, Sv) + S−1δ(t)

= F (t, v) + ∆(t)

where ∆(t) = S−1δ(t) is the defect associated with the approximate solution v(t) to the

IVP (4.13). Let E(t) = v(t)− u(t) = S−1(z(t)− y(t)). Then

E ′(t) = v′(t)− u′(t)

= [F (t, v(t))− F (t, u(t))] + ∆(t)

=

[∫ 1

0

Fu(t, v(t)− s(v(t)− u(t)))ds

]
(v(t)− u(t)) + ∆(t)

= B(t)E(t) + ∆(t)

where B(t) =
∫ 1

0
Fu(t, v(t)−s(v(t)−u(t)))ds is a matrix. Applying our previous analysis

to the ODE

E ′(t) = B(t)E(t) + ∆(t)

with

‖E(0)‖ = ‖S−1e(0)‖ ≤ ε0

‖∆(t)‖ = ‖S−1δ(t)‖ ≤ ε, ∀t ∈ [0, T ],

and

µ(Fu(t, u)) = µ(S−1fy(t, y)S) ≤ µ, ∀t ∈ [0, T ], ∀y ∈ Rm,
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we get that

‖E(t)‖ = ‖S−1e(t)‖ ≤





ε0e
µt + ε

µ
(eµt − 1) if µ 6= 0

ε0 + εt if µ = 0.

¤

We have just shown that formula (1.2) always yields bounds that are as tight as those

produced by formulas (1.3) or (1.4). On the other hand, the following simple example

shows that formula (1.2) may sometimes yield tighter bounds than those produced by

formulas (1.3) or (1.4).

Example. Consider the problem

y′ = Ay

y(t0) = y0, t0 ∈ [0, T ],

where A is an m × m constant matrix. Applying the Backward Euler formula to this

problem, we get

y1 = y0 + hAy1

y1 = (I − hA)−1y0.

Let the approximate solution z(t) be the line which passes through the points (0, y0) and

(h, y1):

z(t) = y0 +
t

h
(y1 − y0) = y0 + tAy1 = y0 + tA(I − hA)−1y0.

The defect associated with this approximate solution is

δ(t) = z′(t)− Az(t)

= A(I − hA)−1y0 − Ay0 − tA2(I − hA)−1y0

= [A− A(I − hA)− tA2](I − hA)−1y0

= (h− t)A2(I − hA)−1y0. (4.14)
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Now apply formula (1.2) with tn = 0, tn+1 = h and [A] = A, replacing the ∈ by =, since

with [A] = A the right side of (1.2) is a simple vector rather than an interval vector:

e(h) = eAhe(0) +

∫ h

0

eA(h−s)δ(s)ds

= eAhe(0) +

∫ h

0

eA(h−s)(h− s)A2(I − hA)−1y0ds

= eAhe(0) +

∫ h

0

eAuuA2(I − hA)−1y0du ( let h− s = u)

= ehAe(0) +

(∫ h

0

uA2eAudu

)
(I − hA)−1y0

= ehAe(0) +

([
uAeAu

]h

0
−

∫ h

0

AeAudu

)
(I − hA)−1y0

= ehAe(0) +
(
hAehA − [

eAu
]h

0

)
(I − hA)−1y0

= ehAe(0) +
(
hAehA − (ehA − I)

)
(I − hA)−1y0

= ehAe(0) +
(
I − ehA(I − hA)

)
(I − hA)−1y0

= eAhe(0) + [(I − hA)−1 − eAh]y0 (4.15)

where we have used the fact that A, eAu and (I − hA)−1 commute.

Now we compare the bounds (1.3) and (1.4) with bounds that can be derived from

(4.15). To be more concrete, let

A =



−2 1

0 −2


, t0 = 0, T = 4, ‖e(0)‖ ≤ ε0, ‖y0‖ ≤ ε′0.

Then µ = µ∞(A) = −1 and

eAh = e−2h




1 h

0 1


.

