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Abstract
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2017

We consider the pricing of two-asset European and American options by numerical Partial

Differential Equation (PDE) methods, and compare the results with certain analytical

formulae. Two cases of options are tested: exchange option and spread option. For ex-

change options, the analytical formula considered is the (exact) Margrabe formula. For

spread options, we consider Kirk’s formula and the formula by Li, Deng and Zhou. In pric-

ing European two-asset options, the basic numerical PDE model is the two-dimensional

Black-Scholes PDE. Different boundary conditions are considered, and the effect of them

on the solution at various points of the grid is studied. Furthermore, various types of

non-uniform grids are considered, aiming at reducing the error at certain areas of the

grid. Moreover, the effect of the truncated domain on the PDE approximation is studied.

We also discuss the effect of certain problem parameters, such as the length of maturity

time, and the values of volatility and correlation, to the accuracy and convergence of

the PDE approximations. The experiments indicate that the numerical PDE computed

price and Greeks are second-order, for appropriately chosen grid discretizations. In the

American pricing problem, the discrete penalty method is applied to the linear com-

plementarity problem involving the two-dimensional Black-Scholes PDE and additional

constraints. The convergence of the American Spread put option approximation com-

puted with penalty iteration remains second-order, with the number of penalty iterations

per timestep remaining small (2-3). We also consider an iterative method with precon-

ditioning techniques for solving the arising large sparse linear system at each timestep,

and show that this solution technique is asymptotically optimal.
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Chapter 1

Introduction

A financial derivative is a contract whose value depends on one or several underlying

assets, such as stocks, currency or commodities. Options are some of the most common

derivatives. A call (put) option gives the contract holder the right, but not the obligation,

to buy (sell) the underlying assets at a set price on or before a certain time. When the

contract holder uses this right, we say he/she exercises the option. The pre-agreed price is

usually called strike price and the specified time is called maturity time. According to the

exercise time, options can be classified into American and European options. American

options can be exercised any time on or before maturity time while European options

can only be exercised on the maturity time. Since the option holder has a right, there

is a chance to earn pay-off. Therefore the option itself has a price and can be traded

in option market (e.g. Chicago Board Options Exchange). Options have many practical

applications, such as hedging or speculating the future asset price, hence the accurate

calculation of option price is very important for an efficient and mature financial market.

In 1973, the Black-Scholes model is introduced to the option pricing problem in

[2]. The Black-Scholes model is a parabolic partial differential equation (PDE) that the

price of the option satisfies under certain assumptions. One important assumption is

that the market is an efficient market, that is, it incorporates all relevant information.

Therefore, products trade at their fair value, making it impossible for investors to find

any arbitrage opportunity. Another assumption is that the underlying asset follows the

geometric Brownian motion. In 1976, Merton [15] extended the Black-Scholes model to

allow for jumps in the underlying assets. Other assumptions include constant volatility

of asset price and constant risk-free interest rate. Although the assumptions involved

in the Black-Scholes-Merton model are not necessarily realistic, practice has shown that

the prices computed by the Black-Scholes-Merton model are close to the prices observed

in the financial market. The Black-Scholes framework also gives a new viewpoint of risk

1



Chapter 1. Introduction 2

hedging, namely the Greeks, i.e. the derivatives of the option price. Merton and Scholes

received the 1997 Nobel Prize in Economic Science for this work.

A lot of extensions to the Black-Scholes option pricing framework were proposed. One

was the development of the Black-Scholes model for more complicated option contracts

like the Exotic options. Another was the extension of the model itself. For example, the

Heston model allows a stochastic volatility for the underlying assets.

In recent years, we often see not only univariate Call and Put options traded in the

option market, but a lot of multi-asset options as well. The multi-asset options have

several applications including hedging the uncertainty in the future price spreads. When

pricing two-asset options such as Spread options, the Black-Scholes analysis leads to a

multi-dimensional Black-Scholes PDE, which in most cases does not have a closed-form

solution. Hence, such options must be priced by approximation techniques. In this thesis,

numerical PDE discretization methods are used to approximate the option price. The

advantage of numerical approximation is that the computed solution converges when

refining the discretization size.

Besides the numerical PDE approaches, Monte Carlo (MC) simulation and lattice

methods are other popular approximation methods in option pricing problems. The

lattice method [10] usually simulates the stock prices paths with binomial or trinomial

trees. This model traces the stock price movement in discrete-time. The MC approach

[1, 7] usually simulates the stock prices paths via a discretization scheme of the stochastic

differential equation (SDE) that the stock price satisfies and use these simulations to

approximate the expectations of pay-offs under the risk neutral measure. These methods

are easy to understand and implement. However, compared to the PDE approach, they

have several shortcomings. The PDE approach is usually more accurate and efficient in

low dimension problems. The numerical PDE solution is usually computed on the entire

domain of the problem, while the MC and lattice methods often compute an approximate

price at only one point. From this point of view, accurate hedging parameters, such as

Delta and Gamma, are much easier to compute using a PDE approach rather than other

methods. Another advantage of the numerical PDE approach is that it can be easily

extended to some other pricing problems, which have more complicated structures, such

as Asian option or Foreign exchange derivative. However, the PDE approach is usually

limited in terms of the number of underlying variables, as the computational cost increases

quickly with the dimension of the problem.

For the numerical solution to PDE models in finance, the most common and tradi-

tional discretization scheme is the finite difference method (FDM) in the space dimensions

and Crank-Nicolson (CN) scheme in the time dimension. The CN scheme results in a
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sparse linear system that need to be solved at each timestep. FDM are widely applied

to option pricing problems since 1977 [19]. For problem with smooth enough solutions,

the CN scheme together with the FDM has been proved to be stable and convergent.

However, it has been noted that the CN scheme applied to pricing problems may ex-

hibit undesirable oscillation behavior, because of the non-smoothness of initial condition,

which is quite common for financial applications. Because of the fact, some smoothing

techniques such as Rannacher smoothing timestepping [16], are applied. On the other

hand, the choice of boundary conditions, such as Dirichlet boundary conditions, Neu-

mann boundary conditions or PDE boundary conditions is critical in obtaining accurate

solutions. Furthermore, in option pricing problem, the spatial domain of the underlying

assets is truncated, as it is usually semi-infinite.

For American options, the Black-Scholes model results in a free boundary problem,

because of the early exercise right. The free-boundary problem can be formulated as a

time-dependent linear complementarity problem (LCP) with the inequalities involving

the Black-Scholes PDE and some other constraints, such as that the option price must

be greater than pay-off. In order to deal with the LCP in American option problem,

the discrete penalty method of [6] is considered. In this approach, a penalty term is

added to the PDE enforce the constraints. At each timestep, the penalty method results

in a discrete non-linear equation which is solved by a penalty iteration technique. The

penalty method can be extended to multiple dimensions.

Another consideration in this thesis is the efficient solution of the banded sparse

linear system arising at each timestep. Because of ’the curse of dimensionality’, the

linear system size increases fast with the discretization size. In this case, the standard

linear system solver, such as LU factorization with Gauss Elimination, may not be a

smart choice. In order to take advantage of the sparsity of the arising matrices, an

iterative method with a preconditioner is considered.

The thesis is organized as follows. Chapter 2 presents an introduction to financial

derivatives and Black-Scholes analysis and dynamics of the underlying factors. Chapter

3 extends the Black-Scholes PDE to two dimensions and gives examples of two dimension

options. Chapter 4 develops the numerical methods and techniques considered to solve

the PDE-based models for the option pricing problems. In the same chapter, an iterative

method with preconditioner to solve a large sparse linear system is discussed. Chapter 5

shows the numerical results of our numerical methods with several examples of multi-asset

options, especially Exchange and Spread options. Chapter 6 concludes the thesis.



Chapter 2

Background

The Black-Scholes framework [2] explains the relationship between the prices of the op-

tions and the underlying assets in the case that the underlying assets prices follow certain

stochastic processes. The Black-Scholes model makes the following assumptions:

(a) There does not exist any arbitrage opportunity in the financial market. The traders

can’t make instantaneous profit without any risk.

(b) The underlying asset value follows a geometric Brownian Motion

dS = µSdt+ σSdW (2.1)

where µ denotes the average rate of growth of the underlying assets, σ denotes the

volatility of the asset price and W is a Brownian Motion.

(c) The market is frictionless. This means there are no transaction fees, the interest

rates for borrowing and lending money from and to the bank are the same, every

party in market has immediate information and all entities are available at any

time and in any size.

(d) No dividend will paid on the underlying asset S.

Under all these assumptions, it can be proved that the option price satisfies the Black-

Scholes PDE. We can see that some of the assumptions are quite restrictive. For example,

in the real world market, it is known that the stock price may fail to behave as a geometric

Brownian motion. Merton has extended this model to allow for price jumps, which leads

to a more complicated model called jump-diffusion model. However, in this chapter, we

only focus on the original Black-Scholes model.

4



Chapter 2. Background 5

2.1 Black-Scholes Equation

The original Black-Scholes model is used to price the vanilla European option, which is

the simplest type of option.

Black and Scholes showed that the price u(t, S) of a European option driven by one

underlying asset satisfies the PDE,

∂u(t, S)

∂t
+

1

2
σ2S2∂

2u(t, S)

∂S2
+ rS

∂u(t, S)

∂S
− ru(t, S) = 0 (2.2)

where S is the asset price variable, t the time variable, σ the volatility of S and r the

risk-free interest rate. Here we assume that r and σ are constants although they can be

a function of t in some more complicated models.

2.1.1 Derivation of Black-Scholes Equation

In the derivation of Black-Scholes Equation, we take advantage of the properties of the

geometric Brownian motion and Ito’s lemma. Therefore, we firstly introduce these two

important tools. More details about Brownian motion, stochastic calculus and risk-

neutral valuation can be found in [20] and [11].

Definition. (Brownian motion or Wiener process)

A Brownian motion W (t) is a continuous-time stochastic process with the following

properties

(a) W (0) = 0.

(b) W (t) ∼ N (0, t) for all t ≥ 0 where N (µ, σ2) denotes the normal distribution

with expected value µ and variance σ2. This can prove that E(dW ) = 0 and

V ar(dW ) = E(dW 2) = dt.

(c) The increments for non-overlapping time intervals are independent.

(d) W (t) depends continuously on t.

Lemma 1 (Itô’s Lemma)

Let X(t) be random variable which satisfies an Itô stochastic differential equation

dX = a(X, t)dt+ b(X, t)dW
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where W is a Brownian motion, a(X, t) is the drift coefficient and b(X, t) is the diffusion

coefficient. Let g(X, t) be a smooth enough function of X. Then

dg = b
∂g

∂X
dW + (a

∂g

∂X
+

1

2
b2
∂2g

∂X2
+
∂g

∂t
)dt. (2.3)

Theorem 2 (Black-Scholes Equation)

Assume that the asset price S follows a geometric Brownian motion as in (2.1). Under

the assumptions of Black-Scholes framework, the call or put option price u(t, S) satisfies

the parabolic partial differential equation

∂u(t, S)

∂t
+

1

2
σ2S2∂

2u(t, S)

∂S2
+ rS

∂u(t, S)

∂S
− ru(t, S) = 0. (2.4)

Proof. Suppose we have a put or call option whose value is u(t, S).

Now let’s consider a risk-free self-financing 1 portfolio consisting of one option and −∆

shares of the underlying assets. The value of this portfolio is

Π = u−∆S. (2.5)

If we assume Π is a self-financing portfolio 2, the jump in the value of this portfolio in

one time-step is

dΠ = du−∆dS. (2.6)

Applying Itô’s lemma on option value u(t, S), we can write

du = σS
∂u

∂S
dW + (µS

∂u

∂S
+

1

2
σ2S2 ∂

2u

∂S2
+
∂u

∂t
)dt. (2.7)

Substituting (2.7) and (2.1) into (2.6) gives

dΠ = σS(
∂u

∂S
−∆)dW + (µS

∂u

∂S
+

1

2
σ2S2 ∂

2u

∂S2
+
∂u

∂t
− µ∆S)dt. (2.8)

This portfolio is kept risk-free. In order to eliminate the random component, we choose

∆ =
∂u

∂S
. (2.9)

1Self-financing means the portfolio has no exogenous infusion or withdrawal of money. Any purchase
of a new asset must be financed by selling another one.

2The assumption of self-financing results in a property that ∆ can be seen as fixed during each time
increment, although, in practice, it is not. A more rigorous proof can be found in [20].
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Since this portfolio is a risk-free investment, the gain in each time-step should be equal

to the gain from interest in a bank, which means

dΠ = (
1

2
σ2S2 ∂

2u

∂S2
+
∂u

∂t
)dt ≡ rΠdt. (2.10)

With Π = u− ∂u
∂S
S, we have

1

2
σ2S2 ∂

2u

∂S2
+
∂u

∂t
= r(u− ∂u

∂S
S).

Rearrange the equation to get

∂u(t, S)

∂t
+

1

2
σ2S2∂

2u(t, S)

∂S2
+ rS

∂u(t, S)

∂S
− ru(t, S) = 0. (2.11)

�

This is the Black-Scholes equation and is a parabolic PDE. Final conditions at t = T

and boundary conditions are needed to ensure a unique solution to a particular type of

option. For the vanilla European and the American options, the final conditions are the

pay-off functions of the options.

2.1.2 Put Option

Put option is a kind of option which gives the holder the right to sell the underlying assets

at a certain price K. Put option can be considered as an insurance of one’s property. In

the case that the price of one’s asset decreases to a low level, the holder of put options

can still sell the asset at price K.

We denote by P (t, S) the price of European put option, with strike price K and

maturity time T . The pay-off of this put option is (K − S)+ = max(K − S, 0).

The final condition gives the option price at t = T . Since, at maturity time, there will

be no randomness, the option price should be equal to the pay-off function

P (T, S) = max(K − S, 0). (2.12)

This is the final condition for Black-Scholes Equation in the case of put options.

In the geometric Brownian motion (2.1), if S = 0, then dS = 0 and the asset price

S = 0 will hold forever. Therefore the boundary condition at S = 0 is the time
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discounted value of the final pay-off, thus

P (t, 0) = Ke−r(T−t). (2.13)

As S →∞, it is more and more unlikely to exercise the put option and thus

P (t, S)→ 0 as S →∞ (2.14)

2.1.3 Call Option

Call option is a kind of option which gives the holder the right to buy the underlying

assets at a certain price K. Call option can be considered as a deposit for a future

investment. In the case the asset price increases to a high level, the holder of the call

option can still buy the assets at price K.

We denote by C(t, S) the price of a European call option, with strike price K and

maturity time T . The pay-off of this call option is (S −K)+ = max(S −K, 0).

