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Abstract

Granular dynamics is the dynamics of a large set of small particles (grains). Convincing simulation of natural

granular phenomena (e.g. dust, sand or powders) is a challenging mathematical and computational problem.

Our observation is that the more realistically the collection of grains approaches its static state, the more

natural the simulation appears. This study focuses on the simulation of sets of grains as the set approaches

its static state. The method begins with a discrete element (also referred to as molecular dynamics) model

of the inter-particle contacts within the granular collection. Inertia terms (friction/dampening) are added to

the basic contact model to facilitate static piling. An examination of the different contact models on the

formation of the final static state and a discussion of the numerical consequences of each model is presented.

The discrete element approach demonstrates to be a straightforward and natural way to model many granular

behaviors. Its versatility makes it possible to use it to build a general-purpose granular solver.



1 Introduction

Granular material is a special class of matter that respondsto external forces in unconventional ways com-

pared to traditional solids, liquids and gases. The dynamics of a collection of grains exhibit complex behav-

iors such that there does not yet exist a consistent theory that can encompass all phases of its motion. Yet

granular systems are ubiquitous in the natural world and efforts in the literature to model granular behavior

are typically only suitable for the granular system studiedat hand. It is easy to recognize the value of a

general granular dynamics solver that can simulate the response of any granular assembly under a number of

external conditions. This work examines the limitations and merits of using a discrete element method as a

general granular dynamics solver. The greatest challenge in developing such a solver is ensuring computa-

tional efficiency.

1.1 The General Problem

Granular material such as sand, dust or powders exhibit behaviors that is incompletely described by existing

solid, liquid or gas models of matter [1]. Small particles (also referred to as grains) can pack like solids

and take freestanding shape, flow like liquids and move in a cohesive unit or expand like gases and evolve

with complex dynamics. Under appropriate conditions, granular material can behave like any one of these

states of matter and can spontaneously transition between these states (e.g. jamming of powders in a hopper,

avalanching on the surface of a stable sandpile [4]). A general-purpose granular dynamics solver needs to

accommodate this range of motion and facilitate the transition from one dynamic state to another.

Developing appropriate models of granular matter is an active area of research. The majority of models in

the literature are constructed to describe a specific granular assembly. Existing models may be categorized as

either a grain-scale method, where each grain-grain collision is identified and the bulk behavior is implied; or

a continuum-scale method, where the bulk behavior of the collection is described and any grain-level detail

is generalized. Within each category, there is also variation in the mathematical description and solution

method of the model. Between categories, the motion indicated by one set of models may not coincide with

the predicted bulk behavior of the other set of models. A suitable model for a solver should be able to simu-

late both fine-grain and bulk features of the system; this is the reason grain-scale models are the focus of this

work. A way to determine the quality of various grain-scale models is to evaluate how well the model can

achieve desired bulk properties.

Grain-scale models pose many computational challenges. Grain-scale models typically begin by calculating

the forces between all pairs of grains in contact. Newton’s equations of motion are then integrated for each

grain. This leads to a large system of differential equations to solve and the method quickly becomes com-

putationally infeasible for real-world systems with a large number of grains. In addition, the computational

complexity also increases as the grain geometry becomes more complex. A practical granular dynamics

solver needs to be robust to various grain geometries and scalable to a large number of grains. Successful

implementations of grain-scale models so far are limited tosystems consisting of a few thousand particles.
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1.2 Problem Statement and Scope

This work studies the feasibility of using discrete elementmethods (DEMs)1 to build a general-purpose

granular dynamics solver. In principle, DEMs are suitable to model composite solids, liquids and gases.

However, existing instances of discrete element models do not necessarily encompass the many phases of

granular behavior. Also, in many cases, DEMs are computationally too expensive to be a practical solver. To

evaluate the proposed solver, we focus on simulating the dynamics of a collection of grains as it approaches

a static state. We want to observe a set of grains transitioning from a kinetic regime to a static regime,

possibility interacting with obstacles and/or boundariesin between, and settling into a static state that we

identify by observing evidence of stable granular piles. The study begins with a basic discrete element model

of granular dynamics [2], [17]. The model is then extended toinclude inertia terms so that the collection

can form granular heaps. The solver is finally evaluated by its ability to form realistic static heaps under

contrasting formation conditions. The computational costis directly related to the number of inter-particle

and particle-object calculations needed to simulate the response. The computational expense of this model

under each scenario is examined.

1.3 Background

Modern simulations of natural granular phenomena began in the 80’s, and their main application was to study

industrial processes that suffered unexplained inefficiencies. Physically-based models were developed and

numerically approximated for each specific application. Due to the different situations that these models

arise from, three distinct approaches to grain-scale models of granular systems are developed: discrete ele-

ment methods (DEM), rigid body dynamics (RBD) and cellular automata (CA).

Discrete element methods typically use is a soft-shape method where small overlapping of grains due to

collisions is allowed and these overlaps are used to estimate the resulting impulse forces that govern the

motion. DEMs are well suited for problems where the contact forces can be determined from small mutual

deformations. This makes the method immediately appropriate for granular systems of soft to moderately

hard particles that exhibit fast dynamics. It’s main disadvantage is that large impulse forces in the equations

of motion can cause the typical explicit integration schemeto use small time steps.

Rigid body dynamics is a constraint-based approach where the contact forces of each collision must be re-

solved by defining the so-called Linear Complementarity Problem (LCP) and searching for a set of forces

that satisfy the no-penetration constraints. RBD methods are well-suited for granular systems consisting of

very hard materials where there is little mutual deformation and the system dynamics is considered slow.

In contrast to DEMs, the RBD approach does not require an explicit definition of the interacting forces but

solves for the forces from a set objective functions and constraints. However, a direct consequence of not

modeling the contact forces is that specific material properties are not included. Also, the contact forces

computed by RBD are, in general, only one set out of infinitelymany sets of forces that satisfy the equations

and constraints; thus extra work may be needed to assure the system behaves in a physically-realistic way.

1Also referred to as molecular dynamics methods (MD).
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The computation of each step in RBD is more complicated than DEMs but the overall computational cost

can be similar to that of DEMs because larger stepsizes may betaken.

Cellular automata is a rule-based model where the domain of the simulation is discretized into a finite grid

and simple rules are defined at each grid point such that they dictate the motion of a particle as it passes the

point. This model applies the idea of self-organized criticality (SOC) where complex systems may emerge

from simple local interactions defined by these automaton rules. The appeal of SOC is the fact that the be-

havior of the system is insensitive to any control parameters; changing fine details of the model does not

affect the system from reaching its critical behavior. Thismethod has been successfully used to model heap

growth, avalanches, dune and ripple patterns in granular systems. The CA approach is capable of explaining

granular phenomena. However, it is unclear how to define the automaton rules such that the method can be

used as a general-purpose solver.

In modern computer graphics, particle-based models, such as smoothed particle hydrodynamics (SPH), have

become methods of choice to model the motion of deformable substances, liquids, and cloth. SPH is popular

because it is possible to compute a system’s motion in real-time for a large number of situations. However,

these particle-based methods are not immediately appropriate for granular materials because they do not

model real material properties and inertial forces that arepresent in systems of grains. Instead, is is more

suitable to choose a grain-scale model of granular dynamicsand evolve the model to include a wider range

of granular motion.

There have been other attempts to adapt fluid solvers to simulate granular systems [5]. This approach ad-

dresses the computational limitation of grain-scale models. However, on close examination of the simulation

results, the inability to simulate scattering or shearing of subsets of grains from the collection makes the dy-

namics seem suitable for very fine powders but not for coarse grain collections like sand or gravel. Retrofitting

a fluid solver to be a granular solver may only produce limitedgranular behavior.

2 A Granular Dynamics Solver

A general-purpose granular dynamics solver is designed to be a black box solver that can simulate the dy-

namics of an arbitrary set of grains given the geometry of thegrains and material properties. Ideally, the

end-user can control the grain behavior by adjusting the exposed parameters. The ease of which the end-user

can operate the solver is directly related to the complexityof the contact force models.

