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Abstract

Taking into account default risk in the valuation of financial derivatives has become increasingly

important, especially after the 2007-2008 financial crisis. Under some assumptions, the valuation of

financial derivatives, including a value adjustment to account for default risk (the so-called XVA),

gives rise to a nonlinear PDE [9]. We propose numerical methods for handling the nonlinearity in this

PDE, the most efficient of which are discrete penalty iteration methods. We first formulate a penalty

iteration method for the case of European contingent claims, and study its convergence. We then

extend the method to the case of American contingent claims, resulting in a double-penalty iteration.

We also propose boundary conditions and their discretization for the XVA PDE problem in the cases

of call and put options, as well as the case of a forward contract. Numerical results demonstrate the

effectiveness of our methods.

Key words: Partial Differential Equations, Black-Scholes, credit risk, default risk, credit valuation adjustment,

call option, put option, forward contract, nonlinear iteration, finite differences, Crank-Nicolson, control problem,

Hamilton-Jacobi-Bellman (HJB) equation.

1 Introduction

Counterparty credit risk [19, 16], also known as default risk, is the risk that, during the duration of an

agreement, one party fails to make payments to another party. Derivatives also expose counterparties to

credit risk. Since the 2007-2008 financial crisis, it has become a standard practice for derivatives’ sellers

to adjust the value of the derivatives transactions to reflect the possible losses from counterparty default.

This adjustment is usually called credit valuation adjustment (CVA) [19, 16]. However, a more complete

valuation adjustment includes debt valuation adjustment, funding valuation adjustment, etc.

Debt valuation adjustment (DVA) [19, 16] is an estimate of the costs to the counterparty of the seller’s

default risk. It can also be seen as the CVA from the point of view of the counterparty. Funding valuation

adjustment (FVA) is an adjustment to the value of a derivative or a portfolio which is designed to make

sure that a dealer recovers its average funding costs when he or she trades and hedges derivatives.

Although it is still controversial whether or not a seller should charge DVA or FVA to value derivatives

[18, 10, 17], in this work, we leave the debates behind and mainly focus on the mathematical model of

valuation adjustment and the numerical method to solve the arising partial differential equation (PDE).

We now define the total valuation adjustment [16, 1] as

XV A = DVA− CV A+ FV A.

1This research was partly supported by the Ontario Graduate Scholarship (OGS)
2This research was partly supported by the Natural Sciences and Engineering Research Council of Canada (NSERC)
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If V is the unadjusted value of the derivative, e.g. calculated by Black-Scholes-Merton model, and V̂
is the value after taking credit risk into account, then the valuation adjustment is

XV A = V̂ − V. (1)

Note that, the CVA (or XVA) is normally calculated at a counterparty level and not the trade level. This

means the CVA can be different to different counterparties even if they have the same derivatives.

The Basel III regulation framework was developed in response to the 2007-2008 financial crisis. The

committee set rules for OTC market that bilateral trading needs to take default risk and funding costs into

account. Once the rules were set, several methods and frameworks were developed for valuation of deriva-

tives under counterparty risk. Piterbarg [22] derived valuation formulas for the price of derivatives, which

incorporate funding cost and collateral agreements. The new model forces adjustment to the discounting

term of Black-Scholes PDE. Burgard and Kjaer [8, 9, 11] generalized Piterbarg’s model to include sellers

and buyers’ default risk. They applied the replication portfolio approach to derive the PDE representations

of derivatives’ values with bilateral risk and funding costs. Moreover, via the Feymann-Kac theorem, the

solution to the resulting PDE can also be written in terms of expectation. Brigo and his coauthors [5, 6, 7]

introduced a general valuation framework for calculating the bilateral CVA by an expectation representa-

tion of risk valuation including CVA, funding spread and collateralization. Simulation approaches such

as Monte Carlo are used to approximate the arbitrage-free valuation of bilateral counterparty risk under

collateralization. In [5, 6, 7], the analysis focuses on credit default swap (CDS) as underlying portfolios

and claimed CVA can be viewed as an option, so-called contingent credit default swap, on the clean value

of the contract.

Another popular approach to adjustment valuation is based on backward stochastic differential equa-

tion (BSDE) analysis. Crépey [13] introduced a BSDE approach to valuation and hedging of bilateral

counterparty risk on OTC derivatives under funding constraints. Bichuch, Capponi and Strurm [4] also

developed an arbitrage-free valuation framework with a BSDE for the price of European claim taking into

account funding spread, the repo market, collateral servicing costs and counterparty credit risks. They

show that the XVA is unique in the absence of rate asymmetries. A PDE representation of the BSDE was

also shown and studied.

Regarding the PDE arising from the XVA problem, depending on how the derivative is valued in the

case of either party of the contract defaults, a nonlinear term may be included [9]. Hence, appropriate

numerical methods are needed to handle the nonlinear term, as well as the discretization of the PDE.

Arregui, Salvador, and Vázquez consider the PDE models in [9] and price European options with XVA

[1], as well as American options with XVA [2]. In both cases, they use the characteristics method for

timestepping, a finite element method for the space discretization, and a fixed-point iteration scheme to

handle the nonlinearity. The experimental results indicate that their method is first order convergent.

Arregui, Salvador, and Vázquez [3] also developed a Monte Carlo approach to American options pricing

including XVA. They present the adaptation of Monte Carlo to numerically solve the nonlinear term in

the XVA problem.

In our work, we use second-order finite differences in space and Crank-Nicolson discretization in

time, with Rannacher smoothing when needed. We impose boundary conditions that are appropriate for

call and put options, as well as for the forward contract. The main contributions of this work are

• a fast iterative method for handling the nonlinearity in the XVA PDE problem,

• its convergence analysis, as well as

• its extension to American style derivatives’ XVA pricing.
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The paper is organized as follows. In Section 2, we present the formulation of the (European option)

XVA pricing problem as a PDE. In Section 3, we describe the numerical methods used for the discretiza-

tion of the PDE and of the boundary conditions, and introduce two types of iteration methods for handling

the nonlinearity. For the most efficient of these, we present a theorem about its convergence with the proof

found in the Appendix. Section 4 includes the extension of the above methods to the American option

XVA pricing problem. In Section 5, we present numerical experiments to study the behaviour of the pro-

posed methods, for XVA pricing in European and American options. Section 6 presents the conclusions

and possible extensions of this work.

2 Formulation

In this section, we show the PDE representation for the value of a financial derivative, if the effects of

bilateral default risk and the funding costs are considered [9]. The PDE model is extended from Black-

Scholes PDE, driven by using multiple hedging arguments, including underlying assets, the zero-coupon

bonds of the two parties and risk-free zero-coupon bonds. Note that, in [9], the two parties are refereed to

as party B (seller, bank), and party C (counterparty, investor), and we adopt the same naming/notation.