The final condition gives the option price at maturity is given by the pay-off. Therefore

the final condition for Black-Scholes Equation in the case of call options is

C(T, S) = max(S −K, 0). (2.15)

For the same reason mentioned in put option section, if the asset price becomes zero,

it will remain zero. Then the call option will have zero pay-off and it is worthless all the

time. Therefore, the boundary condition at S = 0 is

C(t, 0) = 0. (2.16)

As the asset prices increases, it is more and more likely to exercise the call option. When

S → +∞, the magnitude of strike price becomes less important. Thus, approximately,

C(t, S)→ S as S → +∞. (2.17)

However, if we consider the time-discounted strike price, a more accurate boundary con-

dition for the far side is

C(t, S) ≈ S −Ke−r(T−t). (2.18)
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2.1.4 Analytical Solution

Here we quote the analytical formula of the solution to the Black-Scholes PDE with call

and put final conditions. The formulae [10] for European call and put options are,

C = SΦ(d1)−Ke−r(T−t)Φ(d2) (2.19)

and

P = Ke−r(T−t)Φ(−d2)− SΦ(−d1) (2.20)

where

d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

d2 =
log(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t

where Φ is the cumulative density function (CDF) of the standard normal distribution.

2.2 American Options

Compared to European options, American options allow the contract holder to exercise

the option any time on or before the maturity time. Since the American option gives

the holder more right than the European option, it is expected to have a higher price.

We also note that the value of the American option at any time cannot be less than the

pay-off. Otherwise the option gives the arbitrage opportunity. Therefore, the pay-off

function can be seen as an obstacle for the price of American options when using the

Black-Scholes framework.

We present the formulation of the American option problem as a linear complementarity

problem (LCP) [21].

Let’s assume u(t, S) is the value of American option and the pay-off is f(S). Then the

American option pricing problem can be stated as{
∂u
∂τ
− Lu = 0

u− f ≥ 0

}
∨

{
∂u
∂τ
− Lu ≥ 0

u− f = 0

}
(2.21)
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where

Lu ≡ −1

2
σ2S2∂

2u(t, S)

∂S2
− rs∂u(t, S)

∂S
+ ru(t, S) (2.22)

and the notation ∨ means ”or”. Typically at each time t, there is a particular asset

price which divides the asset price domain into two regions: the side suggesting holding

options corresponding to the left conditions in (2.21) and the side suggesting early exercise

corresponding to the right conditions in (2.21). This particular value of S is unknown

and is usually called free boundary.

For the American put option, the final conditions are the f(S) is the pay-off at

maturity and the boundary conditions are

u(t, 0) = K (2.23)

u(t, S)→ 0 as S →∞. (2.24)

2.3 Greeks

In finance, Greeks are the sensitivities of the financial derivatives price to the movement

of various parameters or variables, and are also called risk sensitivities or hedging pa-

rameters. These parameters are essential tools in risk management. For example, in

the derivation of the Black-Scholes equation, we use an idea of Delta-hedging. This is a

dynamic strategy to keep a portfolio risk-free by re-balancing the portfolio, more specif-

ically, the ratio of options and underlying assets. Although in practice, this technique

needs adjustment to take into account the transaction costs, the general idea of keeping

a portfolio risk-free is based on the accurate calculation of the Greeks.

In Delta-hedging, Delta is the rate of change of the price of the option with respect to

the change of the price of underlying assets. Mathematically, it can be written as

∆ =
∂u

∂S
. (2.25)

In some other hedging strategy, we may only need to hedge away the risk due to the

changes of underlying asset’s Delta. The Gamma is given by

Γ =
∂2u

∂S2
. (2.26)
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The time decay of the value for a derivative is called theta, given by

Θ =
∂u

∂t
. (2.27)

Vega measures the sensitivity to the volatility, given by

ν =
∂u

∂σ
. (2.28)



Chapter 3

Multi-Asset Black-Scholes Equation

In the option market, a lot of traded options are multi-asset options. Multi-asset options

are a group of options whose pay-off depends on more than one underlying assets. In

this sense, a two-asset option is a special case of multi-asset option, where the number

of underlying assets is two. In this case, we say this option is two-dimensional. If

we extend the Black-Scholes framework to two-asset options, the corresponding Black-

Scholes equation becomes a two-dimensional parabolic PDE with the two asset prices

playing the role of the respective space variables.

A typical example of multi-asset options is the basket option. This option is based

on two or more underlying stocks. In European Basket call option, the overall value of a

basket of assets plays the role of the price of the underlying asset in single-asset European

call option. If the weighted summation of all the stock prices in the basket is above the

strike price, option-holders are encouraged to exercise the option and buy all the stocks

in the basket. Multi-asset options can still have European and American type, as far as

the time of exercising is concerned.

In our work, we primarily focus on numerically pricing two-asset spread options, whose

pay-off focuses on the difference of the prices of the two underlying assets. However, our

model and numerical methods are applicable to various types of two-dimensional option

contracts. In this chapter, we will show the two-dimensional Black-Scholes model and

several common examples of two-asset options.

3.1 Two-Dimensional Black-Scholes Equation

Consider a European option whose pay-off f(S1, S2) depends on the prices of two un-

derlying assets S1 and S2. With the same assumptions of the Black-Scholes framework,

12
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suppose each asset price follows a geometric Brownian motion

dS1 = S1(µ1dt+ σ1dW1), (3.1)

dS2 = S2(µ2dt+ σ2dW2). (3.2)

Each dWi, for i = 1, 2, satisfies

E(dWi) = 0 and E(dW 2
i ) = dt. (3.3)

At the same time, we assume these the two underlying assets are correlated:

corr(W1,W2) = ρ or E(dW1dW2) = ρdt. (3.4)

Here we say that ρ is the correlation between the two stochastic process W1 and W2.

Theorem 3 (Two-Dimensional Black-Scholes Equation)

Suppose the two underlying assets follow the correlated geometric Brownian motions (3.1)

and (3.2) with correlation as in (3.4). Under the assumptions of the Black-Scholes frame-

work, the two-asset option price u(t, S1, S2) satisfies the partial differential equation

∂u

∂t
+

1

2
σ2
1S

2
1

∂2u

∂S2
1

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+ rS1
∂u

∂S1

+ rS2
∂u

∂S2

− ru = 0. (3.5)

Proof. The basic idea is same as the original Black-Scholes Equation. Suppose the

option price is u(t, S1, S2).

We assume there is a risk-free self-financing portfolio

Π = u−∆1S1 −∆2S2. (3.6)

consisting of one share of option, −∆1 shares of first underlying asset and −∆2 shares of

second underlying asset. Then the increment 1 is

dΠ = du−∆1dS1 −∆2dS2. (3.7)

1This is a result of self-financing assumption. With self-financing assumption, ∆1 and ∆2 can be seen
as constant during each time increment, although, in practice, they are not. A more rigorous treatment
of this self-financing property can be found in [20].
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Applying Itô’s lemma on the two-dimensional function u(t, S1, S2), we can write

du =σ1S1
∂u

∂S1

dW1 + σ2S2
∂u

∂S2

dW2 + (
∂u

∂t
+ µ1S1

∂u

∂S1

+ µ2S2
∂u

∂S2

+
1

2
σ2
1S

2
1

∂2u

∂S2
1

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

)dt. (3.8)

Substituting (3.8), (3.1) and (3.2) into (3.7) gives,

dΠ =σ1S1(
∂u

∂S1

−∆1)dW1 + σ2S2(
∂u

∂S2

−∆2)dW2 + (
∂u

∂t
+ µ1S1

∂u

∂S1

+ µ2S2
∂u

∂S2

+
1

2
σ2
1S

2
1

∂2u

∂S2
1

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

− µ1∆1S1 − µ2∆2S2)dt. (3.9)

In order to eliminate the randomness of portfolio Π, we set

∆1 =
∂u

∂S1

,∆2 =
∂u

∂S2

. (3.10)

The return of this portfolio should be equal to the return from risk-free interest rate,

which means

dΠ = (
∂u

∂t
+

1

2
σ2
1S

2
1

∂2u

∂S2
1

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

)dt = rΠdt. (3.11)

Therefore,

∂u

∂t
+

1

2
σ2
1S

2
1

∂2u

∂S2
1

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

= r(u− ∂u

∂S1

S1 −
∂u

∂S2

S2). (3.12)

Rearrange the terms to get the two-dimensional Black-Scholes equation,

∂u

∂t
+

1

2
σ2
1S

2
1

∂2u

∂S2
1

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

+ rS1
∂u

∂S1

+ rS2
∂u

∂S2

− ru = 0.

(3.13)

�
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3.2 Examples of Two-Asset Options

3.2.1 Exchange Option

Exchange option is commonly seen in the energy market. It is a special kind of Spread

option when the strike price is zero. It is also one of the simplest multi-asset options.

The pay-off of Exchange is

max(S1 − S2, 0) (3.14)

Since there is no strike price term, the typical classification of call and put option is not

appropriate for Exchange option. However, we can still consider the first asset S1 being

on the call position while the second asset S2 being on the put position.

Margrabe formula

In 1978, Margrabe [14] developed an analytical solution formula to Black-Scholes Equa-

tion for Exchange option. Suppose C(t, S1, S2) is the price of Exchange option at time t

with the two asset prices being S1 and S2. Then the formula is given

C(t, S1, S2) = S1Φ(d1)− S2Φ(d2).

where

σ =
√
σ2
1 + σ2

2 − 2ρσ1σ2,

d1 =
log(S1/S2) + (σ

2

2
)(T − t)

σ
√
T − t

,

d2 =
log(S1/S2)− (σ

2

2
)(T − t)

σ
√
T − t

= d1 − σ
√
T − t.

Boundary Conditions

The domain for each of the asset prices is a semi-infinite domain [0,+∞]. In a numerical

method, we usually truncate the domain to [0, S1,∞] and [0, S2,∞], respectively. The

choice of the far-sides S1,∞ and S2,∞ usually depends on which evaluation area we are

interested in. The numerical parameters S1,∞ and S2,∞ are set sufficiently large compared

to the evaluation area coordinates. In general, larger S1,∞ and S2,∞ give better accuracy.
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The zero-side boundary conditions are

u(t, 0, S2) = 0 (3.15)

u(t, S1, 0) = S1. (3.16)

We considered three different types of boundary condition on the far-side boundaries.

• Margrabe Boundary Conditions

For Exchange option, the analytical solution is available. In this case, it is nat-

ural to use the analytical formula to generate the boundary conditions. Suppose

C(t, S1, S2) is given in 3.15, then the far-side boundary conditions are

u(t, S1,∞, S2) = C(t, S1,∞, S2) (3.17)

u(t, S1, S2,∞) = C(t, S1, S2,∞). (3.18)

• Pay-off Boundary Conditions

Pay-off functions are reasonably accurate approximations to far-side boundary con-

ditions as well. They are given by

u(t, S1,∞, S2) = max(S1,∞ − S2, 0) (3.19)

u(t, S1, S2,∞) = max(S1 − S2,∞, 0) (3.20)

However, the pay-off boundary conditions are not so accurate when S1 and S2 are

both reaching the far-side boundary.

• PDE Boundary Conditions

It is natural to assume that the points on the far-side boundary satisfy the Black-

Scholes equation. Therefore, we consider to use the PDE

∂u

∂t
+

1

2
σ2
1S

2
1

∂2u

∂S2
1

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

+ rS1
∂u

∂S1

+ rS2
∂u

∂S2

− ru = 0.

(3.21)

as the far-side boundary condition.

We note that Margrabe boundary conditions are the natural conditions to consider for

Exchange options. However, we also consider pay-off and PDE boundary conditions for

testing purposes, as those are useful when there is no analytical formula for the price of

options available.
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3.2.2 Spread Option

Spread Option is a two-asset option written on the difference between the prices of two

underlying entities. It is widely used in currency markets, energy markets, etc.

In the currency markets, spread options are common in the foreign exchange. The

Spread option is often seen in the currency exchange between the currencies of two coun-

tries whose economies are closely related. A typical example of Spread option is cross-

currency option that involves the exchange of two currencies against one base currency.

In a cross-currency option, S1 and S2 are the exchange rates of two foreign currencies

measured in some base currency.

In the energy market, the spread options are often used to hedge against the fluctua-

tion of the price margins in the energy product refinement industry. The most frequently

mentioned Spread options are the Crack and Spark Spread options. Crack Spread option

allows simultaneous purchase or sale of crude oil against the sale or purchase, respectively,

of the refined petroleum product,. It is an insurance in the case of the sharp move of

the price of crude oil or refined petroleum products. Spark Spread option can be seen in

electricity market. In this Spread option, one underlying asset is electricity price, while

another underlying asset is the price of the natural gas used to generate the electricity.

So this option can be seen as a proxy for the cost of converting gas into electricity.

The pay-off of spread is

max(S1 − S2 −K, 0) for Spread call option (3.22)

max(K − (S1 − S2), 0) for Spread put option (3.23)

where K is the strike price.

Analytical Approximations

For Spread options, there is no analytical formulae that gives the prices. However, lots of

analytical approximations have been proposed. We introduce some famous closed-form

approximations in this section.

• Kirk’s formula

In 1995, Kirk [12] suggests a closed-form approximation to Spread call option price.

It reads as follows:

C(t, S1, S2) ≈ S1Φ(d1)− (S2 +Ke−r(T−t))Φ(d2). (3.24)
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where

σ =

√
σ2
1 + σ2

2(
S2

S2 +K
)2 − 2ρσ1σ2

S2

S2 +K
,

d1 = (log(
S1

S2 +K
) + (

σ2

2
)(T − t))/(σ

√
T − t),

d2 = (log(
S1

S2 +K
)− (

σ2

2
)(T − t))/(σ

√
T − t) = d1 − σ

√
T − t.

• Li, Deng and Zhou’s Approximation

In 2008, Li, Deng and Zhou [13] proposed another closed-form approximation to

Spread call option price. They suggested that under the joint-normal set-up, the

price of the Spread call option is given by

C(t, S1, S2) ≈ ev
2
1/2+µ̂1−r(T−t)I1 − ev

2
2/2+µ̂2−r(T−t)I2 −Ke−r(T−t)I3. (3.25)

For i = 1, 2, 3, the integrals Ii are approximated to second order in ε as

Ii ≈ J0(Ci, Di) + J1(Ci, Di)ε+
1

2
J2(Ci, Di)ε

2 (3.26)

where the functions Ji’s are defined as

J0(u, v) = Φ(
u√

1 + v2
) (3.27)

J1(u, v) =
1 + (1 + u2)v2

(1 + v2)5/2
N(

u√
1 + v2

) (3.28)

J2(u, v) =
(6− 6u2)v2 + (21− 2u2 − u4)v4 + 4(3 + u2)v6 − 3

(1 + v2)11/2
u ·N(

u√
1 + v2

)

(3.29)
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and Ci, Di and ε are given by

C1 = C3 +D3ρv1 + ερ2v21 +
√

1− ρ2v1
D1 = D3 + 2ρv1ε

C2 = C3 +D3v2 + εv22

D2 = D3 + 2v2ε

C3 =
1

v1
√

1− ρ2
(µ1 − log(R +K) +

v2R

R +K
γ0 −

1

2

v22RK

(R +K)2
γ20)

D3 =
1

v1
√

1− ρ2
(ρv1 −

v2R

R +K
+

v22RK

(R +K)2
γ0)

ε = − 1

2v1
√

1− ρ2
v22RK

(R +K)2

R = ev
2γ0+µ2

µi = logSi + (r − σ2
i /2)(T − t), i = 1, 2

vi = σi
√
T − t, i = 1, 2.