Within the solver, the solver needs to decide on how to represent the grain geometry, how to use the geometry

and material properties to model grain-grain and grain-object interaction and how to approximate the motion

from the model efficiently. The grain geometry, material properties and computation technique all have an

affect on the formation of the final static state. The techniques used at each stage of the solver determines the

robustness of this approach.
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Figure 1: Example of grains composed of rigidly connected spheres.

2.1 DEM-based Granular Dynamics Solver

The general workflow for this solver is:

1. Parameterize the grain.

2. Define the contact forces between grains.

3. Define the contact forces between a grain and external objects.

4. Form the equations of motion.

5. Numerically solve the equations of motion.

The grain geometry is typically either approximated with triangles, spheres, or another finite element dis-

cretization of the surface is used. Triangulation is favorable since any grain shape may be triangulated to an

arbitrary level of detail. However, this geometry leads to complicated equations in the model that adds to the

complexity of the computation. Approximating grain shapeswith composite spheres is less precise but the

equations in the model are simpler to define and easier to compute. Like triangulation, finite element dis-

cretization of the grain surface incurs a significant computational cost. This level of detail is only necessary

when object deformation is an important component of the simulation.

This solver is developed to use grains approximated by a set of spheres. The resulting contact force at a

grain-grain interaction is easily estimated by the amount of overlap of the spheres. A similar force may be

estimated at grain-object collisions. Forming the equations of motion and solving this system of equations

efficiently at each time step determines the cost and therefore the feasibility of this solver.

2.2 Grain Geometry: Composite Grain

Each grain in a granular system is approximated by a set of rigidly connected spheres (Figure 1). The com-

posite sphere surface approximates the grain’s surface andcan easily be used to approximate any grain shape.

The grain shape itself can be used to model static friction [6]. A grain shape with significant concavity is a

geometric mechanism that promotes interlocking of particles and thus a model of static friction. This work

chooses to use simple convex grain shapes for its simulations to keep the mass and moments of inertia simple.

Variations on the composite grain use springs to connect thespheres. This extra level of complexity is not

considered crucial for the solver.
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Figure 2: Grain Parameters.

An explanation of the notation used in Figure 2 is given as follows. The index of a grain is denoted byi. For

each graini, the centre-of-mass parameters are defined to be:

~ci = (ci,1, ci,2, ci,3) position of graini.

~vi = (vi,1, vi,2, vi,3) velocity of graini.

~oi = (oi,1, oi,2, oi,3) orientation of graini.

~ωi = (ωi,1, ωi,2, ωi,3) angular velocity of graini.

The index of a sphere that comprises a grain is denoted byj. For each spherej, the following coordinates

are also defined:

~xj = (xj,1, xj,2, xj,3) position of spherej in some grain.

Rj radius of spherej in some grain.

Since the spheres in the composite grains are rigidly connected, the velocity and angular velocity of spherej

are the same as those of graini:

~vij = (vij,1, vij,2, vij,3) = ~vi velocity of spherej in graini.

~ωij = (ωij,1, ωij,2, ωij,3) = ~ωi angular velocity of spherej in graini.

In subsequent sections, the grain indexi is dropped from the notation for the velocity and angular velocity

of spherej. For brevity of notation, let~vj ≡ ~vij and~ωj ≡ ~ωij refer to the velocity and angular velocity,

respectively, of a spherej that belongs to some graini; similarly, ~vk and~ωk refer to the velocity and angular

velocity respectively of a spherek on another graini′. When the identity of the grain is important, the indexi

is explicitly included. If references to specific grains or spheres are ambiguous, the notation~vi=2,j=3 or~vk=5

will be used.
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Figure 3: Grain-Grain Contact Quantities.

Grains used in this work are approximated by identical spheres. This assumption is non-essential and may

be relaxed to model more realistic grain shapes. However, the potential of using composite spheres to model

sharp-edged grains is limited. This solver is best used for granular motion where very sharp-angled grains

are not fundamental to the dynamics.

2.3 Contact Forces

In soft-sphere discrete element methods, the (repulsive) forces,~Fi, and torques,~τi, acting on each grain are

given by sums of pairwise interaction of the grain with all other grains and objects, that is,

~Fi =
∑

j,k

~Fjk +
∑

j,q

~Fjq

~τi =
∑

j,k

~τjk +
∑

j,q

~τjq

wherej is the index of thejth sphere of graini, k is the index of thekth sphere of the other graini′ andq is

the index of theqth object in contact with graini.

Soft-sphere simulations does not explicitly enforce the no-penetration constraint among its grains but de-

fines forces to apply this condition. These forces are derived from measurable quantities during mechanical

contact.

2.3.1 Contact Quantities

In a granular assembly, grain collision may be quantified by defining values that describe the mutual com-

pression/deformation of spheresj andk during the collision of two grainsi andi′:
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ξjk = max(0, Rj + Rk − | ~xj − ~xk|)

˙ξjk = (~vj − ~vk) · ~njk

~njk =
~xk − ~xj

| ~xk − ~xj |
(1)

~zjk = ~xj + (Rj −
ξjk

2
)~njk

~Vjk = ~vk − ~vj + ~ωk × (~zjk − ~ci′)− ~ωj × (~zjk − ~ci)

~Wjk = ~ωk × (~zjk − ~ci′)− ~ωj × (~zjk − ~ci).

In the above,ξjk is the inter-penetration of grains that is a measure of the mutual compression/deformation

of spheresj andk, ˙ξjk is the relative velocity of the compression,~njk is the direction of the compression,

~zjk is a contact point used to represent the contact area,~Vjk and ~Wjk are the instantaneous relative velocity

and angular velocity, respectively, of the contact point respectively.

The forces,~Fjk, and torques,~τjk , acting at a collision between spheresj andk of two different grains are

derived from the above contact quantities. Their explicit dependencies may be written as:

~Fjk = ~Fjk(~xj , ~xk, ~vj , ~vk, ~oj , ~ok, ~ωj , ~ωk)

~τjk = ~τjk(~xj , ~xk, ~vj , ~vk, ~oj , ~ok, ~ωj , ~ωk)

The notation~Fjk and~τjk is used as a convenient shorthand. The discussion of forces and torques acting at a

collision point is more easily described in terms of their normal and tangential components:

~Fjk =

{

~Fn
jk + ~F t

jk if ξjk > 0

0 otherwise

~τjk =

{

~Rj × ~F t
jk if ξjk > 0

0 otherwise

Expressions for the normal and tangential forces,~Fn
jk and~F t

jk, and subsequently the torques are still an active

area of research ([18] [19] [20] [21] [22] [23]). In particular, different models of the tangential forces give

rise to different granular dynamics. Several accepted models are studied and presented. All models work best

when the inter-penetration of grains,ξjk, is small. The solver should monitor that this condition is always

valid.

2.3.2 Contact Forces: Basic Model

The most basic model of forces and torques acting at a collision is
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~Fn
jk = (−kα

˙ξα
jkξjk − kβξβ

jk)~njk

~F t
jk = −min(µs|~F

n
jk|, kt|~Vjk|)

~Vjk

|~Vjk|
(2)

~τjk = (~zjk − ~ci)× ~F t
jk

whereα, β, kβ , kα, kt, µs are model and material-dependent constants. The normal force is a widely accepted

model of the interaction of viscoelastic spheres derived byN. V. Brilliantov et al. [8]. The tangential force is

a simple ansatz of a frictional force that opposes the tangential velocity limited by Coulomb friction condi-

tion. By definition, torques are derived from the forces. An instance of this model is in work by Bell. et al. [2].

