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Abstract

Adjusting derivative prices to take into account default risk has attracted the attention of several

researchers and practitioners, especially after the 2007-2008 financial crisis. We derive a novel par-

tial differential equation (PDE) model for derivative pricing including the adjustment for default risk,

assuming that the default risk of one of the counterparties (the buyer) follows a Cox-Ingersoll-Ross

(CIR) process, while the other party has constant default risk. The time-dependent PDE derived is of

Black-Scholes type and involves two “space” variables, namely the asset price and the buyer default

intensity, as well as a nonlinear source term. We formulate boundary conditions appropriate for the de-

fault intensity variable. The numerical solution of the PDE is based on standard finite differences, and

a penalty-like iteration for handling the nonlinearity. We also develop and analyze a novel asymptotic

approximation formula for the adjusted price of derivatives, resulting in a very efficient, accurate, and

convenient for practitioners formula. We present numerical results that indicate stable second order

convergence for the 2D PDE solution in terms of the discretization size. We compare the effectiveness

of the 2D PDE and asymptotic approximations. We study the effect of various numerical and market

parameters to the values of the adjusted prices and to the accuracy of the computed solutions.

AMS subject classification: 65M06, 65M12, 91G20, 91G40, 91G60.

Key words: Partial Differential Equations, Black-Scholes, Crank-Nicolson finite differences, mean reversion

CIR process, stochastic default intensity, asymptotic approximation.

1 Introduction

Counterparty default risk [14, 16], is the risk that, one of the counterparties in an agreement fails to

fulfill their contractual obligation. Taking into account default risk in derivative pricing, results in ad-

justed derivative values. Usually, the total valuation adjustment (XVA) includes several different types of

adjustments. For example, credit valuation adjustment (CVA) and debt valuation adjustment (DVA) refer

to the adjustments due to the buyers and sellers’ (counterparty or self-party’s) default risks, respectively.

Funding valuation adjustment (FVA) makes sure that a seller recovers their average funding costs when

trading.

One approach to XVA valuation is via partial differential equation (PDE) formulation. The PDE

approach usually gives more accurate valuation, faster convergence for problems in low-dimensions, and

more accurate hedging parameters computation. Piterbarg [20] derived the PDE formulation for the price

of derivatives, including funding costs and collateral agreements. Burgard and Kjaer [3, 4, 5, 6], extended

the PDE to include bilateral default risks. They built a replication portfolio, which included bonds of

counterparties, to derive the PDE model for derivatives’ values taking into account bilateral risks and

funding costs. The PDE arising often involves a nonlinear source term. There are several methods in the

literature to numerically solve the XVA PDE problem. In [2], the authors discretize the space variable

using a finite element method, apply the characteristic method for timestepping, and employ fixed-point
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iteration for the nonlinearity. In [7], we connected the nonlinear problem with a control problem, and

developed penalty-like methods to efficiently treat the nonlinearity, for both European and American

derivatives.

However, the default intensities in these works are assumed to be constant. In reality, default intensities

exhibit stochasticity [8]. In addition, people also notice that, there is dependency between exposure (or

underlying assets) and counterparty credit risk, which is usually called wrong/right way risk. Therefore,

a multi-stochastic factors’ model becomes necessary to reflect these issues. In [9], Feng modeled CVA

for European options under a Bates model with the stochastic intensity of the jump to default following

a Cox-Ingersoll-Ross (CIR) process. A numerical PDE-based Monte Carlo framework was built, consist-

ing of path simulation, independent exposure estimation and CVA computation. In [19, 1], the authors

considered the stochastic short term credit default swap (CDS) spread and resulted in a multi-dimensional

in space PDE. In [1], existence and uniqueness of the solution to the nonlinear PDE was proved as well.

In our work, we derive the PDE assuming the default intensity of the counterparty follows a stochastic

process, namely a CIR process. This also results in a multi-dimensional in space nonlinear PDE, which

provides an effective and more direct framework to handle the correlation between underlying assets and

default intensities.

In this paper, we investigate the formulation of pricing XVA when stochastic default intensities are

modeled by a mean reversion stochastic process, and correlated with underlying risky assets, and develop

computational methods for solving the resulting model. We assume one of the counterparties (usually the

buyer) has stochastic default intensity, while another party (usually the seller) exhibits constant risk. The

contributions of the paper are:

• We derive a time-dependent nonlinear source term PDE in two space dimensions, namely the asset

price S and the default intensity λC of the counterparty, and formulate boundary conditions for

the problem. We emphasize that the boundary conditions, especially those for the λC variable, are

critical for the success of the method. We discretize the PDE and boundary conditions, describe

how to resolve the nonlinearity, and provide a numerical solution to the PDE problem.

• We develop an alternative solution technique to the two-dimensional (2D) PDE, namely an asymp-

totic approximation, assuming the mean reversion rate of the default intensity to the mean reversion

level is large. The asymptotic approximation is based on the one-dimensional XVA PDE solution

and its derivative, and is, therefore, very efficient and simple to implement. We analyze the accuracy

of the asymptotic approximation as the mean reversion rate increases.

• We present numerical results indicating the second-order convergence of the computed 2D PDE

solution, and study the effect of various numerical parameters to its accuracy. We study how the

speed of mean reversion affects the quality of the asymptotic approximation. We compare the

accuracy of the asymptotic and 2D PDE solutions. Furthermore, we study the effect of various

model parameters to the adjusted derivative value and make sure it is consistent for both the 2D

PDE and the asymptotic solution.

The outline of the paper is as follows. In Section 2, we derive the 2D PDE the adjusted derivative price

V̂ satisfies and formulate boundary conditions for the S and λC boundaries. Since the 2D PDE involves

a nonlinear source term, we also present the iteration method to handle the nonlinearity. In Section 3,

we develop the asymptotic approximation to V̂ , first for the case that the correlation between S and λC

is 0, then for the case of nonzero correlation. In Section 4, we present numerical experiments to study

the behavior of the computed 2D PDE and asymptotic solutions, in terms of various numerical and model
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parameters, and compare the two solution techniques. Section 5 summarizes the conclusions of this work.

In the Appendix, we present an analysis of the accuracy of the asymptotic approximation.

2 Formulation

2.1 Assumptions

We consider the pricing of a European-style derivative on a single risky asset, with price S(t), with

two counterparties B and C. The contingent claim value considering default risk can be replicated in a

economy consisting of the following four traded assets: the underlying risky asset price S(t), the risky

bonds of two parties PB(t) and PC(t), and the risk-free bond P . The dynamics of these four assets are

modeled as

dS(t) = µ(t)S(t)dt+ σSS(t)dW S(t) (1)

dPB = PB(rB(t)dt− dJB) (2)

dPC = PC(rC(t)dt− dJC) (3)

dP (t) = r(t)P (t)dt (4)

where W S(t) is a Brownian motion, with µ and σS being drift and volatility of S(t) respectively, JB and

JC are two independent jump processes, that jump from 0 to 1 when default of B or C occurs, respectively,

and r(t), rB(t), rC(t) are the yields of bonds P , PB, and PC , respectively. Note that the bond rates rB
and rC are related to the respective default intensities λB and λC by rB = λB − r and rC = λC − r,

respectively.

2.2 Cox-Ingersoll-Ross (CIR) type risk model

We assume the default intensity, λC(t) = rC − r, of counterparty C is stochastic, while self-party

B has low and constant default intensity, i.e. λB(t) = λB = rB − r. We assume λC(t) follows a CIR

process, a type of mean reversion process. The hazard rate process λC(t) can be formulated as

dλC(t) = κ(t)[θ(t)− λC(t)]dt + σλC

√

λC(t)dW
λC (t) (5)

where κ(t) is the mean reversion rate, θ(t) is mean reversion level, σλC is the volatility of mean reversion

process, and W λC(t) is a standard Brownian motion. We also assume W S(t) and W λC (t) are correlated

with correlation ρ, which is in general nonzero, in order to reflect the dependency between exposure and

default risk. Furthermore, assume the Feller condition 2κθ > (σλC )2 is satisfied to ensure that λC(t) is

strictly positive.

In modelling default risk λ, the CIR process has been widely used, for example, in collateralized debt

obligation (CDO) [8]. Suppose that each underlying obligor defaults at some expected arrival time. At

each time t before default time τ , the default arrives at some “intensity” λ(t) with probability Pt(τ <
t + ∆t) ≈ λ(t)∆t. A process λ(t) is a stochastic default process, if for a stopping time (default time) τ ,

whenever t < τ , the survival probability is

Pt(τ > t+ s) = Et[exp(

∫ t+s

t

−λ(u)du)]

where Et denotes conditional expectation given all information at time t, and s is length of the period over

which survival is considered.
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2.3 Formulation of PDE

To formulate the PDE for the XVA pricing problem considering stochastic default intensities, we use

dynamic hedging techniques similar to [4]. However, in [4], constant default intensities on both parties

are assumed. In this subsection, we show how to embed stochastic default intensity into the XVA PDE

and result in a two-dimensional in space time-dependent PDE.

In stochastic default intensity XVA pricing problem, there are only three traded risky assets S, JB and

JC to hedge out four random sources W S , W λC , JB and JC , since λC is not a traded risky asset. This

is usually called incomplete market. We cannot build a perfectly replicating portfolio with only these

three risky assets. One technique is to assume the existence of another benchmark option to complete

the market. A similar assumption is used in the PDE derivation of the stochastic volatility option pricing

model [12] or the stochastic correlation option pricing model [18].