In this formula, N(x) is the probability density function (PDF) of standard nor-

mal distribution and Φ(x) is the the CDF of standard normal distribution. The

parameter γ0 is any real number close to zero and generally we set γ0 = 0.

Boundary Conditions

For Spread options, we consider the following boundary conditions.

• Pay-off Boundary Conditions

Time-discounted pay-off functions are reasonably accurate approximations to bound-

ary values of Spread options.

The discounted pay-off boundary conditions for Spread call option are

u(t, 0, S2) = max(−Ke−r(T−t) − S2, 0) = 0, (3.30)

u(t, S1, 0) = max(S1 −Ke−r(T−t), 0), (3.31)

u(t, S1,∞, S2) = max(S1,∞ − S2 −Ke−r(T−t), 0), (3.32)

u(t, S1, S2,∞) = max(S1 − S2,∞ −Ke−r(T−t), 0). (3.33)



Chapter 3. Multi-Asset Black-Scholes Equation 20

The discounted pay-off boundary conditions for Spread put option are

u(t, 0, S2) = max(Ke−r(T−t) + S2, 0), (3.34)

u(t, S1, 0) = max(Ke−r(T−t) − S1, 0), (3.35)

u(t, S1,∞, S2) = max(Ke−r(T−t) − (S1,∞ − S2), 0), (3.36)

u(t, S1, S2,∞) = max(Ke−r(T−t) − (S1 − S2,∞), 0). (3.37)

• Alternative Boundary Conditions

As we take a deeper look at equations (3.31) and (3.35), we can find they are

exactly the pay-off function for European options written on a single underlying

asset. Therefore, the solution to the one-asset Black-Scholes equation can be a more

accurate boundary condition for u(t, S1, 0). For Spread call option, when S2 = 0,

we take the value of the closed-form solution of the Black-Scholes equation of a call

option for S1 with strike price K. For Spread put option, when S1 = 0, we take

the value of the closed-form solution of the Black-Scholes equation of a put option

for S2 with strike price K.

3.2.3 Basket Option

A Basket option gives the holder the option to buy or sell a group of underlying assets

at the same time. The pay-off function of Basket option depends on the weighted sum

of the underlying assets and is given by

max(
2∑
i=1

wiSi −K, 0) for Basket call option, (3.38)

max(K −
2∑
i=1

wiSi, 0) for Basket put option, (3.39)

where wi is the weight of ith asset in basket option contract. Although it is not necessary,

we prefer to set the summation of the weights to one, i.e.
∑2

i=1wi = 1.

Boundary Conditions

For Basket options, we consider the following boundary conditions.

• Pay-off Boundary Conditions

Time-discounted Pay-off functions are reasonably accurate approximations to bound-

ary values of Basket option.
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The pay-off boundary conditions for Basket call options are

u(t, 0, S2) = max(w2S2 −Ke−r(T−t), 0), (3.40)

u(t, S1, 0) = max(w1S1 −Ke−r(T−t), 0), (3.41)

u(t, S1,∞, S2) = max(w1S1,∞ + w2S2 −Ke−r(T−t), 0), (3.42)

u(t, S1, S2,∞) = max(w1S1 + w2S2,∞ −Ke−r(T−t), 0). (3.43)

The pay-off boundary conditions for Basket put option are

u(t, 0, S2) = max(Ke−r(T−t) − w2S2, 0), (3.44)

u(t, S1, 0) = max(Ke−r(T−t) − w1S1, 0), (3.45)

u(t, S1,∞, S2) = max(Ke−r(T−t) − (w1S1,∞ + w2S2), 0), (3.46)

u(t, S1, S2,∞) = max(Ke−r(T−t) − (w1S1 + w2S2,∞), 0). (3.47)

• Alternative Boundary Conditions

As we can see, equations (3.40) and (3.41) can be seen as the pay-off functions of

vanilla European call options on a single underlying asset. Therefore when S1 = 0,

we can use the solution to the Black-Scholes equation of call option with asset w2S2

and strike K as a boundary condition. When S2 = 0, we can use the solution to the

Black-Scholes equation of call option with asset w1S1 and strike K as a boundary

condition.

With the same idea, the equations (3.44) and (3.45) can be seen as pay-off functions

of vanilla put European options on a single underlying asset. Therefore when

S1 = 0, we can use the solution to the Black-Scholes equation of put option with

asset w2S2 and strike K as a boundary condition. When S2 = 0, we can use the

solution to the Black-Scholes equation of put option with asset w1S1 and strike K

as a boundary condition.

3.2.4 Rainbow Option

Rainbow option is also a multi-asset option. There are various different forms of Rainbow

option on the market. However, the common idea of Rainbow options is to have a pay-off

that is depending on the assets sorted by their performance at maturity. These are some

typical examples of Rainbow option:
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Name Pay-off
Multi-strike Rainbow option max{S1 −K1, S2 −K2, 0}

Pyramid Rainbow option max{|S1 −K1|+ |S2 −K2| −K, 0}
Max option max{S1, S2}

Rainbow max call option max{max{S1, S2} −K, 0}

Table 3.1: Rainbow Options
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Numerical Methods

As discussed in Chapter 3, we have shown that European or American two-asset option

pricing problems result in a two-dimensional Black-Scholes PDE which is a parabolic

PDE with variables the time t and the two asset prices, S1 and S2. Different two-asset

options are defined by different pay-off functions. For some simple pricing problems, such

as vanilla European Exchange option, the closed-form analytical formula for the solution

is easily obtained. However, in most of the two-asset options or American type options,

no closed-form analytical solution is known. Therefore, numerical methods are required

to compute approximate solutions.

Finite difference methods (FDMs) are numerical methods for solving differential equa-

tions. These methods are widely used in mathematical finance for the valuation of options

since 1977 [19].The idea of FDMs is to discretize the domain with several grid points and

use finite differences to approximate the derivatives on these grid points. After finite

difference discretization along the space and time dimensions to the Black-Scholes PDE

has been applied, there is a large sparse linear system to be solved at each time step.

In this chapter, we introduce this discretization method for the two-asset Black-Scholes

problem. Furthermore the numerical method to American type two-asset options is also

discussed.

4.1 General Two-Asset Black-Scholes PDE

Recall that the two-asset Black-Scholes PDE is given by

∂u

∂t
+

1

2
σ2
1S

2
1

∂2u

∂S2
1

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+ rS1
∂u

∂S1

+ rS2
∂u

∂S2

− ru = 0

(4.1)

23
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where t ∈ [0, T ].

In order to make it convenient for numerical PDE methods, we apply a variable transfor-

mation τ = T−t in the time dimension. The variable τ can be seen as the backward time

which is the time left to the maturity. Therefore, the Black-Scholes equation becomes

∂u

∂τ
=

1

2
σ2
1S

2
1

∂2u

∂S2
1

+
1

2
σ2
2S

2
2

∂2u

∂S2
2

+ ρσ1σ2S1S2
∂2u

∂S1∂S2

+ rS1
∂u

∂S1

+ rS2
∂u

∂S2

− ru (4.2)

where τ ∈ [0, T ]. The final condition of (4.1) is the initial condition of (4.2).

Let’s define the two-asset Black-Scholes operator

L ≡ 1

2
σ2
1S

2
1

∂2

∂S2
1

+
1

2
σ2
2S

2
2

∂2

∂S2
2

+ ρσ1σ2S1S2
∂2

∂S1∂S2

+ rS1
∂

∂S1

+ rS2
∂

∂S2

− r (4.3)

and the two-asset Black-Scholes PDE becomes

∂u

∂τ
= Lu (4.4)

In this chapter, we stick with (4.2) or (4.4) as Black-Scholes equation with payoff function

as initial conditions.

4.2 Discretization

First, we need to discretize the PDE (4.2) or (4.4). In numerically solving parabolic PDEs

such as Black-Scholes PDE using FDMs, the space dimension(s) and the time dimension

are handled differently.

4.2.1 Space Discretization

The space domain for Black-Scholes PDE is semi-infinite, [0,∞) × [0,∞). However, for

computational purposes, we truncate the domain to [0, S1,∞]× [0, S2,∞], for appropriately

large S1,∞ and S2,∞.

Although our space domain here consists of two dimensions representing the two

asset prices S1 and S2, we start the introduction of the discretization method on a one-

dimensional space domain.
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Uniform Space Discretization

Suppose the domain [a, b] is divided into equal-length N subintervals. The mesh size

is h = b−a
N

and the grid points are Si = ih + a, where i = 0, 1, 2, . . . , N . Suppose the

function value u(Si) is denoted as ui.

Si−2 Si−1 Si Si+1 Si+2 Si+3

Figure 4.1: A uniform grid.

A finite difference approximation to the second derivative at point Si is given by

∂2ui
∂S2

=
1

h2
ui−1 −

2

h2
ui +

1

h2
ui+1 +O(h2), (4.5)

and referred to as center difference approximation to the second derivative, while some

finite difference approximations to the first derivative at point Si are

∂ui
∂S

= − 1

2h
ui−1 +

1

2h
ui+1 +O(h2) centered difference, (4.6)

∂ui
∂S

= −1

h
ui +

1

h
ui+1 +O(h) forward difference, (4.7)

∂ui
∂S

= −1

h
ui−1 +

1

h
ui +O(h) backward difference. (4.8)

Here the terms O(hk) are the truncation errors. The notation O(hk) means O(hk) =

a1h
k + a2h

k+1 + · · · ≤ (a1 + a2 + . . . )hk since h is always small as N →∞. In the finite

difference approximation (4.5) and (4.6), the leading order terms in truncation errors are

proportional to h2. Then we say the approximations have second order accuracy. At the

same time, the finite difference approximations in equations (4.7) and (4.8) have first

order accuracy. In most of the cases, the higher the order of the approximation is, the

more accurate it is under the same mesh refinement. Therefore, for the approximation

of ∂ui
∂S

, we choose centered difference.

By (4.5), the vector of values of the second derivatives ∂2u
∂S2 at the grid points Si,

i = 1, . . . , N − 1, gives rise to T2û+ b2 where

T2 =
1

h2



−2 1

1 −2 1
. . .

1 −2 1

1 −2


, û =



û1

û2
...

ˆuN−2

ˆuN−1


, b2 =



û0/h
2

0
...

0

ûN/h
2


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where ûi ≈ u(Si).

By (4.6), the vector of values of the first derivative ∂u
∂S

at the grid points Si, i =

1, . . . , N − 1, gives rise to T1û+ b1 where

T1 =
1

2h



0 1

−1 0 1
. . .

−1 0 1

−1 0


, û =



û1

û2
...

ˆuN−2

ˆuN−1


, b1 =



−û0/2h
0
...

0

ûN/2h


The discretization matrices T1 and T2 are tridiagonal.

Non-Uniform Space Discretization

It is not always the cases that the grid points should be equally spaced. In practice,

different problems may need different space discretization mostly depending on the shape

of the solutions. In the option pricing problem, we prefer to use non-uniform space

discretization. Here are some reasons why we prefer non-uniform discretization in space

for option pricing problem:

• The initial conditions (pay-off functions) are not smooth functions. The errors

around the points of non-smoothness are expected to be larger. Therefore we need

more grid points in these areas to increase the accuracy.

• In some parts of domain, the solution is close to linear. Therefore sparser grid

points will still maintain a good approximation in these areas.

• Not all parts of domain are equally interesting to us. For example, if the stock

prices now (spot prices) are S1 = 100 and S2 = 100, it is very unlikely to reach

S1 = 800 and S2 = 800 in the stock market in the near future. Therefore in option

pricing, we care more about a particular area of asset prices which are close to the

spot prices. We refer to this area as spotting area. We set more grid points in that

area.

Suppose the domain [a, b] is divided into N , not necessarily equal-length, subintervals.

The grid points are Si, where i = 0, 1, 2, . . . , N , with S0 = a and SN = b and the mesh

sizes are hi = Si − Si−1 where i = 1, 2, . . . , N .

Then the centered difference approximation of the second derivative with respect to S is
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given by

∂2ui
∂S2

=
2

hi(hi + hi+1)
ui−1 +

−2

hihi+1

ui +
2

(hi + hi+1)hi+1

ui+1 +O(hi − hi+1)

+O(max(h2i , h
2
i+1)). (4.9)

From (4.9), we notice that the approximation may not maintain the second order accuracy

because of the term O(hi−hi+1). However, if our non-uniform discretization is generated

from a smooth mapping function, it can be proved that O(hi − hi+1) ≈ O(h2) where

h is the mesh size of uniform discretization. More specifically, suppose xi = a + ih,

i = 0, . . . , N , and h = b−a
N

. Let w(x) be a strictly increasing smooth-enough function

with w(a) = a and w(b) = b. Let Si = w(xi), i = 0, . . . , N . Then

hi − hi+1 = 2Si − Si−1 − Si+1

= 2w(xi)− w(xi − h)− w(xi + h)

= 2w(xi)− (w(xi)− hw′(xi) +
h2

2
w′′(xi) +O(h3))

− (w(xi) + hw′(xi) +
h2

2
w′′(xi) +O(h3))

= −h2w′′(xi)−O(h3) = O(h2).

Therefore, the truncation error term of (4.9) still has second order of convergence if a

smooth mapping is used to generate the non-uniform grid points.

The centered-order approximation to the first derivative with respect to S is given by

∂ui
∂S

=
−hi+1

hi(hi + hi+1)
ui−1 +

hi+1 − hi
hihi+1

ui +
hi

(hi + hi+1)hi+1

ui+1 +O(hihi+1), (4.10)

and is second-order.

Non-Uniform Mappings

Smooth mappings of uniform to non-uniform grid points are used to generate the needed

non-uniform discretization. In this section, two non-uniform mappings, which are mainly

used in option pricing problems are introduced.

Suppose a = 0. Thus the domain is [0, b]
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1. The first mapping is given by

Si = w(xi) =
(1 + η)xi/xN − 1

η
b. (4.11)

This mapping produces denser grid points towards zero. Larger parameter η in-

creases the density of the points towards zero.
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Figure 4.2: Plot of non-uniform grid points generated by (4.11) versus uniform grid
points.

2. The second mapping is given by

Si = w(xi) = (1 +
sinh(β − (xi/xN − α))

sinh(βα)
)E (4.12)

This mapping produces denser grid points around E. Larger parameter α increases the

density of the points. The purpose of parameter β is to ensure the last grid point is b.
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Figure 4.3: Plot of non-uniform grid points generated by (4.12) with E = 100 versus
uniform grid points.