According to the International Swaps and Derivatives Association (ISDA) 2002 Master Agreement,

in case either party of a contract defaults, the value of the derivative is determined by a Mark-to-Market

rule M , which is chosen to be either V̂ or V . Let S be the underlying stock value, σ the volatility in S,

r the risk-free interest rate, γ the dividend yield of S, q the stock repo rate, rB the seller’s bond yield,

rC the counterparty’s bond yield, λB = rB − r (bank hazard rate, instantaneous probability of bank

default), λC = rC − r (counterparty hazard rate), RB the recovery percentage on M if seller defaults,

RC the recovery percentage on M if counterparty defaults, rF the seller’s funding rate for borrowed cash,

where rF = r if derivative can be used as collateral, and rF = r + (1 − RB)λB if derivative cannot

be used as collateral, sF = rF − r. The positive and negative values of any security W are denoted by

W+ ≡ max{W, 0} and W− ≡ min{W, 0}.

Define also the differential operator

L ≡ σ2S2

2

∂2

∂S2
+ (q − γ)S

∂

∂S
− rI.

In [9], under certain assumptions, and using replicating portfolio arguments, the following PDE model

for V̂ is obtained
{

∂V̂
∂t

+ LV̂ = (λB + λC)V̂ − λB(RBM
− +M+)− λC(RCM

+ +M−) + sFM
+,

V̂ (T, S) = H(S).
(2)

where t is the (forward) time variable and T the maturity time of the derivative.

Note also that riskless 3 option value V satisfies the Black-Scholes PDE
{

∂V
∂t

+ LV = 0,

V (T, S) = H(S).
(3)

The Mark-to-Market value M of V̂ at default is often chosen to be V or V̂ . In this paper, we assume

M = V̂ . Then, PDE (2) becomes
{

∂V̂
∂t

+ LV̂ = λB(1− RB)V̂
− + λC(1− RC)V̂

+ + sF V̂
+,

V̂ (T, S) = H(S).
(4)

3“Riskless” derivative in this paper means a financial derivative without considering counterparties’ default risk.
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Let U denote the XVA. Using V̂ = V + U and PDE (3), PDE (4) can be written for U as

{

∂U
∂t

+ LU = λB(1−RB)(V + U)− + λC(1− RC)(V + U)+ + sF (V + U)+,

U(T, S) = 0.
(5)

Note that, in (5), V is considered known. It can be computed by the Black-Scholes formula, or

numerically. Note also that V̂ in (4) and U in (5) are unknown, and, since these PDEs involve unknowns

in the max or min notation, they are nonlinear.

3 Numerical Methods

In order to make PDE (5) convenient for the application of numerical PDE methods, we apply the

variable transformation τ = T − t in the time dimension. Then (5) becomes the initial value problem

{

∂U
∂τ

= LU + f(U, V ),

U(0, S) = 0
(6)

where

f(U, V ) ≡ −(λB(1− RB)(U + V )− + λC(1− RC)(U + V )+ + sF (U + V )+). (7)

3.1 Discretization

In this subsection, we present the discretization of (6). The semi-infinite space domain of spot price

S is truncated into [0, Smax], for sufficiently large Smax. Then, [0, Smax] is divided into N sub-intervals,

with the gridpoints positioned uniformly or non-uniformly. Standard second-order finite differences are

used for the space discretization of (6).

We assume that the timestepping is handled by the θ-method, which, for θ = 1
2

and θ = 1 becomes

the Crank-Nicolson (CN) and Backward Euler methods, respectively.

3.2 Boundary conditions

As we indicated before, we need to truncate the semi-infinite domain [0,+∞) into [0, Smax]. We also

need to formulate boundary conditions when S = 0 and S = Smax. To obtain the left boundary condition,

we substitute S = 0 into (6) and get

∂U

∂τ
= −rU + f(U, V ) (8)

which can be seen as a first-order ordinary differential equation (ODE), computing approximate values of

U(τ, 0) used as Dirichlet conditions.

Regarding the far-side boundary condition, when Smax is large enough, the behavior of derivative

price V̂ after value adjustment is expected to be similar to the Black-Scholes derivative price V . A choice

of far-side boundary condition often used in Black-Scholes PDE is the linear boundary condition

lim
S→∞

∂2U

∂S2
= 0. (9)
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If we apply the far-side boundary condition (9) directly to (6) as in [24], the PDE at S = Smax becomes

∂U

∂τ
= (q − γ)S

∂U

∂S
− rU + f(U, V ), (10)

where the first derivative term can be discretized by first-order or second-order one-sided difference

scheme. The implementation of the linear boundary condition by discretizing (10) applies to all deriva-

tives considered in this paper.

Alternatively, we can implement the linear boundary condition (9) by considering the PDE problem

{

∂V̂
∂τ

= LV̂ − λB(1− RB)V̂
− − λC(1− RC)V̂

+ − sF V̂
+,

V̂ (0, S) = H(S).
(11)

arising from (4) with τ = T − t. As explained again in [24], we assume that, close to Smax and beyond,

we have

V̂ (τ, S) = α(τ)S + β(τ). (12)

For some financial derivatives, taking into account the asymptotic behaviour of V̂ as S → Smax, allows

us to know the sign of V̂ (τ, Smax), which simplifies the right hand side −λB(1 − RB)V̂
− − λC(1 −

RC)V̂
+ − sF V̂

+ to either the positive or the negative terms. Substituting V̂ of (12) into the PDE (11)

with the simplified right hand side, results in two ODEs for α(τ) and β(τ), respectively, which can be

solved to give rise to Dirichlet boundary conditions for V̂ (τ, Smax), and thus for U(τ, Smax). Clearly, the

boundary conditions depend on the type of financial derivative studied. More specifically, for a European

Call or Long Forward, we obtain

U(τ, Smax) = (e(−λC (1−RC)−sF )τ − 1)(e(q−γ−r)τSmax − e−rτK), (13)

while for a European Put and any financial derivative whose value decays to 0 as S → Smax, we obtain

U(τ, Smax) = 0. (14)

3.3 Iteration methods for nonlinear PDE

In this subsection, we introduce two iteration methods, with emphasis on the second one, to handle

the nonlinearity in PDE (6).

Let τj , j = 0, . . . , Nt, be the timesteps at which the solution is computed, with τ0 = 0 < τ1 <
· · · < τNt

= T , and ∆τ j = τj − τj−1 be the jth time stepsize. Let uj, j = 0, . . . , Nt, denote the

computed solution vector arising from the approximate values of U at the spatial gridpoints at time τj ,
with u0 being the initial condition vector. Since we use an iteration method to handle the nonlinearity, let

uj,k, k = 0, . . . , maxit, denote the computed solution vector at iteration k of timestep j, with maxit the

maximum number of iterations allowed. Let vj , j = 0, . . . , Nt, be the vector of values of V at the spatial

gridpoints, and at timestep j. Note that the values of V can be computed using the Black-Scholes formula

directly. For generic vectors u and v arising from (approximate) values of U and V , respectively, at the

spatial gridpoints, let f(u, v) denote the vector arising from evaluating f at the components of u and v.