This model of inter-grain collisions is straightforward toimplement and has low computational cost. For

simulations where rapid dynamics is the focus, this model isgenerally adequate. However, the tangential

repulsive force is not sufficient to form stable piles. For small relative velocities (~Vjk), the tangential force

vanishes so there is no longer an opposing force to further decelerate the particle. The result is a collection

of grains that slowly collapses under its own weight. See Section 3.1 for an example.

2.3.3 Contact Forces: Simple Static Friction Model

A simple extension of the basic model includes a term to describe surface friction acting in the plane tangen-

tial to the contact normal and a rolling resistance to torqueforces. Thus the contact forces become

~Fn
jk = (−kα

˙ξα
jkξjk − kβξβ

jk)~njk

~F t
jk = −sign(δjk)min(µs|~F

n
jk|,−ktδjk)

~Vjk

|~Vjk|
(3)

~τjk = (~zjk − ~ci)× ~F t
jk − µr|~F

n
jk|

~Wjk

| ~Wjk|

where

δjk =

∫ tn

t0

|~Vjk(t)|dt (4)

is the contact displacement for a contact that persists fromtime t0 to tn, andµr is the rolling friction co-

efficient. Contact displacement is basically a cumulative scalar measure of the distortion of the contacting

surfaces due to rolling and sliding limited by Coulomb friction.

T. Elperin et al. [7] used this model to simulate stable granular piles for spherical grains. However, this

model is only able to form piles if the grains in the system arepacked sufficiently slowly. The model does

not have enough mechanisms to dissipate the kinetic energy in any system rapidly enough to achieve piling
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from arbitrary formation conditions. In Elperin et al’s original work grain velocities were artificially set to

zero at a fixed number of intervals at the beginning of the simulation to decrease the effects of grains with

large inertia. Although the formation conditions of this model are limited, the endurance of contacts,δjk, is

shown to be an inherent component of any static friction model.

2.3.4 Contact Forces: Static Friction Model with Dampening

An adaptation of the simple static friction model adds dampening terms to handle grains with large inertia.

This placates the need to manually interfere with pile construction and is effective at simulating static piles

for many formation conditions. In this model, the contact forces are

~Fn
jk = (−kα

˙ξα
jkξjk − kβξβ

jk)~njk

~F t
jk = −µs|~F

n
jk|(1− (

1−min(|~δjk|, δmax)

δmax
)γ)

~δjk

|~δjk|
+ dt

~V t
jk (5)

~τjk = (~zjk − ~ci)× ~F t
jk − µr|~F

n
jk|

~Wjk

| ~Wjk|

whereγ, dt, δmax are a material-dependent constants.

The tangential friction,~F t
jk, is Coulomb friction re-written to use~δjk, the vector of accumulated tangential

displacement between spheresj andk, given by

~δjk =

∫ tn

t0

~Vjk(t)dt.

When|~δjk| << δmax, the tangential force is in an elastic response region. When|~δjk| → δmax, the repulsive

force maximizes toµs|~F
n
jk|.

Investigators ([9][10]) have used instances of this model to study granular piling. Simulations show success-

ful heap formation by a series of avalanches in the boundary layer of the pile. The dampening terms assist

the granular system to reach a static state but its role in pile formation is secondary to contact displacement.

Even with this model of static friction, the stability of thegranular pile is still sensitive to its formation condi-

tions. Numerically, the final heap is not absolutely still; the kinetic energy is never completely dissipated and

residual kinetic energy manifests as local vibrations within the pile. A study of the sensitivities of a granular

pile to friction is given [16].

2.3.5 Contact Forces: Grain-Object Friction Model

Particles that collide with external objects also experience repulsive forces. To adapt the technique used for

spheres, the object surface is assumed to be smooth such thatthe portion of the object surface in contact with

the grain may be approximated as an infinitely large sphere. The basic model may then be used to estimate
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Figure 4: Grain-Object Contact Quantities.

the resulting forces such that the contact quantities of spherej of particlei with objectq, may be described

by

ξjq = max(0, Rj − | ~xj − ~xq|)

˙ξjq = (~vj − ~vq) · ~njq

~njq =
~xq − ~xj

| ~xq − ~xj |

~zjq = ~xj + (Rj −
ξjq

2
)~njq

~Vjq = ~vq − ~vj + ~ωq × (~zjq − ~ci′)− ~ωj × (~zjq − ~ci)

~Wjq = ~ωq × (~zjq − ~ci′)− ~ωj × (~zjq − ~ci).

where the contact area is approximated by the point,~xq, which is a point on objectq that is closest to~xj, the

centre of the contacting spherej.

Adapting from the basic model, the repulsive force at a particle-object collision may instantaneously be

modeled as

~Fn
jq = (−ka

˙ξα
jqξjq − kbξ

β
jq)~njq

~F t
jq = −min(µq|~F

n
jq|, kq|~Vjq|)

~Vjq

|~Vjq|
(6)

~τjq = (~zjq − ~ci)× ~F t
jq − µτ |~F

n
jq|~ωj

whereka, kb, µq, kq, µτ are material constants.
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However, recall that this model does not model static friction. For particle-object collisions, static friction is

of particular importance. Of immediate relevance is the substrate that a granular pile is formed on. A static

friction model for particle-substrate collisions needs tobe able to bring the particles to rest in a short time in-

terval and remain at rest such that the particles can form a rough base for subsequent particles to rest on. It is

necessary for the solver to be able to construct a stable foundation of particles at rest in order to observe piling.

Previous simulations modeled objects as surfaces covered with spheres on the scale of the grains [2][7][10].

Consequently, the substrate is a rough base made of discreteparticles the same size as the grains in the

system. For a general-purpose solver, this prerequisite undesirably adds an extra layer of complexity to the

geometry of objects. Also, for complex simulations where there may be heterogeneous grains and dynamics,

it is unclear how to form this surface in a controlled way to affect the static state. Instead, this solver explic-

itly enforces the static friction (stiction) condition in order to model the large impulses needed to bring (and

keep) the grains quickly to rest.

In mechanics, there does not exist an explicit expression for static friction. If a body is sliding, the dynamic

frictional force is known to be|~Ffriction| = µd|~F
n|; however, if a body is experiencing stiction, the static

frictional force is unknown except to satisfy the observed condition |~Ffriction| ≤ µs|~F
n|. That is, when a

body is in ”stiction”, the frictional force is such that no relative acceleration is observed.

Conceptually, this means that if a particle is able to resistany applied forces, static friction occurs such that it

opposes the tangential component of the applied forces as well as incurs an additional force that acts to bring

the grain to rest. If~tjq is the unit vector in the tangential direction of motion between the grain and object

and~Vjq is the relative velocity of the grain and object, then the stictional force,~F s
jq, may be expressed as

~F s
jq = −

K
∑

k=k0

(~F t
jk · ~tjq)~tjq − (~F t

jq · ~tjq)~tjq − ks
(~Vjq · ~tjq)~tjq

tq
(7)

whereK is the number of spheres of another grain in contact with sphere j, ks is a constant andtq is the

impulse duration. So, during stiction, the frictional force negates any tangential forces acting on the grain as

well as contributes a force,−ks
(~Vjq ·~tjq)~tjq

tq
that acts to bring the grain to rest. An analogous set of conditions

may be defined to describe the torques during stiction, that is,

~τ s
jq = −

K
∑

k=k0

(~τ t
jk · ~njq)~njq − (~τ t

jq · ~njq)~njq − kτ

~Wjq

tq

where ~Wjq is defined in (1). This solver implements this stiction condition in order to model the slip-stick

motion of grain-object collisions.
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2.4 Equations of Motion

Newton’s equations of motion govern the dynamics of the grains in the system. The equations are defined

for the center-of-mass coordinates of each grain. The forces and torques evolve as the granular configuration

changes. The resulting equations of motion for one grain is system of second-order ordinary differential

equations (ODEs) that is written as a system of coupled first-order ODEs.

