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Adjusting derivative prices to take into account default risk has attracted the attention

of several researchers and practitioners, especially after the 2007-2008 financial crisis.

The thesis is a study, via numerical Partial Differential Equation (PDE) approaches, of

the modeling and computation of valuation adjustment problems in financial derivative

pricing if we consider the bilateral counterparty default intensities.

Under some assumptions, the valuation of financial derivatives, including a value

adjustment to account for bilateral default risk (XVA), assuming constant default inten-

sities gives rise to a nonlinear PDE [11]. We formulate a penalty iteration method to

handle the nonlinearity in this PDE, study its convergence, and extend it to American

derivatives, resulting in a double-penalty iteration. We also propose boundary conditions

and their discretization for the XVA PDE problem in the cases of call, put options, and

forward contracts. Numerical results demonstrate the effectiveness of our methods.

Then, we derive a novel PDE for derivative pricing including XVA, assuming that the

default risk of one of the counterparties follows a Cox-Ingersoll-Ross (CIR) process, while

the other party has constant default risk. The time-dependent PDE derived is of Black-

Scholes type and involves two “space” variables, namely the asset price and the buyer

default intensity, as well as a nonlinear source term. We formulate boundary conditions

appropriate for the default intensity variable. The numerical solution of the PDE uses a

penalty-like iteration for handling the nonlinearity. We also develop a novel asymptotic

approximation formula for the adjusted price of derivatives, resulting in a very efficient,

accurate, and convenient for practitioners formula. Numerical results indicate stable
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second order convergence for the 2D PDE solution in terms of the discretization size and

convergence of order at least 1.5 for the asymptotic approximation in terms of inverse of

the mean-reversion rate.

We extend the PDE model we developed to price European derivatives including

XVA, considering stochastic counterparty default intensity, to American derivatives. We

also extend the asymptotic approximation to the American put option problem. A key

step is to derive the asymptotic approximation to the free boundary. We present nu-

merical experiments in order to study the accuracy and effectiveness of the 2D PDE and

asymptotic approximations.

iii



Acknowledgements

First and foremost, I have to express my most sincere gratitude to my supervisor, Profes-

sor Christina Christara, for her invaluable research guidance, inspiration, and feedback.

This thesis could not have been accomplished without her insights and knowledge. Be-

sides academic supervision, Christina has also provided me great encouragement and

support during difficult times, especially during the pandemic period. She is not only a

supervisor, but also a life mentor to me. No words can express my thanks to her over

these past years.

I would also like to show my gratitude to my committee members, Professor Kenneth

Jackson and Professor Wayne Enright, who have provided me insightful, invaluable com-

ments and suggestions to my research ideas, published paper and this thesis. I would also

like to thank University of A Coruña faculty member Professor Carlos Vázquez Cendón

for agreeing to be external examiner, and University of Toronto faculty member Professor

Kirill Serkh for joining my final oral examination.

I am also grateful to my friends and colleagues, in University of Toronto, for all the

fun and friendship we have in the last years. I would especially like to thank Dr. Selwyn

Yuen, for offering me the opportunity to engage in interesting projects at Canadian

Pension Plan Investment Board (CPPIB).

Last but not least, I would like to thank my parents, Zhihui Chen and Liping Zhang,

and my wife, Yongchu Liu for their unconditional love and supports.

iv



Contents

1 Introduction 1

1.1 Credit/Debt valuation adjustment . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The expectation representation . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The PDE representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Pricing bilateral XVA with constant default intensities 14

2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Iteration methods for nonlinear PDE . . . . . . . . . . . . . . . . 17

2.3 American derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Reformulation to penalty form . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Double-penalty iteration method . . . . . . . . . . . . . . . . . . 26

3 Pricing bilateral XVA with stochastic default intensities 29

3.1 Formulation with stochastic default intensities . . . . . . . . . . . . . . . 30

3.1.1 Cox-Ingersoll-Ross(CIR) type risk model . . . . . . . . . . . . . . 30

3.1.2 Formulation of PDE . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 PDE with constant default intensity . . . . . . . . . . . . . . . . 38

3.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Iteration methods for nonlinear PDE . . . . . . . . . . . . . . . . 42

3.3 Asymptotic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Asymptotic approximation for zero correlation . . . . . . . . . . . 46

3.3.2 Asymptotic approximation for general correlation . . . . . . . . . 48

v



3.3.3 Accuracy analysis of asymptotic approximation . . . . . . . . . . 50

3.4 Consideration for bilateral stochastic default intensities . . . . . . . . . . 54

4 American XVA with stochastic default intensities 57

4.1 Formulation for American underlying asset . . . . . . . . . . . . . . . . . 59

4.1.1 Reformulation to penalty form . . . . . . . . . . . . . . . . . . . . 60

4.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.3 Double-penalty iteration for multi-dimensional problem . . . . . . 63

4.2.4 Numerical approximation of free boundary of

multi-dimensional American XVA problem . . . . . . . . . . . . . 64

4.3 Asymptotic solution and asymptotic approximation for the free boundary 66

5 Numerical experiments 72

5.1 Numerical results of XVA with constant default intensities . . . . . . . . 72

5.1.1 Examples of XVA in European derivatives . . . . . . . . . . . . . 72

5.1.2 Examples of XVA in American derivatives . . . . . . . . . . . . . 78

5.2 Numerical results of XVA with stochastic default intensity in European

derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Numerical 2D PDE with penalty iterations . . . . . . . . . . . . . 81

5.2.2 Asymptotic solution and effect of rate of mean reversion . . . . . 86

5.2.3 Effect of model parameters . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Numerical results of XVA with stochastic default intensity in American

derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Numerical 2D PDE with double-penalty iterations . . . . . . . . . 94

5.3.2 Comparison of asymptotic and numerical 2D PDE approximations 98

5.3.3 Comparison of American and European type XVA . . . . . . . . . 101

6 Conclusions and future works 103

6.1 Summary and conclusions of research . . . . . . . . . . . . . . . . . . . . 103

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.1 Multi-dimensional problems and neural networks . . . . . . . . . 105

6.2.2 Analysis of asymptotic approximation in American XVA problem 105

Bibliography 107

vi



List of Tables

5.1 Model parameters for bilateral XVA in European derivatives with constant

default intensities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Results from solving (2.2) for a European Put using Algorithms 1 and 2

with the parameters in Table 5.1. Nonuniform grids are used. . . . . . . 73

5.3 Results from solving (2.2) for a European Call using Algorithms 1 and 2

with the parameters in Table 5.1. Nonuniform grids are used. . . . . . . 74

5.4 Results from solving (2.2) for a European Call using Algorithm 2 with the

parameters in Table 5.1, except that Smax is as indicated. Nonuniform

grids are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Results from solving (2.2) for a European Put using Algorithm 2 with the

parameters in Table 5.1. Uniform discretization is used. . . . . . . . . . . 77

5.6 Results from solving (2.2) for a European Call using Algorithm 2 with the

parameters in Table 5.1. Uniform discretization is used. . . . . . . . . . . 77

5.7 Results from solving (2.2) for a Long Forward contract using Algorithms

1 and 2 with the parameters in Table 5.1. Nonuniform grids are used. . . 77

5.8 Model parameters for American derivatives’ pricing including bilateral

XVA with constant default intensities. . . . . . . . . . . . . . . . . . . . 78

5.9 Results on three points from solving (2.41) for American Put option val-

uation including bilateral XVA using Algorithm 3 with the parameters in

Table 5.8. Nonuniform grids are used. . . . . . . . . . . . . . . . . . . . . 79

5.10 Results from solving (2.41) for other American derivatives including bilat-

eral XVA using Algorithm 3 with the parameters in Table 5.8 when S is

at the money (S = K = 15). Nonuniform grids are used. . . . . . . . . . 80

5.11 Model parameters for bilateral XVA with stochastic default intensity in

European derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



5.12 Results from solving (3.40) for European derivatives including bilateral

XVA with stochastic default intensities on counterparty using Algorithm

4 with the parameters in Table 5.11 when S is at-the-money (S = K = 15)

and λC = θ. Nonuniform grids are used. . . . . . . . . . . . . . . . . . . 83

5.13 Results from solving (3.40) for European call option including bilateral

XVA with stochastic default intensity on counterparty using Algorithm 4

with the parameters in Table 5.11 at various points. Nonuniform grids are

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.14 Results from solving (3.40) for European put option including bilateral

XVA with stochastic default intensity on counterparty using Algorithm 4

with the parameters in Table 5.11 at various points. Nonuniform grids are

used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.15 Results from solving (3.40) for European call option including bilateral

XVA with stochastic default intensity on counterparty using Algorithm 4

with the parameters in Table 5.11, except Smax varying as indicated, when

S is at-the-money (S = K = 15) and λC = θ. Nonuniform grids are used. 85

5.16 Results from solving (3.40) for European call option including bilateral

XVA with stochastic default intensity on counterparty using Algorithm 4

with the parameters in Table 5.11, except λmax
C varying as indicated, when

S is at-the-money (S = K = 15) and λC = θ. Nonuniform grids are used. 86

5.17 Values by different approaches for European put option including bilateral

XVA with stochastic default intensity on counterparty with the parameters

in Table 5.11, except that κ and σλC vary as indicated, and ρ = 0, at several

points. The grid size for the PDE solution is N = 512,M = 256, and

extrapolation takes place between N = 256,M = 128 and N = 512,M =

256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.18 Values by different approaches for European put option including bilateral

XVA with stochastic default intensity on counterparty with the parameters

in Table 5.11, except that κ and σλC vary as indicated, at several points.

The grid size for the PDE solution isN = 512,M = 256, and extrapolation

takes place between N = 256,M = 128 and N = 512,M = 256. . . . . . 88

5.19 Value comparison for solving (3.40) for European options including bi-

lateral XVA with stochastic default intensity on counterparty with the

parameters in Table 5.11 with different correlations. The grid size is

N = 512,M = 256. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



5.20 Value comparison for solving (3.40) for European options including bi-

lateral XVA with stochastic default intensity on counterparty with the

parameters in Table 5.11 with different mean reversion levels. The grid

size is N = 512,M = 256. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.21 Value comparison for solving (3.40) for European put option including

bilateral XVA with stochastic default intensity on counterparty with the

parameters in Table 5.11. The grid size is N = 512,M = 128. . . . . . . 92

5.22 Model parameters for bilateral XVA with stochastic default intensity in

American put options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.23 Results from solving (4.9) for American put option including bilateral XVA

with stochastic default intensity on counterparty using Algorithm 5 with

the parameters in Table 5.22 when S is at-the-money (S = K = 15) and

λC = θ. Nonuniform grids are used. . . . . . . . . . . . . . . . . . . . . . 96

5.24 Results at various points (S, λC) from solving (4.9) for American put op-

tion including bilateral XVA with stochastic default intensity on counter-

party using Algorithm 5 with the parameters in Table 5.22. Nonuniform

grids are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.25 Free boundary locations and orders of convergence for various counterparty

default intensity λC-points from solving (4.9) for American put option

including bilateral XVA with stochastic default intensity on counterparty

using Algorithm 5 with the parameters in Table 5.22. Nonuniform grids

are used. Algorithm 6 is used for the calculation of free boundaries. . . . 97

5.26 Free boundary locations for various counterparty default intensity λC-

points from solving (4.9) for American put option including bilateral XVA

with stochastic default intensity on counterparty using Algorithm 5 with

the parameters in Table 5.22. Nonuniform grids are used and N = 512.

Algorithm 6 is used for the calculation of free boundaries. . . . . . . . . . 97

5.27 Values of V̂ at several points (S, λC) and by different approaches for

American put option including bilateral XVA with stochastic default in-

tensity on counterparty with the parameters in Table 5.22, except that

κ varies as indicated, and σλC = 0.2
√
κ. The grid size for the PDE

solution is N = 512,M = 256, and extrapolation takes place between

N = 256,M = 128 and N = 512,M = 256. . . . . . . . . . . . . . . . . . 99

ix



5.28 Comparison of free boundary locations given by different approaches at

various λC points for American put option including bilateral XVA with

the parameters in Table 5.22, except that κ varies as indicated, and

σλC = 0.2
√
κ. The grid size for the PDE solution is N = 512,M = 256.

Algorithms 6 and 7 are used for the calculation of free boundaries for the

(2D) PDE FDM and the asymptotic methods, respectively. . . . . . . . . 101

5.29 Results for European put option including bilateral XVA with stochastic

default intensity on counterparty using penalty-like algorithm in Section

3.2 with the parameters in Table 5.22 when S is at-the-money (S = K =

15) and λC = θ. Nonuniform grids are used. . . . . . . . . . . . . . . . . 102

5.30 Results at various points (S, λC) for European put option including bilat-

eral XVA with stochastic default intensity on counterparty using penalty-

like algorithm in Section 3.2 with the parameters in Table 5.22 at various

points. Nonuniform grids are used. . . . . . . . . . . . . . . . . . . . . . 102

x



List of Figures

5.1 A visualization of various financial derivative values with (V̂ ) or without

(V ) XVA with the parameters in Table 5.1. The difference between these

two curves is XVA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 A visualization of European and American Put V and V̂ . The center plot

is a zooming of the large box in the left plot, while the right plot is a

zooming of the small box in left plot. AM V and AM V̂ (EU V and

EU V̂ ) are abbreviations for American (European) derivative prices not

including and including XVA, respectively. . . . . . . . . . . . . . . . . 80

5.3 Accuracy of different approaches for European put option valuation in-

cluding bilateral XVA with stochastic default intensity on counterparty

with the parameters in Table 5.11 except κ and ρ as indicated, and σλC =

0.2
√
κ, versus κ at (15, 0.1). . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Accuracy of different approaches for European put option valuation in-

cluding bilateral XVA with stochastic default intensity on counterparty

with the parameters in Table 5.11 except κ and ρ as indicated, and σλC =

0.2
√
κ, versus N at (30, 0.1). . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Effect of ρ on put option value with XVA, computed by solving (3.40).

Other parameters are in Table 5.11. . . . . . . . . . . . . . . . . . . . . . 91

5.6 Effect of ρ on call option value with XVA, computed by solving (3.40).

Other parameters are in Table 5.11. . . . . . . . . . . . . . . . . . . . . . 91

5.7 Effect of θ on put option value with XVA, computed by solving (3.40).

Other parameters are in Table 5.11. . . . . . . . . . . . . . . . . . . . . . 93

5.8 Effect of κ on put option value with XVA, computed by solving (3.40).

Other parameters are in Table 5.11. . . . . . . . . . . . . . . . . . . . . . 93

xi



5.9 Free boundary locations versus the counterparty default intensity λC , with

various mean-reversion speeds κ from solving (4.9) for American put option

including bilateral XVA with stochastic default intensity on counterparty

using Algorithm 5 with the parameters in Table 5.22. Nonuniform grids

are used and N = 512. Algorithm 6 is used for the calculation of free

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.10 Accuracy comparison of different approaches for American put option val-

uation including bilateral XVA with stochastic default intensity on coun-

terparty with the parameters in Table 5.22 except varying κ as indicated,

and σλC = 0.2
√
κ, versus κ. . . . . . . . . . . . . . . . . . . . . . . . . . 100

xii



Chapter 1

Introduction

1.1 Credit/Debt valuation adjustment

Counterparty credit risk [36, 28], also known as default risk, is the risk that, during the

duration of an agreement, one party fails to make payments to another party. Derivatives

also expose counterparties to credit risk. Since the 2007-2008 financial crisis, it has

become a standard practice for derivatives’ sellers to adjust the value of the derivatives

transactions to reflect the possible losses from counterparty default. This adjustment is

usually called credit valuation adjustment (CVA) [36, 28]. However, a more complete

valuation adjustment includes debt valuation adjustment, funding valuation adjustment,

etc.

Debt valuation adjustment (DVA) [36, 28] is an estimate of the costs to the counter-

party of the seller’s default risk. It can also be seen as the CVA from the point of view

of the counterparty. Funding valuation adjustment (FVA) is an adjustment to the value

of a derivative or a portfolio which is designed to make sure that a dealer recovers its

average funding costs when he or she trades and hedges derivatives.

Although it is still controversial whether or not a seller should charge DVA or FVA

to value derivatives [35, 12, 30], in this work, we leave the debates behind and mainly

focus on the mathematical model of valuation adjustment and the numerical method to

solve the arising partial differential equation (PDE). We now define the total valuation

adjustment [28, 3] as

XV A = DV A− CV A+ FV A.

If V is the unadjusted value of the derivative, e.g. calculated by Black-Scholes-Merton

model, and V̂ is the value after taking credit risk into account, then the valuation ad-

1



Chapter 1. Introduction 2

justment is

XV A = V̂ − V. (1.1)

Note that, the CVA (or XVA) is normally calculated at a counterparty level and not the

trade level. This means the CVA can be different to different counterparties even if they

have the same derivatives.

The Basel III regulation framework was developed in response to the 2007-2008 fi-

nancial crisis. The committee set rules for OTC market that bilateral trading needs to

take default risk and funding costs into account. Once the rules were set, several meth-

ods and frameworks were developed for valuation of derivatives under counterparty risk.

Piterbarg [42] derived valuation formulas for the price of derivatives, which incorporate

funding cost and collateral agreements. The new model forces an adjustment to the

discounting term of the Black-Scholes PDE. Burgard and Kjaer [10, 11, 13] generalized

Piterbarg’s model to include sellers and buyers’ default risk. They applied the replication

portfolio approach to derive the PDE representations of derivatives’ values with bilateral

risk and funding costs. Moreover, via the Feynman-Kac theorem, the solution to the re-

sulting PDE can also be written in terms of expectation. Usually, simulation approaches

such as Monte Carlo are a popular choice for CVA or XVA pricing. In [28, 29], authors

showed detailed derivation of expectation formulae of CVA or bilateral CVA 1 (BCVA).

The ease to implement makes expectation or simulation methods more widely used by

practitioners, especially when the CVA or XVA involves more than 5 underlying assets in

the corresponding portfolio. This approach suffers less from the curse of dimensionality.

Brigo and his coauthors [7, 8, 9] also introduced a general valuation framework for cal-

culating the bilateral CVA by an expectation representation of risk valuation including

CVA, funding spread and collateralization. Simulation approaches are used to approx-

imate the arbitrage-free valuation of bilateral counterparty risk under collateralization.

In [7, 8, 9], the analysis focuses on credit default swaps (CDS) as underlying portfolios

and claimed CVA can be viewed as an option, the so-called contingent credit default

swap, on the clean value of the contract. Another popular approach to adjustment val-

uation is based on backward stochastic differential equation (BSDE) analysis. Crépey

[17] introduced a BSDE approach to valuation and hedging of bilateral counterparty risk

on OTC derivatives under funding constraints. Bichuch, Capponi and Strurm [6] also

developed an arbitrage-free valuation framework with a BSDE for the price of European

claim taking into account funding spread, the repo market, collateral servicing costs and

counterparty credit risks. They showed that the XVA is unique in the absence of rate

1In some textbooks or literatures, people use BCVA to represent the bilateral valuation adjustments
considering both CVA and DVA, i.e. BCVA = DVA - CVA.
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asymmetries. A PDE representation of the BSDE was also shown and studied.

Regarding the PDE arising from the XVA problem, depending on how the derivative

is valued in the case of either party of the contract defaults, a nonlinear term may be

included [11]. Hence, appropriate numerical methods are needed to handle the nonlinear

term, as well as the discretization of the PDE. Arregui, Salvador, and Vázquez consider

the PDE models in [11] and price European options with XVA [3], as well as American

options with XVA [4]. In both cases, they use the characteristics method for timestepping,

a finite element method for the space discretization, and a fixed-point iteration scheme

to handle the nonlinearity from the XVA. The experimental results indicate that their

method is first order convergent. Arregui, Salvador, and Vázquez [5] also developed a

Monte Carlo approach to American options pricing including XVA. They present the

adaptation of Monte Carlo to numerically solve the nonlinear term in the XVA problem.

In all the PDE model works we mentioned above, the default intensities are assumed

to be constant. In reality, default intensities exhibit stochasticity [18]. In addition, people

also notice that, there is dependency between exposure (or underlying assets) and coun-

terparty credit risk, which is usually called wrong/right way risk [34]. Therefore, a multi-

stochastic factors’ model becomes necessary to reflect these issues. In [19], Feng modeled

CVA for European options under a Bates model with the stochastic intensity of the jump

to default following a Cox-Ingersoll-Ross (CIR) process. A numerical PDE-based Monte

Carlo framework was built, consisting of path simulation, independent exposure estima-

tion and CVA computation. In [41, 2], the authors considered the stochastic short term

credit default swap (CDS) spread and resulted in a multi-dimensional in space PDE. In

[2], existence and uniqueness of the solution to the nonlinear PDE was proved as well. In

this thesis, we derive the PDE assuming the default intensity of the counterparty follows

a stochastic process, namely a CIR process. This also results in a multi-dimensional in

space nonlinear PDE, which provides an effective and more direct framework to handle

the correlation between underlying assets and default intensities. We also extend this

novel PDE model to the American case.

1.2 The expectation representation

In this subsection, we briefly introduce the steps in Gregory’s textbook [29] to derive the

expectation representation for BCVA in the case of no wrong-way risk. No wrong-way

risk means there is no dependency between exposure, default and maturity.

We assume the derivative value including CVA and DVA is denoted as V̂ (t, T ), with

the maturity of derivative being T . In this subsection, we also assume the mark-to-
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market value M to be the risk-free value V (t, T ). Then V (s, T ), t < s ≤ T , denotes

the future uncertain mark-to-market value accounting for the discounting effects. We

refer to the seller as party B, to the counterparty as counterparty C or just party C,

the default time of party B as τB, default time of party C as τC , and the first-to-default

time as τf = min(τB, τC). We also denote by RB and RC the recovery rates of two

parties respectively. The positive and negative values of any security Z are denoted by

Z+ = max{Z, 0} and Z− = min{Z, 0}. Here are the four parts of payoffs of V̂ we should

consider:

� When neither party B or C defaults before T , the derivative value including

CVA and DVA, V̂ , is equal to the risk-free value, V , the payoff can be written as

1(τf > T )V (t, T ),

where 1(τf > T ) is an indicator function which returns 1 if first-to-default has not

occurred before T , and zero otherwise.

� When counterparty C defaults first and before T , the party B will receive a

recovery fraction RC of the mark-to-market V (τC , T ), if V (τC , T ) is positive, and

have to settle the amount V (τC , T ), if negative. Hence, the default payoff becomes

1(τf ≤ T )1(τf = τC)(RCV
+(τf , T ) + V −(τf , T )).

� When counterparty B defaults first and before T , the party B owe a recovery

fraction RB of the mark-to-market V (τB, T ), if V (τB, T ) is negative, and receive

the mark-to-market value V (τB, T ), if positive. Hence, the default payoff becomes

1(τf ≤ T )1(τf = τB)(V
+(τf , T ) +RBV

−(τf , T )).

� When either party B or C defaults before T , all the cashflow prior to first-to-

default date τf are paid as

1(τf ≤ T )V (t, τf ).

Combing all parts of payoff together, the derivative values including CVA and DVA

can be written as

V̂ (t, T ) = EQ
[
1(τf > T )V (t, T ) + 1(τf ≤ T )V (t, τf )

+1(τf ≤ T )1(τf = τC)(RCV
+(τf , T ) + V −(τf , T ))

+1(τf ≤ T )1(τf = τB)(V
+(τf , T ) +RBV

−(τf , T ))
]

(1.2)
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Since V (τf , T ) = V +(τf , T ) + V −(τf , T ), we have

V̂ (t, T ) = EQ
[
1(τf > T )V (t, T ) + 1(τf ≤ T )V (t, τf )

+1(τf ≤ T )1(τf = τC)(RCV
+(τf , T ) + V (τf , T )− V +(τf , T ))

+1(τf ≤ T )1(τf = τB)(V (τf , T )− V −(τf , T ) +RBV
−(τf , T ))

]
= EQ

[
1(τf > T )V (t, T ) + 1(τf ≤ T )V (t, τf )

+1(τf ≤ T )1(τf = τC)V (τf , T )

+1(τf ≤ T )1(τf = τB)V (τf , T )

+1(τf ≤ T )1(τf = τC)(RCV
+(τf , T )− V +(τf , T ))

+1(τf ≤ T )1(τf = τB)(RBV
−(τf , T )− V −(τf , T ))

]
= EQ

[
1(τf > T )V (t, T ) + 1(τf ≤ T )V (t, τf )

+1(τf ≤ T )1(τf = τC)V (τf , T )

+1(τf ≤ T )1(τf = τB)V (τf , T )

−1(τf ≤ T )1(τf = τC)(1−RC)V
+(τf , T )

−1(τf ≤ T )1(τf = τB)(1−RB)V
−(τf , T )

]
= EQ

[
1(τf > T )V (t, T ) + 1(τf ≤ T )V (t, τf ) + 1(τf ≤ T )V (τf , T )

−1(τf ≤ T )1(τf = τC)(1−RC)V
+(τf , T )

−1(τf ≤ T )1(τf = τB)(1−RB)V
−(τf , T )

]
= EQ

[
1(τf > T )V (t, T ) + 1(τf ≤ T )V (t, T )

−1(τf ≤ T )1(τf = τC)(1−RC)V
+(τf , T )

−1(τf ≤ T )1(τf = τB)(1−RB)V
−(τf , T )

]
= EQ

[
V (t, T )− (1−RC)1(τf ≤ T )1(τf = τC)V

+(τf , T )

−(1−RB)1(τf ≤ T )1(τf = τB)V
−(τf , T )

]
= V (t, T )− EQ

[
(1−RC)1(τf ≤ T )1(τf = τC)V

+(τf , T )

+(1−RB)1(τf ≤ T )1(τf = τB)V
−(τf , T ).

]
(1.3)
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Hence, we can identify the BCVA, CVA and DVA as

BCVA(t, T ) = −EQ
[
(1−RC)1(τf ≤ T )1(τf = τC)V

+(τf , T )

+(1−RB)1(τf ≤ T )1(τf = τB)V
−(τf , T )

]
, (1.4)

If we define the bilateral valuation adjustment to be BCVA = DVA−CVA, then

CVA(t, T ) = (1−RC)EQ
[
1(τf ≤ T )1(τf = τC)V

+(τf , T )
]
, (1.5)

DVA(t, T ) = −(1−RB)EQ
[
1(τf ≤ T )1(τf = τB)V

−(τf , T )
]
. (1.6)

Since the expectation is over all times before maturity, we can integrate over all possible

default times, assuming no dependency between exposure and default events, and we

obtain that

CVA(t, T ) = (1−RC)EQ
[ ∫ T

t

B(t, u)V +(u, T ))dPC(u)
]

(1.7)

DVA(t, T ) = −(1−RB)EQ
[ ∫ T

t

B(t, u)V −(u, T ))dPB(u)
]

(1.8)

where B(t, u) is the risk-free discount factor, PC is the survival probability for counter-

party C and, PC is the survival probability for party B.

Hence, if we further assume the discount factors and survival probabilities are determin-

istic or independent with exposures, we can have

BCVA(t, T ) =− (1−RC)

∫ T

t

B(t, u)EE(u, T )dPC(u) (1.9)

−(1−RB)

∫ T

t

B(t, u)ENE(u, T )dPB(u) (1.10)

where the expected positive exposure is EE(u, T ) = EQ[V +(u, T )] and the expected

negative exposure is ENE(u, T ) = EQ[V −(u, T )].

1.3 The PDE representation

In this subsection, we briefly review some of the results of the paper by Burgard and

Kjaer [11], which provides a PDE representation for the value of a financial derivative if

the effects of bilateral default risk and the funding costs are considered. This extension

of the Black-Scholes PDE is driven by using several hedging arguments. The strategy
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is that, the seller could short the zero-coupon bond of the counterparty to hedge out

counterparty credit risk and repurchase its own bonds to hedge out its own credit risk.

This PDE model is fundamental for the thesis.

Following [11], we refer again to the seller as party B and to the counterparty as

counterparty C or just party C. We use the following notations

� S: the price of underlying asset.

� K: the strike price in the case of option or forward contract.

� µ: the drift in S.

� σ: the volatility in S.

� γ: the dividend rate of S.

� q: the repo rate of underlying asset.

� M : the mark-to-market value (or close-out value) when one party defaults.

� r: the risk-free interest rate.

� PB: the price of party B’s bond.

� PC : the price of counterparty C’s bond.

� rB: the yield on party B’s bond.

� rC : the yield on counterparty C’s bond.

