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Abstract
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University of Toronto

2005

An efficient algorithm which combines quadratic spline collocation methods (QSC) for

the space discretization and classical finite difference methods (FDMs), such as Crank-

Nicolson, for the time discretization to solve general linear parabolic partial differential

equations has been studied. By combining QSC and finite differences, a form of the

approximate solution of the problem at each time step can be obtained; thus the value

of the approximate solution and its derivatives can be easily evaluated at any point of

the space domain for each time step.

There are two typical ways for solving this problem: (a) using QSC in its standard for-

mulation, which has low accuracy O(h2) and low computational work. More precisely, it

requires the solution of a tridiagonal linear system at each time step; (b) using optimal

QSC, which has high accuracy O(h4) and requires the solution of either two tridiagonal

linear systems or an almost pentadiagonal linear system at each time step. A new tech-

nique is introduced here which has the advantages of the above two techniques; more

precisely, it has high accuracy O(h4) and almost the same low computational work as

the standard QSC.
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Chapter 1

Introduction

In this chapter, we give the description of the problem which we are going to solve and

some background and notation that we will use throughout this thesis.

We are interested in solving linear second-order parabolic partial differential equations

(PDEs) in one space dimension. The typical example of such a problem is given by the

heat equation, which is the non-stationary counterpart of the Laplace equation.

Let us define a spatial differential operator L by

Lu ≡ p(x, t)
∂2u

∂x2
+ q(x, t)

∂u

∂x
+ f(x, t)u,

where p, q, and f are given functions.

The problem we want to solve is described by a parabolic PDE of the form

∂u

∂t
= Lu + g(x, t), 0 < x < 1, 0 < t ≤ T, (1.1)

subject to the initial condition

u(x, 0) = γ(x), 0 ≤ x ≤ 1, (1.2)

and the boundary conditions

Bu ≡ {u(0, t) = β0(t), u(1, t) = β1(t)}, 0 < t ≤ T, (1.3)

1
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where g, γ, β0, and β1 are given functions, and u is the unknown function to be determined

(or approximated). We present the parabolic PDE problem with Dirichlet boundary con-

ditions (1.3), but we will also consider periodic boundary conditions. Moreover, most

methods presented in this thesis are easily extended to Neumann and general boundary

conditions.

For the time discretization, we apply the Crank-Nicolson method. For the space dis-

cretization, we apply the quadratic-spline collocation method. The resulting method

is referred to as the Crank-Nicolson quadratic-spline collocation method. First, we in-

troduce the continuous-time collocation method. Then we talk about a discrete-time

collocation method, the Crank-Nicolson collocation method. Finally, we focus on a par-

ticular collocation method, the Crank-Nicolson quadratic-spline collocation method and

study several variants of it.

Following [8], we consider the interval I = [0, 1] and a uniform partition

∆ ≡ {0 = x0 < x1 < . . . < xN = 1}

of I with mesh size h = 1
N

. Let

Ii ≡ [xi−1, xi], i = 1, . . . , N.

Let Pr(E) denote the set of polynomials of degree (at most) r on interval E. We define

Pr
∆,k ≡ {v ∈ Ck(I) | v ∈ Pr(Ii), i = 1, 2, . . . , N},

where Ck(I) is the set of functions with k continuous derivatives on I.

Thus, for example, the Hermite piecewise-cubic function space, the cubic-spline function

space, and the quadratic-spline function space are given by P3
∆,1, P3

∆,2, and P2
∆,1, respec-

tively.

After imposing the continuity conditions on the interior knots, it is easy to show that

the dimension d of a function space Pr
∆,k is

d = (r + 1)N − (k + 1)(N − 1). (1.4)



Chapter 1. Introduction 3

Therefore, the dimensions of P3
∆,1, P3

∆,2, P2
∆,1 are 2N + 2, N + 3, N + 2, respectively.

Let

{φ0, φ1, . . . , φd−1}

be a set of piecewise polynomial basis functions of the function space Pr
∆,k. Then any

function p(x) ∈ Pr
∆,k can be written as

p(x) =

d−1
∑

i=0

ciφi(x),

where ci, i = 0, . . . , N , are degrees of freedom (DOFs).

In [7], [8], the continuous-time collocation method is introduced for the function space

P3
∆,1. Here, we present the continuous-time collocation method in a general way. In

general, we seek a map U(x, t) : [0, T ] → Pr
∆,k such that U is an approximation to u of

Problem (1.1)-(1.3). Recalling that dim(Pr
∆,k) = d, we need d relations for each time

t to specify the approximate solution U(x, t). Two of these conditions can obviously

be obtained from the boundary conditions. The method of collocation requires that

the remaining relations be obtained by having the differential equation satisfied at d− 2

points in I. The d−2 points together with the two boundary points are called collocation

points or data points and are denoted by

{τ0 = 0 < τ1 < . . . < τd−1 = 1}.

More precisely, U(x, t) is determined by satisfying

(i) {∂U

∂t
−LU}(τi, t) = g(τi, t), 1 ≤ i ≤ d − 2,

(ii) U(0, t) = β0(t), U(1, t) = β1(t),

(iii) U(x, 0) − γ(x) is small in a sense to be specified next.

(1.5)

Regarding condition (iii), a simple way to define U(x, 0) is to let U(x, 0) be the interpolant

of γ in Pr
∆,k.

So far, we have introduced the continuous-time collocation method. In order to actually
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compute an approximate solution to Problem (1.1)-(1.3) by the collocation method (1.5),

we need to discretize the time variable. Let

{0 = t0 < t1 < . . . < tM = T}

be a partition of [0, T ]. For simplicity, we use a uniform partition. More precisely, let ∆t

be the time stepsize, that is,

∆t =
T

M
, tj = j∆t, j = 0, . . . , M,

where M is the number of timesteps. Define

tj+ 1

2

≡ (j +
1

2
)∆t,

and

U j ≡ U(x, tj),

U j+ 1

2 ≡ 1

2
(U j+1 + U j),

∂U j

∂t
≡ U j+1 − U j

∆t
.

(1.6)

With the above notation, the Crank-Nicolson collocation method corresponding to (1.5)

is to find a map U : {t0, . . . , tM} → Pr
∆,k such that

(i) {∂U j

∂t
−LU j+ 1

2}(τi) = g(τi, tj+ 1

2

), 1 ≤ i ≤ d − 2, 0 ≤ j ≤ M − 1

(ii) U j(0) = β0(tj), U j(1) = β1(tj), 0 < j ≤ M,

(iii) U0 be the interpolant of γ.

(1.7)

If we let Pr
∆,k = P2

∆,1 in (1.7), then we get the Crank-Nicolson quadratic-spline collocation

method, referred to as the QSC-CN method.

In [14], [15], a cubic spline technique for the heat equation has been proposed. The main

technique used in these two papers is based on some properties of cubic splines which

are studied in [1]. These properties are described by equations relating the values of

the cubic spline interpolant Sj(xi) of the values u(xi, tj), its derivative values S ′′j(xi),
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and the values u(xi, tj) themselves. For simplicity, denote u(xi, tj) by uj
i . The following

equation holds for x ∈ Ii, i = 1, . . . , N :

Sj(x) = S ′′j(xi−1)
(xi − x)3

6h
+ S ′′j(xi)

(x − xi−1)
3

6h
+ (uj

i−1 −
h2

6
S ′′j(xi−1))

(xi − x)

h

+(uj
i −

h2

6
S ′′j(xi))

(x − xi−1)

h
. (1.8)

By imposing the continuity of the first derivatives at the interior grid points, and using a

certain implicit time discretization, the authors eliminate S ′′ and derive a general form of

a finite difference formula which can be reduced to some frequently used finite difference

formulae, for instance, Crank-Nicolson and Douglas. According to the method in [14], in

order to get the cubic spline collocation approximation to the heat equation, first a finite

difference method is used to obtain an approximation to uj
i and a tridiagonal system is

solved to obtain S ′′0; then S ′′j(xi) can be explicitly obtained for j ≥ 1; finally, a cubic

spline approximation is computed by (1.8). Since this method involves a finite difference

method, we do not consider it as a pure cubic spline collocation method.

We say that a collocation approximation in Pr
∆,k is optimal, when it exhibits the same

order of convergence as the interpolant in the same approximation space. From (1.4), we

notice that the space of smooth splines, that is Pr
∆,r−1, has the smallest dimension among

all spaces Pr
∆,k of piecewise polynomials of the same degree r. Hence, spline collocation

needs less data points and gives rise to smaller linear systems. However, standard spline

collocation does not give rise to optimal order approximation. Certain modifications of

the standard spline collocation methods can lead to optimal order approximations. In

this thesis, we study a modified quadratic-spline collocation method for parabolic PDEs,

which is of optimal order of convergence. Some previous work by other researchers is

introduced in the following paragraphs.

In [7] and [8], Douglas and Dupont studied the continuous-time collocation method and

the discrete-time collocation method based on Pr
∆,1, with r ≥ 3 for quasilinear parabolic

equations in a single space variable. By collocation at the images of the Gauss-Legendre
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points in each Ii, uniform errors of order O(hr+1) and superconvergence results at the

knots {xi} of order O(h2r−2) are obtained for the continuous-time collocation. For the

discrete-time, Crank-Nicolson, collocation, O(hr+1 + (∆t)2) convergence is obtained. In

[9], the continuous-time and discrete-time collocation methods have been studied for

semilinear parabolic initial-boundary value problems in two space variables based on the

same function space as in [8]. Orders of convergence O(hr+1) for continuous-time and

O(hr+1 + (∆t)2) for discrete-time, Crank-Nicolson, approximation are obtained.

In [4], the continuous-time collocation method using smooth cubic splines is studied for

two-point linear parabolic initial value problems of the form ut = uxx −σu + f(x, t), 0 <

x < 1, t > 0, subject to homogeneous Dirichlet boundary conditions. The authors intro-

duce appropriate perturbation terms applied to the original collocation equations which

result in O(h4) convergence. However, since the analysis in [4] is based on the properties

of certain matrices, it is not trivial to extend the analysis to more general boundary

conditions or problems. In [3], Archer studied a modified version of the continuous-time

cubic spline collocation method for more general problems (quasilinear parabolic prob-

lems) and found that a certain perturbation to the uxx term of the operator leads to a

fourth order approximation. This perturbation can be used for BVPs as well. Continuous

time estimates of order O(h4) are obtained.

The standard QSC-CN method defined by (1.7) with τi being the midpoints of Ii leads to

second-order convergence with respect to both the space and time stepsizes. By adding

an appropriate perturbation to L as described in [10] for BVPs, we obtain an optimal

QSC-CN method which results in O(h4+∆t2) error bounds at the collocation points {τi}

and the knots {xi}, and superconvergence for the first derivative at the Gauss points and

for the second derivative at the collocation points.

The optimal QSC-CN method requires more computational work compared to the stan-

dard QSC-CN method. A new method introduced in this thesis attempts to reduce

the computational work required by the optimal QSC-CN method without reducing the
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optimal order of convergence. Since this method is revised from the optimal QSC-CN

method, we refer to it as the RQSC-CN method.

In Chapter 2, we present some results of the optimal quadratic-spline collocation method

(QSC) on BVPs, which are needed for the development of the RQSC-CN method, and

derive the linear systems arising from homogeneous Dirichlet and periodic boundary con-

ditions. In Chapter 3, first, we introduce the optimal one-step and two-step QSC-CN

methods; then we demonstrate how to derive the RQSC-CN method. In Chapter 4, we

study the stability and convergence of the RQSC-CN method and make small changes

to the RQSC-CN method giving rise to the RQSC-CN1 and RQSC-CN0 methods, which

have better stability properties than the RQSC-CN method. In Chapter 5, we illustrate

numerical results for a variety of problems. Finally, we conclude in Chapter 6 with a

summary of the results presented in this thesis.



Chapter 2

Results of QSC for Two-point BVP

In this chapter, we review results on the optimal QSC methods for a second order two-

point boundary value problem

Lu ≡ p(x)u′′ + q(x)u′ + f(x)u = g on I = (0, 1), (2.1)

subject to Dirichlet boundary conditions

Bu ≡ {u(0) = β0, u(1) = β1}. (2.2)

Most of the results presented in this chapter are from [10]. We employ the two boundary

points and the midpoints of each Ii as the collocation points. More precisely, the set of

collocation points is

{τ0 = x0, τ1 =
x0 + x1

2
, . . . , τN =

xN−1 + xN

2
, τN+1 = xN}.

We use the notation introduced in Chapter 1 and uniform norms unless otherwise indi-

cated.

First, we give some properties of a certain quadratic-spline interpolant and its deriva-

tives. Then, we introduce the optimal QSC methods and results of convergence. Finally,

we give the basis functions of P2
∆,1 and derive the matrices arising from the optimal QSC

methods.

8
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2.1 Approximate properties of the quadratic-spline

interpolant

Let us adopt the notation u(k)(x) for the kth derivative of the single-variable function

u(x), for k ≥ 3. Let S(x) denote the quadratic-spline interpolant of u(x) that satisfies

S(τi) =











u(τi) −
h4

128
u(4)(τi), i = 0, N + 1

u(τi), 1 ≤ i ≤ N.
(2.3)

Let Si denote S(τi) and ui denote u(τi). In general, the subscript for a function denotes

the value of the function at the respective collocation point. The following theorems and

relations are shown in [10].

Theorem 2.1.1 If u ∈ C6(I), then at the midpoints τi of ∆, we have

S ′
i = u′

i +
h2

24
u

(3)
i + O(h4)

and

S ′′
i = u′′

i −
h2

24
u

(4)
i + O(h4).

A subsequent theorem is shown in [10] by using Taylor’s expansions.

Theorem 2.1.2 If u ∈ C6(I), then at {τi|i = 2, . . . , N − 1}, we have

u
(4)
i = (S ′′

i−1 − 2S ′′
i + S ′′

i+1)/h
2 + O(h2)

u
(3)
i = (S ′′

i+1 − S ′′
i−1)/(2h) + O(h2)

= (S ′′
i−1 − 2S ′′

i + S ′′
i+1)/h

2 + O(h2)

u′′
i = (S ′′

i−1 + 22S ′′
i + S ′′

i+1)/24 + O(h4)

u′
i = −(S ′′

i−1 − 26S ′′
i + S ′′

i+1)/24 + O(h4).

(2.4)

For the points {τ0, τ1, τN , τN+1}, using extrapolation we get

u
(k)
0 = (3u

(k)
1 − u

(k)
2 )/2 + O(h2)

u
(k)
1 = 2u

(k)
2 − u

(k)
3 + O(h2)

u
(k)
N = 2u

(k)
N−1 − u

(k)
N−2 + O(h2)

u
(k)
N+1 = (3u

(k)
N − u

(k)
N−1)/2 + O(h2)

(2.5)
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where k = 3, 4.

Define the discrete difference operator Λ by

ΛSi ≡ (Si−1 − 2Si + Si+1)/h
2. (2.6)

Rewriting (2.4) and (2.5) using Λ, we have the following corollary:

Corollary 2.1.3 Suppose the conditions of Theorem 2.1.1 and 2.1.2 are satisfied. Then

the following relations hold

u
(k)
i =



















































(5ΛS
(k−2)
2 − 3ΛS

(k−2)
3 )/2 + O(h2), i = 0

2ΛS
(k−2)
2 − 3ΛS

(k−2)
3 + O(h2), i = 1

ΛS
(k−2)
i + O(h2), 2 ≤ i ≤ N − 1

2ΛS
(k−2)
n−1 − ΛS

(k−2)
n−2 + O(h2), i = N

(5ΛS
(k−2)
n−1 − 3ΛS

(k−2)
n−2 )/2 + O(h2), i = N + 1

where k=3,4.

The following theorem is shown in [13] and [11].

Theorem 2.1.4 If u ∈ C4(I), then at the grid points {xi|i = 0, . . . , N}

S(xi) = u(xi) + O(h4).