Suppose the derivative price V̂ (t, S, λC , JB, JC) is totally hedged by a self-financing portfolio Π, such

as V̂ +Π = 0 or −V̂ = Π. At time t, the portfolio Π consists of the following assets:

• γ(t) units of another option Ṽ (t, S, λC , JB, JC) on the same underlying, and with the same maturity

and payoff,

• δ(t) units of the underlying asset S(t),
• α(t) units of bond PB(t),
• β(t) units of bond PC(t),
• D(t) units of cash deposit.

By the convention in [4], derivative value V̂ is positive means that this is a positive asset to party

B, while V̂ < 0 means this is a positive asset to party C. From the 2002 ISDA Master Agreement,

the surviving party can receive the recovery potion of contract’s mark-to-market value if this derivative

contract is positive to this party, while the surviving party should pay full mark-to-market value to the

defaulting party, if this derivative contract is negative to the surviving party. Therefore, the “boundary”

conditions for V̂ (t, S, λC , JB, JC) according to the default of parties B and C, respectively are given by

V̂ (t, S, λC , 1, 0) = M+ +RBM
−, (6)

V̂ (t, S, λC , 0, 1) = RCM
+ +M−, (7)

where RB and RC denote the recovery rates on the derivative’s position of parties B and C, respectively,

and M is the close-out mark-to-market value of the derivative. The positive and negative values of any

asset U are denoted as U+ ≡ max{U, 0} and U− ≡ min{U, 0}. In this paper, V̂ (t, S, λC , 0, 0) is usually

written as V̂ (t, S, λC).
The value of Π is written as

−V̂ = Π = δ(t)S(t) + α(t)PB + β(t)PC + γ(t)Ṽ +D(t). (8)

By the assumptions of self-financing, the infinitesimal change is

−dV̂ = dΠ = δ(t)dS(t) + α(t)dPB + β(t)dPC + γ(t)dṼ + dD̄(t) (9)

where the change in the cash account 1 is

dD̄(t) = δ(t)(−rR)S(t)dt+{r(−V̂ −α(t)PB−γ(t)Ṽ )++rF (−V̂ −α(t)PB−γ(t)Ṽ )−}dt−rβ(t)PCdt.
(10)

1More details about the mechanism of cash account can found in [4]
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Then the first term 2 in (10) is corresponding to the cash change from underlying asset share position,

combining dividend income and financing cost. The second term (in curly brackets) is corresponding to

the cash change in the “funding” account. In this account, any surplus cash held by the seller after the own

bonds and option Ṽ have been purchased must earn risk-free rate r in order not to introduce any further

credit risk. If no surplus cash, the seller needs to pay the rate rF . The third term is corresponding to

the cash changes due to the seller shorting the counterparty bond through a repurchase agreement, which

incurs financing costs of rate r.

Applying Ito’s lemma for jump diffusions to V̂ and Ṽ results in

dV̂ = MV̂ dt+ (σS)S
∂V̂

∂S
dW S + (σλC )

√

λC
∂V̂

∂λC

dW λC +∆V̂BdJB +∆V̂CdJC , (11)

dṼ = MṼ dt+ (σS)S
∂Ṽ

∂S
dW S + (σλC )

√

λC
∂Ṽ

∂λC
dW λC +∆ṼBdJB +∆ṼCdJC, (12)

where

∆V̂B = V̂ (t, S, λC , 1, 0)− V̂ (t, S, λC), (13)

∆ṼB = Ṽ (t, S, λC , 1, 0)− Ṽ (t, S, λC), (14)

∆V̂C = V̂ (t, S, λC , 0, 1)− V̂ (t, S, λC), (15)

∆ṼC = Ṽ (t, S, λC , 0, 1)− Ṽ (t, S, λC), (16)

and where the differential operator M is defined by

MV =
∂V

∂t
+
1

2
(σS)2S2∂

2V

∂S2
+
1

2
(σλC )2λC

∂2V

∂λ2
C

+ρσSσλCS
√

λC
∂2V

∂S∂λC
+µS

∂V

∂S
+κ(θ−λC)

∂V

∂λC
. (17)

Combining equations (9)-(17), the following hedging equation is obtained,

−
{[

∂V̂

∂t
+

1

2
(σS)2S2 ∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC
+ µS

∂V̂

∂S
+ κ(θ − λC)

∂V̂

∂λC

]

dt

+ (σS)S
∂V̂

∂S
dW S + (σλC )

√

λC
∂V̂

∂λC
dW λC +∆V̂BdJB +∆V̂CdJC

}

= δ(t)
(

µSdt+ σSSdW S
)

+ α(t)PB(rBdt− dJB) + β(t)PC(rCdt− dJC)

+ γ(t)

{[

∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC
+ µS

∂Ṽ

∂S
+ κ(θ − λC)

∂Ṽ

∂λC

]

dt

+ (σS)S
∂Ṽ

∂S
dW S + (σλC )

√

λC
∂Ṽ

∂λC
dW λC +∆ṼBdJB +∆ṼCdJC

}

− δ(t)rRS(t)dt+ {r(−V̂ − α(t)PB − γ(t)Ṽ )+ + rF (−V̂ − α(t)PB − γ(t)Ṽ )−}dt− rβPCdt. (18)

2rR is stock financing rate minus dividend income rate.
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In order to remove all the risk factors in (18), the following equations must be satisfied:

−(σλC )
√

λC
∂V̂

∂λC
dW λC = γ(t)(σλ

C)
√

λC
∂Ṽ

∂λC
dW λC , (19)

−(σS)S
∂V̂

∂S
dW S = γ(t)

(

(σS)S
∂Ṽ

∂S
dW S

)

+ δ(t)(σS)SdW S, (20)

−∆V̂BdJB = −α(t)PBdJB + γ(t)∆ṼBdJB (21)

−∆V̂CdJC = −β(t)PCdJC + γ(t)∆ṼCdJC . (22)

Hence, the portion of each asset in the portfolio is chosen as

γ(t) = − ∂V̂

∂λC

/ ∂Ṽ

∂λC

, (23)

δ(t) = −γ(t)
∂Ṽ

∂S
− ∂V̂

∂S
= (

∂V̂

∂λC

/ ∂Ṽ

∂λC
)
∂Ṽ

∂S
− ∂V̂

∂S
, (24)

α(t) =
1

PB

[

∆V̂B + γ(t)∆ṼB

]

=
1

PB

[

∆V̂B − (
∂V̂

∂λC

/ ∂Ṽ

∂λC
)∆ṼB

]

, (25)

β(t) =
1

PC

[

∆V̂C + γ(t)∆ṼC

]

=
1

PC

[

∆V̂C − (
∂V̂

∂λC

/ ∂Ṽ

∂λC
)∆ṼC

]

, (26)

where

∆V̂B = M̂+ +RBM̂
− − V̂ , (27)

∆V̂C = RCM̂
+ + M̂− − V̂ , (28)

∆ṼB = M̃+ +RBM̃
− − Ṽ , (29)

∆ṼC = RCM̃
+ + M̃− − Ṽ , (30)

M̂ is close-out value for derivative V̂ and M̃ is close-out value for derivative Ṽ .

Therefore, (18) becomes

−
[

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

]

dt

= α(t)PBrBdt+β(t)PCrCdt+γ(t)

[

∂Ṽ

∂t
+
1

2
(σS)2S2∂

2Ṽ

∂S2
+
1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC

]

dt

− δ(t)rRS(t)dt+ {r(−V̂ − α(t)PB − γ(t)Ṽ )+ + rF (−V̂ − α(t)PB − γ(t)Ṽ )−}dt− rβPCdt. (31)

Rearranging some terms in (31) results in

α(t)PBrBdt+ β(t)PCrCdt− rβPCdt

+ {r(−V̂ − α(t)PB − γ(t)Ṽ )+ + rF (−V̂ − α(t)PB − γ(t)Ṽ )−}dt
=α(t)PBrBdt+ β(t)PCrCdt− rβPCdt

+ r(−V̂ − α(t)PB − γ(t)Ṽ )dt+ sF (−V̂ − α(t)PB − γ(t)Ṽ )−dt

=α(t)PB(rB − r)dt+ β(t)PC(rC − r)dt+ r(−V̂ − γ(t)Ṽ )dt+ sF (−V̂ − α(t)PB − γ(t)Ṽ )−dt.
(32)
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Taking into account (32), equation (31) becomes

−
[

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

]

dt

= γ(t)

[

∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC

]

dt

− δ(t)rRSdt+ α(t)PB(rB − r)dt+ β(t)PC(rC − r)dt

+ r(−V̂ − γ(t)Ṽ )dt+ sF (−V̂ − α(t)PB − γ(t)Ṽ )−dt. (33)

If we substitute (24)-(26) into (33), we obtain

−
[

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC
− rV̂

]

dt

= γ(t)

[

∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC
− rṼ

]

dt

+ [γ(t)
∂Ṽ

∂S
+

∂V̂

∂S
]rRSdt+ (∆V̂B + γ(t)∆ṼB)(rB − r)dt+ (∆V̂C + γ(t)∆ṼC)(rC − r)dt

+ sF (−V̂ − (∆V̂B + γ(t)∆ṼB)− γ(t)Ṽ )−dt. (34)