� λB: the default intensity of party B.

� λC : the default intensity of counterparty C.

� RB: the recovery percentage on M when party B defaults.

� RC : the recovery percentage on M when party C defaults.

� rF : the party B’s funding rate for borrowed cash, where rF = r if derivative can

be used as collateral, and rF = r + (1 − RB)λB if derivative cannot be used as

collateral.

� sF = rF − r: the funding spread in the case where there is one issuer bond.
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As in the Black-Scholes framework, a certain self-financing portfolio is considered

such that it could hedge out all underlying risk factors in the model. Let’s assume the

portfolio Π consists of the following four traded assets:

� D units of cash deposit in risk-free bank.

� α units of risky, zero-recovery, zero-coupon bond of party B whose price is PB

� β units of risky, zero-recovery, zero-coupon bond of counterparty C whose price is

PC

� δ units of the underlying asset whose price is S.

We assume the prices of these assets except the credit-risky derivative are modeled

by

dD

D
= rdt (1.11)

dPB

PB

= rBdt− dJB (1.12)

dPC

PC

= rCdt− dJC (1.13)

dS

S
= µdt+ σdW (1.14)

where W is a Brownian motion, JB and JC are two independent Poisson processes that

jump from 0 to 1 when the corresponding party defaults. This assumption of JB and

JC implies that, considering only unilateral credit risk, we can hedge the stochasticity of

one of JB or JC , using the respective bond PB or PC . It is also assumed that default of

any party or counterparty will not affect the spot price S. Since PB and PC are defined

as zero-recovery, zero-coupon bonds, the spreads rB − r and rC − r are the same as the

respective default intensities λB and λC .

Now assume two parties B and C enter a derivative contract on the spot asset accord-

ing to which C pays B the amount H(S) at maturity time T . Thus H(S) > 0 means that

the seller receives cash from the counterparty, while H(S) < 0 means the seller needs to

pay cash to the counterparty. We denote by V̂ (t, S, JB, JC) the value of the derivative

at time t which also depends on the spot price S of underlying asset and default state

of two parties. When any party B or C defaults, the derivative terminates immediately.

Later,we use V̂ (t, S) as a abbreviation for V̂ (t, S, 0, 0), while V (t, S) denotes the value of

same derivatives without considering any credit risk.
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Let M(t, S) be the mark-to-market value (or close-out value) of the derivative when

one party defaults. Generally, M(t, S) will be close to V (t, S). Therefore, the vast

majority of research papers on valuation with counterparty risk use M(t, S) = V (t, S).

Another scenario, where M(t, S) = V̂ (t, S, 0, 0), is worth considering as well. Let RB ∈
[0, 1] and RC ∈ [0, 1] be the recovery rates (of default) on the derivative positions of

parties B and C, respectively.

Denote M+ = max{M, 0} and M− = min{M, 0}. When the seller (or party B)

defaults first, if the mark-to-market value is positive to party B then M−(t, S) = 0, V̂ =

M+ = M which means the counterparty needs to pay the full mark-to-market value

to the seller. If mark-to-market value is negative, then M+(t, S) = 0, V̂ = RBM
− =

RBM which means the recovery value of mark-to-market value should be paid to the

counterparty. The default of counterparty C could be analyzed in the same manner.

Therefore, we have following boundary conditions for JB and JC :

V̂ (t, S, 1, 0) = M+(t, S) +RBM
−(t, S) Party B defaults, (1.15)

V̂ (t, S, 0, 1) = RCM
+(t, S) +M−(t, S) Counterparty C defaults. (1.16)

The replicating portfolio Π(t) should hedge out the value of the derivative contract

to seller at any time t i.e. Π(t) + V̂ (t) = 0. Thus,

−V̂ (t) = δ(t)S(t) + α(t)PB(t) + β(t)PC(t) +D(t). (1.17)

By the assumption of self-financing portfolio,

−dV̂ (t) = δ(t)dS(t) + α(t)dPB(t) + β(t)dPC(t) + dD̄(t) (1.18)

where the change in the cash account 2 is

dD̄(t) = δ(γ − q)Sdt+ {r(−V̂ − αPB)
+ + sF (−V̂ − αPB)

−}dt− rβPCdt. (1.19)

2More details about the mechanism of cash account can found in [11].
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Therefore, (1.18) becomes

−dV̂ (t) =δ(µSdt+ σSdW ) + αPB(rBdt− dJB) + βPC(rCdt− dJC)

+ δ(γ − q)Sdt+ {r(−V̂ − αPB) + sF (−V̂ − αPB)
−}dt− rβPCdt (1.20)

={δµS + δ(γ − q)S + αPB(rB − r) + βPC(rC − r)− rV̂ + sF (−V̂ − αPB)
−}dt

+ (δσS)dW + (−αPB)dJB + (−βPC)dJC . (1.21)

On the other hand, by Ito’s lemma for jump diffusions, the derivative value V̂ (t) moves

by

dV̂ = (
∂V̂

∂t
+

1

2
σ2S2∂

2V̂

∂S2
+ µS

∂V̂

∂S
)dt+ σS

∂V̂

∂S
dW +∆V̂BdJB +∆V̂CdJC (1.22)

where

∆V̂B = V̂ (t, S, 1, 0)− V̂ (t, S, 0, 0) (1.23)

∆V̂C = V̂ (t, S, 0, 1)− V̂ (t, S, 0, 0) (1.24)

which can be computed from boundary conditions (1.15) and (1.16).

Substitute (1.22) into (1.21) and eliminate all the risk factors (or the uncertainty

parts), by choosing δ, α and β as

δ = −∂V̂

∂S
(1.25)

α =
∆V̂B

PB

(1.26)

β =
∆V̂C

PC

. (1.27)

If we introduce the Black-Scholes differential operator L as

LV ≡ 1

2
σ2S2∂

2V

∂S2
+

∂V

∂S
(q − γ)S − rV, (1.28)

then it follows that V̂ is the solution of the PDE∂V̂
∂t

+ LV̂ = sF (V̂ +∆V̂B)
+ − λB∆V̂B − λC∆V̂C

V̂ (T, S) = H(S)
(1.29)

where λB, λC are the default intensities of party and counterparty, respectively, which



Chapter 1. Introduction 11

are also the same as the respective differences between the bond yields and risk-free rate,

that is, λB = rB − r and λC = rC − r. If we substitute (1.23) and (1.24) and boundary

conditions (1.15) and (1.16) into the above PDE, the final PDE is∂V̂
∂t

+ LV̂ = (λB + λC)V̂ + sFM
+ − λB(RBM

− +M+)− λC(RCM
+ +M−)

V̂ (T, S) = H(S).

(1.30)

Mark-to-market value at default

As we discussed before, according to the ISDA 3 2002 Master Agreement, in case either

party defaults, the value of the derivative is determined by a mark-to-market value M of

derivative. By convention, the positive values correspond to seller’s assets and counter-

party liabilities, while negative values correspond to seller’s liabilities and counterparty

assets. In PDE (1.30), we consider two cases:

� If M = V̂ , PDE (1.30) is written as a nonlinear PDE∂V̂
∂t

+ LV̂ = sF V̂
+ + λB(1−RB)V̂

− + λC(1−RC)V̂
+

V̂ (T, S) = H(S)
(1.31)

� If M = V , PDE (1.30) is written as a linear PDE∂V̂
∂t

+ LV̂ − (λB + λC)V̂ = sFV
+ − (λBRB + λC)V

− − (λB + λCRC)V
+

V̂ (T, S) = H(S)

(1.32)

Note that, in (1.31) and (1.32), for several derivatives, V is considered known and can

be computed by vanilla Black-Scholes formula directly.

PDEs (1.31) and (1.32) are used when we aim to compute the adjusted value V̂ =

V +U , where V is risk-free derivative value and U is the value adjustment. If we aim to

compute the total value adjustment U itself, then using V̂ = V + U , ∂V
∂t

+ LV = 0 and

V (T, S) = V̂ (T, S) = H(S), from (1.31) and (1.32), we get the PDEs, that U satisfies in

each of two cases:

3International Swaps and Derivatives Association
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� If M = V̂ , (1.31) is written for U as∂U
∂t

+ LU = sF (V + U)+ + λB(1−RB)(U + V )− + λC(1−RC)(U + V )+

U(T, S) = 0

(1.33)

In this case, if we apply the Feynman-Kac theorem, with the assumption of de-

terministic hazard and interest rates, the expectation representation of U can be

written as the following nonlinear integral equation

U(t, S) =− (1−RB)

∫ T

t

λB(u)Br(t, u)EQ
t [(V (u, S(u)) + U(u, S(u)))−]du

− (1−RC)

∫ T

t

λC(u)Br(t, u)EQ
t [(V (u, S(u)) + U(u, S(u)))+]du

−
∫ T

t

sF (u)Br(t, u)EQ
t [(V (u, S(u)) + U(u, S(u)))+]du, (1.34)

where Br(t, u) is the risk-free discount factor and S follows the standard geometric

Brownian motion.

� If M = V , (1.32) is written for U as∂U
∂t

+ LU − (λB + λC)U = sFV
+ − λB(1−RB)V

− − λC(1−RC)V
+

U(T, S) = 0
(1.35)

In this case, if we apply the Feynman-Kac theorem, with the assumption of de-

terministic hazard and interest rates, the expectation representation of U can be

written as the following linear integral equation

U(t, S) =− (1−RB)

∫ T

t

λB(u)Br+λB+λC
(t, u)EQ

t [V
−(u, S(u))]du

− (1−RC)

∫ T

t

λC(u)Br+λB+λC
(t, u)EQ

t [V
+(u, S(u))]du

−
∫ T

t

sF (u)Br+λB+λC
(t, u)EQ

t [V
+(u, S(u))]du, (1.36)

where Br+λB+λC
(t, u) is the discount factor, S follows the standard geometric Brow-

nian motion.

In both cases, S ∈ [0,+∞) and t ∈ [0, T ].
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Remark 1 While we mentioned two cases for the mark-to-market value M at default,

namely M = V̂ and M = V , in this thesis, we consider the first case, primarily because

this is more challenging to solve. In practice though, none of the two is considered the

official resolution case. According to the ISDA agreement, a dealer poll is carried to decide

the mark-to-market value M at default. Clearly, this value cannot be very different from

V or V̂ . Therefore, given that valuation adjustments need to be computed ahead of the

agreement, from the practical point of view, it is interesting to study both cases.

1.4 Thesis outline

The thesis is organized as following. Chapter 2 is the study of the nonlinear PDE model

for bilateral XVA pricing in European and American type derivatives when both default

intensities are constant. Two different iteration methods for nonlinearity are discussed,

with an emphasis on the penalty-like method, which is extended to the double-penalty

iteration method. Chapter 3 develops the nonlinear PDE for bilateral XVA pricing,

assuming the counterparty default intensity to be stochastic. Two computational ap-

proaches, finite difference and asymptotic approximation are studied. For the finite

difference scheme, we use second-order finite difference on spatial dimensions, Crank-

Nicolson-Rannacher smoothing scheme on time dimension, and penalty-like iterations on

nonlinearity. The asymptotic approximation is a closed-form approximation, based on

singular perturbation theory. Chapter 4 presents the extension of the nonlinear PDE for

bilateral XVA pricing of Chapter 3 to American type derivatives, assuming the coun-

terparty default intensity to be stochastic, as well as the extension of the two different

computational approaches, finite difference and asymptotic approximation. Chapter 5

presents numerical experiments that demonstrate effectiveness of our solutions to corre-

sponding problems developed in previous three chapters.



Chapter 2

Pricing bilateral XVA with constant

default intensities

In this chapter, we present methods to solve the PDEs (1.31) or (1.33) from XVA problem,

with focus on the treatment of the nonlinear term. In our work, we use second-order

finite differences in space and Crank-Nicolson discretization in time, with Rannacher

smoothing when needed. We impose boundary conditions that are appropriate for call

and put options, as well as for the forward contract. The main contributions of this part

of work are

� a fast iterative method for handling the nonlinearity in the XVA PDE problem,

� its convergence analysis, as well as

� its extension to American style derivatives’ XVA pricing.

The chapter is organized as follows. In Section 2.1, we summarize the formulation

of the (European option) XVA pricing problem as a PDE. In Section 2.2, we describe

the numerical methods used for the discretization of the PDE and of the boundary

conditions, and introduce two types of iteration methods for handling the nonlinearity.

For the most efficient of these, we present and prove a theorem about its convergence.

Section 2.3 includes the extension of the above methods to the American option XVA

pricing problem. The numerical experiments to study the behavior of the proposed

methods, for XVA pricing in European and American options are left for Chapter 5.

2.1 Formulation

In this section, we show the PDE representation for the value of a financial derivative, if

the effects of bilateral default risk and the funding costs are considered [11]. The PDE

14
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model is extended from Black-Scholes PDE, driven by using multiple hedging arguments,

including underlying assets, the zero-coupon bonds of the two parties and risk-free zero-

coupon bonds. Note that, in [11], the two parties are referred to as party B (seller, bank),

and party C (counterparty, investor), and we adopt the same naming/notation.

As mentioned before, to the International Swaps and Derivatives Association (ISDA)

2002 Master Agreement, in case either party of a contract defaults, the value of the

derivative is determined by a Mark-to-Market rule M , which is chosen to be either V̂ or

V . Here, we assume that M = V̂ and consider the solution of (1.31) for the adjusted

price V̂ and (1.33) for the valuation adjustment U . Note also that riskless 1 option value

V satisfies the Black-Scholes PDE∂V
∂t

+ LV = 0,

V (T, S) = H(S).
(2.1)

Note that, in (1.33), V is considered known. It can be computed by the Black-Scholes

formula, or numerically. Note also that V̂ in (1.31) and U in (1.33) are unknown, and,

since these PDEs involve unknowns in the max or min notation, they are nonlinear. It

is also worth noting that, if λB = λC = sF = 0, then PDE (1.31) simplifies to (2.1).

2.2 Numerical methods

In order to make PDE (1.33) convenient for the application of numerical PDE methods,

we apply the variable transformation τ = T − t in the time dimension. Then (1.33)

becomes the initial value problem∂U
∂τ

= LU + f(U, V ),

U(0, S) = 0
(2.2)

where

f(U, V ) ≡ −(λB(1−RB)(U + V )− + λC(1−RC)(U + V )+ + sF (U + V )+). (2.3)

1“Riskless” derivative in this thesis means a financial derivative without considering counterparties’
default risk.
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2.2.1 Discretization

In this subsection, we present the discretization of (2.2). The semi-infinite space do-

main of spot price S is truncated into [0, Smax], for sufficiently large Smax. In Section

(5.1.1), there is a discussion about the effect of Smax on the accuracy of the numerical

solution. Then, [0, Smax] is divided into N sub-intervals, with the gridpoints positioned

uniformly or non-uniformly. Standard second-order finite differences are used for the

space discretization of (2.2).

We assume that the timestepping is handled by the ϑ-method, 2 which, for ϑ = 1
2

and ϑ = 1 becomes the Crank-Nicolson (CN) and Backward Euler methods, respectively.

Note that PDE (2.2) does not need Rannacher smoothing due to the smooth initial

condition.

2.2.2 Boundary conditions

As we indicated before, we need to truncate the semi-infinite domain [0,+∞) into

[0, Smax]. We also need to formulate boundary conditions when S = 0 and S = Smax. To

obtain the left boundary condition, we substitute S = 0 into (2.2) and get

∂U

∂τ
= −rU + f(U, V ) (2.4)

which can be seen as a first-order ordinary differential equation (ODE), computing ap-

proximate values of U(τ, 0) used as Dirichlet conditions.

Regarding the far-side boundary condition, when Smax is large enough, the behavior

of derivative price V̂ after value adjustment is expected to be similar to the Black-Scholes

derivative price V . A choice of far-side boundary condition often used in Black-Scholes

PDE is the linear boundary condition

lim
S→∞

∂2U

∂S2
= 0. (2.5)

If we apply the far-side boundary condition (2.5) directly to (2.2) as in [48], the PDE at

S = Smax becomes
∂U

∂τ
= (q − γ)S

∂U

∂S
− rU + f(U, V ), (2.6)

where the first derivative term can be discretized by first-order or second-order one-sided

difference scheme. The implementation of the linear boundary condition by discretizing

2Note that the ϑ notation for the time-stepping method is different from the θ(t) notation in the CIR
model in next chapters.
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(2.6) applies to all derivatives considered in this thesis.

Alternatively, we can implement the linear boundary condition (2.5) by considering

the PDE problem∂V̂
∂τ

= LV̂ − λB(1−RB)V̂
− − λC(1−RC)V̂

+ − sF V̂
+,

V̂ (0, S) = H(S).
(2.7)

arising from (1.31) with τ = T − t. As explained in [48], we assume that, close to Smax

and beyond, we have

V̂ (τ, S) = α(τ)S + β(τ). (2.8)

Taking into account the asymptotic behavior of V̂ as S → Smax, allows us to know the sign

of V̂ (τ, Smax), which simplifies the right hand side−λB(1−RB)V̂
−−λC(1−RC)V̂

+−sF V̂
+

to either the positive or the negative terms. Substituting V̂ of (2.8) into the PDE (2.7)

with the simplified right hand side, results in two ODEs for α(τ) and β(τ), respectively,

which can be solved to give rise to Dirichlet boundary conditions for V̂ (τ, Smax), and

thus for U(τ, Smax). Clearly, the boundary conditions depend on the type of financial

derivative studied. More specifically, for a European Call or Long Forward, we obtain

U(τ, Smax) = (e(−λC(1−RC)−sF )τ − 1)(e(q−γ−r)τSmax − e−rτK), (2.9)

while for a European Put and any financial derivative whose value decays to 0 as S →
Smax, we obtain

U(τ, Smax) = 0. (2.10)

2.2.3 Iteration methods for nonlinear PDE

In this subsection, we introduce two iteration methods, with emphasis on the second one,

to handle the nonlinearity in PDE (2.2).

Let τj, j = 0, . . . , N t, be the timesteps at which the solution is computed, with τ0 =

0 < τ1 < · · · < τNt = T , and ∆τ j = τj − τj−1 be the jth time stepsize. Let uj, j =

0, . . . , Nt, denote the computed solution vector arising from the approximate values of U

at the spatial gridpoints at time τj, with u0 being the initial condition vector. Since we

use an iteration method to handle the nonlinearity, let uj,k, k = 0, . . . ,maxit, denote the

computed solution vector at iteration k of timestep j, with maxit the maximum number

of iterations allowed. Let vj, j = 0, . . . , Nt, be the vector of values of V at the spatial

gridpoints, and at timestep j. Note that the values of V can be computed using the

Black-Scholes formula directly. For generic vectors u and v arising from (approximate)
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values of U and V , respectively, at the spatial gridpoints, let f(u, v) denote the vector

arising from evaluating f at the components of u and v. Let also A be the matrix arising

from the space discretization of LU , and I be the identity matrix of same order. For

simplicity, we assume the spatial gridpoints remain the same at all timesteps.

The first iteration method is a fixed-point iteration method similar to the one in [3].

We remark that the fixed-point iteration method in [3] assumes that the timestepping is

handled by the method of characteristics and the space discretization by a finite element

method. In our thesis, we consider CN timestepping and centered differences in space.

Thus, at each timestep we need to solve

(I−ϑ∆τ jA)uj = (I+(1−ϑ)∆τ jA)uj−1+ϑ∆τ jf(uj, vj)+(1−ϑ)∆τ jf(uj−1, vj−1). (2.11)

Then the fixed-point iteration method at time τ j can be described as Algorithm 1.

Algorithm 1 Fixed-point iteration for (2.2) at step j, with ϑ-timestepping

Require: Solve (I−ϑ∆τ jA)uj = gj+ϑ∆τ jf(uj, vj) where gj = (I+(1−ϑ)∆τ jA)uj−1+
(1− ϑ)∆τ jf(uj−1, vj−1)

1: Initialize uj,0 = uj−1

2: for k = 1, . . . ,maxit do
3: Solve (I− ϑ∆τ jA)uj,k = gj + ϑ∆τ jf(uj,k−1, vj)
4: if stopping criterion satisfied then
5: Break
6: end if
7: end for
8: Set uj = uj,k

The stopping criterion in Algorithm 1, motivated by [22], is

max
i

|uj,k
i − uj,k−1

i |
max(1, |uj,k

i |)
≤ tol. (2.12)

where tol is a user-chosen tolerance.

The above iteration method is considered to be explicit, in the sense that the matrix

solved at each iteration is the same and only the right-hand side vector changes.

Regarding the convergence of the fixed-point iteration, we can write it as uj,k =

G(uj,k−1), where G(uj,k−1) = (I − ϑ∆τ jA)−1(gj + ϑ∆τ jf(uj,k−1, vj)), and show that G

is a contraction, for sufficiently small ∆τ j. We do not go into details, as the focus of this

chapter is not to study the convergence of the fixed-point iteration.

We next present another iteration method for handing the nonlinearity in (2.2). We

refer to it as discrete penalty-like iteration, or, simply, penalty iteration, as it is motivated
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by the same-name method in [22], designed to handle the nonlinear PDE arising from

the linear complementarity problem (LCP) in American option pricing. For this reason,

with generic vectors u and v, we define the diagonal penalty matrix P = P (u, v) by

[P (u, v)]ii ≡

−λB(1−RB) if ui + vi < 0

−λC(1−RC)− sF if ui + vi ≥ 0
(2.13)

Note that, with the above matrix P , the vector arising from the discretized form of

f(U, V ) can be written as

f(u, v) = P (u, v)(u+ v) (2.14)

where, since P (u, v) depends on u, there is nonlinearity between P (u, v) and u. Note

also that, if λB ≥ 0, λC ≥ 0, and sF ≥ 0, we have Pi,j(u, v) ≤ 0. With the help of the

matrix P , we can also write (2.11) as

(I− ϑ∆τ j(A+ P (uj, vj)))uj

= (I+ (1− ϑ)∆τ jA)uj−1 + ϑ∆τ jP (uj, vj)vj + (1− ϑ)∆τ jf(uj−1, vj−1). (2.15)

We can view the penalty iteration method as generalized Newton’s method applied

to the nonsmooth nonlinear problem (2.11) with the nonlinear term given by (2.14), and

the generalized Jacobian defined by

∂[f(u, v)]i
∂uj

≡

[P (u, v)]ii if i = j

0 otherwise.
(2.16)

Let now P k = P (uj,k, vj), where for brevity, in the notation P k, we omitted the

superscript j. Using the penalty matrix P k, the proposed discrete penalty iteration for

(2.2) is described in Algorithm 2.

The stopping criterion in Algorithm 2, motivated again by [22] is

(P k = P k−1) or (max
i

|uj,k
i − uj,k−1

i |
max(1, |uj,k

i |)
≤ tol). (2.17)

Note that the second iteration method is considered to be implicit, in the sense that

the matrix solved at each iteration depends on the iteration index k. However, since

the matrix solved at each iteration is adjusted by only a diagonal matrix, the sparsity

structure of the matrix remains the same, which is also the same structure of the matrix
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Algorithm 2 Discrete penalty-like iteration for (2.2) at step j, with ϑ-timestepping

Require: Solve (I − ϑ∆τ j(A + P (uj, vj)))uj = gj + ϑ∆τ jP (uj, vj)vj where gj = (I +
(1− ϑ)∆τ jA)uj−1 + (1− ϑ)∆τ jf(uj−1, vj−1)

1: Initialize uj,0 = uj−1 and P 0 = P (uj,0, vj)
2: for k = 1, . . . ,maxit do
3: Solve (I− ϑ∆τ j(A+ P k−1))uj,k = gj + ϑ∆τ jP k−1vj

4: Compute P k = P (uj,k, vj) by (2.13)
5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set uj = uj,k

corresponding to a linear PDE with same differential operator as in (2.2). Note also that,

if λB ≥ 0, λC ≥ 0, the matrix P enhances the diagonal dominance of A.

It is also worth noticing that, in this penalty iteration, there is no large penalty

parameter, as is in the case of American options [22]. However, we still use the term

penalty iteration, because the method can be viewed as generalized Newton’s method.

In order to study the convergence of the discrete penalty-like iteration, we make use

of a monotonicity argument for the matrix A. In [16], sufficient conditions are derived

under which the matrix arising from the discretization of L by finite differences and with

Dirichlet boundary conditions on both ends is strictly diagonally dominant with negative

diagonal entries and non-negative off-diagonal entries (Lemma 4.1 in [16]), therefore,

monotone. To facilitate the monotonicity argument for the proof of Theorem 1, we

consider that A is formed with Dirichlet conditions at both ends, such as those described

in Section 2.2.2. We also assume that the conditions of Lemma 4.1 in [16] hold and,

therefore, A is non-singular, monotone and an M-matrix. It is easy to see that, under the

same conditions, (I−ϑ∆τ j(A+P k−1)) is also non-singular, monotone and an M-matrix.

Theorem 1 (Convergence of discrete penalty-like iteration). Under the assumption that

the matrix of the linear system at each iteration in Algorithm 2, i.e. (I−ϑ∆τ j(A+P k−1)),

is monotone, then

(i) The discrete penalty-like iteration converges to the unique solution.

(ii) The iteration converges monotonically.

(iii) The iteration has finite termination.

Proof. Recall that, during timestep j, the system to be solved at iteration k, for k ≥ 1,
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is

(I− ϑ∆τ j(A+ P k−1))uj,k = (I+ (1− ϑ)∆τ jA)uj−1 + ϑ∆τ jP k−1vj + bj. (2.18)

where bj = (1 − ϑ)∆τ jf(uj−1, vj−1), for simplicity. The proof follows the lines of [22],

except that we need to distinguish cases for the values of −λB(1 − RB) and −λC(1 −
RC)− sF .

First, let us prove the monotone property of the iteration.

Equation (2.18) can be rewritten as

(I−ϑ∆τ j(A+P k))uj,k+ϑ∆τ j(P k−P k−1)uj,k = (I+(1−ϑ)∆τ jA)uj−1+ϑ∆τ jP k−1vj+bj.

(2.19)

Furthermore, equation (2.18) can also be written for the version of iteration k + 1 as

(I− ϑ∆τ j(A+ P k))uj,k+1 = (I+ (1− ϑ)∆τ jA)uj−1 + ϑ∆τ jP kvj + bj. (2.20)

Subtracting equation (2.19) from equation (2.20) gives

(I− ϑ∆τ j(A+ P k))(uj,k+1 − uj,k) = ϑ∆τ j(P k − P k−1)(uj,k + vj) (2.21)

We, firstly, work on the case that

−λC(1−RC)− sF ≤ −λB(1−RB) ≤ 0.

Examining each component of the right hand side of equation (2.21), there are two

possible subcases:

� If (uj,k + vj)i ≥ 0, then P k
ii = −λC(1−RC)− sF .

If P k−1
ii = −λC(1−RC)− sF , then (P k

ii − P k−1
ii ) = 0.

If P k−1
ii = −λB(1−RB), then (P k

ii − P k−1
ii ) ≤ 0.

Hence ϑ∆τ j[(P k − P k−1)(uj,k + vj)]i ≤ 0.

� If (uj,k + vj)i < 0, then P k
ii = −λB(1−RB).

If P k−1
ii = −λC(1−RC)− sF , then (P k

ii − P k−1
ii ) ≥ 0.

If P k−1
ii = −λB(1−RB), then (P k

ii − P k−1
ii ) = 0.

Hence ϑ∆τ j[(P k − P k−1)(uj,k + vj)]i ≤ 0.

Therefore, for k ≥ 1, the vector ϑ∆τ j(P k−P k−1)(uj,k+vj) is always non-positive. In

equation (2.21), since (I− ϑ∆τ j(A+ P k)) is monotone, we have uj,k+1 ≤ uj,k for k ≥ 1.
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Thus, the iterates decrease monotonically.

The other case, i.e. −λB(1 − RB) < −λC(1 − RC) − sF ≤ 0, can be analyzed in a

similar way. In this case, the iterates increase monotonically.

Second, we prove the iteration has finite termination to a solution of (2.15).

We consider first the case −λC(1−RC)− sF < −λB(1−RB) ≤ 0. Let us define

Sk
1 = {i|P k

ii = −λB(1−RB)} (2.22)

Sk
2 = {i|P k

ii = −λC(1−RC)− sF}. (2.23)

Therefore, Sk
1 ∪̇Sk

2 is the set of all the nodes in the discretization. Since in the case

of −λC(1 − RC) − sF < −λB(1 − RB) ≤ 0, uj,k decreases monotonically, any node in

Sk
1 remains in Sl

1 if l ≥ k ≥ 1. At the same time, if Sk
1 = Sk−1

1 , Sk
2 = Sk−1

2 , then

P k = P k−1 = 0, and the iteration terminates.