~̇ci = ~vi

~̇vi = ~Fi = ~g +
1

mi

∑

j,k,q

(~Fn
jk + ~F t

jk + ~Fn
jq + ~F t

jq + ~F s
jq)

~̇oi = ~ωi

~̇ωi = ~τi =
1

Ii

∑

j,k,q

(~τjk + ~τjq + ~τ s
jq)

wheremi is mass andIi is the tensorial moment of inertia of graini. For the simple grain shapes used in this

work, the moment of inertia is approximated by the moment of an approximate sphere which simplifiesIi to

a scalar value. The forces,~F , and torques,~τ , are defined in Section 2.3. The notation
∑

j,k,q means the sum

is over all other particles and objects that are in contact with the spheres that compose graini.

The entire ODE system to be solved for a system ofN grains is

~̇y = ~f(t, y)

where~y = (~c1, ...,~cN , ~v1, ..., ~vN , ~o1, ..., ~oN , ~ω1, ..., ~ωN )T . Explicitly, the ODE system is:








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
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




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




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
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


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:
˙~cN
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:
˙~vN
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:
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:
˙~ωN

























































=




























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
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



















~v1

:

~vN

~g + 1
m1

∑

j,k,q (~Fn
jk + ~F t

jk + ~Fn
jq + ~F t

jq + ~F s
jq)

:

~g + 1
mN

∑

j,k,q (~Fn
jk + ~F t

jk + ~Fn
jq + ~F t

jq + ~F s
jq)

~ω1

:

~ωN

1
I1

∑

j,k,q (~τjk + ~τjq + ~τ s
jq)

:
1

IN

∑

j,k,q (~τjk + ~τjq + ~τ s
jq)

























































This system of coupled ODEs is typically solved by explicit numerical schemes. Implicit methods may be

used to solve the system but explicit schemes are historically preferred due to their simplicity [14]. The

equations, however, may be stiff; any explicit method chosen may require small timesteps to ensure stability.
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2.5 Numerical Solution

Other researchers [11] conclude that the Runge-Kutta methods provide a good trade-off between efficiency

and accuracy for discrete element simulations. The adaptive Runge-Kutta-Fehlberg method (RKF45) is often

the method of choice to integrate the equations of motion. This fourth-order method is considered computa-

tionally expensive per step, but it is still preferred because its accuracy allows larger time steps to be taken

when compared to lower-ordered methods in the same family. Furthermore, the integration of the equations

of motion is not the dominant cost in the total cost of approximating a given granular system; the dominant

cost is in evaluating the contact forces that comprise the equations, therefore, we do not expect a major change

in efficiency by using lower order methods. Our solver uses the RKF45 method by default. For comparison,

in the analysis section, we present some results from the application of a lower order RK formula.

2.5.1 The Algorithm

The RKF45 formula computes the positions, velocities, orientations and angular velocities of every grain at

each time step in the simulation. Each RKF45 time step requires six derivative evaluations (also referred to

as stages). Each evaluation requires the determination of the forces and torques acting at a point in time.

After each accepted time step, the contact displacement (ifused) must be updated.

Algorithm 1 describes the procedure for solving for all grain parameters at each timestep in the simulation.

A variation of the standard method is used to form the forces and torques in each evaluation off(t, ~y). The

forces are computed in succession (lines7− 11): instead of computing all forces at(t, ~y), each force is com-

puted in sequence, where after each force is determined, thegrain parameters,~y, are updated to reflect the

affects of the force before the next force is computed. This way, subsequent forces react to previous forces

and this acts to dampening oscillations in the system due to the non-linear repulsive forces. This means the

order that the forces are determined may affect approximation. For simulations in this work, only grain-

grain, grain-object and gravitational forces are considered. The order in which these forces are evaluated in

this solver do not significantly affect the results.

The contact displacement vector,~δt, has elements defined to be the non-zero contact displacement quantities,
~δjk, that are active at timet. Contact displacement is an accumulated quantity that needs to be maintained

after a successful integration step. At each step, the contact displacements are assumed to remain active

during the entire timestep; the contact displacement vector is not updated during an RKF45 stage. This

means the initialization of new contacts may be underestimated by less than one timestep. The effect of this

assumption on the overall dynamics of the system is minimal.
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t = 0; h = h0 ; ~yt = ~y0 ; // Initialization1

while t ≤ T do2

// Solve 6 stages of RKF45

foreach s = 1 : 6 do3

// Set-up stage s. γ, α are RKF45 stage constants

ts = t + γsh4

~ys
t = ~yt +

∑s−1
ŝ=1 ~αs,ŝ~kŝ5

// Estimate f(ts, ~ys
t ). Apply forces, ~F, incrementally.

~ys′

t =



























~cs
i + h~vs

i for i = 1..N

~vs
i for i = 1..N

~os
i + h~ωs

i for i = 1..N

~ωs
i for i = 1..N6

foreach ~F = (m~g,
∑ ~Fjk + ~Fjq, ...) do7

// Compute the force and torque.
~F (ts, ~ys′

t )8

~τ(ts, ~ys′

t )9

// Apply the force and torque to ~ys′

t .

~ys′

t = ~ys′

t +



























h2

2mi

~Fi for i = 1..N
h

mi

~Fi for i = 1..N
h2

Ii
~τi for i = 1..N

h
Ii

~τi for i = 1..N10

end11

// Calculate s-stage of RKF45

~ks = hf(ts, ~ys
t ) =



























h~vs
i for i = 1..N

~vs′

i − ~vs
i for i = 1..N

h~ωs
i for i = 1..N

~ωs′

i − ~ωs
i for i = 1..N12

end13

// Integrate Step. β’s are RKF45 step constants

~yt+1,RK5 = ~yt +
∑6

ŝ=1 βŝ
5
~kŝ14

~yt+1,RK4 = ~yt +
∑5

ŝ=1 βŝ
4
~kŝ15

hopt =
(

ǫh
2max(||~ct+1,RK5−~ct+1,RK4||)

)
1

4 h ; // Optimal time step.16

if hopt >= 0.75h then17

// Accept this step.

t = t + h;18

~yt+1 = ~yt+1,RK419

~δt+1 = ~δt + h~v ; // Update all contact displacements.20

end21

h = min(max(hopt, hmin), hmax)22

end23

Algorithm 1: General RKF45 Procedure for Granular Solver.
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Algorithm 2 describes the procedure for computing the forces and torques among grains and between grains

and objects at each stage of the RKF45 method (lines 8-9 in Algorithm 1).

Input: t, ~y

Output: ~F (t, ~y), ~τ(t, ~y)

// Update hash grid

for i = 1 : N do1

hashG← insertHashGrid(~ci )2

end3

// For each grain i

for i = 1 : N do4

~Fi = 05

~τi = 06

// for each sphere j in grain i

for j = 1 : J do7

collideG← hashG(i, j) ; // Find inter-grain collisions8

foreach k in collideGdo9

// Compute forces and torques
~Fi = ~Fi + ~Fn

jk + ~F t
jk10

~τi = ~τi + ~τjk11

end12

collideObjs← getObjs(i, j) ; // Find grain-object collisions13

~N = ~0 ; // Average collision normal14

foreach q in collideObjsdo15

// Compute forces, torques and normal
~Fi = ~Fi + ~Fn

jq + ~F t
jq16

~τi = ~τi + ~τjq17

~N = ~N + ~Nq18

end19

end20

~N = ~N/|| ~N ||21

~Fn
i = ~Fi · ~N22

~F t
i = ~Fi − ~Fn

i23

if ~F t
i < µq

~Fn
i then24

// Apply stiction conditions
~Fi = ~Fn

i
~N − ks

~vi−(~vi· ~N) ~N
h

25

~τi = ~τi − (~τi · ~N) ~N − kτ
~ωi

h
26

end27

end28

Algorithm 2: Procedure to compute forces and torques among grains and between grains and objects.
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2.5.2 Computational Cost

Components of the solver that contribute to its cost:

1. RKF45 integration of the equations of motion.

2. Detection of grain collisions.

3. Detection of grain-object collisions.

4. Force calculation during grain collisions.

5. Force calculation during grain-object collisions.

6. Maintaining contact displacement quantities.

The integration of the equations of motion is an important factor in determining the overall simulation time.