Now we consider Problem (2.1)-(2.2). Based on Theorem 2.1.1 and 2.1.2, we have

LSi = gi −
h2

24
piu

(4)
i +

h2

24
qiu

(3)
i + O(h4), 1 ≤ i ≤ N (2.7)

and

S0 = β0 + O(h4), SN+1 = β1 + O(h4).

Using Corollary 2.1.3, the right side of relations (2.7) is approximated without affecting

the O(h4) accuracy, to give rise to

LSi =























g1 − h2

24
p1(2ΛS ′′

2 − ΛS ′′
3 ) + h2

24
q1(2ΛS ′

2 − ΛS ′
3) + O(h4), i = 1

gi − h2

24
piΛS ′′

i + h2

24
qiΛS ′

i + O(h4), 2 ≤ i ≤ N − 1

gn − h2

24
pn(2ΛS ′′

n−1 − ΛS ′′
n−2) + h2

24
qn(2ΛS ′

n−1 − ΛS ′
n−2) + O(h4), i = N.

(2.8)
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We define a perturbation operator PL by

PLSi ≡























h2

24
p1(2ΛS ′′

2 − ΛS ′′
3 ) − h2

24
q1(2ΛS ′

2 − ΛS ′
3), i = 1

h2

24
piΛS ′′

i − h2

24
qiΛS ′

i, 2 ≤ i ≤ N − 1

h2

24
pn(2ΛS ′′

n−1 − ΛS ′′
n−2) − h2

24
qn(2ΛS ′

n−1 − ΛS ′
n−2), i = N.

(2.9)

and move the approximations of the derivatives of u in (2.8) to the left side. Then we

have

(L + PL)Si = gi + O(h4), for 1 ≤ i ≤ N. (2.10)

2.2 Optimal quadratic-spline collocation methods for

BVPs

Taking into account all the results presented in the previous section, we now define the

two optimal QSC methods. The optimal QSC methods are based on the perturbation

PL of the operator L of the problem.

2.2.1 Optimal one-step QSC method

The optimal one-step QSC method computes the approximation w∆ ∈ P2
∆,1 that satisfies

(L + PL)w∆(τi) = g(τi), for i = 1, . . . , N, (2.11)

and the boundary conditions

w∆(τ0) = β0, and w∆(τN+1) = β1.

We refer to this formulation as the optimal one-step QSC method, distinguished from

the optimal two-step QSC method.
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2.2.2 Optimal two-step QSC method

An alternative formulation of the method is to compute the approximate solution by two

steps. In step one, we compute an intermediate approximation v∆ ∈ P2
∆,1 that satisfies

Lv∆(τi) = g(τi), for i = 1, . . . , N,

and the boundary conditions

v∆(τ0) = β0, and v∆(τN+1) = β1.

In step two, using v∆ to approximate the perturbation term in (2.11) and moving the

perturbation term to the right side, we compute the final approximation u∆ ∈ P2
∆,1 that

satisfies

Lu∆(τi) = g(τi) − PLv∆(τi), for i = 1, . . . , N,

and

u∆(τ0) = β0, and u∆(τN+1) = β1.

The existence and convergence of the approximation u∆ are shown in [10] and are sum-

marized as the following theorem.

Theorem 2.2.1 If we assume that

(a1) the functions p, q, f and g are in C(I)

(a2) the boundary value problem Lu = g, Bu = 0 has a unique solution in C4(I)

(a3) the problem u′′ = 0, Bu = 0 has a unique solution,

then the solution of two-step QSC method u∆ exists, and

(i) ‖u(k) − u
(k)
∆ ‖∞ = O(h3−k), k = 0, 1, 2

(ii) |u(x) − u∆(x)| = O(h4), for x = xi and x = τi

(iii) |u′(xi + λh) − u′
∆(xi + λh)| = O(h3)

(iv) |u′′(xi + h/2) − u′′
∆(xi + h/2)| = O(h2)

where λ = (3 ±
√

3)/6.
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Similar results hold for the solution w∆ of the optimal one-step QSC method.

2.3 Basis functions and matrices

To implement the optimal QSC methods, we choose the set of quadratic B-splines as

basis functions for P2
∆,1. More specifically,

let

φ(x) =
1

2



































x2, for 0 ≤ x ≤ 1

−2(x − 1)2 + 2(x − 1) + 1, for 1 ≤ x ≤ 2

(3 − x)2, for 2 ≤ x ≤ 3

0, elsewhere.

(2.12)

Then, the basis functions for P2
∆,1 are given by

φi(x) = φ(
x

h
− i + 2), i = 0, . . . , N + 1. (2.13)

Our analysis for the RQSC-CN method is based on functions satisfying some particu-

lar boundary conditions. More precisely, we assume that the function u satisfies ho-

mogeneous Dirichlet or periodic boundary conditions. It is worth mentioning that the

RQSC-CN method can be used to solve the Problem (1.1)-(1.3) which has general Dirich-

let boundary conditions, and can be extended to problems with Neumann and general

boundary conditions.

2.3.1 Homogeneous Dirichlet boundary conditions

For homogeneous Dirichlet boundary conditions, we adjust the basis functions so that

they satisfy the boundary conditions, and thus, decrease the dimension of P2
∆,1 from

N + 2 to N . Let P2
∆∂d,1 denote the subspace of P2

∆,1 satisfying homogeneous Dirichlet

boundary conditions. More precisely, the basis functions for P2
∆∂d,1 are

φ̃1 = φ1 − φ0, φ̃i = φi (i = 2, . . . , N − 1), φ̃N = φN − φN+1. (2.14)
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Thus, any quadratic spline u∆(x) in P2
∆∂d,1 is written as

u∆(x) =

N
∑

i=1

ciφ̃i(x), (2.15)

where {c1, . . . , cN} are DOFs, and satisfies the boundary conditions by construction.

Therefore, we do not need to have explicit equations for the boundary conditions.

In order to derive the linear system arising from the optimal QSC methods, we need

the values of the quadratic spline basis functions and their derivatives at the collocation

points. Based on the definition in (2.13), we can easily get the values shown in Table 2.1

in [5].
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Table 2.1: Values of the quadratic spline basis functions and derivatives

xi−2 τi−1 xi−1 τi xi τi+1 xi+1

φi−2 1/2 1/8 0 0 0 0 0

φi−1 1/2 3/4 1/2 1/8 0 0 0

φi 0 1/8 1/2 3/4 1/2 1/8 0

φi+1 0 0 0 1/8 1/2 3/4 1/2

φi+2 0 0 0 0 0 1/8 1/2

φ′
i−2 −1/h −1/(2h) 0 0 0 0 0

φ′
i−1 1/h 0 −1/h −1/(2h) 0 0 0

φ′
i 0 1/(2h) 1/h 0 −1/h −1/(2h) 0

φ′
i+1 0 0 0 1/(2h) 1/h 0 −1/h

φ′
i+2 0 0 0 0 0 1/(2h) 1/h

φ′′
i−2 1/h2 0 0

φ′′
i−1 −2/h2 1/h2 0

φ′′
i 1/h2 −2/h2 1/h2

φ′′
i+1 0 1/h2 −2/h2

φ′′
i+2 0 0 1/h2

Let diag(d1, d2, . . . , dN) denote a diagonal matrix D with diagonal entries Dii = di, i =

1, . . . , N. Let

Dp = diag(p1, p2, . . . , pN), Dq = diag(q1, q2, . . . , qN), Df = diag(f1, f2, . . . , fN),

and

~g = (g1, g2, . . . , gN)T ,~c = (c1, c2, . . . , cN)T .

Taking into account (2.9) and Table 2.1, the equations in (2.11) representing the optimal

one-step QSC method for homogeneous Dirichlet boundary conditions take the form of
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a linear system

(
1

h2
Dp(Q2 +

1

24
Qxx) +

1

2h
Dq(Q1 −

1

24
Qx) + DfQ0)~c = ~g, (2.16)

where

Q0 =
1

8



























5 1 0 · · · 0

1 6 1 · · · 0

. . .
. . .

. . .
. . .

. . .

0 · · · 1 6 1

0 · · · 0 1 5



























,

Q1 =



























1 1 0 · · · 0

−1 0 1 · · · 0

. . .
. . .

. . .
. . .

. . .

0 · · · −1 0 1

0 · · · 0 −1 −1



























,

Q2 =



























−3 1 0 · · · 0

1 −2 1 · · · 0

. . .
. . .

. . .
. . .

. . .

0 · · · 1 −2 1

0 · · · 0 1 −3



























,
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and

Qp =



























2 −5 4 −1 0 · · · 0

1 −2 1 0 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · 0 0 1 −2 1

0 · · · 0 −1 4 −5 2



























,

Qxx = QpQ2

=







































−11 16 −14 6 −1 0 · · · 0

−5 6 −4 1 0 0 · · · 0

1 −4 6 −4 1 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 1 −4 6 −4 1

0 · · · 0 0 1 −4 6 −5

0 · · · 0 −1 6 −14 16 −11







































,

Qx = QpQ1

=







































7 −2 −4 4 −1 0 · · · 0

3 0 −2 1 0 0 · · · 0

−1 2 0 −2 1 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 −1 2 0 −2 1

0 · · · 0 0 −1 2 0 −3

0 · · · 0 1 −4 4 2 −7







































.

Similarly, the linear systems arising from the optimal two-step QSC method for homoge-
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neous Dirichlet boundary conditions are

(
1

h2
DpQ2 +

1

2h
DqQ1 + DfQ0)~cone = ~g (2.17)

for step one, and

(
1

h2
DpQ2 +

1

2h
DqQ1 + DfQ0)~c = ~g − (

1

h2
Dp

1

24
Qxx −

1

2h
Dq

1

24
Qx)~cone (2.18)

for step two.

2.3.2 Periodic boundary conditions

For periodic boundary conditions, we also adjust the basis functions to incorporate the

boundary conditions and decrease the dimension of P2
∆,1 from N +2 to N . We use P2

∆∂p,1

to denote the subspace of P2
∆,1 satisfying periodic boundary conditions.

According to [16], we adjust the basis functions for the periodic boundary conditions as

follows:

φ̂1(x) ≡























φ1(x) x ∈ I1 ∪ I2

φN+1(x) x ∈ IN

0 otherwise,

φ̂j(x) ≡ φj, j = 2, . . . , N − 1,

φ̂N(x) ≡























φ0(x) x ∈ I1

φN(x) x ∈ IN−1 ∪ IN

0 otherwise.

The linear system arising from the optimal one-step QSC method for periodic boundary

conditions takes the form

(
1

h2
Dp(Q

′
2 +

1

24
Q′2

2 ) +
1

2h
Dq(Q

′
1 −

1

24
Q2Q

′
1) + DfQ

′
0)~c = ~g, (2.19)



Chapter 2. Results of QSC for Two-point BVP 19

where

Q′
0 =

1

8



























6 1 0 0 · · · 1

1 6 1 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 1 6 1

1 · · · 0 0 1 6



























,

Q′
1 =



























0 1 0 0 · · · −1

−1 0 1 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 −1 0 1

1 · · · 0 0 −1 0



























,

Q′
2 =



























−2 1 0 0 · · · 1

1 −2 1 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

0 · · · 0 1 −2 1

1 · · · 0 0 1 −2



























,

and, the linear systems arising from the optimal two-step QSC method for periodic

boundary conditions are

(
1

h2
DpQ

′
2 +

1

2h
DqQ

′
1 + DfQ

′
0)~cone = ~g (2.20)

for step one, and

(
1

h2
DpQ

′
2 +

1

2h
DqQ

′
1 + DfQ

′
0)~c = ~g − (

1

h2
Dp

1

24
Q′2

2 − 1

2h
Dq

1

24
Q′

2Q
′
1)~cone (2.21)

for step two.

In the next chapter, we introduce the optimal QSC-CN methods and the RQSC-CN

method based on the results in this chapter.



Chapter 3

RQSC-CN Method

Consider Problem (1.1)-(1.2) subject to homogeneous Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = 0, 0 < t ≤ T. (3.1)

In the following, the superscript j for a function denotes the value of the function at time

step tj . Similarly, the superscript for the DOFs denotes the DOFs at the respective time

step. Recall that {φ̃1(x), φ̃2(x), . . . , φ̃N(x)} is the set of the basis functions for P2
∆∂d,1.

Then ∀uj
∆ ∈ P2

∆∂d,1, we have

uj
∆(x) =

N
∑

i=1

cj
i φ̃i(x), (3.2)

where {cj
1, . . . , c

j
N} are DOFs.

As we described in Chapter 1, the RQSC-CN method is revised from the optimal QSC-CN

methods. We first illustrate the optimal QSC-CN methods. We use uniform partitions

for both the space and time variables unless otherwise indicated.

3.1 Optimal one-step QSC-CN method

In order to obtain a higher order approximation than the standard QSC-CN method

defined in (1.7), we need to add a perturbation PL to L. The optimal one-step QSC-CN

20
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method is to find a map w∆ : {t0, . . . , tM} → P2
∆∂d,1 such that

(i) {∂wj
∆

∂t
− (L + PL)w

j+ 1

2

∆ }(τi) = g(τi, tj+ 1

2

), 1 ≤ i ≤ N, 0 ≤ j ≤ M − 1,

(ii) w0
∆ be the interpolant of γ,

(3.3)

where PL is defined in (2.9), and the notation of (1.6) is adopted for the terms wj
∆, w

j+1/2
∆ ,

and ∂wj
∆/∂t. Notice that in (3.3), there are no boundary conditions, since w∆ belongs

to the subspace P2
∆∂d,1 and all functions in P2

∆∂d,1 satisfy the boundary conditions by

construction.

From (i) in (3.3) and (1.6), it follows that

wj+1
∆ − wj

∆

∆t
=

1

2
(L + PL)(wj+1

∆ + wj
∆) + gj+ 1

2 . (3.4)

Therefore, we have

wj+1
∆ − ∆t

2
(L + PL)wj+1

∆ = wj
∆ +

∆t

2
(L + PL)wj

∆ + gj+ 1

2 . (3.5)

Letting

~cj = (cj
1, . . . , c

j
N)T and ~gj+ 1

2 = (g
j+ 1

2

1 , . . . , g
j+ 1

2

N )T ,

we obtain the matrix form of (3.5)

(Q0 −
∆t

2
(

1

h2
Dj+1

p (Q2 +
1

24
Qxx) +

1

2h
Dj+1

q (Q1 −
1

24
Qx) + Dj+1

f Q0))~c
j+1

= (Q0 +
∆t

2
(

1

h2
Dj

p(Q2 +
1

24
Qxx) +

1

2h
Dj

q(Q1 −
1

24
Qx) + Dj

fQ0))~c
j + ~gj+ 1

2 . (3.6)

Thus, for each time step, we solve the system (3.6) once, and get the DOFs for the next

time step. For the initial step, we compute the interpolant of u. More precisely, we solve

Q0~c
0 = (γ1, . . . , γN)T .

Note that the matrix arising from (3.6) is not tridiagonal but almost pentadiagonal, due

to the matrices Qx and Qxx arising from the perturbation term PL. More specifically,
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the first and last rows of Qx and Qxx have some additional entries that make them

deviate from the pure pentadiagonal structure. This makes the system (3.6) relatively

complicated to solve. Since tridiagonal systems are easier to solve, we want to find some

alternative method that requires the solution of tridiagonal systems only.

3.2 Optimal two-step QSC-CN method

In this section, we let uj
∆ denote the approximate solution computed by the optimal two-

step QSC-CN method at time step tj . Using the same technique introduced in Chapter

Two for the optimal two-step QSC method for BVPs, we first compute an intermediate

second order approximation νj+1
∆ by solving a linear system without the perturbation

term; then, we use νj+1
∆ to approximate the perturbation term PLuj+1

∆ by PLνj+1
∆ , and

solve a system with the same matrix and a modified right side to obtain the DOFs for

the next time step.