Therefore, during each iteration, at least one node will move into the set Sk
1 and remain

in Sk+1
1 before the termination. Hence the iteration always terminates within at most

N+1 iterations, where N is the size of the linear system, although, numerical experiments

indicate that the iteration needs only one or two steps. Moreover, at termination, we

have (I− ϑ∆τ j(A + P k−1))uj,k = (I + (1− ϑ)∆τ jA)uj−1 + ϑ∆τ jP k−1vj + bj, thus, (I−
ϑ∆τ j(A+P k))uj,k = (I+(1−ϑ)∆τ jA)uj−1+ϑ∆τ jP kvj+bj. Therefore, uj,k is a solution

to (2.15). Additionally, the iterates are clearly bounded.

We now consider the case −λC(1− RC)− sF = −λB(1− RB) ≤ 0. In this case, it is

easy to see that P k = P k−1. Thus, the iteration terminates in one step.

Finally, the case −λB(1−RB) < −λC(1−RC)− sF ≤ 0 can be handled similarly as

the case −λC(1−RC)− sF < −λB(1−RB) ≤ 0.

Last, we demonstrate the uniqueness of the solution to the nonlinear problem

(2.15).

Suppose there are two solutions u1 and u2 and P1 = P (u1, v) and P2 = P (u2, v) for

any arbitrary v. Then, u1 and u2 must satisfy

(I− ϑ∆τ j(A+ P1))u1 = (I+ (1− ϑ)∆τ jA)uj−1 + ϑ∆τ jP1v + bj, (2.24)

(I− ϑ∆τ j(A+ P2))u2 = (I+ (1− ϑ)∆τ jA)uj−1 + ϑ∆τ jP2v + bj. (2.25)

Let us rewrite equation (2.24) as

(I−ϑ∆τ j(A+P2))u1+ϑ∆τ j[P2−P1]u1 = (I+(1−ϑ)∆τ jA)uj−1+ϑ∆τ jP1v+bj. (2.26)
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Subtracting equation (2.25) from equation (2.26) gives

(I− ϑ∆τ j(A+ P2))(u1 − u2) = ϑ∆τ j(P1 − P2)(u1 + v). (2.27)

By a similar argument we used in proving the monotone property of the iteration, we

have that

ϑ∆τ j(P1 − P2)(u1 + v) ≤ 0, if − λB(1−RB) ≥ −λC(1−RC)− sF , (2.28)

ϑ∆τ j(P1 − P2)(u1 + v) ≥ 0, if − λB(1−RB) < −λC(1−RC)− sF . (2.29)

Since the left hand side matrix of (2.27) (I− ϑ∆τ j(A+ P2)) is monotone, we have that

u1 − u2 ≤ 0, if − λB(1−RB) ≥ −λC(1−RC)− sF , (2.30)

u1 − u2 ≥ 0, if − λB(1−RB) < −λC(1−RC)− sF . (2.31)

We can interchange the subscripts of u1 and u2, and obtain

u1 − u2 ≥ 0, if − λB(1−RB) ≥ −λC(1−RC)− sF , (2.32)

u1 − u2 ≤ 0, if − λB(1−RB) < −λC(1−RC)− sF . (2.33)

Hence, in any case, u1 = u2, indicating that the iterations converge to a unique solution.

□

Remark 2 The PDE problem (2.2), with the nonlinear term in (2.3), can be written as

a control problem

∂U

∂τ
= LU + max

ξ1∈{0,1}
min

ξ2∈{0,1}
[−ξ1λB(1−RB)(U + V )− ξ2(λC(1−RC) + sF )(U + V )] ,

(2.34)

where ξ1 and ξ2 are two controls corresponding to the cases that U + V is negative or

positive, respectively. Since the problem involves both max and min, it can be viewed as

a Hamilton-Jacobi-Bellman-Isaacs (HJBI) problem. For such problems, in general, the

Newton-type iteration scheme is not guaranteed to converge, unless the initial guess is

close enough to the solution, or a more complex treatment is considered [21, 38]. However,

in our case, the control problem (2.34) is such that it can be reduced to a single control

with only max or min terms. More specifically, if −λC(1−RC)−sF ≤ −λB(1−RB) ≤ 0,
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problem (2.34) can be written as

∂U

∂τ
= LU + min

ξ∈{0,1}
[−(1− ξ)λB(1−RB)(U + V )− ξ(λC(1−RC) + sF )(U + V )] (2.35)

while, if −λB(1−RB) < −λC(1−RC)− sF ≤ 0, problem (2.34) can be written as

∂U

∂τ
= LU + max

ξ∈{0,1}
[−(1− ξ)λB(1−RB)(U + V )− ξ(λC(1−RC) + sF )(U + V )] .

(2.36)

both of which can be viewed as Hamilton-Jacobi-Bellman (HJB) problems. For problems

(2.35) and (2.36), the monotonicity argument can be used to show global convergence

[22, 21, 38].

2.3 American derivatives

Just as the formulation of the American derivative pricing problem can be presented as

a linear complementarity problem (LCP) [22, 47], the formulation of the XVA pricing

problem in American derivatives can also be presented as an LCP [4].

We consider the case M = V̂ , and, as in [4], build the formulation of XVA pricing in

American derivatives starting from Equation (1.33) and adding appropriate constraints

that force the adjusted price V̂ (t, S) to be above the payoff V ∗(t, S).

Then, the American derivative price V̂ , if taking risk into account, satisfies{
∂V̂
∂t

+ LV̂ + f(V̂ ) = 0

V̂ − V ∗ ≥ 0

}
∨

{
∂V̂
∂t

+ LV̂ + f(V̂ ) ≥ 0

V̂ − V ∗ = 0

}
(2.37)

where

f(V̂ ) = −(λB(1−RB)V̂
− + λC(1−RC)V̂

+ + sF V̂
+), (2.38)

V ∗(S) = V̂ (0, S), (2.39)

and the notation ∨ means ”or”. Typically at each time t, there is a particular asset price

S∗ which divides the asset price domain into two regions: one side that corresponds to

the left condition of (2.37), where it is suggested to hold the option, and another side

that corresponds to the right condition of (2.37), where it is suggested to early exercise

the option. This particular value of S∗ is unknown before the differential equation is

solved, and is usually called free boundary of LCP.
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Note that the value V (t, S) of American derivatives without valuation adjustment satisfies

the LCP [22] {
∂V
∂t

+ LV = 0

V − V ∗ ≥ 0

}
∨

{
∂V
∂t

+ LV ≥ 0

V − V ∗ = 0

}
(2.40)

Furthermore, note that equations (2.37) and (2.40) have the same terminal condition

V̂ (T, S) = V (T, S) = H(S) where H(S) is payoff function at maturity.

The LCP problem (2.40) also has a free boundary. However it is not guaranteed

that the two free boundaries of equations (2.37) and (2.40) are the same. Hence, it is

impossible to find an individual PDE for the XVA value U(t, S). In this section, we

mainly focus on numerically solving (2.37).

2.3.1 Reformulation to penalty form

Forsyth and Vetzal [22] proposed the discrete penalty method to numerically solve the

LCP arising from one-asset American option without XVA. They replace (2.40) by a

nonlinear PDE via adding a large positive penalty term to the right hand side of the

Black-Scholes equation.

In the American XVA problem, a similar penalty term can be added. If backward

time τ = T − t is applied, the penalty form of (2.37) is written as∂V̂
∂τ

= LV̂ + f(V̂ ) + pmax(V ∗ − V̂ , 0),

V̂ (0, S) = H(S),
(2.41)

where p is a large positive penalty factor. The penalty term forces the solution of (2.37)

to approximately satisfy the obstacle condition V̂ −V ∗ ≥ 0. We recall that f(V̂ ) is given

by (2.38).

As in Section 2.2.2, the boundary conditions for S = 0 are formed by solving

∂V̂

∂τ
= −rV̂ + f(V̂ ) + pmax(V ∗ − V̂ , 0), (2.42)

while for S = Smax, the linear boundary condition

lim
S→∞

∂2V̂

∂S2
= 0,
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is implemented either by discretizing

∂V̂

∂τ
= (q − γ)S

∂V̂

∂S
− rV̂ + f(V̂ ) + pmax(V ∗ − V̂ , 0), (2.43)

or by the alternative that gives rise to Dirichlet conditions that depend on the type of

financial derivative considered. For an American Call or Long Forward, we obtain

V̂ (τ, Smax) = max{e(−λC(1−RC)−sF )τ (e(q−γ−r)τSmax − e−rτK), Smax −K}, (2.44)

while, for an American Put,

V̂ (τ, Smax) = 0. (2.45)

2.3.2 Double-penalty iteration method

Penalty term discretization

The timestepping method and the space discretization for LV̂ in (2.41) are similar

to those for the European case. We now discuss the treatment of the penalty term

pmax(V ∗ − V̂ , 0) and the nonlinear term f(V̂ ). Let v̂j, j = 0, . . . , Nt, be the computed

solution vector arising from the approximate values of V̂ at the spatial gridpoints at time

τj. Also let v∗ be the vector of values of payoff V ∗ at the spatial gridpoints.

When computing the numerical solution v̂j at step j, the penalty term pmax(V ∗ −
V̂ , 0) (arising from the American feature) is discretized as PA(v̂

j)(v∗ − v̂j), where PA(v̂
j)

is a diagonal matrix defined by

[PA(v̂
j)]ii ≡

p if (v̂j)i < (v∗)i,

0 otherwise.
(2.46)

The nonlinear term f(V̂ ) (arising from the XVA) is discretized as PX(v̂
j)(v̂j), where

PX(v̂
j) is also a diagonal matrix defined by

[PX(v̂
j)]ii ≡

−λB(1−RB) if (v̂j)i < 0,

−λC(1−RC)− sF if (v̂j)i ≥ 0.
(2.47)

Therefore, to compute v̂j, given v̂j−1, the following system of algebraic equations needs
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to be solved:

[I− ϑ∆τ j(A+ PX(v̂
j))]v̂j + PA(v̂

j)v̂j

= (I+ (1− ϑ)∆τ jA)v̂j−1 + (1− ϑ)∆τ jPX(v̂
j−1)v̂j−1 + PA(v̂

j)v∗. (2.48)

Note that there are two sources of nonlinearity, namely PA(v̂
j) and PX(v̂

j), with respect

to v̂j. Algorithm 2 and the penalty iteration method to value American option [22]

are combined into one iteration method, which can be viewed as generalized Newton’s

method, to solve (2.48). In the construction of PA, the large penalty factor p is chosen

as

p =
1

tol

where tol is the tolerance for the stopping criterion of the iteration method.

Double-penalty iteration

If we view the nonlinear term f(V̂ ) or its discrete form PX(v̂
j)(v̂j) as a second penalty

term, this generalized Newton’s iteration method to solve (2.48) at each timestep can be

called discrete double-penalty iteration for American XVA pricing.

Algorithm 3 Discrete double-penalty iteration for (2.41) at step j, with ϑ-timestepping

Require: Solve [I− ϑ∆τ j(A+ PX(v̂
j))]v̂j + PA(v̂

j)v̂j = gj + PA(v̂
j)v∗

where gj = (I+ (1− ϑ)∆τ jA)v̂j−1 + (1− ϑ)∆τ jPX(v̂
j−1)v̂j−1.

1: Initialize v̂j,0 = v̂j−1, P 0
A = PA(v̂

j,0) and P 0
X = PX(v̂

j,0)
2: for k = 1, . . . ,maxit do
3: Solve [I− ϑ∆τ j(A+ P k−1

X ) + P k−1
A ]v̂j,k = gj + P k−1

A v∗

4: Compute P k
A = PA(v̂

j,k) by (2.46) and P k
X = PX(v̂

j,k) by (2.47)
5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set v̂j = v̂j,k

The stopping criterion in Algorithm 3, modified from (2.17), is

[
(P k

A = P k−1
A ) and (P k

X = P k−1
X )

]
or
[
max

i

|v̂j,ki − v̂j,k−1
i |

max(1, |v̂j,ki |)
≤ tol

]
. (2.49)

Since the matrix solved at each iteration is adjusted by only two diagonal matrices,

the sparsity structure of the matrix remains the same. Also since the penalty parameter

p is positive, the matrix PA enhances the diagonal dominance of I−ϑ∆τ j(A+P k−1
X ). It is
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easy to see that the matrix [I−ϑ∆τ j(A+P k−1
X )+P k−1

A ] is also non-singular, monotone and

an M-matrix, under the conditions of Lemma 4.1 in [16], assuming Dirichlet conditions

are used.

Remark 3 The penalty form of the American XVA problem (2.41) can also be written

in a control problem form as,

∂V̂

∂τ
=LV̂ + max

ξ1,ξ3∈{0,1}
min

ξ2∈{0,1}

[
−ξ1λB(1−RB)V̂ −ξ2(λC(1−RC)+sF )V̂ +ξ3p(V

∗−V̂ )
]
, (2.50)

which involves three controls and both max and min.

When −λC(1 − RC) − sF ≤ −λB(1 − RB) ≤ 0, problem (2.50) cannot be reduced

into a single max or min control problem, and the monotonicity argument fails in the

convergence study. Note that ξ1 and ξ2 depend on the same value V̂ , but ξ3 depends on

another, namely (V ∗ − V̂ ), arising from American constraints.

When −λB(1 − RB) < −λC(1 − RC) − sF ≤ 0, which is a less frequent and less

interesting case, problem (2.50) will end up with a single max

∂V̂

∂τ
=LV̂ + max

ξ1,ξ3∈{0,1}

[
−(1−ξ1)λB(1−RB)V̂ −ξ1(λC(1−RC)+sF )V̂ +ξ3p(V

∗−V̂ )
]
. (2.51)

To address the convergence problem in HJBI problem, the authors in [38], with appro-

priate assumptions and more complex arguments, show global convergence for a certain

class of HJBI boundary value problems. In [21], other treatments, e.g. a relaxation

scheme, or a piecewise constant policy timestepping, are proposed that guarantee global

convergence. For our double-penalty method, we did not show global convergence, but, as

demonstrated in the numerical experiments, the algorithm exhibits fast convergence. It

is worth noting, that, in an initial value problem, a close enough to the solution initial

guess is relatively easy to obtain for each timestep.



Chapter 3

Pricing bilateral XVA with

stochastic default intensities

In this chapter, we investigate the formulation of pricing XVA when stochastic default

intensities are modeled by a mean reversion stochastic process, and correlated with un-

derlying risky assets, and develop computational methods for solving the resulting model.

We assume one of the counterparties (usually the buyer) has stochastic default intensity,

while another party (usually the seller) exhibits constant risk. The contributions of this

part of thesis are:

� We derive a time-dependent nonlinear source term PDE in two space dimensions,

namely the asset price S and the default intensity λC of the counterparty, and

formulate boundary conditions for the problem. We emphasize that the boundary

conditions, especially those for the λC variable, are critical for the success of the

method. We discretize the PDE and boundary conditions, describe how to resolve

the nonlinearity, and provide a numerical solution to the PDE problem.

� We develop an alternative solution technique to the two-dimensional (2D) PDE,

namely an asymptotic approximation, assuming the mean reversion rate of the

default intensity to the mean reversion level is large. The asymptotic approximation

is based on the one-dimensional XVA PDE solution and its derivative, and is,

therefore, very efficient and simple to implement. We analyze the accuracy of the

asymptotic approximation as the mean reversion rate increases.

The outline of the chapter is as follows. In Sections 3.1 and 3.2, we derive and

numerically solve the 2D PDE the adjusted derivative price V̂ satisfies and formulate

boundary conditions for the S and λC boundaries. Since the 2D PDE involves a nonlinear

29
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source term, we also present the iteration method to handle the nonlinearity. In Section

3.3, we develop the asymptotic approximation to V̂ , first for the case that the correlation

between S and λC is 0, then for the case of nonzero correlation. We also present an

analysis of the accuracy of the asymptotic approximation. The numerical experiments to

study the behavior of the computed 2D PDE and asymptotic solutions, in terms of various

numerical and model parameters, and the comparison of the two solution techniques are

left for Chapter 5. We note that many of the results of this chapter will also appear in

[15].

3.1 Formulation with stochastic default intensities

We consider the pricing of a European-style derivative on a single risky asset, with price

S(t), with two counterparties B and C. The contingent claim value considering default

risk can be replicated in a economy consisting of the following four traded assets: the

underlying risky asset price S(t), the risky bonds of two parties PB(t) and PC(t), and

the risk-free bond P . The dynamics of these four assets are modeled as

dS(t) = µ(t)S(t)dt+ σSS(t)dW S(t) (3.1)

dPB = PB(rB(t)dt− dJB) (3.2)

dPC = PC(rC(t)dt− dJC) (3.3)

dP (t) = r(t)P (t)dt (3.4)

where W S(t) is a Brownian motion, with µ and σS being drift and volatility of S(t)

respectively, JB and JC are two independent jump processes, that jump from 0 to 1

when default of B or C occurs, respectively, and r(t), rB(t), rC(t) are the yields of bonds

P , PB, and PC , respectively. Note that, generically, the bond yield rate Y of a party

is related to its default intensity λ by λ = Y−r
1−R

, where r is the risk-free rate and R is

the recovery rate on the bond of the party if default happens. Since PB and PC are

defined as zero-recovery, zero-coupon bonds, the spreads rB − r and rC − r are the same

as the respective default intensities λB and λC . Therefore, in our case, rB = λB + r and

rC = λC + r.

3.1.1 Cox-Ingersoll-Ross(CIR) type risk model

We assume the default intensity, λC(t), of counterparty C is stochastic, while self-party

B has low and constant default intensity, i.e. λB(t) = λB. We assume λC(t) follows a
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CIR process, a type of mean reversion process. The hazard rate process λC(t) can be

formulated as

dλC(t) = κ(t)[θ(t)− λC(t)]dt+ σλC
√

λC(t)dW
λC (t) (3.5)

where κ(t) is the mean reversion rate, θ(t) is mean reversion level, σλC is the volatility

of mean reversion process, and W λC (t) is a standard Brownian motion. We also assume

W S(t) and W λC (t) are correlated with correlation ρ, which is in general nonzero, in order

to reflect the dependency between exposure and default risk. Furthermore, assume the

Feller condition 2κθ > (σλC )2 is satisfied to ensure that λC(t) is strictly positive.

In modelling default risk λ, the CIR process has been widely used, for example, in

collateralized debt obligation (CDO) [18]. Suppose that each underlying obligor defaults

at some expected arrival time. At each time t before default time τ , the default arrives

at some “intensity” λ(t) with probability Pt(τ < t + ∆t) ≈ λ(t)∆t. A process λ(t) is a

stochastic default process, if for a stopping time (default time) τ , whenever t < τ , the

survival probability is

Pt(τ > t+ s) = Et[exp(

∫ t+s

t

−λ(u)du)]

where Et denotes conditional expectation given all information at time t, and s is length

of the period over which survival is considered. Note that, the CIR process is also used for

stochastic volatility [33] and stochastic correlation [40]. It also facilitates the derivation

of asymptotic approximation method, see Section 3.3.

3.1.2 Formulation of PDE

To formulate the PDE for the XVA pricing problem considering stochastic default in-

tensities, we use dynamic hedging techniques similar to [11]. However, in [11], constant

default intensities on both parties are assumed. In this subsection, we show how to em-

bed stochastic default intensity into the XVA PDE and result in a two-dimensional in

space time-dependent PDE.

In stochastic default intensity XVA pricing problem, there are only three traded risky

assets S, JB and JC to hedge out four random sources W S, W λC , JB and JC , since λC

is not a traded risky asset. This is usually called incomplete market. We cannot build

a perfectly replicating portfolio with only these three risky assets. One technique is to

assume the existence of another benchmark option to complete the market. A similar

assumption is used in the PDE derivation of the stochastic volatility option pricing model
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[24] or the stochastic correlation option pricing model [40].

Suppose the derivative price V̂ (t, S, λC , JB, JC) is totally hedged by a self-financing

portfolio Π, such as V̂ + Π = 0 or −V̂ = Π. At time t, the portfolio Π consists of the

following assets:

� γ(t) 1 units of another option Ṽ (t, S, λC , JB, JC) on the same underlying, and with

the same maturity and payoff,

� δ(t) units of the underlying asset S(t),

� α(t) units of bond PB(t),

� β(t) units of bond PC(t),

� D(t) units of cash deposit.

By the convention in [11], derivative value V̂ is positive means that this is a positive

asset to party B, while V̂ < 0 means this is a positive asset to party C. From the

2002 ISDA Master Agreement, the surviving party can receive the recovery potion of

contract’s mark-to-market value if this derivative contract is positive to this party, while

the surviving party should pay full mark-to-market value to the defaulting party, if

this derivative contract is negative to the surviving party. Therefore, the “boundary”

conditions for V̂ (t, S, λC , JB, JC) according to the default of parties B and C, respectively

are given by

V̂ (t, S, λC , 1, 0) = M+ +RBM
−, (3.6)

V̂ (t, S, λC , 0, 1) = RCM
+ +M−, (3.7)

where RB and RC denote the recovery rates on the derivative’s position of parties B and

C, respectively, and M is the close-out mark-to-market value of the derivative. Recall

that the positive and negative values of any asset Z are denoted as Z+ ≡ max{Z, 0} and

Z− ≡ min{Z, 0}. In this chapter, V̂ (t, S, λC , 0, 0) is usually written as V̂ (t, S, λC).

The value of Π is written as

−V̂ = Π = δ(t)S(t) + α(t)PB + β(t)PC + γ(t)Ṽ +D(t). (3.8)

By the assumptions of self-financing, the infinitesimal change is

−dV̂ = dΠ = δ(t)dS(t) + α(t)dPB + β(t)dPC + γ(t)dṼ + dD̄(t) (3.9)

1In Section 3.1, γ(t) is not the same as the γ, the dividend rate of underlying asset, in the rest of the
thesis.



Chapter 3. Pricing bilateral XVA with stochastic default intensities33

where the change in the cash account 2 is

dD̄(t) = δ(t)(−rR)S(t)dt

+{r(−V̂ − α(t)PB − γ(t)Ṽ )+ + rF (−V̂ − α(t)PB − γ(t)Ṽ )−}dt− rβ(t)PCdt. (3.10)

Then the first term 3 in (3.10) is corresponding to the cash change from underlying

asset share position, combining dividend income and financing cost. The second term

(in curly brackets) is corresponding to the cash change in the “funding” account. In this

account, any surplus cash held by the seller after the own bonds and option Ṽ have been

purchased must earn risk-free rate r in order not to introduce any further credit risk. If

no surplus cash, the seller needs to pay the rate rF . The third term is corresponding to

the cash changes due to the seller shorting the counterparty bond through a repurchase

agreement, which incurs financing costs of rate r.

Applying Ito’s lemma for jump diffusions to V̂ and Ṽ results in

dV̂ = MV̂ dt+ (σS)S
∂V̂

∂S
dW S + (σλC )

√
λC

∂V̂

∂λC

dW λC +∆V̂BdJB +∆V̂CdJC , (3.11)

dṼ = MṼ dt+ (σS)S
∂Ṽ

∂S
dW S + (σλC )

√
λC

∂Ṽ

∂λC

dW λC +∆ṼBdJB +∆ṼCdJC , (3.12)

where

∆V̂B = V̂ (t, S, λC , 1, 0)− V̂ (t, S, λC), (3.13)

∆ṼB = Ṽ (t, S, λC , 1, 0)− Ṽ (t, S, λC), (3.14)

∆V̂C = V̂ (t, S, λC , 0, 1)− V̂ (t, S, λC), (3.15)

∆ṼC = Ṽ (t, S, λC , 0, 1)− Ṽ (t, S, λC), (3.16)

and where the differential operator M is defined by

MV =
∂V

∂t
+

1

2
(σS)2S2∂

2V

∂S2
+

1

2
(σλC )2λC

∂2V

∂λ2
C

+ρσSσλCS
√

λC
∂2V

∂S∂λC

+ µS
∂V

∂S
+ κ(θ − λC)

∂V

∂λC

. (3.17)

2More details about the mechanism of cash account can found in [11]
3rR is stock financing rate minus dividend income rate.
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Combining equations (3.9)-(3.17), the following hedging equation is obtained,

−

{[
∂V̂

∂t
+

1

2
(σS)2S2 ∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC
+ µS

∂V̂

∂S
+ κ(θ − λC)

∂V̂

∂λC

]
dt

+ (σS)S
∂V̂

∂S
dWS + (σλC )

√
λC

∂V̂

∂λC
dWλC +∆V̂BdJB +∆V̂CdJC

}
= δ(t)

(
µSdt+ σSSdWS

)
+ α(t)PB(rBdt− dJB) + β(t)PC(rCdt− dJC)

+γ(t)

{[
∂Ṽ

∂t
+
1

2
(σS)2S2 ∂

2Ṽ

∂S2
+
1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ρσSσλCS
√
λC

∂2Ṽ

∂S∂λC
+µS

∂Ṽ

∂S
+κ(θ−λC)

∂Ṽ

∂λC

]
dt

+ (σS)S
∂Ṽ

∂S
dWS + (σλC )

√
λC

∂Ṽ

∂λC
dWλC +∆ṼBdJB +∆ṼCdJC

}
− δ(t)rRS(t)dt+ {r(−V̂ − α(t)PB − γ(t)Ṽ )+ + rF (−V̂ − α(t)PB − γ(t)Ṽ )−}dt− rβPCdt. (3.18)

In order to remove all the risk factors in (3.18), the following equations must be satisfied:

−(σλC )
√

λC
∂V̂

∂λC

dW λC = γ(t)(σλ
C)
√

λC
∂Ṽ

∂λC

dW λC , (3.19)

−(σS)S
∂V̂

∂S
dW S = γ(t)

(
(σS)S

∂Ṽ

∂S
dW S

)
+ δ(t)(σS)SdW S, (3.20)

−∆V̂BdJB = −α(t)PBdJB + γ(t)∆ṼBdJB (3.21)

−∆V̂CdJC = −β(t)PCdJC + γ(t)∆ṼCdJC . (3.22)

Hence, the portion of each asset in the portfolio is chosen as

γ(t) = − ∂V̂

∂λC

/ ∂Ṽ

∂λC

, (3.23)

δ(t) = −γ(t)
∂Ṽ

∂S
− ∂V̂

∂S
= (

∂V̂

∂λC

/ ∂Ṽ

∂λC

)
∂Ṽ

∂S
− ∂V̂

∂S
, (3.24)

α(t) =
1

PB

[
∆V̂B + γ(t)∆ṼB

]
=

1

PB

[
∆V̂B − (

∂V̂

∂λC

/ ∂Ṽ

∂λC

)∆ṼB

]
, (3.25)

β(t) =
1

PC

[
∆V̂C + γ(t)∆ṼC

]
=

1

PC

[
∆V̂C − (

∂V̂

∂λC

/ ∂Ṽ

∂λC

)∆ṼC

]
, (3.26)
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where

∆V̂B = M̂+ +RBM̂
− − V̂ , (3.27)

∆V̂C = RCM̂
+ + M̂− − V̂ , (3.28)

∆ṼB = M̃+ +RBM̃
− − Ṽ , (3.29)

∆ṼC = RCM̃
+ + M̃− − Ṽ , (3.30)

M̂ is close-out value for derivative V̂ and M̃ is close-out value for derivative Ṽ .