Space Discretization of Lu

Now we can start to derive the discretization for Lu. Suppose the non-uniform partition of

first asset price domain [0, S1,∞] is 0 = S1,0 < S1,1 < · · · < S1,N1 = S1,∞ and non-uniform

partition of second asset price domain [0, S2,∞] is 0 = S2,0 < S2,1 < · · · < S2,N1 = S2,∞.

Let h1,i = S1,i+1−S1,i where i = 1, 2, . . . , N1 and h2,i = S2,i+1−S2,i where i = 1, 2, . . . , N2.

Assume Dirichlet conditions are used.

Assume T2,S1 is the discretization matrix of ∂2

∂S2
1

on the dimension of S1, T1,S1 is

the discretization matrix of ∂
∂S1

on the dimension of S1, IS1 is the discretization matrix

representing identity operator on the dimension of S1, T2,S2 is the discretization matrix

of ∂2

∂S2
2

on the dimension of S2, T1,S2 is the discretization matrix of ∂
∂S2

on the dimension

of S2 and IS2 is the discretization matrix representing identity operator on the dimension

of S2.

The matrix IS1 is identity matrix with order (N1 − 1) while IS2 is identity matrix

with order (N2 − 1). The matrices T2,S1 and T1,S1 are tridiagonal matrices with size

(N1 − 1)× (N1 − 1) while the matrices T2,S2 and T1,S2 are tridiagonal matrices with size

(N2 − 1)× (N2 − 1). The discretization matrix in higher dimension can be obtained by

tensor product of discretization matrices from lower dimension.

Definition. The tensor product A ⊗ B of two matrices A and B is also called Kro-



Chapter 4. Numerical Methods 30

necker product of two matrices. If A is an m×n matrix and B is a p× q matrix, then

the Kronecker product A⊗B is the mp× nq block matrix defined by:

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 . (4.13)

Then the discretization matrix A of the two-asset Black-Scholes operator L can be

written as A = C2,0A2,0 + C0,2A0,2 + C1,1A1,1 + C1,0A1,0 + C0,1A0,1 + C0,0A0,0 where

A2,0 = T2,S1 ⊗ IS2 (4.14)

A0,2 = IS1 ⊗ T2,S2 (4.15)

A1,1 = T1,S1 ⊗ T1,S2 (4.16)

A1,0 = T1,S1 ⊗ IS2 (4.17)

A0,1 = IS1 ⊗ T1,S2 (4.18)

A0,0 = IS1 ⊗ IS2 . (4.19)

and where the coefficient matrices C∗,∗ are defined further below. The tensor products

also give us the ordering of the grid points. Suppose û is the approximate solution vector

of ordered grid points. Then grid point (S1,i, S2,j) is the k = ((i− 1)(N2− 1) + j)-th grid

point. So ûk ≈ u(S1,i, S2,j). The coefficient matrices C∗,∗ are all diagonal matrices where

C2,0 =
σ2
1

2
diag{S2

1,1, S
2
1,2, . . . , S

2
1,N1−1} ⊗ IS2 , (4.20)

C0,2 =
σ2
2

2
IS1 ⊗ diag{S2

2,1, S
2
2,2, . . . , S

2
2,N2−1}, (4.21)

C1,1 = ρσ1σ2diag{S1,1, S1,2, . . . , S1,N1−1} ⊗ diag{S2,1, S2,2, . . . , S2,N2−1}, (4.22)

C1,0 = rdiag{S1,1, S1,2, . . . , S1,N1−1} ⊗ IS2 , (4.23)

C0,1 = rIS1 ⊗ diag{S2,1, S2,2, . . . , S2,N2−1}, (4.24)

C0,0 = −rIS1 ⊗ IS2 , (4.25)

and diag{a1, a2, . . . , an} means a diagonal matrix with ai, i = 1, . . . , n, as ith diagonal

element.

The arising matrix A is block tridiagonal matrix with size (N1 − 1)(N2 − 1)× (N1 −
1)(N2− 1). Note also that A0,0 = I where I is identity matrix of order (N1− 1)(N2− 1).
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4.2.2 Time Discretization

After applying the space discretization, we have transformed equation ∂u
∂τ

= Lu into

a system of ordinary differential equations (ODEs) with (N1 − 1)(N2 − 1) unknowns

û(τ, S1,i, S2,j), i = 1, . . . , N1 − 1 and j = 1, . . . , N2 − 1. Our system of ODEs is

∂û

∂τ
= Aû+ b (4.26)

where û the approximate solution vector of components û(τ, S1,i, S2,j) with the ordering

explained before and b is the vector that combines the boundary conditions and the source

function. However, in Black-Scholes equation, the source function on the right-hand-side

of equation is zero, therefore the vector b only contains contributions from the boundary

conditions.

In order to solve (4.26) numerically, firstly let τ k, k = 0, 1, . . . , Nt be discretization

on the time dimension [0, T ] with 0 = τ 0 < τ 1 < · · · < τNt = T and the time-step

∆τ k = τ k − τ k−1 where k = 1, . . . , Nt. Note that these time points may not be equally

spaced. We denote by ûk the numerical solution vector of components û(τ k, S1,i, S2,j),

and by bk the vector containing contributions from the boundary conditions at time τ k.

The θ-time-stepping scheme from time τ k−1 to time τ k can be written as

ûk − ûk−1

∆τ k
= θAûk + θb̂k + (1− θ)Aûk−1 + (1− θ)b̂k−1 (4.27)

=⇒(I− θ∆τ kA)ûk = (I + (1− θ)∆τ kA)ûk−1 + ∆τ k(θb̂k + (1− θ)b̂k−1). (4.28)

In (4.27) and (4.28), the parameter θ ∈ [0, 1] may take the following values giving rise to

the respective schemes

• θ = 0, the forward (fully explicit) Euler Scheme,

• θ = 1, the backward (fully implicit) Euler Scheme,

• θ = 1
2
, the Crank-Nicolson (CN) scheme.

It is well-known that the CN scheme has second-order accuracy in the time dimen-

sion while the forward Euler and the backward Euler schemes have first-order accuracy.

Therefore, we mainly use the CN scheme. However, we notice that the initial condition of

Black-Scholes equation is not smooth function which may produce spurious oscillations

around the non-smoothness. Because the fully implicit scheme has stronger stability

property, in order to help the CN scheme maintain a good stability, the Rannacher

smoothing [16] technique is suggested. The Rannacher smoothing uses the fully-implicit
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time-stepping in the first few time-steps with smaller time-step size, and then switches

back to CN scheme. In the experiments, we find this helps to smoothen the discontinuity

of the first derivatives of the pay-off.

4.3 Penalty Method for American Options

Similarly as for the one-asset American option, the two-asset American option price

can never go below the pay-off. Therefore, that the two-asset American option pricing

problem can also be written in the form of LCP as{
∂u
∂τ
− Lu = 0

u− f ≥ 0

}
∨

{
∂u
∂τ
− Lu ≥ 0

u− f = 0

}
(4.29)

where ∂u
∂τ
− Lu = 0 is two-asset Black-Scholes equation and f(S1, S2) = u(0, S1, S2) is

the pay-off function (initial condition).

As in the one-asset American option case, equation (4.3) divided the domain into two

sets and the unknown boundary which separates the two regions is called free boundary.

We note that at each time τ , the free boundary in the one-asset American option is a

point, while in the two-asset American option it is a line.

In 2008, Forsyth and Vetzal [6] proposed the discrete penalty method to numerically

solve the LCP arising from one-asset American options. They replace (4.3) by a non-

linear PDE by adding a positive penalty term to the right hand side of the Black-Scholes

equation. The resulting PDE can be written as

∂u

∂τ
− Lu = pmax(f − u, 0) (4.30)

where the p is a large positive penalty factor. The penalty forces the solution of (4.30)

to approximately satisfy the free boundary condition u ≥ f . More specifically, when

p→ +∞, the solution of (4.30) converges to the exact solution of the LCP by satisfying

u ≥ f − ε for ε ∼ O(1
p
).

Penalty Term Discretization

The space discretization method for Lu and time-stepping method for (4.30) are exactly

same as for (4.4). We now discuss the treatment of the penalty term pmax(f − u, 0) in

(4.30). When calculating the numerical solution ûk from time τ k−1 to τ k, the penalty

term is discretized as P (ûk)(f̂ − ûk) where f̂ is the vector of pay-off function values at
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grid points and P (ûk) is a diagonal matrix defined as

[P (ûk)]i,i ≡
{ p if (ûk)i < (f̂)i,

0 otherwise.
(4.31)

Therefore when adding the discrete penalty term to linear system (4.28), at each time-

step, the arising system is

(I− θ∆τ kA)ûk + P (ûk)ûk = (I + (1− θ)∆τ kA)ûk−1

+τ k(θb̂k + (1− θ)b̂k−1) + P (ûk)f̂ . (4.32)

For this time-step, only ûk is unknown and needs to be computed. However, there is a

non-linearity between P (ûk) and ûk. Forsyth and Vetzal use Newton’s iteration to solve

(4.32). The large penalty factor p is chosen as

p ≈ 1

tol
(4.33)

where tol is the tolerance for the stopping criterion for Newton’s iteration.

Penalty Iteration

Newton’s Iteration method to solve (4.32) at each time-step is often called discrete penalty

iteration for American option pricing. For simplicity, we assume Qk = (I− θ∆τ kA) and

gk = (I + (1− θ)∆τ kA)ûk−1 + τ k(θb̂k + (1− θ)b̂k−1).

Algorithm 1 Penalty iteration to compute ûk given ûk−1

Require: solve (Qk + P (ûk))ûk = gk + P (ûk)f̂

1: ûk,0 = ûk (Initialization)

2: for m = 1, 2, . . . do

3: solve (Qk + P (ûk,m−1))ûk,m = gk + P (ûk,m−1)f̂

4: if ‖û
k,m−ûk,m−1‖

max{1,‖ûk,m‖} ≤ tol or P (ûk,m) = P (ûk,m−1) then

5: break;

6: end if

7: end for

8: ûk = ûk,m
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4.4 Special Considerations

PDE Boundary Conditions

As mentioned before, besides the Dirichlet boundary condition, PDE boundary conditions

are also considered for Exchange options and Spread options on the far-side boundaries.

The reason is that, on the truncated far-side boundary, the points still satisfy the two-

asset Black-Scholes equation

∂u

∂t
= Lu. (4.34)

In order to apply the PDE boundary conditions, we discretize (4.34) on the boundary

points and incorporate the resulting equations into the system (4.28). On the far-side

boundaries, we use the first-order difference scheme to discretize the derivatives. The

discretization matrix of two-dimensional space can also be obtained by tensor products

similarly as (4.14) - (4.19). Therefore, only the first order difference method in one

dimension will be discussed here. Assume Si, i = 0, 1, 2, . . . , N , with SN = S∞, are the

grid points and the mesh sizes are hi = Si − Si−1 where i = 1, 2, . . . , N . Then the first

order difference scheme on the boundary point SN is

∂2uN
∂S2

=
2

hN−1(hN + hN−1)
uN−2 +

−2

hNhN−1
uN−1 +

2

(hN + hN−1)hN
uN

+O(
h2N
hN−1

) +O(
(hN + hN−1)

2

hN−1
) (4.35)

∂uN
∂S

=
1

hN
uN −

1

hN
uN−1 +O(hN) (4.36)

From numerical experiments, it can be shown that the first order approximation on

the PDE boundaries does not affect the second order of convergence of the absolute error

in the spotting area, even if theoretically the complete difference scheme is first order.

After applying tensor products to get the discretization matrices in the two-dimensional

space domain, with the PDE boundary conditions, the matrix A in equation (4.28) is of

size N1N2×N1N2. The discretized solution vector û has length N1N2 because it contains

the values on the grid points far-side boundaries.

Exchange Options

The choice of non-uniform mapping is important to obtain an accurate numerical solution.

In Exchange option, the pay-off (initial conditions) function is not smooth along the line
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when S1 = S2. In this case, ideally we want to push more grid points to this line first.

However, this is not possible with a rectangular grid. In our experiments, we have used

the two-mapping functions (4.11) and (4.12) in both dimensions.

Figure 4.4: Pay-off of Exchange option.

The non-uniform discretization generated from the first non-uniform mapping (4.11)

pushes more grid points towards the origin. Therefore it can give us accurate numerical

solution for points closed to the origin. This non-uniform mapping will push more grid

points towards the origin. We set the parameter of (4.11) to η = 80.

The second non-uniform mapping (4.12) can help to push more grid points towards

the spotting area. Therefore, the non-uniform discretization generated by (4.12) can give

us more accurate numerical solution in the spotting area. The parameter E is often set

as the spot price in each dimension. We set the parameter α of (4.13) to α = 0.36 in

both dimensions.

Spread Options

In Spread call option, the pay-off (initial conditions) function is not smooth along the

line when S1 = S2 +K. In this case, we want to push more grid points to this line.
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Figure 4.5: Pay-off of Spread option with Strike K = 100.

Again this is not possible with a rectangular grid. In Spread option, we mostly apply

the second non-uniform mapping (4.12) on the two space dimensions. Therefore, we can

obtain an accurate numerical solutions in the spotting area.

4.5 Iterative Methods for solving Linear Systems

At each timestep of the CN method applied to the two-asset Black-Scholes PDE, a large

sparse linear system needs to be solved. The size of this linear system is approximately

N1N2. If we increase the number of subintervals in the S1 and S2 dimensions from N1

and N2 to 2N1 and 2N2, respectively, the size of matrices increases from N1N2 to 4N1N2.

Furthermore, the bandwidth of the matrices increases from N2 to 2N2. Therefore, the

computational cost of a standard direct linear solver (e.g. LU factorization by Gaussian

Elimination with or without pivoting) increases from N3
2N1 to 8N3

2N1. In order to avoid

this high computational cost, we choose to apply an iterative method for the solution of

the linear system at each timestep.

This chapter describes iterative methods with preconditioning techniques for solving

the arising linear system during each timestep from the CN timestepping scheme. Our

approach is to use the restarted Generalized Minimal Residual method (GMRES(restart))

with incomplete LU (ILU) factorization preconditioning.

4.5.1 GMRES with a ILU Preconditioning

Recall from (4.28) that the CN scheme at each timestep solves a linear system with

matrix (I − θ∆τ kA). To solve this linear system, GMRES is used, because the matrix
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I − θ∆τ kA is non-symmetric and non-positive-definite. In this case, some commonly

used iterative methods, such as successive over-relaxation (SOR) or Conjugate Gradient

method (CG), do not guarantee convergence. The GMRES method was introduced in

[18] and more details about various versions of it can be found in [17].

A good choice of initial guess can accelerate the convergence of an iterative method. In

our problem, the initial guess for GMRES is usually constructed by linear extrapolation

of the numerical solutions of the previous two timesteps except the first timestep. During

the first timestep, we use the initial condition as the initial guess of GMRES.