Let also A be the matrix arising from the space discretization of LU , and I be the identity matrix of same

order. For simplicity, we assume the spatial gridpoints remain the same at all timesteps.

The first iteration method is a fixed-point iteration method similar to the one in [1]. We remark

that the fixed-point iteration method in [1] assumes that the timestepping is handled by the method of
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characteristics and the space discretization by a finite element method. In our paper, we consider CN

timestepping and centered differences in space. Thus, at each timestep we need to solve

(I− θ∆τ jA)uj = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jf(uj, vj) + (1− θ)∆τ jf(uj−1, vj−1). (15)

Then the fixed-point iteration method at time τ j can be described as Algorithm 1.

Algorithm 1 Fixed-point iteration for (6) at step j, with θ-timestepping

Require: Solve (I− θ∆τ jA)uj = gj + θ∆τ jf(uj, vj)
where gj = (I+ (1− θ)∆τ jA)uj−1 + (1− θ)∆τ jf(uj−1, vj−1)

1: Initialize uj,0 = uj−1

2: for k = 1, . . . , maxit do

3: Solve (I− θ∆τ jA)uj,k = gj + θ∆τ jf(uj,k−1, vj)
4: if stopping criterion satisfied then

5: Break

6: end if

7: end for

8: Set uj = uj,k

The stopping criterion in Algorithm 1, motivated by [15], is

max
i

|uj,k
i − uj,k−1

i |
max(1, |uj,k

i |)
≤ tol. (16)

where tol is a user-chosen tolerance.

The above iteration method is considered to be explicit, in the sense that the matrix solved at each

iteration is the same and only the right-hand side vector changes.

Regarding the convergence of the fixed-point iteration, we can write it as uj,k = G(uj,k−1), where

G(uj,k−1) = (I − θ∆τ jA)−1(gj + θ∆τ jf(uj,k−1, vj)), and show that G is a contraction, for sufficiently

small ∆τ j . We do not go into details, as the focus of this paper is not to study the convergence of the

fixed-point iteration.

We next present another iteration method for handing the nonlinearity in (6). We refer to it as discrete

penalty-like iteration, or, simply, penalty iteration, as it is motivated by the same-name method in [15],

designed to handle the nonlinear PDE arising from the linear complementarity problem (LCP) in Amer-

ican option pricing. For this reason, with generic vectors u and v, we define the diagonal penalty matrix

P = P (u, v) by

[P (u, v)]ii ≡
{

−λB(1− RB) if ui + vi < 0

−λC(1− RC)− sF if ui + vi ≥ 0
(17)

Note that, with the above matrix P , the vector arising from the discretized form of f(U, V ) can be written

as

f(u, v) = P (u, v)(u+ v) (18)

where, since P (u, v) depends on u, there is nonlinearity between P (u, v) and u. Note also that, if λB ≥ 0,

λC ≥ 0, and sF ≥ 0, we have Pi,j(u, v) ≤ 0. With the help of the matrix P , we can also write (15) as

(I− θ∆τ j(A+P (uj, vj)))uj = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jP (uj, vj)vj + (1− θ)∆τ jf(uj−1, vj−1).
(19)
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We can view the penalty iteration method as generalized Newton’s method applied to the nonsmooth

nonlinear problem (15) with the nonlinear term given by (18), and the generalized Jacobian defined by

∂[f(u, v)]i
∂uj

≡
{

[P (u, v)]ii if i = j

0 otherwise.
(20)

Let now P k = P (uj,k, vj), where for brevity, in the notation P k, we omitted the superscript j. Using

the penalty matrix P k, the proposed discrete penalty iteration for (6) is described in Algorithm 2.

Algorithm 2 Discrete penalty-like iteration for (6) at step j, with θ-timestepping

Require: Solve (I− θ∆τ j(A+ P (uj, vj)))uj = gj + θ∆τ jP (uj, vj)vj

where gj = (I+ (1− θ)∆τ jA)uj−1 + (1− θ)∆τ jf(uj−1, vj−1)
1: Initialize uj,0 = uj−1 and P 0 = P (uj,0, vj)
2: for k = 1, . . . , maxit do

3: Solve (I− θ∆τ j(A+ P k−1))uj,k = gj + θ∆τ jP k−1vj

4: Compute P k = P (uj,k, vj)
5: if stopping criterion satisfied then

6: Break

7: end if

8: end for

9: Set uj = uj,k

The stopping criterion in Algorithm 2, motivated again by [15] is

(P k = P k−1) or (max
i

|uj,k
i − uj,k−1

i |
max(1, |uj,k

i |)
≤ tol). (21)

Note that the second iteration method is considered to be implicit, in the sense that the matrix solved

at each iteration depends on the iteration index k. However, since the matrix solved at each iteration is

adjusted by only a diagonal matrix, the sparsity structure of the matrix remains the same, which is also

the same structure of the matrix corresponding to a linear PDE with same differential operator as in (6).

Note also that, if λB ≥ 0, λC ≥ 0, the matrix P enhances the diagonal dominance of A.

In order to study the convergence of the discrete penalty-like iteration, we make use of a monotonicity

argument for the matrix A. In [12], sufficient conditions are derived under which the matrix arising

from the discretization of L by finite differences and with Dirichlet boundary conditions on both ends is

strictly diagonally dominant with negative diagonal entries and non-negative off-diagonal entries (Lemma

4.1 in [12]), therefore, monotone. To facilitate the monotonicity argument for the proof of Theorem 1,

we consider that A is formed with Dirichlet conditions at both ends, such as those described in Section

3.2. We also assume that the conditions of Lemma 4.1 in [12] hold and, therefore, A is non-singular,

monotone and an M-matrix. It is easy to see that, under the same conditions, (I − θ∆τ j(A + P k−1)) is

also non-singular, monotone and an M-matrix.

THEOREM 1 (Convergence of discrete penalty-like iteration). Under the assumption that the matrix of

the linear system at each iteration in Algorithm 2, i.e. (I− θ∆τ j(A+ P k−1)), is monotone, then

(i) The discrete penalty-like iteration converges to the unique solution.
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(ii) The iteration converges monotonically.

(iii) The iteration has finite termination.

Proof. See Appendix A.

REMARK 1 The PDE problem (6), with the nonlinear term in (7), can be written as a control problem

∂U

∂τ
= LU + max

θ1∈{0,1}
min

θ2∈{0,1}
[−θ1λB(1−RB)(U + V )− θ2(λC(1−RC) + sF )(U + V )] , (22)

where θ1 and θ2 are two controls corresponding to the cases that U+V is negative or positive, respectively.