Therefore, (3.18) becomes

−

[
∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

]
dt

= α(t)PBrBdt+ β(t)PCrCdt

+γ(t)

[
∂Ṽ

∂t
+
1

2
(σS)2S2∂

2Ṽ

∂S2
+
1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC

]
dt−δ(t)rRS(t)dt

+ {r(−V̂ − α(t)PB − γ(t)Ṽ )+ + rF (−V̂ − α(t)PB − γ(t)Ṽ )−}dt− rβPCdt. (3.31)

Rearranging some terms in (3.31) results in

α(t)PBrBdt+ β(t)PCrCdt− rβPCdt

+ {r(−V̂ − α(t)PB − γ(t)Ṽ )+ + rF (−V̂ − α(t)PB − γ(t)Ṽ )−}dt

=α(t)PBrBdt+ β(t)PCrCdt− rβPCdt

+ r(−V̂ − α(t)PB − γ(t)Ṽ )dt+ sF (−V̂ − α(t)PB − γ(t)Ṽ )−dt

=α(t)PB(rB − r)dt+ β(t)PC(rC − r)dt

+ r(−V̂ − γ(t)Ṽ )dt+ sF (−V̂ − α(t)PB − γ(t)Ṽ )−dt. (3.32)

Taking into account (3.32), equation (3.31) becomes

−

[
∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

]
dt

= γ(t)

[
∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC

]
dt

− δ(t)rRSdt+ α(t)PB(rB − r)dt+ β(t)PC(rC − r)dt

+ r(−V̂ − γ(t)Ṽ )dt+ sF (−V̂ − α(t)PB − γ(t)Ṽ )−dt. (3.33)
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If we substitute all the portions into (3.33), we obtain

−

[
∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC
− rV̂

]
dt

= γ(t)

[
∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC
− rṼ

]
dt

+ [γ(t)
∂Ṽ

∂S
+

∂V̂

∂S
]rRSdt+ (∆V̂B + γ(t)∆ṼB)(rB − r)dt+ (∆V̂C + γ(t)∆ṼC)(rC − r)dt

+ sF (−V̂ − (∆V̂B + γ(t)∆ṼB)− γ(t)Ṽ )−dt. (3.34)

Then, if we rearrange (3.34) and switch the sign on both hand sides, we have[
∂V̂

∂t
+
1

2
(σS)2S2∂

2V̂

∂S2
+
1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ρσSσλCS
√
λC

∂2V̂

∂S∂λC
−rV̂ +rRS

∂V̂

∂S

+λB∆V̂B + λC∆V̂C

]
=(−γ(t))

[
∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC
− rṼ + rRS

∂Ṽ

∂S

+ λB∆ṼB + λC∆V̂C

]
+ sF ((∆V̂B + Ṽ ) + γ(t)(∆ṼB + Ṽ ))+. (3.35)

If we substitute (3.27)-(3.30) into (3.35), we obtain[
∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

− rV̂ + rRS
∂V̂

∂S

− λB(M̂
+ +RBM̂

− − V̂ )− λC(RCM̂
+ + M̂− − V̂ )

]
=(−γ(t))

[
∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλ
CS
√

λC
∂2Ṽ

∂S∂λC

−rṼ +rRS
∂Ṽ

∂S

− λB(M̃
+ +RBM̃

− − Ṽ )− λC(RCM̃
+ + M̃− − Ṽ )

]
+ sF ((M̂

+ +RBM̂
−) + γ(t)(M̃+ +RBM̃

−))+. (3.36)

If assume the mark-to-market values of the two options move in the same way, i.e. they

are positive and negative at the same time, then we have that ((M̂++RBM̂
−)+γ(t)(M̃++
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RBM̃
−))+ = M̂+ + γ(t)M̃+, and

(1

/
∂V̂

∂λC
)

[
∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√
λC

∂2V̂

∂S∂λC
− rV̂ + rRS

∂V̂

∂S

+ λB(M̂
+ +RBM̂

− − V̂ ) + λC(RCM̂
+ + M̂− − V̂ )− sF M̂

+

]
=(1

/
∂Ṽ

∂λC
)

[
∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√
λC

∂2Ṽ

∂S∂λC
− rṼ + rRS

∂Ṽ

∂S

+ λB(M̃
+ +RBM̃

− − Ṽ ) + λC(RCM̃
+ + M̃− − Ṽ )− sF M̃

+

]
(3.37)

Equation (3.37) holds for any derivatives V̂ and Ṽ . Assuming that both sides of

(3.37) are equal to the market price of stochastic default intensity, which is usually set

as the drift term of intensity dynamics, −κ(t)[θ(t)− λC(t)], then the PDE becomes

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

+rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− (r + λB + λC)V̂

= −λB(M̂
+ +RBM̂

−)− λC(RCM̂
+ + M̂−) + sFM̂

+

= (sF − λB −RCλC)M̂
+ + (−RBλB − λC)M̂

−. (3.38)

Assuming the mark-to-market value is equal to the risky price, i.e M̂ = V̂ , the derivative

price considering bilateral risk satisfies the nonlinear PDE

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

+rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂

= (sF + (1−RC)λC)V̂
+ + (1−RB)λBV̂

−. (3.39)

If backward time τ = T − t is applied, (3.39) becomes

∂V̂

∂τ
= LV̂ + f(λC , V̂ ), (3.40)
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where the differential operator L and the nonlinear term f(·) are defined by

LV̂ ≡1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

(3.41)

+ rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂ ,

f(λC , V̂ ) ≡− (sF + (1−RC)λC)V̂
+ − (1−RB)λBV̂

−. (3.42)

The initial (or terminal) condition to (3.40) is the payoff function H(S) of the deriva-

tive. The same initial (or terminal) condition holds for the original Black-Scholes equation

for the price of the derivative without considering credit risk. It is worth noting that, if

λB = λC = sF = 0, then PDE (3.40) does not simplify to (2.1) due to the mean-reversion

process where the mean θ cannot be zero.

3.1.3 PDE with constant default intensity

For later reference and for comparison purposes, we present the PDE satisfied by the

adjusted for default risk derivative price V̂ c when the default intensity λC is a given

constant:

∂V̂ c

∂τ
=

1

2
(σS)2S2∂

2V̂ c

∂S2
+ rRS

∂V̂ c

∂S
− rV̂ c − (sF + (1−RC)λC)(V̂

c)+ − (1−RB)λB(V̂
c)−.

(3.43)

PDE (3.43) is derived in [11] and numerically solved in Chapter 2 of this thesis. Note that

PDE (3.43) is the same is the PDE (1.31), taking into account that the transformation

τ = T − t. However, we use the notation V̂ c in order to distinguish the constant default

intensity derivative price from the stochastic default intensity derivative price.

3.2 Numerical methods

PDE (3.40) for the price V̂ of the derivative considering stochastic default intensity for

party C is defined in the domain

(τ, S, λC) ∈ (0, T ]× [0,∞)× [0,∞),

which is unbounded in the two spatial variables.

While the implementation of finite differences is straightforward for (3.40), special

care is still needed to introduce appropriate boundary conditions and to deal with the
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nonlinearity in the source term.

3.2.1 Discretization

In this subsection, we present the discretization of (3.40). The semi-infinite space domain

of spot price S is truncated into [0, Smax], for sufficiently large Smax, while the semi-

infinite space domain of party C spot default intensity λC is truncated into [0, λmax
C ], for

sufficiently large λmax
C . In Section (5.2.1), there is a discussion about the effect of Smax

and λmax
C on the accuracy of the numerical solution. Then, [0, Smax] is divided into N

subintervals, with the gridpoints S0 = 0 < S1 < . . . < SN = Smax positioned uniformly or

nonuniformly, while [0, λmax
C ] is divided into M subintervals, with the gridpoints (λC)0 =

0 < (λC)1 < . . . < (λC)M = λmax
C positioned uniformly or nonuniformly. The details

of the nonuniform positioning of the S- or the λC-gridpoints and possible advantages

thereof are discussed in Chapter 5. Standard second-order centered finite differences are

used for the space discretization of (3.40) except at the boundary points. The details of

the boundary conditions and their discretization, as well as the handling of the nonlinear

term are discussed in the following two subsections.

For the time-stepping, we employ the ϑ-method 4, which, for ϑ = 1
2
and ϑ = 1

becomes the Crank-Nicolson (CN) and Backward Euler (BE) methods, respectively. We

also use Rannacher smoothing, which consists of first applying few BE timesteps, then

applying CN timestepping. Let τj, j = 0, . . . , Nt, be the timesteps at which the solution

is computed, with τ0 = 0 < τ1 < · · · < τNt = T , and let ∆τ j = τj − τj−1 be the jth time

stepsize. If uniform timesteps are used, then ∆τ = T/Nt, and Rannacher smoothing first

applies four BE timesteps with stepsize ∆τ/2, then switches to CN with stepsize ∆τ for

the remaining timesteps, resulting in a total of Nt + 2 timesteps.

3.2.2 Boundary conditions

We consider the bounded spatial domain [0, Smax]× [0, λmax
C ], where Smax and λmax

C are

sufficiently large, and setup boundary conditions as follows:

� On the S = 0 boundary, i.e. on {(S, λC) ∈ {S = 0} × [0, λmax
C ]}, substitute S = 0

into (3.40). This results in a one-dimensional time-dependent PDE,

∂V̂

∂τ
=

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ κ[θ − λC ]
∂V̂

∂λC

− rV̂ + f(λC , V̂ ). (3.44)

4Note that the ϑ notation for the time-stepping method is different from the θ(t) notation in the CIR
model.
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PDE (3.44) is numerically solved and its computed solution used as Dirichlet bound-

ary condition for solving (3.40). Standard centered differences are used for the

discretization of (3.44). However, in order to numerically solve (3.44), appropriate

boundary conditions are needed. On the corner point (0, 0), we substitute λC = 0

into (3.44), and get

∂V̂

∂τ
= κθ

∂V̂

∂λC

− rV̂ + f(λC , V̂ ). (3.45)

On the corner point (0, λmax
C ), we substitute ∂2V̂

∂λ2
C
= 0 into (3.44), and get

∂V̂

∂τ
= κ[θ − λC ]

∂V̂

∂λC

− rV̂ + f(λC , V̂ ). (3.46)

Relations (3.45) and (3.46) provide the near and far field boundary conditions,

respectively, for (3.44). The first derivative terms of (3.45) and (3.46) are discretized

by one-sided finite differences (forward or backward, respectively).

PDE (3.44) together with boundary conditions (3.45) and (3.46) provide approxi-

mations to V̂ (τ, 0, λC) to be used as Dirichlet boundary condition for solving (3.40).

� On the S = Smax boundary, i.e. on {(S, λC) ∈ {S = Smax}× [0, λmax
C ]}, we impose

the linear boundary condition
∂2V̂

∂S2
= 0. (3.47)

Instead of discretizing this condition directly, we substitute ∂2V̂
∂S2 = 0 into the PDE

(3.40), and get

∂V̂

∂τ
=
1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ρσSσλCS
√

λC
∂2V̂

∂S∂λC

+rRS
∂V̂

∂S
+κ[θ−λC ]

∂V̂

∂λC

−rV̂ +f(λC , V̂ ).

(3.48)

Relation (3.48) forms the boundary condition at S = Smax. The first derivative

term ∂V̂
∂S

in (3.48) is discretized by backward differences. For all non-boundary λC-

points, ∂2V̂
∂λ2

C
and ∂V̂

∂λC
are discretized by standard centered differences, and ∂2V̂

∂S∂λC
by

the Cartesian product of backward differences in S and centered differences in λC .

On the corner point (Smax, 0), relation (3.48) becomes

∂V̂

∂τ
= rRS

∂V̂

∂S
+ κθ

∂V̂

∂λC

− rV̂ + f(λC , V̂ ), (3.49)

with ∂V̂
∂S

discretized by backward and ∂V̂
∂λC

by forward differences.
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On the corner point (Smax, λmax
C ), besides condition (3.47), we also impose the

linear boundary condition on λC

∂2V̂

∂λ2
C

= 0. (3.50)

With (3.47) and (3.50), PDE (3.40) becomes

∂V̂

∂τ
= ρσSσλCS

√
λC

∂2V̂

∂S∂λC

+ rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂ + f(λC , V̂ ). (3.51)

For the discretization of ∂V̂
∂S

and ∂V̂
∂λC

in (3.51), one-sided differences are used, while

for ∂2V̂
∂S∂λC

a Cartesian product of one-sided differences in S and λC .

� On the λC = 0 boundary, i.e. {(S, λC) ∈ (0, Smax) × {λC = 0}}, if the Feller

condition 2κθ > (σλC )2 is satisfied, this is outflow boundary by Fichera theory, as in

the case of mean reversion stochastic volatility or correlation. While the boundary

condition is not necessary from the mathematical point of view, we impose an

equation at the boundary in order to obtain a square (uniquely solvable) linear

system.

More specifically, we substitute λC = 0 into (3.40), and get

∂V̂

∂τ
=

1

2
(σS)2S2∂

2V̂

∂S2
+ rRS

∂V̂

∂S
+ κθ

∂V̂

∂λC

− rV̂ + f(λC , V̂ ). (3.52)

This PDE is actually the same as the original PDE (3.40) on the λC = 0 boundary.

Thus, we do not introduce a new condition, but just apply the PDE itself. In (3.52),

the derivatives ∂2V̂
∂S2 and ∂V̂

∂S
are discretized by standard centered differences, while

∂V̂
∂λC

is discretized by one-sided finite differences.

� On the λC = λmax
C boundary, i.e. {(S, λC) ∈ (0, Smax)× {λC = λmax

C }}, we impose

the condition ∂2V̂
∂λ2

C
= 0, substitute this into (3.40), and get

∂V̂

∂τ
=
1

2
(σS)2S2∂

2V̂

∂S2
+ρσSσλCS

√
λC

∂2V̂

∂S∂λC

+rRS
∂V̂

∂S
+κ[θ−λC ]

∂V̂

∂λC

−rV̂ +f(λC , V̂ ).

(3.53)

In (3.53), the derivatives ∂2V̂
∂S2 and ∂V̂

∂S
are discretized by standard centered dif-

ferences, while ∂V̂
∂λC

is discretized by one-sided finite differences, and ∂2V̂
∂S∂λC

by the

Cartesian product of centered differences in S and one-sided differences in λC . This

boundary condition is inspired partly by the fact that, in the constant default in-
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tensity calls or puts cases, λC acts as a discounting rate (exponential decay rate)

– see formula (5.1) in Chapter 5; and also by the fact that numerical experiments

for the constant default intensity forward case have shown that λC acts similarly,

in that, as it increases, the price flattens (at some possibly positive or negative

value). Therefore, we expect that homogeneous Neumann conditions would be ap-

propriate for the far side λC boundary. Such conditions have been used by many

in the literature [50, 37, 49, 31], when considering mean reversion stochastic asset

volatility dynamics. Condition (3.53) is more general, in that it covers homogeneous

Neumann as well as strictly linear boundary conditions.

It is worth mentioning that the authors of [49], when considering the mean reversion

stochastic volatility problem, include an elaborate discussion on how to obtain equations

on points where the stochastic volatility tends to 0 or to infinity, for the European

and the American cases. The conditions obtained are either homogeneous Dirichlet

or Neumann (which linear boundary conditions cover) or non-homogeneous Dirichlet

(which are usually problem/product dependent). Taking into account that the Dirichlet

conditions are computed at S = 0, in advance of the main simulation of (3.40), the total

number of unknowns in each timestep of the main simulation is (M + 1)N . We number

the spatial gridpoints first bottom-up, then left-to-right. Thus, the index i that runs

over all spatial gridpoints, is related to the indices i1 and i2 that run over all S- and

λC-gridpoints, respectively, by i = (i1 − 1)(M + 1) + i2, i1 = 1, . . . , N , i2 = 0, . . . ,M .

With this numbering the arising matrix is block-tridiagonal with tridiagonal blocks.

3.2.3 Iteration methods for nonlinear PDE

In this subsection, we present an iterative method for handling the nonlinearity in (3.40).

We refer to it as discrete penalty-like iteration, or, simply, penalty iteration, motivated

by the similarly named method in [22] designed to resolve the nonlinear PDE arising

from the linear complementarity problem (LCP) in American option pricing. The first

introduction of this method was in [14], for the one-dimensional XVA problem. The

method is also presented in Chapter 2. This chapter extends the ideas in Chapter 2 to

the case of the multi-dimensional PDE arising from the XVA problem with stochastic

default intensity λC .

Let v̂j, j = 0, . . . , Nt, denote the vector of approximate solution values of V̂ at the two-

dimensional spatial gridpoints at time τj, while v̂0 is the initial condition vector. Since

we use an iteration method to handle the nonlinearity, let v̂j,k, k = 0, . . . ,maxit, denote

the computed solution vector at iteration k of timestep j, with maxit the maximum
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number of iterations allowed per timestep. Let f(v̂) denote the vector arising from

evaluating f at the components of v̂. This means that (f(v̂))i = f((λC)i2 , v̂i), where

i2 = i − ⌊ i
M+1

⌋(M + 1). Let also A be the matrix arising from the space discretization

of LV̂ , and I be the identity matrix of compatible order. For simplicity, we assume the

spatial gridpoints remain the same at all timesteps.

For some generic vector v, we define the diagonal penalty matrix P = P (v) by

[P (v)]i,i ≡

−λB(1−RB) if vi < 0

−(λC)i2(1−RC)− sF if vi ≥ 0.
(3.54)

Thus, in contrast with the method in Chapter 2, if vi ≥ 0, the entries of the penalty

matrix are variable. The vector arising from the discretized form of f(λC , V̂ ) is written

as

f(v̂) = P (v̂)v̂, (3.55)

and note that there is nonlinearity between P (v̂) and v̂.

With the help of the matrix P , the linear system that needs to be solved in each timestep

is

[I− ϑ∆τ j(A+ P (v̂j))]v̂j = (I+ (1− ϑ)∆τ jA)v̂j−1 + (1− ϑ)∆τ jP (v̂j−1)v̂j−1. (3.56)

The proposed discrete penalty-like iteration for (3.40) is described in Algorithm 4.

Algorithm 4 Discrete penalty iteration for (3.40) at step j, with ϑ-timestepping

Require: Solve [I− ϑ∆τ j(A+ P (v̂j))]v̂j = gj

where gj = (I+ (1− ϑ)∆τ jA)v̂j−1 + (1− ϑ)∆τ jP (v̂j−1)v̂j−1.
1: Initialize v̂j,0 = v̂j−1, and P j,0 = P (v̂j,0)
2: for k = 1, . . . ,maxit do
3: Solve [I− ϑ∆τ j(A+ P j,k−1)]v̂j,k = gj

4: Compute P j,k = P (v̂j,k) by (3.54)
5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set v̂j = v̂j,k
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The stopping criterion in Algorithm 4 is

(P j,k = P j,k−1) or (max
i

|v̂j,ki − v̂j,k−1
i |

max(1, |v̂j,ki |)
≤ tol). (3.57)

Note that the matrix solved at each iteration may change, but the change does not

affect the sparsity pattern or the computational complexity of the solution. Also note

that, if λB ≥ 0, (λC)i ≥ 0, and sF ≥ 0, we have Pi,i(v) ≤ 0, which enhances the diagonal

dominance of A.

For the nonlinearity in the one-dimensional PDE (3.44), a similar penalty iteration

is applied, except that, since the problem is along the λC dimension only, the diagonal

matrix P is defined by

[P (v)]i2,i2 ≡

−λB(1−RB) if vi2 < 0

−(λC)i2(1−RC)− sF if vi2 ≥ 0,
(3.58)

where v is now a vector of approximate values of V̂ at the gridpoints (0, (λC)i2), i2 =

0, . . . ,M .

3.3 Asymptotic solution

Solving the time-dependent two-dimensional PDE derived in Section 3.1 involves a heavy

computational cost. An asymptotic approximation formulae allows us to obtain reason-

ably accurate results in a more efficient way, namely by a closed-form formula based on

one-dimensional PDE results and some additional terms. This asymptotic approxima-

tion, built on singular perturbation theory, has been used in the literature, especially

when some stochastic variables evolve according to some mean-reverting stochastic pro-

cesses, [26, 44, 40, 23]. In this section, we derive such an asymptotic approximation for

the price of derivatives considering mean-reverting stochastic default intensity.

For convenience, we repeat the stochastic differential equation that the CIR process

for λC follows:

dλC(t) = κ[θ − λC(t)]dt+ σλC
√

λC(t)dW
λC (t). (3.59)

Although one cannot derive a closed-form solution for (3.59), the conditional distribution
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is a non-central chi-square distribution with

E[λC(t))] = e−κtλC(0) + θ(1− e−κt), (3.60)

Var[λC(t)] =
(σλC )2

κ
λC(0)(e

−κt − e−2κt) +
θ(σλC )2

2κ
(1− e−κt)2. (3.61)

As t goes to infinity, we have that the long-run mean level and variance are θ and θ(σλC )2

2κ
,

respectively.

The invariant distribution λ of a CIR process can be shown to follow a Gamma

distribution, with shape parameter α = 2κθ
(σλC )2

and scale parameter β = (σλC )2

2κ
. While

not shown here, the invariant distribution is given by [44]

Φ(λ) =
e−λ/βλα−1

Γ(α)βα
. (3.62)

Following [26, 40], we assume κ = 1/ϵ, where ϵ > 0 is small. We also keep the variance

ν2 of the λC process invariant distribution constant, thus we scale σλC as σλC = ν√
ϵ
.

The partial differential equation (3.40), which V̂ (τ, S, λC) satisfies becomes

(
1

ϵ
L0 +

1√
ϵ
L1 + L2)V̂ = 0, (3.63)

where

L0 ≡
1

2
ν2λC

∂2

∂λ2
C

+ (θ − λC)
∂

∂λC

, (3.64)

L1 ≡ ρσSνS
√

λC
∂2

∂S∂λC

, (3.65)

L2 ≡ (− ∂

∂τ
) +

1

2
(σS)2S2 ∂2

∂S2
+ rRS

∂

∂S
− rI + f(λC , V̂ ), (3.66)

with I being the identity operator.

Remark 4 For a given problem, κ is given and, therefore, ϵ is calculated as 1
κ
. Note that

the Feller condition imposes a lower bound for κ, which is translated to an upper bound

of ϵ. This means that κ cannot be very small, and ϵ cannot be very large. However, in

practical situations, ϵ need not be very small either. For example, as we will be seeing in

the numerical experiments, typical values of κ could include κ = 1, therefore, ϵ = 1. In

practice, κ could be calibrated from the bond price of the counterparty. In this study, we

assume that ϵ < 1, so that the powers of ϵ converge to zero.
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3.3.1 Asymptotic approximation for zero correlation

When ρ = 0, the partial differential equation (3.63), which V̂ (τ, S, λC) satisfies, becomes

(
1

ϵ
L0 + L2)V̂ = 0. (3.67)

Let V̂ ϵ be an expansion of V̂ in terms of powers of ϵ:

V̂ ϵ = V̂0 + ϵV̂1 + ϵ2V̂2 + . . . (3.68)

We will approximate V̂ by the first two terms i.e. by V̂ ϵ,1 = V̂0 + ϵV̂1. For V̂0, we impose

the same initial condition as for the solution of (3.40), that is, V̂0(0, S, λC) = H(S). Let

⟨·⟩ denote expectation with respect to the invariant distribution of λC .

Substituting (3.68) into (3.67) and equating the lower order terms to zero, we have:

O(
1

ϵ
) : L0V̂0 = 0 (3.69)

O(1) : L0V̂1 + L2V̂0 = 0 (3.70)

O(ϵ) : L0V̂2 + L2V̂1 = 0. (3.71)

Equation (3.69) implies that V̂0 is independent of λC , i.e. V̂0 = V̂0(τ, S). Equation (3.69)

is a Poisson equation with respect to the operator L0 in the variable λC , which implies

the centering condition

⟨L2V̂0⟩ = 0. (3.72)

As V̂0 is independent of λC , the centering condition implies ⟨L2⟩V̂0 = 0, where ⟨L2⟩
is the operator with default intensity being the long-run mean level θ of λC under its

invariant distribution expectation. Therefore, V̂0 is the solution of the Black-Scholes

equation (3.43) taking default risk into account, with constant default intensity λC = θ,

and with terminal condition V̂0(0, S) = H(S), as derived in [11]. To compute V̂0, for

certain derivatives (e.g. European Call and Put), analytic formulae are available, while,

for other contingent claims, an one-dimensional parabolic PDE needs to be numerically

solved, see, for example, the case of Long Forward contract in Section 5.1.1.

Now let’s try to find V̂1. Combining (3.70) and the fact that ⟨L2V̂0⟩ = ⟨L2⟩V̂0 = 0,

we have

L0V̂1 = −L2V̂0 = −(L2V̂0 − ⟨L2⟩V̂0) = −(L2 − ⟨L2⟩)V̂0, (3.73)
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where

(L2 − ⟨L2⟩)V̂0 = f(λC , V̂0)− f(θ, V̂0) = (1−RC)(θ − λC)V̂
+
0 . (3.74)

Suppose the function ϕ(λC) is the solution to L0ϕ = (θ − λC). It is easy to verify that

ϕ(λC) = (λC − θ) + C̃(τ, S), where C̃ independent of λC . Hence, we can write V̂1 as

V̂1 = −(1−RC)[(λC − θ) + C̃(τ, S)]V̂ +
0 . (3.75)

Without loss of generality of C̃(τ, S), we can also rewrite V̂1 as

V̂1 = −(1−RC)(λC − θ)V̂ +
0 + C(τ, S) = (1−RC)(θ − λC)V̂

+
0 + C(τ, S), (3.76)

where C(τ, S) = −(1−RC)C̃(τ, S)V̂ +
0 . To find the form of C(τ, S), we derive an equation

that C(τ, S) satisfies and obtain a solution for it. The Poisson equation (3.71) implies

the centering condition

⟨L2V̂1⟩ = 0. (3.77)

Now consider

⟨L2V̂1⟩ = ⟨L2(−(1−RC)(λC − θ)V̂ +
0 + C(τ, S))⟩

=⇒ ⟨L2C(τ, S)⟩ = ⟨L2(1−RC)(λC − θ)V̂ +
0 ⟩

=⇒ ⟨L2⟩C(τ, S) = ⟨(L2 − ⟨L2⟩)(1−RC)(λC − θ)V̂ +
0 ⟩+ ⟨L2⟩(1−RC)(λC − θ)V̂ +

0 .

Note that ⟨L2⟩V̂ +
0 = 0, thus

⟨L2⟩C(τ, S) = ⟨(L2 − ⟨L2⟩)(1−RC)(λC − θ)V̂ +
0 ⟩

= ⟨(1−RC)
2(λC − θ)(θ − λC)V̂

+
0 ⟩

= ⟨(λC − θ)(θ − λC)⟩(1−RC)
2V̂ +

0

= −(1−RC)
2 θν

2

2
V̂ +
0 . (3.78)

Note that C(τ, S) = τ(1−RC)
2 θν2

2
V̂ +
0 is a solution to (3.78). Thus, (3.76) gives

V̂1 = (1−RC)(θ − λC)V̂
+
0 + τ(1−RC)

2 θν
2

2
V̂ +
0 . (3.79)
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Therefore, we obtain the approximation

V̂ ϵ,1 = V̂0 + ϵ(1−RC)(θ − λC)V̂
+
0 + ϵτ(1−RC)

2 θν
2

2
V̂ +
0 , (3.80)

where V̂0 is computed as explained above. Note that this approximation is only for the

case of zero correlation.

3.3.2 Asymptotic approximation for general correlation

Recall that the partial differential equation which V̂ (τ, S, λC) satisfies is (3.63). Let V̂ ϵ

be a power series expansion of V̂ in
√
ϵ:

V̂ ϵ = V̂0 +
√
ϵV̂1/2

5 + ϵV̂1 + ϵ
√
ϵV̂3/2 + . . . (3.81)

We approximate V̂ by the first three terms i.e. by V̂ ϵ,1 = V̂0 +
√
ϵV̂1/2 + ϵV̂1. For V̂0,

we impose the same initial condition as for the case of zero correlation and as for (3.40),

that is, V̂0(0, S, λC) = H(S).

Substituting (3.81) into (3.63) and equating the lower order terms to zero, we have:

O(
1

ϵ
) : L0V̂0 = 0 (3.82)

O(
1√
ϵ
) : L0V̂1/2 + L1V̂0 = 0 (3.83)

O(1) : L0V̂1 + L1V̂1/2 + L2V̂0 = 0 (3.84)

O(
√
ϵ) : L0V̂3/2 + L1V̂1 + L2V̂1/2 = 0. (3.85)

Equation (3.82) implies that V̂0 is independent of λC , i.e. V̂0 = V̂0(τ, S). Hence, L1V̂0 = 0.

In (3.83), this results in L0V̂1/2 = 0, which implies V̂1/2 is independent of λC as well, i.e.

V̂1/2 = V̂1/2(τ, S). Coming to the O(1) term, Equation (3.84), given L1V̂1/2 = 0, reduces

to L0V̂1 + L2V̂0 = 0. This is a Poisson equation with respect to the operator L0 in the

variable λC , which implies the centering condition

⟨L2V̂0⟩ = 0. (3.86)

Similarly as in the case of zero correlation, as V̂0 is independent of λC , the centering

5In the notations V̂1/2 and V̂3/2, the subscripts are consistent with the powers of the associated ϵ

coefficients. In this way, V̂1 of the general correlation case, is derived to be the same as that for the zero
correlation case.
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condition (3.86) becomes ⟨L2⟩V̂0 = 0. Therefore, V̂0 is the solution to the Black-Scholes

equation (3.43) computed as explained in the zero correlation case.

