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Abstract

Granular dynamics is the dynamics of a large set of smalighest(grains). Convincing simulation of natural
granular phenomena (e.g. dust, sand or powders) is a cpimitemathematical and computational problem.
Our observation is that the more realistically the collattof grains approaches its static state, the more
natural the simulation appears. This study focuses on thalation of sets of grains as the set approaches
its static state. The method begins with a discrete elenas feferred to as molecular dynamics) model
of the inter-particle contacts within the granular coliest Inertia terms (friction/dampening) are added to
the basic contact model to facilitate static piling. An exaation of the different contact models on the
formation of the final static state and a discussion of theamigal consequences of each model is presented.
The discrete element approach demonstrates to be a stoaigdntd and natural way to model many granular
behaviors. Its versatility makes it possible to use it tddaigeneral-purpose granular solver.



1 Introduction

Granular material is a special class of matter that resptmdsgternal forces in unconventional ways com-
pared to traditional solids, liquids and gases. The dynamii@ collection of grains exhibit complex behav-
iors such that there does not yet exist a consistent theatychn encompass all phases of its motion. Yet
granular systems are ubiquitous in the natural world arattsfin the literature to model granular behavior
are typically only suitable for the granular system studadhand. It is easy to recognize the value of a
general granular dynamics solver that can simulate thensspof any granular assembly under a number of
external conditions. This work examines the limitationd amerits of using a discrete element method as a
general granular dynamics solver. The greatest challengeveloping such a solver is ensuring computa-
tional efficiency.

1.1 TheGeneral Problem

Granular material such as sand, dust or powders exhibivimahat is incompletely described by existing
solid, liquid or gas models of matter [1]. Small particless¢areferred to as grains) can pack like solids
and take freestanding shape, flow like liquids and move infees@e unit or expand like gases and evolve
with complex dynamics. Under appropriate conditions, gtanmaterial can behave like any one of these
states of matter and can spontaneously transition betwese states (e.g. jamming of powders in a hopper,
avalanching on the surface of a stable sandpile [4]). A gdqmirpose granular dynamics solver needs to
accommodate this range of motion and facilitate the tremmsftom one dynamic state to another.

Developing appropriate models of granular matter is arvactiea of research. The majority of models in
the literature are constructed to describe a specific gaamskembly. Existing models may be categorized as
either a grain-scale method, where each grain-grain @ollis identified and the bulk behavior is implied; or

a continuum-scale method, where the bulk behavior of thieatn is described and any grain-level detall
is generalized. Within each category, there is also vanaiih the mathematical description and solution
method of the model. Between categories, the motion inglichy one set of models may not coincide with
the predicted bulk behavior of the other set of models. Aafilit model for a solver should be able to simu-
late both fine-grain and bulk features of the system; thisés¢ason grain-scale models are the focus of this
work. A way to determine the quality of various grain-scaledals is to evaluate how well the model can
achieve desired bulk properties.

Grain-scale models pose many computational challengesinGcale models typically begin by calculating
the forces between all pairs of grains in contact. Newtogisations of motion are then integrated for each
grain. This leads to a large system of differential equatinsolve and the method quickly becomes com-
putationally infeasible for real-world systems with a krgumber of grains. In addition, the computational
complexity also increases as the grain geometry becomes owonplex. A practical granular dynamics
solver needs to be robust to various grain geometries arnabdéedo a large number of grains. Successful
implementations of grain-scale models so far are limitesysiems consisting of a few thousand particles.



1.2 Problem Statement and Scope

This work studies the feasibility of using discrete elemewthods (DEMs) to build a general-purpose
granular dynamics solver. In principle, DEMs are suitalglantodel composite solids, liquids and gases.
However, existing instances of discrete element modelsadmecessarily encompass the many phases of
granular behavior. Also, in many cases, DEMs are computallyptoo expensive to be a practical solver. To
evaluate the proposed solver, we focus on simulating thardjgs of a collection of grains as it approaches
a static state. We want to observe a set of grains transitjofiom a kinetic regime to a static regime,
possibility interacting with obstacles and/or boundarredetween, and settling into a static state that we
identify by observing evidence of stable granular pilese $tudy begins with a basic discrete element model
of granular dynamics [2], [17]. The model is then extendeihtdude inertia terms so that the collection
can form granular heaps. The solver is finally evaluated $wlility to form realistic static heaps under
contrasting formation conditions. The computational destirectly related to the number of inter-particle
and particle-object calculations needed to simulate thpamse. The computational expense of this model
under each scenario is examined.

1.3 Background

Modern simulations of natural granular phenomena begarei8®’s, and their main application was to study
industrial processes that suffered unexplained ineffad@n Physically-based models were developed and
numerically approximated for each specific application.eDa the different situations that these models
arise from, three distinct approaches to grain-scale nsaofefjranular systems are developed: discrete ele-
ment methods (DEM), rigid body dynamics (RBD) and cellulaiomata (CA).

Discrete element methods typically use is a soft-shape adetvhere small overlapping of grains due to

collisions is allowed and these overlaps are used to estithat resulting impulse forces that govern the

motion. DEMs are well suited for problems where the contaatds can be determined from small mutual

deformations. This makes the method immediately appr#pfa granular systems of soft to moderately

hard particles that exhibit fast dynamics. It's main disattage is that large impulse forces in the equations
of motion can cause the typical explicit integration schéogse small time steps.

Rigid body dynamics is a constraint-based approach wheredhtact forces of each collision must be re-
solved by defining the so-called Linear Complementarityblnm (LCP) and searching for a set of forces
that satisfy the no-penetration constraints. RBD methodsa&ll-suited for granular systems consisting of
very hard materials where there is little mutual defornratémd the system dynamics is considered slow.
In contrast to DEMs, the RBD approach does not require ariaixgefinition of the interacting forces but

solves for the forces from a set objective functions and ttaimds. However, a direct consequence of not
modeling the contact forces is that specific material prigmare not included. Also, the contact forces
computed by RBD are, in general, only one set out of infinitebny sets of forces that satisfy the equations
and constraints; thus extra work may be needed to assurggtarsbehaves in a physically-realistic way.

!Also referred to as molecular dynamics methods (MD).



The computation of each step in RBD is more complicated theM® but the overall computational cost
can be similar to that of DEMs because larger stepsizes m#akba.

Cellular automata is a rule-based model where the domaineo$itnulation is discretized into a finite grid
and simple rules are defined at each grid point such that ticéatel the motion of a particle as it passes the
point. This model applies the idea of self-organized alitg (SOC) where complex systems may emerge
from simple local interactions defined by these automatdesrulhe appeal of SOC is the fact that the be-
havior of the system is insensitive to any control paransetehanging fine details of the model does not
affect the system from reaching its critical behavior. Thhisthod has been successfully used to model heap
growth, avalanches, dune and ripple patterns in granukiesys. The CA approach is capable of explaining
granular phenomena. However, it is unclear how to define than@aton rules such that the method can be
used as a general-purpose solver.

In modern computer graphics, particle-based models, suismaothed particle hydrodynamics (SPH), have
become methods of choice to model the motion of deformaliistances, liquids, and cloth. SPH is popular
because it is possible to compute a system’s motion in ie&-tor a large number of situations. However,

these particle-based methods are not immediately apptepidr granular materials because they do not
model real material properties and inertial forces thatpmesent in systems of grains. Instead, is is more
suitable to choose a grain-scale model of granular dynaamidsevolve the model to include a wider range
of granular motion.