Since the problem involves both max and min, it can be viewed as a Hamilton-Jacobi-Bellman-Isaacs

(HJBI) problem. For such problems, in general, the Newton-type iteration scheme is not guaranteed

to converge, unless the initial guess is close enough to the solution, or a more complex treatment is

considered [14, 20]. However, in our case, the control problem (22) is such that it can be reduced to a

single control with only max or min terms. More specifically, if −λC(1−RC)− sF ≤ −λB(1−RB) ≤ 0,

problem (22) can be written as

∂U

∂τ
= LU + min

θ∈{0,1}
[−(1− θ)λB(1− RB)(U + V )− θ(λC(1−RC) + sF )(U + V )] (23)

while, if −λB(1−RB) < −λC(1−RC)− sF ≤ 0, problem (22) can be written as

∂U

∂τ
= LU + max

θ∈{0,1}
[−(1− θ)λB(1−RB)(U + V )− θ(λC(1− RC) + sF )(U + V )] . (24)

both of which can be viewed as Hamilton-Jacobi-Bellman (HJB) problems. For problems (23) and (24),

the monotonicity argument can be used to show global convergence [15, 14, 20].

4 XVA in American Derivatives

Just as the formulation of the American derivative pricing problem can be presented as a linear comple-

mentarity problem (LCP) [15, 23], the formulation of the XVA pricing problem in American derivatives

can also be presented as an LCP [2].

We consider the case M = V̂ , and, as in [2], build the formulation of XVA pricing in American

derivatives starting from Equation (5) and adding appropriate constraints that force the adjusted price

V̂ (t, S) to be above the pay-off V ∗(t, S).
Then, the American derivative price V̂ , if taking risk into account, satisfies

{

∂V̂
∂t

+ LV̂ + f(V̂ ) = 0

V̂ − V ∗ ≥ 0

}

∨
{

∂V̂
∂t

+ LV̂ + f(V̂ ) ≥ 0

V̂ − V ∗ = 0

}

(25)

where

f(V̂ ) = −(λB(1− RB)V̂
− + λC(1− RC)V̂

+ + sF V̂
+) (26)

and the notation ∨ means ”or”. Typically at each time t, there is a particular asset price S∗ which divides

the asset price domain into two regions: one side that corresponds to the left condition of (25), where it
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is suggested to hold the option, and another side that corresponds to the right condition of (25), where it

is suggested to early exercise the option. This particular value of S∗ is unknown before the differential

equation is solved, and is usually called free boundary of LCP.

Note that the value V (t, S) of American derivatives without valuation adjustment satisfies the LCP [15]

{

∂V
∂t

+ LV = 0
V − V ∗ ≥ 0

}

∨
{

∂V
∂t

+ LV ≥ 0
V − V ∗ = 0

}

(27)

Furthermore, note that equations (25) and (27) have the same terminal condition V̂ (T, S) = V (T, S) =
H(S) where H(S) is pay-off function at maturity.

The LCP problem (27) also has a free boundary. However it is not guaranteed that the two free

boundaries of equations (25) and (27) are the same. Hence, it is impossible to find an individual PDE for

the XVA value U(t, S). In this section, we mainly focus on numerically solving (25).

4.1 Reformulation to penalty form

Forsyth and Vetzal [15] proposed the discrete penalty method to numerically solve the LCP arising

from one-asset American option without XVA. They replace (27) by a nonlinear PDE via adding a large

positive penalty term to the right hand side of the Black-Scholes equation.

In the American XVA problem, a similar penalty term can be added. If backward time τ = T − t is

applied, the penalty form of (25) is written as

{

∂V̂
∂τ

= LV̂ + f(V̂ ) + pmax(V ∗ − V̂ , 0),

V̂ (0, S) = H(S),
(28)

where p is a large positive penalty factor. The penalty term forces the solution of (25) to approximately

satisfy the obstacle condition V̂ − V ∗ ≥ 0.

As in Section 3.2, the boundary conditions for S = 0 are formed by solving

∂V̂

∂τ
= −rV̂ + f(V̂ ) + pmax(V ∗ − V̂ , 0), (29)

while for S = Smax, the linear boundary condition

lim
S→∞

∂2V̂

∂S2
= 0,

is implemented either by discretizing

∂V̂

∂τ
= (q − γ)S

∂V̂

∂S
− rV̂ + f(V̂ ) + pmax(V ∗ − V̂ , 0), (30)

or by the alternative that gives rise to Dirichlet conditions that depend on the type of financial derivative

considered. For an American Call or Long Forward, we obtain

V̂ (τ, Smax) = max{e(−λC(1−RC)−sF )τ (e(q−γ−r)τSmax − e−rτK), Smax −K}, (31)

while, for an American Put,

V̂ (τ, Smax) = 0. (32)
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4.2 Double-penalty iteration method

Penalty term discretization

The timestepping method and the space discretization for LV̂ in (28) are similar to those for the

European case. We now discuss the treatment of the penalty term pmax(V ∗ − V̂ , 0) and the nonlinear

term f(V̂ ). Let v̂j , j = 0, . . . , Nt, be the computed solution vector arising from the approximate values

of V̂ at the spatial gridpoints at time τj . Also let v∗ be the vector of values of pay-off V ∗ at the spatial

gridpoints.

When computing the numerical solution v̂j at step j, the penalty term pmax(V ∗− V̂ , 0) (arising from

the American feature) is discretized as PA(v̂
j)(v∗ − v̂j), where PA(v̂

j) is a diagonal matrix defined by

[PA(v̂
j)]ii ≡

{

p if (v̂j)i < (v∗)i,

0 otherwise.
(33)

The nonlinear term f(V̂ ) (arising from the XVA) is discretized as PX(v̂
j)(v̂j), where PX(v̂

j) is also a

diagonal matrix defined by

[PX(v̂
j)]ii ≡

{

−λB(1− RB) if (v̂j)i < 0,

−λC(1−RC)− sF if (v̂j)i ≥ 0.
(34)

Therefore, to compute v̂j , given v̂j−1, the following system of algebraic equations needs to be solved:

[I− θ∆τ j(A+ PX(v̂
j))]v̂j + PA(v̂

j)v̂j

= (I+ (1− θ)∆τ jA)v̂j−1 + (1− θ)∆τ jPX(v̂
j−1)v̂j−1 + PA(v̂

j)v∗. (35)

Note that there are two sources of nonlinearity, namely PA(v̂
j) and PX(v̂

j), with respect to v̂j . Algorithm

2 and the penalty iteration method to value American option [15] are combined into one iteration method,

which can be viewed as generalized Newton’s method, to solve (35). In the construction of PA, the large

penalty factor p is chosen as

p =
1

tol
where tol is the tolerance for the stopping criterion of the iteration method.