Then, if we rearrange (34) and switch the sign on both hand sides, we have

[

∂V̂

∂t
+

1

2
(σS)2S2 ∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC
− rV̂ + rRS

∂V̂

∂S
+ λB∆V̂B + λC∆V̂C

]

=(−γ(t))

[

∂Ṽ

∂t
+

1

2
(σS)2S2 ∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC
− rṼ + rRS

∂Ṽ

∂S

+ λB∆ṼB + λC∆V̂C

]

+ sF ((∆V̂B + Ṽ ) + γ(t)(∆ṼB + Ṽ ))+. (35)

If we substitute (27)-(30) into (35), we obtain

[

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC
− rV̂ + rRS

∂V̂

∂S

− λB(M̂
+ + RBM̂

− − V̂ )− λC(RCM̂
+ + M̂− − V̂ )

]

=(−γ(t))

[

∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC)2λC

∂2Ṽ

∂λ2
C

+ ρσSσλ
CS
√

λC
∂2Ṽ

∂S∂λC

− rṼ + rRS
∂Ṽ

∂S

− λB(M̃
+ + RBM̃

− − Ṽ )− λC(RCM̃
+ + M̃− − Ṽ )

]

+ sF ((M̂
+ +RBM̂

−) + γ(t)(M̃+ +RBM̃
−))+. (36)

If we assume the mark-to-market values of the two options move in the same way, i.e. they are positive and

negative at the same time, then we have that ((M̂++RBM̂
−)+γ(t)(M̃++RBM̃

−))+ = M̂++γ(t)M̃+,
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and, using (23), we get

(1

/

∂V̂

∂λC
)

[

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC
− rV̂ + rRS

∂V̂

∂S

+ λB(M̂
+ +RBM̂

− − V̂ ) + λC(RCM̂
+ + M̂− − V̂ )− sF M̂

+

]

=(1

/

∂Ṽ

∂λC

)

[

∂Ṽ

∂t
+

1

2
(σS)2S2∂

2Ṽ

∂S2
+

1

2
(σλC )2λC

∂2Ṽ

∂λ2
C

+ ρσSσλCS
√

λC
∂2Ṽ

∂S∂λC

− rṼ + rRS
∂Ṽ

∂S

+ λB(M̃
+ +RBM̃

− − Ṽ ) + λC(RCM̃
+ + M̃− − Ṽ )− sF M̃

+

]

. (37)

Equation (37) holds for any derivatives V̂ and Ṽ . Assuming that both sides of (37) are equal to the

market price of stochastic default intensity, which is usually set as the drift term of intensity dynamics,

−κ(t)[θ(t)− λC(t)], then the PDE becomes

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

+rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− (r + λB + λC)V̂

= −λB(M̂
+ +RBM̂

−)− λC(RCM̂
+ + M̂−) + sF M̂

+

= (sF − λB − RCλC)M̂
+ + (−RBλB − λC)M̂

−. (38)

Assuming the mark-to-market value is equal to the risky price, i.e M̂ = V̂ , the derivative price considering

bilateral risk satisfies the nonlinear PDE

∂V̂

∂t
+

1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

+rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC
− rV̂

= (sF + (1−RC)λC)V̂
+ + (1− RB)λBV̂

−. (39)

If backward time τ = T − t is applied, (39) becomes

∂V̂

∂τ
= LV̂ + f(λC , V̂ ), (40)

where the differential operator L and the nonlinear term f(·) are defined by

LV̂ ≡1

2
(σS)2S2∂

2V̂

∂S2
+

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC
(41)

+ rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC
− rV̂ ,

f(λC , V̂ ) ≡− (sF + (1− RC)λC)V̂
+ − (1− RB)λBV̂

−. (42)

The initial (or terminal) condition to (40) is the pay-off function h(S) of the derivative. The same

initial (or terminal) condition holds for the original Black-Scholes equation for the price of the derivative

without considering credit risk.
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2.4 PDE with constant default intensity

For later reference and for comparison purposes, we present the PDE satisfied by the adjusted for

default risk derivative price V̂ c when the default intensity λC is a given constant:

∂V̂ c

∂τ
=

1

2
(σS)2S2∂

2V̂ c

∂S2
+ rRS

∂V̂ c

∂S
− rV̂ c − (sF + (1−RC)λC)(V̂

c)+ − (1− RB)λB(V̂
c)−. (43)

PDE (43) is derived in [4] and numerically solved in [7].

3 Numerical solution

PDE (40) for the price V̂ of the derivative considering stochastic default intensity for party C is defined

in the domain

(τ, S, λC) ∈ (0, T ]× [0,∞)× [0,∞),

which is unbounded in the two spatial variables.

While the implementation of finite differences is straightforward for (40), special care is still needed

to introduce appropriate boundary conditions and to deal with the nonlinearity in the source term.

3.1 Discretizations

In this subsection, we present the discretization of (40). The semi-infinite space domain of spot price

S is truncated into [0, Smax], for sufficiently large Smax, while the semi-infinite space domain of party C

spot default intensity λC is truncated into [0, λmax
C ], for sufficiently large λmax

C . Then, [0, Smax] is divided

into N subintervals, with the gridpoints S0 = 0 < S1 < . . . < SN = Smax positioned uniformly or

nonuniformly, while [0, λmax
C ] is divided into M subintervals, with the gridpoints (λC)0 = 0 < (λC)1 <

. . . < (λC)M = λmax
C positioned uniformly or nonuniformly. The details of the nonuniform positioning of

the S- or the λC-gridpoints and possible advantages thereof are discussed in Section 5. Standard second-

order centered finite differences are used for the space discretization of (40) except at the boundary points.

The details of the boundary conditions and their discretization, as well as the handling of the nonlinear

term are discussed in the following two subsections.

For the time-stepping, we employ the ϑ-method 3, which, for ϑ = 1
2

and ϑ = 1 becomes the Crank-

Nicolson (CN) and Backward Euler (BE) methods, respectively. We also use Rannacher smoothing, which

consists of first applying few BE timesteps, then applying CN timestepping. Let τj , j = 0, . . . , Nt, be the

timesteps at which the solution is computed, with τ0 = 0 < τ1 < · · · < τNt
= T , and let ∆τ j = τj − τj−1

be the jth time stepsize. If uniform timesteps are used, then ∆τ = T/Nt, and Rannacher smoothing first

applies four BE timesteps with stepsize ∆τ/2, then switches to CN with stepsize ∆τ for the remaining

timesteps, resulting in a total of Nt + 2 timesteps.

3.2 Boundary conditions

We consider the bounded spatial domain [0, Smax] × [0, λmax
C ], where Smax and λmax

C are sufficiently

large, and setup boundary conditions as follows:

3Note that the ϑ notation for the time-stepping method is different from the θ(t) notation in the CIR model
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• On the S = 0 boundary, i.e. on {(S, λC) ∈ {S = 0} × [0, λmax
C ]}, substitute S = 0 into (40). This

results in a one-dimensional time-dependent PDE,

∂V̂

∂τ
=

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ κ[θ − λC ]
∂V̂

∂λC
− rV̂ + f(λC , V̂ ). (44)

PDE (44) is numerically solved and its computed solution used as Dirichlet boundary condition for

solving (40). Standard centered differences are used for the discretization of (44). However, in

order to numerically solve (44), appropriate boundary conditions are needed. On the corner point

(0, 0), we substitute λC = 0 into (44), and get

∂V̂

∂τ
= κθ

∂V̂

∂λC
− rV̂ + f(λC , V̂ ). (45)

On the corner point (0, λmax
C ), we substitute ∂2V̂

∂λ2
C

= 0 into (44), and get

∂V̂

∂τ
= κ[θ − λC ]

∂V̂

∂λC

− rV̂ + f(λC , V̂ ). (46)

Relations (45) and (46) provide the near and far field boundary conditions, respectively, for (44).

The first derivative terms of (45) and (46) are discretized by one-sided finite differences (forward or

backward, respectively).

PDE (44) together with boundary conditions (45) and (46) provide approximations to V̂ (τ, 0, λC)
to be used as Dirichlet boundary condition for solving (40).

• On the S = Smax boundary, i.e. on {(S, λC) ∈ {S = Smax} × [0, λmax
C ]}, we impose the linear

boundary condition

∂2V̂

∂S2
= 0. (47)

Instead of discretizing this condition directly, we substitute ∂2V̂
∂S2 = 0 into the PDE (40), and get

∂V̂

∂τ
=

1

2
(σλC )2λC

∂2V̂

∂λ2
C

+ ρσSσλCS
√

λC
∂2V̂

∂S∂λC

+ rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂ + f(λC , V̂ ).

(48)

Relation (48) forms the boundary condition at S = Smax. The first derivative term ∂V̂
∂S

in (48) is

discretized by backward differences. For all non-boundary λC-points, ∂2V̂
∂λ2

C

and ∂V̂
∂λC

are discretized

by standard centered differences, and ∂2V̂
∂S∂λC

by the Cartesian product of backward differences in S
and centered differences in λC .