There have been other attempts to adapt fluid solvers to aiengranular systems [5]. This approach ad-
dresses the computational limitation of grain-scale mmddbwever, on close examination of the simulation
results, the inability to simulate scattering or shearihguibsets of grains from the collection makes the dy-
namics seem suitable for very fine powders but not for coaaa gollections like sand or gravel. Retrofitting
a fluid solver to be a granular solver may only produce limgeghular behavior.

2 A Granular Dynamics Solver

A general-purpose granular dynamics solver is designea @ llack box solver that can simulate the dy-
namics of an arbitrary set of grains given the geometry ofgitans and material properties. ldeally, the
end-user can control the grain behavior by adjusting thesegh parameters. The ease of which the end-user
can operate the solver is directly related to the complefithe contact force models.

Within the solver, the solver needs to decide on how to remtethie grain geometry, how to use the geometry
and material properties to model grain-grain and grairectteraction and how to approximate the motion
from the model efficiently. The grain geometry, materialgmdies and computation technique all have an
affect on the formation of the final static state. The techagused at each stage of the solver determines the
robustness of this approach.



Figure 1: Example of grains composed of rigidly connectdubsgs.

2.1 DEM-based Granular Dynamics Solver

The general workflow for this solver is:

1. Parameterize the grain.

2. Define the contact forces between grains.

3. Define the contact forces between a grain and externattsbje
4. Form the equations of motion.

5. Numerically solve the equations of motion.

The grain geometry is typically either approximated witlarigles, spheres, or another finite element dis-
cretization of the surface is used. Triangulation is fakt@aince any grain shape may be triangulated to an
arbitrary level of detail. However, this geometry leadsdamgplicated equations in the model that adds to the
complexity of the computation. Approximating grain shapath composite spheres is less precise but the
equations in the model are simpler to define and easier to at@nike triangulation, finite element dis-
cretization of the grain surface incurs a significant corapaal cost. This level of detail is only necessary
when object deformation is an important component of theukition.

This solver is developed to use grains approximated by afsgpheres. The resulting contact force at a
grain-grain interaction is easily estimated by the amodimverlap of the spheres. A similar force may be
estimated at grain-object collisions. Forming the equtiof motion and solving this system of equations
efficiently at each time step determines the cost and therdifie feasibility of this solver.

2.2 Grain Geometry: Composite Grain

Each grain in a granular system is approximated by a set ioflyigonnected spheres (Figure 1). The com-
posite sphere surface approximates the grain’s surfaceaaneasily be used to approximate any grain shape.
The grain shape itself can be used to model static frictignA6grain shape with significant concavity is a
geometric mechanism that promotes interlocking of pasieind thus a model of static friction. This work
chooses to use simple convex grain shapes for its simusatiokeep the mass and moments of inertia simple.
Variations on the composite grain use springs to connecsggtheres. This extra level of complexity is not
considered crucial for the solver.



Figure 2: Grain Parameters.

An explanation of the notation used in Figure 2 is given ae¥a. The index of a grain is denoted hyFor
each grain, the centre-of-mass parameters are defined to be:

G = (ci1,c¢i2,¢i3)  position of graini.

U; = (vi1,vi2,vi3)  Vvelocity of graini.

0; = (0i1,0i2,0;,3) orientation of grain.

Wi = (wiq,wi2,wi3) angular velocity of grain.

The index of a sphere that comprises a grain is denotefl IBpr each spherg, the following coordinates
are also defined:

Zj = (xj1,x52,2;3) position of spherg in some grain.
R; radius of spherg in some grain.

Since the spheres in the composite grains are rigidly caadgethe velocity and angular velocity of sphere
are the same as those of grain

Ui = (vij1,vij2,vi5,3) = U;  velocity of sphergj in grains.
Wij = (wij1,wij2,wij3) = @; angular velocity of sphergin grain.

In subsequent sections, the grain indés dropped from the notation for the velocity and angulapeity
of spherej. For brevity of notation, let; = v;; andd; = &;; refer to the velocity and angular velocity,
respectively, of a sphergthat belongs to some grainsimilarly, 7, anddy, refer to the velocity and angular
velocity respectively of a sphefeon another grai’. When the identity of the grain is important, the index
is explicitly included. If references to specific grains pheres are ambiguous, the notatign, ;—3 or vj—s
will be used.
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Figure 3: Grain-Grain Contact Quantities.

Grains used in this work are approximated by identical sghellhis assumption is non-essential and may
be relaxed to model more realistic grain shapes. Howevepatential of using composite spheres to model
sharp-edged grains is limited. This solver is best used fanigar motion where very sharp-angled grains
are not fundamental to the dynamics.

2.3 Contact Forces

In soft-sphere discrete element methods, the (repulsirep$,F;, and torques?;, acting on each grain are
given by sums of pairwise interaction of the grain with ah@tgrains and objects, that is,

ﬁi = Zﬁjk"'zﬁm
Jik J.q

Ti = Z?J’k+z7?jq
Jik J:q

wherej is the index of thegj*” sphere of grair, % is the index of the:’” sphere of the other graihandq is
the index of the;™ object in contact with grai.

Soft-sphere simulations does not explicitly enforce thepapetration constraint among its grains but de-
fines forces to apply this condition. These forces are détfixeen measurable quantities during mechanical
contact.

2.3.1 Contact Quantities

In a granular assembly, grain collision may be quantified é&fnéhg values that describe the mutual com-
pression/deformation of spherggandk during the collision of two grainsandi’:



§ig = max(0, Ry + Ry, — |75 — 7))

Gk = (05— i) - i,

e = ﬁ (1)
Zip = T+ j—%k)ﬁjk

Vj = U — U + & X (Zg — Cr) — &5 X (Zjk, — i)

Wj = g x (2 — &) — & X (Zjr — G).

In the aboveg;, is the inter-penetration of grains that is a measure of thesahicompression/deformation

of spheres andk, gj'-k is the relative velocity of the compressia;, is the direction of the compression,

Z;1 is a contact point used to represent the contact afgaand I/, are the instantaneous relative velocity
and angular velocity, respectively, of the contact poispeztively.

The forcesﬁjk, and torques7j, , acting at a collision between sphereandk of two different grains are
derived from the above contact quantities. Their expliepehdencies may be written as:

— —
- =

ij = Fj (xjawlmvjavk70ja0k7wj7wk)

Tk = Tjk(L5, Ty, U, Uk, 05, Ok, Jj, ;)

The notationF’;;, and7;;, is used as a convenient shorthand. The discussion of foncE®mjues acting at a
collision point is more easily described in terms of theirmal and tangential components:

F

o~ [ B iG>0
0 otherwise

. Ry x FY  if & >0
Tik = .
0 otherwise

Expressions for the normal and tangential ford@%,andﬁﬁ, and subsequently the torques are still an active
area of research ([18] [19] [20] [21] [22] [23]). In partieuw] different models of the tangential forces give
rise to different granular dynamics. Several accepted ts@de studied and presented. All models work best
when the inter-penetration of graing,, is small. The solver should monitor that this condition lisays
valid.

2.3.2 Contact Forces: Basic M odel

The most basic model of forces and torques acting at a aoilisi



no= (—kaf8 &k — k€l

ka = —min(ps|F, k‘ kt\ij\) 2)
| Jk|

Tik = (ij—@')Xij

wherew, 3, kg, kq, kt, 11, are model and material-dependent constants. The norneal foa widely accepted
model of the interaction of viscoelastic spheres derivetliby. Brilliantov et al. [8]. The tangential force is
a simple ansatz of a frictional force that opposes the tarajarelocity limited by Coulomb friction condi-

tion. By definition, torques are derived from the forces. Astance of this model is in work by Bell. etal. [2].