Now let’s try to find an expression for V̂1, then for V̂1/2. As mentioned, the O(1) term

(3.84) can be reduced to L0V̂1 + L2V̂0 = 0, which is exactly same as Equation (3.70).

Hence, the formula for V̂1 is given in the previous subsection, and is

V̂1 = (1−RC)(θ − λC)V̂
+
0 + τ(1−RC)

2 θν
2

2
V̂ +
0 . (3.87)

For equation (3.85), again, the solvability of this Poisson equation requires

⟨L1V̂1 + L2V̂1/2⟩ = 0, (3.88)

which gives

⟨L2⟩V̂1/2 = −⟨L1V̂1⟩

= −⟨ρσSνS
√
λC

∂2

∂S∂λC

[(1−RC)(θ − λC)V̂
+
0 + τ(1−RC)

2 θν
2

2
V̂ +
0 ]⟩

= ⟨ρσSνS
√

λC(1−RC)
∂V̂ +

0

∂S
⟩ = ρσSνS(1−RC)⟨

√
λC⟩

∂V̂ +
0

∂S
. (3.89)

Because ⟨L2⟩V̂ +
0 = 0, we can verify that the solution to (3.89) is

V̂1/2(τ, S) = −τρσSνS(1−RC)⟨
√
λC⟩

∂V̂ +
0

∂S
. (3.90)

Therefore, the approximation V̂ ϵ,1 to V̂ is obtained as

V̂ ϵ,1 = V̂0 −
√
ϵτρσSνS(1−RC)⟨

√
λC⟩

∂V̂ +
0

∂S
+ϵ(1−RC)(θ −λC)V̂

+
0 +ϵτ(1−RC)

2 θν
2

2
V̂ +
0 .

(3.91)

More details

� Function V̂ +
0 might be a nonsmooth function, whose derivative with respect to S

on few points may be undefined. From a financial interpretation, we define

∂V̂ +
0

∂S
=

∂V̂0

∂S
V̂0 > 0

0 V̂0 ≤ 0
. (3.92)

� In approximation (3.91), by the definition of ⟨·⟩, the quantity ⟨
√
λC⟩ can be com-
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puted by

⟨
√
λC⟩ :=

∫ ∞

0

√
λCΦ(λC)dλC , (3.93)

where Φ(λC) is the probability density function of stationary distribution given

in (3.62). Numerical quadrature, e.g. MATLAB’s integral, can be used if an

analytical formula cannot be easily obtained.

3.3.3 Accuracy analysis of asymptotic approximation

In this subsection, we analyze the order of convergence of the approximation V̂ ϵ,1 to

V̂ in terms of ϵ, under the assumption that there exists a positive lower bound δC to

variable (sF + (1 − RC)λC). We consider the case of general correlation. The case of

zero correlation is briefly considered at the end. In order to analyze the quality of the

approximation V̂ ϵ,1 of (3.91) to V̂ , we begin by recalling (3.63), and defining

LϵV̂ ϵ ≡ (
1

ϵ
L0 +

1√
ϵ
L1 + L2)V̂

ϵ = 0, (3.94)

E ≡ V̂ ϵ − V̂0 −
√
ϵV̂1/2 − ϵV̂1 − ϵ

√
ϵV̂3/2, (3.95)

where we also recall that V̂ ϵ = V̂0 +
√
ϵV̂1/2 + ϵV̂1 + ϵ

√
ϵV̂3/2 + ϵ2V̂2 + . . . . The initial

condition for E is

E(0, S, λC) = −ϵ(1−RC)(θ − λC)V̂
+
0 (0, S)− ϵ

√
ϵV̂3/2(0, S, λC), (3.96)

since, at τ = 0, V̂ ϵ = V̂0, which is also equal to the payoff function.

In addition, we have

LϵE =(
1

ϵ
L0 +

1√
ϵ
L1 + L2)(V̂

ϵ − V̂0 −
√
ϵV̂1/2 − ϵV̂1 − ϵ

√
ϵV̂3/2)

=− 1

ϵ
(L0V̂0)−

1√
ϵ
(L0V̂1/2 + L1V̂0)− (L0V̂1 + L1V̂1/2 + L2V̂0)

−
√
ϵ(L0V̂3/2 + L1V̂1 + L2V̂1/2)− ϵ(L1V̂3/2 +

√
ϵL2V̂3/2)

=− ϵ(L1V̂3/2 +
√
ϵL2V̂3/2), (3.97)

taking also into account (3.82)-(3.85). The Feynman-Kac probabilistic representation



Chapter 3. Pricing bilateral XVA with stochastic default intensities51

formula for the solution of (3.97) is given as

E(τ, S, λC) =− EQ
[
e−rτ (ϵ(1−RC)(θ − λC)V̂

+
0 + ϵ3/2V̂3/2 | Sϵ

T−τ = S, (λC)
ϵ
T−τ = λC

]
+ EQ

[∫ τ

0

e−r(τ−s)(ϵL1V̂3/2 + ϵ3/2L2V̂3/2)ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]
+ EQ

[∫ τ

0

e−r(τ−s)f(λC , E)ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]
. (3.98)

By (3.85), we have

L0V̂3/2 = −L1V̂1 − L2V̂1/2

= ρσSνS(1−RC)(
√

λC − ⟨
√

λC⟩)
∂V̂ +

0

∂S
+ f(θ, V̂1/2)− f(λC , V̂1/2). (3.99)

Hence, following the arguments in [40], |V̂3/2| ≤ C1|∂V̂
+
0

∂S
|, where C1 is a positive constant.

Then we have ∣∣∣EQ
[
ϵ3/2V̂3/2 | Sϵ

T−τ = S, (λC)
ϵ
T−τ = λC

]∣∣∣ ≤ C2ϵ
3/2, (3.100)∣∣∣∣EQ

[∫ τ

0

e−r(τ−s)ϵ3/2L2V̂3/2ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣∣ ≤ C3ϵ
3/2, (3.101)

where C2 and C3 are positive constants. We also notice that∣∣∣∣EQ

[∫ τ

0

e−r(τ−s)ϵL1V̂3/2ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣∣
=

∣∣∣∣∣EQ

[∫ τ

0

e−r(τ−s)ϵρσSνS
√

λC

∂2V̂3/2

∂S∂λC

ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣∣∣
=

∣∣∣∣∣EQ

[∫ τ

0

e−r(τ−s)ϵ3/2ρσSSσλC

√
λC

∂2V̂3/2

∂S∂λC

ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣∣∣
≤C4ϵ

3/2, (3.102)

where C4 is a positive constant.

With similar arguments as in [23, 40, 44], and taking into account that ⟨θ− λC⟩ = 0, we

have, with C5 and C6 positive constants,∣∣∣EQ
[
e−rτ ((1−RC)(θ − λC)V̂

+
0 | Sϵ

T−τ = S, (λC)
ϵ
T−τ = λC

] ∣∣∣
≤C5

∣∣∣EQ
[
(θ − λC) | Sϵ

T−τ = S, (λC)
ϵ
T−τ = λC

] ∣∣∣ ≤ C5e
−C6

1
ϵ , (3.103)
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which converges exponentially fast as ϵ → 0.

Now let’s consider the last term of the right-hand-side of (3.98):

EQ

[∫ τ

0

e−r(τ−s)f(λC , E)ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]
=EQ

[∫ τ

0

e−r(τ−s)[−(sF +(1−RC)λC)E+−(1−RB)λBE−]ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]
=− EQ

[∫ τ

0

e−r(τ−s)[(sF +(1−RC)λC)E++(1−RB)λBE−]ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]
.

(3.104)

Taking into account (3.100)-(3.104), equation (3.98) results in∣∣∣∣E(τ, S, λC) + EQ
[ ∫ τ

0

e−r(τ−s)[(sF + (1−RC)λC)E(τ, S, λC)
+

+(1−RB)λBE(τ, S, λC)
−]ds | Sϵ

T−τ = S, (λC)
ϵ
T−τ = λC

]∣∣∣∣ ≤ Cϵ3/2, (3.105)

where C is a positive constant.

We consider two cases for the sign of E(τ, S, λC). If E(τ, S, λC) ≤ 0, equation (3.105)

results in∣∣∣∣E(τ, S, λC)+EQ
[ ∫ τ

0

e−r(τ−s)(1−RB)λBE(τ, S, λC)ds | Sϵ
T−τ =S, (λC)

ϵ
T−τ =λC

]∣∣∣∣ ≤ Cϵ3/2,

(3.106)

where both terms inside the absolute value are negative or zero. We also have∣∣∣EQ
[ ∫ τ

0

e−r(τ−s)(1−RB)λBE(τ, S, λC)ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣
≥
∣∣∣(1−RB)λBe

−rτEQ
[ ∫ τ

0

E(τ, S, λC)ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣
=
∣∣∣(1−RB)λBe

−rτEQ
[
E(τ, S, λC) | Sϵ

T−τ = S, (λC)
ϵ
T−τ = λC

]∣∣∣
=
∣∣∣(1−RB)λBe

−rττE(τ, S, λC)
∣∣∣. (3.107)

With (3.107), relation (3.106) leads to∣∣∣∣E(τ, S, λC) + (1−RB)λBe
−rττE(τ, S, λC)

∣∣∣∣ ≤ Cϵ3/2, (3.108)
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from which we get

|1 + (1−RB)λBe
−rττ ||E(τ, S, λC)| ≤ Cϵ3/2 =⇒

|E(τ, S, λC)| ≤
C

|1 + (1−RB)λBe−rττ |
ϵ3/2. (3.109)

If E(τ, S, λC) > 0, equation (3.105) results in∣∣∣∣E(τ, S, λC) + EQ
[ ∫ τ

0

e−r(τ−s)[(sF + (1−RC)λC)E(τ, S, λC)
+]ds

| Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣∣ ≤ Cϵ3/2, (3.110)

where both terms inside the absolute value are positive. We also have∣∣∣EQ
[ ∫ τ

0

e−r(τ−s)[(sF + (1−RC)λC)E(τ, S, λC)
+]ds | Sϵ

T−τ = S, (λC)
ϵ
T−τ = λC

]∣∣∣
≥
∣∣∣EQ

[ ∫ τ

0

e−r(τ)δCE(τ, S, λC)ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣
=
∣∣∣e−rτδCEQ

[ ∫ τ

0

E(τ, S, λC)ds | Sϵ
T−τ = S, (λC)

ϵ
T−τ = λC

]∣∣∣
=
∣∣∣e−rτδCτE(τ, S, λC)

∣∣∣, (3.111)

where δC > 0 is a constant lower bound of (sF + (1 − RC)λC). With (3.111), relation

(3.110) leads to ∣∣∣∣E(τ, S, λC) + e−rτδCτE(τ, S, λC)

∣∣∣∣ ≤ Cϵ3/2, (3.112)

from which we get

|1 + e−rτδCτ ||E(τ, S, λC)| ≤ Cϵ3/2 =⇒

|E(τ, S, λC)| ≤
C

|1 + e−rτδCτ |
ϵ3/2. (3.113)

Combining (3.109) and (3.113), we have that the accuracy of the asymptotic solution

V̂ ϵ,1 = V̂0 +
√
ϵV̂1/2 + ϵV̂1 of (3.91) is at least of order O(ϵ3/2).

For the case of zero correlation, since the analysis technique is similar, and since the

general correlation case is more interesting, we do not show the details, but present the

final result. We can show that the approximation V̂ ϵ,1 of (3.80) is at least of order O(ϵ2).
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3.4 Consideration for bilateral stochastic default in-

tensities

In this section, we give some brief remarks how the 2D PDE derived with stochastic

counterparty default intensity can be extended to a 3D PDE with stochastic default

intensities for both parties. We could reasonably assume that each party follows a CIR

stochastic process:

dλB(t) = κB(t)[θB(t)− λB(t)]dt+ σλB
√

λB(t)dW
λB(t), (3.114)

dλC(t) = κC(t)[θC(t)− λC(t)]dt+ σλC
√

λC(t)dW
λC (t), (3.115)

where κB and κC are the rates of mean-reversion of parties B and C respectively, θB and

θC are the levels of mean-reversion of parties B and C respectively, σλB and σλC are the

volatilities of mean-reversion of parties B and C respectively, and W λB(t) and W λC (t) are

independent of each other, assuming independence between the two parties. However,

we also assume that W λB(t) and W λC (t) are correlated W S with correlation ρB and ρC

respectively. We expect the following PDE can be derived if backward time τ = T − t is

applied:

∂V̂

∂τ
=
1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλB)2λB

∂2V̂

∂λ2
B

+
1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρBσ
SσλBS

√
λB

∂2V̂

∂S∂λB

+ ρCσ
SσλCS

√
λC

∂2V̂

∂S∂λC

+ rRS
∂V̂

∂S
+ κB[θB − λB]

∂V̂

∂λB

+ κC [θC − λC ]
∂V̂

∂λC

− rV̂

− (sF + (1−RC)λC)V̂
+ − (1−RB)λBV̂

−. (3.116)

This 3D time-dependent PDE is much heavier to numerically solve than the 2D time-

dependent PDE (3.40).

The asymptotic approach can also be extended to bilateral stochastic default intensi-

ties. For this purpose, we need to assume that, κB = 1
ϵB

and κC = 1
ϵC
, where ϵB, ϵC > 0

are small. We also keep the variance νB and νC of λB and λC processes invariant dis-

tribution constant, hence we apply the scalings σλB = νB√
ϵB

and σλC = νC√
ϵC

respectively.

Then, the 3D time-dependent PDE above, which V̂ (τ, S, λB, λC) satisfies, becomes

(
1

ϵB
L0,B +

1

ϵC
L0,C +

1
√
ϵB

L1,B +
1

√
ϵC

L1,C + L2)V̂ = 0, (3.117)
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where

L0,B ≡ 1

2
ν2
BλB

∂2

∂λ2
B

+ (θB − λB)
∂

∂λB

, (3.118)

L0,C ≡ 1

2
ν2
CλC

∂2

∂λ2
C

+ (θC − λC)
∂

∂λC

, (3.119)

L1,B ≡ ρBσ
SνBS

√
λB

∂2

∂S∂λB

, (3.120)

L1,C ≡ ρCσ
SνCS

√
λC

∂2

∂S∂λC

, (3.121)

L2 ≡ (− ∂

∂τ
) +

1

2
(σS)2S2 ∂2

∂S2
+ rRS

∂

∂S
− rI + f(V̂ , λB, λC), (3.122)

f(V̂ , λB, λC) = −(sF + (1−RC)λC)V̂
+ − (1−RB)λBV̂

− (3.123)

with I being the identity operator.

The double asymptotic expansion in terms of ϵB, and ϵC would be

V̂ ϵB ,ϵC =
∑
j≥0

∑
i≥0

(ϵB)
i/2(ϵC)

j/2V̂(i/2,j/2). (3.124)

This is a formal series expansion, for which we need to find V̂(i/2,j/2), for i+j ≤ 2 explicitly,

to have the double asymptotic approximation. The details are certainly more involved,

but we could reasonably expect the approximation, because of the independence between

the two parties, would be

V̂ ϵB ,ϵC ≈V̂ (ϵB ,ϵC),(1,1) = V̂0 +
√
ϵBV̂(1/2,0) +

√
ϵC V̂(0,1/2) + ϵBV̂(1,0) + ϵC V̂(0,1)

=V̂0 −
√
ϵBτρBσ

SνBS(1−RB)⟨
√

λB⟩
∂V̂ +

0

∂S

−
√
ϵCτρCσ

SνCS(1−RC)⟨
√
λC⟩

∂V̂ +
0

∂S

+ ϵB(1−RB)(θB −λB)V̂
+
0 + ϵBτ(1−RB)

2 θBν
2
B

2
V̂ +
0

+ ϵC(1−RC)(θC −λC)V̂
+
0 + ϵCτ(1−RC)

2 θCν
2
C

2
V̂ +
0 (3.125)

where V̂0 is the solution of the Black-Scholes equation (3.43) taking default risk into

account, with constant default intensities λB = θB and λC = θC . It is useful to mention

the asymptotic approach requires to numerically solve a 1D time-dependent PDE and

apply an asymptotic closed-form approximation, either in the case of unilateral stochastic

default intensity (2D time-dependent PDE) or in the case of bilateral stochastic default
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intensities (3D time-dependent PDE). Therefore, the cost of the asymptotic approach

for either in the case of unilateral stochastic default intensity or in the case of bilateral

stochastic default intensities, is about the same.



Chapter 4

American XVA with stochastic

default intensities

In this chapter, we investigate the formulation of pricing XVA in American derivatives

if one counterparty exhibits stochastic default intensity. We also develop two differ-

ent computation methods for accurately and efficiently solving the model. We only use

American put option as an example, but the ideas and techniques can be extended sim-

ilarly to other financial derivatives. The first computational approach is the numerical

PDE approach. We extend the double-penalty iteration method in Chapter 2 and the

discretization scheme in Chapter 3 to numerically approximate the numerical solution of

the two-dimensional PDE. The second approach is the asymptotic approach similar to

the one presented in Chapter 3, designed to work for American derivatives. The asymp-

totic approximation uses the solution to the 1D XVA pricing PDE and some correction

terms we develop from the 2D XVA PDE without solving it. Such approximation tech-

nique is usually challenging in linear complementarity problems, because the location

of the boundary to the PDE region is unknown. In [46], the authors applied singular

perturbation theory and gave expansions of the price in terms of volatility, which is con-

sidered a small parameter. They use this technique to price vanilla European, American

and Barrier options. In their American options asymptotic approximations, they also

expand the value of the free boundary in terms of volatility, and come up with multiple

correction terms added to the strike price. A similar treatment is also used in another

asymptotic expansion in [25], which establishes a robust correction to the Black-Scholes

American derivatives prices with stochastic volatility. The authors of [25] assume fast

mean-reversion volatility and apply asymptotic expansion in terms of the mean-reversion

speed. As a result, the two-dimensional free-boundary problem is asymptotically ap-

proximated by a one-dimensional American Black-Scholes problem plus the solution to

57
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a fixed-boundary-value problem. Thus, the solution to the two-dimensional American

problem is approximated by the solution of one-dimensional problem plus a correction

term. At the same time, the free boundary of the two-dimensional American problem

is approximated by the free-boundary of the one-dimensional American Black-Scholes

problem. The authors claim that the asymptotic accuracy of the free boundary approxi-

mation is only order of half. In later work [1], they introduce correction terms and slightly

improve the approximation of free boundary. In [1], the authors consider the stochastic

volatility is driven by a fast mean-reversion or by other slow fluctuation factors. The

idea of dealing with the free boundary in this chapter is similar to the one in [25, 1].

The contributions this part of thesis are:

� We formulate a time-dependent PDE in two spatial dimensions, with multiple non-

linear source terms. One dimension is for the underlying asset and another one is

for the counterparty default intensity. One nonlinear term models the American

constraint, and the other nonlinear terms model the XVA adjustments. We also

develop the appropriate boundary conditions for the problem. We present a finite

difference scheme for the discretization. We extend the double-penalty method in

Chapter 2 to handle the different nonlinear source terms.

� We extend the asymptotic approximation we developed for European derivatives

in Chapter 3 to American derivatives in XVA pricing problem. The asymptotic

approximation also includes an asymptotic expansion to the free boundary. We

formulate an accurate approach to approximate all terms of the free boundary

expansion. We study how this approximate free boundary affects our asymptotic

approximated prices.

The outline of this chapter is as follows. In Section 4.1, we present the formulation

of the American type XVA pricing problem as a linear complementarity PDE. We also

present the penalty form to the corresponding problem. In Section 4.2, we describe the

numerical methods used for discretizations, the appropriate boundary conditions, and

the double-penalty method to deal with the multiple nonlinearity. In Section 4.3, we

present the asymptotic approximations to the free boundary and to the solution of the

problem. The numerical experiments to compare the numerical PDE and asymptotic

solutions for American put options, and study their accuracy and effectiveness are left

for Chapter 5.
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4.1 Formulation for American underlying asset

In this section, we show the PDE formulation of XVA pricing problem for American

derivatives, with the stochastic counterparty default risk considered. The PDE model

can be developed from dynamic hedging strategies, by using multiple hedging arguments,

including underlying assets, the zero-coupon bonds of the two parties, risk-free zero-

coupon bonds and another similar financial derivative [24]; see also Section 3.3. Similarly

to the original American option PDE, the XVA pricing for American derivatives is also

a linear complementarity problem (LCP) - see Section 2.3 - even when the stochastic

counterparty default intensity is considered.

In this section, we will use the same notations as those in Chapter 2 and Chapter 3, we

just repeat them: Let S be the underlying stock value, t the forward time, T the expiry

time of the contract, σ the volatility in S, r the risk-free interest rate, γ the dividend

yield of S, q the stock repo rate, rB the seller’s bond yield, rC the counterparty’s bond

yield, λB (bank hazard rate, instantaneous probability of bank default), λC (counterparty

hazard rate), RB the recovery percentage on M(= V̂ ) if seller defaults, RC the recovery

percentage on M(= V̂ ) if counterparty defaults, rF the seller’s funding rate for borrowed

cash, where rF = r+(1−RB)λB if derivative cannot be used as collateral, and sF = rF−r.

Let also rR = q − γ.

If the backward time τ = T − t is applied, the American derivative price V̂ (τ, S, λC),

if taking stochastic risk into account, satisfies{
−∂V̂

∂τ
+ LV̂ + f(V̂ ) > 0

V̂ − V ∗ = 0

}
∨

{
−∂V̂

∂τ
+ LV̂ + f(V̂ ) = 0

V̂ − V ∗ ≥ 0

}
(4.1)

where

LV̂ ≡1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

(4.2)

+ rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂ ,

f(λC , V̂ ) ≡− (sF + (1−RC)λC)V̂
+ − (1−RB)λBV̂

−, (4.3)

V ∗ ≡V̂ (0, S, λC), (4.4)

and the notation ∨ means ”or”. Problem (4.1) is a free boundary problem, with the

free boundary being a surface which can be written as Sfb(τ, λC). The free boundary

separates the domain into two regions. We refer to the region where the left part of (4.1)

holds as exercise region and the region where the right part of (4.1) holds as hold region.



Chapter 4. American XVA with stochastic default intensities 60

Without loss of generality, we consider the American put case. In this case, in the hold

region in (4.1), we have S ≥ Sfb, while in the exercise region, we have S < Sfb. We also

have the initial condition

V̂ (0, S, λC) = (K − S)+, (4.5)

and the free boundary conditions

V̂ (τ, Sfb, λC) = K − Sfb, (4.6)

∂V̂

∂S
(τ, Sfb, λC) = −1, (4.7)

∂V̂

∂λC

(τ, Sfb, λC) = 0. (4.8)

4.1.1 Reformulation to penalty form

For one-asset American option pricing without considering default risk, Forsyth and Vet-

zal [22] proposed the discrete penalty method to numerically solve the LCP. A large

positive penalty term is added to the Black-Scholes equation, resulting in a nonlinear

PDE. In [22], a rigorous study of equivalence between the LCP and the penalized nonlin-

ear PDE is presented. In [14] (see also Section 2.3), the double-penalty method is firstly

introduced to solve the LCP arising from American type XVA with constant bilateral

default risk, which has multiple nonlinear terms.

In the current multi-dimensional American XVA problem, with stochastic counter-

party default risk, a similar penalty term can be added. The penalty form of (4.1) is

written as ∂V̂
∂τ

= LV̂ + f(λC , V̂ ) + pmax(V ∗ − V̂ , 0),

V̂ (0, S, λC) = (K − S)+,
(4.9)

where p is a large positive penalty factor. The penalty term forces the solution of (4.9)

to approximately satisfy the obstacle condition V̂ − V ∗ ≥ 0.

Remark 5 In Chapter 2, we formulated the XVA valuation of American derivative, when

the default intensity λC is given by a constant, in penalty form as

∂V̂ c

∂τ
=

1

2
(σS)2S2∂

2V̂ c

∂S2
+ rRS

∂V̂ c

∂S
− rV̂ c

−(sF + (1−RC)λC)(V̂
c)+ − (1−RB)λB(V̂

c)− + pmax{V ∗ − (V̂ c)−, 0}, (4.10)
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where V̂ c is the adjusted American derivative price when taking constant default inten-

sity λC into account. The notation here V̂ c is used in order to distinguish the constant

default intensity American derivative price from the stochastic default intensity Ameri-

can derivative price. The numerical method to approximate the value of PDE (4.10) is

introduced in Chapter 2.

4.2 Numerical methods

4.2.1 Discretization

The domain of the PDE (4.1), which prices the American type derivative considering

stochastic default intensity is semi-infinite in the two spatial variables:

(τ, S, λC) ∈ (0, T ]× [0,∞)× [0,∞).

For computational purposes, the semi-infinite spatial domain of spot price S is trun-

cated into [0, Smax], for sufficiently large Smax, while the semi-infinite spatial domain of

party C spot default intensity λC is truncated into [0, λmax
C ], for sufficiently large λmax

C .

Then, [0, Smax] is divided into N subintervals, with the gridpoints S0 = 0 < S1 <

. . . < SN = Smax positioned uniformly or nonuniformly, while [0, λmax
C ] is divided into M

subintervals, with the gridpoints (λC)0 = 0 < (λC)1 < . . . < (λC)M = λmax
C positioned

uniformly or nonuniformly. Standard second-order centered finite differences are used

for the space discretization of (4.1) except at the boundary points. The details of the

boundary conditions and their discretization, as well as the handling of the nonlinear

term and penalty terms are discussed in the following two subsections.

For the time-stepping, we employ the ϑ-method 1, which, for ϑ = 1
2
and ϑ = 1

becomes the Crank-Nicolson (CN) and Backward Euler (BE) methods, respectively. We

also use Rannacher smoothing, which consists of first applying few BE timesteps, then

applying CN timestepping. Let τj, j = 0, . . . , Nt, be the timesteps at which the solution

is computed, with τ0 = 0 < τ1 < · · · < τNt = T , and let ∆τ j = τj − τj−1 be the jth time

stepsize. If uniform timesteps are used, then ∆τ = T/Nt, and Rannacher smoothing first

applies four BE timesteps with stepsize ∆τ/2, then switches to CN with stepsize ∆τ for

the remaining timesteps, resulting in a total of Nt + 2 timesteps.

1Note that the ϑ notation for the time-stepping method is different from the θ(t) notation in the CIR
model



Chapter 4. American XVA with stochastic default intensities 62

4.2.2 Boundary conditions

The grid-based numerical methods need boundary conditions on the truncated spatial

domain [0, Smax] × [0, λmax
C ] to approximate the solution to PDE (4.9). We follow the

ideas of boundary conditions in Section 3.2.2, and set up boundary conditions as follows:

� On the S = 0 boundary, i.e. on {(S, λC) ∈ {S = 0} × [0, λmax
C ]}, substitute S = 0

into (2.41). This results in a one-dimensional time-dependent PDE,

∂V̂

∂τ
=

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ κ[θ − λC ]
∂V̂

∂λC

− rV̂ + f(λC , V̂ ) + pmax(V ∗ − V̂ , 0),

(4.11)

which is numerically solved and its computed solution used as Dirichlet boundary

condition for (4.9).

� On the S = Smax boundary, i.e. on {(S, λC) ∈ {S = Smax}× [0, λmax
C ]}, we impose

the linear boundary condition ∂2V̂
∂S2 = 0, substitute this into the PDE (2.41), and

get

∂V̂

∂τ
=

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

+rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂ + f(λC , V̂ ) + pmax(V ∗ − V̂ , 0). (4.12)

� On the λC = 0 boundary, i.e. {(S, λC) ∈ (0, Smax)× {λC = 0}}, substitute λC = 0

into (2.41), and get

∂V̂

∂τ
=

1

2
(σS)2S2∂

2V̂

∂S2
+ rRS

∂V̂

∂S
+ κθ

∂V̂

∂λC

− rV̂ + f(λC , V̂ ) + pmax(V ∗ − V̂ , 0).