On the corner point (Smax, 0), relation (48) becomes

∂V̂

∂τ
= rRS

∂V̂

∂S
+ κθ

∂V̂

∂λC
− rV̂ + f(λC , V̂ ), (49)

with ∂V̂
∂S

discretized by backward and ∂V̂
∂λC

by forward differences.
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On the corner point (Smax, λmax
C ), besides condition (47), we also impose the linear boundary con-

dition on λC

∂2V̂

∂λ2
C

= 0. (50)

With (47) and (50), PDE (40) becomes

∂V̂

∂τ
= ρσSσλCS

√

λC
∂2V̂

∂S∂λC
+ rRS

∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC
− rV̂ + f(λC , V̂ ). (51)

For the discretization of ∂V̂
∂S

and ∂V̂
∂λC

in (51), one-sided differences are used, while for ∂2V̂
∂S∂λC

a

Cartesian product of one-sided differences in S and λC .

• On the λC = 0 boundary, i.e. {(S, λC) ∈ (0, Smax) × {λC = 0}}, if the Feller condition 2κθ >
(σλC )2 is satisfied, this is outflow boundary by Fichera theory, as in the case of mean reversion

stochastic volatility [17, 22, 15], or correlation [18]. While the boundary condition is not necessary

from the mathematical point of view, we impose an equation at the boundary in order to obtain a

square (uniquely solvable) linear system.

More specifically, we substitute λC = 0 into (40), and get

∂V̂

∂τ
=

1

2
(σS)2S2∂

2V̂

∂S2
+ rRS

∂V̂

∂S
+ κθ

∂V̂

∂λC
− rV̂ + f(λC, V̂ ). (52)

This PDE is actually same as the original PDE (40) on λC = 0 boundary. Thus, we do not introduce

a new condition, but just apply the PDE itself. In (52), the derivatives ∂2V̂
∂S2 and ∂V̂

∂S
are discretized

by standard centered differences, while ∂V̂
∂λC

is discretized by one-sided finite differences.

• On the λC = λmax
C boundary, i.e. {(S, λC) ∈ (0, Smax)× {λC = λmax

C }}, we impose the condition
∂2V̂
∂λ2

C

= 0, substitute this into (40), and get

∂V̂

∂τ
=

1

2
(σS)2S2∂

2V̂

∂S2
+ ρσSσλCS

√

λC
∂2V̂

∂S∂λC

+ rRS
∂V̂

∂S
+ κ[θ − λC ]

∂V̂

∂λC

− rV̂ + f(λC , V̂ ).

(53)

In (53), the derivatives ∂2V̂
∂S2 and ∂V̂

∂S
are discretized by standard centered differences, while ∂V̂

∂λC

is

discretized by one-sided finite differences, and ∂2V̂
∂S∂λC

by the Cartesian product of centered differ-

ences in S and one-sided differences in λC . This boundary condition is inspired partly by the fact

that, in the constant default intensity calls or puts cases, λC acts as discounting rate (exponential

decay rate) – see formula (5.1) in [7]; and also by the fact that numerical experiments for the con-

stant default intensity forward case have shown that λC acts similarly, in that, as it increases, the

price flattens (at some possibly positive or negative value). Therefore, we expect that homogeneous

Neumann conditions would be appropriate for the far side λC boundary. Such conditions have been

used by many in the literature [23, 17, 22, 15], when considering mean reversion stochastic asset

volatility dynamics. Condition (53) is more general, in that it covers homogeneous Neumann as

well as strictly linear boundary conditions.

It is worth mentioning that the authors of [22], when considering the mean reversion stochastic volatil-

ity problem, include an elaborate discussion on how to obtain equations on points where the stochastic
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volatility tends to 0 or to infinity, for the European and the American put cases. The conditions con-

sidered are either homogeneous Dirichlet or Neumann (which linear boundary conditions cover) or non-

homogeneous Dirichlet (which are usually problem/payoff-dependent). More specifically, the authors of

[22], derive a non-homogeneous Dirichlet boundary condition for the far-side of the stochastic volatil-

ity variable in the put option case. To do this, they use homogeneous Neumann and linear boundary

condition to degenerate the Heston operator to vanilla Black-Scholes operator, which, for the put, has

a closed-form solution. We believe that this technique is useful when Dirichlet conditions are needed,

but is problem/payoff-dependent. For the XVA problem with all payoffs except the call and put, a one-

dimensional XVA (nonlinear) PDE needs to be numerically solved to obtain a Dirichlet condition on

λC = λmax
C . In order to keep the boundary condition more general, we use the linear boundary condition

(53).

Taking into account that the Dirichlet conditions are computed at S = 0, in advance of the main

simulation of (40), the total number of unknowns in each timestep of the main simulation is (M + 1)N .

We number the spatial gridpoints first bottom-up, then left-to-right. Thus, the index i that runs over all

spatial gridpoints, is related to the indices i1 and i2 that run over all S- and λC-gridpoints, respectively,

by i = (i1 − 1)(M + 1) + i2, i1 = 1, . . . , N , i2 = 0, . . . ,M . With this numbering the arising matrix is

block-tridiagonal with tridiagonal blocks.

3.3 Nonlinear iteration method

In this subsection, we present an iterative method for handling the nonlinearity in (40). We refer to it

as discrete penalty-like iteration, or, simply, penalty iteration, motivated by the similarly named method

in [10] designed to resolve the nonlinear PDE arising from the linear complementarity problem (LCP) in

American option pricing. The first introduction of this method was in [7], for the one-dimensional XVA

problem. This paper extends the ideas in [7] to the case of the multi-dimensional PDE arising from the

XVA problem with stochastic default intensity λC .

Let v̂j, j = 0, . . . , Nt, denote the vector of approximate solution values of V̂ at the two-dimensional

spatial gridpoints at time τj , while v̂0 is the initial condition vector. Since we use an iteration method

to handle the nonlinearity, let v̂j,k, k = 0, . . . , maxit, denote the computed solution vector at iteration k
of timestep j, with maxit the maximum number of iterations allowed per timestep. Let f(v̂) denote the

vector arising from evaluating f at the components of v̂. This means that (f(v̂))i = f((λC)i2 , v̂i), where

i2 = i − ⌊ i
M+1

⌋(M + 1). Let also A be the matrix arising from the space discretization of LV̂ , and I be

the identity matrix of compatible order. For simplicity, we assume the spatial gridpoints remain the same

at all timesteps.

For some generic vector v, we define the diagonal penalty matrix P = P (v) by

[P (v)]i,i ≡
{

−λB(1−RB) if vi < 0

−(λC)i2(1−RC)− sF if vi ≥ 0.
(54)

Thus, in contrast with the method in [7], if vi ≥ 0, the entries of the penalty matrix are variable. The

vector arising from the discretized form of f(λC , V̂ ) is written as

f(v̂) = P (v̂)v̂, (55)

and note that there is nonlinearity between P (v̂) and v̂.

With the help of the matrix P , the linear system that needs to be solved in each timestep is

[I− ϑ∆τ j(A+ P (v̂j))]v̂j = (I+ (1− ϑ)∆τ jA)v̂j−1 + (1− ϑ)∆τ jP (v̂j−1)v̂j−1. (56)
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Algorithm 1 Discrete penalty iteration for (40) at step j, with ϑ-timestepping

Require: Solve [I− ϑ∆τ j(A + P (v̂j))]v̂j = gj

where gj = (I+ (1− ϑ)∆τ jA)v̂j−1 + (1− ϑ)∆τ jP (v̂j−1)v̂j−1.

1: Initialize v̂j,0 = v̂j−1, and P j,0 = P (v̂j,0)
2: for k = 1, . . . , maxit do

3: Solve [I− ϑ∆τ j(A+ P j,k−1)]v̂j,k = gj

4: Compute P j,k = P (v̂j,k)
5: if stopping criterion satisfied then

6: Break

7: end if

8: end for

9: Set v̂j = v̂j,k

The proposed discrete penalty-like iteration for (40) is described in Algorithm 1.

The stopping criterion in Algorithm 1 is

(P j,k = P j,k−1) or (max
i

|v̂j,ki − v̂j,k−1
i |

max(1, |v̂j,ki |)
≤ tol). (57)

Note that the matrix solved at each iteration may change, but the change does not affect the sparsity

pattern or the computational complexity of the solution. Also note that, if λB ≥ 0, (λC)i ≥ 0, and sF ≥ 0,

we have Pi,i(v) ≤ 0, which enhances the diagonal dominance of A.

For the nonlinearity in the one-dimensional PDE (44), a similar penalty iteration is applied, except

that, since the problem is along the λC dimension only, the diagonal matrix P is defined by

[P (v)]i2,i2 ≡
{

−λB(1−RB) if vi2 < 0

−(λC)i2(1−RC)− sF if vi2 ≥ 0,
(58)

where v is now a vector of approximate values of V̂ at the gridpoints (0, (λC)i2), i2 = 0, . . . ,M .

4 Asymptotic solution to XVA problem

Solving the time-dependent two-dimensional PDE derived in Section 2 involves a heavy computa-

tional cost. An asymptotic approximation formulae allows us to obtain reasonably accurate results in a

more efficient way, namely by a closed-form formula based on one-dimensional PDE results and some

additional terms. This asymptotic approximation, built on singular perturbation theory, has been used in

literature, especially when some stochastic variables evolve according to some mean-reverting stochastic

processes, [13, 21, 18, 11]. In this section, we derive such an asymptotic approximation for the price of

derivatives considering mean-reverting stochastic default intensity.