This model of inter-grain collisions is straightforward itoplement and has low computational cost. For
simulations where rapid dynamics is the focus, this modekiserally adequate. However, the tangential
repulsive force is not sufficient to form stable piles. Forafimelative velocities (7jk), the tangential force
vanishes so there is no longer an opposing force to furthezlelate the particle. The result is a collection
of grains that slowly collapses under its own weight. Sedi@28.1 for an example.

2.3.3 Contact Forces. Simple Static Friction M odel

A simple extension of the basic model includes a term to d@scurface friction acting in the plane tangen-
tial to the contact normal and a rolling resistance to torfguees. Thus the contact forces become

= (—ka ?kﬁjk - kﬁgfk)ﬁjk
- |77
Fly = —sign(d;,) min(u| |, —ky O J’] (3)
]k:
~ Wik
Fr = (Zr— &) x Fly — po| |
7" |W]k’|
where
tn
= [ Vil @
0

is the contact displacement for a contact that persists fioma ¢, to t,,, andu, is the rolling friction co-
efficient. Contact displacement is basically a cumulatis@as measure of the distortion of the contacting
surfaces due to rolling and sliding limited by Coulomb fioct

T. Elperin et al. [7] used this model to simulate stable glanpiles for spherical grains. However, this
model is only able to form piles if the grains in the system@aeked sufficiently slowly. The model does
not have enough mechanisms to dissipate the kinetic energmi system rapidly enough to achieve piling
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from arbitrary formation conditions. In Elperin et al's gimal work grain velocities were artificially set to
zero at a fixed number of intervals at the beginning of the Kition to decrease the effects of grains with
large inertia. Although the formation conditions of this debare limited, the endurance of contadg,, is
shown to be an inherent component of any static friction hode

2.3.4 Contact Forces. Static Friction Mode with Dampening

An adaptation of the simple static friction model adds daniqg terms to handle grains with large inertia.
This placates the need to manually interfere with pile aoietibn and is effective at simulating static piles
for many formation conditions. In this model, the contactés are

o= (—ka€lL5k — kpll )Tk
— — 1 — min 5k,5 gk —
By =l Pl (1 — e D) o Ok g ©
Omax !%k\
ik = (Zik— &) X ka - Mr|Fﬁ|’W—j’
ik

where~, d;, dmax are a material-dependent constants.

The tangential frictionF’]?k, is Coulomb friction re-written to us@jk, the vector of accumulated tangential
displacement between sphegeandk, given by

ok = [ Vik(t)dt.
to
When@k\ << dmax, the tangential force is in an elastic response region. Wf}@ha dmax, the repulsive
force maximizes tqu,|F™ .

Investigators ([9][10]) have used instances of this modsttidy granular piling. Simulations show success-
ful heap formation by a series of avalanches in the boundssrlof the pile. The dampening terms assist
the granular system to reach a static state but its role énfpimation is secondary to contact displacement.
Even with this model of static friction, the stability of tigeanular pile is still sensitive to its formation condi-
tions. Numerically, the final heap is not absolutely stile kinetic energy is never completely dissipated and
residual kinetic energy manifests as local vibrations iwithe pile. A study of the sensitivities of a granular
pile to friction is given [16].

2.3.5 Contact Forces. Grain-Object Friction M odel

Particles that collide with external objects also expeargerepulsive forces. To adapt the technique used for
spheres, the object surface is assumed to be smooth suthelpatrtion of the object surface in contact with
the grain may be approximated as an infinitely large sphehne. bRsic model may then be used to estimate
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Figure 4: Grain-Object Contact Quantities.

the resulting forces such that the contact quantities oéisghof particle: with objectq, may be described
by

§ig = max(0, Ry — |zj — 2g])

§ig = (05 —g) - Tijq

. Ty — T

Njq = | —? —?

Lg — 33]|

S o Sy

Zjg = Tj+ (R, 5 )Tjq

‘7jf1 = Uy —Uj + g X (Zjg — Cr) — & X (Zjg — G)
qu = &g X (Zjqg — Ci) — &j X (Zjqg — Ci)-

where the contact area is approximated by the paiptwhich is a point on objeqf that is closest t@’;, the
centre of the contacting spheje

Adapting from the basic model, the repulsive force at a plaribbject collision may instantaneously be
modeled as

Fig = (=ka&§y€ig — kbgygq)ﬁjq

. ) . LV

F;q = _mm(ﬂq’FJZ’aqujqbﬂ;ﬂ (6)
jq

Tig = (Zjg—G) % Fjl‘fq = hr| Fol&5

wherek,, ky, 114, kq, 1t~ are material constants.
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However, recall that this model does not model static frittiFor particle-object collisions, static friction is
of particular importance. Of immediate relevance is thesalte that a granular pile is formed on. A static
friction model for particle-substrate collisions needdécable to bring the particles to rest in a short time in-
terval and remain at rest such that the particles can formaghrbase for subsequent particles to rest on. Itis
necessary for the solver to be able to construct a stablel&tiom of particles at rest in order to observe piling.

Previous simulations modeled objects as surfaces covdathdpheres on the scale of the grains [2][7][10].
Consequently, the substrate is a rough base made of digzadieles the same size as the grains in the
system. For a general-purpose solver, this prerequisilesirably adds an extra layer of complexity to the
geometry of objects. Also, for complex simulations wheer¢hmay be heterogeneous grains and dynamics,
it is unclear how to form this surface in a controlled way tfeef the static state. Instead, this solver explic-
itly enforces the static friction (stiction) condition imder to model the large impulses needed to bring (and
keep) the grains quickly to rest.

In mechanics, there does not exist an explicit expressioatétic friction. If a body is sliding, the dynamic
frictional force is known to b¢ﬁfmtion\ = ud\f" ; however, if a body is experiencing stiction, the static
frictional force is unknown except to satisfy the observeddition ]ﬁfﬂcmn[ < us!ﬁ”\- That is, when a
body is in "stiction”, the frictional force is such that ndative acceleration is observed.

Conceptually, this means that if a particle is able to resigtapplied forces, static friction occurs such that it
opposes the tangential component of the applied forces lhasvacurs an additional force that acts to bring
the grain to rest. Iqu is the unit vector in the tangential direction of motion beém the grain and object
andeq is the relative velocity of the grain and object, then thetiginal force,ﬁjq, may be expressed as

s u ot TN ot TN\ (‘7jq ) ’?jq){jq
=~ Z (ij “tig)tjq — (qu tig)tjq — ksti (7
k=ko q

where K is the number of spheres of another grain in contact with rgpfiek; is a constant and, is the
impulse duration. So, during stiction, the frictional fencegates any tangential forces acting on the grain as
well as contributes a forc&ks% that acts to bring the grain to rest. An analogous set of ¢iomdi

may be defined to describe the torques during stiction, that i

K W,
qu = - Z (7—_»th : ﬁjq)ﬁjq - (ﬁq ’ ﬁjq)ﬁjq - th—Jq
k=ko 1

whererq is defined in (1). This solver implements this stiction cdiodi in order to model the slip-stick
motion of grain-object collisions.
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2.4 Equationsof Motion

Newton’s equations of motion govern the dynamics of thengréth the system. The equations are defined
for the center-of-mass coordinates of each grain. The $amo€d torques evolve as the granular configuration
changes. The resulting equations of motion for one grairyssesn of second-order ordinary differential
equations (ODEsS) that is written as a system of coupleddider ODES.