More precisely, we seek a map u∆ : {t0, . . . , tM} → P2
∆∂d,1 such that

(i) {∂uj
∆

∂t
− Lu

j+ 1

2

∆ }(τi) = g(τi, tj+ 1

2

) +
∆t

2
PL(uj

∆ + νj+1
∆ ), 1 ≤ i ≤ N, 0 ≤ j ≤ M − 1,

where νj+1
∆ ∈ P2

∆∂d,1 satisfies

{νj+1
∆ − uj

∆

∆t
− 1

2
(Lνj+1

∆ + Luj
∆)}(τi) = g(τi, tj+ 1

2

),

(ii) u0
∆ be the interpolant of γ.

(3.7)

The computation of uj
∆ can be described as a two-step procedure. In step one, from (i)

in (3.7), we compute νj+1
∆ satisfying

νj+1
∆ − ∆t

2
Lνj+1

∆ = uj
∆ +

∆t

2
Luj

∆ + gj+ 1

2 . (3.8)

That is, if νj+1
∆ =

∑N
i=1 cj+1

νi
φ̃i(x), we solve the linear system

(Q0 −
∆t

2
(

1

h2
Dj+1

p Q2 +
1

2h
Dj+1

q Q1 + Dj+1
f Q0))~c

j+1
ν

= (Q0 +
∆t

2
(

1

h2
Dj

pQ2 +
1

2h
Dj

qQ1 + Dj
fQ0))~c

j + ~gj+ 1

2 . (3.9)



Chapter 3. RQSC-CN Method 23

In step two, from (i) in (3.7) and (1.6), the equation we solve is given by

uj+1
∆ − ∆t

2
Luj+1

∆ = uj
∆ +

∆t

2
Luj

∆ +
∆t

2
PL(uj

∆ + νj+1
∆ ) + gj+ 1

2 . (3.10)

That is, if uj+1
∆ =

∑N
i=1 cj+1

i φ̃i(x), we solve

(Q0 −
∆t

2
(

1

h2
Dj+1

p Q2 +
1

2h
Dj+1

q Q1 + Dj+1
f Q0))~c

j+1

= (Q0 +
∆t

2
(

1

h2
Dj

p(Q2 +
1

24
Qxx) +

1

2h
Dj

q(Q1 −
1

24
Qx) + Dj

fQ0))~c
j

+
∆t

2
(

1

24h2
Dj+1

p Qxx −
1

24h
Dj+1

q Qx)~c
j+1
ν + ~gj+ 1

2 . (3.11)

Thus, we get the approximate solution uj+1
∆ for time step tj+1. For the initial step, we

compute the interpolant of u. More precisely, we solve

Q0~c
0 = (γ1, . . . , γN)T .

The linear system arising from the optimal two-step QSC-CN method has nicer properties

than the one arising from the optimal one-step QSC-CN method, for instance, the matrix

is tridiagonal, therefore, easier to solve. However, we need to solve two systems at each

time step. We can certainly save some computational work by saving some results from

the first step and using them again in the second step. For instance, if we use LU

decomposition to solve such a system for step one, we can save the LU decomposition

and apply only back and forward substitutions in the second step.

3.3 RQSC-CN method

From the above discussion, we see that both the optimal one-step QSC-CN and two-step

QSC-CN methods have some advantages and some disadvantages. The method presented

in this section picks the advantages of the above two methods. More precisely, it requires

the solution of the same simple system as the optimal two-step QSC-CN method, and

only once for each time step.
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For convenience, we adopt the notation u(k)(x, t) to denote the kth derivative of u(x, t)

with respect to x. Similar notation applies to other functions.

Lemma 3.3.1 Consider the problem

(i) u = u1 + u2

(ii)
∂u1

∂t
= L1u + g(x, t)

(iii)
∂u2

∂t
= h2L2u

(3.12)

where L1,L2 are second and fourth order linear spatial differential operators respectively.

Assume {|g(k)|, k = 0, . . . , 4}, {|u(k)|, k = 0, . . . , 8} are bounded. Then when applying the

Forward Euler method to (iii) of (3.12) to discretize the time variable, the truncation

error arising from time discretization is proportional to

h2∆t.

Proof:

By Taylor’s expansions, when applying the Forward Euler method to (iii) of (3.12), we

have

uj+1
2 − uj

2

∆t
− h2L2u

j =
∆t

2

∂2u2

∂t2
(t̄), (3.13)

where t̄ ∈ [tj , tj+1]. Notice that

∂2u2

∂t2
= (

∂u2

∂t
)t = h2(L2u)t = h2L2(ut) = h2L2(L1u + h2L2u + g(x, t)) (3.14)

Taking into account the assumptions of the lemma statement, and combining (3.13) and

(3.14), we get the desired result. 2

Recall that the continuous-time one-step quadratic-spline collocation method correspond-

ing to (3.3) is to find a map uC : [0, T ] → P2
∆∂d,1 such that

(i) {∂uC

∂t
− (L + PL)uC}(τi, t) = g(τi, t), 1 ≤ i ≤ N,

(ii) uC(x, 0) be the interpolant of γ.
(3.15)
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Suppose that we have two fictitious functions u1, u2 ∈ P2
∆∂d,1 such that

uC(t) = u1(t) + u2(t). (3.16)

More precisely, if ~c,~c1,~c2 are the vectors of DOFs of u, u1, u2, respectively, we have

~c = ~c1 + ~c2.

We also require that u1, u2 satisfy the equations (3.17), (3.18), respectively

{∂u1

∂t
− LuC}(τi, t) = g(τi, t), 1 ≤ i ≤ N, (3.17)

and

{∂u2

∂t
− PLuC}(τi, t) = 0, 1 ≤ i ≤ N. (3.18)

From (3.16), (3.17), and (3.18), it is easy to verify that uC satisfies (3.15). Using the

notation of (1.6), we discretize (3.17) as

{∂uj
1

∂t
−Lu

j+ 1

2

C }(τi) = g(τi, tj+ 1

2

), 1 ≤ i ≤ N, 0 ≤ j ≤ M − 1. (3.19)

This is a method similar to the Crank-Nicolson method, since we use central differences

to discretize the time derivative and averaging for the LuC term in (3.17). Notice that

we cannot say that this is a pure Crank-Nicolson method, since u1 is different from

uC . The forward Euler collocation method corresponding to (3.18) is to find a map

u2 : {t0, . . . , tM} → P2
∆∂d,1 such that

{∂uj
2

∂t
−PLuj

C}(τi) = 0, 1 ≤ i ≤ N, 0 ≤ j ≤ M − 1. (3.20)

Notice that there is a common factor h2 in PL, defined in (2.9). By Lemma 3.3.1, if we

let ∆t = O(h2), although we apply a first order time discretization (forward Euler) to

(3.18), we still obtain a second order approximation since h2O(∆t) = O(∆t2).

We can now give the first presentation of the RQSC-CN method. For the initial step

(t = 0), we solve

Q0~c
0 = (γ1, . . . , γN)T .



Chapter 3. RQSC-CN Method 26

For each subsequent time step, we first use (3.20), which is an explicit method, to get

the DOFs of uj+1
2 . Then substituting uj+1

2 in (3.19), taking into account (3.16), and

solving (3.19), we obtain the DOFs of uj+1
1 . Finally, we obtain the DOFs of uj+1

C , since

~cj+1 = ~cj+1
1 + ~cj+1

2 .

We can give a simpler presentation of the RQSC-CN method that does not involve u1

and u2. Adding (3.19) to (3.20), leads to the RQSC-CN method. More precisely, the

RQSC-CN method computes a map uC : {t0, . . . , tM} → P2
∆∂d,1 such that

(i) {∂uj
C

∂t
− (Lu

j+ 1

2

C + PLuj
C)}(τi) = g(τi, tj+ 1

2

), 1 ≤ i ≤ N, 0 ≤ j ≤ M − 1

(ii) u0
C be the interpolant of γ.

(3.21)

Since

uj
C(x) =

N
∑

i=1

cj
i φ̃i(x),

it follows that, at each time step, the RQSC-CN method requires the solution of the

linear system

(Q0 −
∆t

2
(

1

h2
Dj+1

p Q2 +
1

2h
Dj+1

q Q1 + Dj+1
f Q0))~c

j+1

= (Q0 +
∆t

2
(

1

h2
Dj

p(Q2 +
1

12
Qxx) +

1

2h
Dj

q(Q1 −
1

12
Qx) + Dj

fQ0))~c
j + ~gj+ 1

2 .(3.22)

By solving (3.22), we get the DOFs for next time step. Notice that, in (3.21), the term

LuC is treated implicitly by Crank-Nicolson, while the term PLuC is treated explicitly

by Forward Euler. Since (3.21) involves discretizing (3.15) partly by an implicit method

and partly by an explicit method, we consider the RQSC-CN method as a semi-implicit

method.

We can motivate (3.21) in a different way, once we have noticed that there is a common

factor h2 in PL. We explain the derivation of (3.21) as follows:

Recall that in the optimal two-step QSC-CN method, we compute an intermediate so-

lution νj+1
∆ to approximate uj+1

∆ in the term PLuj+1
∆ . It turns out that νj+1

∆ is a O(h2)

approximation to PLuj+1
∆ , but, since PL includes an h2 factor, substituting νj+1

∆ for uj+1
∆
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in the term PLuj+1
∆ introduces an O(h4) error. Now, notice that uj

∆ is an O(∆t) approx-

imation to uj+1
∆ , as well as to νj+1

∆ . Just as we argued before, since PL includes an h2

factor, in (i) of (3.7), if we substitute uj
∆ for νj+1

∆ in PLνj+1
∆ , we introduce an h2O(∆t)

error. If we assume that O(∆t) = O(h2), then the error introduced by substituting uj
∆

for νj+1
∆ in PLνj+1

∆ , is O(h4). Substituting PLuj
∆ for PLνj+1

∆ in (i) of (3.7), results in

(3.21).

Comparing (3.11) and (3.22), we notice that the matrices of the left sides are the same.

Therefore, for the RQSC-CN method, we only need to solve one tridiagonal system with

the same matrix as that of the optimal two-step QSC-CN method to get the DOFs for

each time step. However, as will be seen in Chapter 4, the RQSC-CN method is not

unconditionally stable whereas the optimal one-step and two-step QSC-CN methods are.

3.4 Periodic boundary conditions

In this section, we indicate the linear systems arising from the optimal one-step, two-step

QSC-CN and the RQSC-CN methods with periodic boundary conditions. The reason

we present the periodic case is that the stability analysis can be carried out easily for

periodic boundary conditions.

For periodic boundary conditions, we have the same equations as (3.3), (3.7), and (3.21)

corresponding to the respective methods. The matrix forms are slightly different from

those for homogeneous boundary conditions.

The linear system arising from the optimal one-step QSC method and periodic boundary

conditions is

(Q′
0 −

∆t

2
(

1

h2
Dj+1

p (Q′
2 +

1

24
Q′2

2 ) +
1

2h
Dj+1

q (Q′
1 −

1

24
Q′

2Q
′
1) + Dj+1

f Q′
0))~c

j+1

= (Q′
0 +

∆t

2
(

1

h2
Dj

p(Q
′
2 +

1

24
Q′2

2 ) +
1

2h
Dj

q(Q
′
1 −

1

24
Q′

2Q
′
1) + Dj

fQ
′
0))~c

j + ~gj+ 1

2 .(3.23)
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For the optimal two-step QSC-CN method and periodic boundary conditions, the linear

systems are

(Q′
0 −

∆t

2
(

1

h2
Dj+1

p Q′
2 +

1

2h
Dj+1

q Q′
1 + Dj+1

f Q′
0))~c

j+1
ν

= (Q′
0 +

∆t

2
(

1

h2
Dj

pQ
′
2 +

1

2h
Dj

qQ
′
1 + Dj

fQ
′
0))~c

j + ~gj+ 1

2 (3.24)

for step one, and

(Q′
0 −

∆t

2
(

1

h2
Dj+1

p Q′
2 +

1

2h
Dj+1

q Q′
1 + Dj+1

f Q′
0))~c

j+1

= (Q′
0 +

∆t

2
(

1

h2
Dj

p(Q
′
2 +

1

24
Q′2

2 ) +
1

2h
Dj

q(Q
′
1 −

1

24
Q′

2Q
′
1) + Dj

fQ
′
0))~c

j

+
∆t

2
(

1

24h2
Dj+1

p Q′2
2 − 1

24h
Dj+1

q Q′
2Q

′
1)~c

j+1
ν + ~gj+ 1

2 (3.25)

for step two.

For the RQSC-CN method and periodic boundary conditions, the linear system is

(Q′
0 −

∆t

2
(

1

h2
Dj+1

p Q′
2 +

1

2h
Dj+1

q Q′
1 + Dj+1

f Q′
0))~c

j+1

= (Q′
0 +

∆t

2
(

1

h2
Dj

p(Q
′
2 +

1

12
Q′2

2 ) +
1

2h
Dj

q(Q
′
1 −

1

12
Q′

2Q
′
1) + Dj

fQ
′
0))~c

j + ~gj+ 1

2 .(3.26)



Chapter 4

Stability and Convergence Analysis

In this chapter, we study the stability and convergence of the RQSC-CN method intro-

duced in the previous chapter for a simple linear parabolic PDE

∂u

∂t
= p

∂2u

∂x2
in 0 < x < 1, 0 < t ≤ T, (4.1)

where p is a positive constant, subject to homogeneous Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = 0, for 0 ≤ t ≤ T, (4.2)

or periodic boundary conditions

u(0, t) = u(1, t), and
∂u

∂x
(0, t) =

∂u

∂x
(1, t), for 0 ≤ t ≤ T, (4.3)

and initial condition

u(x, 0) = γ(x), for 0 ≤ x ≤ 1. (4.4)

All the matrices in this chapter have been defined in Chapter 2.

29
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4.1 Stability

4.1.1 Periodic boundary conditions

For Problem (4.1)-(4.4) with periodic boundary conditions, the RQSC-CN method re-

quires the solution of a linear system

(Q′
0 −

1

2
σQ′

2)~c
j+1 = (Q′

0 +
1

2
σQ′

2 +
1

24
σQ′2

2 )~cj , (4.5)

which is a special case of (3.26) with σ = p∆t
h2 . Letting

Q = (Q′
0 −

1

2
σQ′

2)
−1(Q′

0 +
1

2
σQ′

2 +
1

24
σQ′2

2 ),

we have

~cj+1 = Q~cj.

We refer to Q as the iteration matrix for (4.5).

From [6], we know that the eigenvalues of Q′
2 are

λi = −4 sin2(
(i − 1)π

N
), i = 1, . . . , N. (4.6)

Since Q′
0 = 1

8
(8I + Q′

2), Q′
0 and Q′

2 have the same eigenvectors. Thus, the eigenvalues of

Q′
0 are

1 +
1

8
λi.

Therefore, (Q′
0 − 1

2
σQ′

2)
−1 exists and the eigenvalues of Qare

λQi =
1 +

λi

8
+ σ

λi

2
+ σ

λ2
i

24

1 +
λi

8
− σ

λi

2

. (4.7)

From (4.6), we have

−4 ≤ λi ≤ 0.

Then, it is easy to show that

|λQi| ≤ 1.
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In the particular case that λi = 0, we have |λQi| = 1. Since Q is symmetric and real, we

have shown that

‖Q‖2 = max{|λQi|} ≤ 1.

Therefore, this method is unconditionally stable. We have, therefore, shown the following

theorem.

Theorem 4.1.1 The RQSC-CN method applied to Problem (4.1), (4.3), (4.4) is uncon-

ditionally stable.

4.1.2 Homogeneous Dirichlet boundary conditions

As we mentioned in Chapter 3, in the case of Dirichlet boundary conditions, the RQSC-

CN method is not unconditionally stable; there is some condition that has to be satisfied

for stability. Unfortunately, we cannot prove a rigorous result at this time. Shown by

numerical results, we have the following conjecture:

Conjecture 4.1.2 The RQSC-CN method applied to Problem (4.1), (4.2), (4.4) is con-

ditionally stable. The condition that needs to be satisfied for stability is

σ ≤ 5.06,

where σ = p∆t
h2 .