Consider the bound (1.3) first. From (4.14), we see that

‖δ(t)‖ ≤ h‖A2(I − hA)−1‖ε′0 ≡ ε.

Applying bound (1.3), we get

‖e(h)‖ ≤ ε0e
−h + c1ε

′
0



Chapter 4. Comparison to Dahlquist’s Results and Neumaier’s Results44

where

c1 = h(1− e−h)‖A2(I − hA)−1‖

Next consider the bound (1.4). From (4.14), we see that

‖δ(t)‖ ≤ (h− t)‖A2(I − hA)−1‖ε′0 ≡ ρ(t)

Applying bound (1.4), we get

‖e(h)‖ ≤ ε0e
−h +

∫ h

0

e−(h−s)(h− s)‖A2(I − hA)−1‖ε′0ds

= ε0e
−h + c2ε

′
0

where

c2 = (1− e−h − he−h)‖A2(I − hA)−1‖

Finally, for (1.2), note that the associated equation (4.15) results in the bound

‖e(h)‖ ≤ ε0e
−h + ‖(I − hA)−1 − eAh‖ε′0

= ε0e
−h + c3ε

′
0

where

c3 = ‖(I − hA)−1 − eAh‖.

Now we compare the bounds (1.3), (1.4) and (1.2) for this example by comparing the

size of the constants c1, c2 and c3. To this end, note that

A2 = 4




1 −1

0 1




I − hA =




1 0

0 1


−



−2h h

0 −2h


 =




1 + 2h −h

0 1 + 2h




(I − hA)−1 =
1

(1 + 2h)2




1 + 2h h

0 1 + 2h
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A2(I − hA)−1 =
4

(1 + 2h)2




1 + 2h −1− h

0 1 + 2h




‖A2(I − hA)−1‖ =
4

(1 + 2h)2
(3h + 2) ( in the infinite norm, assuming h ∈ [0, 4].)

Thus,

c1 =
4h(1− e−h)

(1 + 2h)2
(3h + 2)

c2 =
4(1− e−h − he−h)

(1 + 2h)2
(3h + 2)

c3 =

∥∥∥∥∥∥∥




1
1+2h

h
(1+2h)2

0 1
1+2h


−




e−2h he−2h

0 e−2h




∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥




1
1+2h

− e−2h h
(1+2h)2

− he−2h

0 1
1+2h

− e−2h




∥∥∥∥∥∥∥

= | 1

1 + 2h
− e−2h|+ | h

(1 + 2h)2
− he−2h| ( in the infinite norm ).

The numerical results for c1, c2 and c3 are as follows for h = 1, 2, 4.

h = 1 h = 2 h = 4

c1 1.4047 2.2135 2.7148

c2 0.5872 0.7603 0.6280

c3 0.2222 0.2251 0.1588

Since c1 > c2 > c3, this example shows that our formula (1.2) sometimes produces

tighter bounds than (1.3) and (1.4).



Chapter 5

Conclusions and Future Work

We reviewed interval arithmetic, logarithmic norms and Hausdorff distance in Chapter

2. We derived a formula in Chapter 3 for bounding the global error associated with the

numerical solution of an IVP for an ODE.

Most importantly, we believe this formula can be applied to stiff IVPs without re-

quiring that the stepsize be severely restricted. Therefore, we believe that this approach

may lead to an effective validated numerical method for stiff problems.

We compared our results to Dahlquist’s and Neumaier’s in Chapter 4 and derive their

formulas from ours, thus showing that our new formula always produces bounds that are

as tight as theirs. Moreover, we gave an example that shows that our new formula

sometimes produces bounds that are tighter than theirs.

As noted in Chapter 1, our original goal was to use interval arithmetic to compute

the right side of (1.2) directly, in the hope that this might produce an effective validated

method for stiff IVPs for ODEs. However, this has proven more difficult than we originally

expected and so we leave this task to future work.
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