G = U

5 7o, L o Ftoopno gt o

i = Fi:g—FEZ(ﬁ—Fij—i-FJZ—i-qu—i-qu)
" jk.a

0; = W

B L1 =, =

Wi = mi=p Z (Tjk + Tig + Tjq)

" Gikig
wherem; is mass and; is the tensorial moment of inertia of grainFor the simple grain shapes used in this
work, the moment of inertia is approximated by the momentofjaproximate sphere which simplifiésto
a scalar value. The forceﬁ,, and torquest, are defined in Section 2.3. The notat@jgvk,q means the sum
is over all other particles and objects that are in contattt thie spheres that compose grain

The entire ODE system to be solved for a systenVajrains is

—

y=f(ty)

wherey = (¢, ...,En, U1, .o, UN, 01, ooo, ON, D1, ..., @) L. EXplicitly, the ODE system is:

— —

C1 U1
CN UN
B S .
U1 g + mi Zj,k:,q (F’]k + ij + F’jq + F’jq + F’J(])
= = 1 n it n ot s
UN || Gy Xk (B Fj + Fjg + Fjg + Ff)
01 W1
ON ON
S 1 - - s
W1 17 2jkg (Tik & Tig + T54)
' 1 — = —s

L &N ] L T 2 (Tik =+ Tjg + Ty) |

This system of coupled ODEs is typically solved by expliainrerical schemes. Implicit methods may be
used to solve the system but explicit schemes are histlyripegferred due to their simplicity [14]. The
equations, however, may be stiff; any explicit method chosay require small timesteps to ensure stability.
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2.5 Numerical Solution

Other researchers [11] conclude that the Runge-Kutta rdethoovide a good trade-off between efficiency
and accuracy for discrete element simulations. The adaptilnge-Kutta-Fehlberg method (RKF45) is often
the method of choice to integrate the equations of motioris fidurth-order method is considered computa-
tionally expensive per step, but it is still preferred besmiis accuracy allows larger time steps to be taken
when compared to lower-ordered methods in the same familgh&rmore, the integration of the equations
of motion is not the dominant cost in the total cost of apprading a given granular system; the dominant
cost is in evaluating the contact forces that comprise thatans, therefore, we do not expect a major change
in efficiency by using lower order methods. Our solver usesRKF45 method by default. For comparison,
in the analysis section, we present some results from thig&appn of a lower order RK formula.

25.1 TheAlgorithm

The RKF45 formula computes the positions, velocities,raatons and angular velocities of every grain at
each time step in the simulation. Each RKF45 time step regudix derivative evaluations (also referred to
as stages). Each evaluation requires the determinatiomedfotrces and torques acting at a point in time.
After each accepted time step, the contact displacemeusdi) must be updated.

Algorithm 1 describes the procedure for solving for all grparameters at each timestep in the simulation.
A variation of the standard method is used to form the forecestarques in each evaluation §ft, 7). The
forces are computed in succession (lifes11): instead of computing all forces @t ¥/), each force is com-
puted in sequence, where after each force is determinedyréire parametergj, are updated to reflect the
affects of the force before the next force is computed. Thig,8ubsequent forces react to previous forces
and this acts to dampening oscillations in the system dueetmodn-linear repulsive forces. This means the
order that the forces are determined may affect approximatFor simulations in this work, only grain-
grain, grain-object and gravitational forces are congidehe order in which these forces are evaluated in
this solver do not significantly affect the results.

The contact displacement vectoy, has elements defined to be the non-zero contact displateyuantities,

(fjk, that are active at timé Contact displacement is an accumulated quantity thatsteede maintained
after a successful integration step. At each step, the cbditsplacements are assumed to remain active
during the entire timestep; the contact displacement vastaot updated during an RKF45 stage. This
means the initialization of new contacts may be underestithby less than one timestep. The effect of this

assumption on the overall dynamics of the system is minimal.
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O;h=ho;y:=wo;// Initialization

let<Tdo

/1l Solve 6 stages of RKF45

foreach s =1:6do

/1l Set-up stage s. v, « are RKF45 stage constants

P =t+~v°h

=G+ X @k

Il Estimate f(t%,y7). Apply forces, F, increnent ally.
&+ hvp fori=1.N

! 'l_ff fOI’Z - lN
v &+ h3 fori=1.N
;3 fori=1.N

foreach F = (mg, Fjj, + Fjg, ...) do

/1 Conpute the force and torque.

F(t*,5)

7, )

/1l Apply the force and torque to ng’.
R fori=1.N

2m; "~ ¢
h 1 1
/ / F, fori=1.N
—g — =g + m;
Yt Yt h_27—-; fori:=1..N

hz  fori=1..N

k3

~|

~

end

/] Cal cul ate s-stage of RKF45

hvi fori =1.N
B b = o — @ fori=1.N
$ot hes fori=1.N

& — @ fori=1.N

end

/[l Integrate Step. (' s are RKF45 step constants
Jir1.ris = T + 20 BEKS

Jer1rKa = T + 0. Bik°

1
hopt = (Tt )'hi/l optimal tine step.

[[€i+1,RE5—Ctr1,RE4ll)

if hope >= 0.75h then
/1 Accept this step.

t=1t+h;

y:t+1 = ?zt+1,RK4

0tr1 =0+ hv; /] Update all contact displacenents.
end
h = min(max(hopt, Pmin)s Pmaz)
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Algorithm 1: General RKF45 Procedure for Granular Solver.




Algorithm 2 describes the procedure for computing the feaed torques among grains and between grains
and objects at each stage of the RKF45 method (lines 8-9 iarign 1).
Input: ¢, 4
Output: F(t,7),7(t,7)
/1 Update hash grid
1for i=1:Ndo
2 | hashGe insertHashGride; )
3 end
/[l For each grain i
4 for i=1:Ndo

—

5 F,=0
6 =0
[l for each sphere j in grain i
7 for j=1:Jdo
8 collideG«— hashG{, j);// Find inter-grain collisions
9 foreach k in collideGdo
/1 Conpute forces and torques
10 Fy = F; + Fij, + Fl,
1 T = Ti + Tjk
12 end
13 collideObjs«— getObjs¢, j);// Fi nd grai n-object collisions
14 N=0;// Average collision nornal
15 foreach ¢ in collideObjsdo
/1 Conpute forces, torques and nor nal
17 Ti = Ti + Tjq
18 N=N4+N,
19 end
20 end
a | N=N/|N|
22 F'=F;,-N
- F’vit —F— F;n
20 | if F! < pg F then
/'l Apply stiction conditions
25 F, = E"N — ksiﬁi_(ﬁgww
2 F=7— (- N)N — k%
27 end
28 end

Algorithm 2: Procedure to compute forces and torques among grains amddregrains and objects.
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2.5.2 Computational Cost

Components of the solver that contribute to its cost:

RKF45 integration of the equations of motion.
Detection of grain collisions.

Detection of grain-object collisions.

Force calculation during grain collisions.

Force calculation during grain-object collisions.
6. Maintaining contact displacement guantities.

a ks NP

The integration of the equations of motion is an importantdain determining the overall simulation time.
The dominant cost of the solver at each timestep is the catipntof the instantaneous forces and torques
active on the grains. Efficient calculation and maintenasfaganular quantities, in particular contact detec-
tion and contact displacement, affects the overall effigrenf the solver. The stiction condition expressed in
Section 2.3.5 is in practice implemented such that it addsigrdficant computational expense.