Double-penalty iteration

If we view the nonlinear term f(V̂ ) or its discrete form PX(v̂
j)(v̂j) as a second penalty term, this

generalized Newton’s iteration method to solve (35) at each timestep can be called discrete double-penalty

iteration for American XVA pricing.

The stopping criterion in Algorithm 3, modified from (21), is

[

(P k
A = P k−1

A ) and (P k
X = P k−1

X )
]

or
[

max
i

|v̂j,ki − v̂j,k−1
i |

max(1, |v̂j,ki |)
≤ tol

]

. (36)

Since the matrix solved at each iteration is adjusted by only two diagonal matrices, the sparsity struc-

ture of the matrix remains the same. Also since the penalty parameter p is positive, the matrix PA enhances

the diagonal dominance of I− θ∆τ j(A+ P k−1
X ). It is easy to see that the matrix [I− θ∆τ j(A+P k−1

X ) +
P k−1
A ] is also non-singular, monotone and an M-matrix, under the conditions of Lemma 4.1 in [12], as-

suming Dirichlet conditions are used.
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Algorithm 3 Discrete double-penalty iteration for (28) at step j, with θ-timestepping

Require: Solve [I− θ∆τ j(A+ PX(v̂
j))]v̂j + PA(v̂

j)v̂j = gj + PA(v̂
j)v∗

where gj = (I+ (1− θ)∆τ jA)v̂j−1 + (1− θ)∆τ jPX(v̂
j−1)v̂j−1.

1: Initialize v̂j,0 = v̂j−1, P 0
A = PA(v̂

j,0) and P 0
X = PX(v̂

j,0)
2: for k = 1, . . . , maxit do

3: Solve [I− θ∆τ j(A+ P k−1
X ) + P k−1

A ]v̂j,k = gj + P k−1
A v∗

4: Compute P k
A = PA(v̂

j,k) and P k
X = PX(v̂

j,k)
5: if stopping criterion satisfied then

6: Break

7: end if

8: end for

9: Set v̂j = v̂j,k

REMARK 2 The penalty form of the American XVA problem (28) can also be written in a control problem

form as,

∂V̂

∂τ
= LV̂ + max

θ1,θ3∈{0,1}
min

θ2∈{0,1}

[

−θ1λB(1− RB)V̂ − θ2(λC(1−RC) + sF )V̂ + θ3p(V
∗ − V̂ )

]

, (37)

which involves three controls and both max and min.

When −λC(1 − RC) − sF ≤ −λB(1 − RB) ≤ 0, problem (37) cannot be reduced into a single max

or min control problem, and the monotonicity argument fails in the convergence study. Note that θ1 and

θ2 depend on the same value V̂ , but θ3 depends on another, namely (V ∗ − V̂ ), arising from American

constraints.

When −λB(1 − RB) < −λC(1 − RC) − sF ≤ 0, which is a less frequent and less interesting case,

problem (37) will end up with a single max

∂V̂

∂τ
= LV̂ + max

θ1,θ3∈{0,1}

[

−(1 − θ1)λB(1−RB)V̂ − θ1(λC(1− RC) + sF )V̂ + θ3p(V
∗ − V̂ )

]

. (38)

To address the convergence problem in HJBI problem, the authors in [20], with appropriate assump-

tions and more complex arguments, show global convergence for a certain class of HJBI boundary value

problems. In [14], other treatments, e.g. a relaxation scheme, or a piecewise constant policy timestepping,

are proposed that guarantee global convergence. For our double-penalty method, we did not show global

convergence, but, as demonstrated in the numerical experiments, the algorithm exhibits fast convergence.

It is worth noting, that, in an initial value problem, a close enough to the solution initial guess is relatively

easy to obtain for each timestep.

5 Numerical Results

We present numerical results from applying Algorithms 1 and 2 for the pricing of XVA in European

Put, Call and Long Forward, as well as Algorithm 3 for the pricing of American Put, Call and Long

Forward including XVA.
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5.1 Examples of XVA in European derivatives

Table 1 presents the values of parameters used in the experiments in this section. These parameters

have the same values as those used in the examples in [1, 9], except the Smax value, which, in [1, 9], is

4K. A discussion on localization is found later in the section.

Parameter Value

Domain of S [0, 12K]
Strike Price, K 15

Time to maturity, T 5

Volatility, σ 0.25

Repo rate minus dividend, q − γ 0.015

Interest rate, r 0.03

Default intensity of party B, λB 0.02

Default intensity of party C, λC 0.05

Recovery rate of party B, RB 0.4

Recovery rate of party C, RC 0.4

Funding spread, sF (1−RB)λB

Table 1: Model parameters for bilateral XVA in European derivatives.

We discretize the spatial domain into N subintervals, so that the (nonuniform) gridpoints are concen-

trated around the strike K. We discuss later how we generate nonuniform gridpoints and what the effect of

nonuniform grids is compared to uniform ones. The spatial derivatives are discretized by standard second-

order centered differences, except the first derivative in the far-side condition (10), which is discretized

by backward differences. It is worth mentioning that the implementation of the linear boundary condition

through (10) is simple and does not require explicit knowledge of the sign of the solution at Smax, so we

obtained all the displayed results using (10). However, we also experimented with the alternative imple-

mentation of the linear boundary condition, which gives rise to Dirichlet conditions (13) or (14), and the

numerical results obtained were identical across all points (within about 7 digits of precision) with those

obtained by discretizing (10). The number of timesteps is denoted by Nt, and ∆τ = T/Nt. Note that

Rannacher smoothing is not needed (and therefore not applied) for the numerical solution of (5), since the

initial condition is smooth.

In all tables below, “iter tot 1” and “iter avg 1” are total and average (per timestep) number of iterations

for Algorithm 1, and “iter tot 2” and “iter avg 2” are total and average (per timestep) number of iterations

for Algorithm 2. The tolerance for both iteration schemes was set to 10−7.

5.1.1 Call and put options

We present results from pricing the XVA of European options with the parameter settings in Table 1.

For European call and put options, we have an exact solution formula as given in [9]

U(τ, S) = −(1− exp(−((1− RB)λB + (1− RC)λC)τ))V (τ, S), (39)

where the V (τ, S) can be calculated in closed-form. Thus we can calculate exact errors and the associated

convergence orders.

In Tables 2 and 3, we report, for several discretization sizes, the discrete L∞-norm error over all

gridpoints at time τ = T (t = 0), the associated convergence orders, and the total and average per
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N Nt error in U order iter tot 1 iter avg 1 iter tot 2 iter avg 2

50 100 1.41e-03 – 300 3.00 119 1.19

100 200 3.54e-04 2.00 600 3.00 242 1.21

200 400 8.86e-05 2.00 1200 3.00 415 1.04

400 800 2.21e-05 2.00 2400 3.00 814 1.02

800 1600 5.54e-06 2.00 3934 2.46 1614 1.01

Table 2: Results from solving (6) for a European Put using Algorithms 1 and 2 with the parameters in

Table 1. Nonuniform grids are used.