(4.13)

� On the λC = λmax
C boundary, i.e. {(S, λC) ∈ (0, Smax)× {λC = λmax

C }}, we impose

the linear boundary condition ∂2V̂
∂λ2

C
= 0, substitute this into PDE (2.41), and get

∂V̂

∂τ
=

1

2
(σS)2S2∂

2V̂

∂S2
+ ρσSσλCS

√
λC

∂2V̂

∂S∂λC

+rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂ + f(λC , V̂ ) + pmax(V ∗ − V̂ , 0). (4.14)

On the corners, we choose compatible boundary conditions, the details of which are

omitted for brevity. Note that, these conditions differ from the respective European
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boundary conditions only by the penalty term pmax(V ∗ − V̂ , 0). In Section 3.2.2, there

is more detailed discussion on the European boundary conditions including corners as

well as the discretization of the conditions.

4.2.3 Double-penalty iteration for multi-dimensional problem

We now discuss the treatment of the penalty term pmax(V ∗ − V̂ , 0) and the nonlinear

term f(V̂ ). Let v̂j, j = 0, . . . , Nt, be the computed solution vector arising from the

approximate values of V̂ at the spatial gridpoints at time τj, and v̂0 be the initial condition

vector. Also let v∗ be the vector of values of pay-off V ∗ at the spatial gridpoints. Since

we use an iteration method to handle the nonlinearity, let v̂j,k, k = 0, . . . ,maxit, denote

the computed solution vector at iteration k of timestep j, with maxit the maximum

number of iterations allowed per timestep. Let f(v̂) denote the vector arising from

evaluating f at the components of v̂. This means that (f(v̂))i = f((λC)i2 , v̂i), where

i2 = i − ⌊ i
M+1

⌋(M + 1). Let also A be the matrix arising from the space discretization

of LV̂ , and I be the identity matrix of compatible order. For simplicity, we assume the

spatial gridpoints remain the same at all timesteps.

When computing the numerical solution v̂j at step j, the penalty term pmax(V ∗ −
V̂ , 0) (arising from the American feature) is discretized as PA(v̂

j)(v∗ − v̂j), where PA(v̂
j)

is a diagonal matrix defined by

[PA(v̂
j)]i,i ≡

p if (v̂j)i < (v∗)i,

0 otherwise.
(4.15)

The nonlinear term f(V̂ ) (arising from the XVA) is discretized as PX(v̂
j)(v̂j), where

PX(v̂
j) is also a diagonal matrix defined by

[PX(v̂
j)]i,i ≡

−λB(1−RB) if (v̂j)i < 0,

−(λC)i2(1−RC)− sF if (v̂j)i ≥ 0.
(4.16)

Therefore, to compute v̂j, given v̂j−1, the following system of algebraic equations needs

to be solved:

[I− θ∆τ j(A+ PX(v̂
j))]v̂j + PA(v̂

j)v̂j

= (I+ (1− θ)∆τ jA)v̂j−1 + (1− θ)∆τ jPX(v̂
j−1)v̂j−1 + PA(v̂

j)v∗. (4.17)

Note that there are two sources of nonlinearity, namely PA(v̂
j) and PX(v̂

j), with respect
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to v̂j. The iteration method to value XVA and the penalty iteration method to value

American option [22] are combined into one iteration method, which can be viewed as

generalized Newton’s method, to solve (4.17). In the construction of PA, the large penalty

factor p is chosen as

p =
1

tol

where tol is the tolerance for the stopping criterion of the iteration method.

If we view the nonlinear term f(V̂ ) or its discrete form PX(v̂
j)(v̂j) as a second penalty

term, this generalized Newton’s iteration method to solve (4.17) at each timestep can be

called discrete double-penalty iteration for American XVA pricing.

Algorithm 5 Discrete double-penalty iteration for (4.9) at step j, with θ-timestepping

Require: Solve [I− θ∆τ j(A+ PX(v̂
j))]v̂j + PA(v̂

j)v̂j = gj + PA(v̂
j)v∗

where gj = (I+ (1− θ)∆τ jA)v̂j−1 + (1− θ)∆τ jPX(v̂
j−1)v̂j−1.

1: Initialize v̂j,0 = v̂j−1, P 0
A = PA(v̂

j,0) and P 0
X = PX(v̂

j,0)
2: for k = 1, . . . ,maxit do
3: Solve [I− θ∆τ j(A+ P k−1

X ) + P k−1
A ]v̂j,k = gj + P k−1

A v∗

4: Compute P k
A = PA(v̂

j,k) by (4.15) and P k
X = PX(v̂

j,k) by (4.16)
5: if stopping criterion satisfied then
6: Break
7: end if
8: end for
9: Set v̂j = v̂j,k

The stopping criterion in Algorithm 5, is

[
(P k

A = P k−1
A ) and (P k

X = P k−1
X )

]
or
[
max

i

|v̂j,ki − v̂j,k−1
i |

max(1, |v̂j,ki |)
≤ tol

]
. (4.18)

Since the matrix solved at each iteration is adjusted by only two diagonal matrices,

the sparsity structure of the matrix remains the same. Since [PX ]i,i is negative, the

diagonal of A is enhanced. Also since the penalty parameter p is positive, the matrix PA

enhances the diagonal of I− θ∆τ j(A+ P k−1
X ).

4.2.4 Numerical approximation of free boundary of

multi-dimensional American XVA problem

In this subsection, we show how to numerically approximate the free boundary of the

multi-dimensional American XVA problem on a specific desired λC point, assuming we al-

ready have numerical solutions on the grid points, (Si, (λC)j), i = 1, . . . , N, j = 0, . . . ,M .
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The naive way is that, for a fixed λC , we choose the free boundary point as the point

Sk to the left of the first grid point Sk+1, where the numerical solution is 2tol = 2
p
or

more above the payoff function. Following this naive way, Sk maybe different for each

λC , but it is always chosen among the grid points Si, i = 1, . . . , N .

The above approximation is improved in accuracy following [45]. Along each λC line,

for which we want to approximate the free boundary, we construct an interpolant V∂(S) of

the first (with respect to S) derivative values and find for which S it satisfies V∂(S) = −1.

The interpolant is constructed using three points {(Si,
∂V̂
∂S

(Si, λC)), i = k+2, k+3, k+4}
away from the naive free boundary Sk and in the PDE region (hold region), as the error on

Sk is contaminated with errors from the early exercise region that are not smooth, and the

finite difference approximations involving Sk are inaccurate. See Algorithm 6 for details.

To solve the nonlinear equation V∂(S) + 1 = 0 we can use the standard quadratic root

formula or Newton’s method with initial guess Sk+1. An alternative would be to construct

a quadratic interpolant VI(S) of V̂ (S) using {(Si, V̂ (Si, λC), i = k + 2, k + 3, k + 4}, and
to solve VI(S)−V ∗(S) = 0 for S. This nonlinear equation has a double root, so Newton’s

method is expected to be slow. But the quadratic formula could still work well. In our

code, we used the MATLAB function fsolve on V∂(S) + 1 = 0 with initial guess Sk+1,

and tolerance 10−9.

In the following algorithm, we assume we have already computed numerical approx-

imations to V̂ (Si, (λC)j), i = 1, 2, . . . , N, j = 0, 1, . . . ,M . For simplicity, we denote the

approximations by V̂ (Si, (λC)j) as well.

Algorithm 6 Approximation of the free boundary for a given λC .

1: If λC is not a grid point, compute approximations
ˆ̂
V (Si, λC) to V̂ (Si, λC), i =

1, 2, . . . , N , by cubic spline interpolation on the values V̂ (Si, (λC)j), i =

1, 2, . . . , N, j = 0, 1, . . . ,M . Let V̂ (Si) =
ˆ̂
V (Si, λC), i = 1, 2, . . . , N .

2: If λC is grid point (λC)j, let V̂ (Si) = V̂ (Si, (λC)j), i = 1, 2, . . . , N .

3: Find the leftmost point Sk+1, such that V̂ (Sk+1)− V ∗(Sk+1) ≥ 2tol.

4: Compute finite difference approximations ∂V̂
∂S

(Si), to
∂V̂
∂S

(Si, λC), i = k+2, k+3, k+4.

5: Construct the quadratic interpolant V∂(S) of
∂V̂ (S)
∂S

using {(Si,
∂V̂
∂S

(Si)), i = k+2, k+
3, k + 4}.

6: Solve V∂(S) + 1 = 0 for S with initial guess Sk+1, to get the free boundary SλC
fb for

the given λC .
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4.3 Asymptotic solution and asymptotic approxima-

tion for the free boundary

Numerically solving the time-dependent multi-dimensional PDE, especially including

multiple nonlinear source terms, is computationally expensive. An asymptotic approxi-

mation can ease this problem [24, 40] (see also Section 3.3). An asymptotic approximation

requires the solution of a lower-dimensional PDE and applies some correction terms to

it by a closed-form formula. However, asymptotic approximation for path-dependent

derivatives is more complicated due to the lack of explicit formula for the corrections

terms. For example, for American put, this problem is more involved due to the singu-

larities at the free boundaries, because, usually at free boundary points, the solutions are

only C1. In [25, 1], the authors applied asymptotic expansion to both the value function

and the free boundary and find an asymptotic correction to the free boundary, which can

transform the LCP into a fixed point problem.

For convenience, we repeat the stochastic differential equation that the CIR process

for λC follows:

dλC(t) = κ[θ − λC(t)]dt+ σλC
√

λC(t)dW
λC (t). (4.19)

Following [26, 40] (see also Section 3.3), we assume κ = 1/ϵ, where ϵ > 0 is small. We

also keep the variance ν2 of the λC process invariant distribution constant, thus we scale

σλC as σλC = ν√
ϵ
. Hence we can rewrite the equation in the hold region of (2.37) as

(
1

ϵ
L0 +

1√
ϵ
L1 + L2)V̂ = 0, (4.20)

where

L0 ≡
1

2
ν2λC

∂2

∂λ2
C

+ (θ − λC)
∂

∂λC

, (4.21)

L1 ≡ ρσSνS
√

λC
∂2

∂S∂λC

, (4.22)

L2 ≡ (− ∂

∂τ
) +

1

2
(σS)2S2 ∂2

∂S2
+ rRS

∂

∂S
− rI + f(λC , V̂ ), (4.23)

with I being the identity operator.
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We apply asymptotic expansion to both V̂ and Sfb with respect to ϵ,

V̂ ≡ V̂ ϵ = V̂0 +
√
ϵV̂1/2

2 + ϵV̂1 + ϵ
√
ϵV̂3/2 + . . . , (4.24)

Sfb ≡ Sϵ
fb = Sf0 +

√
ϵSf1/2 + . . . , (4.25)

which converge to the respective exact solutions if ϵ → 0. In this work, we will use the first

three terms of (4.24) to estimate V̂ such that V̂ ≈ V̂ ϵ,1 = V̂0+
√
ϵV̂1/2+ϵV̂1 and the first two

terms of (4.25) to estimate the free boundary Sfb such that Sfb ≈ S
ϵ,1/2
fb = Sf0+

√
ϵSf1/2.

Let ⟨·⟩ denote expectation with respect to the invariant distribution of λC .

The expansion of the partial differential equation (4.20) (hold region) gives

O(
1

ϵ
) : L0V̂0 = 0 (4.26)

O(
1√
ϵ
) : L0V̂1/2 + L1V̂0 = 0 (4.27)

O(1) : L0V̂1 + L1V̂1/2 + L2V̂0 = 0 (4.28)

O(
√
ϵ) : L0V̂3/2 + L1V̂1 + L2V̂1/2 = 0. (4.29)

We can also expand the free boundary conditions (4.6) (4.7) and (4.8), only keeping

terms up to ϵ, as

V̂0(τ, Sf0, λC) +
√
ϵ(Sf1/2

∂V̂0

∂S
(τ, Sf0, λC) + V̂1/2(τ, Sf0, λC))

+ϵ(Sf1
∂V̂0

∂S
(τ, Sf0, λC) + Sf1/2

∂V̂1/2

∂S
(τ, Sf0, λC) + V̂1(τ, Sf0, λC))

= K − Sf0 −
√
ϵSf1/2 − ϵSf1, (4.30)

∂V̂0

∂S
(τ, Sf0, λC) +

√
ϵ(Sf1/2

∂2V̂0

∂S2
(τ, Sf0, λC) +

∂V̂1/2

∂S
(τ, Sf0, λC))

+ϵ(Sf1
∂2V̂0

∂S2
(τ, Sf0, λC) + Sf1/2

∂2V̂1/2

∂S2
(τ, Sf0, λC) +

∂V̂1

∂S
(τ, Sf0, λC)) = −1, (4.31)

∂V̂0

∂λC

(τ, Sf0, λC) +
√
ϵ(Sf1/2

∂2V̂0

∂S∂λC

(τ, Sf0, λC) +
∂V̂1/2

∂λC

(τ, Sf0, λC))

+ϵ(Sf1
∂2V̂0

∂S∂λC

(τ, Sf0, λC) + Sf1/2

∂2V̂1/2

∂S∂λC

(τ, Sf0, λC) +
∂V̂1

∂λC

(τ, Sf0, λC)) = 0. (4.32)

2In the notations V̂1/2, S1/2 and V̂3/2, the subscripts are consistent with the powers of the associated
ϵ coefficients.
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From Equations (4.30) - (4.32), we have

V̂0(τ, Sf0, λC) = K − Sf0, (4.33)

∂V̂0

∂S
(τ, Sf0, λC) = −1, (4.34)

∂V̂0

∂λC

(τ, Sf0, λC) = 0, (4.35)

Sf1/2
∂2V̂0

∂S2
(τ, Sf0, λC) +

∂V̂1/2

∂S
(τ, Sf0, λC) = 0, (4.36)

Sf1
∂2V̂0

∂S2
(τ, Sf0, λC) + Sf1/2

∂2V̂1/2

∂S2
(τ, Sf0, λC) +

∂V̂1

∂S
(τ, Sf0, λC) = 0. (4.37)

In the exercise region, the condition V̂ = (K−S)+ suggests that V̂0 = (K−S)+, V̂1/2 = 0

and V̂1 = 0.

Equation (4.26) implies that V̂0 is independent of λC , i.e. V̂0 = V̂0(τ, S), in the hold

region. In the exercise region, it’s obvious that V̂0 is also independent of λC . Hence,

L1V̂0 = 0 in either region.

Equation (4.27) results in L0V̂1/2 = 0, which implies V̂1/2 is independent of λC as well,

i.e. V̂1/2 = V̂1/2(τ, S), in the hold region. In the exercise region, it’s also obvious that

V̂1/2 is independent of λC .

In the hold region, coming to the O(1) term, Equation (4.28), given L1V̂1/2 = 0,

reduces to L0V̂1 + L2V̂0 = 0. This is a Poisson equation with respect to the operator L0

in the variable λC , which implies the centering condition

⟨L2V̂0⟩ = 0. (4.38)

The centering condition (4.38) becomes PDE ⟨L2⟩V̂0 = 0 in the hold region. In addition

to this PDE, Equations (4.33), (4.34) and (4.35) show us that Sf0 is the free boundary

of this PDE. In the exercise region, we have V̂0 = (K−S)+. Therefore, V̂0 is the solution

to the one-dimensional American Black-Scholes XVA equation taking default risk into

account, with constant default intensity being the mean of the CIR model, and with the

terminal condition V̂0(0, S) = (K − S)+. To compute the solution to this problem, no

analytical formula is available. An advanced numerical method, such a penalty method,

can be used to approximate this one-dimensional parabolic linear-complementarity PDE.

Combining the fact that V̂1/2 is independent of λC with the O(1) term in (4.28), we
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have

L0V̂1 + L2V̂0 = 0 =⇒ L0V̂1 = −L2V̂0. (4.39)

For equation (4.29), the solvability of this Poisson equation requires the condition that

⟨L1V̂1 + L2V̂1/2⟩ = 0 =⇒ ⟨L2⟩V̂1/2 = −⟨L1V̂1⟩. (4.40)

In Chapter 3.3, solutions to (4.39) and (4.40) are offered in terms of V̂0 as

V̂1/2(τ, S) = −τρσSνS(1−RC)⟨
√
λC⟩

∂V̂ +
0

∂S
, (4.41)

V̂1(τ, S, λC) = (1−RC)(θ − λC)V̂
+
0 + τ(1−RC)

2 θν
2

2
V̂ +
0 , (4.42)

where V̂0 is solution to American put option including XVA in the hold region PDE.

Hence, in the hold region, the asymptotic approximation to V̂ is

V̂ ϵ,1 = V̂0 −
√
ϵτρσSνS(1−RC)⟨

√
λC⟩

∂V̂ +
0

∂S
+ϵ(1−RC)(θ −λC)V̂

+
0 +ϵτ(1−RC)

2 θν
2

2
V̂ +
0 .

(4.43)

From (4.36) and (4.37), we also have correction to the free boundary

Sf1/2 =
−∂V̂1/2

∂S

∂2V̂0

∂S2

∣∣∣∣∣
S=Sf0

=
τρσSν(1−RC)⟨

√
λC⟩(∂V̂

+
0

∂S
+ S

∂2V̂ +
0

∂S2 )

∂2V̂0

∂S2

∣∣∣∣∣
S=Sf0

(4.44)

where Sf0 is the free boundary of the LCP, representing the one-dimensional Amer-

ican Black-Scholes XVA equation taking default risk into account, with constant de-

fault intensity being the mean of the CIR model, and with the terminal condition

V̂0(0, S) = (K − S)+. From the view of computation, given V̂0, Sf0 is computed by

an algorithm similar to Algorithm 6, but adjusted to work on the one-dimensional prob-

lem; see Algorithm 7.

Hence the asymptotic approximation to free boundary Sfb is

S
ϵ,1/2
fb = Sf0 +

√
ϵSf1/2 (4.45)

where Sf1/2 is defined in (4.44). Note that, for Equations (4.41), (4.43) and (4.44), we
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define

∂V̂ +
0

∂S
≡

∂V̂0

∂S
V̂0 > 0

0 V̂0 ≤ 0
and

∂2V̂0

∂S2
≡

∂2V̂0

∂S2 V̂0 > 0

0 V̂0 ≤ 0
, (4.46)

and, in Equations (4.44) and (4.43), the partial derivatives at S = Sf0 are taken to be

one-sided derivatives into the hold region; see Algorithm 7.

In the following, we describe the algorithm we apply for the approximation of Sf0 and

of the derivative values
∂V̂ +

0

∂S
(Sf0) and

∂2V̂ +
0

∂S2 (Sf0), that are needed in (4.44) and (4.45).

In Algorithm 7, we assume we have already computed numerical approximations to

V̂0(Si), i = 1, 2, . . . , N . For simplicity, we denote the approximations by V̂0(Si) as well.

Algorithm 7 Approximation of Sf0,
∂2V̂ +

0

∂S2 (Sf0) and
∂2V̂0

∂S2 (Sf0).

1: Find the leftmost point Sk+1, such that V̂0(Sk+1)− V ∗(Sk+1) ≥ 2tol.

2: Compute finite difference approximations to ∂V̂0

∂S
(Si), i = k + 2, k + 3, k + 4.

3: Construct the quadratic interpolant V∂,0(S) of ∂V̂0(S)
∂S

using {(Si,
∂V̂0

∂S
(Si)), i = k +

2, k + 3, k + 4}.
4: Solve V∂,0(S) + 1 = 0 for S with initial guess Sk+1, to get the free boundary Sf0.

5: Evaluate V∂,0(Sf0) and set
∂V̂ +

0

∂S
(Sf0) = V∂,0(Sf0), or, equivalently, set

∂V̂ +
0

∂S
(Sf0) = −1.

6: Compute finite difference approximations to ∂2V̂0

∂S2 (Si), i = k + 2, k + 3, k + 4.

7: Construct the quadratic interpolant V∂∂,0(S) of
∂2V̂0(S)
∂S2 using {(Si,

∂2V̂0

∂S2 (Si)), i = k +
2, k + 3, k + 4}.

8: Evaluate V∂∂,0(Sf0) and set
∂2V̂ +

0

∂S2 (Sf0) = V∂∂,0(Sf0).

It is important to note that the interpolants V∂,0(S) and V∂∂,0(S) are constructed using

values into the hold region and away from the penalty region, and that the approximations

to
∂V̂ +

0

∂S
(Sf0) and

∂2V̂ +
0

∂S2 (Sf0) are constructed using extrapolation of the interpolants.

To conclude, our asymptotic approximation to American put option pricing including

XVA, with stochastic default intensity, is summarized in Algorithm 8.
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Algorithm 8 Asymptotic approximation to American put option pricing including XVA

1: Compute V̂0, by numerically solving the 1D American put option XVA PDE (4.10)
with λC = θ, using the double-penalty method in Chapter 2.

2: Compute the free boundary Sf0 of 1D American put option XVA PDE, using V̂0.

3: Compute correction terms V̂1/2 and V̂1 by Equations (4.41) and (4.42).
4: Compute correction term, Sf1/2, to free boundary, by Equation (4.44).

5: Obtain the free boundary approximation S
ϵ,1/2
fb = Sf0+

√
ϵSf1/2 as Equation (4.45).

6: if Spot price S ≥ S
ϵ,1/2
fb then

7: V̂ ≈ V̂ ϵ,1 = V̂0 +
√
ϵV̂1/2 + ϵV̂1, as Equation (4.43).

8: else if Spot price S < S
ϵ,1/2
fb then

9: V̂ ≈ V ∗, which is pay-off function.
10: end if

Remark 6 Similar as [25], the basic strategy for constructing an asymptotic approxima-

tion is to asymptotically expand both the value V̂ and the free boundary Sfb in terms of ϵ,

and obtain an approximated free boundary. Then, using the approximated free boundary,

we divide the spot price region into the hold and exercise region, and apply a different

formula for the price at each region. However, the approximated free boundary is O(ϵ)

from the true free boundary Sfb. Hence, when the spot price S is close to the exercise

boundary, the contract might move to the exercise region, in which case, the derivatives

do not exist long enough for the mean-reverting effects of fast mean-reverting stochastic

counterparty default intensity. In this case, the asymptotic approximation is not expected

to be accurate. This technique is more effective when it is applied to approximate the

value away from the approximated free boundary S
ϵ,1/2
fb .
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Numerical experiments

5.1 Numerical results of XVA with constant default

intensities

We present numerical results from applying Algorithms 1 and 2 for the pricing of XVA in

European Put, Call and Long Forward, as well as Algorithm 3 for the pricing of American

Put, Call and Long Forward including XVA.

5.1.1 Examples of XVA in European derivatives

Table 5.1 presents the values of parameters used in the experiments in this section. These

parameters have the same values as those used in the examples in [3, 11], except the Smax

value, which, in [3, 11], is 4K. A discussion on localization is found later in the section.

We discretize the spatial domain into N subintervals, so that the (nonuniform) grid-

points are concentrated around the strike K. We discuss later how we generate nonuni-

form gridpoints and what the effect of nonuniform grids is compared to uniform ones.

The spatial derivatives are discretized by standard second-order centered differences, ex-

cept the first derivative in the far-side condition (2.6), which is discretized by backward

differences. It is worth mentioning that we experimented with the alternative implemen-

tation of the far-side condition, which gives rise to Dirichlet conditions (2.9) or (2.10),

and the numerical results obtained were identical across all points (within about 7 dig-

its of precision) with those obtained by discretizing (2.6). The number of timesteps is

denoted by Nt, and ∆τ = T/Nt. Note that Rannacher smoothing is not needed (and

therefore not applied) for the numerical solution of (1.33), since the initial condition is

smooth.

72
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Parameter Value

Domain of S [0, 12K]
Strike Price, K 15

Time to maturity, T 5
Volatility, σ 0.25

Repo rate minus dividend, q − γ 0.015
Interest rate, r 0.03

Default intensity of party B, λB 0.02
Default intensity of party C, λC 0.05
Recovery rate of party B, RB 0.4
Recovery rate of party C, RC 0.4

Funding spread, sF (1−RB)λB

Table 5.1: Model parameters for bilateral XVA in European derivatives with constant
default intensities.

In all tables below, “iter tot 1” and “iter avg 1” are total and average (per timestep)

number of iterations for Algorithm 1, and “iter tot 2” and “iter avg 2” are total and

average (per timestep) number of iterations for Algorithm 2. The tolerance for both

iteration schemes was set to 10−7.

Call and put options

We present results from pricing the XVA of European options with the parameter settings

in Table 5.1. For European call and put options, we have an exact solution formula as

given in [11]

U(τ, S) = −(1− exp(−((1−RB)λB + (1−RC)λC)τ))V (τ, S), (5.1)

where the V (τ, S) can be calculated in closed-form. Thus we can calculate exact errors

and the associated convergence orders.

N Nt error in U order iter tot 1 iter avg 1 iter tot 2 iter avg 2

50 100 1.41e-03 – 300 3.00 119 1.19
100 200 3.54e-04 2.00 600 3.00 242 1.21
200 400 8.86e-05 2.00 1200 3.00 415 1.04
400 800 2.21e-05 2.00 2400 3.00 814 1.02
800 1600 5.54e-06 2.00 3934 2.46 1614 1.01

Table 5.2: Results from solving (2.2) for a European Put using Algorithms 1 and 2 with
the parameters in Table 5.1. Nonuniform grids are used.
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N Nt error in U order iter tot 1 iter avg 1 iter tot 2 iter avg 2

50 100 1.41e-03 – 400 4.00 105 1.05
100 200 3.54e-04 2.00 600 3.00 214 1.07
200 400 8.86e-05 2.00 1200 3.00 430 1.08
400 800 2.22e-05 2.00 2400 3.00 842 1.05
800 1600 5.54e-06 2.00 4800 3.00 1635 1.02

Table 5.3: Results from solving (2.2) for a European Call using Algorithms 1 and 2 with
the parameters in Table 5.1. Nonuniform grids are used.

In Tables 5.2 and 5.3, we report, for several discretization sizes, the discrete L∞-norm

error over all gridpoints at time τ = T (t = 0), the associated convergence orders, and

the total and average per timestep number of iterations. We notice that the average

number of penalty-like iterations is very close to 1, irrespectively of the grid size, while

the fixed-point iteration algorithm needs 2 to 3 average number of iterations to reach

the same tolerance, where, again, the number of iteration seems independent of grid

size. Therefore, the penalty iteration method is about 2 to 3 times more efficient than

the fixed-point iteration method. Note that the number of penalty iterations is close to

optimal. Essentially, in each of the first few timesteps two or three iterations are needed,

and in each of the remaining timesteps just one iteration. We also mention that the two

iteration schemes produced exactly the same errors for each of the discretization sizes,

therefore, we only report one column of errors. The order of convergence is stably 2.
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Figure 5.1: A visualization of various financial derivative values with (V̂ ) or without (V )
XVA with the parameters in Table 5.1. The difference between these two curves is XVA.

In Figure 5.1, left and centre plots, we visualize V and V̂ = V +U for European call

and put options. For these options, the XVA is negative and V is above V̂ .
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Discussion on localization

The choice of Smax is crucial for an accurate solution. In [39], for European vanilla option,

the far-side boundary is chosen so that

Smax > K exp(
√
2σ2T | ln(tol)|), (5.2)

where tol is the computing tolerance. An alternative far-side boundary is suggested in

[48]

Smax > K exp((r − q − σ2

2
)T + σν

√
T ), (5.3)

where ν = 3 is the usual choice for a European option to have small error around S = K.

If smaller error along the whole price domain is required, ν can be set as 5. In our

experiments, we have used Smax = 12K for the 5-yr long European options, which seems

to agree more with (5.3), with ν = 4.6. Our experiments indicate that this choice of Smax

balances the domain truncation and discretization errors for the finest grid resolution.

To show the sensitivity of the accuracy of the solution to the choice of Smax, in

Table 5.4, we present results from the XVA valuation of a European call option with

the parameters of Table 5.1, except that we set Smax = 10K in one experiment and

Smax = 8K in another. We only report results from Algorithm 2, as the focus of this

discussion is on the error of the computed approximations. These results should be

compared to those in Table 5.3, which has Smax = 12K.

N Nt error in U order iter tot 2 iter avg 2

Smax = 10K
50 100 1.19e-03 – 106 1.06
100 200 2.98e-04 2.00 217 1.09
200 400 7.45e-05 2.00 431 1.08
400 800 1.86e-05 2.00 842 1.05
800 1600 9.84e-06 0.92 1631 1.02

Smax = 8K
50 100 9.30e-04 – 106 1.06
100 200 2.34e-04 1.99 219 1.10
200 400 5.85e-05 2.00 442 1.11
400 800 5.24e-05 0.16 846 1.06
800 1600 5.26e-05 -0.00 1635 1.02

Table 5.4: Results from solving (2.2) for a European Call using Algorithm 2 with the
parameters in Table 5.1, except that Smax is as indicated. Nonuniform grids are used.