For the case of homogeneous Dirichlet boundary conditions, the RQSC-CN method ap-

plied to Problem (4.1), (4.2), (4.4) requires the solution of a linear system

(Q0 −
1

2
σQ2)~c

j+1 = (Q0 +
1

2
σQ2 +

1

24
σQxx)~c

j, where Qxx = QpQ2, (4.8)

which is a special case of (3.22) with σ = p∆t
h2 . Then, the iteration matrix for each time

step is

Q = (Q0 −
1

2
σQ2)

−1(Q0 +
1

2
σQ2 +

1

24
σQxx). (4.9)
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We are unable to find explicit formulae for the eigenvalues of Q, so we compute them

numerically. The spectral radii of the matrix Q computed by Matlab for certain choices

of σ and N are shown in Table 4.1.
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Table 4.1: The spectral radii of the iteration matrix for the RQSC-CN method

σ N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

0.01 0.9985 0.9996 0.9999 1.0000 1.0000 1.0000

0.1 0.9847 0.9962 0.9990 0.9998 0.9999 1.0000

0.25 0.9622 0.9904 0.9976 0.9994 0.9998 1.0000

0.5 0.9258 0.9809 0.9952 0.9988 0.9997 0.9999

1.0 0.8569 0.9622 0.9904 0.9976 0.9994 0.9998

1.5 0.8088 0.9438 0.9856 0.9964 0.9991 0.9998

2.0 0.8755 0.9258 0.9809 0.9952 0.9988 0.9997

2.5 0.9168 0.9165 0.9762 0.9940 0.9985 0.9996

3.0 0.9446 0.9443 0.9715 0.9928 0.9982 0.9995

3.5 0.9643 0.9641 0.9668 0.9916 0.9979 0.9995

4.0 0.9789 0.9788 0.9788 0.9904 0.9976 0.9994

4.5 0.9901 0.9901 0.9901 0.9901 0.9973 0.9993

4.75 0.9948 0.9947 0.9947 0.9947 0.9971 0.9993

4.85 0.9965 0.9964 0.9964 0.9964 0.9971 0.9993

4.95 0.9982 0.9981 0.9981 0.9981 0.9981 0.9993

5.0 0.9990 0.9989 0.9989 0.9989 0.9989 0.9992

5.03 0.9995 0.9993 0.9993 0.9993 0.9993 0.9993

5.06 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998

5.07 1.0001 0.9999 0.9999 0.9999 0.9999 0.9999

5.1 1.0005 1.0004 1.0004 1.0004 1.0004 1.0004

5.5 1.0061 1.0059 1.0059 1.0059 1.0059 1.0059

6.0 1.0119 1.0116 1.0116 1.0116 1.0116 1.0116
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Figure 4.1: The spectral radii of the iteration matrix for the RQSC-CN method

In Figure 4.1, we plot the spectral radii versus σ for different values of N . From Table

4.1 and Figure 4.1, we notice that the spectral radii of the iteration matrix are less than

or equal to one when σ ≤ 5.06. For a fixed N , there is an optimal σ, which minimizes

the spectral radii, for instance, the optimal σ for N = 8 is about 1.5. In addition, this

optimal σ seems to be proportional to ln N for the range N = 8 up to N = 128. For a

fixed σ, the spectral radii become larger as N increases. But as σ tends to, or goes beyond

the critical point, 5.06, the spectral radii behave almost in the same way no matter what

N is. Furthermore, the larger N is, the less sensitive the spectral radii are to the values

of σ. We may expect that the spectral radii tend to one as N tends to infinity for all

σ ≤ 5.06. It is worth mentioning that the spectral radii seem to be below 1.05 for all σ.
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4.1.3 Some improvements

Certainly, having a condition for stability is a disadvantage of the RQSC-CN method.

We are seeking some modifications applied to this method which may make it much more

stable. If we compare Q′2
2 in (4.5) and Qxx in (4.8), we find that Q′2

2 is symmetric while

Qxx is not. Since the RQSC-CN method is stable for periodic boundary conditions, this

motivates us to seek some improvements which can make Qxx in (4.8) simpler and closer

to being symmetric. As we know, the additional entries in the first and last rows in

Qxx arise from the approximation of u
(4)
C at τ1, τN . We try to use some different ways to

approximate u
(4)
C which will reduce the additional entries in Qxx.

First, we use u
(4)
C (τ2) to approximate u

(4)
C (τ1), and u

(4)
C (τN−1) to approximate u

(4)
C (τN ).

Although this is just a first order approximation, it makes Qxx have fewer entries in

the first and last rows than the matrix arising from the original approximation. More

precisely, our perturbation term PL becomes

PLui ≡























h2

24
Λu′′

2, i = 1

h2

24
Λu′′

i , 2 ≤ i ≤ N − 1

h2

24
Λu′′

n−1, i = N

(4.10)

and the matrix Qp in (4.8) is changed to

Qp1
=



























1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2 1



























. (4.11)

Shown by numeric results, the method arising by using Qp1
instead of Qp in (4.8) is not

only unconditionally stable but also convergent. To our delight, we can still get O(h4)

convergence even though we sacrifice some accuracy at τ1, τN . We refer to this method

as the RQSC-CN1 method. The spectral radii of the iteration matrix Q computed by

Matlab for certain choices of σ are shown in Table 4.2.
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Table 4.2: The spectral radii of the iteration matrix for the RQSC-CN1 method

σ N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

0.01 0.9985 0.9996 0.9999 1.0000 1.0000 1.0000

0.1 0.9847 0.9962 0.9990 0.9998 0.9999 1.0000

0.25 0.9622 0.9904 0.9976 0.9994 0.9998 1.0000

0.5 0.9258 0.9809 0.9952 0.9988 0.9997 0.9999

1 0.8569 0.9622 0.9904 0.9976 0.9994 0.9998

1.5 0.7929 0.9438 0.9856 0.9964 0.9991 0.9998

2 0.7699 0.9258 0.9809 0.9952 0.9988 0.9997

2.5 0.8159 0.9081 0.9762 0.9940 0.9985 0.9996

3 0.8481 0.8907 0.9715 0.9928 0.9982 0.9995

3.5 0.8719 0.8736 0.9668 0.9916 0.9979 0.9995

4 0.8901 0.8901 0.9622 0.9904 0.9976 0.9994

4.5 0.9046 0.9046 0.9575 0.9892 0.9973 0.9993

5 0.9163 0.9163 0.9529 0.9880 0.9970 0.9992

5.5 0.9260 0.9260 0.9484 0.9868 0.9967 0.9992

6 0.9341 0.9341 0.9438 0.9856 0.9964 0.9991

6.5 0.9410 0.9410 0.9410 0.9845 0.9961 0.9990

7 0.9469 0.9469 0.9469 0.9833 0.9958 0.9989

8 0.9566 0.9566 0.9566 0.9809 0.9952 0.9988

9 0.9642 0.9642 0.9642 0.9785 0.9946 0.9986

10 0.9702 0.9702 0.9702 0.9762 0.9940 0.9985

15 0.9880 0.9880 0.9880 0.9880 0.9910 0.9977

20 0.9966 0.9966 0.9966 0.9966 0.9966 0.9970
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Figure 4.2: The spectral radii of the iteration matrix for the RQSC-CN1 method

In Figure 4.2, we plot the spectral radii versus σ for different values of N . From Table 4.2

and Figure 4.2, we notice that the spectral radii of the iteration matrix behave similarly

to those in Figure 4.1, except that the spectral radii for the RQSC-CN1 method are

always less than or equal to one for all σ. It also seems that the spectral radii tend to

one as N tends to infinity for all σ.

In [3], Archer proposes a modified version of the standard cubic spline collocation method

for certain parabolic problems which also involves introducing some perturbation term to

L. There are quite a few choices for the perturbation at the boundary points [12]. Archer

chooses not to add any perturbation at the boundary points. This choice is simple and

easy to apply. Archer has proved that the modified method without perturbation at the

boundary points leads to O(h4) convergence at grid points. Motivated by this idea, we

let PL to be zero at {τ1, τN}. This makes the matrix Qxx even nicer than that for the
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RQSC-CN1 method. More precisely, the perturbation term PL becomes

PLui ≡























0, i = 1

h2

24
Λu′′

i , 2 ≤ i ≤ N − 1

0, i = N

(4.12)

and the matrix Qp in (4.8) is changed to

Qp0
=



























0 0 0

1 −2 1

. . .
. . .

. . .

1 −2 1

0 0 0



























.

Shown by numeric results, the method arising by using Qp0
instead of Qp in (4.8) appears

to be not only unconditionally stable but also convergent. To our delight, we can still

get O(h4) convergence even though we do not add any perturbation at τ1, τN . We refer

to this method as the RQSC-CN0 method. The spectral radii of the iteration matrix Q

computed by Matlab for certain choices of σ are shown in Table 4.3.
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Table 4.3: The spectral radii of the iteration matrix for the RQSC-CN0 method

σ N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

0.01 0.9985 0.9996 0.9999 1.0000 1.0000 1.0000

0.1 0.9847 0.9962 0.9990 0.9998 0.9999 1.0000

0.25 0.9622 0.9904 0.9976 0.9994 0.9998 1.0000

0.5 0.9258 0.9809 0.9952 0.9988 0.9997 0.9999

1 0.8569 0.9622 0.9904 0.9976 0.9994 0.9998

1.5 0.7928 0.9438 0.9856 0.9964 0.9991 0.9998

2 0.7330 0.9258 0.9809 0.9952 0.9988 0.9997

2.5 0.7181 0.9081 0.9762 0.9940 0.9985 0.9996

3 0.7524 0.8907 0.9715 0.9928 0.9982 0.9995

3.5 0.7784 0.8736 0.9668 0.9916 0.9979 0.9995

4 0.7989 0.8568 0.9622 0.9904 0.9976 0.9994

4.5 0.8154 0.8404 0.9575 0.9892 0.9973 0.9993

5 0.8291 0.8290 0.9529 0.9880 0.9970 0.9992

5.5 0.8406 0.8406 0.9484 0.9868 0.9967 0.9992

6 0.8505 0.8505 0.9438 0.9856 0.9964 0.9991

6.5 0.8591 0.8591 0.9393 0.9845 0.9961 0.9990

7 0.8667 0.8666 0.9347 0.9833 0.9958 0.9989

8 0.8794 0.8792 0.9258 0.9809 0.9952 0.9988

9 0.8896 0.8893 0.9169 0.9785 0.9946 0.9986

10 0.8980 0.8977 0.9081 0.9762 0.9940 0.9985

15 0.9247 0.9245 0.9245 0.9645 0.9910 0.9977

20 0.9392 0.9392 0.9392 0.9529 0.9880 0.9970
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Figure 4.3: The spectral radii of the iteration matrix for the RQSC-CN0 method

In Figure 4.3, we plot the spectral radii versus σ for different values of N . From Table

4.3 and Figure 4.3, we notice that the spectral radii of the iteration matrix behave quite

similarly to those in Figure 4.2. Moreover, the spectral radii for the RQSC-CN0 method

are smaller than the respective ones for the RQSC-CN1 method and grow more slowly

than those for the RQSC-CN1 method as σ increases. Furthermore, for a fixed N , the

optimal σ that minimizes the spectral radius of the iteration matrix of the RQSC-CN0

method is larger than that of the RQSC-CN1 method. We may say that the RQSC-CN0

method appears to be better than the RQSC-CN1 method as far as stability is concerned.
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4.2 Convergence

In this section, we study the convergence of the RQSC-CN method for Problem (4.1),

(4.2), (4.4).

At each time step, let um denote the exact solution at time tm, i.e.

um(x) = u(x, tm) = u(x, m∆t), (4.13)

um
C be the approximation to um computed by the RQSC-CN method and um

I be the

quadratic-spline interpolant of um satisfying (2.3). Notice that um
I does not satisfy ho-

mogeneous Dirichlet boundary conditions if (um)(4) 6= 0 at the boundaries. For simplicity,

we give the convergence proof by assuming

(um)(4)(x) = 0, at x = x0, xN . (4.14)

Then we can use the same adjusted basis functions as (2.14) for um
I . The proof for

general functions with (um)(4) 6= 0 at the two boundary points uses a similar approach,

but is more complicated to describe. Initially, u0 = γ and u0
C = u0

I , taking into account

assumption (4.14). We assume that the initial solution function γ(x) ∈ C6(I). That is,

γ(x) has bounded derivatives up to sixth order, i.e.

|γ(k)(x)| ≤ C, 0 ≤ x ≤ 1, k = 0, 1, . . . , 6, (4.15)

where C is a constant. The maximum principle [2] then guarantees that u(x, t) also has

bounded derivatives up to sixth order with respect to x for all t, i.e.

|u(k)(x, t)| ≤ C, 0 ≤ x ≤ 1, 0 < t ≤ 1, k = 0, 1, . . . , 6, (4.16)

where C is the same constant as in (4.15). Since u(x, t) satisfies (4.1), we have

uttt = (ut)tt = (puxx)tt = p3uxxxxxx. (4.17)

Therefore, uttt and uxxtt are also bounded for all x and t.

In (4.1), discretizing the time variable with the Crank-Nicolson Method, and using Tay-
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lor’s expansions, we get

um+1 − 1

2
∆tLum+1 = um +

1

2
∆tLum + ∆tRm+1, (4.18)

where

Rm+1 ≡ ∆t2

24
um1

ttt −
∆t2

16
(um2

xxtt+um3

xxtt), m1 ∈ [m, m+1], m2 ∈ [m, m+
1

2
], m3 ∈ [m+

1

2
, m+1].

(4.19)

Clearly,

Rm = O(∆t2), for all x, t and m. (4.20)

Recall the definitions of the discrete operators Λ in (2.6) and PL in (2.9). We next

summarize, in a form of Theorem 4.2.1, some results shown in [10].

Theorem 4.2.1 According to [10], under the assumption u0 ∈ C6(I), we have, for all

0 ≤ m ≤ M

‖(um
I )(k) − (um)(k)‖∞ = O(h3−k), k = 0, 1, 2

|um
I (x) − um(x)| = O(h4), for x = xi

|(um
I )′(x) − (um)′(x)| = O(h3), for x = xi + λh, λ = (3 ±

√
3)/6

|(um
I )′′(x) − (um)′′(x)| = O(h2), for x = τi

and

|um
I (x) − um(x)| = 0, for x = τi, (4.21)

|(L + PL)um
I (x) −Lum(x)| = O(h4), for x = τi. (4.22)

For later convenience, let

Rm
1 ≡ Lum − (L + PL)um

I , (4.23)

and notice that

Rm
1 = O(h4), for x = τi and for all m. (4.24)

We will make use of the following lemma:
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Lemma 4.2.2 Let u∆, v∆ ∈ P2
∆∂d,1 satisfy (4.25), (4.26), respectively,

u∆ − 1

2
∆tLu∆ = gu, 0 < x < 1, (4.25)

v∆ − 1

2
∆tLv∆ = gv, 0 < x < 1, (4.26)

at the collocation points, where gv = gu + O(hr). Then we have

‖u(k)
∆ − v

(k)
∆ ‖∞ = O(hr−k), k = 0, 1, 2. (4.27)

Proof: Letting ~cu,~cv be the DOFs for u∆, v∆ respectively, from (4.25) and (4.26), we

have

A~cu = ~gu, (4.28)

A~cv = ~gv = ~gu + O(hr), (4.29)

where

A ≡ Q0 −
1

2
σQ2.

Subtracting (4.29) from (4.28), we have

A(~cu − ~cv) = O(hr).

Writing down the matrix A explicitly, by simple mathematical manipulation, we have,

for i = 1, . . . , N ,

|Aii| ≥
N

∑

j=1,j 6=i

|Aij | +
1

2
.