The choice of preconditioner is critical for the convergence of the iterative method. We

choose to use the ILU preconditioner [17] which means that the preconditioning matrix

P is obtained from an ILU factorization of I− θ∆τ kA.

Another possible choice of preconditioner for the matrix I − θ∆τ kA is the matrix

arising from the discretization of

∂u

∂τ
= 4u (4.37)

with CN scheme, where4 is the Laplacian operator. The advantage of this preconditioner

is that the matrix P can be fast and directly solved by fast Fourier transform (FFT)

techniques. However, the Fourier-based solver often requires uniform step-size, while for

our numerical methods, we prefer to use non-uniform discretization on the space domain.

Therefore, we choose to use the ILU preconditioner which is more general and flexible.

An ILU factorization of a matrix is a sparse approximation of the LU factorization.

A standard LU factorization applied to Ax = b will cause fill-in, in which case new non-

zero entries will be introduced, and the sparsity of LU factors is reduced compared to

that of the original matrix, which increases the floating-point operation counts and the

memory requirements. In ILU, we commonly restrict the fill-in to either zero entries or

few entries and find the lower triangular matrix L̃ and upper triangular matrix Ũ such

that A ≈ P = L̃Ũ . Since the matrix P is already factored into sparse factors, it can

be easily solved and it is a good choice for preconditioner of matrix A in an iterative

method.

Regarding the ILU factorization algorithm, we have considered two versions. First is

the no-fill version, which does not allow any fill-in at all. In this case, the matrix P has

the same sparsity pattern as A. Second is the drop-tolerance version, in which we usually

set a threshold and ignore all fill-in entries that are above a certain value that depends

on the threshold. In this case, P is a little less sparse than A, but still very sparse. In

our experiments, we test the efficiency of these two strategies on our problem.
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We use the built-in MATLAB functions GMRES and ILU for implementation. The

experimental results can be found in the next chapter.

4.6 Other Fast Solution Techniques

Another way to avoid the high computational cost of direct linear solver, applied to a

large bandwidth linear system, is to use a timestepping technique other than CN. More

specifically, Alternating Direction Implicit (ADI) timestepping methods result in solving

multiple tridiagonal linear systems at each timestep. Thus the computational cost per

timestep is proportional to the number of unknowns. However, in this project, we do not

pursue this approach. As it will be shown, the ILU preconditioned GMRES results in

complexity proportional to the number of unknowns.
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Numerical Experiments

In this chapter, numerical experiments are performed to explore the effectiveness of our

numerical methods for solving the Black-Scholes PDE arising in pricing Exchange and

Spread options. Even if we are more interested in pricing Spread options, European and

American, we start by testing our numerical methods on European Exchange options.

This is because for European Exchange options, there is an analytical formula giving

the solution. In addition, Exchange options are special cases of Spread options, when

K = 0. Therefore, we believe that the study of the effect of some numerical and problem

parameters of the methods on Exchange options will be helpful for the case of Spread

options too. Such numerical choices include the choice of non-uniform space discretization

and the choice of boundary conditions. Problem parameter choices include the maturity

time and the values of volatilities and correlation.

Recall that N1 and N2 are the number of subintervals in the S1 and S2 dimensions,

respectively. In most of the experiments, N1 and N2 are the same, but in some exper-

iments, they may be different. In this project, we use constant time-steps. We set the

size of the time-step to 2
N1

. In the numerical experiments, the units for S1 and S2 are

the dollar, while, the unit of time dimension is the year. Therefore, if S1 = 100, S2 = 50

and T = 0.5, it means the first asset price is $100, the second asset price is $50 and the

maturity time is half a year. In this sense, the interest rate is compounded yearly rate.

In addition to testing our numerical methods in approximating the option price, we

are also interested in the performance of our methods in approximating the Greeks,

essentially the Delta (∆) and the Gamma (Γ) associated with the option and underlying

assets. Greeks are very important parameters for some practical applications such as

hedging. In Spread or Exchange option, there are two associated assets S1 and S2.

39
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Therefore, we define

∆S1 =
∂u

∂S1

, ∆S2 =
∂u

∂S2

, (5.1)

ΓS1 =
∂2u

∂S2
1

, ΓS2 =
∂2u

∂S2
2

. (5.2)

The values of Greeks are approximated with centered difference approximations (4.9)

and (4.10). In the experiments, we find that, even if the numerical approximation to the

option price appears smooth and convergent with consistent order, oscillations may still

appear in the Delta and Gamma especially around the non-smoothness points. Thus,

testing the Greeks is necessary.

In testing the values of price and Greeks, we consider two cases: the values on one

point (usually the spot price), and the values in a certain area around the spot price,

which we refer to as spotting area.

In PDE discretization methods, the rate of convergence is a very important property.

We need to check whether the numerically observed rate of convergence agrees with

the theoretical one. To calculate the numerically observed order of convergence for the

cases that an exact analytical solution is available (e.g. the case of European Exchange

options), we conduct experiments with at least two numbers of subintervals n1 and n2

and calculate the respective errors e1 and e2 as infinity norms of the errors of all points

in a certain area. Then the rate of convergence is approximated by

Rate of convergence =
log(e2/e1)

log(n1/n2)
. (5.3)

For the cases that an exact analytical solution is not available (e.g. the case of Spread

options), we conduct experiments with at least three numbers of subintervals n1, n2 and

n3 and calculate the respective values u1, u2 and u3 on a set of points or on one point.

When the values u1, u2 and u3 are calculated on a set of points, we then calculate the

changes change2 = ‖u1 − u2‖ and change3 = ‖u2 − u3‖, as infinity norms of differences

of all points in a certain area. Then the rate of convergence is approximated by

Rate of convergence =
log(change3/change2)

log(n2/n3)
. (5.4)

When the values u1, u2 and u3 are calculated on one point, we then calculate the changes

change2 = u1−u2 and change3 = u2−u3. Then the rate of convergence is approximately
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by

Rate of convergence =
log(|change3/change2|)

log(n2/n3)
. (5.5)

Another important property in discretization methods for parabolic PDEs is stability.

We calculate the spectral radius of the iteration matrix (I− θ∆τ kA)−1(I + (1− θ)∆τ kA)

which gives information on the stability of the method. We also calculate the matrix

condition number associated with the pricing problems, i.e. the condition number of the

matrix I− θ∆τ kA appearing in (4.28).

5.1 European Exchange Option

In this section, we test the effectiveness of different non-uniform discretizations of the

spatial domain and the effectiveness of different boundary conditions. We also want to

see how certain parameter settings affect the performance of our numerical methods.

For European Exchange options, we can use the analytical solution, given by the

Margrabe formula [14] to calculate the infinity norm of the price errors on the spotting

area and associated convergence rates for our numerical methods. The errors of the

Greeks in spotting area are calculated by differentiating the Margrabe formula.

5.1.1 Different Space Discretizations

In our numerical method, it is mentioned that the uniform space discretization may not

be a good choice for Black-Scholes-like PDE mainly because of the non-smoothness of

initial condition. We have also introduced two non-uniform mappings to generate non-

uniform space discretizations. Therefore, we need to test the performance of these three

different space discretizations and appropriate parameter settings in our non-uniform

mapping functions. In these experiments, to test different space discretizations, we use

as basis the parameter settings shown in Table 5.1. For the boundary conditions, the

Margrabe formula is used to generate the boundary values.
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Parameters Value

Domain of S1 [0, 500]

Domain of S2 [0, 500]

Spot price S1 = S2 = 60

Spotting area [30, 180]× [30, 180]

Time to maturity T 1

Volatility of first asset σ1 0.4

Volatility of second asset σ2 0.2

Interest rate r 0.1

Correlation ρ 0.4

Table 5.1: Model parameters for pricing European Exchange option

Tables 5.2, 5.3 and 5.4, and Figure 5.1a show results from pricing European Exchange

option using uniform and two non-uniform grids. It can be seen that our numerical

methods exhibit approximately second-order convergence in the spotting area. Among all

the different space discretizations, we find that the non-uniform discretization generated

from non-uniform mapping (4.11) gives the best result. This space discretization has

the least error in the spotting area for both of the option value and Greeks. At the

same time, the convergence rate with this space discretization is more stable even with

only few grid points (25 or 50 grid points). For the other two space discretizations, the

convergence rate oscillates when the grid sizes are not large enough. Furthermore, the

benefits of the (4.11) non-uniform mapping are more prominant for the Gamma than for

the price and Delta. As the number of grid points increases, the numerical methods show

approximately second order of convergence for all grid discretizations.

In the case of Exchange option, we wish to set more grid points around non-smoothness

line S1 = S2. Although the non-uniform mapping (4.11) actually pushes more grid points

towards the origin, more grid points are also set close to the S1 = S2 line for small values

of S1 and S2. However this non-uniform mapping may not be as effective in the Spread

option case.
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N1, N2

Value (u)

error order

25 1.17e+00

50 2.32e-01 2.33

100 6.12e-02 1.92

200 1.61e-02 1.93

400 4.17e-03 1.95

N1, N2

∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 4.97e-02 2.48e-03 1.31e-01 1.89e-02

50 1.25e-02 1.99 6.50e-04 1.93 1.61e-02 3.02 1.24e-03 3.93

100 3.57e-03 1.81 1.02e-04 2.67 5.51e-03 1.55 2.63e-04 2.23

200 1.03e-03 1.79 2.47e-05 2.05 1.67e-03 1.72 9.16e-05 1.53

400 2.76e-04 1.90 6.74e-06 1.87 4.58e-04 1.86 2.67e-05 1.78

Table 5.2: Numerical results (values and Greeks) for European Exchange option in spot-
ting area with Margrabe boundary conditions. Settings in Table 5.1 and uniform dis-
cretization are used. The errors are calculated as infinity norms of errors of all grid points
in the spotting area.

N1, N2

Value (u)

error order

25 8.95e-01

50 2.17e-01 2.05

100 5.60e-02 1.95

200 1.40e-02 2.00

400 3.49e-03 2.00

N1, N2

∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 1.37e-02 3.69e-04 1.41e-02 3.80e-04

50 3.44e-03 1.99 6.92e-05 2.41 3.58e-03 1.98 5.89e-04 2.69

100 8.89e-04 1.97 1.94e-05 1.84 9.25e-04 1.95 1.64e-05 1.84

200 2.22e-04 1.99 5.06e-06 1.94 2.33e-04 1.99 4.28e-06 1.94

400 5.57e-05 1.99 1.29e-06 1.97 5.86e-05 1.99 1.09e-06 1.97

Table 5.3: Numerical results (values and Greeks) for European Exchange option in spot-
ting area with Margrabe boundary conditions. Settings in Table 5.1 and non-uniform
discretization with mapping function (4.11) are used. In (4.11), parameter η = 80. The
errors are calculated as infinity norms of errors of all grid points in the spotting area.
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N1, N2

Value (u)

error order

25 1.99e+00

50 4.38e-01 2.05

100 9.50e-02 1.95

200 2.14e-02 2.00

400 5.29e-03 2.00

N1, N2

∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 2.79e-02 2.31e-03 7.40e-02 2.30e-02

50 5.47e-03 2.35 2.25e-04 3.36 4.90e-03 1.98 2.89e-04 5.29

100 1.18e-03 2.21 7.20e-05 1.65 1.81e-03 1.95 2.14e-04 1.46

200 2.72e-04 2.12 1.60e-05 2.17 4.18e-04 1.99 4.85e-05 2.14

400 6.61e-04 2.03 4.00e-06 2.00 1.06e-04 1.99 1.23e-05 1.98

Table 5.4: Numerical results (values and Greeks) for European Exchange option in spot-
ting area with Margrabe boundary conditions. Settings in Table 5.1 and non-uniform
discretization with mapping function (4.12) are used. In (4.12), parameter α ≈ 0.36 and
E = 60. The errors are calculated as infinity norms of errors of all grid points in the
spotting area.

5.1.2 Different Boundary Conditions

We have mentioned the importance of appropriate boundary conditions and presented

three types of boundary conditions for Exchange option in Chapter 3. The numerical

tests in this subsection show the effectiveness of these three types of boundary condi-

tions. Furthermore, we need to compare the advantages and disadvantages of these three

boundary conditions. In this subsection, we use the parameter settings shown in Table

5.1 and the non-uniform mapping (4.11) with η = 80.

Tables 5.2, 5.7 and 5.8 display the results for European Exchange option using Mar-

grabe, pay-off and PDE boundary conditions, respectively. From Tables 5.2, 5.7 and 5.8,

it is shown that there are minor differences in price in the spotting area. Theoretically,

the Dirichlet boundary condition generated from Margrabe’s formula should give us the

best result in price. However, in practice, it seems that the PDE boundary conditions give

slightly more accurate price. With Margrabe boundary condition, the approximations

of the Greeks are accurate and stable with approximately second order of convergence.

However, with PDE boundary conditions, the convergence of Greeks is not that stable.

We will show (further in the thesis) that with PDE boundary conditions, some good
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properties of the time-iteration matrix (I−θ∆τ kA)−1(I+(1−θ)∆τ kA) in (4.28) are lost.

From Table 5.5, we can see that, for Dirichlet boundary conditions such as pay-off

or Margrabe, the spectral radius of the iterative matrix is less than 1 which ensures the

stability of the numerical method for the parabolic PDE problem. Regarding the PDE

boundary conditions, the spectral radius is above 1, in which case the stability may be an

issue. However, because the spectral radius is only a little above 1, the numerical solution

is still accurate if there are not too many time steps. At the same time, the spectral radius

of PDE boundary conditions decreases with N1 and seems to be approaching 1, while

the spectral radius of Dirichlet boundary conditions increases with N1 and seems to be

approaching 1.

From Table 5.6, we find that all the matrices generated by Dirichlet BCs and PDE

BCs are not ill-conditioned. However, we notice that the condition numbers of matrices

are approximately linearly increasing with N1. In this case, the matrices may become ill-

conditioned only when the number of grid discretization points is extremely large which

does not happen in practical cases, for the type of problem we are considering.

N1, N2 25 50 100 200

Dirichlet BCs 0.9930 0.9932 0.9966 0.9983

PDE BCs 1.0080 1.0075 1.0036 1.0018

Table 5.5: Spectral radius of time-iteration matrix (I− θ∆τ kA)−1(I + (1− θ)∆τ kA) with
different boundary conditions

N1, N2 25 50 100 200

Dirichlet BCs 1.2775 2.1194 3.2396 5.4731

PDE BCs 3.4270 6.3010 14.7131 41.8457

Table 5.6: Condition number with respect to infinity norm of matrix (I− θ∆τ kA) with
different boundary conditions

Regarding the pay-off boundary conditions, we find that, compared to Margrabe

boundary condition, the results of price and Greeks are only slightly worse but still ac-

ceptable. Stable order of convergence, approximately second order, is observed. Also,

with respect to stability and conditioning, pay-off BCs behave as Margrabe boundary

conditions. Therefore, pay-off boundary conditions are useful when exact solution for-

mula is not available such as in the cases of Spread options or American type of options.