N Nt error in U order iter tot 1 iter avg 1 iter tot 2 iter avg 2

50 100 1.41e-03 – 400 4.00 105 1.05

100 200 3.54e-04 2.00 600 3.00 214 1.07

200 400 8.86e-05 2.00 1200 3.00 430 1.08

400 800 2.22e-05 2.00 2400 3.00 842 1.05

800 1600 5.54e-06 2.00 4800 3.00 1635 1.02

Table 3: Results from solving (6) for a European Call using Algorithms 1 and 2 with the parameters in

Table 1. Nonuniform grids are used.

timestep number of iterations. We notice that the average number of penalty-like iterations is very close

to 1, irrespectively of the grid size, while the fixed-point iteration algorithm needs 2 to 3 average number

of iterations to reach the same tolerance, where, again, the number of iteration seems independent of grid

size. Note that the number of penalty iterations is close to optimal. Essentially, in each of the first few

timesteps two or three iterations are needed, and in each of the remaining timesteps just one iteration. We

also mention that the two iteration schemes produced exactly the same errors for each of the discretization

sizes, therefore, we only report one column of errors. The order of convergence is stably 2.
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Figure 1: A visualization of various financial derivative values with (V̂ ) or without (V ) XVA with the

parameters in Table 1. The difference between these two curves is XVA.

In Figure 1, left and centre plots, we visualize V and V̂ = V + U for European call and put options.

For these options, the XVA is negative and V is above V̂ .
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Discussion on localization

The choice of Smax is crucial for an accurate solution. In [21], for European vanilla option, the far-side

boundary is chosen so that

Smax > K exp(
√

2σ2T | ln(tol)|), (40)

where tol is the computing tolerance. An alternative far-side boundary is suggested in [24]

Smax > K exp((r − q − σ2

2
)T + σν

√
T ), (41)

where ν = 3 is the usual choice for a European option to have small error around S = K. If smaller

error along the whole price domain is required, ν can be set as 5. In our experiments, we have used

Smax = 12K for the 5-yr long European options, which seems to agree more with (41), with ν = 4.6.

Our experiments indicate that this choice of Smax balances the domain truncation and discretization errors

for the finest grid resolution.

To show the sensitivity of the accuracy of the solution to the choice of Smax, in Table 4, we present

results from the XVA valuation of a European call option with the parameters of Table 1, except that we

set Smax = 10K in one experiment and Smax = 8K in another. We only report results from Algorithm

2, as the focus of this discussion is on the error of the computed approximations. These results should be

compared to those in Table 3, which has Smax = 12K.

N Nt error in U order iter tot 2 iter avg 2

Smax = 10K
50 100 1.19e-03 – 106 1.06

100 200 2.98e-04 2.00 217 1.09

200 400 7.45e-05 2.00 431 1.08

400 800 1.86e-05 2.00 842 1.05

800 1600 9.84e-06 0.92 1631 1.02

Smax = 8K
50 100 9.30e-04 – 106 1.06

100 200 2.34e-04 1.99 219 1.10

200 400 5.85e-05 2.00 442 1.11

400 800 5.24e-05 0.16 846 1.06

800 1600 5.26e-05 -0.00 1635 1.02

Table 4: Results from solving (6) for a European Call using Algorithm 2 with the parameters in Table 1,

except that Smax is as indicated. Nonuniform grids are used.

In Table 4, we notice that, although the penalty iteration with different choices of Smax converges

as fast as with Smax = 12K, the error with Smax = 10K and N = 800 does not exhibit second order

convergence. This phenomenon is more obvious for Smax = 8K and N ≥ 400. It is worth noting, that

the errors for Smax = 10K are smaller than the respective errors for Smax = 12K. This is because the

localization error for Smax = 10K is smaller than the discretization one, and the latter one is smaller than

the discretization error for Smax = 12K.

Discussion on nonuniform space discretizations

In the derivative pricing problem, nonuniform discretization, with denser points around the strike,

is often preferred, as the area around the strike exhibits more nonlinearity, and is more “interesting” to
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practitioners.

Smooth mappings of equally spaced gridpoints are often used to generate appropriate nonuniform

discretizations. Suppose the domain is [0, Smax] and it is equally divided into N subintervals, with xi

being the gridpoints, i.e. xi = ih, h = Smax

N
, where i = 0, 1, . . . , N . The smooth mapping w(x) generates

the nonuniform grid as

Si ≡ w(xi) = (1 +
sinh(β − (xi/xN − α))

sinh(βα)
)K (42)

where K is the strike. This mapping produces denser gridpoints around K. Larger parameter α increases

the density of the points. The purpose of parameter β is to ensure the last gridpoint is Smax. In practice,

α is set around 0.4, so that the strike is aligned with a gridpoint.

In Tables 5 and 6, we report, for several discretization sizes, the discrete L∞-norm error over all

gridpoints at time τ = T (t = 0), the associated convergence orders, and the total and average per

timestep number of iterations, if uniform discretization is used. Compared to the results with nonuniform

grid as shown in Tables 2 and 3, it is obvious that, if the same number of grid points and time steps are

used (same computation cost), finer gridpoints around the strike result in smaller maximum error. It is

worth noting that all these methods have second order convergence, as expected.

N Nt error in U order iter tot 2 iter avg 2

50 100 2.64e-03 – 135 1.35

100 200 6.33e-04 2.06 250 1.25

200 400 1.57e-04 2.01 427 1.08

400 800 3.95e-06 1.99 822 1.03

800 1600 9.87e-06 2.00 1614 1.01

Table 5: Results from solving (6) for a European Put using Algorithm 2 with the parameters in Table 1.

Uniform discretization is used.

N Nt error in U order iter tot 2 iter avg 2

50 100 2.64e-03 – 104 1.04

100 200 6.33e-04 2.06 208 1.04

200 400 1.57e-04 2.01 420 1.05

400 800 3.95e-05 1.99 846 1.06

800 1600 9.88e-06 2.00 1665 1.04

Table 6: Results from solving (6) for a European Call using Algorithm 2 with the parameters in Table 1.

Uniform discretization is used.

5.1.2 Forward contract

In this example, we present results from pricing the XVA of a 5-year long forward contract with the

parameters in Table 1. For this problem, we don’t have an exact solution to calculate exact errors and

corresponding convergence orders. Thus the errors at one resolution are estimated from the difference to

the previous (coarser) resolution.