Therefore, A−1 exists and ‖A−1‖∞ is bounded independently of h. Consequently, we have

‖~cu − ~cv‖∞ ≤ ‖A−1‖∞O(hr) = O(hr). (4.30)

Noticing that the quadratic spline basis functions are bounded, from (4.30), we have

‖u(k)
∆ − v

(k)
∆ ‖∞ = O(hr−k), k = 0, 1, 2. 2
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Lemma 4.2.3 If u0 ∈ C6(I), then

PL(um+1
I − um

I ) = O(h4 + h2∆t), for x = τi and for all m. (4.31)

Proof: Since u0 ∈ C6(I), we have (4.16). From [10], we know that

Λ(um+1
I )′′ = (um+1)(4) + O(h2)

and

Λ(um
I )′′ = (um)(4) + O(h2),

and by Taylor’s expansions we get

(um+1)(4) = (um)(4) + O(∆t).

Therefore

Λ(um+1
I )′′ = Λ(um

I )′′ + O(h2 + ∆t). (4.32)

Based on the definition of PL, and (4.32), we have the desired result. 2

For later convenience, define

Rm
2 ≡ 1

2
PL(um+1

I − um
I ), (4.33)

and notice that, from Lemma 4.2.3, we have

Rm
2 = O(h4 + h2∆t), for x = τi and for all m. (4.34)

We now come to the main convergence theorem.

Theorem 4.2.4 If u0 ∈ C6(I), σ ≤ 5.06, and ∆t = O(h2), we have for m = 0, . . . , M ,

‖(um
C )(k) − (um)(k)‖∞ = O(h3−k), k = 0, 1, 2

|um
C (x) − um(x)| = O(h4), for x = xi and x = τi

|(um
C )′(x) − (um)′(x)| = O(h3), for x = xi + λh, λ = (3 ±

√
3)/6

|(um
C )′′(x) − (um)′′(x)| = O(h2), for x = τi.
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Proof: We first prove that at each time step tm+1

‖(um+1
C )(k) − (um+1

I )(k)‖∞ = tm+1O(h4−k), k = 0, 1, 2. (4.35)

All the following equations are satisfied at the collocation points τi, i = 1, . . . , N , unless

otherwise indicated. We ignore errors with order higher than O(h4).

By (4.21) and (4.22) in Theorem 4.2.1, and by the definition (4.23), we have

um+1
I − 1

2
∆t(L + PL)um+1

I = um+1 − 1

2
∆tLum+1 +

1

2
∆tRm+1

1 . (4.36)

Using (4.18), relation (4.36) is rewritten as

um+1
I − 1

2
∆t(L + PL)um+1

I = um +
1

2
∆tLum + ∆t(Rm+1 +

1

2
Rm+1

1 ). (4.37)

Using (4.21), (4.22) and (4.23) again, relation (4.37) becomes

um+1
I − 1

2
∆t(L+PL)um+1

I = um
I +

1

2
∆t(L+PL)um

I +∆t(Rm+1 +
1

2
Rm+1

1 +
1

2
Rm

1 ). (4.38)

Moving 1
2
∆tPLum+1

I to the right side, we have

um+1
I − 1

2
∆tLum+1

I = um
I +

1

2
∆t(L+PL)um

I +
1

2
∆tPLum+1

I +∆t(Rm+1 +
1

2
Rm+1

1 +
1

2
Rm

1 ).

(4.39)

Using the definition of Rm
2 , relation (4.39) is written as

um+1
I − 1

2
∆tLum+1

I = um
I +

1

2
∆t(L+2PL)um

I +∆t(Rm+1 +
1

2
Rm+1

1 +
1

2
Rm

1 +Rm
2 ). (4.40)

Define

gm
I ≡ um

I +
1

2
∆t(L + 2PL)um

I (4.41)

and

ǫm ≡ Rm+1 +
1

2
Rm+1

1 +
1

2
Rm

1 + Rm
2 . (4.42)

Then relation (4.40) is written as

um+1
I − 1

2
∆tLum+1

I = gm
I + ∆tǫm. (4.43)
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From (4.20), (4.24), and (4.34), we have

ǫm = O(∆t2 + ∆th2 + h4), (4.44)

which, by letting ∆t = O(h2), gives

ǫm = O(h4). (4.45)

Recall that

A ≡ Q0 −
1

2
σQ2,

and define

B ≡ Q0 +
1

2
σQ2 +

1

24
σQxx. (4.46)

We rewrite (4.43), for the collocation points τi, i = 1, . . . , N , in the format of linear

system as

A~cm+1
I = B~cm

I + ∆t~ǫm, (4.47)

where ~cm
I is the N × 1 vector of DOFs of um

I , and ~ǫm is the N × 1 vector of values of ǫm

at τi, i = 1, . . . , N .

That is

~cm+1
I = A−1B~cm

I + A−1∆t~ǫm. (4.48)

We define

~εm ≡ A−1~ǫm. (4.49)

Since, by Lemma 4.2.2, ‖A−1‖ is bounded independently of h, and by (4.45) ‖~ǫm‖∞ =

O(h4), we have

‖~εm‖∞ = O(h4). (4.50)

Rewrite (4.48) as

~cm+1
I = A−1B~cm

I + ∆t~εm. (4.51)

According to the RQSC-CN method, the collocation equations are given by

~cm+1 = A−1B~cm, (4.52)
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where ~cm is the N × 1 vector of DOFs of um
C .

Subtracting (4.52) from (4.51), we have

~cm+1
I − ~cm+1 = Q(~cm

I − ~cm) + ∆t~εm, (4.53)

where we recall that Q = A−1B is the iteration matrix of the RQSC-CN method.

It can be easily shown by induction that

~cm+1
I − ~cm+1 = Qm+1(~c0

I − ~c0) + ∆t(Qm~ε0 + Qm−1~ε1 + . . . + Q~εm−1 + ~εm). (4.54)

Since c0 = c0
I , the term Qm+1(~c0

I − ~c0) in (4.54) cancels. According to Conjecture 4.1.2,

under the stability condition σ ≤ 5.06, we have |λi| ≤ 1, for all eigenvalues λi of Q. This

is equivalent to ‖Qm‖∞ → 0, as m → ∞. In addition, it is easy to show that ‖Q‖∞ ≤ κ,

where κ is a positive constant independent of h. Therefore, we have for j = 0, . . . , m

‖Qj~εm−j‖∞ = O(h4).

Then, from (4.54), we get

‖~cm+1
I − ~cm+1‖∞ = tm+1O(h4). (4.55)

Then, with similar arguments as in Lemma 4.2.2, we obtain (4.35). Finally, by Theorem

4.2.1 and the use of the triangle inequality, the desired results are easily obtained. 2

As we have mentioned, the above proof holds for functions with u(4) = 0 at the bound-

aries. Next, we will show that Theorem 4.2.4 holds for general functions. To complete

the proof, we will need to adjust the RQSC-CN method, as described in the rest of the

section.

When u(4) 6= 0 at the boundaries, the relations (4.35) to (4.43) still hold for uI . However,

since uI 6= 0 at the boundaries, we cannot use the adjusted basis functions anymore to

represent it. We will use the original basis functions (2.13) instead. Let

um
I =

N+1
∑

i=0

cm′

Ii
φi(x). (4.56)
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Then, we have
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. (4.57)

Define

~cm′

I = (cm′

I0
, . . . , cm′

IN+1
)T . (4.58)

It is worth mentioning that ~cm′

I is different from ~cm
I , and we use a prime to distinguish it

from ~cm
I . Notice that ~cm′

I is a (N + 2) × 1 vector, while ~cm
I is a N × 1 vector.

Define

ũm
0 = − h4

128
(um

0 )xxxx and ũm
N+1 = − h4

128
(um

N+1)xxxx. (4.59)

From the first and last equations in (4.57), we have

cm′

I0
= 2ũm

0 − cm′

I1
and cm′

IN+1
= 2ũm

N+1 − cm′

IN
. (4.60)

At the midpoints τi, i = 1, . . . , N , we have

um
I =

1

8













1 6 1 · · · 0

. . .
. . .

. . .
. . .

. . .

0 · · · 1 6 1













N×(N+2)













cm′

I0

...

cm′

IN+1













. (4.61)

Substituting (4.60) for cm′

I0
and cm′

IN+1
in (4.61), we have

um
I = Q0~c

m′

IR
+ r̃m

Q0
, (4.62)

where ~cm′

IR
= (cm′

I1
, . . . , cm′

IN
)T is a N × 1 restriction of ~cm′

I , obtained by omitting the first

and last components, and

r̃m
Q0

= (2(Q0)2,1ũ
m
0 , 0, . . . , 0, 2(Q0)N−1,N ũm

N+1)
T . (4.63)
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Similarly, we have

(um
I )xx = Q2~c

m′

IR
+ r̃m

Q2
, (4.64)

where

r̃m
Q2

= (2(Q2)2,1ũ
m
0 , 0, . . . , 0, 2(Q2)N−1,N ũm

N+1)
T . (4.65)

Now, the relation (4.47) for general functions with u(4) 6= 0 at boundaries becomes

A~cm+1′

IR
+ r̃m+1

A = B~cm′

IR
+ r̃m

B + ∆t~ǫm, (4.66)

where

r̃m+1
A = (2A2,1ũ

m+1
0 , 0, . . . , 0, 2AN−1,Num+1

N+1)
T

and

r̃m
B = (2B2,1ũ

m
0 , 0, . . . , 0, 2BN−1,Num

N+1)
T .

That is

A~cm+1′

IR
= B~cm′

IR
− r̃m+1

A + r̃m
B + ∆t~ǫm. (4.67)

Let

um
C =

N+1
∑

i=0

cm′

i φi(x), (4.68)

and define

~cm′

= (cm′

0 , . . . , cm′

N+1)
T and ~cm′

R = (cm′

1 , . . . , cm′

N )T . (4.69)

Let cm′

0 , cm′

1 , cm′

N , and cm′

N+1 satisfy relations similar to those in (4.60), more precisely,

cm′

0 = 2ũm
0 − cm′

1 and cm′

N+1 = 2ũm
N+1 − cm′

N . (4.70)

Recall that the RQSC-CN method for functions with u(4) = 0 at the boundaries computes

the DOFs of um+1
C by solving

A~cm+1 = B~cm.

For u(4) 6= 0 at the boundaries, we adjust the RQSC-CN method to compute the DOFs

of um+1
C by solving

A~cm+1′

R = B~cm′

R − r̃m+1
A + r̃m

B . (4.71)
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This means that, instead of satisfying the Dirichlet boundary conditions exactly, the

collocation approximation um+1
C satisfies perturbed boundary conditions that are the

same as those that um+1
I satisfies.

Initially, let ~c0′

R = ~c0′

IR
. Subtracting (4.71) from (4.67), we have

A(~cm+1′

IR
− ~cm+1′

R ) = B(~cm′

IR
− ~cm′

R ) + ∆t~ǫm, (4.72)

which leads to

~cm+1′

IR
− ~cm+1′

R = Q(~cm′

IR
− ~cm′

R ) + ∆t~εm. (4.73)

This is a relation similar to (4.53). Then by similar arguments as before, we obtain

‖~cm+1′

IR
− ~cm+1′

R ‖∞ = tm+1O(h4).

Finally, by (4.60) and (4.70), we have

‖~cm+1′

I − ~cm+1′‖∞ = tm+1O(h4).

2

We need to add a few notes regarding the adjustment we applied to the RQSC-CN

method to obtain the proof of convergence of the method for functions with u(4) 6= 0

at the boundaries. First, this adjustment may seem unrealistic, since it involves the

values of u(4) at the boundaries. However, we can use an O(h2) approximation to u(4)

instead of u(4) itself, without affecting the steps of the proof, since such an approximation

will introduce an O(h6) error which will have no impact on the orders of convergence.

(Recall that the adjustment involves an O(h4) perturbation at the boundaries.) An O(h2)

approximation to (um+1)(4)(x0) can be obtained by first approximating (um+1)(4)(x0) by

(um)(4)(x0), then approximating the latter by an appropriate finite difference formula

involving the values of (um
C )(4) at the six leftmost midpoints. Similar approximation can

be obtained for (um+1)(4)(xN ). Thus, the adjustment is easily computable and involves

little extra computational effort. Second, it is important to note that the adjustment to
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the RQSC-CN method is only needed for the proof of convergence. Extensive numerical

experiments on functions with u(4) 6= 0 at the boundaries using the RQSC-CN method

without adjustment indicate that the optimal orders of convergence hold. However, we

were unable to complete the proof of convergence without the adjustment for functions

with u(4) 6= 0 at the boundaries.



Chapter 5

Numerical Results

In this chapter, we present a variety of numerical results to demonstrate the performance

of the methods discussed in previous chapters. First, we test the convergence of the

RQSC-CN method for Problems (1.1)-(1.3) and (4.1)-(4.4). Next, we demonstrate the

convergence of the RQSC-CN1 and RQSC-CN0 methods. Finally, we compare the nu-

merical results of the RQSC-CN, RQSC-CN1 and RQSC-CN0 methods to those of the

optimal two-step QSC-CN method.

From the analysis of the convergence in Chapter 4, we expect that the resulting errors

in the infinity norm would be O(h3) globally and O(h4) at the grid points {xi} and

midpoints {τi}. We are also expecting some superconvergence behaviour for derivatives,

i.e. we are expecting O(h3) for ux at the points {λi} where λi = xi + (3 ±
√

3)h, and

O(h2) for uxx at the midpoints.

In all our experiments, we first choose the problem, i.e. pick the coefficients p, q and

f of uxx, ux, and u, respectively; then we adjust γ(x), β0(t), β1(t), and g(x, t) so that a

predetermined function satisfies the problem. Therefore, we can use this true solution to

compute the errors and the respective orders of convergence. For all problems considered,

the domain is [0, 1]× [0, 1]. The errors and the respective orders of convergence are com-

puted at t = 0.1k, k = 0, 1, . . . , 10, and the maximum is picked. The errors are presented

52
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in the format x.y ± k, which means x.y × 10±k. We use the subscripts, xi, τi and λi, to

denote the discrete infinity (maximum) norms of the errors at the points {xi}, {τi}, and

{λi}, respectively, and the subscript ∞, to denote the continuous infinity (maximum)

norm of the error (global error). The global error is approximated by computing the

maximum error at 1000 points in the space domain for each t = 0.1k, k = 0, 1, . . . , 10,

and picking the maximum over all k = 0, 1, . . . , 10. The methods are programmed in

Matlab, which, by default, uses double precision. In the discussion that follows, when

we refer to zero errors from numerical experiments, we mean errors close to the machine

epsilon.

5.1 RQSC-CN Method

5.1.1 Dirichlet Boundary Conditions

In this section, we consider the Problem (1.1)-(1.3).

Problem 1

We perform a test to indicate the maximum degree of polynomials with respect to x,

which leads to zero errors at the grid points and midpoints.

In (1.1), letting p(x, t) = 1, q(x, t) = 0, and f(x, t) = −1, the problem becomes

ut = uxx − u + g(x, t), 0 < x < 1, 0 < t < 1.

We choose u(x, t) = x3(t2 − 1) and σ = ∆t/h2 = 1. For such a function, the third and

higher derivatives with respect to t are zero, therefore, the time discretization does not

introduce any error. The boundary functions β0 and β1 are determined such that u(x, t)

satisfies the boundary conditions.

The infinity norms of the observed errors for N = 8 to 128 points in the partition ∆ and

the respective orders of convergence are shown in Table 5.1. It can be observed that we
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obtain zero errors within the machine precision for u at the points {xi, τi}. We also get

zero errors for derivatives at superconvergence points. More precisely, we get zero errors

for ux and uxx at the points {λi} and {τi}, respectively. If we increase the degree of x to

four, we cannot get zero errors for u at {xi, τi} and for derivatives at {λi, τi} anymore. It

seems that the maximum degree of x which leads to zero errors at the respective points

is three.