In this cases, we will mainly use the pay-off boundary conditions.
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N1, N2

Value (u)

error order

25 8.96e-01

50 2.17e-01 2.05

100 5.63e-02 1.95

200 1.42e-02 1.99

400 3.72e-03 1.94

N1, N2

∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 1.37e-02 3.69e-04 1.41e-02 3.80e-04

50 3.44e-03 1.99 6.92e-05 2.41 3.58e-03 1.98 5.89e-04 2.69

100 8.79e-04 1.97 1.94e-05 1.84 9.25e-04 1.95 1.64e-05 1.84

200 2.22e-04 1.99 5.06e-06 1.94 2.33e-04 1.99 4.28e-06 1.94

400 5.57e-05 1.99 1.29e-06 1.97 6.09e-05 1.94 1.09e-06 1.97

Table 5.7: Numerical results (values and Greeks) for European Exchange option in spot-
ting area using pay-off boundary conditions. Settings in Table 5.1 and non-uniform
discretization with mapping function (4.11) are used. The errors are calculated as infin-
ity norms of errors of all grid points in the spotting area.

N1, N2

Value (u)

error order

25 8.95e-01

50 2.15e-01 2.05

100 5.45e-02 1.98

200 1.31e-02 2.06

400 3.24e-03 2.01

N1, N2

∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 1.37e-02 3.69e-04 1.41e-02 3.80e-04

50 3.44e-03 1.99 6.92e-05 2.41 3.58e-03 1.98 5.89e-04 2.69

100 8.79e-04 1.97 1.94e-05 1.84 9.25e-04 1.95 1.64e-05 1.84

200 2.22e-04 1.99 5.06e-06 1.94 2.33e-04 1.99 4.28e-06 1.94

400 5.57e-05 1.99 1.51e-06 1.74 7.02e-05 1.73 6.74e-06 -0.65

Table 5.8: Numerical results (values and Greeks) for European Exchange option in spot-
ting area using PDE boundary conditions. Settings in Table 5.1 and non-uniform dis-
cretization with mapping function (4.11) are used. The errors are calculated as infinity
norms of errors of all grid points in the spotting area.
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5.1.3 Different Localizations

As we mentioned in Chapter 3, in a numerical PDE method for a pricing problem,

we usually truncate the far-sides of the two price domains to S1,∞ and S2,∞ chosen to

be sufficiently large numbers compared to the spot price and spotting area. In this

subsection, we want to test the effects of this far-side truncations if pay-off boundary

conditions are used. The settings in Table 5.1 are used except the price domain of

S1 and S2. In this experiment, we compare the results of domain [0, 500] × [0, 500]

(Table 5.9) and domain [0, 1000] × [0, 1000] (Table 5.10) which doubles the far-side of

domain of S1 and S2. In order to control the effect of the discretization errors in the

comparison of far-side boundaries, uniform discretization is used. In order to have the

same length of subintervals, the number of subintervals on each dimension when using

domain [0, 1000] × [0, 1000] is chosen to be double the number of subintervals on each

dimension when using [0, 500]× [0, 500].

From the Tables 5.9 and 5.10, we can see that both these two choices of far-side trun-

cation give second order convergences of values of option and Greeks. When comparing

these results, we find that under the same subinterval length, there are minor differences

in the price and the Greeks approximations, with the differences being a little more vis-

ible for the Greeks associated with S2 and when N1 and N2 are both small. We say that

these two boundaries exhibit almost same error performance under the same subinterval

length. Therefore, for the efficiency of computation, we choose to use smaller the far-side,

since, under the same subinterval length, [0, 500]× [0, 500] will result in a smaller linear

system.
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N1, N2

Value (u)

error order

25 1.17e+00

50 2.32e-01 2.33

100 6.12e-02 1.92

200 1.61e-02 1.93

N1, N2

∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 4.97e-02 2.48e-03 1.31e-01 1.89e-02

50 1.25e-02 1.98 6.50e-04 1.93 1.61e-02 1.55 1.24e-03 3.93

100 3.57e-03 1.81 1.02e-04 2.67 5.51e-03 1.73 2.64e-04 2.23

200 1.03e-03 1.79 2.47e-05 1.87 1.67e-03 1.86 2.67e-05 1.53

Table 5.9: Numerical results (values and Greeks) for European Exchange option in spot-
ting area using pay-off boundary conditions. Settings in Table 5.1 and uniform dis-
cretization are used. The errors are calculated as infinity norms of errors of all grid
points in the spotting area.

N1, N2

Value (u)

error order

50 1.16e+00

100 2.32e-01 2.33

200 6.11e-02 1.92

400 1.61e-02 1.93

N1, N2

∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

50 4.97e-02 2.46e-03 5.00e-02 3.22e-03

100 1.25e-02 1.99 6.42e-04 1.94 1.61e-02 1.64 2.51e-04 1.86

200 3.46e-03 1.81 1.00e-04 2.68 5.51e-03 1.54 6.93e-04 1.39

400 1.03e-03 1.79 2.42e-05 2.05 1.67e-03 1.73 9.15e-05 1.52

Table 5.10: Numerical results (values and Greeks) for European Exchange option in
spotting area using pay-off boundary conditions. Settings in Table 5.1 are used except
the price domains of S1 and S2. Price domain [0, 1000] × [0, 1000] is used. Uniform
discretization is used. The errors are calculated as infinity norms of errors of all grid
points in the spotting area.
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5.1.4 Different Parameter Settings

We also want to test sensitivity of the quality of numerical soluiton to the parameter

settings. In particular, we want to test the performance under the circumstances of high

volatility, high correlation and longer maturity time. Therefore, we consider the settings

in Table 5.1, but change the value of parameters T , σ1 and ρ. In this way, we produce

three new sets of parameter values as shown in Table 5.11. More specifically, setting

1 has larger maturity time, setting 2 has larger σ1 and setting 3 has larger ρ. In this

subsection, we use the non-uniform mapping (4.11) with η = 80 and Margrabe boundary

conditions.

Table 5.12 shows the numerical results corresponding to a change to a maturity time.

Recall that the time-step size is 2
N1

, therefore, the number of time-steps in Table 5.12 is

about double compared to corresponding cases of Table 5.3. From the numerical solution

of price and Greeks, we see that our numerical method exhibits slightly smaller errors

for the values, Deltas and Gammas when T is larger. Overall, the errors are converging

at rate of approximately 2.

Table 5.13 shows the numerical results corresponding to a change in the volatility value

σ1 and should be compared to the results of Table 5.3. From the numerical solution of

price and Greeks, we see that our numerical method exhibits slightly smaller error for the

value and Deltas when σ1 is larger, while slightly larger errors for the Gammas. We also

notice that the Gammas are more sensitive to the volatility value. Overall, the errors are

converging at rate of approximately 2.

Table 5.14 and Figure 5.1b shows the numerical results corresponding to the change

in the value of coorrelation and should be compared to5.3. From the numerical solution

of price and Greeks, we see that, when ρ is large, our numerical method exhibits slightly

smaller error for the values, while slightly larger errors for all Greeks. We also note for

the Greeks, especially the Gammas, it takes a larger N1 to reach the asymptotic order

of convergence. We also notice that the Gamma error is more sensitive size of ρ than

the price of Delta errors. Overall, asymptotically, the errors are converging at rate of

approximately 2.
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Parameters value set 1 value set 2 value set 3

Domain of S1 [0, 500] [0, 500] [0, 500]

Domain of S2 [0, 500] [0, 500] [0, 500]

Spot price S1 = S2 = 60 S1 = S2 = 60 S1 = S2 = 60

Spotting area [30, 180]× [30, 180] [30, 180]× [30, 180] [30, 180]× [30, 180]

Time to maturity T 2 1 1

Volatility of first asset σ1 0.4 0.8 0.4

Volatility of second asset σ2 0.2 0.2 0.2

Interest rate r 0.1 0.1 0.1

Correlation ρ 0.4 0.4 0.6

Table 5.11: Different model parameters for pricing European Exchange option. Changes
from Table 5.1 are shown in bold face.

N1, N2
Value (u)

error order

25 8.32e-01

50 2.13e-01 1.97

100 5.45e-02 1.97

200 1.36e-02 2.00

400 3.37e-03 2.01

N1, N2
∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 1.10e-02 2.61e-04 1.12e-02 2.68e-04

50 2.74e-03 2.01 6.55e-05 1.99 2.80e-03 2.00 6.78e-04 1.98

100 6.89e-04 1.99 1.74e-05 1.91 7.07e-04 1.99 1.76e-05 1.85

200 1.73e-04 1.99 4.50e-06 1.95 1.78e-04 1.99 4.52e-06 1.96

400 4.33e-05 2.00 1.14e-06 1.98 4.45e-05 2.00 1.19e-06 1.92

Table 5.12: Numerical results (values and Greeks) for European Exchange option in
spotting area using Margrabe boundary conditions. Value set 1 in Table 5.11 and non-
uniform discretization with mapping function (4.11) are used. This option has longer
maturity time T = 2. The errors are calculated as infinity norms of errors of all grid
points in the spotting area.
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N1, N2
Value (u)

error order

25 6.41e-01

50 1.62e-01 1.99

100 4.19e-02 1.95

200 1.05e-02 2.00

400 2.62e-03 2.00

N1, N2
∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 8.64e-03 1.78e-04 8.67e-03 1.77e-04

50 2.18e-03 1.98 4.94e-05 1.83 2.19e-03 1.98 4.90e-04 1.85

100 5.50e-04 1.99 1.31e-05 1.92 5.53e-04 1.92 1.30e-05 1.92

200 1.38e-04 1.99 3.36e-06 1.96 1.39e-04 1.96 3.33e-06 1.96

400 3.46e-05 2.00 8.53e-06 1.98 3.49e-05 1.98 8.45e-06 1.98

Table 5.13: Numerical results (values and Greeks) for European Exchange option in spot-
ting area using Margrabe boundary conditions. Value set 2 in Table 5.11 and non-uniform
discretization with mapping function (4.11) are used. First asset has high volatility
σ1 = 0.8. The errors are calculated as infinity norms of errors of all grid points in the
spotting area.

N1, N2
Value (u)

error order

25 7.15e-01

50 1.62e-01 2.14

100 4.08e-02 1.99

200 1.01e-02 2.01

400 2.52e-03 2.00

N1, N2
∆S1 ΓS1 ∆S2 ΓS2

error order error order error order error order

25 1.92e-02 8.45e-04 1.96e-02 8.21e-04

50 5.72e-03 1.75 4.47e-04 0.92 5.84e-03 1.75 4.32e-04 0.93

100 1.54e-03 1.89 1.44e-04 1.63 1.59e-03 1.88 1.42e-04 1.61

200 3.95e-04 1.96 3.95e-05 1.87 4.08e-04 1.96 3.90e-05 1.86

400 9.99e-05 1.99 1.02e-05 1.95 1.03e-04 1.98 1.01e-05 1.95

Table 5.14: Numerical results (values and Greeks) for European Exchange option in
spotting area using Margrabe boundary conditions. Value set 3 in Table 5.11 and non-
uniform discretization with mapping function (4.11) are used. The two assets have high
correlation ρ = 0.6. The errors are calculated as infinity norms of errors of all grid points
in the spotting area.
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(a) Convergence study of Exchange option
price, ∆S1 and ΓS2 with three different space
discretizations: uniform and non-uniform gen-
erated by mappings (4.11) and (4.12). Pa-
rameter settings in Table 5.1 and Margrabe
boundary conditions are used.
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(b) Convergence study of Exchange option
price, ∆S1 and ΓS2 with two different corre-
lations ρ = 0.4 and ρ = 0.6. Parameter set-
tings in Table 5.1 (except the correlation ρ),
non-uniform space discretization generated by
(4.11) and Margrabe boundary conditions are
used.

Figure 5.1: European Exchange option convergence study.
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5.2 European Spread Option

In this section, European Spread Call options with parameter settings in Table 5.15 are

priced. Recall that the pay-off of Spread Call option is defined by

max(S1 − S2 −K, 0).

For European Spread options, there is no analytical formula. Therefore we approximate

the convergence rates using the changes of prices with three different grid refinements

as in (5.4). The order of convergence of the Greeks in the spotting area is calculated

similarly as well. At the same time, some closed-form approximations for the price of

European Spread option will be calculated for comparison to our numerical solutions.

Parameters Value

Domain of S1 [0, 880]

Domain of S2 [0, 480]

Strike price K 50

Spot price S1 = 110, S2 = 60

Spotting area [88, 132]× [48, 72]

Time to maturity T 182/365

Volatility of first asset σ1 0.4

Volatility of second asset σ2 0.2

Interest rate r 0.1

Correlation ρ 0.4

Table 5.15: Model parameters for pricing European Spread Call option

From Section 6.1, it is obvious that non-uniform space discretizations can result in

more accurate solutions than uniform ones. However, as discussed before, the non-

uniform discretization from mapping (4.11) may not be as effective in the Spread option

case as in the Exchange option case. Therefore, experiments are conducted to test the

performance of the two proposed non-uniform mappings in the Spread option case.

Regarding the far-side boundaries (i.e. when S1 = 660 or S2 = 360), we apply

time-discounted pay-off boundary conditions, because, as seen in the previous subsec-

tion of Exchange option case, time-discounted pay-off boundary conditions give rise

to acceptable values and Greeks. When S1 = 0, the pay-off function suggests the

Dirichlet condition u(τ, 0, S2) = 0. When S2 = 0, we take the Dirichlet condition

u(τ, S1, 0) = max{S1 −Ke−rt, 0}.
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5.2.1 Different Space Discretizations

Tables 5.16, 5.17 and Figure 5.2a show the results of valuing a European Spread option

with two non-uniform space discretizations in our spotting area. Note that in the ex-

periments, some points that are grid points in the refined grid discretizations are not

grid points in the coarser grid discretizations. Therefore, to calculate values on these

points in the coarser grid discretizations, we use spline interpolation as implemented in

MATLAB’s function interp2.

From Table 5.15, we can see that the range of second asset S2 is a little more than

half the range of first asset S1, hence we consider to set smaller number of discretization

points on the axis of S2, i.e. we can set N2 a little more than half N1. In this experiment,

by testing several values of N2 between 0.5N1 and 0.7N1, we found that, in the case of

non-uniform mapping (4.12), the choice N2 ≈ 0.65N1 is sa good choice.

From Tables 5.16 and 5.17, we find that the non-uniform discretizations generated

from non-uniform mappings (4.11) and (4.12) both give stable convergence rate around

2 on the option value in the spotting area. We notice a slightly lower order of conver-

gence, especially for the Greeks associated the Gamma (Γ), when using the non-uniform

mapping (4.12) and when N1 is small.