RKF45 Integrator

The computational time of a simulation grows linearly witte tnumber of timesteps required. The explicit
RKF45 method is best suited for non-stiff problems. For \sif§ problems, the method must use very small
timesteps to ensure stability of the integration and theallveimulation can become inefficient. Multi-
body problems that experience large impulse forces are kriovbe stiff; however, many granular systems
are not so stiff such that an explicit method is not able toesthe dynamics adequately. In soft-sphere
discrete element models, the magnitude of impulse forceliréstly related to the mutual deformation,
&i;. Experimentally, if the mutual deformation is small, thegniudes of impulses are not likely to cause
stiffness in the ODE system and simulation times are reddenal’ he magnitude of the deformation in a
system may be controlled by adjusting the elastic repuldignin the normal forcesk,.

Collision Detection

Efficient contact detection affects the scalability of tiedver. In line 2 of Algorithm 2, a spatial hash grid

is created based on the positions of the spheres on all gmprevide a fast look-up of contacting spheres.
Spatial hashing refers to a hashing technique where sgmtidions are mapped (via a hash function) to
grid coordinates and the grain location is stored in a haiske.taTo identify collisions, only the grains in
nearby grid voxels adjacent to the current grain need to bepated. Instancing the hash grid is@QN .J)
computation wheréV is the number of grains andl is the number of spheres on each grain. The hash grid
is formed at each stage before the contact forces are deeifithis prevents the force computation from
becoming arO(N?) algorithm in the average case.

2To improve computation time, the hash structure should Ip¢ &8d updated as the grains move between voxels. For slow
moving collections, the contacts change infrequently &edbst to update the hash structure would be negligible.
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Force Calculation

The forces and torques active at any contact point are castigndetermined from instantaneous particle
parameters (i.et, ¥, 7, &) except when the force model uses the contact displacemantity,&. For force
models that only use the instantaneous parameters such basic model (Section 2.3.2), the computational
and storage costs are insignificant. Force models that nmekefithe contact displacement quantity require
additional storage and access to its values.

Contact Displacement

Maintaining the contact displacement vectr, requires an interaction over all spheres that comprise the
grains in the system. For each grain, the identity of theawitg grains, the interacting spheres and the
cumulated displacement vector is placed in a list. Duringohate, this list of contacting grains is traversed
and maintained. For composite-sphere grains, the avetagber of contacts, is typically a small number,

C << N. No special search structure is used to maintain the codisgiacement list and the computation
on line 20 of Algorithm 1 may be considered &i/N) operation.

Stiction Condition

In practice, the stiction condition is applied by definitidha particle is experiencing stiction, then the parti-
cle resists applied tangential forces as well as experseanempulse that works to decelerate the tangential
velocity. If F'is the sum of all forces on the graib?, is the relative velocity of the grain with respect to the
object andy is the normal direction of the object, then applying stictineanst” is redefined to be

F=Fn g f
such that
F" = (F-#)i
Pt _kSV—(V-ﬁ)ﬁ
tl]

wherek, is a constant ang, is a small time interval. This implementation of stictioroals the need to sum
over all contacts as in Equation 7.

Similarly for torques, by definition, stiction implies thanicle resists applied torques in the normal direction

and experiences a resistive rolling friction that decéésrany instantaneous angular velocity. The expres-
sion on line 26 of Algorithm 2 describes this condition.
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2.6 Simulation Parameters

The model and material parameters necessary for grain-godlisions are identified in Sections 2.3.2, 2.3.3
and 2.3.4. Their descriptions and typical values used irsomulations are prescribed by:

Parameter Relation/Sample Values Default Value Desoripti
v 0,0.1, ... 0.3 Poisson ratio of the material
E;, Ey, ..107,108, ... 108 Young’s modulus
Ej; Yol o effective Young’s modulus
Rjy el R s effective radius
a .3, 3 elastic repulsion response
ko %2(1%;) Rk elastic repulsion strength
5 .3 1 viscous dampening response
kg ..., 50,100, 200, ... 50 viscous dampening strength
Ihs 0,...,1 0 coefficient of static friction
ki 0,...,1 0 static friction strength
L 0,...,0.001, ... 0 coefficient of rolling friction
v ey B 3 static friction response
d, RLEC (l_mingﬁi"&mﬂ) ) tangential dampening strength
S max usﬁgﬂg maximum static friction

Similarily, the description and typical values of the moaetl material parameters necessary for grain-object
collisions identified in Section 2.3.5 are:

Parameter Relation/Sample Values Default Value Desoripti
E ..107, 108, ... 2-108 Young’s modulus
a RO 3 elastic repulsion response
ka sV Ria elastic repulsion strength
b - %, % viscous dampening response
ky ..., 90,100, 200, ... 50 viscous dampening strength
Iq 0,...,1 1 coefficient of static friction
kq 0,..,1 1 static friction strength
r 0,...,0.001, ... 0.0005 rolling friction strength
ks 0,1,2,... 2.1 stiction strength
kr 0,...,0.001, ... 0.1 rolling stiction strength
tq 0,0.001... 0.001 static friction duration

Unless otherwise specified, the model and material paramaiges used to simulate the results presented in
Sections 3 and 4 are assigned the default values as spenifigel above tables.

The difficulty in granular simulations, in particular simatibns of granular statics, is that the formation of
the final steady-state may be achieved in an indefinite nuofhgays. The resulting dynamics is highly de-
pendent on the materials past history, and as a conseqsamegations are sensitive to its input parameters.
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Arbitrary parameter values may lead to spurious resulte ddmplex relationship between the simulation
parameters and the dynamics may incur additional numatdiffedulties on the solver.

Researchers in the field have a practice of calibrating tweirputations to achieve the desired results. DEM
simulations commonly use a material calibration procedunere material parameters suchBs, us, ...

are tuned to match model predictions with experimental masiens. In static equilibrium computations,
algorithmic calibration, where time intervals, dampenimdues and loading rates are adjusted, is typically
performed to achieve static-states under general condititn some situations, simulation parameters may
be assigned values without physical or mathematical joatiin but compelled only by a preferred response.
In recent work, Tu et al. [12] introduces a procedure to siabkle parameters values for steady-state gran-
ular simulations. Essentially, the parameters are setiéilyand error until some criteria is satisfied for a
small subset of the entire particulate system. Though tffecthe procedure only applies to steady-state
simulations and does not extend to a wide range of systemnugea It is not yet clear how to define a
similar framework for our granular solver.

3 Simulations

Granular material may be distinguished by their ability &k pile, jam, fracture, fragment and avalanche.
These complex behaviors are nonlinear in nature and thessggeconditions that lead to the emergence of
these phenomena are ill-defined. Nonetheless, a granuler soay be evaluated by its ability to simulate
these characteristic properties. A suitable solver isligledle to demonstrate this set of behaviors in a
controllable fashion.

3.1 Comparison of Force Models

Grain piles formed by grains flowing through a hopper is adesample of granular behavior. This situation
is used to evaluate the merits of the three force models dered in Sections 2.3.2, 2.3.3 and 2.3.4. Differ-
ent from previous studies, this system is not enclosed vdtinding walls. Apart from a floor, the grains do
not interact with any other object that may interrupt graiotion and induce piling. The floor is also not a
geometrically rough base comprised of discrete partidgssttreated as a smooth object that interacts with
the granular system through contact forces (Section 2.3 Bis environment necessitates the need for an
effective static friction model by reducing the influencegafometric friction and physical barriers on pile
formation.

Figure 5 compares the ability of the three grain-grain farmedels to form piles. All three models begin
with identical initial conditions, the same parametersigal(where applicable) and use the same model for
grain-object collisions. The first (or bottom) layer of grsiin a grain pile is formed by the grain-object
contact model. Subsequent grain behavior on top of thig laymostly due to the grain-grain contact model.
To judge the ability of each grain-grain force model to foriteg the first layer of grains should not be
considered.