Table 5.1: Errors and respective orders of convergence of the RQSC-CN method for

Problem 1.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 2.8-17 2.8-17 2.3-05 3.3-16 9.8-04 1.9-03 9.4-02 5.3-15 9.4-02

16 2.8-17 2.8-17 2.9-06 1.3-15 2.4-04 4.9-04 4.7-02 1.4-14 4.7-02

32 2.8-17 2.8-17 3.7-07 2.3-15 6.1-05 1.2-04 2.3-02 1.1-13 2.3-02

64 6.7-16 6.7-16 4.6-08 1.1-14 1.5-05 3.0-05 1.2-02 3.4-13 1.2-02

128 6.2-15 6.2-15 5.7-09 4.7-14 3.8-06 7.6-06 5.9-03 1.8-12 5.8-03

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 - - 3.00 - 2.00 2.00 1.00 - 1.00

32 - - 3.00 - 2.00 2.00 1.00 - 1.00

64 - - 3.00 - 2.00 2.00 1.00 - 1.00

128 - - 3.00 - 2.00 2.00 1.00 - 1.00
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Problem 2

With this problem, we want to demonstrate the convergence of the RQSC-CN method

for a smooth function u ∈ C∞, and a problem with variable coefficients. In (1.1), letting

p(x, t) = 2 + sin t, q(x, t) =
16x

1 + 4x2

1

1 + t
, f(x, t) =

8

1 + 4x2
e−t,

the problem becomes

ut = (2 + sin t)uxx +
16x

1 + 4x2

1

1 + t
ux +

8

1 + 4x2
e−tu + g(x, t), 0 < x < 1, 0 < t < 1.

The functions γ, g, β0, and β1 are chosen such that u(x, t) = ex+t is the true solution. For

the time step, we choose ∆t = h2.

The infinity norms of the observed errors for N = 8 to 128 points in the partition ∆ are

shown in Table 5.2. From these we derive estimates of the orders of convergence. It can

be observed that the optimal orders of convergence and superconvergence are obtained

for a function in C∞. Although the convergence analysis in Chapter 4 is carried out

for some special problem, the optimal orders of convergence and superconvergence by

the RQSC-CN method are also observed for a general problem and general Dirichlet

boundary conditions. These results indicate that the conditions of Theorem 4.2.4 under

which the optimal convergence of the RQSC-CN method is obtained are only sufficient

and not necessary.
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Table 5.2: Errors and respective orders of convergence of the RQSC-CN method for

Problem 2.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 6.2-06 1.5-05 1.2-04 2.4-04 4.5-03 9.2-03 4.5-01 4.5-03 4.4-01

16 3.9-07 9.4-07 1.5-05 2.9-05 1.2-03 2.2-03 2.3-01 1.2-03 2.2-01

32 2.4-08 5.9-08 1.8-06 3.6-06 3.0-04 5.5-04 1.1-01 3.0-04 1.1-01

64 1.5-09 3.7-09 2.3-07 4.5-07 7.5-05 1.4-04 5.8-02 7.5-05 5.4-02

128 9.5-11 2.3-10 2.8-08 5.7-08 1.9-05 3.4-05 2.9-02 1.9-05 2.7-02

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 4.00 3.98 3.02 3.01 1.95 2.07 0.98 1.96 1.01

32 4.00 4.00 3.01 3.01 1.98 1.98 0.99 1.98 1.00

64 4.00 4.00 3.01 3.00 1.99 1.99 1.00 1.99 1.02

128 4.00 4.00 3.02 3.00 1.99 2.04 1.00 1.99 1.00
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Problem 3

With this problem, we study the convergence of the RQSC-CN method for various

smoothness assumptions on u. The problem arises from an one-dimensional BVP in

[10]. By adding some terms involving the time variable, we get a parabolic PDE. In

(1.1), letting

p(x, t) = 1, q(x, t) =
16x

1 + 4x2
, f(x, t) =

8

1 + 4x2
,

the problem becomes

ut = uxx +
16x

1 + 4x2
ux +

8

1 + 4x2
u + g(x, t), 0 < x < 1, 0 < t < 1.

First, we test the convergence for various smoothness assumptions on u with respect to

x. Let u(x, t) = xα/2et, where α = 11, 9, 7, which puts u in C5.5, C4.5, C3.5 with respect

to x, respectively. Again, the functions γ, g, β0, and β1 are chosen such that u is the

true solution to this problem. We refer to this problem as Problem 3(i). Next, we

test the convergence for various smoothness assumptions on u with respect to t. Let

u(x, t) = extα/2, where α = 7, 5, 3, which puts u in C3.5, C2.5, C1.5 with respect to t,

respectively. We refer to this problem as Problem 3(ii).

For the time step size, we choose σ = 1, thus ∆t = h2. The infinity norms of the observed

errors and the respective orders of convergence are shown in Tables 5.3 - 5.5 for Problem

3(i) and Tables 5.6 - 5.8 for Problem 3(ii).

From the results, we see that for Problem 3(i), when u is in C4 with respect to x, the

orders of convergence of u and its derivatives are optimal, while for a function in C3.5, the

orders of convergence and superconvergence are 0.5 less than the optimal orders. This

indicates that C4 is the minimum continuity required to obtain the optimal orders of

convergence. The minimum continuity with respect to t is C2. When u is in C1.5 with

respect to t, the orders of convergence are one less than the optimal orders only at the grid

points and midpoints. An interesting observation is that the orders of superconvergence

for the derivatives are preserved.
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Table 5.3: Errors and respective orders of convergence of the RQSC-CN method for

Problem 3(i) with α = 11.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 4.1-04 1.1-03 4.0-03 1.8-02 1.3-01 2.9-01 1.4+01 3.6-01 1.4+01

16 2.8-05 6.8-05 4.8-04 2.2-03 3.5-02 7.0-02 7.2+00 9.3-02 6.9+00

32 1.8-06 4.3-06 5.9-05 2.8-04 9.2-03 1.7-02 3.6+00 2.3-02 3.4+00

64 1.2-07 2.7-07 7.2-06 3.6-05 2.3-03 4.1-03 1.8+00 5.9-03 1.7+00

128 7.3-09 1.7-08 8.8-07 4.5-06 5.9-04 1.0-03 9.2-01 1.5-03 8.6-01

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 3.87 4.01 3.05 3.02 1.87 2.07 0.96 1.98 0.99

32 3.94 3.99 3.03 2.99 1.94 2.06 0.98 1.98 1.03

64 3.97 3.99 3.02 2.98 1.97 2.02 0.99 1.99 1.02

128 3.99 3.99 3.04 2.99 1.99 2.02 1.00 1.99 0.97
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Table 5.4: Errors and respective orders of convergence of the RQSC-CN method for

Problem 3(i) with α = 9.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 1.2-04 3.2-04 1.8-03 5.3-03 6.3-02 1.3-01 6.5+00 1.0-01 6.4+00

16 8.0-06 1.9-05 2.1-04 6.4-04 1.7-02 3.2-02 3.3+00 2.6-02 3.2+00

32 5.1-07 1.2-06 2.6-05 7.9-05 4.3-03 7.9-03 1.7+00 6.5-03 1.6+00

64 3.2-08 7.5-08 3.3-06 9.8-06 1.1-03 2.0-03 8.3-01 1.6-03 7.8-01

128 2.0-09 4.7-09 4.0-07 1.2-06 2.7-04 4.8-04 4.2-01 4.1-04 3.9-01

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 3.95 4.05 3.04 3.05 1.92 2.08 0.98 2.01 1.00

32 3.98 4.01 3.02 3.01 1.96 2.01 0.99 2.00 1.01

64 3.99 4.00 3.02 3.00 1.98 2.00 0.99 2.00 1.02

128 4.00 4.00 3.03 3.00 1.99 2.04 1.00 2.00 0.98
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Table 5.5: Errors and respective orders of convergence of the RQSC-CN method for

Problem 3(i) with α = 7.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 1.0-04 1.7-04 5.7-04 2.2-03 2.2-02 4.4-02 2.2+00 3.5-02 2.2+00

16 8.1-06 1.2-05 7.0-05 3.5-04 5.7-03 1.1-02 1.1+00 1.2-02 1.1+00

32 6.3-07 9.4-07 8.7-06 5.8-05 1.4-03 2.7-03 5.6-01 4.3-03 5.4-01

64 5.2-08 8.2-08 1.1-06 1.0-05 3.6-04 6.9-04 2.8-01 1.5-03 2.7-01

128 4.5-09 7.2-09 1.4-07 1.8-06 9.1-05 1.7-04 1.4-01 5.4-04 1.3-01

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 3.69 3.75 3.02 2.65 1.97 2.04 0.99 1.52 1.02

32 3.68 3.72 3.01 2.57 1.99 2.00 1.00 1.50 0.99

64 3.61 3.53 3.01 2.53 1.99 1.98 1.00 1.50 1.01

128 3.54 3.51 3.01 2.51 2.00 2.01 1.00 1.50 1.01
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Table 5.6: Errors and respective orders of convergence of the RQSC-CN method for

Problem 3(ii) with α = 7.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 7.6-05 7.8-05 9.9-05 4.0-04 1.5-03 3.6-03 1.7-01 2.1-03 1.6-01

16 4.7-06 4.9-06 7.7-06 2.7-05 4.2-04 8.1-04 8.4-02 4.4-04 8.1-02

32 2.9-07 3.1-07 6.9-07 2.1-06 1.1-04 2.0-04 4.2-02 1.1-04 4.1-02

64 1.8-08 1.9-08 8.3-08 2.1-07 2.7-05 5.1-05 2.1-02 2.7-05 2.0-02

128 1.2-09 1.2-09 1.0-08 2.4-08 6.9-06 1.2-05 1.1-02 6.9-06 1.0-02

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 4.01 3.99 3.68 3.89 1.83 2.13 0.99 2.23 1.01

32 4.00 4.00 3.49 3.73 1.95 2.00 0.99 2.01 1.00

64 4.00 4.00 3.06 3.28 1.98 1.99 1.00 2.00 1.02

128 4.00 4.00 3.02 3.16 1.99 2.04 1.00 2.00 1.00



Chapter 5. Numerical Results 62

Table 5.7: Errors and respective orders of convergence of the RQSC-CN method for

Problem 3(ii) with α = 5.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 3.2-05 3.2-05 4.5-05 1.5-04 1.6-03 3.4-03 1.7-01 1.7-03 1.6-01

16 2.0-06 2.0-06 5.4-06 1.3-05 4.3-04 8.0-04 8.4-02 4.3-04 8.1-02

32 1.3-07 1.3-07 6.7-07 1.5-06 1.1-04 2.0-04 4.2-02 1.1-04 4.1-02

64 8.1-09 8.1-09 8.3-08 1.8-07 2.7-05 5.1-05 2.1-02 2.7-05 2.0-02

128 5.1-10 5.1-10 1.0-08 2.1-08 6.9-06 1.2-05 1.1-02 6.9-06 1.0-02

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 3.97 3.95 3.06 3.55 1.93 2.09 0.99 2.00 1.01

32 3.98 3.98 3.02 3.15 1.97 1.99 0.99 1.99 1.00

64 3.99 3.99 3.01 3.08 1.99 1.99 1.00 1.99 1.02

128 3.99 3.99 3.02 3.04 1.99 2.04 1.00 2.00 1.00
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Table 5.8: Errors and respective orders of convergence of the RQSC-CN method for

Problem 3(ii) with α = 3.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 6.4-04 6.3-04 6.4-04 3.3-03 3.0-03 3.5-03 1.7-01 1.2-02 1.6-01

16 8.3-05 8.3-05 8.3-05 4.2-04 8.0-04 8.0-04 8.4-02 1.6-03 8.1-02

32 1.0-05 1.0-05 1.0-05 5.3-05 2.0-04 2.0-04 4.2-02 2.0-04 4.1-02

64 1.3-06 1.3-06 1.3-06 6.6-06 5.1-05 5.1-05 2.1-02 2.7-05 2.0-02

128 1.6-07 1.6-07 1.6-07 8.3-07 1.2-05 1.2-05 1.1-02 6.9-06 1.0-02

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 2.94 2.93 2.94 2.98 2.79 2.14 0.99 2.90 1.00

32 2.98 2.99 2.99 2.98 1.98 1.98 0.99 2.98 1.00

64 2.99 2.99 2.99 2.99 1.99 1.99 1.00 2.86 1.02

128 3.00 3.00 3.00 3.00 1.99 2.04 1.00 1.99 1.00



Chapter 5. Numerical Results 64

5.1.2 Periodic Boundary Conditions

In this section, we present the numerical results of the RQSC-CN method for Problem

(4.1)-(4.4), subject to periodic boundary conditions.

Problem 4

Consider the parabolic problem

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, 0 < x < 1, 0 < t < 1, (5.1)

subject to periodic boundary conditions and initial condition (4.4).

Let γ(x) = sin 2πx. The unique solution to this problem is given explicitly by u(x, t) =

e−4π2t sin 2πx. We choose a relatively large σ = 20 to show that the RQSC-CN method

is unconditionally stable when the problem has periodic boundary conditions.

The infinity norms of the observed errors and the respective orders of convergence are

shown in Table 5.9. It can be observed that the optimal orders of convergence and

superconvergence are obtained. This agrees with the analysis, in which it was shown

that the RQSC-CN method for Problem (4.1)-(4.4) with periodic boundary conditions is

unconditionally stable and convergent.
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Table 5.9: Errors and respective orders of convergence of the RQSC-CN method for

Problem 4.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 6.8-01 6.3-01 6.8-01 4.2-00 3.9-00 4.5-00 2.6+01 2.6-00 2.6+01

16 4.1-02 4.1-02 4.1-02 2.6-01 2.5-01 2.6-01 7.8-00 1.6-00 7.6-00

32 2.2-03 2.1-03 2.2-03 1.4-02 1.4-02 1.9-02 3.9-00 8.4-02 3.8-00

64 2.2-04 2.2-04 2.2-04 1.4-03 2.5-03 4.8-03 1.9-00 1.6-02 1.9-00

128 1.5-05 1.5-05 1.5-05 9.1-05 6.3-04 1.2-03 9.7-01 4.0-03 9.5-01

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 4.04 3.96 4.04 4.03 3.93 4.10 1.72 3.99 1.75

32 4.26 4.24 4.26 4.26 4.22 3.80 1.00 4.26 1.02

64 3.32 3.31 3.32 3.32 2.43 2.00 1.00 2.41 0.99

128 3.89 3.89 3.89 3.89 2.00 1.97 1.00 2.00 1.00
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5.1.3 Homogeneous Dirichlet Boundary Conditions

In this section, we consider Problem (4.1)-(4.4) with homogeneous Dirichlet boundary

conditions. We verify by numerical experiments that the RQSC-CN method is stable

under the condition in Conjecture 4.1.2.

Problem 5

For this problem, we will test the condition for stability in Conjecture 4.1.2. Consider

the parabolic problem

∂u(x, t)

∂t
= p

∂2u(x, t)

∂x2
+ g(x, t), 0 < x < 1, 0 < t < 1, (5.2)

where p is constant, subject to homogeneous Dirichlet boundary conditions and initial

condition (4.4).

The functions g(x, t) and γ(x) are chosen such that the unique solution is given explicitly

by

u(x, t) = e−t/10 sin πx.

First, we show that the RQSC-CN method is stable and convergent for σ = p ∆t
∆x2 ≤

5.06. We choose two values of p to show that the stability depends on p and r = ∆t
∆x2 .

Letting σ = 5.06, the infinity norms of the observed errors and the respective orders

of convergence are shown in Table 5.10 an Table 5.11. It can be observed that the

optimal orders of convergence and superconvergence are obtained under the condition in

Conjecture 4.1.2 for this problem.

Next, we show that RQSC-CN method is not stable when σ > 5.06. We choose σ =

5.1, 5.2. The reason that we choose a relatively large σ instead of choosing σ = 5.07, 5.08,

is that for a small σ which is just above the critical point, 5.06, we need more time steps

for the errors to be amplified enough to demonstrate the instability. As a result, it is hard

to show the instability of the RQSC-CN method by numerical results for marginal values

of σ. In this case, we only present the errors and the respective orders of convergence of
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the function u. The corresponding results are shown in Table 5.12 and Table 5.13.

From the results, we can see that RQSC-CN method is not stable for σ = 5.1, 5.2.