In Table 5.4, we notice that, although the penalty iteration with different choices of
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Smax converges as fast as with Smax = 12K, the error with Smax = 10K and N = 800 does

not exhibit second order convergence. This phenomenon is more obvious for Smax = 8K

and N ≥ 400. It is worth noting, that the errors for Smax = 10K are smaller than the

respective errors for Smax = 12K. This is because the localization error for Smax = 10K

is smaller than the discretization one, and the latter one is smaller than the discretization

error for Smax = 12K.

Discussion on nonuniform space discretizations

In the derivative pricing problem, nonuniform discretization, with denser points around

the strike, is often preferred, as the area around the strike exhibits more nonlinearity,

and is more “interesting” to practitioners.

Smooth mappings of equally spaced gridpoints are often used to generate appropriate

nonuniform discretizations. Suppose the domain is [0, Smax] and it is equally divided into

N subintervals, with xi being the gridpoints, i.e. xi = ih, h = Smax

N
, where i = 0, 1, . . . , N .

The smooth mapping w(x) generates the nonuniform grid as

Si ≡ w(xi) = (1 +
sinh(β − (xi/xN − α))

sinh(βα)
)K (5.4)

where K is the strike. This mapping produces denser gridpoints around K. Larger

parameter α increases the density of the points. The purpose of parameter β is to ensure

the last gridpoint is Smax. In practice, α is set around 0.4, so that the strike is aligned

with a gridpoint.

In Tables 5.5 and 5.6, we report, for several discretization sizes, the discrete L∞-norm

error over all gridpoints at time τ = T (t = 0), the associated convergence orders, and

the total and average per timestep number of iterations, if uniform discretization is used.

Compared to the results with nonuniform grid as shown in Tables 5.2 and 5.3, it is obvious

that, if the same number of grid points and time steps are used (same computation cost),

finer gridpoints around the strike result in smaller maximum error. It is worth noting

that all these methods have second order convergence, as expected.

Forward contract

In this example, we present results from pricing the XVA of a 5-year Long Forward

contract with the parameters in Table 5.1. For this problem, we don’t have an exact

solution to calculate exact errors and corresponding convergence orders. Thus the errors

at one resolution are estimated from the difference to the previous (coarser) resolution.
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N Nt error in U order iter tot 2 iter avg 2

50 100 2.64e-03 – 135 1.35
100 200 6.33e-04 2.06 250 1.25
200 400 1.57e-04 2.01 427 1.08
400 800 3.95e-06 1.99 822 1.03
800 1600 9.87e-06 2.00 1614 1.01

Table 5.5: Results from solving (2.2) for a European Put using Algorithm 2 with the
parameters in Table 5.1. Uniform discretization is used.

N Nt error in U order iter tot 2 iter avg 2

50 100 2.64e-03 – 104 1.04
100 200 6.33e-04 2.06 208 1.04
200 400 1.57e-04 2.01 420 1.05
400 800 3.95e-05 1.99 846 1.06
800 1600 9.88e-06 2.00 1665 1.04

Table 5.6: Results from solving (2.2) for a European Call using Algorithm 2 with the
parameters in Table 5.1. Uniform discretization is used.

In Table 5.7, we report, for several discretization sizes, the differences on the coarser

gridpoints at time τ = T (t = 0), the associated convergence orders, and the total and

average per timestep number of iterations. We observe similar performance in conver-

gence and number of iterations as in the call and put option examples. The average

number of iterations with Algorithm 2 is still very close to 1, independently of the grid

size. The average number of iterations with Algorithm 1 is about 2 to 3, independently

of the grid size as well. The order of convergence is stably 2.

N Nt diff in U order iter tot 1 iter avg 1 iter tot 2 iter avg 2
50 100 – – 400 4.00 102 1.02
100 200 7.58e-04 – 600 3.00 206 1.03
200 400 1.90e-04 2.00 1200 3.00 412 1.03
400 800 4.76e-05 2.00 2400 3.00 821 1.03
800 1600 1.19e-05 2.00 4800 3.00 1644 1.03

Table 5.7: Results from solving (2.2) for a Long Forward contract using Algorithms 1
and 2 with the parameters in Table 5.1. Nonuniform grids are used.

The right part of Figure 5.1 shows the Long Forward contract value with and without

XVA. The difference between the two curves is XVA. In this figure, the two curves cross

each other. To the left of the crossing point, the value with XVA is higher than the value

without XVA, which means that, when the contract is made, party B needs to charge

the XVA to party C. On the contrary, to the right of the crossing point, where the value
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with XVA is less than the value without XVA, the party B needs to pay the XVA to

party C.

5.1.2 Examples of XVA in American derivatives

We consider the pricing of American Put, Call and Long Forward including XVA, with the

parameter settings in Table 5.8, and the Mark-to-Market value M = V̂ . The parameter

settings are the same as in [5] (except that the approach in [5] is a Monte Carlo one and

there is no preset Smax). Tables 5.9 and 5.10 show the results from solving (2.41), using

centered differences in space, Crank-Nicolson with Rannacher smoothing in time, and

Algorithm 3 for the nonlinearity. The tolerance for Algorithm 3 was set to 10−7, while

the penalty parameter p was set to 107. We experimented with the far-side condition

(2.43), discretized by backward differences, and with its alternative implementation which

gives rise to Dirichlet conditions (2.44) or (2.45), and the numerical results obtained were

identical (for the points shown and within the digits of precision displayed).

Parameter Value

Domain of S [0, 10K]
Strike Price, K 15

Time to maturity, T 0.5
Volatility, σ 0.25

Repo rate minus dividend, rR = q − γ 0.06
Interest rate, r 0.04

Default intensity of party B, λB 0.04
Default intensity of party C, λC 0.04
Recovery rate of party B, RB 0.3
Recovery rate of party C, RC 0.3

Funding spread, sF (1−RB)λB

Table 5.8: Model parameters for American derivatives’ pricing including bilateral XVA
with constant default intensities.

For the American derivatives valuation including XVA, the exact solution is not avail-

able. To calculate approximate errors, for the American Put case, we pick three points

around or on the strike S = K = 15, one at the money, one in the money, and one out

of the money. For the American Call and Long Forward cases, we only show results at

the money. At each point, the error at one resolution is estimated from the difference to

the previous (coarser) resolution. The numerically observed orders of convergences are

around two.

Looking at the number of iterations, we easily see that the average number of penalty
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iterations in each timestep is around 1.2, which is slightly larger than in the European

case. We expect an increase in the number of iterations, since (2.41) has more nonlinear

terms than (2.2). It is also important to mention that the convergence of penalty iteration

for American derivatives including XVA is still independent of the discretization size.

N Nt iter tot iter avg
V̂ value for S = 15

value diff in V̂ order
50 42 50 1.19 0.86422480 – –
100 82 98 1.20 0.86679812 2.57e-03 –
200 162 196 1.21 0.86751795 7.20e-04 1.84
400 322 396 1.23 0.86771336 1.95e-04 1.88
800 642 801 1.25 0.86776884 5.55e-05 1.82

N Nt
V̂ value for S = 14 V̂ value for S = 16

value diff in V̂ order value diff in V̂ order
50 42 1.37720716 – – 0.51568505 – –
100 82 1.37913317 1.93e-03 – 0.51844504 2.76e-03 –
200 162 1.37960142 4.68e-04 2.04 0.51909720 6.52e-04 2.08
400 322 1.37973315 1.32e-04 1.83 0.51928378 1.87e-04 1.81
800 642 1.37976510 3.19e-05 2.04 0.51933352 4.97e-05 1.91

Table 5.9: Results on three points from solving (2.41) for American Put option valuation
including bilateral XVA using Algorithm 3 with the parameters in Table 5.8. Nonuniform
grids are used.

In order to compare the American and European option prices with and without

XVA, we consider again the parameter settings in Table 5.8, and solve the respective

problems with a Put initial condition. Figure 5.2 plots the prices. The centre plot is a

zooming of the large box in left plot, while the right plot is a zooming of the small box in

left plot. We observe that both V and V̂ of American type options are above the pay-off

and above V and V̂ of European type. European V and V̂ cross the pay-off. In both

American and European type options, the values of V̂ are lower than the values of V , as

expected.
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N Nt iter tot iter avg
V̂ value for Call Option

value diff in V̂ order
50 42 43 1.02 1.25145331 – –
100 82 84 1.02 1.25384939 2.40e-03 –
200 162 165 1.02 1.25445008 6.01e-04 2.00
400 322 330 1.02 1.25460036 1.50e-04 2.00
800 642 654 1.02 1.25463794 3.76e-05 2.00

N Nt iter tot iter avg
V̂ value for Long Forward

value diff in V̂ order
50 42 47 1.12 0.42849973 – –
100 82 92 1.12 0.42848609 1.36e-05 –
200 162 183 1.13 0.42848264 3.46e-06 1.98
400 322 366 1.14 0.42848177 8.64e-07 2.00
800 642 726 1.13 0.42848156 2.16e-07 2.00

Table 5.10: Results from solving (2.41) for other American derivatives including bilateral
XVA using Algorithm 3 with the parameters in Table 5.8 when S is at the money (S =
K = 15). Nonuniform grids are used.

0 10 20 30

S

0

5

10

15

v
a

lu
e

12 12.5 13 13.5 14 14.5

S

1.5

2

2.5

3

v
a

lu
e

14.5 15 15.5

S

0.6

0.7

0.8

0.9

1

1.1

1.2

v
a

lu
e

Figure 5.2: A visualization of European and American Put V and V̂ . The center plot is
a zooming of the large box in the left plot, while the right plot is a zooming of the small
box in left plot. AM V and AM V̂ (EU V and EU V̂ ) are abbreviations for American
(European) derivative prices not including and including XVA, respectively.

5.2 Numerical results of XVA with stochastic default

intensity in European derivatives

We present results of numerical experiments of European XVA with stochastic default

intensities from applying the two proposed methods (numerical 2D PDE and asymp-

totic) on several financial derivatives. The market and numerical parameters used in the
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experiments in this section are listed in Table 5.11. Whenever different parameters are

used for the purpose of testing, we state their values explicitly. Note that, the choice of

mean reversion rate κ requires a lower bound because of the Feller condition, κ > (σλC )2

2θ
.

With the parameters in Table 5.11, the lower boundary is κ > 0.4, which κ = 1 does not

violate.

Parameter Value

Domain of S [0, 8K]

Domain of λC [0, 6.05]

Strike Price, K 15

Time to maturity, T 5

Volatility of asset, σS 0.4

Volatility of intensity of party C, σλC 0.2

Correlation between S and λC , ρ 0.3

Mean reversion level of intensity of party C, θ 0.05

Mean reversion rate of intensity of party C, κ 1

Repo rate minus dividend, rR = q − γ 0.015

Interest rate, r 0.03

Default intensity of party B, λB 0.02

Recovery rate of party B, RB 0.4

Recovery rate of party C, RC 0.3

Funding spread, sF (1−RB)λB

Table 5.11: Model parameters for bilateral XVA with stochastic default intensity in
European derivatives.

5.2.1 Numerical 2D PDE with penalty iterations

The spatial domain of S and λC are discretized into N and M subintervals respectively,

and the (nonuniform) gridpoints on S are concentrated around the strike K, while the

(nonuniform) gridpoints on λC are concentrated towards 0. We could let the λC points

concentrate around the long-run mean θ, but since θ is very close to 0, we chose to

concentrate around 0. The same technique is used in [37] for option pricing in the

Heston model with correlation.

The nonuniform gridpoints on S are generated in the following way. Let xi = ih, i =

0, 1, . . . , N , with h = Smax/N , be uniform points in [0, Smax]. The smooth mapping w(x)
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generates the S nonuniform grid as

Si ≡ w(xi) = (1 +
sinh(β − (xi/xN − α))

sinh(βα)
)K (5.5)

where K is the strike. This mapping produces denser grid points around K. Larger

parameter α increases the density of the points. The purpose of parameter β is to ensure

the last grid point is Smax. In practice, α is set to 0.39.

The nonuniform gridpoints on λC are generated in following way. Let yi = ih, i =

0, 1, . . . ,M , with h = λmax
C /M , be uniform points in [0, λmax

C ]. The smooth mapping u(y)

generates the λC nonuniform grid as

(λC)i ≡ u(yi) =
sinh(yi)

sinh(yM)
yM . (5.6)

The spatial derivatives are discretized by standard second-order centered differences,

except the first derivatives in the boundary conditions, which is discretized by first-order

forward or backward differences. The discretization of boundary conditions is discussed

in details in Chapter 4. The number of timesteps is denoted by Nt, and ∆τ = T/Nt. In

all cases, the timestepping is Crank-Nicolson-Rannacher, as explained in Chapter 4.

Algorithm 4 is used at each timestep. In all tables below, ”iter tot“ and ”iter avg“

are total and average (per timestep) number of iterations. The tolerance tol is set to

10−7.

Call and put options

We present results from pricing the XVA with stochastic counterparty default intensity

of European options with parameter settings in Table 5.11. For European call and put

options, the XVA with stochastic counterparty default intensity does not have analytical

solution. The error at one resolution is estimated by the difference from the previous

(coarser) resolution. In Table 5.12, we show the results at-the-money with different

resolutions. In Tables 5.13 and 5.14, we also list numerical results for several spot prices

and different levels of default risk. We notice that the average number of penalty-like

iterations is just a bit more than 1, irrespectively of the grid size, which is very close

to optimal. The numerical results do not show any problem in terms of stability, and a

second order convergence is achieved. From Tables 5.13 and 5.14, we also notice that,

for both call and put options, large current counterparty default intensities result in

valuation reduction.
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N M Nt iter tot iter avg
V̂ value for call option

value diff in V̂ order

16 8 10 11 1.10 3.8936802 – –

32 16 18 19 1.06 3.9462626 5.26e-02 –

64 32 34 36 1.03 3.9585267 1.23e-02 2.10

128 64 66 67 1.02 3.9616227 3.10e-03 1.99

256 128 130 131 1.01 3.9623942 7.72e-04 2.00

512 256 258 259 1.00 3.9625865 1.92e-04 2.00

Richardson extrapolated value: 3.9626505

N M Nt iter tot iter avg
V̂ value for put option

value diff in V̂ order

16 8 10 14 1.40 3.2636520 – –

32 16 18 22 1.22 3.3121738 4.85e-02 –

64 32 34 42 1.24 3.3235623 1.14e-02 2.09

128 64 66 81 1.23 3.3264560 2.89e-03 1.98

256 128 130 169 1.30 3.3271792 7.23e-04 2.00

512 256 258 331 1.18 3.3273597 1.81e-04 2.00

Richardson extrapolated value: 3.3274199

Table 5.12: Results from solving (3.40) for European derivatives including bilateral XVA
with stochastic default intensities on counterparty using Algorithm 4 with the parameters
in Table 5.11 when S is at-the-money (S = K = 15) and λC = θ. Nonuniform grids are
used.

N,M,Nt (7.5, 0.025) (7.5, 0.05) (7.5, 0.1) (30, 0.01) (30, 0.05) (30, 0.01)

128, 66, 68 0.9039126 0.8863963 0.8530686 13.1325300 12.8901198 12.4246852

256,128,130 0.9044305 0.8869035 0.8535563 13.1337767 12.8913283 12.4258311

512,256,258 0.9045596 0.8870299 0.8536779 13.1340870 12.8916295 12.4261169

order 2.01 2.00 2.00 2.01 2.00 2.00

Table 5.13: Results from solving (3.40) for European call option including bilateral XVA
with stochastic default intensity on counterparty using Algorithm 4 with the parameters
in Table 5.11 at various points. Nonuniform grids are used.
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N,M,Nt (7.5, 0.025) (7.5, 0.05) (7.5, 0.1) (30, 0.01) (30, 0.05) (30, 0.01)

128, 66, 68 5.7760725 5.6809067 5.4942784 1.4177604 1.3956006 1.3517181

256,128,130 5.7764957 5.6813247 5.4946841 1.4190217 1.3968406 1.3529159

512,256,258 5.7766015 5.6814292 5.4947855 1.4193367 1.3971503 1.3532150

order 2.00 2.00 2.00 2.00 2.00 2.00

Table 5.14: Results from solving (3.40) for European put option including bilateral XVA
with stochastic default intensity on counterparty using Algorithm 4 with the parameters
in Table 5.11 at various points. Nonuniform grids are used.

Remark 7 While we present results for call and put options only, the PDE model as

well as the numerical methods are directly applicable to other financial derivatives, for

example, the forward contract, in which case the price can become negative, and both

parties need to worry about defaults. Some results on bilateral XVA pricing of forwards

with constant default intensity are found in Section 5.1.1.

Effect of truncated boundaries

To show the sensitivity of the accuracy of the solution to the choice of Smax and λmax
C ,

we present results from XVA valuation considering stochastic counterparty default risk

with the parameters of 5.11, except that in Table 5.15, we set Smax = 4K, 8K, 6K and

10K, and in Table 5.16, we set λmax
C = 4.05, 6.05 and 8.05. In Table 5.15, note that, for

the same values of N,M,Nt, smaller Smax results in smaller difference, since the spatial

stepsize is smaller with smaller Smax. However, Smax = 8K makes the convergence order

even smoother, and equal to 2. This allows us to claim that the extrapolated value

obtained by Smax = 8K is more accurate. It is then clear that Smax = 8K gives the most

accurate and reliable values. In Table 5.9, we see that λmax
C = 6.05 and λmax

C = 8.05

give the same accuracy results (including extrapolated values), and smoother order of

convergence than λmax
C = 4.05. Thus, the choices Smax = 8K and λmax

C = 6.05 chosen

in Table 5.11 are appropriate and close to optimal for the quality of the numerical PDE

approximation of the particular problem.
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N M Nt iter tot iter avg
V̂ value when Smax = 4K

value diff in V̂ order

16 8 10 11 1.10 3.9293825 – –

32 16 18 19 1.06 3.9531642 2.38e-02 –

64 32 34 35 1.03 3.9583044 5.14e-03 2.21

128 64 66 67 1.02 3.9598170 1.51e-03 1.76

256 128 130 131 1.01 3.9601880 3.71e-04 2.03

512 256 258 259 1.00 3.9602776 8.97e-05 2.05

Richardson extrapolated value: 3.9603075

N M Nt iter tot iter avg
V̂ value when Smax = 6K

value diff in V̂ order

16 8 10 11 1.10 3.9122552 – –

32 16 18 19 1.06 3.9504179 3.82e-02 –

64 32 35 35 1.03 3.9594910 9.07e-03 2.07

128 64 66 67 1.02 3.9618227 2.33e-03 1.96

256 128 130 131 1.01 3.9624022 5.79e-04 2.01

512 256 258 259 1.00 3.9625458 1.44e-04 2.01

Richardson extrapolated value: 3.9625937

N M Nt iter tot iter avg
V̂ value when Smax = 8K

value diff in V̂ order

16 8 10 11 1.10 3.8936802 – –

32 16 18 19 1.06 3.9462626 5.26e-02 –

64 32 34 35 1.03 3.9585267 1.23e-02 2.10

128 64 66 67 1.02 3.9616227 3.10e-03 1.99

256 128 130 131 1.01 3.9623942 7.72e-04 2.00

512 256 258 259 1.00 3.9625865 1.92e-04 2.00

Richardson extrapolated value: 3.9626505

N M Nt iter tot iter avg
V̂ value when Smax = 10K

value diff in V̂ order

16 8 10 11 1.10 3.8763460 – –

32 16 18 19 1.06 3.9426609 6.63e-02 –

64 32 34 35 1.03 3.9576239 1.50e-02 2.15

128 64 66 67 1.02 3.9613985 3.77e-03 1.99

256 128 130 131 1.01 3.9623399 9.41e-04 2.00

512 256 258 259 1.00 3.9625747 2.35e-04 2.00

Richardson extrapolated value: 3.9626530

Table 5.15: Results from solving (3.40) for European call option including bilateral XVA
with stochastic default intensity on counterparty using Algorithm 4 with the parameters
in Table 5.11, except Smax varying as indicated, when S is at-the-money (S = K = 15)
and λC = θ. Nonuniform grids are used.
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N M Nt iter tot iter avg
V̂ value when λmax

C = 4.05

value diff in V̂ order

16 8 10 11 1.10 3.9177337 – –

32 16 18 19 1.06 3.9496221 3.19e-02 –

64 32 34 35 1.03 3.9585993 8.98e-03 1.83

128 64 66 67 1.02 3.9615316 2.93e-03 1.61

256 128 130 131 1.01 3.9623705 8.39e-04 1.81

512 256 258 259 1.00 3.9625815 2.11e-04 1.99

Richardson extrapolated value: 3.9626518

N M Nt iter tot iter avg
V̂ value when λmax

C = 6.05

value diff in V̂ order

16 8 10 11 1.10 3.8936802 – –

32 16 18 19 1.06 3.9462626 5.26e-02 –

64 32 34 35 1.03 3.9585267 1.23e-02 2.10

128 64 66 67 1.02 3.9616227 3.10e-03 1.99

256 128 130 131 1.01 3.9623942 7.72e-04 2.00

512 256 258 259 1.00 3.9625865 1.92e-04 2.00

Richardson extrapolated value: 3.9626505

N M Nt iter tot iter avg
V̂ value when λmax

C = 8.05

value diff in V̂ order

16 8 10 11 1.10 3.8964305 – –

32 16 18 19 1.06 3.9463962 5.00e-02 –

64 32 34 35 1.03 3.9585381 1.21e-02 2.04

128 64 66 67 1.02 3.9616237 3.09e-03 1.98

256 128 130 131 1.01 3.9623942 7.70e-04 2.00

512 256 258 259 1.00 3.9625864 1.92e-04 2.00

Richardson extrapolated value: 3.9626505

Table 5.16: Results from solving (3.40) for European call option including bilateral XVA
with stochastic default intensity on counterparty using Algorithm 4 with the parameters
in Table 5.11, except λmax

C varying as indicated, when S is at-the-money (S = K = 15)
and λC = θ. Nonuniform grids are used.

5.2.2 Asymptotic solution and effect of rate of mean reversion

In order to investigate how the speed of mean reversion κ affects the accuracy of the

asymptotic approximation, we show the derivative values considering counterparty de-
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fault risk with the parameters of Table 5.11, except that κ varies from 1 to 10. We present

two Tables 5.17 and 5.18 (κ varying from 1 to 3), one with correlation ρ being zero and

one with correlation given in Table 5.11. When κ varies, in order to keep ν constant,

we vary σλC as ν√
ϵ
. Since the exact solutions to the problems considered are unknown,

we compute highly accurate approximations by the numerical 2D PDE approach, and

use those to compare with the ones obtained by the asymptotic approach. To obtain

highly accurate 2D PDE prices, the 2D PDE approximations from the two finest grids

are extrapolated by one-level Richardson extrapolation, with second order convergence.

We do not use more levels of Richardson extrapolation as it is known that higher levels

of Richardson extrapolation are numerically unstable. The numerical results show good

agreement among solutions under different approaches.

In Tables 5.17, 5.18, and Figure 5.3 (κ varying from 1 to 10), we can see that the differ-

ences between the PDE extrapolated solution and the asymptotic solutions are decreasing

with increasing κ, the order of convergence with respect to κ−1 being approximately 1.5

for the non-zero correlation case, and more than 2 for the zero correlation one.

(7.5, 0.05) (7.5, 0.1) (15, 0.05) (15, 0.1) (30, 0.05) (30, 0.1)

const. intens. 5.6250695 5.6250695 3.2759704 3.2759704 1.3662239 1.3662239

κ = 1, σλC = 0.2, ν = 0.2

PDE FDM 5.6345450 5.4444596 3.2814455 3.1707436 1.3682827 1.3221227

PDE extrap 5.6345792 5.4444926 3.2815060 3.1708021 1.3683868 1.3222232

asymptotic 5.6388509 5.4419735 3.2839966 3.1693376 1.3695712 1.3217533

κ = 2, σλC = 0.2828, ν = 0.2

PDE FDM 5.6308259 5.5338160 3.2792796 3.2227830 1.3673795 1.3438218

PDE extrap 5.6308601 5.5338496 3.2793401 3.2228424 1.3674836 1.3439241

asymptotic 5.6319602 5.5335215 3.2799835 3.2226540 1.3678976 1.3439886

κ = 3, σλC = 0.3464, ν = 0.2

PDE FDM 5.6291365 5.5641450 3.2782957 3.2404460 1.3669693 1.3511868

PDE extrap 5.6291707 5.5641788 3.2783562 3.2405057 1.3670733 1.3512897

asymptotic 5.6296633 5.5640375 3.2786458 3.2404262 1.3673397 1.3514004

Table 5.17: Values by different approaches for European put option including bilateral
XVA with stochastic default intensity on counterparty with the parameters in Table
5.11, except that κ and σλC vary as indicated, and ρ = 0, at several points. The grid
size for the PDE solution is N = 512,M = 256, and extrapolation takes place between
N = 256,M = 128 and N = 512,M = 256.
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Comparing the differences in Tables 5.17 and 5.18, and looking at Figure 5.3, the

zero correlation cases of the asymptotic solutions result in smaller differences from the

extrapolated PDE values, than the nonzero correlation cases, while the 2D PDE solutions

give approximately the same differences for ρ = 0 and ρ ̸= 0.

(7.5, 0.05) (7.5, 0.1) (15, 0.05) (15, 0.1) (30, 0.05) (30, 0.1)

const. intens. 5.6250695 5.6250695 3.2759704 3.2759704 1.3662239 1.3662239

κ = 1, σλC = 0.2, ν = 0.2

PDE FDM 5.6814292 5.4947855 3.3273597 3.2201054 1.3971503 1.3532150

PDE extrap 5.6814640 5.4948193 3.3274199 3.2201636 1.3972536 1.3533148

asymptotic 5.6974803 5.5006028 3.3425304 3.2278715 1.4072341 1.3594163

κ = 2, σλC = 0.2828, ν = 0.2

PDE FDM 5.6681123 5.5723664 3.3159146 3.2606831 1.3905067 1.3677652

PDE extrap 5.6681469 5.5724005 3.3159749 3.2607424 1.3906101 1.3678669

asymptotic 5.6734174 5.5749787 3.3213732 3.2640437 1.3945293 1.3706204

κ = 3, σλC = 0.3464, ν = 0.2

PDE FDM 5.6607425 5.5964355 3.3094221 3.2722577 1.3866742 1.3713342

PDE extrap 5.6607769 5.5964696 3.3094823 3.2723172 1.3867777 1.3714365

asymptotic 5.6635130 5.5978872 3.3124404 3.2742207 1.3890844 1.3731451

Table 5.18: Values by different approaches for European put option including bilateral
XVA with stochastic default intensity on counterparty with the parameters in Table 5.11,
except that κ and σλC vary as indicated, at several points. The grid size for the PDE
solution is N = 512,M = 256, and extrapolation takes place between N = 256,M = 128
and N = 512,M = 256.
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Figure 5.3: Accuracy of different approaches for European put option valuation including
bilateral XVA with stochastic default intensity on counterparty with the parameters in
Table 5.11 except κ and ρ as indicated, and σλC = 0.2
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Figure 5.4: Accuracy of different approaches for European put option valuation including
bilateral XVA with stochastic default intensity on counterparty with the parameters in
Table 5.11 except κ and ρ as indicated, and σλC = 0.2

√
κ, versus N at (30, 0.1).
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From Figure 5.4, it can be seen that the PDE accuracy is of the same level irrespec-

tively of κ and ρ, while the asymptotic solution accuracy improves with increasing κ,

and for ρ = 0. Furthermore, in the mean reversion case κ = 3 and ρ = 0, the traditional

PDE numerical methods need very fine grids, finer than N = 512, to beat the asymp-

totic approach in accuracy. Likewise, in the mean reversion case κ = 1 and ρ = 0.3, the

traditional PDE numerical methods beat the asymptotic approach in accuracy even with

N = 64.

Remark 8 Taking into account that the computational cost of the 2D numerical PDE

solution approach is more than O(N2), while that of the asymptotic is O(N), it is clear

that, for a given problem, the asymptotic solution approach is always more efficient than

the 2D numerical PDE one. However, the accuracy of the computed results from the two

approaches for a given problem (fixed κ) is not directly comparable, so a fair comparison

is hard to carry. It is possibly most important to note that, for a given problem, the

2D numerical PDE solution approach allows the user to adjust the discretization size to

match a certain accuracy level, while the asymptotic solution approach does not possess

this property. Still, when mild accuracies are satisfactory, researchers and practitioners

may find the asymptotic approach attractive.