4.1 More about mean-reverting CIR

For convenience, we repeat the stochastic differential equation that the CIR process for λC follows:

dλC(t) = κ[θ − λC(t)]dt+ σλC

√

λC(t)dW
λC(t). (59)
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Although one cannot derive a closed-form solution for (59), the conditional distribution is a non-central

chi-square distribution with

E[λC(t))] = e−κtλC(0) + θ(1− e−κt), (60)

Var[λC(t)] =
(σλC )2

κ
λC(0)(e

−κt − e−2κt) +
θ(σλC )2

2κ
(1− e−κt)2. (61)

As t goes to infinity, we have that the long-run mean level and variance are θ and
θ(σλC )2

2κ
, respectively.

The invariant distribution λ of a CIR process can be shown to follow a Gamma distribution, with shape

parameter α = 2κθ
(σλC )2

and scale parameter β = (σλC )2

2κ
. While not shown here, the invariant distribution is

given by [21]

Φ(λ) =
e−λ/βλα−1

Γ(α)βα
. (62)

Following [13, 18], we assume κ = 1/ǫ, where ǫ > 0 is small. We also keep the variance ν2 of the λC

process invariant distribution constant, thus we scale σλC as σλC = ν√
ǫ
.

The partial differential equation (40), which V̂ (τ, S, λC) satisfies becomes

(
1

ǫ
L0 +

1√
ǫ
L1 + L2)V̂ = 0, (63)

where

L0 ≡
1

2
ν2λC

∂2

∂λ2
C

+ (θ − λC)
∂

∂λC

, (64)

L1 ≡ ρσSνS
√

λC
∂2

∂S∂λC

, (65)

L2 ≡ (− ∂

∂τ
) +

1

2
(σS)2S2 ∂2

∂S2
+ rRS

∂

∂S
− rI + f(λC , V̂ ), (66)

with I being the identity operator.

4.2 Asymptotic approximation for zero correlation

When ρ = 0, the partial differential equation (63), which V̂ (τ, S, λC) satisfies, becomes

(
1

ǫ
L0 + L2)V̂ = 0. (67)

Let V̂ ǫ be an expansion of V̂ in terms of powers of ǫ:

V̂ ǫ = V̂0 + ǫV̂1 + ǫ2V̂2 + . . . (68)

We will approximate V̂ by the first two terms i.e. by V̂ ǫ,1 = V̂0 + ǫV̂1. For V̂0, we impose the same initial

condition as for the solution of (40), that is, V̂0(0, S, λC) = h(S). Let 〈·〉 denote expectation with respect

to the invariant distribution of λC .
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Substituting (68) into (67) and equating the lower order terms to zero, we have:

O(
1

ǫ
) : L0V̂0 = 0 (69)

O(1) : L0V̂1 + L2V̂0 = 0 (70)

O(ǫ) : L0V̂2 + L2V̂1 = 0. (71)

Equation (69) implies that V̂0 is independent of λC , i.e. V̂0 = V̂0(τ, S). Equation (69) is a Poisson equation

with respect to the operator L0 in the variable λC , which implies the centering condition

〈L2V̂0〉 = 0. (72)

As V̂0 is independent of λC , the centering condition implies 〈L2〉V̂0 = 0, where 〈L2〉 is the operator

with default intensity being the long-run mean level θ of λC under its invariant distribution expectation.

Therefore, V̂0 is the solution of the Black-Scholes equation (43) taking default risk into account, with

constant default intensity λC = θ, and with terminal condition V̂0(0, S) = h(S), as derived in [4]. To

compute V̂0, for certain derivatives (e.g. European Call and Put), analytic formulae are available, while, for

other contingent claims, an one-dimensional (nonlinear) parabolic PDE needs to be numerically solved,

see, for example, [7].

Now let’s try to find V̂1. Combining (70) and the fact that 〈L2V̂0〉 = 〈L2〉V̂0 = 0, we have

L0V̂1 = −L2V̂0 = −(L2V̂0 − 〈L2〉V̂0) = −(L2 − 〈L2〉)V̂0, (73)

where

(L2 − 〈L2〉)V̂0 = f(λC , V̂0)− f(θ, V̂0) = (1− RC)(θ − λC)V̂
+
0 . (74)

Suppose the function φ(λC) is the solution to L0φ = (θ − λC). It is easy to verify that φ(λC) = (λC −
θ) + C̃(τ, S), where C̃ independent of λC . Hence, we can write V̂1 as

V̂1 = −(1 −RC)[(λC − θ) + C̃(τ, S)]V̂ +
0 . (75)

Without loss of generality of C̃(τ, S), we can also rewrite V̂1 as

V̂1 = −(1− RC)(λC − θ)V̂ +
0 + C(τ, S) = (1− RC)(θ − λC)V̂

+
0 + C(τ, S), (76)

where C(τ, S) = −(1−RC)C̃(τ, S)V̂ +
0 . To find the form of C(τ, S), we derive an equation that C(τ, S)

satisfies and obtain a solution for it. The Poisson equation (71) implies the centering condition

〈L2V̂1〉 = 0. (77)

Now consider

〈L2V̂1〉 = 〈L2(−(1−RC)(λC − θ)V̂ +
0 + C(τ, S))〉

=⇒ 〈L2C(τ, S)〉 = 〈L2(1− RC)(λC − θ)V̂ +
0 〉

=⇒ 〈L2〉C(τ, S) = 〈(L2 − 〈L2〉)(1−RC)(λC − θ)V̂ +
0 〉+ 〈L2〉(1− RC)(λC − θ)V̂ +

0 .
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Note that 〈L2〉V̂ +
0 = 0, thus

〈L2〉C(τ, S) = 〈(L2 − 〈L2〉)(1−RC)(λC − θ)V̂ +
0 〉

= 〈(1− RC)
2(λC − θ)(θ − λC)V̂

+
0 〉

= 〈(λC − θ)(θ − λC)〉(1−RC)
2V̂ +

0

= −(1− RC)
2 θν

2

2
V̂ +
0 . (78)

Note that C(τ, S) = τ(1 −RC)
2 θν2

2
V̂ +
0 is a solution to (78). Thus, (76) gives

V̂1 = (1− RC)(θ − λC)V̂
+
0 + τ(1− RC)

2 θν
2

2
V̂ +
0 . (79)

Therefore, we obtain the approximation

V̂ ǫ,1 = V̂0 + ǫ(1− RC)(θ − λC)V̂
+
0 + ǫτ(1 −RC)

2 θν
2

2
V̂ +
0 , (80)

where V̂0 is computed as explained above. Note that this approximation is only for the case of zero

correlation.

4.3 Asymptotic approximation for general correlation

Recall that the partial differential equation which V̂ (τ, S, λC) satisfies is (63). Let V̂ ǫ be a power

series expansion of V̂ in
√
ǫ 4:

V̂ ǫ = V̂0 +
√
ǫV̂1/2 + ǫV̂1 + ǫ

√
ǫV̂3/2 + . . . (81)

We approximate V̂ by the first three terms i.e. by V̂ ǫ,1 = V̂0+
√
ǫV̂1/2+ ǫV̂1. For V̂0, we impose the same

initial condition as for the case of zero correlation and as for (40), that is, V̂0(0, S, λC) = h(S).
Substituting (81) into (63) and equating the lower order terms to zero, we have:

O(
1

ǫ
) : L0V̂0 = 0 (82)

O(
1√
ǫ
) : L0V̂1/2 + L1V̂0 = 0 (83)

O(1) : L0V̂1 + L1V̂1/2 + L2V̂0 = 0 (84)

O(
√
ǫ) : L0V̂3/2 + L1V̂1 + L2V̂1/2 = 0. (85)

Equation (82) implies that V̂0 is independent of λC , i.e. V̂0 = V̂0(τ, S). Hence, L1V̂0 = 0. In (83), this

results in L0V̂1/2 = 0, which implies V̂1/2 is independent of λC as well, i.e. V̂1/2 = V̂1/2(τ, S). Coming to

the O(1) term, Equation (84), given L1V̂1/2 = 0, reduces to L0V̂1 +L2V̂0 = 0. This is a Poisson equation

with respect to the operator L0 in the variable λC , which implies the centering condition

〈L2V̂0〉 = 0. (86)

4In the notations V̂1/2 and V̂3/2, the subscripts are consistent with the powers of the associated ǫ coefficients. In this way,

V̂1 of the general correlation case, is derived to be the same as that for the zero correlation case.
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Similarly as in the case of zero correlation, as V̂0 is independent of λC , the centering condition (86)

becomes 〈L2〉V̂0 = 0. Therefore, V̂0 is the solution to the Black-Scholes equation (43) computed as

explained in the zero correlation case.