Moreover, the larger the σ is, the more unstable the method is. We also notice that for

stability, if we double p, we should reduce r in half, which is consistent to the relation

σ = pr.

Table 5.10: Errors and respective orders of convergence of the RQSC-CN method for

Problem 5 (σ = 5.06, p = 1, r = 5.06).

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 1.9-04 7.3-05 5.1-04 3.1-03 2.0-02 3.9-02 1.9+00 6.2-02 1.9+00

16 1.2-05 2.8-06 6.1-05 3.8-04 5.1-03 9.5-03 9.7-01 1.6-02 9.4-01

32 7.3-07 1.6-07 7.6-06 4.8-05 1.3-03 2.4-03 4.8-01 4.0-03 4.7-01

64 4.5-08 9.8-09 9.5-07 6.0-06 3.2-04 6.1-04 2.4-01 9.9-04 2.4-01

128 2.8-09 6.1-10 1.2-07 7.4-07 7.9-05 1.5-04 1.2-01 2.5-04 1.2-01

256 1.8-10 3.8-11 1.5-08 9.3-08 2.0-05 3.8-05 6.1-02 6.2-05 6.0-02

512 1.1-11 1.8-12 1.8-09 1.2-08 4.9-06 9.4-06 3.0-02 1.5-05 3.0-02

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 4.01 4.72 3.05 3.01 2.01 2.03 1.00 1.97 1.02

32 4.00 4.13 3.01 3.00 2.00 2.00 1.00 1.99 0.99

64 3.97 4.02 3.00 3.00 2.00 1.97 1.00 2.00 1.00

128 4.00 4.00 3.00 3.00 2.00 2.02 1.00 2.00 1.01

256 4.00 4.01 3.00 3.00 2.00 1.96 1.00 2.00 0.98

512 4.00 4.39 3.00 3.00 2.00 2.03 1.00 2.00 1.01
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Table 5.11: Errors and respective orders of convergence of the RQSC-CN method for

Problem 5 (σ = 5.06, p = 2, r = 2.53).

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 1.9-04 6.2-05 5.1-04 3.1-03 2.0-02 3.9-02 1.9+00 6.2-02 1.9+00

16 1.2-05 2.1-06 6.1-05 3.8-04 5.1-03 9.5-03 9.7-01 1.6-02 9.4-01

32 7.3-07 1.1-07 7.6-06 4.8-05 1.3-03 2.4-03 4.8-01 4.0-03 4.7-01

64 4.5-08 7.0-09 9.5-07 6.0-06 3.2-04 6.1-04 2.4-01 9.9-04 2.4-01

128 2.8-09 4.3-10 1.2-07 7.4-07 7.9-05 1.5-04 1.2-01 2.5-04 1.2-01

256 1.8-10 2.7-11 1.5-08 9.3-08 2.0-05 3.8-05 6.1-02 6.2-05 6.0-02

512 1.1-11 1.1-12 1.8-09 1.2-08 4.9-06 9.4-06 3.0-02 1.5-05 3.0-02

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 4.01 4.92 3.05 3.01 2.01 2.04 1.00 1.97 1.02

32 4.00 4.18 3.01 3.00 2.00 2.00 1.00 1.99 0.99

64 4.00 4.02 3.00 3.00 2.00 1.97 1.00 2.00 1.00

128 4.00 4.00 3.00 3.00 2.00 2.02 1.00 2.00 1.01

256 4.00 4.01 3.00 3.00 2.00 1.96 1.00 2.00 0.98

512 4.00 4.61 3.00 3.00 2.00 2.03 1.00 2.00 1.01
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Table 5.12: Errors and respective orders of convergence of the RQSC-CN method for

Problem 5 with p = 1, σ = 5.2, 5.1, r = 5.2, 5.1, respectively. A ’-’ indicates that no

results are produced.

N ‖u − uC‖xi,τi,∞

σ = 5.2, r = 5.2 σ = 5.1, r = 5.1

8 1.88-04 7.28-05 5.06-04 1.88-04 7.32-05 5.06-04

16 1.16-05 2.80-06 6.13-05 1.16-05 2.77-06 6.13-05

32 7.26-07 1.61-07 7.59-06 7.26-07 1.59-07 7.59-06

64 4.54-08 9.93-09 9.47-07 4.54-08 9.81-09 9.47-07

128 2.84-09 6.19-10 1.19-07 2.84-09 6.12-10 1.19-07

256 7.91-06 8.07-06 9.02-06 1.77-10 3.85-11 1.48-08

512 - - - 2.00-07 2.05-07 2.07-07

N uC |xi,τi,∞

σ = 5.2, r = 5.2 σ = 5.1, r = 5.1

16 4.01 4.70 3.05 4.01 4.72 3.05

32 4.00 4.12 3.01 4.00 4.13 3.01

64 4.00 4.02 3.00 4.00 4.02 3.00

128 4.00 4.00 3.00 4.00 4.00 3.00

256 -11 -14 -6.5 4.00 3.99 3.00

512 - - - -10 -12 -3.0
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Table 5.13: Errors and respective orders of convergence of the RQSC-CN method for

Problem 5 with p = 2, σ = 5.2, 5.1, r = 2.6, 2.55, respectively. A ’-’ indicates that no

results are produced.

N ‖u − uC‖xi,τi,∞

σ = 5.2, r = 2.6 σ = 5.1, r = 2.55

8 1.88-04 6.24-05 5.07-04 1.88-04 6.24-05 5.07-04

16 1.16-05 2.07-06 6.13-05 1.16-05 2.06-06 6.13-05

32 7.26-07 1.15-07 7.59-06 7.26-07 1.14-07 7.59-06

64 4.54-08 7.04-09 9.47-07 4.54-08 6.98-09 9.47-07

128 8.26-09 8.38-09 1.19-07 2.84-09 4.35-10 1.19-07

256 9.04+04 9.23+04 1.03+05 1.77-10 2.75-11 1.48-08

512 - - - 7.34+01 7.53+01 7.61+01

N uC |xi,τi,∞

σ = 5.2, r = 2.6 σ = 5.1, r = 2.55

16 4.01 4.91 3.05 4.01 4.92 3.05

32 4.00 4.18 3.01 4.00 4.18 3.01

64 4.00 4.02 3.00 4.00 4.02 3.00

128 2.46 -0.3 3.00 4.00 4.00 3.00

256 -43 -43 -40 4.00 3.99 3.00

512 - - - -39 -41 -32
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5.2 RQSC-CN1 and RQSC-CN0 Methods

In this section, we study the convergence and stability of the RQSC-CN1 and RQSC-CN0

methods for Problem (4.1)-(4.4) subject to homogeneous Dirichlet boundary conditions.

Recall that, for the RQSC-CN1 method, we use u(4)(τ2) and u(4)(τn−1) to approximate

u(4)(τ1) and u(4)(τn), respectively. More precisely, PL is changed as shown in (4.10). For

the RQSC-CN0 method, we do not add any perturbation at {τ1, τn}, that is, in this case,

PL becomes as shown in (4.12).

Problem 6

Consider the following equation

∂u

∂t
=

∂2u

∂x2
+ g(x, t), 0 < t ≤ 1

subject to (4.4) and (4.2).

The functions γ and g are chosen such that the true solution is u(x, t) = sin(2πx)e−t. We

choose a relatively large σ = 20 to give evidence that the RQSC-CN1 and RQSC-CN0

methods are unconditionally stable.

The infinity norms of the observed errors and respective orders of convergence of the

RQSC-CN1 and RQSC-CN0 methods are shown in Table 5.14 and Table 5.15, respec-

tively. It can be observed that the optimal orders of convergence and superconvergence

are obtained.
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Table 5.14: Errors and respective orders of convergence of the RQSC-CN1 method for

Problem 6.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 8.2-03 9.9-03 1.1-02 1.2-01 1.7-01 3.7-01 1.5+01 1.4-00 1.5+01

16 2.7-04 3.2-04 6.4-04 8.3-03 4.1-02 7.7-02 7.8-00 2.5-01 7.6-00

32 1.2-05 1.7-05 6.1-05 7.6-04 1.0-02 1.9-02 3.9-00 6.3-02 3.8-00

64 7.3-07 9.8-07 7.6-06 9.5-05 2.5-03 4.8-03 1.9-00 1.6-02 1.9-00

128 4.5-08 5.9-08 9.5-07 1.2-05 6.3-04 1.2-03 9.7-01 4.0-03 9.5-01

256 2.8-09 3.6-09 1.2-07 1.5-06 1.6-04 3.0-04 4.8-01 9.9-04 4.7-01

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 4.93 4.95 4.09 3.85 2.03 2.28 1.00 2.51 1.01

32 4.52 4.26 3.38 3.44 2.01 2.02 1.00 1.97 1.02

64 4.00 4.10 3.01 3.00 2.00 2.00 1.00 1.99 0.99

128 4.00 4.05 3.00 3.00 2.00 1.97 1.00 2.00 1.00

256 4.00 4.03 3.00 3.00 2.00 2.02 1.00 2.00 1.01
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Table 5.15: Errors and respective orders of convergence of the RQSC-CN0 method for

Problem 6.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 3.1-03 3.6-03 4.6-03 6.1-02 1.7-01 3.2-01 1.5+01 9.0-01 1.5+01

16 1.9-04 1.8-04 5.1-04 6.2-03 4.1-02 7.7-02 7.8-00 2.5-01 7.6-00

32 1.2-05 1.3-05 6.1-05 7.6-04 1.0-02 1.9-02 3.9-00 6.3-02 3.8-00

64 7.3-07 8.7-07 7.6-06 9.5-05 2.5-03 4.8-03 1.9-00 1.6-02 1.9-00

128 4.5-08 5.5-08 9.5-07 1.2-05 6.3-04 1.2-03 9.7-01 4.0-03 9.5-01

256 2.8-09 3.5-09 1.2-07 1.5-06 1.6-04 3.0-04 4.8-01 9.9-04 4.7-01

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 4.05 4.35 3.17 3.32 2.03 2.04 1.00 1.87 1.01

32 4.01 3.74 3.05 3.01 2.01 2.02 1.00 1.97 1.02

64 4.00 3.93 3.01 3.00 2.00 2.00 1.00 1.99 0.99

128 4.00 3.97 3.00 3.00 2.00 1.97 1.00 2.00 1.00

256 4.00 3.98 3.00 3.00 2.00 2.02 1.00 2.00 1.01
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Problem 7

We consider a problem with the same PDE as Problem 6 but with the exact solution

u(x, t) = (1 − x)(arctan(ν(x − µ)) + arctan(νµ))e−t,

where µ = 0.5, ν = 10.

The solution exhibits an interior layer, therefore, this problem is harder to solve. At the

initial step, the function is shown in the following figure.
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We choose a relatively large σ = 20 to give evidence that the RQSC-CN1 and RQSC-CN0

methods are unconditionally stable.

The infinity norms of the observed errors and the respective orders of convergence of the

RQSC-CN1 and RQSC-CN0 methods are shown in Table 5.16 and Table 5.17, respec-

tively. Since this function has a very steep interior layer, small step sizes are needed to

obtain the optimal orders of convergence.
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Table 5.16: Errors and respective orders of convergence of the RQSC-CN1 method for

Problem 7.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 1.0-01 1.1-01 1.2-01 1.0-00 7.3-01 1.5-00 2.6+01 1.0+01 4.1+01

16 2.4-03 2.6-03 3.6-03 9.5-02 1.7-01 3.0-01 2.3+01 3.1-00 2.9+01

32 2.2-04 3.7-05 3.3-04 1.4-02 4.7-02 7.3-02 1.5+01 8.0-01 1.6+01

64 1.3-05 1.9-06 3.4-05 1.6-03 1.1-02 1.9-02 7.9-00 2.6-01 7.7-00

128 7.7-07 1.1-07 4.0-06 2.0-04 2.6-03 4.4-03 4.0-00 6.7-02 3.7-00

256 4.8-08 7.1-09 4.7-07 2.5-05 6.5-04 1.1-03 2.0-00 1.7-02 1.8-00

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 5.41 5.46 5.00 3.44 2.09 2.32 0.14 1.73 0.51

32 3.45 6.13 3.48 2.74 1.86 2.02 0.67 1.96 0.88

64 4.13 4.24 3.26 3.12 2.11 1.95 0.90 1.63 1.01

128 4.03 4.08 3.09 3.02 2.06 2.08 0.97 1.94 1.05

256 3.99 4.01 3.07 2.99 2.01 2.02 1.00 2.00 1.06
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Table 5.17: Errors and respective orders of convergence of the RQSC-CN0 method for

Problem 7.

N ‖u − uC‖xi,τi,∞ ‖∂u
∂x

− ∂uC

∂x
‖λi,τi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖xi,τi,∞

8 1.0-01 1.2-01 1.2-01 1.0-00 7.4-01 1.5-00 2.6+01 1.0+01 4.1+01

16 2.4-03 2.6-03 3.6-03 9.5-02 1.7-01 3.0-01 2.3+01 3.1-00 2.9+01

32 2.2-04 3.7-05 3.3-04 1.4-02 4.7-02 7.3-02 1.5+01 8.0-01 1.6+01

64 1.3-05 2.0-06 3.4-05 1.6-03 1.1-02 1.9-02 7.9-00 2.6-01 7.7-00

128 7.7-07 1.2-07 4.0-06 2.0-04 2.6-03 4.4-03 4.0-00 6.7-02 3.7-00

256 4.8-08 7.1-09 4.7-07 2.5-05 6.5-04 1.1-03 2.0-00 1.7-02 1.8-00

N uC|xi,τi,∞
∂uC

∂x
|λi,τi,∞

∂2uC

∂x2 |xi,τi,∞

16 5.43 5.47 5.00 3.45 2.10 2.33 0.14 1.73 0.51

32 3.45 6.13 3.48 2.74 1.86 2.02 0.67 1.96 0.88

64 4.13 4.25 3.26 3.12 2.11 1.95 0.90 1.63 1.01

128 4.03 4.08 3.09 3.02 2.06 2.08 0.97 1.94 1.05

256 3.99 4.02 3.07 2.99 2.01 2.02 1.00 2.00 1.06

5.3 Comparison

As we have discussed, the optimal one-step QSC-CN and two-step QSC-CN methods

have their advantages and disadvantages. The RQSC-CN method has the advantages

of these two methods, that is, the RQSC-CN method solves only one system at each

time step like the one-step method and the system is as sparse (tridiagonal) as the linear

systems of the two-step method. The orders of convergence of the RQSC-CN method

are the same as the above two methods, but the computational work of the RQSC-CN

method is much less. More specifically, it is about half of the computational work of
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the two-step QSC-CN method, and less than half of the work of the one-step QSC-CN

method.

In this section, we want to present how the errors of the RQSC-CN, RQSC-CN1, and

RQSC-CN0 methods behave compared to those of the two-step QSC-CN method.

Problem 8

In this test, we compare the RQSC-CN method with the optimal two-step QSC-CN

method. We consider Problem 3(i) with α = 9, 7. We solve it by the optimal two-step

QSC-CN method. For convenience, we copy the results from Problem 3 and put the

results from the RQSC-CN and optimal two-step QSC-CN methods into one table. The

infinity norms of the errors and the respective orders of convergence for u, ux, and uxx

are shown in Tables 5.18 - 5.21.

From the results, the orders of convergence of these two methods are almost the same and

the RQSC-CN method is as accurate as the optimal two-step QSC-CN method. For the

few cases where the results of the RQSC-CN method are slightly different from those of

the optimal two-step QSC-CN method, we notice that the RQSC-CN method is slightly

more accurate when the grid size increases. Furthermore, these two methods have similar

sensitivity to discontinuity as far as orders of convergence are concerned.
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Table 5.18: Errors and respective orders of convergence of the RQSC-CN and optimal

two-step QSC-CN methods for Problem 8 for u with α = 9.