19



Basic Model Simple Static Static Friction Model
Friction Model with Dampening

Figure 5: Five snapshots at similar stages of hopper flow 88thgrains under three different force models:
Section 2.3.2: Basic Model, Section 2.3.3: Simple Statictien Model and Section 2.3.4: Static Friction
Model with Dampening. The hopper is not drawn to expose tahagtynamics.
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All three simulations in Figure 5 use grain-grain frictioarameterg:, = 0.5 andyu,. = 0.00025. The basic
force model, on the farthest left, shows little evidence mfngilar piling. This is expected since this model
does not explicitly model the static friction necessary gding. In fact, any pile formed using this basic
model will always collapse under its own weight. When thargrare still in motion, the behavior of the
grains looks reasonable. However, as the system begindtl® is¢o a static state, the grain pile collapse
occurs in a smooth continuous manner. This makes the slovingbehavior of the grains look liquid-like.
This basic model is not suitable for situations where theatiinuous slip-stick motion of the grains in the
material needs to be more apparent.

In the second model in Figure 5, in the middle, there is evidenf stable static piles. As the pile forms,
grains that come in contact with the surface of the pile rold the slope of the heap. Grains on the interior
of the pile experience much less motion. This demonstréatasstatic friction, modeled by the cumulated
contact displacemend; ;. (Equation 4), is necessary for piling to occur. Howevehaligh this model can
simulate piling, the model is rather sensitive to changasifial conditions. It is also difficult to know how
to set the parameters and initial conditions to achieve medbgesult. This simple static friction model is not
robust enough to be a general-purpose granular solver.

The final model considered in Figure 5, on the right, also shewidence of stable static piles. The discontin-
uous slip-stick motion is even more pronounced in this mtdet in the second model. Detailed expressions
for the friction and dampening parameters make this modaéeto manipulate and control the final result.
This static friction model with dampening is the force mosellected for our solver. The simulations in the
rest of this work use this contact force model.

3.2 Hopper Flow: Piling and Jamming

Grains in a hopper is an interesting situation becausen@ityie frictional parameters not only can alter the
steady-state pile dimensions but may also introduce jammirthe grains in the hopper. Varying the inter-
grain friction parametersg;; and,., varies the rate that the pile forms as well as the final pihetisions.
Figure 6 demonstates this behavior for a hopper initiallgdiwith 1575 cube-like grains.

Increasing the grain-grain and grain-object friction paegers ., ., ity andpu-, can cause jamming of the
granular system. For the granular system in Figure @, i 11, = 1.0 andyu, = p = 0.0005 whereg andr
refer to the hopper parameters, then the system jams fols@veeconds of a 2 minute simulation. Jamming
under the influence of static friction at grain-object boamels agrees with current proposed theories [13].

3.3 Granular Collapse

Under typical conditions, a granular collection naturgfcks and piles as the system tends to a quasi-stable
state. When conditions occur that disrupt the quasi-stastem, the granular collection ostensibly fractures
and avalanches. In such systems, there is a clear boundargdreactively moving grains and stable static

3See Appendix A for another comparison of simulations fromftrst and third force model.
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Figure 6: Five ots of hopper flow with 1575 grains faeehpairs of values of us, i ):
(0.0,0.0), (0.1,0.00005) and(0.5,0.00025). The parameters, and, are identical for all three examples.
The hopper is not drawn to expose the grain dynamics.
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grains. A simple demonstration shows that this set of belns\$ natural to this solver.

In Figure 7, a set of grains is allowed to pack in a space witsstant floor and five frictionless bounding
walls. A quasi-stable state is reached by frame 300 and rens#able for the next 300 frames (top row). At
frame 600, the slanted wall is removed and surface avalagatcurs (second row). The grains underlying
the active surface remain stable. Stable grains near the driundary form a roughened surface to resist
continual avalanching (third row). By frame 1000, avaldngiceases and two new stable grain collections
are formed. At frame 1300, the right wall is gradually movedhe right, away from the pile (fourth row).
The large granular system begins to collapse. A clear fracsurface is observed where grains remain
static on one side and grains have significant motion on theratide. As the surface of the heap changes,
avalanching of surface grains occurs (fifth row). The evoflupf the dynamics of this system illustrates
many characteristics unique to grains.

3.4 Dynamic Range

Grains exhibit a range of motion that may be categorized bd-Ke, liquid-like or gas-like. The model
and material parameters in this solver only serve to defiaeliaracter of the grains at the particulate scale;
the motion of the grains is contingent on its initial valuesl @nvironmental conditions. The transition of
grains from solid to liquid regimes (or solid to gas, liqu@das or vice-versa) is abrupt in nature and it is
this abruptness that is fundamental to realistic simutatio

A progression of grain motion from slow to swift to static is@xample of how the environment can foment
sudden changes in a collection’s dynamics. In Figure 8, afsgtains is placed in a rectangular container
with low coefficient of friction and only three sides (top rpvubject to gravity, this set of grains begins to
settle which causes some grains to gradually fall off thenalesed side of the container (second row). At
frame 200, the container abruptly rotates and large impace$ are imparted onto the grains (third row).
The granular collection responds and displays a liquid-likotion where a wave-like splashing action is
observed. As the grains collide with the resistant floor,gh@ns quickly become inert (fourth row). This
rapid dissipation of kinetic energy allows inert grains égim to form static structures that can support solid-
like configuration of grains. The final arrangement of theirgraon the floor show a stable non-uniform
terrain that is consistent with the simulation (fifth rowheélrange of dynamics attainable by a set of grains
is separate from the particulate model of the grains. Th&irdonditions and the environment determine
the type of granular motion. The independence of the solgn fany assumption of the motion permits
general-purpose use of this solver.

4 Analysis

Grain piles formed from grains flowing through a hopper is$b&up used to verify the suitability and ro-
bustness of this solver. Piling from hopper flow is studiedduse it provides a simple way to control the
conditions that affect pile formation. Analysis of the tisteps taken in a simulation indicates the appropri-
ateness of the numerical scheme and the overall appligabflthe solver.
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Pile Size vs Coeff of Static Friction

- — — — height
radius

radius
(2]

0 0.1 0.2 0.3 0.4 0.5
Hgr coefficient of static friction; M= pS/ZOOO

Figure 9: Pile size vs Friction Parameters

4.1 Friction Parametersand Pile Formation

Varying the friction parameters in a simulation controle thile height. There are two sets of friction pa-
rameters to consider: the inter-grain friction parametersnd,., and the grain-object friction parameters,
qs kg, piry ks, k- andt,. The grain-object friction parameters,, k,, andu,, only serve as an estimate of
the instantaneous force from grain-object collisions; ttital force from all collisions is then evaluated to
determine if stiction conditions apply. The stiction pasders k,, k- andt,, determine how quickly a grain
is brought to rest and remains static, such that piling majridferming on top of it. The grain-object friction
parameters are identical for all simulations in this paper.

Figure 9 shows how the inter-grain friction parameterscafféling for a simple hopper simulation of 1575
cube-like grains. For small values pf and .., the pile is short and wide; for large valuesigfand .., the
pile is tall and thin. Values ofi; from 0 to 0.25 affect the pile size considerably; valuesgqffrom 0.25 to
0.5 affect the pile size less significantly. For this simulatiemall values of:, indicate that the inter-grain
friction forces are the dominant mechanism in pile formati&or larger values ofi;, less sensitivity tQu
suggests the pile size is dominated by the geometric coafigurof the constituent grains.