The dominant cost of the solver at each timestep is the computation of the instantaneous forces and torques

active on the grains. Efficient calculation and maintenanceof granular quantities, in particular contact detec-

tion and contact displacement, affects the overall efficiency of the solver. The stiction condition expressed in

Section 2.3.5 is in practice implemented such that it adds nosignificant computational expense.

RKF45 Integrator

The computational time of a simulation grows linearly with the number of timesteps required. The explicit

RKF45 method is best suited for non-stiff problems. For verystiff problems, the method must use very small

timesteps to ensure stability of the integration and the overall simulation can become inefficient. Multi-

body problems that experience large impulse forces are known to be stiff; however, many granular systems

are not so stiff such that an explicit method is not able to solve the dynamics adequately. In soft-sphere

discrete element models, the magnitude of impulse forces isdirectly related to the mutual deformation,

ξij. Experimentally, if the mutual deformation is small, the magnitudes of impulses are not likely to cause

stiffness in the ODE system and simulation times are reasonable. The magnitude of the deformation in a

system may be controlled by adjusting the elastic repulsion, kα, in the normal forces,~Fn.

Collision Detection

Efficient contact detection affects the scalability of the solver. In line 2 of Algorithm 2, a spatial hash grid

is created based on the positions of the spheres on all grainsto provide a fast look-up of contacting spheres.

Spatial hashing refers to a hashing technique where spatialpositions are mapped (via a hash function) to

grid coordinates and the grain location is stored in a hash table. To identify collisions, only the grains in

nearby grid voxels adjacent to the current grain need to be computed. Instancing the hash grid is anO(NJ)

computation whereN is the number of grains andJ is the number of spheres on each grain. The hash grid

is formed at each stage before the contact forces are determined2; this prevents the force computation from

becoming anO(N2) algorithm in the average case.

2To improve computation time, the hash structure should be kept and updated as the grains move between voxels. For slow

moving collections, the contacts change infrequently and the cost to update the hash structure would be negligible.
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Force Calculation

The forces and torques active at any contact point are customarily determined from instantaneous particle

parameters (i.e.~x,~v, ~o, ~ω) except when the force model uses the contact displacement quantity,~δt. For force

models that only use the instantaneous parameters such as the basic model (Section 2.3.2), the computational

and storage costs are insignificant. Force models that make use of the contact displacement quantity require

additional storage and access to its values.

Contact Displacement

Maintaining the contact displacement vector,~δt, requires an interaction over all spheres that comprise the

grains in the system. For each grain, the identity of the contacting grains, the interacting spheres and the

cumulated displacement vector is placed in a list. During anupdate, this list of contacting grains is traversed

and maintained. For composite-sphere grains, the average number of contacts,C, is typically a small number,

C << N . No special search structure is used to maintain the contactdisplacement list and the computation

on line 20 of Algorithm 1 may be considered anO(N) operation.

Stiction Condition

In practice, the stiction condition is applied by definition. If a particle is experiencing stiction, then the parti-

cle resists applied tangential forces as well as experiences an impulse that works to decelerate the tangential

velocity. If ~F is the sum of all forces on the grain,~V is the relative velocity of the grain with respect to the

object and~n is the normal direction of the object, then applying stiction means~F is redefined to be

~F = ~Fn + ~F t

such that

~Fn = (~F · ~n)~n

~F t = −ks

~V − (~V · ~n)~n

tq

whereks is a constant andtq is a small time interval. This implementation of stiction avoids the need to sum

over all contacts as in Equation 7.

Similarly for torques, by definition, stiction implies the particle resists applied torques in the normal direction

and experiences a resistive rolling friction that decelerates any instantaneous angular velocity. The expres-

sion on line 26 of Algorithm 2 describes this condition.
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2.6 Simulation Parameters

The model and material parameters necessary for grain-grain collisions are identified in Sections 2.3.2, 2.3.3

and 2.3.4. Their descriptions and typical values used in oursimulations are prescribed by:

Parameter Relation/Sample Values Default Value Description

ν 0, 0.1, ... 0.3 Poisson ratio of the material

Ej, Ek ...107, 108, ... 108 Young’s modulus

Ejk
1

Ejk
= 1

Ej
+ 1

Ek
effective Young’s modulus

Rjk
1

Rjk
= 1

Rj
+ 1

Rk
effective radius

α ..., 3
2 , ... 3

2 elastic repulsion response

kα
4
3

Ejk

2(1−ν2)

√

Rjk elastic repulsion strength

β ..., 1
2 , ... 1

2 viscous dampening response

kβ ..., 50, 100, 200, ... 50 viscous dampening strength

µs 0, ..., 1 0 coefficient of static friction

kt 0, ..., 1 0 static friction strength

µr 0, ..., 0.001, ... 0 coefficient of rolling friction

γ ..., 1
2 , ... 1

2 static friction response

dt kt
γµs|~F n

jk
|

δmax
(1− (

1−min(|~δjk|,δmax)
δmax

)γ−1) tangential dampening strength

δmax µs
2−ν

2(1−ν)ξjk maximum static friction

Similarily, the description and typical values of the modeland material parameters necessary for grain-object

collisions identified in Section 2.3.5 are:

Parameter Relation/Sample Values Default Value Description

E ...107, 108, ... 2 · 108 Young’s modulus

a ..., 3
2 , ... 3

2 elastic repulsion response

ka
4
3

E
(1−ν2)

√

Rjq elastic repulsion strength

b ..., 1
2 , ... 1

2 viscous dampening response

kb ..., 50, 100, 200, ... 50 viscous dampening strength

µq 0, ..., 1 1 coefficient of static friction

kq 0, ..., 1 1 static friction strength

µτ 0, ..., 0.001, ... 0.0005 rolling friction strength

ks 0, 1, 2, ... 2.1 stiction strength

kτ 0, ..., 0.001, ... 0.1 rolling stiction strength

tq 0, 0.001... 0.001 static friction duration

Unless otherwise specified, the model and material parameter values used to simulate the results presented in

Sections 3 and 4 are assigned the default values as specified in the above tables.

The difficulty in granular simulations, in particular simulations of granular statics, is that the formation of

the final steady-state may be achieved in an indefinite numberof ways. The resulting dynamics is highly de-

pendent on the materials past history, and as a consequence,simulations are sensitive to its input parameters.
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Arbitrary parameter values may lead to spurious results. The complex relationship between the simulation

parameters and the dynamics may incur additional numericaldifficulties on the solver.

Researchers in the field have a practice of calibrating theircomputations to achieve the desired results. DEM

simulations commonly use a material calibration procedurewhere material parameters such asE, ν, µs, ...

are tuned to match model predictions with experimental observations. In static equilibrium computations,

algorithmic calibration, where time intervals, dampeningvalues and loading rates are adjusted, is typically

performed to achieve static-states under general conditions. In some situations, simulation parameters may

be assigned values without physical or mathematical justification but compelled only by a preferred response.

In recent work, Tu et al. [12] introduces a procedure to set suitable parameters values for steady-state gran-

ular simulations. Essentially, the parameters are set by trial and error until some criteria is satisfied for a

small subset of the entire particulate system. Though effective, the procedure only applies to steady-state

simulations and does not extend to a wide range of system dynamics. It is not yet clear how to define a

similar framework for our granular solver.

3 Simulations

Granular material may be distinguished by their ability to pack, pile, jam, fracture, fragment and avalanche.

These complex behaviors are nonlinear in nature and the necessary conditions that lead to the emergence of

these phenomena are ill-defined. Nonetheless, a granular solver may be evaluated by its ability to simulate

these characteristic properties. A suitable solver is ideally able to demonstrate this set of behaviors in a

controllable fashion.