N1 N2

value (u)

change order

25 17

50 33 2.8762e-01

100 65 5.5738e-02 2.32

200 130 1.4833e-02 1.96

400 260 3.9961e-03 1.89

N1

∆S1 ΓS1 ∆S2 ΓS2

change order change order change order change order

25

50 1.92e-02 5.38e-04 5.59e-03 2.11e-03

100 4.66e-03 2.05 1.47e-04 1.87 1.54e-03 1.86 4.51e-04 2.23

200 1.17e-03 1.99 3.68e-05 2.00 3.55e-04 2.12 4.36e-05 3.37

400 2.86e-04 2.03 9.32e-06 1.98 9.77e-05 1.86 1.23e-05 1.82

Table 5.16: Numerical results (values and Greeks) for European Spread Call option in
spotting area using pay-off boundary conditions. Settings in Table 5.15 and non-uniform
discretization with mapping function (4.11) are used. In (4.11), parameter η = 80 for S2

and S1.
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N1 N2

value (u)

change order

25 17

50 33 2.3919e-01

100 65 4.9978e-02 2.26

200 130 1.3825e-02 1.85

400 260 3.5253e-03 1.97

N1

∆S1 ΓS1 ∆S2 ΓS2

change order change order change order change order

25

50 2.65e-02 9.59e-04 1.29e-02 4.76e-04

100 2.47e-03 3.42 1.45e-04 2.72 3.90e-03 1.72 1.52e-04 1.65

200 6.24e-04 1.98 3.53e-05 2.04 1.09e-03 1.85 4.18e-05 1.86

400 1.62e-04 1.95 9.27e-06 1.93 2.69e-04 2.02 1.10e-05 1.93

Table 5.17: Numerical results (values and Greeks) for European Spread Call option in
spotting area using pay-off boundary conditions. Settings in Table 5.15 and non-uniform
discretization with mapping function (4.12) are used. In (4.12), parameter α = 0.4 and
E = 60 for S2-axis and parameter α = 0.4 and E = 110 for S1-axis.

We also want to compare the performance of these two non-uniform mappings at a

particular point. Here we use spot price (110, 60) as an example point. From Table 5.18,

the value and Delta associated with S1 (∆S1) on the spotting area converge monotoni-

cally with straight order 2. However, we find on this point, the values of other Greeks

associated with S2 fail to converge monotonically.

At the same time, from Table 5.19, the convergence rate of values and Greeks on

this point appears more stable around 2. It seems that, because the second non-uniform

mapping (4.12) can push more grid points towards the point of interest, this mapping

helps to achieve more stable performance at that point.

To conclude, each of these two different non-uniform discretizations has its own ad-

vantages. The first non-uniform mapping (4.11) results in the convergence with straight

order 2 in the spotting area. However, it may fail to ensure the second order convergence

of Greeks at some specific points in the spotting area. Meanwhile the second non-uniform

mapping (4.12) results in the second order convergence of option prices and Greeks at a

particular point if that point is chosen as concentration point. Overall, looking at Figures

5.2a and 5.2b, the performance of mapping (4.12) is better and more stable regardless of

option values or Greeks. In addition to the asymptotic performance of the two different

mappings, the second mapping (4.12) also maintains a stable result with smaller space
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discretization. Therefore, we conclude that the second mapping (4.12) is a better choice

in the case of Spread option.

N1

Option price

Value Change Order

25 12.290238

50 12.493087 2.03e-01

100 12.541964 4.89e-02 2.05

200 12.553647 1.17e-02 2.06

400 12.557227 3.58e-03 1.71

N1

∆S1 ΓS1

Value Change Order Value Change Order

25 0.5622557 0.01354978

50 0.5799406 1.77e-02 0.01356923 1.95e-05

100 0.5842087 4.27e-03 2.05 0.01356707 -2.16e-06 3.17

200 0.5852799 1.07e-03 1.99 0.01356761 -5.36e-07 2.01

400 0.5855516 2.72e-04 1.98 0.01356694 -6.67e-07 -0.32

N1

∆S2 ΓS2

Value Change Order Value Change Order

25 -0.4847673 0.01438115

50 -0.4845619 2.05e-04 0.01439833 1.72e-05

100 -0.4854671 -9.05e-04 -2.14 0.01428701 -1.11e-04 -2.70

200 -0.4853534 1.14e-04 2.99 0.01426288 -2.41e-05 2.21

400 -0.4853922 3.88e-05 1.55 0.01425878 -4.10e-06 2.56

Table 5.18: Numerical results (values and Greeks) of European Spread Call option when
S1 = 110, S2 = 60 using pay-off boundary conditions. Settings in Table 5.15 and non-
uniform discretization with mapping function (4.11) are used. In (4.11), parameter η =
80 for S1 and S2.
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N1

Option price

Value Change Order

25 12.401970

50 12.518983 1.17e-01

100 12.548484 2.95e-02 1.99

200 12.555880 7.40e-03 2.00

400 12.557728 1.85e-03 2.00

N1

∆S1 ΓS1

Value Change Order Value Change Order

25 0.5832525 0.01345684

50 0.5850403 1.79e-03 0.01353910 8.23e-05

100 0.5854919 4.52e-04 1.99 0.01355995 2.08e-05 1.98

200 0.5856041 1.12e-04 2.01 0.01356509 5.14e-06 2.02

400 0.5856322 2.82e-05 1.99 0.01356638 1.29e-06 2.00

N1

∆S2 ΓS2

Value Change Order Value Change Order

25 -0.4890363 0.01462652

50 -0.4862420 2.79e-03 0.01436166 -2.65e-04

100 -0.4856252 6.17e-04 2.18 0.01428049 -8.12e-05 1.71

200 -0.4854496 1.76e-04 1.81 0.01426294 -1.76e-05 2.21

400 -0.4854085 4.11e-05 2.10 0.01425779 -5.15e-06 1.77

Table 5.19: Numerical results (values and Greeks) of European Spread Call option when
S1 = 110, S2 = 60 using pay-off boundary conditions. Settings in Table 5.15 and non-
uniform discretization with mapping function (4.12) are used. In (4.12), parameter α =
0.36 and E = 60 for S2-axis and parameter α = 0.4 and E = 110 for S1-axis.
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(a) Convergence study of numerical results of
option solution, ∆S1 and ΓS2 in spotting area
with two different space discretizations: non-
uniform generated by mappings (4.11) and
(4.12). Parameter settings in Table 5.15 and
pay-off boundary conditions are used.
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(b) Convergence study of numerical results of
option solution, ∆S1 and ΓS2 on point (110,
60) with two different space discretizations:
non-uniform generated by mappings (4.11)
and (4.12). Parameter settings in Table 5.15
and pay-off boundary conditions are used.

Figure 5.2: European Spread Call option convergence study.

5.2.2 Comparison to Analytical Approximations

To compare our numerical methods with analytical approximations, we consider the

numerical PDE approximations from Table 5.19 and compare them with closed-form

approximations mentioned in Chapter 3. Table 5.20 shows the results.
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When comparing numerical PDE and analytical approximations, we notice the fol-

lowing advantages and disadvantages of each. The numerical PDE error converges to

zero as the grid discretization is refined, which means that when enough computational

power is used, the error goes below a given tolerance. At the same time, the errors

of analytical approximations remain constant. However, analytical approximations re-

quire less computation work compared to numerical PDE methods. It seems that for the

particular Spread option being priced, Kirk’s approximation is about accurate as when

N1 = 400, N2 = 260 while Deng, Li and Zhou’s Approximation is at least as accurate as

N1 = 800, N2 = 520 PDE approximation.

From Figure 5.3, we can easily observe that the numerical solution on point (110, 60)

is converging to a number, which is greater than Kirk’s approximation (12.5574715) but

closer to Deng, Li and Zhou’s approximation (12.5583468). From this point of view, we

conclude that Deng, Li and Zhou’s approximation is a more accurate analytical solution

than Kirk’s approximation.

Moreover, we note that the difference of numerical PDE and Deng, Li and Zhou’s

approximations converges at order 2 even up to N1 = 800, N2 = 520. This suggests

that the accuracy of Deng, Li and Zhou’s approximation is possibly higher than the

numerical PDE solution with N1 = 800, N2 = 520. However, we also note that Deng,

Li and Zhou’s approximation holds for European and not for American Spread options,

while the numerical PDE approach can be extended to American.

Kirk’s Approximation [12] 12.5574715

Deng, Li and Zhou’s Approximation [13] 12.5583468

N1

Option price
NPDE - KirK NPDE - DLZ

Value Change Order

25 12.401970 -0.1555013 -0.1563766

50 12.518983 1.17e-01 -0.0384884 -0.0393637

100 12.548484 2.95e-02 1.99 -0.0089876 -0.0098629

200 12.555880 7.40e-03 2.00 -0.0015915 -0.0024668

400 12.557728 1.85e-03 2.00 0.0002562 -0.0006191

800 12.558190 4.62e-04 2.00 0.0007185 -0.0001568

Table 5.20: Numerical and analytical approximations to the value of European Spread
Call option when S1 = 110, S2 = 60. NPDE - KirK means the difference between
numerical PDE and Kirk’s approximations. NPDE - DLZ means the difference between
numerical PDE and Deng, Li and Zhou’s approximations.
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Figure 5.3: Plot of numerical PDE and analytical approximations to the value of Euro-
pean Spread Call option when S1 = 110, S2 = 60 versus grid size.

5.2.3 European Spread Put option

Beside the experiments of European Spread Call option, the case of European Spread Put

option is also shown below. These results can be used for comparison to the American

type option shown in the next section. Recall that the pay-off of European Spread Put

option is defined as

max(S2 +K − S1, 0).

The parameter settings in Table 5.15 are considered. In this experiment, we set

N2 ≈ 0.65N1, since this choice of N1 and N2 is successful in the case of European Spread

call options. We also use the second non-uniform mapping (4.12). It is interesting to
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observe from Tables 5.19 and 5.22 that, the errors of Spread call option and Spread put

option with exactly the same settings are almost the same for prices and Greeks. The

approximation to the Gammas (Γ) of Spread call and put options are also almost the

same with same grid discretizations.

N1 N2

value (u)

change order

25 17

50 33 6.0665e-01

100 65 5.6665e-02 3.42

200 130 1.3808e-02 2.04

400 260 3.5209e-03 1.97

N1

∆S1 ΓS1 ∆S2 ΓS2

change order change order change order change order

25

50 7.95e-02 8.16e-03 1.29e-02 4.76e-04

100 2.47e-03 5.01 3.30e-04 4.63 3.90e-03 1.72 1.52e-04 1.65

200 6.24e-04 1.98 3.53e-05 3.22 1.09e-03 1.85 4.18e-05 1.86

400 1.62e-04 1.95 9.27e-06 1.93 2.69e-04 2.02 1.10e-05 1.93

Table 5.21: Numerical results (values and Greeks) for European Spread put option in
spotting area using pay-off boundary conditions. Settings in Table 5.15 and non-uniform
discretization with mapping function (4.12) are used. In (4.12), parameter α = 0.4 and
E = 110 for S1-axis and parameter α = 0.4 and E = 60 for S2-axis.
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N1

Option price

Value Change Order

25 9.970339

50 10.087064 1.17e-01

100 10.116494 2.94e-02 1.99

200 10.123873 7.38e-03 2.00

400 10.125716 1.84e-03 2.00

N1

∆S1 ΓS1

Value Change Order Value Change Order

25 0.4167478 0.01345686

50 0.4149597 1.79e-03 0.01353910 8.22e-05

100 0.4145081 4.52e-04 1.99 0.01355995 2.08e-05 1.98

200 0.4143959 1.12e-04 2.01 0.01356509 5.14e-06 2.02

400 0.4143678 2.82e-05 1.99 0.01356638 1.29e-06 2.00

N1

∆S2 ΓS2

Value Change Order Value Change Order

25 -0.5109623 0.01462688

50 -0.5137580 2.80e-03 0.01436166 -2.65e-04

100 -0.5143748 6.17e-04 2.18 0.01428049 -8.12e-05 1.71

200 -0.5145504 1.76e-04 1.81 0.01426294 -1.76e-05 2.21

400 -0.5145915 4.11e-05 2.10 0.01425779 -5.15e-06 1.77

Table 5.22: Numerical results (values and Greeks) of European Spread put option when
S1 = 110, S2 = 60 using pay-off boundary conditions. Settings in Table 5.15 and non-
uniform discretization with mapping function (4.12) are used. In (4.12), parameter α =
0.4 and E = 110 for S1-axis and parameter α = 0.4 and E = 110 for S2-axis.

5.3 American Spread Put option

In this section, American Spread Put option with parameter setting in Table 5.23 is

considered. Recall that the pay-off of American Spread Put option is defined as

max(S2 +K − S1, 0).

The additional constraints of American option is that the option price can never go below

the pay-off.

For American Spread options, an analytical formula for the solution is not available.

Therefore we approximate convergence rates using the changes of different grid refine-
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ments in (5.4). The order of convergence of the Greeks in the spotting area is calculated

similarly.

In this experiment, we set N2 ≈ 0.65N1 since this choice of N1 and N2 is successful in

the case of European Spread call options. We also use the second non-uniform mapping

(4.12). In the penalty method for the American options, we choose the penalty factor

p = 106, while the tolerance for penalty iteration is 1
p
. We denote by Nt the total number

of timesteps, and by ”p. it” the total number of iterations required in the penalty methods

over all timesteps.

Parameters Value

Domain of S1 [0, 880]

Domain of S2 [0, 480]

Strike price K 50

Spot price S1 = 110, S2 = 60

Spotting area [88, 132]× [48, 72]

Time to maturity T 182/365

Volatility of first asset σ1 0.4

Volatility of second asset σ2 0.2

Interest rate r 0.1

Correlation ρ 0.4 or 0.6

Table 5.23: Model parameters for pricing American Spread Put option
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N1 N2 Nt p. it
value (u)

change order

25 17 27 70

50 33 52 153 2.0582e-01

100 65 102 273 3.3235e-02 2.63

200 130 202 500 8.9081e-03 1.90

400 260 401 924 2.4002e-03 1.89

N1

∆S1 ΓS1 ∆S2 ΓS2

change order change order change order change order

25

50 5.19e-03 6.03e-04 6.25e-03 1.46e-03

100 9.05e-04 2.52 1.04e-04 2.54 1.18e-03 2.40 4.11e-04 1.82

200 2.41e-04 1.91 2.21e-05 2.23 2.99e-04 1.98 9.36e-05 2.14

400 6.00e-05 2.01 1.34e-06 4.04 7.26e-05 2.04 1.04e-05 3.17

Table 5.24: Numerical results (values and Greeks) for American Spread Put option in
spotting area using pay-off boundary conditions. Settings in Table 5.23 with ρ = 0.4 and
non-uniform discretization with mapping function (4.12) are used. In (4.12), parameter
α ≈ 0.38 and E = 110 for S1-axis and parameter α ≈ 0.38 and E = 60 for S2-axis.