In Table 7, we report, for several discretization sizes, the differences on the coarser gridpoints at time

τ = T (t = 0), the associated convergence orders, and the total and average per timestep number of

iterations. We observe similar performance in convergence and number of iterations as in the call and put
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option examples. The average number of iterations with Algorithm 2 is still very close to 1, independently

of the grid size. The average number of iterations with Algorithm 1 is about 2 to 3, independently of the

grid size as well. The order of convergence is stably 2.

N Nt diff in U order iter tot 1 iter avg 1 iter tot 2 iter avg 2

50 100 – – 400 4.00 102 1.02

100 200 7.58e-04 – 600 3.00 206 1.03

200 400 1.90e-04 2.00 1200 3.00 412 1.03

400 800 4.76e-05 2.00 2400 3.00 821 1.03

800 1600 1.19e-05 2.00 4800 3.00 1644 1.03

Table 7: Results from solving (6) for a long forward contract using Algorithms 1 and 2 with the parameters

in Table 1. Nonuniform grids are used.

The right part of Figure 1 shows the long forward contract value with and without XVA. The difference

between the two curves is XVA. In this figure, the two curves cross each other. To the left of the crossing

point, the value with XVA is higher than the value without XVA, which means that, when the contract is

made, party B needs to pay the XVA to party C. On the contrary, to the right of the crossing point, where

the value with XVA is less than the value without XVA, the party B needs to charge the XVA to party C.

5.2 Examples of XVA in American derivatives

We consider the pricing of American Put, Call and Long Forward including XVA, with the parameter

settings in Table 8, and the Mark-to-Market value M = V̂ . The parameter settings are the same as in

[3] (except that the approach in [3] is a Monte Carlo one and there is no preset Smax). Tables 9 and 10

show the results from solving (28), using centered differences in space, Crank-Nicolson with Rannacher

smoothing in time, and Algorithm 3 for the nonlinearity. The tolerance for Algorithm 3 was set to 10−7,

while the penalty parameter p was set to 107. We experimented with the far-side condition (30), discretized

by backward differences, and with its alternative implementation which gives rise to Dirichlet conditions

(31) or (32), and the numerical results obtained were identical (for the points shown and within the digits

of precision displayed).

Parameter Value

Domain of S [0, 10K]
Strike Price, K 15

Time to maturity, T 0.5

Volatility, σ 0.25

Repo rate minus dividend, q − γ 0.06

Interest rate, r 0.04

Default intensity of party B, λB 0.04

Default intensity of party C, λC 0.04

Recovery rate of party B, RB 0.3

Recovery rate of party C, RC 0.3

Funding spread, sF (1−RB)λB

Table 8: Model parameters for American derivatives’ pricing including bilateral XVA.

For the American derivatives valuation including XVA, the exact solution is not available. To calculate

approximate errors, for the American Put case, we pick three points around or on the strike S = K = 15,
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one at the money, one in the money, and one out of the money. For the American Call and Long Forward

cases, we only show results at the money. At each point, the error at one resolution is estimated from

the difference to the previous (coarser) resolution. The numerically observed orders of convergences are

around two.

Looking at the number of iterations, we easily see that the average number of penalty iterations in

each timestep is around 1.2, which is slightly larger than in the European case. We expect an increase in

the number of iterations, since (28) has more nonlinear terms than (6). It is also important to mention that

the convergence of penalty iteration for American derivatives including XVA is still independent of the

discretization size.

N Nt iter tot iter avg
V̂ value for S = 15

value diff in V̂ order

50 42 50 1.19 0.86422480 – –

100 82 98 1.20 0.86679812 2.57e-03 –

200 162 196 1.21 0.86751795 7.20e-04 1.84

400 322 396 1.23 0.86771336 1.95e-04 1.88

800 642 801 1.25 0.86776884 5.55e-05 1.82

N Nt
V̂ value for S = 14 V̂ value for S = 16

value diff in V̂ order value diff in V̂ order

50 42 1.37720716 – – 0.51568505 – –

100 82 1.37913317 1.93e-03 – 0.51844504 2.76e-03 –

200 162 1.37960142 4.68e-04 2.04 0.51909720 6.52e-04 2.08

400 322 1.37973315 1.32e-04 1.83 0.51928378 1.87e-04 1.81

800 642 1.37976510 3.19e-05 2.04 0.51933352 4.97e-05 1.91

Table 9: Results on three points from solving (28) for American Put option valuation including bilateral

XVA using Algorithm 3 with the parameters in Table 8. Nonuniform grids are used.

N Nt iter tot iter avg
V̂ value for Call Option

value diff in V̂ order

50 42 43 1.02 1.25145331 – –

100 82 84 1.02 1.25384939 2.40e-03 –

200 162 165 1.02 1.25445008 6.01e-04 2.00

400 322 330 1.02 1.25460036 1.50e-04 2.00

800 642 654 1.02 1.25463794 3.76e-05 2.00

N Nt iter tot iter avg
V̂ value for Long Forward

value diff in V̂ order

50 42 47 1.12 0.42849973 – –

100 82 92 1.12 0.42848609 1.36e-05 –

200 162 183 1.13 0.42848264 3.46e-06 1.98

400 322 366 1.14 0.42848177 8.64e-07 2.00

800 642 726 1.13 0.42848156 2.16e-07 2.00

Table 10: Results from solving (28) for other American derivatives including bilateral XVA using Algo-

rithm 3 with the parameters in Table 8 when S is at the money (S = K = 15). Nonuniform grids are

used.
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In order to compare the American and European option prices with and without XVA, we consider

again the parameter settings in Table 8, and solve the respective problems with a Put initial condition.

Figure 2 plots the prices. The centre plot is a zooming of the large box in left plot, while the right plot is a

zooming of the small box in left plot. We observe that both V and V̂ of American type options are above

the pay-off and above V and V̂ of European type. European V and V̂ cross the pay-off. In both American

and European type options, the values of V̂ are lower than the values of V , as expected.

0 10 20 30

S

0

5

10

15

v
a
lu

e

12 12.5 13 13.5 14 14.5

S

1.5

2

2.5

3

v
a
lu

e

14.5 15 15.5

S

0.6

0.7

0.8

0.9

1

1.1

1.2

v
a

lu
e

Figure 2: A visualization of European and American Put V and V̂ . The center plot is a zooming of the

large box in the left plot, while the right plot is a zooming of the small box in left plot. AM V and

AM V̂ (EU V and EU V̂ ) are abbreviations for American (European) derivative prices not including

and including XVA, respectively.

6 Conclusions

We formulated and studied iterative methods for the nonlinearity of the PDE problem arising when

taking into account the (possibly bilateral) credit risk in valuing financial derivatives. It is shown that sim-

ple fixed-point iteration methods for the European XVA PDE problem require 3-4 iterations per timestep,

while the proposed discrete penalty iteration converges in less than 1.1 (average) iterations per timestep.