Now let’s try to find an expression for V̂1, then for V̂1/2. As mentioned, the O(1) term (84) can be

reduced to L0V̂1 + L2V̂0 = 0, which is exactly same as Equation (70). Hence, the formula for V̂1 is given

in the previous subsection, and is

V̂1 = (1− RC)(θ − λC)V̂
+
0 + τ(1 −RC)

2 θν
2

2
V̂ +
0 . (87)

For equation (85), again, the solvability of this Poisson equation requires

〈L1V̂1 + L2V̂1/2〉 = 0, (88)

which gives

〈L2〉V̂1/2 = −〈L1V̂1〉 = −〈ρσSνS
√

λC
∂2

∂S∂λC

[(1− RC)(θ − λC)V̂
+
0 + τ(1− RC)

2 θν
2

2
V̂ +
0 ]〉

= 〈ρσSνS
√

λC(1− RC)
∂V̂ +

0

∂S
〉 = ρσSνS(1− RC)〈

√

λC〉
∂V̂ +

0

∂S
. (89)

Because 〈L2〉V̂ +
0 = 0, we can verify that the solution to (89) is

V̂1/2(τ, S) = −τρσSνS(1−RC)〈
√

λC〉
∂V̂ +

0

∂S
. (90)

Therefore, the approximation V̂ ǫ,1 to V̂ is obtained as

V̂ ǫ,1 = V̂0 −
√
ǫτρσSνS(1−RC)〈

√

λC〉
∂V̂ +

0

∂S
+ ǫ(1−RC)(θ − λC)V̂

+
0 + ǫτ(1 − RC)

2 θν
2

2
V̂ +
0 . (91)

In Appendix A, we analyze the order of convergence of the approximation V̂ ǫ,1 to V̂ in terms of ǫ, under

the assumption that there exists an upper bound to the variable λC .

4.3.1 More details

(1) Function V̂ +
0 might be a non-smooth function, whose derivative with respect to S on few points

may be undefined. From a financial interpretation, we define

∂V̂ +
0

∂S
=

{

∂V̂0

∂S
V̂0 > 0

0 V̂0 ≤ 0
. (92)

(2) In approximation (91), by the definition of 〈·〉, the quantity 〈
√
λC〉 can be computed by

〈
√

λC〉 :=
∫ ∞

0

√

λCΦ(λC)dλC , (93)

where Φ(λC) is the probability density function of stationary distribution given in (62). Numerical quadra-

ture, e.g. MATLAB’s integral, can be used if an analytical formula cannot be easily obtained.
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5 Numerical experiments

We present results of numerical experiments from applying the proposed methods on several financial

derivatives. The market and numerical parameters used in the experiments are listed in Table 1. Whenever

different parameters are used for the purpose of testing, we state their values explicitly.

Parameter Value

Domain of S [0, 8K]
Domain of λC [0, 6.05]
Strike Price, K 15

Time to maturity, T 5

Volatility of asset, σS 0.4

Volatility of intensity of party C, σλC 0.2

Correlation between S and λC , ρ 0.3

Mean reversion level of intensity of party C, θ 0.05

Mean reversion rate of intensity of party C, κ 1

Repo rate minus dividend, q − γ 0.015

Interest rate, r 0.03

Default intensity of party B, λB 0.02

Recovery rate of party B, RB 0.4

Recovery rate of party C, RC 0.3

Funding spread, sF (1− RB)λB

Table 1: Model parameters for bilateral XVA with stochastic default intensity in European derivatives.

5.1 Numerical PDE with penalty iterations

The spatial domain of S and λC are discretized into N and M subintervals respectively, and the

(nonuniform) gridpoints on S are concentrated around the strike K, while the (nonuniform) gridpoints on

λC are concentrated towards 0. We could let the λC points concentrate around the long-run mean θ, but

since θ is very close to 0, we chose to concentrate around 0. The same technique is used in [17] for option

pricing in the Heston model with correlation.

The nonuniform gridpoints on S are generated in the following way. Let xi = ih, i = 0, 1, . . . , N ,

with h = Smax/N , be uniform points in [0, Smax]. The smooth mappingw(x) generates the S nonuniform

grid as

Si ≡ w(xi) = (1 +
sinh(β − (xi/xN − α))

sinh(βα)
)K (94)

where K is the strike. This mapping produces denser grid points around K. Larger parameter α increases

the density of the points. The purpose of parameter β is to ensure the last grid point is Smax. In practice,

α is set to 0.39.

The nonuniform gridpoints on λC are generated in following way. Let yi = ih, i = 0, 1, . . . ,M , with

h = λmax
C /M , be uniform points in [0, λmax

C ]. The smooth mapping u(y) generates the λC nonuniform

grid as

(λC)i ≡ u(yi) = sinh(yi). (95)

The spatial derivatives are discretized by standard second-order centered differences, except the first

derivatives in the boundary conditions, which is discretized by first-order forward or backward differences.
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The discretization of boundary conditions is discussed in details in Section 3.2. The number of timesteps

is denoted by Nt, and ∆τ = T/Nt. In all cases, the timestepping is Crank-Nicolson-Rannacher, as

explained in Section 3.1.

Algorithm 1 is used at each timestep. In all tables below, ”iter tot“ and ”iter avg“ are total and average

(per timestep) number of iterations. The tolerance tol is set to 10−7.

5.1.1 Call and put options

We present results from pricing the XVA with stochastic counterparty default intensity of European

options with parameter settings in Table 1. For European call and put options, the XVA with stochastic

counterparty default intensity does not have analytical solution. The error at one resolution is estimated

by the difference from the previous (coarser) resolution. In Table 2, we show the results at-the-money

with different resolutions. In Tables 3 and 4, we also list numerical results for several spot prices and

different levels of default risk. We notice that the average number of penalty-like iterations is just a bit

more than 1, irrespectively of the grid size, which is very close to optimal. The numerical results do not

show any problem in terms of stability, and a second order convergence is achieved. This holds even if,

with the choice of parameters in Table 1, the Feller condition is not satisfied. From Tables 3 and 4, we also

notice that, for both call and put options, large current counterparty default intensities result in valuation

reduction.

N M Nt iter tot iter avg
V̂ value for call option

value diff in V̂ order

16 8 10 11 1.10 3.8936802 – –

32 16 18 19 1.06 3.9462626 5.26e-02 –

64 32 34 36 1.03 3.9585267 1.23e-02 2.10

128 64 66 67 1.02 3.9616227 3.10e-03 1.99

256 128 130 131 1.01 3.9623942 7.72e-04 2.00

512 256 258 259 1.00 3.9625865 1.92e-04 2.00

Richardson extrapolated value: 3.9626505

N M Nt iter tot iter avg
V̂ value for put option

value diff in V̂ order

16 8 10 14 1.40 3.2636520 – –

32 16 18 22 1.22 3.3121738 4.85e-02 –

64 32 34 42 1.24 3.3235623 1.14e-02 2.09

128 64 66 81 1.23 3.3264560 2.89e-03 1.98

256 128 130 169 1.30 3.3271792 7.23e-04 2.00

512 256 258 331 1.18 3.3273597 1.81e-04 2.00

Richardson extrapolated value: 3.3274199

Table 2: Results from solving (40) for European derivatives including bilateral XVA with stochastic

default intensities on counterparty using Algorithm 1 with the parameters in Table 1 when S is at-the-

money (S = K = 15) and λC = θ. Nonuniform grids are used.
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N,M,Nt (7.5, 0.025) (7.5, 0.05) (7.5, 0.1) (30, 0.01) (30, 0.05) (30, 0.01)

128, 66, 68 0.9039126 0.8863963 0.8530686 13.1325300 12.8901198 12.424685

256,128,130 0.9044305 0.8869035 0.8535563 13.1337767 12.8913283 12.4258311

512,256,258 0.9045596 0.8870299 0.8536779 13.1340870 12.8916295 12.4261169

order 2.01 2.00 2.00 2.01 2.00 2.00

Table 3: Results from solving (40) for European call option including bilateral XVA with stochastic

default intensity on counterparty using Algorithm 1 with the parameters in Table 1 at various points.

Nonuniform grids are used.

N,M,Nt (7.5, 0.025) (7.5, 0.05) (7.5, 0.1) (30, 0.01) (30, 0.05) (30, 0.01)

128, 66, 68 5.7760725 5.6809067 5.4942784 1.4177604 1.3956006 1.3517181

256,128,130 5.7764957 5.6813247 5.4946841 1.4190217 1.3968406 1.3529159

512,256,258 5.7766015 5.6814292 5.4947855 1.4193367 1.3971503 1.3532150

order 2.00 2.00 2.00 2.00 2.00 2.00

Table 4: Results from solving (40) for European put option including bilateral XVA with stochastic default

intensity on counterparty using Algorithm 1 with the parameters in Table 1 at various points. Nonuniform

grids are used.

REMARK 1 While we present results for call and put options only, the PDE model as well as the numer-

ical methods are directly applicable to other financial derivatives, for example, the forward contract, in

which case the price can become negative, and both parties need to worry about defaults. Some results

on bilateral XVA pricing of long forwards with constant default intensity are found in [7].