The effects of changing, and - on the stiffness of the equations of motion may be observelddking

at the timesteps of the numerical solution. Table 1 sumrasrs&ome timesteps statistics taken for various
s andp,.. For the frictionless case, the numerical approximatiquires marginally smaller timesteps than
simulations with friction. This seems to suggest that tlesense of inter-grain friction does not significantly
affect the stiffness of the system of differential equationhis is further explored in Section 4.2.
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No. of time steps Time stepsize

s Ly Accepted Rejected Max Min Avg.

0 0 9611 763 0.041667 0.002083 0.011367
0.1 0.0001 9291 1310 0.041667 0.003472 0.013449
0.25 0.000125 8287 762 0.041667 0.003086 0.013198
0.5 0.00025 9083 488 0.041667 0.004630 0.012771

Table 1: Timestep statistics for several valuesoandy,., TOL = 0.01

4.2 Friction Parameters and Stiffness

The stiffness of the equations of motion can often be expliguantified by the eigenvalue of the Jacobian
with the largest negative real part. Since the ODE systenBhas N number of equations, the Jacobian
is only practically formed for a small number of grains. Haistanalysis, 48 cube-like grains in a pyramid
configuration are suspended a small distance from a surfatalwed to fall and collide with the surface.
Grain-object friction is present to bring the granular systo rest. The inter-particle friction is varied. A lo-
cal Jacobian may be estimated by finite differences in a simadlinterval. A set of these Jacobians sampled
at a number of discrete times gives an indication of the @sgion of the eigenvalues of the Jacobian of the
system over time.

Table 2 lists estimates of the eigenvalue of the Jacobialn thi¢ maximum negative real part for various
grain-grain friction parameters at 20 discrete times. €hedues may be used to understand the general
trend of a system’s stiffness as the granular system evohg&these values are estimates, and as the dynam-
ics of the system are different for different pairs(pf, 1), the eigenvalue estimate for a pair(ef;, 1) at
some timet,, does not necessarily have any relation to the eigenvaliraastof another pair ofus, 1,.) at

the same time.

Eigenvalues with a large negative real part and a small in@agipart indicate a stiff ODE system. On oc-
casion, such as timesteps (s, i) = (0.25,0.000125) andts, (us, ) = (0.5,0.00025), the eigenvalues
are larger; however, in general, the eigenvalues in Table 2yat exceptionally large. This suggests that,
for this example, the ODE system is, in general, not stiff tratimesteps taken by the integration formula
are not restricted by the stability of the numerical methatihough the many-body problem is potentially
stiff, for the dynamics studied in this example, the problemot so stiff such that the stability of the explicit
method limits the time stepsizes in the numerical integrati

Table 3 lists estimates of the eigenvalue of the Jacobian tivé maximum absolute real part at the same
20 discrete times as in Table 2. Large positive eigenvaludisis table indicate the system is predominately

unstable. Large negative eigenvalues, again, indicdfeests. This table may be used to understand how the
largest eigenvalues evolve as the simulation progresses.
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(ussptr)  (0,0)  (0.25,0.000125) (0.5,0.00025) (0.75,0.000325)  (1.0,0.0005)

1 —1776.7 —2991.8 —2781.2 —1053.2 + 929.3¢ —2532.4

o —501.7 —548.9 —952.6 —988.3 —285.9

i3 —8397.8  —140.3 + 138.5¢ —78298.3 —362.7 + 1161.5¢ —169.5

1y —311.2 —3421.8 —1170.1 + 1417.4¢ —417.2 —1048.7

t5 —226.4 —186.2 —1386.9 —389.4 —9445.1

17 —-962.4 —1102.7 + 2724.8:¢ —8467 —2420.5 —110.4

7 —172 —16714.1 —519.6 —2442.2 —425.4

i3 —64 —100.9 —441.2 —1440.4 —7619.1

t9 —3202.5 —226.9 —1026.2 —9171.2 —148.5

t10 —851.5 —300.5 —1431.6 —49.1 —369.6

t11 —421.5 —160.8 —2341.9 —369.4 —232.4

t12 —326.1 —1566.1 —260.3 —158.5 —297.2

t13 —2212.3 —1281 —184 —1534.2 —2706.3

t1a —500.8 —516.3 —-9311.4 —2207.1 —552.2

t15 —2147 —12035.3 —o87.7 —405.6 —768.3 + 153.8¢
t16 —10384 —1888.8 —4363.5 —163.3 —3211.6

t17 —-5.5 —242.8 —164.2 —132.4 —280.8

t13 —268 —2192.9 —154.5 —6.5 —478.6 + 270.8¢
t19 —2632.2 —225.7 —683.8 —298.4 —655

t20 —10 —4932.3 —709.1 —163.2 —215.1

Table 2: Estimates of the eigenvalue of the Jacobian witiekimegative real part at 20 discrete times during
the simulationTOL = 0.01
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(s, ) (0,0) (0.25,0.000125)  (0.5,0.00025)  (0.75,0.000325) (1.0,0.0005)
t 9758.9 13633.9 14887.6 10523.3 13282.2
ta 2392.6 3708.5 48325 7701.4 1531
ts —8397.8 1221.6 —78298.3 2057 3142.1
t 3057 —3421.8 12422.2 3277.3 6314.5
ts 3277.1 330 —1386.9 631.6 —9445.1
te —962.4 6411 —8467 —2420.5 ~110.4
tr —172 —16714.1 ~519.6 —2442.2 —425.4
ts 467.2 885.1 —441.2 —1440.4 —7619.1
to —3202.5 625.5 ~1026.2 —9171.2 —1485
t10 —851.5 1579.2 —1431.6 302.8 —369.6
t 6202.4 808.5 —2341.9 —369.4 —232.4
tio 1493.8 —1566.1 1436.7 ~158.5 947.5
tis —2212.3 —1281 338.5 —1534.2 —2706.3
tia ~500.8 ~516.3 —9311.4 15995.3 —552.2
tis —2147 —12035.3 —587.7 —405.6 6151.6
tie —10384 11271.1 —4363.5 564.3 —3211.6
tir 412.6 —242.8 371.2 ~132.4 1971.8
tis 7504.4 12357.7 2939.2 28.4 —478.6 4 270.8i
t1o —2632.2 —225.7 —683.8 —298.4 1421.9
t20 94.8 6711.4 —709.1 1362.5 1241.8

Table 3: Estimates of the eigenvalue of the Jacobian witiektrabsolute real part at the same 20 discrete

times during the simulation as in Table2OL = 0.01
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No. of time steps Time stepsize

TOL Accepted Rejected Max Min Avg.
0.1 1509 15 0.041667 0.005208 0.016540
0.05 1458 22 0.041667 0.006944 0.017118
0.01 1709 7 0.041667 0.004630 0.014604
0.005 2000 140 0.041667 0.002083 0.012479
0.001 3412 298 0.041667 0.001437 0.007315

Table 4: Timestep statistics for RKF45 using= 0.5 andu,, = 0.00025.

In Table 3, large positive eigenvaluestatindicates that each simulation begins very unstable. Time t
point corresponds to the initial collision of the grains twihe surface, and becomes more stable as the
effects of friction settle the grains. For simulations wétimall values of(jus, i1,-), the system fluctuates
between stable and unstable states which coincides witirestt slip-stick motion, common for grains with
these parameters. At some time points, sucksa§:s, 1) = (0.5,0.00025) the eigenvalue is larger and
negative. This indicates that the ODE system may occagjobalstiff during the simulation. Given these
trends, the explicit RKF45 formula is adequately appliethts problem.