For the American XVA PDE problem the proposed double-penalty iteration converges in less than 1.15

(average) iterations per timestep. The main conclusion of this work is that the proposed penalty iteration

methods are powerful (nearly optimal) techniques for handling nonlinearities in the context of financial

derivative XVA pricing by a PDE model. The penalty methods proposed can be extended to multi-asset

financial derivatives pricing, and to stochastic default intensities XVA pricing, once the associated PDE

problem is derived.

Regarding the boundary conditions, a secondary conclusion is that the linear far-side condition and its

proposed discretization is appropriate for all European and American contingent claims considered.

Appendix A. Proof of Theorem 1

Recall that, during timestep j, the system to be solved at iteration k, for k ≥ 1, is

(I− θ∆τ j(A + P k−1))uj,k = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jP k−1vj + bj . (43)

where bj = (1 − θ)∆τ jf(uj−1, vj−1), for simplicity. The proof follows the lines of [15], except that we

need to distinguish cases for the values of −λB(1− RB) and −λC(1− RC)− sF .
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First, let us prove the monotone property of the iteration.

Equation (43) can be rewritten as

(I− θ∆τ j(A+ P k))uj,k + θ∆τ j(P k − P k−1)uj,k = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jP k−1vj + bj . (44)

Furthermore, equation (43) can also be written for the version of iteration k + 1 as

(I− θ∆τ j(A+ P k))uj,k+1 = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jP kvj + bj . (45)

Subtracting equation (44) from equation (45) gives

(I− θ∆τ j(A + P k))(uj,k+1 − uj,k) = θ∆τ j(P k − P k−1)(uj,k + vj) (46)

We, firstly, work on the case that

−λC(1− RC)− sF ≤ −λB(1− RB) ≤ 0.

Examining each component of the right hand side of equation (46), there are two possible subcases:

• If (uj,k + vj)i ≥ 0, then P k
ii = −λC(1−RC)− sF .

If P k−1
ii = −λC(1− RC)− sF , then (P k

ii − P k−1
ii ) = 0.

If P k−1
ii = −λB(1−RB), then (P k

ii − P k−1
ii ) ≤ 0.

Hence θ∆τ j [(P k − P k−1)(uj,k + vj)]i ≤ 0.

• If (uj,k + vj)i < 0, then P k
ii = −λB(1−RB).

If P k−1
ii = −λC(1− RC)− sF , then (P k

ii − P k−1
ii ) ≥ 0.

If P k−1
ii = −λB(1−RB), then (P k

ii − P k−1
ii ) = 0.

Hence θ∆τ j [(P k − P k−1)(uj,k + vj)]i ≤ 0.

Therefore, for k ≥ 1, the vector θ∆τ j(P k−P k−1)(uj,k+vj) is always non-positive. In equation (46),

since (I − θ∆τ j(A + P k)) is monotone, we have uj,k+1 ≤ uj,k for k ≥ 1. Thus, the iterates decrease

monotonically.

The other case, i.e. −λB(1 − RB) < −λC(1 − RC) − sF ≤ 0, can be analyzed in a similar way. In

this case, the iterates increase monotonically.

Second, we prove the iteration has finite termination to a solution of (19).

We consider first the case −λC(1− RC)− sF < −λB(1−RB) ≤ 0. Let us define

Sk
1 = {i|P k

ii = −λB(1− RB)} (47)

Sk
2 = {i|P k

ii = −λC(1−RC)− sF}. (48)

Therefore, Sk
1 ∪̇Sk

2 is the set of all the nodes in the discretization. Since in the case of −λC(1−RC)−
sF < −λB(1 − RB) ≤ 0, uj,k decreases monotonically, any node in Sk

1 remains in Sl
1 if l ≥ k ≥ 1. At

the same time, if Sk
1 = Sk−1

1 , Sk
2 = Sk−1

2 , then P k = P k−1 = 0, and the iteration terminates. Therefore,

during each iteration, at least one node will move into the set Sk
1 and remain in Sk+1

1 before the termination.

Hence the iteration always terminates within at most N + 1 iterations, where N is the size of the linear

system, although, numerical experiments indicate that the iteration needs only one or two steps. Moreover,

at termination, we have (I− θ∆τ j(A+ P k−1))uj,k = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jP k−1vj + bj , thus,
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(I− θ∆τ j(A+P k))uj,k = (I+(1− θ)∆τ jA)uj−1+ θ∆τ jP kvj + bj . Therefore, uj,k is a solution to (19).

Additionally, the iterates are clearly bounded.

We now consider the case −λC(1−RC)− sF = −λB(1−RB) ≤ 0. In this case, it is easy to see that

P k = P k−1. Thus, the iteration terminates in one step.

Finally, the case −λB(1 − RB) < −λC(1 − RC) − sF ≤ 0 can be handled similarly as the case

−λC(1− RC)− sF < −λB(1− RB) ≤ 0.

Last, we demonstrate the uniqueness of the solution to the nonlinear problem (19).

Suppose there are two solutions u1 and u2 and P1 = P (u1, v) and P2 = P (u2, v) for any arbitrary v.

Then, u1 and u2 must satisfy

(I− θ∆τ j(A+ P1))u1 = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jP1v + bj , (49)

(I− θ∆τ j(A+ P2))u2 = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jP2v + bj . (50)

Let us rewrite equation (49) as

(I− θ∆τ j(A+ P2))u1 + θ∆τ j [P2 − P1]u1 = (I+ (1− θ)∆τ jA)uj−1 + θ∆τ jP1v + bj . (51)

Subtracting equation (50) from equation (51) gives

(I− θ∆τ j(A+ P2))(u1 − u2) = θ∆τ j(P1 − P2)(u1 + v). (52)

By a similar argument we used in proving the monotone property of the iteration, we have that

θ∆τ j(P1 − P2)(u1 + v) ≤ 0, if − λB(1− RB) ≥ −λC(1−RC)− sF , (53)

θ∆τ j(P1 − P2)(u1 + v) ≥ 0, if − λB(1− RB) < −λC(1− RC)− sF . (54)

Since the left hand side matrix of (52) (I− θ∆τ j(A+ P2)) is monotone, we have that

u1 − u2 ≤ 0, if − λB(1− RB) ≥ −λC(1−RC)− sF , (55)

u1 − u2 ≥ 0, if − λB(1− RB) < −λC(1− RC)− sF . (56)

We can interchange the subscripts of u1 and u2, and obtain

u1 − u2 ≥ 0, if − λB(1− RB) ≥ −λC(1−RC)− sF , (57)

u1 − u2 ≤ 0, if − λB(1− RB) < −λC(1− RC)− sF . (58)

Hence, in any case, u1 = u2, indicating that the iterations converge to a unique solution.
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