3.1 Comparison of Force Models

Grain piles formed by grains flowing through a hopper is a basic example of granular behavior. This situation

is used to evaluate the merits of the three force models considered in Sections 2.3.2, 2.3.3 and 2.3.4. Differ-

ent from previous studies, this system is not enclosed with bounding walls. Apart from a floor, the grains do

not interact with any other object that may interrupt grain motion and induce piling. The floor is also not a

geometrically rough base comprised of discrete particles but is treated as a smooth object that interacts with

the granular system through contact forces (Section 2.3.5). This environment necessitates the need for an

effective static friction model by reducing the influence ofgeometric friction and physical barriers on pile

formation.

Figure 5 compares the ability of the three grain-grain forcemodels to form piles. All three models begin

with identical initial conditions, the same parameters values (where applicable) and use the same model for

grain-object collisions. The first (or bottom) layer of grains in a grain pile is formed by the grain-object

contact model. Subsequent grain behavior on top of this layer is mostly due to the grain-grain contact model.

To judge the ability of each grain-grain force model to form piles, the first layer of grains should not be

considered.
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Figure 5: Five snapshots at similar stages of hopper flow with397 grains under three different force models:

Section 2.3.2: Basic Model, Section 2.3.3: Simple Static Friction Model and Section 2.3.4: Static Friction

Model with Dampening. The hopper is not drawn to expose the grain dynamics.
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All three simulations in Figure 5 use grain-grain friction parametersµs = 0.5 andµr = 0.00025. The basic

force model, on the farthest left, shows little evidence of granular piling. This is expected since this model

does not explicitly model the static friction necessary forpiling. In fact, any pile formed using this basic

model will always collapse under its own weight. When the grains are still in motion, the behavior of the

grains looks reasonable. However, as the system begins to settle into a static state, the grain pile collapse

occurs in a smooth continuous manner. This makes the slow-moving behavior of the grains look liquid-like.

This basic model is not suitable for situations where the discontinuous slip-stick motion of the grains in the

material needs to be more apparent.

In the second model in Figure 5, in the middle, there is evidence of stable static piles. As the pile forms,

grains that come in contact with the surface of the pile roll down the slope of the heap. Grains on the interior

of the pile experience much less motion. This demonstrates that static friction, modeled by the cumulated

contact displacement,δj,k (Equation 4), is necessary for piling to occur. However, although this model can

simulate piling, the model is rather sensitive to changes ininitial conditions. It is also difficult to know how

to set the parameters and initial conditions to achieve a desired result. This simple static friction model is not

robust enough to be a general-purpose granular solver.

The final model considered in Figure 5, on the right, also shows evidence of stable static piles. The discontin-

uous slip-stick motion is even more pronounced in this modelthan in the second model. Detailed expressions

for the friction and dampening parameters make this model easier to manipulate and control the final result.

This static friction model with dampening is the force modelselected for our solver. The simulations in the

rest of this work use this contact force model.3

3.2 Hopper Flow: Piling and Jamming

Grains in a hopper is an interesting situation because varying the frictional parameters not only can alter the

steady-state pile dimensions but may also introduce jamming of the grains in the hopper. Varying the inter-

grain friction parameters,µs andµr, varies the rate that the pile forms as well as the final pile dimensions.

Figure 6 demonstates this behavior for a hopper initially filled with 1575 cube-like grains.

Increasing the grain-grain and grain-object friction parameters,µs, µr, µq andµτ , can cause jamming of the

granular system. For the granular system in Figure 6, ifµs = µq = 1.0 andµr = µτ = 0.0005 whereq andτ

refer to the hopper parameters, then the system jams for over50 seconds of a 2 minute simulation. Jamming

under the influence of static friction at grain-object boundaries agrees with current proposed theories [13].

3.3 Granular Collapse

Under typical conditions, a granular collection naturallypacks and piles as the system tends to a quasi-stable

state. When conditions occur that disrupt the quasi-stablesystem, the granular collection ostensibly fractures

and avalanches. In such systems, there is a clear boundary between actively moving grains and stable static

3See Appendix A for another comparison of simulations from the first and third force model.
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Figure 6: Five snapshots of hopper flow with 1575 grains for three pairs of values of(µs, µr):

(0.0, 0.0), (0.1, 0.00005) and(0.5, 0.00025). The parametersµq andµτ are identical for all three examples.

The hopper is not drawn to expose the grain dynamics.
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grains. A simple demonstration shows that this set of behaviors is natural to this solver.

In Figure 7, a set of grains is allowed to pack in a space with a resistant floor and five frictionless bounding

walls. A quasi-stable state is reached by frame 300 and remains stable for the next 300 frames (top row). At

frame 600, the slanted wall is removed and surface avalanching occurs (second row). The grains underlying

the active surface remain stable. Stable grains near the active boundary form a roughened surface to resist

continual avalanching (third row). By frame 1000, avalanching ceases and two new stable grain collections

are formed. At frame 1300, the right wall is gradually moved to the right, away from the pile (fourth row).

The large granular system begins to collapse. A clear fracture surface is observed where grains remain

static on one side and grains have significant motion on the other side. As the surface of the heap changes,

avalanching of surface grains occurs (fifth row). The evolution of the dynamics of this system illustrates

many characteristics unique to grains.

3.4 Dynamic Range

Grains exhibit a range of motion that may be categorized as solid-like, liquid-like or gas-like. The model

and material parameters in this solver only serve to define the character of the grains at the particulate scale;

the motion of the grains is contingent on its initial values and environmental conditions. The transition of

grains from solid to liquid regimes (or solid to gas, liquid to gas or vice-versa) is abrupt in nature and it is

this abruptness that is fundamental to realistic simulations.

A progression of grain motion from slow to swift to static is an example of how the environment can foment

sudden changes in a collection’s dynamics. In Figure 8, a setof grains is placed in a rectangular container

with low coefficient of friction and only three sides (top row). Subject to gravity, this set of grains begins to

settle which causes some grains to gradually fall off the unenclosed side of the container (second row). At

frame 200, the container abruptly rotates and large impact forces are imparted onto the grains (third row).

The granular collection responds and displays a liquid-like motion where a wave-like splashing action is

observed. As the grains collide with the resistant floor, thegrains quickly become inert (fourth row). This

rapid dissipation of kinetic energy allows inert grains to begin to form static structures that can support solid-

like configuration of grains. The final arrangement of the grains on the floor show a stable non-uniform

terrain that is consistent with the simulation (fifth row). The range of dynamics attainable by a set of grains

is separate from the particulate model of the grains. The initial conditions and the environment determine

the type of granular motion. The independence of the solver from any assumption of the motion permits

general-purpose use of this solver.

4 Analysis

Grain piles formed from grains flowing through a hopper is thesetup used to verify the suitability and ro-

bustness of this solver. Piling from hopper flow is studied because it provides a simple way to control the

conditions that affect pile formation. Analysis of the timesteps taken in a simulation indicates the appropri-

ateness of the numerical scheme and the overall applicability of the solver.
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Figure 7: Snapshots of packing and fracturing of 5157 grainsduring granular collapse, forµs = 0.5, µr =

0.00025. The wall facing the viewer is not drawn to expose the grain dynamics.
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Figure 8: Snapshots of a range of granular dynamics with 6889grains, forµs = 0.5 andµr = 0.00025.
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Figure 9: Pile size vs Friction Parameters

4.1 Friction Parameters and Pile Formation

Varying the friction parameters in a simulation controls the pile height. There are two sets of friction pa-

rameters to consider: the inter-grain friction parameters, µs andµr, and the grain-object friction parameters,

µq, kq, µτ , ks, kτ andtq. The grain-object friction parameters,µq, kq, andµτ , only serve as an estimate of

the instantaneous force from grain-object collisions; thetotal force from all collisions is then evaluated to

determine if stiction conditions apply. The stiction parameters,ks, kτ andtq, determine how quickly a grain

is brought to rest and remains static, such that piling may begin forming on top of it. The grain-object friction

parameters are identical for all simulations in this paper.