4.3 Step Size, Timesteps and Tolerance

The step size tolerance, in the numerical scheme controls the step size in the addpteesteps. For
RKF45, the tolerance is essentially a limit on the maximuffedénce between the fourth and fifth order
estimate of the grain positions;. Lowering the tolerance causes the solver to take smakl@sigtes and
conseguently increases the total number of timesteps.tdkennumber of rejected timesteps also increases
with a more restrictive tolerance. Sensitivity of the tinbepsizes to different tolerances is another indication
that the integration method is not operating at the boundaits stability region. As suggested in Section
4.2, the time stepsizes taken do not seem to be restrictduetstdbility requirements of the RKF45 method.

Figure 10 plots the stepsizes taken at each timestep foige @frtolerances. A simple hopper flow simula-
tion is used with 397 particles wherg = 0.5 andp,, = 0.00025. For each tolerance the final pile size is
observed to be the same.

Table 4 summarizes some statistics of the timesteps. Indeethe tolerances become more restrictive, the
number of accepted and rejected timesteps increases Wwhitgrtallest timestep taken decreases, as expected.
This can lead to lengthy simulation times and tolerance&tdian0.001 are not considered for RKF45.

In Algorithm 1, the suggested adapted timesteygy, is actually constrained such that there is an integer
number of timesteps within one time frame. Any timestep ihéss than or equal th,,; is a valid timestep

to take, as far as satisfying the tolerance is concerned. siRaulations in this paper, one time frame is
1/24 = 0.041667s. Any timestep taken divides evenly inbo041667.
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RKF45: Step Size vs Time for various TOL
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Figure 10: RKF45 stepsizes versus time for various tolesn@dccepted (rejected) steps are indicated in
blue (red).

31



RK?23: Step Size vs Time for various TOL
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Figure 11. RK23 (Bogacki-Shampine) stepsizes versus timesfrious tolerances. Accepted (rejected) steps
are indicated in blue (red).
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No. of time steps Time stepsize

TOL Accepted Rejected Max Min Avg.
0.1 2445 81 0.041667 0.001736 0.010208
0.05 3537 164 0.041667 0.001042 0.007056
0.01 9493 1660 0.041667 0.000284 0.002629
0.005 15706 3008 0.041667 0.000141 0.001589
0.001 169908 10 0.041667 0.000141 0.000147

Table 5: Timestep statistics for RK23 using = 0.5 andu,. = 0.00025.

In Figure 11, the same analysis is performed for the lowesrdRlinge-Kutta (Bogacki-Shampine) 23 (RK23)
method. Table 5 summarizes some timestep statistics. Asctegh the lower the tolerances, the more
timesteps are taken as well as the step sizes are smallere iBh&so a significant increase in the number
of accepted and rejected timesteps compared to RKF45. Fderance o0.001, the step size of most of
the accepted timesteps is the minimum step siz&@f0141. This suggests the actual step size required to
satisfy a tolerance di.001 is smaller thar0.000141 and the adaptive component of the numerical scheme
is no longer applicable. This leads to lengthy simulatianses and tolerances 06f001 or lower. For this
hopper simulation, using RK23 should not be consideredowitfowering the minimum step size.

The higher-order RKF45 method takes fewer number of tinpsstiarger step sizes and more tolerances
compared to the RK23 method. This indicates that granutaulsitions that exhibit piling benefit from the
increased accuracy of the higher-order method. Since theerical scheme is not the dominant computa-
tional cost in terms of flops, RKF45 with adaptive timestegpis preferred to the RK23 method, even for
the larger tolerances.

4.4 Collection Size and Computational Time

The actual performance of this solver is problem dependéemte the dynamics of the system are also prob-
lem dependent. Nonetheless, as a simple demonstratioe Of(tN) complexity of the solver, the computa-
tional time for a hopper flow simulation with piling for an i@sing number of cubic-like grains comprised
of eight spheres is presented in Table 6.

5 Conclusion and Future Work

The appeal of using discrete element methods for granutamlations is that the approach is straightfor-
ward and natural. Intuitively, the macroscopic behavioa abllection of grains originates from the micro-
mechanics of the grains at the particulate scale. Sucdemsflication of this solver to model packing,
piling, jamming, fracturing, fragmenting and avalancha@monstrates that, with suitable force models, the
approach is effective and versatile.
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Number of Grains Number of Frames Avg. Time/Frame (s)

536 300 24
1051 400 5.28
2071 600 13.2
4096 1500 28.8
8036 2500 58.2

Table 6: Computational time versus collection size uging= 0.5 andu,. = 0.00025.

For dry granular materials, the slip-stick motion of indiwal grains is the principal mechanism behind be-
haviors like packing, piling and fractures. Force modet thave history-dependent terms are essential for
proper modeling of the static friction necessary for thargrdo result in avalanching or piling. The force
model in Section 2.3.4 is the best suited model considenethi®solver.

The performance of this solver is problem-dependent. Wiesigding simulations, attention to the effects of

the model, material and object parameters on the stiffiigtbe @ quations of motion is critical for reasonable

computational times. Future work to ease the design of sitianls and improve the computational expense
is expected to promote this solver further.

There are three natural extensions to this work. In the ntiframework, it is trivial to introduce secondary
forces to the equations of motion to describe alternatiamglar behavior. Cohesive forces or fluid-solid
interaction terms may be simply added to the current modeinmlate wet grains. The short-range influ-
ence of the forces in this chosen DEM method makes it easy ttehweet and dry materials as well as a
progression of one to the other. This is a valuable functfoeng general granular solver.

In conjunction with alternative force models, a robust ntioe method is fundamental to be able to seam-
lessly handle a diversity of granular dynamics. Potentifihess in the system of ODEs will hinder widespread
application of this solver. Although the dynamics studiedhis work are not particularly stiff, implicit or
semi-implicit methods may mitigate the sensitivity of themerical approximation on problem-specific stiff-
ness. The additional complexity of any chosen implicit/senplicit method should not outweigh the gain
in the solver’s robustness.

For arbitrary granular systems of lar@é, this O(V) solver is still computationally impractical. Steps to
accelerate the computations are underway. TechniquesdedDEM-FEM multi-scale methods, coarse-
graining and other hybrid approaches [15]. General teclasigsuch as parallel computation, only serve to
improve the simulations times even more.
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A Comparison of Grain-Grain Force Models 1 and 3:
Supplemental Example

In this example, we start with a set of cube-like grains sodpd a small distance from the ground and
allowed to collide with the ground under gravity to eventyakttle into a pile. A solid object is then pushed
thru the stable pile to divide the pile into two smaller pilénder force model 1, Section 2.3.2, Figure 12,
we observe a separation of the original pile. However, vigwihe last frame from different angles, there is
no significant piling in the two smaller piles that result. dén force model 2, Section 2.3.4, Figure 13, we
observe a separation of the original pile and piling in treulting two smaller piles. This property enables
us to simulate collections of particles in situations inaypiate with force model 1. Figure 14 is an example
of tracing shapes through a pile of sand.
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Figure 12: Snapshots of an object pushed through a pile d&-blab grains under force model 1, Section
2.3.2: Basic Model( s, pir) = (1.0,0.0005). First row: snapshots of three time frames during the sitima
Bottom row: different views of the last frame.

Figure 13: Snapshots of an object pushed through a pile @-tkie grains under force models 3, Section
2.3.4: Static Friction Model with Dampenings, 1) = (1.0,0.0005). First row: snapshots of three time
frames during the simulation. Bottom row: different viewigtte last frame.
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Figure 14: Simulation of tracing shapes through a pile ofdlsd@®411 grains).(us, i) = (0.5,0.00025).
First four rows: snapshots during the simulation. Bottom:rdifferent views of the last frame.
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