N ‖u − uC‖xi,τi,∞

RQSC-CN Two-step

8 1.25-04 3.21-04 1.76-03 1.25-04 3.04-04 1.75-03

16 8.03-06 1.93-05 2.14-04 8.03-06 1.80-05 2.13-04

32 5.09-07 1.20-06 2.64-05 5.09-07 1.10-06 2.64-05

64 3.20-08 7.48-08 3.27-06 3.20-08 6.80-08 3.26-06

128 2.00-09 4.67-09 4.00-07 2.01-09 4.23-09 4.01-07

N uC |xi,τi,∞

RQSC-CN Two-step

16 3.96 4.05 3.04 3.96 4.08 3.04

32 3.98 4.01 3.02 3.98 4.03 3.02

64 3.99 4.00 3.02 3.99 4.01 3.02

128 4.00 4.00 3.03 4.00 4.01 3.03
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Table 5.19: Errors and respective orders of convergence of the RQSC-CN and optimal

two-step QSC-CN methods for Problem 8 for ux and uxx with α = 9.

N RQSC-CN Two-step

‖∂u
∂x

− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi
‖∂u

∂x
− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi

8 5.28-03 1.33-01 1.04-01 5.00-03 1.33-01 1.03-01

16 6.35-04 3.16-02 2.59-02 6.42-04 3.16-02 2.56-02

32 7.87-05 7.86-03 6.49-03 8.18-05 7.85-03 6.37-03

64 9.82-06 1.97-03 1.63-03 1.03-05 1.97-03 1.60-03

128 1.23-06 4.77-04 4.08-04 1.30-06 4.77-04 4.03-04

N RQSC-CN Two-step

‖∂u
∂x

− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi
‖∂u

∂x
− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi

16 3.05 2.08 2.01 2.96 2.07 2.02

32 3.01 2.01 2.00 2.97 2.01 2.00

64 3.00 2.00 2.00 2.99 2.00 2.00

128 3.00 2.04 2.00 2.99 2.04 1.99
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Table 5.20: Errors and respective orders of convergence of the RQSC-CN and optimal

two-step QSC-CN methods for Problem 8 for u with α = 7.

N ‖u − uC‖xi,τi,∞

RQSC-CN Two-step

8 1.05-04 1.66-04 5.70-04 7.13-05 1.41-04 5.65-04

16 8.13-06 1.24-05 7.05-05 5.98-06 1.14-05 7.01-05

32 6.34-07 9.40-07 8.75-06 5.48-07 9.90-07 8.72-06

64 5.18-08 8.16-08 1.09-06 5.24-08 8.71-08 1.08-06

128 4.45-09 7.16-09 1.37-07 5.02-09 7.69-09 1.36-07

N uC |xi,τi,∞

RQSC-CN Two-step

16 3.69 3.75 3.02 3.57 3.63 3.01

32 3.68 3.72 3.01 3.45 3.53 3.01

64 3.61 3.53 3.01 3.39 3.51 3.01

128 3.54 3.51 3.01 3.38 3.50 3.00
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Table 5.21: Errors and respective orders of convergence of the RQSC-CN and optimal

two-step QSC-CN methods for Problem 8 for ux and uxx with α = 7.

N RQSC-CN Two-step

‖∂u
∂x

− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi
‖∂u

∂x
− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi

8 2.20-03 4.44-02 3.49-02 2.13-03 4.42-02 3.57-02

16 3.48-04 1.08-02 1.22-02 3.56-04 1.08-02 1.25-02

32 5.85-05 2.71-03 4.31-03 6.18-05 2.70-03 4.41-03

64 1.01-05 6.88-04 1.53-03 1.09-05 6.88-04 1.56-03

128 1.78-06 1.70-04 5.40-04 1.92-06 1.70-04 5.51-04

N RQSC-CN Two-step

‖∂u
∂x

− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi
‖∂u

∂x
− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi

16 2.65 2.04 1.52 2.58 2.04 1.52

32 2.57 2.00 1.50 2.53 2.00 1.50

64 2.53 1.98 1.50 2.51 1.98 1.50

128 2.51 2.01 1.50 2.50 2.01 1.50
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Problem 9

From the results of Problem 6, we notice that the errors and orders of convergence of the

RQSC-CN1 method are quite similar to those of the RQSC-CN0 method. Therefore, in

this test, we only compare the RQSC-CN1 method with the optimal two-step QSC-CN

method.

We solve Problem 6 again with the same σ = 20 by the optimal two-step QSC-CN

method. The infinity norms of the errors and the respective orders of convergence of

u, ux, and uxx for the two-step method together with those for the RQSC-CN1 method

are shown in Tables 5.22 - 5.23.

From the results, the orders of convergence of these two methods are almost the same and

the RQSC-CN1 method is as accurate as the optimal two-step QSC-CN method except

for the values of u at the midpoints for this problem. Furthermore, the RQSC-CN1

method is as stable as the optimal two-step QSC-CN method for this problem.
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Table 5.22: Errors and respective orders of convergence of the RQSC-CN1 and optimal

two-step QSC-CN methods for Problem 9 for u.

N ‖u − uC‖xi,τi,∞

RQSC-CN1 Two-step

8 8.2-03 9.9-03 1.1-02 3.1-03 3.9-03 5.3-03

16 2.7-04 3.2-04 6.4-04 1.9-04 3.7-05 5.1-04

32 1.2-05 1.7-05 6.1-05 1.2-05 2.8-07 6.1-05

64 7.3-07 9.8-07 7.6-06 7.3-07 2.3-09 7.6-06

128 4.5-08 5.9-08 9.5-07 4.5-08 6.0-10 9.5-07

256 2.8-09 3.6-09 1.2-07 2.8-09 4.7-11 1.2-07

N uC |xi,τi,∞

RQSC-CN1 Two-step

16 4.93 4.95 4.09 4.05 6.73 3.38

32 4.52 4.26 3.38 4.01 7.03 3.05

64 4.00 4.10 3.01 4.00 6.91 3.01

128 4.00 4.05 3.00 4.00 1.96 3.00

256 4.00 4.03 3.00 4.00 3.68 3.00
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Table 5.23: Errors and respective orders of convergence of the RQSC-CN and optimal

two-step QSC-CN methods for Problem 9 for ux and uxx.

N RQSC-CN1 Two-step

‖∂u
∂x

− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi
‖∂u

∂x
− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi

8 1.2-01 3.7-01 1.4-00 6.7-02 3.2-01 1.1-00

16 8.3-03 7.7-02 2.5-01 6.2-03 7.7-02 2.5-01

32 7.6-04 1.9-02 6.3-02 7.6-04 1.9-02 6.3-02

64 9.5-05 4.8-03 1.6-02 9.5-05 4.8-03 1.6-02

128 1.2-05 1.2-03 4.0-03 1.2-05 1.2-03 4.0-03

256 1.5-06 3.0-04 9.9-04 1.5-06 3.0-04 9.9-04

N RQSC-CN1 Two-step

‖∂u
∂x

− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi
‖∂u

∂x
− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi

16 3.85 2.28 2.51 3.45 2.04 2.21

32 3.44 2.02 1.97 3.01 2.02 1.97

64 3.00 2.00 1.99 3.00 2.00 1.99

128 3.00 1.97 2.00 3.00 1.97 2.00

256 3.00 2.02 2.00 3.00 2.02 2.00
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Problem 10

We consider Problem (1.1)-(1.3), and compare the stability properties of the RQSC-CN0

and the optimal two-step QSC-CN methods when the coefficient of ux is considerably

larger than that of uxx. We set f(x, t) = 0 and consider several constant values of p(x, t)

and q(x, t).

In (1.1), letting

p(x, t) = 0.1, q(x, t) = 100, f(x, t) = 0, T = 1,

the problem becomes

ut = 0.1uxx + 100ux + g(x, t), 0 < x < 1, 0 < t < 1.

The functions γ, g, β0, and β1 are chosen such that u(x, t) = ex+t is the true solution. For

the time step, we first choose σ = 0.1. Recalling that σ = p∆t
h2 , we have ∆t = h2.

The infinity norms of the observed errors for N = 8 to 64 points in the partition ∆

are shown in Table 5.24. We notice that the optimal two-step QSC-CN method gives

reasonable results for all N and the respective ∆t, while the RQSC-CN0 method gives

huge errors for small N (N < 64), and, therefore, large ∆t. These numerical experiments,

indicate that the optimal two-step QSC-CN method is stable and convergent even for

large ∆t, while the RQSC-CN0 method is stable and convergent when ∆t is small enough.

Furthermore, when ∆t is small enough so that the RQSC-CN0 method is stable and

convergent, the RQSC-CN0 method is more accurate than the optimal two-step QSC-

CN method.



Chapter 5. Numerical Results 86

Table 5.24: Errors and respective orders of convergence of the RQSC-CN0 and optimal

two-step QSC-CN methods for Problem 10.

N ‖u − uC‖xi,τi,∞

RQSC-CN0 Two-step

8 9.4+21 4.7+22 4.7+22 7.2-02 6.6-02 7.7-02

16 1.3+44 2.5+44 2.6+44 1.1-04 8.6-04 8.6-04

32 4.7+76 6.8+76 7.1+76 2.3-06 1.6-05 1.6-05

64 4.6-09 1.0-08 2.2-07 8.3-08 2.9-07 3.1-07

N RQSC-CN0 Two-step

‖∂u
∂x

− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi
‖∂u

∂x
− ∂uC

∂x
‖λi,∞ ‖∂2u

∂x2 − ∂2uC

∂x2 ‖τi

8 8.6+23 1.4+24 2.2+25 1.1-00 1.7-00 2.7+01

16 8.9+45 1.3+46 3.7+47 3.2-02 5.2-02 1.6-00

32 4.8+78 6.9+78 3.7+80 1.1-03 2.0-03 1.2-01

64 1.4-06 1.4-04 2.4-04 4.2-05 1.4-04 8.4-03
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We investigated this issue further, and attempted to find numerically the problem pa-

rameters and the relations they need to satisfy, in order for the RQSC-CN0 method to

be stable and convergent. The parameters we considered are ∆t, N , p, q, as well as the

length L of the spatial domain, since, though all methods considered are developed for

the [0, 1] spatial interval, they can be extended to any spatial domain in a straightforward

way. Through several experiments, we found that ∆t must satisfy the relation

∆t ≤ c
p

q2
, (5.3)

where c is a constant, with c ≈ 25. The relation (5.3) seems to be a sufficient condition

for the RQSC-CN0 method to be stable and convergent.

To support our argument, we solve Problem 10 for various values of the parameters ∆t,

N , p, q and L, and present selected results. To find the relation ∆t should satisfy, we

pick certain values for N , p, q and L, and compute the solution of Problem 10 by the

RQSC-CN0 method with several values of ∆t, and try to determine the maximum ∆t

for which the method is stable and convergent. Clearly, we could not test all possible

values of ∆t, but, for each set of values for N , p, q and L, we started the tests with some

value of ∆t that gave reasonable results, then increased ∆t, up to the point the errors

started becoming huge and, therefore, unacceptable. For example, when ∆t = 10−d gave

reasonable results, we increased ∆t by increments of 5 × 10−d−1, until the results were

unacceptable. In Table 5.25, we present the maximum ∆t, calculated as described above,

and the associated errors.

The first four rows of Table 5.25 have N , q, L fixed and p varying. The next three rows

have N , p, L fixed and q varying. The next four rows have p, q, L fixed and N varying.

The last three rows have N , p, q fixed and L varying. These experiments indicate that

the maximum ∆t for which the RQSC-CN0 method is stable and convergent depends

approximately linearly to p, inversely to q2, and does not depend on N and L. Clearly,

relation (5.3) seems to hold with remarkable accuracy. We included the value of 25 p
q2 in

the table, to emphasize how well the numerically calculated maximum ∆t agrees with
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25 p
q2 . There are a few cases (rows 1, 3 and 7 in Table 5.25) in which we found a ∆t

slightly larger than 25 p
q2 , that results in a stable and convergent method. In all other

cases, we have full agreement between the maximum ∆t and 25 p
q2 .

Table 5.25: The maximum ∆t which makes the RQSC-CN0 method stable and convergent

for Problem 10, for the indicated values of N , p, q and L. The respective errors are also

shown.

L N p q 25 p
q2 ∆t ‖u − uC‖xi,τi,∞

1 16 0.1 100 0.00025 0.0003 3.6-07 1.8-06 1.5-05

1 16 1 100 0.0025 0.0025 3.6-07 6.1-07 1.5-05

1 16 2 100 0.005 0.0055 9.4-07 1.3-06 1.4-05

1 16 4 100 0.01 0.01 9.4-06 8.4-06 1.5-05

1 16 1 50 0.01 0.01 3.1-06 3.3-06 1.4-05

1 16 1 100 0.0025 0.0025 3.6-07 6.1-07 1.5-05

1 16 1 200 0.000625 0.000675 3.6-07 7.9-07 1.5-05

1 4 1 100 0.0025 0.0025 2.6-02 3.0-02 3.0-02

1 8 1 100 0.0025 0.0025 5.5-06 1.5-05 1.2-04

1 16 1 100 0.0025 0.0025 3.6-07 6.1-07 1.5-05

1 32 1 100 0.0025 0.0025 1.7-07 1.9-07 1.8-06

1 16 1 50 0.01 0.01 3.1-06 3.3-06 1.4-05

2 16 1 50 0.01 0.01 3.3-05 4.4-05 3.2-04

4 16 1 50 0.01 0.01 2.2-03 5.6-03 2.0-02
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Conclusions

An efficient algorithm based on the quadratic-spline collocation and Crank-Nicolson

methods for linear parabolic PDEs is introduced and studied in this thesis. The RQSC-

CN method is derived from the optimal one-step and two-step QSC-CN methods. Both

the optimal one-step and two-step methods have advantages and disadvantages. More

precisely, the two-step method solves a simple system (tridiagonal) at each time step,

but solves it twice; the one-step method solves a system once at each time step, but the

matrix has more non-zero entries than that in the two-step method. This motivates us

to develop the RQSC-CN method which solves the same simple system as in the two-step

method only once for each time step.

Stability and convergence are studied for Problem (4.1)-(4.4). To our delight, numeri-

cal results indicate that the RQSC-CN method works well not only for Problem (4.1)-

(4.4), but also for some instances of the more general Problem (1.1)-(1.3) (the RQSC-CN

method is unstable for some particular instances even when σ is small). We can also

obtain the same orders of convergence and superconvergence for derivatives at certain

points as those obtained by the optimal two-step method. As far as sensitivity to dis-

continuity of the solution is concerned, the RQSC-CN method behaves in a similar way

as the optimal two-step QSC-CN method. Furthermore, the RQSC-CN method is as
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accurate as the optimal two-step QSC-CN method.

The RQSC-CN method requires less computational work than either the optimal one-

step or two-step QSC-CN methods while it preserves the accuracy and optimal orders of

convergence. But it is not unconditionally stable even for a simple problem like Problem

(4.1)-(4.4). Some modifications are applied to the RQSC-CN method to make it stable.

As a result, we develop the RQSC-CN1 and RQSC-CN0 methods which, as shown by

numerical results, we conjecture to be unconditionally stable while maintaining the or-

ders of convergence for Problem (4.1)-(4.4).

For a problem as general as Problem (1.1)-(1.3), stability is much more complicated to

analyze. It seems that in this case the stability depends not only on the matrices but

also on the coefficients of u, ux, uxx. For further research, the properties of the stability

and convergence of the RQSC-CN, RQSC-CN1, and RQSC-CN0 methods for the general

Problem (1.1)-(1.3) may be studied.

Although we have not derived any method based on higher degree splines, the techniques

(semi-implicit method) introduced in Section 3.3 may be applied to the cubic spline col-

location method since, when using the cubic spline collocation method, we also have a

perturbation term PL which may be discretized by a first order explicit method with

respect to t.

The parabolic PDE considered in this thesis is one-dimensional in space. The methods

developed though can be extended to parabolic PDEs in two or more space dimensions

in a natural way, using tensor products. We believe that the benefits in efficiency from

the RQSC-CN method will be more substantial when the method is extended to multiple

space dimensions.
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