Tables 5.24 and 5.25 present our numerical results for an American Spread Put option

when ρ = 0.4. Our FDM with penalty iteration method reaches second order or greater

than second order of convergence in spotting area which is ±20%·(spot price) away from

spot price. On the spot price (110, 60), the order of convergence is also straight 2 for the

option price and Greeks.

Looking at the total number of penalty iterations in Table 5.24, we can easily find

that the average number of penalty iterations in each timestep is between 2.31 and 3.06,

and for the finest grids, it is 2.31. The average number of penalty iterations indicates that

the convergence of penalty iteration is independent of the discretization size. Overall,

in each timestep, the penalty iteration will converge in around 2 or 3 iterations, and

asymptotically, as the discretization is refined, in a number of iterations closer to 2.
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N1 N2 Nt p. it
Option price

Value Change Order

25 17 27 70 10.196771

50 33 52 153 10.315621 1.19e-01

100 65 102 273 10.336523 2.09e-02 2.51

200 130 202 500 10.342235 5.71e-03 1.87

400 260 401 924 10.343752 1.52e-03 1.91

N1

∆S1 ΓS1

Value Change Order Value Change Order

25 -0.4299913 0.01420241

50 -0.4275921 2.40e-03 0.01426738 6.50e-05

100 -0.4271855 4.07e-04 2.56 0.01427948 1.21e-05 2.42

200 -0.4270791 1.06e-04 1.93 0.01428164 2.16e-06 2.49

400 -0.4270520 2.71e-05 1.97 0.01428202 3.72e-07 2.54

N1

∆S2 ΓS2

Value Change Order Value Change Order

25 0.5235387 0.01500219

50 0.5262912 2.40e-03 0.01477449 -2.28e-04

100 0.5266728 4.07e-04 2.85 0.01471075 -6.37e-05 1.84

200 0.5267620 1.06e-04 2.10 0.01469213 -1.86e-05 1.78

400 0.5247881 2.71e-05 1.77 0.01468796 -4.17e-06 2.16

Table 5.25: Numerical results (values and Greeks) of American Spread Put option when
S1 = 110, S2 = 60 using pay-off boundary conditions. Settings in Table 5.23 with ρ =
0.4 and non-uniform discretization with mapping function (4.12) are used. In (4.12),
parameter α ≈ 0.38 and E = 110 for S1-axis and parameter α ≈ 0.38 and E = 60 for
S2-axis.

We are also interested in the performance of our numerical methods (FDM with

penalty iteration) for the case of high correlation in American Spread Put option. Tables

5.26 and 5.27 present our numerical results for an American Spread Put option when

ρ = 0.6. The results show us that our method still achieves accurate numerical solution

to the option price and Greeks. The order of convergence in the spotting area is still

around two. The numerical solution and Greeks on spotting point (110, 60) are also

converging with almost second order. Looking at Figure 5.4b, although the performance

of numerical methods is stable under both the case of normal correlation (ρ = 0.4) and

that of high correlation (ρ = 0.6), the case of normal correlation exhibits slightly smaller

errors than high correlation especially on the Greeks.
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N1 N2 Nt p. it
value (u)

change order

25 17 27 75

50 33 52 155 2.1283e-01

100 65 102 298 3.5204e-02 2.60

200 130 202 518 9.6574e-03 1.86

400 260 401 919 2.5465e-03 1.92

N1

∆S1 ΓS1 ∆S2 ΓS2

change order change order change order change order

25

50 6.59e-03 1.38e-03 7.96e-03 3.00e-03

100 1.28e-03 2.37 2.18e-04 2.56 1.83e-03 2.12 6.87e-04 2.13

200 3.42e-04 1.90 6.87e-05 1.67 4.35e-04 2.08 1.80e-04 1.93

400 8.59e-05 1.99 1.55e-05 2.15 1.06e-04 2.03 4.83e-05 1.90

Table 5.26: Numerical results (values and Greeks) for American Spread Put option in
spotting area using pay-off boundary conditions. Settings in Table 5.23 with ρ = 0.6 and
non-uniform discretization with mapping function (4.12) are used. In (4.12), parameter
α ≈ 0.38 and E = 110 for S1-axis and parameter α ≈ 0.38 and E = 60 for S2-axis.
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N1 N2 Nt p. it
Option price

Value Change Order

25 17 27 75 9.434413

50 33 52 155 9.563605 1.29e-01

100 65 102 298 9.585702 2.21e-02 2.55

200 130 202 518 9.591706 6.00e-03 1.88

400 260 401 919 9.593279 1.57e-03 1.93

N1

∆S1 ΓS1

Value Change Order Value Change Order

25 -0.4326029 0.01530520

50 -0.4295972 3.01e-03 0.01537375 6.86e-05

100 -0.4290432 5.54e-04 2.44 0.01538542 1.17e-05 2.55

200 -0.4288987 1.44e-05 1.94 0.01538736 1.94e-06 2.59

400 -0.4288622 3.65e-05 1.99 0.01538767 3.07e-07 2.66

N1

∆S2 ΓS2

Value Change Order Value Change Order

25 0.5126573 0.01671908

50 0.5151992 2.54e-03 0.01604661 -6.72e-04

100 0.5155060 3.07e-04 3.05 0.01589755 -1.49e-04 2.17

200 0.5155849 7.88e-05 1.96 0.01585872 -3.88e-05 1.94

400 0.5156091 2.43e-05 1.70 0.01584949 -9.23e-06 2.07

Table 5.27: Numerical results (values and Greeks) of American Spread Put option when
S1 = 110, S2 = 60 using pay-off boundary conditions. Settings in Table 5.23 with ρ =
0.6 and non-uniform discretization with mapping function (4.12) are used. In (4.12),
parameter α ≈ 0.38 and E = 110 for S1-axis and parameter α ≈ 0.38 and E = 60 for
S2-axis.
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(a) Convergence study of option price, ∆S1

and ΓS2 in spotting area with two different
correlations: ρ = 0.4 and ρ = 0.6. Parameter
settings in Table 5.23 and pay-off boundary
conditions are used.
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(b) Convergence study of option price, ∆S1

and ΓS2 on point (110, 60) with two different
correlations: ρ = 0.4 and ρ = 0.6. Parameter
settings in Table 5.23 and pay-off boundary
conditions are used.

Figure 5.4: American Spread Put option convergence study.
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5.4 Iterative Method Solver for Linear System

N1 N2 Nt

value (nofill) value (ilutp)

error order tot iter error order tot iter

25 25 15 8.9665e-01 32 8.9665e-01 32

50 50 27 2.1676e-01 2.05 55 2.1676e-01 2.05 59

100 100 52 5.6322e-02 1.94 105 5.6322e-02 1.94 108

200 200 102 1.4214e-02 1.99 205 1.4214e-02 1.99 206

400 400 202 3.7147e-03 1.94 400 3.7152e-03 1.94 405

Table 5.28: Errors of European Exchange option. GMRES and ILU preconditioning with
”nofill” (nofill) and ”ilutp” (drop-tolerance) are used. The total number of iterations is
denoted by ”tot iter”.

The test on the performance of ILU-preconditioned GMRES is conducted on the example

case of the European Exchange option with parameters in Table 5.7, and uses the non-

uniform mapping (4.12) and the pay-off boundary conditions. In Table 5.28, we show the

performance of the two different versions of the ILU preconditioner, denoted by ’nofill’

and ’ilutp’ in the MATLAB version of GMRES. The tolerance for GMRES is set to

10−9 and the threshold parameter for the drop-tolerance ILU is set to 10−3.

Regarding the accuracy, both types of ILU give almost identical prices, which are

also almost the same as the prices from the direct solver in Table 5.7. Only when

N1 = N2 = 400, the two ILU versions have a small difference on the fourth digit of

errors. As expected from theory, the second-order convergence is obtained.

In terms of total number of iterations, the two versions of ILU perform about the

same. However, generally, the total number of iterations of zero fill-in ILU is slightly

smaller than drop-tolerance ILU. With zero fill-in ILU, the number of iterations in each

timestep is very consistent for all different discretization sizes. It is actually 3 iterations

at the first timestep, and 2 iterations for every subsequent timestep. With drop-tolerance

ILU, the number of iterations in each timestep fluctuates between 2 and 3 in the first few

(less than 5) timesteps and then only 2 iterations are needed. Based on the performance

of the total number of iterations and the consistency of convergence in each timestep, we

suggest that zero fill-in ILU is preferred.

We also note that, asymptotically, for each doubling of the number of timesteps and

grid points in both directions, the total number of iterations doubles approximately as

well. It is also evident that the average number of iterations required by the GMRES

method per timestep is quite small (around 2 iterations). More importantly, we notice
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that the average number of iterations in each time step is independent of the size of

discretization matrices. Since each solution with the preconditioner has computational

cost proportional to the number of unknowns and the number of iterations is independent

of the problem size, the total cost of the ILU preconditioned GMRES solution of the two-

asset Black-Scholes PDE is proportional to the number of unknowns. Furthermore, we

note that ILU is needed only once for all timesteps, since, for this PDE problem, the PDE

coefficients are time independent. We also note that, because of the fast convergence of

GMRES method, no restarting is needed in GMRES.

This experiment proves the efficiency of GMRES method on our problem, when using

an effective preconditioner and a good initial guess based on linear extrapolation.
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Summary and Future Work

6.1 Summary

Multi-asset options are common in the financial market, therefore the accurate and ef-

ficient pricing of them is important. For most multi-asset European options and all

American options, there is no analytical formula giving their price, therefore, numerical

methods are employed to approximate the price and Greeks.

In this thesis, we choose the numerical PDE approach to value two-asset Exchange and

Spread options of European or American type. We discretize the two-dimensional Black-

Scholes PDE by standard centered finite differences on a rectangular grid in space and

the Crank-Nicolson-Rannacher scheme in time. We study the effect of various numerical

and problem parameters on the accuracy of the numerical solution value and Greeks.

We also study certain numerical choices affecting the stability and the efficiency of the

numerical method. For American options, we use the discrete penalty iteration method to

approximate the solution of the arising LCP. In all cases, the computed price and Greeks

exhibit second order convergence. Moreover, we compare the PDE approximations of

European Spread option prices with those obtained by certain analytical approximation

formulae found in the literature.

Regarding the type of grid discretizations, our numerical experiments indicate that

non-uniform grids, with appropriate concentration of grid points, give quite more accurate

prices and Greeks than uniform ones. Among the two non-uniform grids tested, the one

that concentrates points towards the origin is slightly preferred for Exchange options,

however, for the (more interesting) case of Spread options, the grid that concentrates

points around the evaluation point seems to be superior for both values and Greeks.

Regarding the choice of boundary conditions, our numerical experiments on Exchange

options indicate that Margrabe Dirichlet (exact value given) conditions are not partic-

71
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ularly better than payoff Dirichlet or PDE boundary conditions. Furthermore, in some

cases, PDE boundary conditions may give rise to smaller errors. However, it is numer-

ically shown that PDE boundary conditions suffer from (small) instability, which may

reduce the accuracy of the approximation when the number of timesteps is large. We

conclude that payoff Dirichlet boundary conditions, which are applicable even if the exact

value is not given on the boundary, are the conditions of choice.

Regarding the price domain localizations when using pay-off boundary conditions,

our numerical experiments show that, if the far-side is sufficiently large compared to our

spot price and spotting area, the truncated far-side boundary does not have an obvious

effect to the errors in our spotting area. Among the two different far-side boundaries

tested in the Exchange option case, the smaller price domain is preferred, because, with

similar error level in price and Greeks, the smaller domain always results in smaller linear

system., therefore less computation.

Regarding the effect of various problem parameters on the accuracy of the numerical

solution value and Greeks, our numerical experiments indicate that (a) larger maturity

time results in slightly smaller errors, when the size of the timestep is the same; (b)

larger volatilities result in smaller errors, for value and Deltas and larger for Gammas;

(c) larger correlation result in slightly smaller error for the value, but larger errors for

the Greeks; furthermore, with a larger correlation, the asymptotic rate of convergence is

reached for larger grids.

By comparing the PDE approximations of European Spread option prices with those

obtained by Kirk’s and Li, Deng and Zhou formulae, we find that the Li, Deng and

Zhou formula is more accurate than Kirk’s, and that it is at least as accurate as the

numerical PDE approximation, for [0, 880] × [0, 480] spatial domain, discretized on a

800 × 520 grid with a 0.0025 time stepsize. This shows that the Li, Deng and Zhou

formula is a competitive alternative to numerical PDE approximations. However, it

should be noted that numerical PDE approximations become increasingly more accurate

as the discretization size is refined, while asymptotic approximations do not possess the

property. Furthermore, the asymptotic approximations do not apply to the American

option case.

Regarding the American type options, our numerical results indicate that the dis-

crete penalty iteration method converges in approximately 2-3 iterations per timestep,

independently of the grid discretization, and of the correlation parameter value.

Finally, our numerical results when solving the large sparse linear system arising

at each timestep by an ILU-preconditioned GMRES iterative method indicate that the

number of iterations per timestep (with either zero fill-in or with a threshold parameter
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controlled fill-in) is about 2, independently of the grid discretization, and, therefore, the

ILU-GMRES solver has complexity proportional to the number of unknowns, making it

an asymptotically optimal solver.

6.2 Future Work

In Chapter 5, we mentioned the ADI timestepping method as an efficient alternative to

CN, which we may consider in the future. This timestepping method uses the idea of

operator splitting to solve parabolic PDEs in two or more dimensions. Unlike the tradi-

tional CN timestepping scheme, ADI results in solving a set of tridiagonal linear systems

at each timestep, the total size of which is the same as the number of unknowns. Since

the cost for solving a tridiagonal linear system by standard Gauss elimination (without

pivoting) is proportional to the number of unknowns, the cost of each ADI timestep is

also proportional to the number of unknowns, therefore, asymptotically optimal. How-

ever, in the American option case, the incorporation of the ADI method into the penalty

method is not straightforward. Several techniques have been proposed [5], [9] and [8],

but more research is needed to make the method as widely used as CN. Furthermore, the

studies of convergence and stability of different versions of the ADI timestepping method

are a subject for future research as well.

Another possible future work is the application of adaptive mesh methods to the

multidimensional Black-Scholes PDE problem. Adaptive mesh methods were used in the

numerical solution of the one-dimensional Black-Scholes PDE in [4] and [3]. Also, high-

order methods were used in [3], where the emphasis is on pricing one-asset American

options. The results in [3] indicate that, despite the discontinuities the solution exhibits,

high order of convergence is possible to achieve. Adaptive methods usually compute the

optimal placing of the grid points, so that the norm of the error is minimized, and a

certain level of accuracy is reached with smaller discretization size, than in non-adaptive

methods. However, adaptive mesh methods have not yet been developed and tested for

a high-dimensional pricing problem. Therefore, further study on adaptive mesh methods

for Exchange options or Spread options is needed.
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