5.1.2 Effect of truncated boundaries

To show the sensitivity of the accuracy of the solution to the choice of Smax and λmax
C , we present

results from XVA valuation considering stochastic counterparty default risk with the parameters of 1,

except that in Table 5, we set Smax = 4K, 8K, 6K and 10K, and in Table 6, we set λmax
C = 4.05, 6.05 and

8.05. In Table 5, note that, for the same values of N,M,Nt, smaller Smax results in smaller difference,

since the spatial stepsize is smaller with smaller Smax. However, Smax = 8K makes the convergence order

even smoother, and equal to 2. This allows us to claim that the extrapolated value obtained by Smax = 8K
is more accurate. It is then clear that Smax = 8K gives the most accurate and reliable values. In Table 6,

we see that λmax
C = 6.05 and λmax

C = 8.05 give the same accuracy results (including extrapolated values),

and smoother order of convergence than λmax
C = 4.05. Thus, the choices Smax = 8K and λmax

C = 6.05
chosen in Table 1 are appropriate and close to optimal for the quality of the numerical PDE approximation

of the particular problem.
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N M Nt iter tot iter avg
V̂ value when Smax = 4K

value diff in V̂ order

16 8 10 11 1.10 3.9293825 – –

32 16 18 19 1.06 3.9531642 2.38e-02 –

64 32 34 35 1.03 3.9583044 5.14e-03 2.21

128 64 66 67 1.02 3.9598170 1.51e-03 1.76

256 128 130 131 1.01 3.9601880 3.71e-04 2.03

512 256 258 259 1.00 3.9602776 8.97e-05 2.05

Richardson extrapolated value: 3.9603075

N M Nt iter tot iter avg
V̂ value when Smax = 6K

value diff in V̂ order

16 8 10 11 1.10 3.9122552 – –

32 16 18 19 1.06 3.9504179 3.82e-02 –

64 32 35 35 1.03 3.9594910 9.07e-03 2.07

128 64 66 67 1.02 3.9618227 2.33e-03 1.96

256 128 130 131 1.01 3.9624022 5.79e-04 2.01

512 256 258 259 1.00 3.9625458 1.44e-04 2.01

Richardson extrapolated value: 3.9625937

N M Nt iter tot iter avg
V̂ value when Smax = 8K

value diff in V̂ order

16 8 10 11 1.10 3.8936802 – –

32 16 18 19 1.06 3.9462626 5.26e-02 –

64 32 34 35 1.03 3.9585267 1.23e-02 2.10

128 64 66 67 1.02 3.9616227 3.10e-03 1.99

256 128 130 131 1.01 3.9623942 7.72e-04 2.00

512 256 258 259 1.00 3.9625865 1.92e-04 2.00

Richardson extrapolated value: 3.9626505

N M Nt iter tot iter avg
V̂ value when Smax = 10K

value diff in V̂ order

16 8 10 11 1.10 3.8763460 – –

32 16 18 19 1.06 3.9426609 6.63e-02 –

64 32 34 35 1.03 3.9576239 1.50e-02 2.15

128 64 66 67 1.02 3.9613985 3.77e-03 1.99

256 128 130 131 1.01 3.9623399 9.41e-04 2.00

512 256 258 259 1.00 3.9625747 2.35e-04 2.00

Richardson extrapolated value: 3.9626530

Table 5: Results from solving (40) for European call option including bilateral XVA with stochastic

default intensity on counterparty using Algorithm 1 with the parameters in Table 1, except Smax varying

as indicated, when S is at-the-money (S = K = 15) and λC = θ. Nonuniform grids are used.
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N M Nt iter tot iter avg
V̂ value when λmax

C = 4.05

value diff in V̂ order

16 8 10 11 1.10 3.9177337 – –

32 16 18 19 1.06 3.9496221 3.19e-02 –

64 32 34 35 1.03 3.9585993 8.98e-03 1.83

128 64 66 67 1.02 3.9615316 2.93e-03 1.61

256 128 130 131 1.01 3.9623705 8.39e-04 1.81

512 256 258 259 1.00 3.9625815 2.11e-04 1.99

Richardson extrapolated value: 3.9626518

N M Nt iter tot iter avg
V̂ value when λmax

C = 6.05

value diff in V̂ order

16 8 10 11 1.10 3.8936802 – –

32 16 18 19 1.06 3.9462626 5.26e-02 –

64 32 34 35 1.03 3.9585267 1.23e-02 2.10

128 64 66 67 1.02 3.9616227 3.10e-03 1.99

256 128 130 131 1.01 3.9623942 7.72e-04 2.00

512 256 258 259 1.00 3.9625865 1.92e-04 2.00

Richardson extrapolated value: 3.9626505

N M Nt iter tot iter avg
V̂ value when λmax

C = 8.05

value diff in V̂ order

16 8 10 11 1.10 3.8964305 – –

32 16 18 19 1.06 3.9463962 5.00e-02 –

64 32 34 35 1.03 3.9585381 1.21e-02 2.04

128 64 66 67 1.02 3.9616237 3.09e-03 1.98

256 128 130 131 1.01 3.9623942 7.70e-04 2.00

512 256 258 259 1.00 3.9625864 1.92e-04 2.00

Richardson extrapolated value: 3.9626505

Table 6: Results from solving (40) for European call option including bilateral XVA with stochastic

default intensity on counterparty using Algorithm 1 with the parameters in Table 1, except λmax
C varying

as indicated, when S is at-the-money (S = K = 15) and λC = θ. Nonuniform grids are used.

5.2 Asymptotic solution and effect of rate of mean reversion

In order to investigate how the speed of mean reversion κ affects the accuracy of the asymptotic

approximation, we show the derivative values considering counterparty default risk with the parameters

of Table 1, except that κ varies from 1 to 10. We present two Tables 7 and 8 (κ varying from 1 to 3), one

with correlation ρ being zero and one with correlation given in Table 1. When κ varies, in order to keep

ν constant, we vary σλC as ν√
ǫ
. Since the exact solutions to the problems considered are unknown, we

compute highly accurate approximations by the numerical 2D PDE approach, and use those to compare

with the ones obtained by the asymptotic approach. To obtain highly accurate 2D PDE prices, the 2D PDE

approximations from the two finest grids are extrapolated by Richardson extrapolation, with second order

convergence. The numerical results show good agreements among solutions under different approaches.

In Tables 7, 8, and Figure 1 (κ varying from 1 to 10), we can see that the differences between the

PDE extrapolated solution and the asymptotic solutions are decreasing with increasing κ, the order of

convergence with respect to κ−1 being approximately 1.5 for the non-zero correlation case, and more than
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2 for the zero correlation one.

Comparing the differences in Tables 7 and 8, and looking at Figure 1, the zero correlation cases of

the asymptotic solutions result in smaller differences from the extrapolated PDE values, than the nonzero

correlation cases, while the 2D PDE solutions give approximately the same differences for ρ = 0 and

ρ 6= 0.

(7.5, 0.05) (7.5, 0.1) (15, 0.05) (15, 0.1) (30, 0.05) (30, 0.1)

const. def. intens. 5.6250695 5.6250695 3.2759704 3.2759704 1.3662239 1.3662239

κ = 1, σλC = 0.2, ν = 0.2
PDE FDM 5.6345450 5.4444596 3.2814455 3.1707436 1.3682827 1.3221227

PDE extrap 5.6345792 5.4444926 3.2815060 3.1708021 1.3683868 1.3222232

asymptotic 5.6388509 5.4419735 3.2839966 3.1693376 1.3695712 1.3217533

κ = 2, σλC = 0.2828, ν = 0.2
PDE FDM 5.6308259 5.5338160 3.2792796 3.2227830 1.3673795 1.3438218

PDE extrap 5.6308601 5.5338496 3.2793401 3.2228424 1.3674836 1.3439241

asymptotic 5.6319602 5.5335215 3.2799835 3.2226540 1.3678976 1.3439886

κ = 3, σλC = 0.3464, ν = 0.2
PDE FDM 5.6291365 5.5641450 3.2782957 3.2404460 1.3669693 1.3511868

PDE extrap 5.6291707 5.5641788 3.2783562 3.2405057 1.3670733 1.3512897

asymptotic 5.6296633 5.5640375 3.2786458 3.2404262 1.3673397 1.3514004

Table 7: Values by different approaches for European put option including bilateral XVA with stochastic

default intensity on counterparty with the parameters in Table 1, except that κ and σλC vary as indicated,

and ρ = 0, at several points. The grid size for the PDE solution is N = 512,M = 256, and extrapolation

takes place between N = 256,M = 128 and N = 512,M = 256.

(7.5, 0.05) (7.5, 0.1) (15, 0.05) (15, 0.1) (30, 0.05) (30, 0.1)

const. def. intens. 5.6250695 5.6250695 3.2759704 3.2759704 1.3662239 1.3662239

κ = 1, σλC = 0.2, ν = 0.2
PDE FDM 5.6814292 5.4947855 3.3273597 3.2201054 1.3971503 1.3532150

PDE extrap 5.6814640 5.4948193 3.3274199 3.2201636 1.3972536 1.3533148

asymptotic 5.6974803 5.5006028 3.3425304 3.2278715 1.4072341 1.3594163

κ = 2, σλC = 0.2828, ν = 0.2
PDE FDM 5.6681123 5.5723664 3.3159146 3.2606831 1.3905067 1.3677652

PDE extrap 5.6681469 5.5724005 3.3159749 3.2607424 1.3906101 1.3678669

asymptotic 5.6734174 5.5749787 3.3213732 3.2640437 1.3945293 1.3706204

κ = 3, σλC = 0.3464, ν = 0.2
PDE FDM 5.6607425 5.5964355 3.3094221 3.2722577 1.3866742 1.3713342

PDE extrap 5.6607769 5.5964696 3.3094823 3.2723172 1.3867777 1.3714365

asymptotic 5.6635130 5.5978872 3.3124404 3.2742207 1.3890844 1.3731451

Table 8: Values by different approaches for European put option including bilateral XVA with stochastic

default intensity on counterparty with the parameters in Table 1, except that κ and σλC vary as indicated,

at several points. The grid size for the PDE solution is N = 512,M = 256, and extrapolation takes place

between N = 256,M = 128 and N = 512,M = 256.
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Figure 1: Accuracy of different approaches for European put option valuation including bilateral XVA

with stochastic default intensity on counterparty with the parameters in Table 1 except κ and ρ as indicated,

and σλC = 0.2
√
κ, versus κ at (15, 0.1). The PDE FDM solution is obtained with N = 512,M = 256.
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Figure 2: Accuracy of different approaches for European put option valuation including bilateral XVA

with stochastic default intensity on counterparty with the parameters in Table 1 except κ and ρ as indicated,

and σλC = 0.2
√
κ, versus N at (30, 0.1).