5.2.3 Effect of model parameters

We study how the correlation ρ, mean reversion level θ and mean reversion speed κ

affect the adjusted values of financial derivatives. We still focus on European call and

put options, with parameters in Table 5.11, except when mentioned otherwise.

In Table 5.19 and Figures 5.5 and 5.6, we show the effect of the correlation ρ between

spot price S and counter-party default risk λC on the values of call and put options

computed by solving (3.40). In the put option case, higher ρ leads to higher value of

derivatives, while, in the call option case, higher ρ results in lower value derivatives. This

effect can be also captured by the asymptotic solution. Recalling the asymptotic solution

(3.91), and substituting σλC = ν√
ϵ
or ν =

√
ϵσλC , we get

V̂ ϵ,1 = V̂0 −
√
ϵτρσSνS(1−RC)⟨

√
λC⟩

∂V̂ +
0

∂S

+ ϵ(1−RC)(θ − λC)V̂
+
0 + ϵτ(1−RC)

2 θν
2

2
V̂ +
0

= V̂0 − ϵτρσSσλCS(1−RC)⟨
√

λC⟩
∂V̂ +

0

∂S

+ ϵ(1−RC)(θ − λC)V̂
+
0 + ϵ2τ(1−RC)

2 (σ
λC )2

2
V̂ +
0 . (5.7)
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Recall that, V̂0 is the solution to the Black-Scholes equation (3.43) considering constant

counterparty default risk equal to θ. Among the four terms in the right hand side of

(5.7), all but the second one are independent of ρ. Considering the second term, in put

option case, the sensitivity delta
∂V̂ +

0

∂S
is non-positive, while, in call case, the sensitivity

delta
∂V̂ +

0

∂S
is non-negative. This explains the different behaviors of prices in different

derivatives.
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Figure 5.5: Effect of ρ on put option value
with XVA, computed by solving (3.40).
Other parameters are in Table 5.11.
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Figure 5.6: Effect of ρ on call option value
with XVA, computed by solving (3.40).
Other parameters are in Table 5.11.

ρ
put price put price call price call price

at (15, 0.05) at (15, 0.10) at (15, 0.10) at (15, 0.10)

-0.3 3.2345962 3.1204577 4.1815355 4.0521265

0 3.2814455 3.1707436 4.0777310 3.9401659

0.3 3.3273597 3.2201054 3.9625865 3.8170009

0.8 3.4016595 3.3002454 3.7450680 3.5867810

Table 5.19: Value comparison for solving (3.40) for European options including bilateral
XVA with stochastic default intensity on counterparty with the parameters in Table 5.11
with different correlations. The grid size is N = 512,M = 256.

Table 5.20 presents results that demonstrate how the long-run mean θ affects the

adjusted derivative values. Higher θ results in increased total default probability experi-

enced during derivative life. When the derivative contract is a positive asset to party B,

naturally, this results in a lower value of the financial derivatives. From Equations (3.6)

and (3.7), higher counterparty default rate means more possibility to receive recovery
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value of full contract, especially when this contract is a positive asset to the surviving

party. This reduces the value of derivative contract to the surviving party when the

counterparty default risk is considered. Figure 5.7 gives a visualization in the case of

put option. As we can see in (5.7), the dominant zero-th term value V̂0 decreases as θ

decreases, while all other terms increase a bit. These terms (involving ϵ in some positive

powers) are dominated by the zero-th order term.

θ
put price put price call price call price

at (15, 0.05) at (15, 0.10) at (15, 0.10) at (15, 0.10)

0.01 3.6947761 3.5775433 4.4835585 4.3140849

0.05 3.3273597 3.2201054 3.9625865 3.8170009

0.2 2.2192156 2.1466437 2.5519197 2.4605421

Table 5.20: Value comparison for solving (3.40) for European options including bilateral
XVA with stochastic default intensity on counterparty with the parameters in Table 5.11
with different mean reversion levels. The grid size is N = 512,M = 256.

Table 5.21 and Figure 5.8 demonstrate how the speed of mean reversion κ affects

the values of put option. Increasing values of κ, naturally result in prices closer to the

Black-Scholes price including XVA with constant default intensity λC equal to θ. Again,

the asymptotic solution (5.7) expresses this trend well. The terms involving ϵ decrease

in absolute value and converge to zero, which makes the asymptotic solution tend to V̂0,

the solution of the Black-Scholes equation (3.43) taking default risk into account, with

constant default intensity λC = θ.

point κ = 1 κ = 2 κ = 3 κ = 4 κ = 5

(15, 0.025) 3.3818182 3.3324451 3.3142960 3.3049453 3.2992520

(15, 0.05) 3.3273597 3.3043328 3.2954144 3.2907365 3.2878633

(15, 0.1) 3.2201054 3.2485634 3.2578586 3.2624369 3.2651620

V̂0: 3.27597044

Table 5.21: Value comparison for solving (3.40) for European put option including bilat-
eral XVA with stochastic default intensity on counterparty with the parameters in Table
5.11. The grid size is N = 512,M = 128.
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Figure 5.7: Effect of θ on put option value
with XVA, computed by solving (3.40).
Other parameters are in Table 5.11.
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Figure 5.8: Effect of κ on put option value
with XVA, computed by solving (3.40).
Other parameters are in Table 5.11.

5.3 Numerical results of XVA with stochastic default

intensity in American derivatives

In this section, we show results of numerical experiments from applying the two proposed

methods (numerical 2D PDE and asymptotic) on American put options. Table 5.22

presents the values of parameters we used in the experiments, which are almost the same

as those in Table 5.11, except the maturity time T = 1 instead of T = 5.
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Parameter Value

Domain of S [0, 8K]

Domain of λC [0, 6.05]

Strike Price, K 15

Time to maturity, T 1

Volatility of asset, σS 0.4

Volatility of intensity of party C, σλC 0.2

Correlation between S and λC , ρ 0.3

Mean reversion level of intensity of party C, θ 0.05

Mean reversion rate of intensity of party C, κ 1

Repo rate minus dividend, rR = q − γ 0.015

Interest rate, r 0.03

Default intensity of party B, λB 0.02

Recovery rate of party B, RB 0.4

Recovery rate of party C, RC 0.3

Funding spread, sF (1−RB)λB

Table 5.22: Model parameters for bilateral XVA with stochastic default intensity in
American put options.

5.3.1 Numerical 2D PDE with double-penalty iterations

The spatial domain of (S, λC), [0, Smax]× [0, λmax
C ], is discretized into N×M subintervals.

We choose the truncated boundaries, Smax = 8K and λmax
C = 6.05, when σλC = 0.2, as

suggested in Section 5.2.1. More generally, λmax
C = θ+30σλC . In Section 5.2.1, the effect

of truncated boundaries is studied in details for European options. We do not expect

different behavior for American options, as far as truncated boundaries are concerned.

We also choose to use nonuniform gridpoints on both S dimension and λC dimension.

The gridpoints on S are concentrated around the strike price K, while the gridpoints on

λC are concentrated towards 0. The formulae of the nonuniform mappings from uniform

grids on these two spatial dimensions can be found in Section 5.2.1.

The spatial derivatives are discretized by standard second-order centered differences,

except the first derivatives in the boundary conditions, which are discretized by first-

order forward or backward differences. The number of timesteps in denoted by Nt, and

∆t = T/Nt, as defined in Section 4.2.1. As explained in Section 4.2.1, the timestepping

scheme is Crank-Nicolson-Rannacher. Algorithm 5 is used at each timestep. In all tables

in this section, “iter tot” and “iter avg” mean total and average (per timestep) number
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of iterations. The tolerance tol of double-penalty iteration is set to 10−7, thus p = 107.

We present results from pricing the XVA of American put options with stochastic

counterparty default intensity, and with the parameter settings in Table 5.22. For Amer-

ican put options, the XVA with stochastic counterparty default intensity does not have

an analytical solution. The error at one resolution is estimated by the difference from

the previous (coarser) resolution. In Table 5.23, we show the results at-the-money with

different resolutions. We notice that the average number of double-penalty iterations

is around 2, and varies very little with grid size. The numerical results do not exhibit

any instability, and the order of convergence is 2, which is the same as the theoretically

expected convergence. In Table 5.24, we also list numerical results for several spot prices

and different levels of default risk. In this problem with K = 15, asset price S = 7.5 is

expected to be in the exercise region, while asset prices S = 15 and S = 30 are expected

to be in the hold region. From Tables 5.23 and 5.24, we notice that when the underlying

asset prices S = 15 and S = 30, the order of convergence is approximately 2 as expected.

From Table 5.24, at S = 7.5, the numerical solution converges quickly to 7.5, and this

is because the errors in the exercise region are related to 1
p
= 10−7 and less affected by

the discretization size. Therefore, for high resolutions, the errors are beyond the seven

digits.

We are also interested in the behavior of the free boundaries for different counterparty

default intensities λC . In Table 5.25, we show the location and the convergence of the free

boundaries when λC = 0.0615927 and λC = 0.1364300 for the double-penalty method for

several grid sizes. These λC points are chosen because they are grid points of all λC-grids

from the coarsest to the finest. We could have picked other arbitrary λC points, but in

such case, we need to apply interpolation to the computed values on the grid points to

obtain the values at the arbitrary λC points, a procedure that may increase the errors.

From Table 5.25, we notice that although the order of convergence of the free boundaries

of the double-penalty method is not very stable, the changes from coarse to fine grids

generally decrease and go down to levels of about 10−3 or 10−4. In Table 5.26, we show

the values of the free boundaries for several different λC . It is clear that the free boundary

increases as the λC value increases, which means that the American derivative will be

exercised for a larger range of S values.

We also investigate how the free boundary location changes with varying κ. Here, we

assume that, as κ changes, σλC also changes, so that ν remains constant, i.e. σλC = ν
√
κ.

This scaling is the same as the one assumed in Section 4.3, and helps obtain results

comparable to those obtained from the asymptotic approximation. Figure 5.9 plots the

values of the free boundaries, versus counterparty default intensity λC , with various
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κ. From Table 5.26 and Figure 5.9, we can see that the free boundary increases with

increasing default intensities λC . Usually, large counterparty default intensity results in

valuation reduction in adjusted price. With the “push-up” effect of the payoff constraints

from American put options, the free boundary should move to far-side of S-dimension.

We also notice, from Figure 5.9, the free boundaries are less sensitive with respect to κ

around λC = 0.05, which is the long-run mean of mean-reversion process. When λC is

smaller, the free boundaries increase with increasing κ, while, when λC is large, the free

boundaries decrease with increasing κ.

N M Nt iter tot iter avg
V̂ value for put option

value diff in V̂ order

16 8 10 19 1.90 2.1254085 – –

32 16 18 33 1.83 2.1619127 3.65e-02 –

64 32 34 72 2.12 2.1714040 9.49e-03 1.94

128 64 66 149 2.26 2.1741303 2.73e-03 1.80

256 128 130 310 2.38 2.1748854 7.55e-04 1.85

512 256 258 678 2.63 2.1750101 1.25e-04 2.60

Richardson extrapolated value: 2.1750516

Table 5.23: Results from solving (4.9) for American put option including bilateral XVA
with stochastic default intensity on counterparty using Algorithm 5 with the parameters
in Table 5.22 when S is at-the-money (S = K = 15) and λC = θ. Nonuniform grids are
used.

N,M,Nt (7.5, 0.025) (7.5, 0.05) (7.5, 0.1) (30, 0.01) (30, 0.05) (30, 0.01)

128, 66, 68 7.4999991 7.4999954 7.5000017 0.1224851 0.1213862 0.1191487

256,128,130 7.5000007 7.4999984 7.5000000 0.1227464 0.1216452 0.1194031

512,256,258 7.5000000 7.5000000 7.5000000 0.1227959 0.1216946 0.1194522

order —- —- —- 2.40 2.39 2.39

Table 5.24: Results at various points (S, λC) from solving (4.9) for American put option
including bilateral XVA with stochastic default intensity on counterparty using Algorithm
5 with the parameters in Table 5.22. Nonuniform grids are used.
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N
FB at λC = 0.0615927 FB at λC = 0.1364300

value diff order value diff order

16 8.2288945 – – 8.3357731 – –

32 8.4959278 2.67e-01 – 8.8004742 4.65e-01 –

64 8.4409673 -5.50e-02 2.28 8.8252269 2.48e-02 4.23

128 8.4474892 6.52e-03 3.08 8.8955801 7.04e-02 -1.51

256 8.4528315 5.34e-03 0.29 8.9078471 1.23e-02 2.52

512 8.4526494 -1.82e-04 4.87 8.9092269 1.38e-03 3.15

Table 5.25: Free boundary locations and orders of convergence for various counterparty
default intensity λC-points from solving (4.9) for American put option including bilat-
eral XVA with stochastic default intensity on counterparty using Algorithm 5 with the
parameters in Table 5.22. Nonuniform grids are used. Algorithm 6 is used for the calcu-
lation of free boundaries.

λC 0.01 0.025 0.05 0.1 0.2

free boundary 8.0062692 8.1547595 8.3671579 8.7067881 9.2033891

Table 5.26: Free boundary locations for various counterparty default intensity λC-points
from solving (4.9) for American put option including bilateral XVA with stochastic de-
fault intensity on counterparty using Algorithm 5 with the parameters in Table 5.22.
Nonuniform grids are used and N = 512. Algorithm 6 is used for the calculation of free
boundaries.
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Figure 5.9: Free boundary locations versus the counterparty default intensity λC , with
various mean-reversion speeds κ from solving (4.9) for American put option including
bilateral XVA with stochastic default intensity on counterparty using Algorithm 5 with
the parameters in Table 5.22. Nonuniform grids are used and N = 512. Algorithm 6 is
used for the calculation of free boundaries.
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5.3.2 Comparison of asymptotic and numerical 2D PDE ap-

proximations

In order to numerically investigate the accuracy of the asymptotic approximation and

compare to the finite difference PDE solutions in American type financial derivatives,

we show the American put options including XVA with mean-reversion counterparty

default intensity, with the parameters of Table 5.22, except that we vary the speed of

mean-reversion parameter, κ. We present Table 5.27, in which κ is varying from 1 to 5.

This table can also help us numerically analyze how the asymptotic solution accuracy is

affected by the speed of mean-reversion parameter κ. In Table 5.27, we keep ν = σλC
√
ϵ

constant, where κ = 1√
ϵ
, and σλC is varying with varying κ. The exact solutions to

these problems are not known. Therefore, we compute the numerical approximations

by the 2D PDE approach and asymptotic approximations. Also, we compute a highly

accurate numerical approximation extrapolated from the two finest grids of the 2D PDE

approximations using Richardson extrapolation. The results by Richardson extrapolation

are considered as the most accurate approximations. In Table 5.27, we notice, for points in

the exercise region, both the 2D PDE solution (with high resolution) and the asymptotic

give exact results within tolerance O(1
p
). In this case, Richardson extrapolation deviates

from the exact results, as extrapolation brings wrong digits in the numerical 2D PDE

solution beyond the seventh digit to the left. For these points, extrapolation with respect

to the grid size does not make sense.
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(7.5, 0.05) (7.5, 0.1) (15, 0.05) (15, 0.1) (30, 0.05) (30, 0.1)

κ = 1, σλC = 0.2, ν = 0.2

PDE FDM 7.5000000 7.5000000 2.1750101 2.1403166 0.1216946 0.1194522

PDE extrap 7.5000001 7.5000000 2.1750516 2.1403572 0.1217110 0.1194685

asymptotic 7.5000000 7.5000000 2.1947775 2.1187456 0.1236463 0.1194102

κ = 2, σλC = 0.28, ν = 0.2

PDE FDM 7.5000000 7.5000000 2.1756124 2.1497291 0.1217586 0.1202117

PDE extrap 7.5000001 7.5000000 2.1756538 2.1497695 0.1217750 0.1202280

asymptotic 7.5000000 7.5000000 2.1879855 2.1499696 0.1228682 0.1207502

κ = 3, σλC = 0.35, ν = 0.2

PDE FDM 7.5000000 7.5000000 2.1758164 2.1556302 0.1217499 0.1205987

PDE extrap 7.5000001 7.5000000 2.1758578 2.1556707 0.1217664 0.1206150

asymptotic 7.5000000 7.5000000 2.1850350 2.1596910 0.1225268 0.1211148

κ = 4, σλC = 0.4, ν = 0.2

PDE FDM 7.5000000 7.5000000 2.1758642 2.1595322 0.1217224 0.1208164

PDE extrap 7.5000001 7.5000000 2.1759056 2.1595729 0.1217389 0.1208328

asymptotic 7.5000000 7.5000000 2.1832931 2.1642851 0.1223242 0.1212652

κ = 5, σλC = 0.45, ν = 0.2

PDE FDM 7.5000000 7.5000000 2.1758420 2.1622297 0.1216910 0.1209478

PDE extrap 7.5000001 7.5000000 2.1758835 2.1622708 0.1217075 0.1209643

asymptotic 7.5000000 7.5000000 2.1821117 2.1669053 0.1221864 0.1213391

Table 5.27: Values of V̂ at several points (S, λC) and by different approaches for American
put option including bilateral XVA with stochastic default intensity on counterparty with
the parameters in Table 5.22, except that κ varies as indicated, and σλC = 0.2

√
κ. The

grid size for the PDE solution is N = 512,M = 256, and extrapolation takes place
between N = 256,M = 128 and N = 512,M = 256.

In Figure 5.10, we plot the “errors” of the PDE and the asymptotic solutions versus

κ. The errors are approximated by the difference between the respective approximations

and the PDE extrapolated solution. From Figure 5.10, we can see the errors of the

asymptotic solutions are decreasing with increasing κ at some constant order with few

fluctuations, while the errors of the PDE solution are κ-independent. The latter errors

are mainly affected by the S-points of evaluation, and are larger on the strike K than far

away. Numerically, we observe that the order of convergence of asymptotic solution with

respect to κ−1 is approximately 0.75. We believe that the reason why this order is lower
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than in the European case, is that the free boundary approximation is of low order.
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Figure 5.10: Accuracy comparison of different approaches for American put option valu-
ation including bilateral XVA with stochastic default intensity on counterparty with the
parameters in Table 5.22 except varying κ as indicated, and σλC = 0.2

√
κ, versus κ.

In Table 5.28, we also compare the free boundary locations computed by the numerical

2D PDE solutions and the asymptotic approach at specific λC points. As mentioned in

the previous subsection, the free boundary location changes very little with respect to

κ when λC = 0.05. Considering the 2D PDE approach, when λC is less than the mean,

the free boundaries are increasing with κ, while when λC is larger than the mean, the

free boundaries are decreasing with κ. Furthermore, in the case that λC is away from

the mean, the differences of free boundaries between the numerical PDE and asymptotic

approximations become smaller as κ increases, because of the mean-reversion effects.
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κ 1 2 3 4 5

λC = 0.01

PDE FDM 8.0062692 8.0483576 8.0728779 8.1015927 8.1206571

asymptotic 8.3318264 8.3322154 8.3323877 8.3324904 8.3325605

difference 3.26e-01 2.84e-01 2.601e-01 2.31e-01 2.12e-01

λC = 0.05

PDE FDM 8.3671579 8.3708289 8.3713726 8.3709081 8.3700482

asymptotic 8.3318264 8.3322154 8.3323877 8.3324904 8.3325605

difference 3.53e-02 3.86e-02 3.90e-02 3.84e-02 3.75e-02

λC = 0.1

PDE FDM 8.7067881 8.6742030 8.6456813 8.6274888 8.6120856

asymptotic 8.3318264 8.3322154 8.3323877 8.3324904 8.3325605

difference 3.75e-01 3.42e-01 3.13e-01 2.95e-01 2.80e-01

Table 5.28: Comparison of free boundary locations given by different approaches at
various λC points for American put option including bilateral XVA with the parameters
in Table 5.22, except that κ varies as indicated, and σλC = 0.2

√
κ. The grid size for the

PDE solution is N = 512,M = 256. Algorithms 6 and 7 are used for the calculation of
free boundaries for the (2D) PDE FDM and the asymptotic methods, respectively.

5.3.3 Comparison of American and European type XVA

In order to compare the American and European put options with XVA, we solve the

respective problem for European case, considering the same parameter settings, as shown

in Table 5.22, and produce results for European options to be compared to the results

in Tables 5.23 and 5.24 for American options. The results for European options are

presented in Tables 5.29 and 5.30. Comparing the results of Tables 5.23 and 5.27, we

easily see that the average number of iterations in each timestep is about 1.1 to 1.2

for European options, which is smaller than the ones for American options. We expect

smaller number of iterations for European derivatives, since the American case has more

nonlinearity. Also, for American derivatives, the average of number of iterations depends

a little more on problem size than for the European case. Furthermore, from Tables 5.23,

5.24, 5.29 and 5.30, we can directly observe that the American derivative including XVA

has slightly larger values than the European one, which is expected from the nature of

American derivatives.
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N M Nt iter tot iter avg
V̂ value for put option

value diff in V̂ order

16 8 10 12 1.20 2.0790884 – –

32 16 18 22 1.22 2.1114901 3.24e-02 –

64 32 34 40 1.18 2.1196343 8.14e-03 1.99

128 64 66 77 1.17 2.1218013 2.17e-03 1.91

256 128 130 150 1.15 2.1223410 5.40e-04 2.01

512 256 258 297 1.15 2.1224747 1.34e-04 2.01

Richardson extrapolated value: 2.1750516

Table 5.29: Results for European put option including bilateral XVA with stochastic
default intensity on counterparty using penalty-like algorithm in Section 3.2 with the
parameters in Table 5.22 when S is at-the-money (S = K = 15) and λC = θ. Nonuniform
grids are used.

N,M,Nt (7.5, 0.025) (7.5, 0.05) (7.5, 0.1) (30, 0.01) (30, 0.05) (30, 0.01)

128, 66, 68 6.9954401 6.9205456 6.7723182 0.1215826 0.1204373 0.1180971

256,128,130 6.9956602 6.9207611 6.7725231 0.1218132 0.1206653 0.1183202

512,256,258 6.9957152 6.9208149 6.7725743 0.1218705 0.1207220 0.1183757

order 2.00 2.00 2.00 2.01 2.01 2.01

Table 5.30: Results at various points (S, λC) for European put option including bilateral
XVA with stochastic default intensity on counterparty using penalty-like algorithm in
Section 3.2 with the parameters in Table 5.22 at various points. Nonuniform grids are
used.



Chapter 6

Conclusions and future works

6.1 Summary and conclusions of research

In this thesis, we explored the XVA pricing problem by PDE approaches and the related

computation issues. After the introduction in Chapter 1, Chapter 2 includes the analysis

of iterations to deal with the nonlinearity taking place in the XVA pricing PDE. The

third and forth chapters of this thesis focus on developing computational methods for

the XVA pricing problem with stochastic counterparty default intensity.

In Chapter 2, we formulated and studied iterative methods for the nonlinearity of

the PDE problem arising when taking into account the (possibly bilateral) credit risk in

valuing financial derivatives. It is shown that simple fixed-point iteration methods for

the European XVA PDE problem require 3-4 iterations per timestep, while the proposed

discrete penalty iteration converges in less than 1.1 (average) iterations per timestep. For

the American XVA PDE problem the proposed double-penalty iteration converges in less

than 1.15 (average) iterations per timestep. The main conclusion of this work is that the

proposed penalty iteration methods are powerful (nearly optimal) techniques for handling

nonlinearities in the context of financial derivative XVA pricing by a PDE model. The

penalty methods proposed can be extended to multi-asset financial derivatives pricing,

and to stochastic default intensities XVA pricing, once the associated PDE problem

is derived. Besides the analysis of different iterative methods for the nonlinearities,

regarding the boundary conditions, another conclusion is that the linear far-side condition

and its proposed discretization is appropriate for all European and American contingent

claims considered.

In Chapter 3, we studied the bilateral XVA pricing of financial derivatives assuming

stochastic counterparty default risk, with a focus on numerical computation issues. We

developed the corresponding 2D time-dependent PDE, and two approaches to numeri-

103
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cally approximate the options values including XVA. The first approach is to approximate

the solution of the 2D time-dependent PDE by numerical PDE techniques. We devel-

oped appropriate boundary conditions, used finite differences for space discretization,

Crank-Nicolson-Rannacher timestepping, and the penalty iteration method in Chapter

2 to handle the non-linearity of the source term. The second approach is asymptotic

approximation, based on singular perturbation theory [40, 26], assuming the stochastic

default intensity exhibits fast mean reversion. The asymptotic approximation approach

uses the solution to the 1D XVA pricing PDE with constant counterparty default inten-

sity equal to the mean reversion level, and a few correction (expansion) terms that we

developed based on the 2D XVA PDE.

The numerical experiments indicate that the numerical 2D PDE approximation con-

verges with stable second order, so that extrapolation can be used as well. Thus, the

numerical PDE method can gives us high precision (up to machine precision minus the

conditioning of the problem) for any particular problem (set of parameters). The asymp-

totic approximation agrees quite well with the numerical 2D PDE approximation, and

converges with increasing mean reversion rate κ at rate of at least 1.5, thus its precision for

a particular problem (set of parameters) is limited. However, the computational cost of

the asymptotic method is substantially lower than that of the numerical 2D PDE method,

thus, for reasonable accuracy requirements, the asymptotic method is an attractive alter-

native to the numerical 2D PDE method, and particularly handy for practitioners, due

to its simplicity.

Chapter 4 of the thesis formulates and studies, from a perspective of computation

issues, the American type bilateral XVA pricing of financial derivatives, especially Amer-

ican put options, assuming stochastic counterparty default intensity for the counterparty.

We formulated a 2D time-dependent linear complementarity problem PDE, reformu-

lated it into a 2D time-dependent PDE with multiple nonlinear source terms, and devel-

oped two approaches to numerically approximate the option’s value. For the numerical

PDE approximation, we applied appropriate boundary conditions, used finite differences

scheme for the spatial discretization, Crank-Nicolson-Rannacher timestepping for the

time discretization, and double-penalty iteration to handle the double nonlinearity (one

from XVA and another one from the American constraints) in the source terms. For

the asymptotic approximation, we extended the asymptotic approximation formulation

of XVA in European derivatives in Chapter 3 to American derivatives, as well as de-

veloped the asymptotic approximation of the free boundary location. The asymptotic

approximated price needs the solution to the 1D American XVA PDE with constant

counterparty default intensity, and a few more corrections terms. The asymptotic ap-
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proximated free boundary needs the free boundary given by the same 1D American XVA

PDE with constant counterparty default intensity, plus one more correction. The numer-

ical experiments show that both techniques agree quite well with reasonable accuracy.

6.2 Future work

Several possible extensions to the research work in this thesis are listed below.

6.2.1 Multi-dimensional problems and neural networks

In reality, the XVA pricing problem often involves multiple underlying assets, which

results in multiple spatial dimensions. The traditional numerical methods often suffer

from the curse of dimensionality. A possible extension of this research work could be the

investigation of modern computational methods, such as neural networks approximation

in CVA or XVA pricing, especially when facing high-dimensional (more than 5 spatial di-

mensions) computational problems. In [43], authors proposed an algorithm called “Deep

Galerkin Method” to solve high-dimensional PDEs by approximating the solution with

a deep neural network which the objective function is based on the residual of the differ-

ential operator, initial condition, and boundary conditions. Their algorithm is mesh-free

and trained on batches of randomly sampled time and spatial points. In [32], authors

proposed an simulation based deep learning method to solve the high-dimensional PDE.

In their algorithm, they need to reformulate the high-dimensional parabolic PDEs into

the corresponding BSDEs. In [27], authors applied the ideas from [32] to solve the XVA

problem which can potentially handle a large number of risk factors, which is called the

“deep xVA solver”. There are also some other Monte Carlo based deep learning methods

that researchers use to derivative pricing problem or PDEs solving problem with the help

of Feynman-Kac theorem. For example, authors in [20] directly train a neural network

to approximate the derivatives valuation function by generating lot of paths from the

factor dynamics.

6.2.2 Analysis of asymptotic approximation in American XVA

problem

For American type XVA problem, it is interesting to study the error of the asymptotic

formula of the free boundary approximation, as the range of the untrusted area around

approximated free boundary is important in the XVA pricing problem. It is also in-
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teresting to improve the accuracy of the asymptotic approximation of free boundary

to the same accuracy level of the asymptotic approximation of price, which is at least

O(ϵ3/2). This may need one or two more correction terms to our existing asymptotic

approximation.
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