Figure 9 shows how the inter-grain friction parameters affect piling for a simple hopper simulation of 1575

cube-like grains. For small values ofµs andµr, the pile is short and wide; for large values ofµs andµr, the

pile is tall and thin. Values ofµs from 0 to 0.25 affect the pile size considerably; values ofµs from 0.25 to

0.5 affect the pile size less significantly. For this simulation, small values ofµs indicate that the inter-grain

friction forces are the dominant mechanism in pile formation. For larger values ofµs, less sensitivity toµs

suggests the pile size is dominated by the geometric configuration of the constituent grains.

The effects of changingµs andµr on the stiffness of the equations of motion may be observed bylooking

at the timesteps of the numerical solution. Table 1 summarizes some timesteps statistics taken for various

µs andµr. For the frictionless case, the numerical approximation requires marginally smaller timesteps than

simulations with friction. This seems to suggest that the presense of inter-grain friction does not significantly

affect the stiffness of the system of differential equations. This is further explored in Section 4.2.
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No. of time steps Time stepsize

µs µr Accepted Rejected Max Min Avg.

0 0 9611 763 0.041667 0.002083 0.011367

0.1 0.0001 9291 1310 0.041667 0.003472 0.013449

0.25 0.000125 8287 762 0.041667 0.003086 0.013198

0.5 0.00025 9083 488 0.041667 0.004630 0.012771

Table 1: Timestep statistics for several values ofµs andµr, TOL = 0.01

4.2 Friction Parameters and Stiffness

The stiffness of the equations of motion can often be explicitly quantified by the eigenvalue of the Jacobian

with the largest negative real part. Since the ODE system has3 · 4 · N number of equations, the Jacobian

is only practically formed for a small number of grains. For this analysis, 48 cube-like grains in a pyramid

configuration are suspended a small distance from a surface and allowed to fall and collide with the surface.

Grain-object friction is present to bring the granular system to rest. The inter-particle friction is varied. A lo-

cal Jacobian may be estimated by finite differences in a smalltime interval. A set of these Jacobians sampled

at a number of discrete times gives an indication of the progression of the eigenvalues of the Jacobian of the

system over time.

Table 2 lists estimates of the eigenvalue of the Jacobian with the maximum negative real part for various

grain-grain friction parameters at 20 discrete times. These values may be used to understand the general

trend of a system’s stiffness as the granular system evolves. As these values are estimates, and as the dynam-

ics of the system are different for different pairs of(µs, µr), the eigenvalue estimate for a pair of(µs, µr) at

some timetn does not necessarily have any relation to the eigenvalue estimate of another pair of(µs, µr) at

the same time.

Eigenvalues with a large negative real part and a small imaginary part indicate a stiff ODE system. On oc-

casion, such as timestepst7, (µs, µr) = (0.25, 0.000125) andt3, (µs, µr) = (0.5, 0.00025), the eigenvalues

are larger; however, in general, the eigenvalues in Table 2 are not exceptionally large. This suggests that,

for this example, the ODE system is, in general, not stiff andthe timesteps taken by the integration formula

are not restricted by the stability of the numerical method.Although the many-body problem is potentially

stiff, for the dynamics studied in this example, the problemis not so stiff such that the stability of the explicit

method limits the time stepsizes in the numerical integration.

Table 3 lists estimates of the eigenvalue of the Jacobian with the maximum absolute real part at the same

20 discrete times as in Table 2. Large positive eigenvalues in this table indicate the system is predominately

unstable. Large negative eigenvalues, again, indicate stiffness. This table may be used to understand how the

largest eigenvalues evolve as the simulation progresses.
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(µs, µr) (0, 0) (0.25, 0.000125) (0.5, 0.00025) (0.75, 0.000325) (1.0, 0.0005)

t1 −1776.7 −2991.8 −2781.2 −1053.2 + 929.3i −2532.4

t2 −501.7 −548.9 −952.6 −988.3 −285.9

t3 −8397.8 −140.3 + 138.5i −78298.3 −362.7 + 1161.5i −169.5

t4 −311.2 −3421.8 −1170.1 + 1417.4i −417.2 −1048.7

t5 −226.4 −186.2 −1386.9 −389.4 −9445.1

t6 −962.4 −1102.7 + 2724.8i −8467 −2420.5 −110.4

t7 −172 −16714.1 −519.6 −2442.2 −425.4

t8 −64 −100.9 −441.2 −1440.4 −7619.1

t9 −3202.5 −226.9 −1026.2 −9171.2 −148.5

t10 −851.5 −300.5 −1431.6 −49.1 −369.6

t11 −421.5 −160.8 −2341.9 −369.4 −232.4

t12 −326.1 −1566.1 −260.3 −158.5 −297.2

t13 −2212.3 −1281 −184 −1534.2 −2706.3

t14 −500.8 −516.3 −9311.4 −2207.1 −552.2

t15 −2147 −12035.3 −587.7 −405.6 −768.3 + 153.8i

t16 −10384 −1888.8 −4363.5 −163.3 −3211.6

t17 −5.5 −242.8 −164.2 −132.4 −280.8

t18 −268 −2192.9 −154.5 −6.5 −478.6 + 270.8i

t19 −2632.2 −225.7 −683.8 −298.4 −655

t20 −10 −4932.3 −709.1 −163.2 −215.1

Table 2: Estimates of the eigenvalue of the Jacobian with largest negative real part at 20 discrete times during

the simulation.TOL = 0.01
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(µs, µr) (0, 0) (0.25, 0.000125) (0.5, 0.00025) (0.75, 0.000325) (1.0, 0.0005)

t1 9758.9 13633.9 14887.6 10523.3 13282.2

t2 2392.6 3708.5 4832.5 7701.4 1531

t3 −8397.8 1221.6 −78298.3 2057 3142.1

t4 3057 −3421.8 12422.2 3277.3 6314.5

t5 3277.1 330 −1386.9 631.6 −9445.1

t6 −962.4 6411 −8467 −2420.5 −110.4

t7 −172 −16714.1 −519.6 −2442.2 −425.4

t8 467.2 885.1 −441.2 −1440.4 −7619.1

t9 −3202.5 625.5 −1026.2 −9171.2 −148.5

t10 −851.5 1579.2 −1431.6 302.8 −369.6

t11 6202.4 808.5 −2341.9 −369.4 −232.4

t12 1493.8 −1566.1 1436.7 −158.5 947.5

t13 −2212.3 −1281 338.5 −1534.2 −2706.3

t14 −500.8 −516.3 −9311.4 15995.3 −552.2

t15 −2147 −12035.3 −587.7 −405.6 6151.6

t16 −10384 11271.1 −4363.5 564.3 −3211.6

t17 412.6 −242.8 371.2 −132.4 1971.8

t18 7504.4 12357.7 2939.2 28.4 −478.6 + 270.8i

t19 −2632.2 −225.7 −683.8 −298.4 1421.9

t20 94.8 6711.4 −709.1 1362.5 1241.8

Table 3: Estimates of the eigenvalue of the Jacobian with largest absolute real part at the same 20 discrete

times during the simulation as in Table 2.TOL = 0.01
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No. of time steps Time stepsize

TOL Accepted Rejected Max Min Avg.

0.1 1509 15 0.041667 0.005208 0.016540

0.05 1458 22 0.041667 0.006944 0.017118

0.01 1709 77 0.041667 0.004630 0.014604

0.005 2000 140 0.041667 0.002083 0.012479

0.001 3412 298 0.041667 0.001437 0.007315

Table 4: Timestep statistics for RKF45 usingµs = 0.5 andµr = 0.00025.

In Table 3, large positive eigenvalues att1 indicates that each simulation begins very unstable. This time

point corresponds to the initial collision of the grains with the surface, and becomes more stable as the

effects of friction settle the grains. For simulations withsmall values of(µs, µr), the system fluctuates

between stable and unstable states which coincides with recurrent slip-stick motion, common for grains with

these parameters. At some time points, such ast3, (µs, µr) = (0.5, 0.00025) the eigenvalue is larger and

negative. This indicates that the ODE system may occasionally be stiff during the simulation. Given these

trends, the explicit RKF45 formula is adequately applied tothis problem.

4.3 Step Size, Timesteps and Tolerance

The step size tolerance,ǫ, in the numerical scheme controls the step size in the adapted timesteps. For

RKF45, the tolerance is essentially a limit on the maximum difference between the fourth and fifth order

estimate of the grain positions,~ci. Lowering the tolerance causes the solver to take smaller stepsizes and

consequently increases the total number of timesteps taken. The number of rejected timesteps also increases

with a more restrictive tolerance. Sensitivity of the time stepsizes to different tolerances is another indication

that the integration method is not operating at the boundaryof its stability region. As suggested in Section

4.2, the time stepsizes taken do not seem to be restricted by the stability requirements of the RKF45 method.

Figure 10 plots the stepsizes taken at each timestep for a range of tolerances. A simple hopper flow simula-

tion is used with 397 particles whereµs = 0.5 andµr = 0.00025. For each tolerance the final pile size is

observed to be the same.

Table 4 summarizes some statistics of the timesteps. Indeed, as the tolerances become more restrictive, the

number of accepted and rejected timesteps increases while the smallest timestep taken decreases, as expected.

This can lead to lengthy simulation times and tolerances lower than0.001 are not considered for RKF45.

In Algorithm 1, the suggested adapted timestep,hopt, is actually constrained such that there is an integer

number of timesteps within one time frame. Any timestep thatis less than or equal tohopt is a valid timestep

to take, as far as satisfying the tolerance is concerned. Forsimulations in this paper, one time frame is

1/24 = 0.041667s. Any timestep taken divides evenly into0.041667.
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Figure 10: RKF45 stepsizes versus time for various tolerances. Accepted (rejected) steps are indicated in

blue (red).
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Figure 11: RK23 (Bogacki-Shampine) stepsizes versus time for various tolerances. Accepted (rejected) steps

are indicated in blue (red).
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No. of time steps Time stepsize

TOL Accepted Rejected Max Min Avg.

0.1 2445 81 0.041667 0.001736 0.010208

0.05 3537 164 0.041667 0.001042 0.007056

0.01 9493 1660 0.041667 0.000284 0.002629

0.005 15706 3008 0.041667 0.000141 0.001589

0.001 169908 10 0.041667 0.000141 0.000147

Table 5: Timestep statistics for RK23 usingµs = 0.5 andµr = 0.00025.

In Figure 11, the same analysis is performed for the lower order Runge-Kutta (Bogacki-Shampine) 23 (RK23)

method. Table 5 summarizes some timestep statistics. As expected, the lower the tolerances, the more

timesteps are taken as well as the step sizes are smaller. There is also a significant increase in the number

of accepted and rejected timesteps compared to RKF45. For a tolerance of0.001, the step size of most of

the accepted timesteps is the minimum step size of0.000141. This suggests the actual step size required to

satisfy a tolerance of0.001 is smaller than0.000141 and the adaptive component of the numerical scheme

is no longer applicable. This leads to lengthy simulations times and tolerances of0.001 or lower. For this

hopper simulation, using RK23 should not be considered without lowering the minimum step size.

The higher-order RKF45 method takes fewer number of timesteps, larger step sizes and more tolerances

compared to the RK23 method. This indicates that granular simulations that exhibit piling benefit from the

increased accuracy of the higher-order method. Since the numerical scheme is not the dominant computa-

tional cost in terms of flops, RKF45 with adaptive timestepping is preferred to the RK23 method, even for

the larger tolerances.

4.4 Collection Size and Computational Time

The actual performance of this solver is problem dependent,since the dynamics of the system are also prob-

lem dependent. Nonetheless, as a simple demonstration of theO(N) complexity of the solver, the computa-

tional time for a hopper flow simulation with piling for an increasing number of cubic-like grains comprised

of eight spheres is presented in Table 6.

5 Conclusion and Future Work

The appeal of using discrete element methods for granular simulations is that the approach is straightfor-

ward and natural. Intuitively, the macroscopic behavior ofa collection of grains originates from the micro-

mechanics of the grains at the particulate scale. Successful application of this solver to model packing,

piling, jamming, fracturing, fragmenting and avalanchingdemonstrates that, with suitable force models, the

approach is effective and versatile.
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Number of Grains Number of Frames Avg. Time/Frame (s)

536 300 2.4

1051 400 5.28

2071 600 13.2

4096 1500 28.8

8036 2500 58.2

Table 6: Computational time versus collection size usingµs = 0.5 andµr = 0.00025.

For dry granular materials, the slip-stick motion of individual grains is the principal mechanism behind be-

haviors like packing, piling and fractures. Force models that have history-dependent terms are essential for

proper modeling of the static friction necessary for the grains to result in avalanching or piling. The force

model in Section 2.3.4 is the best suited model considered for this solver.

The performance of this solver is problem-dependent. When designing simulations, attention to the effects of

the model, material and object parameters on the stiffness of the equations of motion is critical for reasonable

computational times. Future work to ease the design of simulations and improve the computational expense

is expected to promote this solver further.

There are three natural extensions to this work. In the current framework, it is trivial to introduce secondary

forces to the equations of motion to describe alternative granular behavior. Cohesive forces or fluid-solid

interaction terms may be simply added to the current model tosimulate wet grains. The short-range influ-

ence of the forces in this chosen DEM method makes it easy to model wet and dry materials as well as a

progression of one to the other. This is a valuable function of any general granular solver.

In conjunction with alternative force models, a robust numerical method is fundamental to be able to seam-

lessly handle a diversity of granular dynamics. Potential stiffness in the system of ODEs will hinder widespread

application of this solver. Although the dynamics studied in this work are not particularly stiff, implicit or

semi-implicit methods may mitigate the sensitivity of the numerical approximation on problem-specific stiff-

ness. The additional complexity of any chosen implicit/semi-implicit method should not outweigh the gain

in the solver’s robustness.

For arbitrary granular systems of largeN , this O(N) solver is still computationally impractical. Steps to

accelerate the computations are underway. Techniques include DEM-FEM multi-scale methods, coarse-

graining and other hybrid approaches [15]. General techniques, such as parallel computation, only serve to

improve the simulations times even more.
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A Comparison of Grain-Grain Force Models 1 and 3:

Supplemental Example

In this example, we start with a set of cube-like grains suspended a small distance from the ground and

allowed to collide with the ground under gravity to eventually settle into a pile. A solid object is then pushed

thru the stable pile to divide the pile into two smaller piles. Under force model 1, Section 2.3.2, Figure 12,

we observe a separation of the original pile. However, viewing the last frame from different angles, there is

no significant piling in the two smaller piles that result. Under force model 2, Section 2.3.4, Figure 13, we

observe a separation of the original pile and piling in the resulting two smaller piles. This property enables

us to simulate collections of particles in situations inappropriate with force model 1. Figure 14 is an example

of tracing shapes through a pile of sand.
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Figure 12: Snapshots of an object pushed through a pile of cube-like grains under force model 1, Section

2.3.2: Basic Model.(µs, µr) = (1.0, 0.0005). First row: snapshots of three time frames during the simulation.

Bottom row: different views of the last frame.

Figure 13: Snapshots of an object pushed through a pile of cube-like grains under force models 3, Section

2.3.4: Static Friction Model with Dampening.(µs, µr) = (1.0, 0.0005). First row: snapshots of three time

frames during the simulation. Bottom row: different views of the last frame.
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Figure 14: Simulation of tracing shapes through a pile of sand (10411 grains).(µs, µr) = (0.5, 0.00025).

First four rows: snapshots during the simulation. Bottom row: different views of the last frame.
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