From Figure 2, it can be seen that the PDE accuracy is of the same level irrespectively of κ and ρ, while

the asymptotic solution accuracy improves with increasing κ, and for ρ = 0. Furthermore, in the mean

reversion case κ = 3 and ρ = 0, the traditional PDE numerical methods need very fine grids, finer than

N = 512, to beat the asymptotic approach. Comparing Figures 1 (point (15,0.1)) and 2 (point (30,0.1)),

we note that, for point (15,0.1), ρ = 0.3 and all κ’s considered, the asymptotic accuracy never reaches the
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2D PDE accuracy, while, for point (30,0.1), the asymptotic accuracy may match or exceed the 2D PDE

accuracy, depending on the values of κ and ρ considered.

5.3 Effect of model parameters

We study how the correlation ρ, mean reversion level θ and mean reversion speed κ affect the adjusted

values of financial derivatives. We still focus on European call and put options, with parameters in Table

1, except when mentioned otherwise.

In Table 9 and Figures 3 and 4, we show the effect of the correlation ρ between spot price S and

counter-party default risk λC on the values of call and put options computed by solving (40). In the put

option case, higher ρ leads to higher value of derivatives, while, in the call option case, higher ρ results

in lower value derivatives. This effect can be also captured by the asymptotic solution. Recalling the

asymptotic solution (91), and substituting σλC = ν√
ǫ

or ν =
√
ǫσλC , we get

V̂ ǫ,1 = V̂0 −
√
ǫτρσSνS(1− RC)〈

√

λC〉
∂V̂ +

0

∂S
+ ǫ(1− RC)(θ − λC)V̂

+
0 + ǫτ(1 −RC)

2 θν
2

2
V̂ +
0

= V̂0 − ǫτρσSσλCS(1−RC)〈
√

λC〉
∂V̂ +

0

∂S
+ ǫ(1 −RC)(θ − λC)V̂

+
0 + ǫ2τ(1− RC)

2 (σ
λC )2

2
V̂ +
0 .

(96)

Recall that, V̂0 is the solution to the Black-Scholes equation (43) considering constant counterparty default

risk equal to θ. Among the four terms in the right hand side of (96), all but the second one are independent

of ρ. Considering the second term, in put option case, the sensitivity delta
∂V̂ +

0

∂S
is non-positive, while, in

call case, the sensitivity delta
∂V̂ +

0

∂S
is non-negative. This explains the different behaviors of prices in

different derivatives.
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Figure 3: Effect of ρ on put option value with XVA,

computed by solving (40). Other parameters are in

Table 1
.
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Figure 4: Effect of ρ on call option value with XVA,

computed by solving (40). Other parameters are in

Table 1
.
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ρ put price at (15, 0.05) put price at (15, 0.10) call price at (15, 0.10) call price at (15, 0.10)

-0.3 3.2345962 3.1204577 4.1815355 4.0521265

0 3.2814455 3.1707436 4.0777310 3.9401659

0.3 3.3273597 3.2201054 3.9625865 3.8170009

0.8 3.4016595 3.3002454 3.7450680 3.5867810

Table 9: Value comparison for solving (40) for European options including bilateral XVA with stochastic

default intensity on counterparty with the parameters in Table 1 with different correlations. The grid size

is N = 512,M = 256.

Table 10 presents results that demonstrate how the long-run mean θ affects the adjusted derivative

values. Higher θ results in increased total default probability experienced during derivative life. When

the derivative contract is a positive asset to party B, naturally, this results in a lower value of the financial

derivatives. From Equations (6) and (7), higher counterparty default rate means more possibility to receive

recovery value of full contract, especially when this contract is a positive asset to the surviving party.

This reduces the value of derivative contract to the surviving party when the counterparty default risk is

considered. Figure 5 gives a visualization in the case of put option. As we can see in (96), the dominant

zero-th term value V̂0 decreases as θ decreases, while all other terms increase a bit. These terms (involving

ǫ in some positive powers) are dominated by the zero-th order term.

θ put price at (15, 0.05) put price at (15, 0.10) call price at (15, 0.10) call price at (15, 0.10)

0.01 3.6947761 3.5775433 4.4835585 4.3140849

0.05 3.3273597 3.2201054 3.9625865 3.8170009

0.2 2.2192156 2.1466437 2.5519197 2.4605421

Table 10: Value comparison for solving (40) for European options including bilateral XVA with stochastic

default intensity on counterparty with the parameters in Table 1 with different mean reversion levels. The

grid size is N = 512,M = 256.

Table 11 and Figure 6 demonstrate how the speed of mean reversion κ affects the values of put option.

Increasing values of κ, naturally result in prices closer to the Black-Scholes price including XVA with

constant default intensity λC equal to θ. Again, the asymptotic solution (96) expresses this trend well.

The terms involving ǫ decrease in absolute value and converge to zero, which makes the asymptotic

solution tend to V̂0, the solution of the Black-Scholes equation (43) taking default risk into account, with

constant default intensity λC = θ.

point κ = 1 κ = 2 κ = 3 κ = 4 κ = 5
(15, 0.025) 3.3818182 3.3324451 3.3142960 3.3049453 3.2992520

(15, 0.05) 3.3273597 3.3043328 3.2954144 3.2907365 3.2878633

(15, 0.1) 3.2201054 3.2485634 3.2578586 3.2624369 3.2651620

V̂0: 3.27597044

Table 11: Value comparison for solving (40) for European put option including bilateral XVA with

stochastic default intensity on counterparty with the parameters in Table 1. The grid size is N = 512,M =
128.
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Figure 5: Effect of θ on put option value with XVA,

computed by solving (40). Other parameters are in

Table 1.
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Figure 6: Effect of κ on put option value with XVA,

computed by solving (40). Other parameters are in

Table 1.

6 Conclusions

In this paper, we studied the bilateral XVA pricing of financial derivatives assuming stochastic coun-

terparty default risk, with a focus on numerical computation issues. We developed the corresponding 2D

time-dependent PDE, and two approaches to numerically approximate the options values including XVA.

The first approach is to approximate the solution of the 2D time-dependent PDE by numerical PDE tech-

niques. We developed appropriate boundary conditions, used finite differences for space discretization,

Crank-Nicolson timestepping, and the penalty iteration method in [7] to handle the non-linearity of the

source term. The second approach is asymptotic approximation, based on singular perturbation theory

[18, 13], assuming the stochastic default intensity exhibits fast mean reversion. The asymptotic approxi-

mation approach uses the solution to the 1D XVA pricing PDE with constant counterparty default intensity

equal to the mean reversion level, and a few correction (expansion) terms that we developed based on the

2D XVA PDE.

The numerical experiments indicate that the numerical 2D PDE approximation converges with stable

second order, so that extrapolation can be used as well. Thus, the numerical PDE method can gives us

high precision (up to machine precision minus the conditioning of the problem) for any particular problem

(set of parameters). The asymptotic approximation agrees quite well with the numerical 2D PDE approx-

imation, and converges with increasing mean reversion rate κ, thus its precision for a particular problem

(set of parameters) is limited. However, the computational cost of the asymptotic method is substan-

tially lower than that of the numerical 2D PDE method, thus, for reasonable accuracy requirements, the

asymptotic method is an attractive alternative to the numerical 2D PDE method, and particularly handy

for practitioners, due to its simplicity.

Appendix A: Accuracy analysis of asymptotic approximation

We consider the case of general correlation. The case of zero correlation is briefly considered at the end

of the Appendix. In this analysis, we assume λC is bounded from above. In order to analyze the quality
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of the approximation V̂ ǫ,1 of (91) to V̂ , we begin by recalling (63), and defining

LǫV̂ ǫ ≡ (
1

ǫ
L0 +

1√
ǫ
L1 + L2)V̂

ǫ = 0, (97)

E ≡ V̂ ǫ − V̂0 −
√
ǫV̂1/2 − ǫV̂1 − ǫ

√
ǫV̂3/2, (98)

where we also recall that V̂ ǫ = V̂0 +
√
ǫV̂1/2 + ǫV̂1 + ǫ

√
ǫV̂3/2 + ǫ2V̂2 + . . . . The initial condition for E is

E(0, S, λC) = −ǫ(1 − RC)(θ − λC)V̂
+
0 (0, S)− ǫ

√
ǫV̂3/2(0, S, λC), (99)

since, at τ = 0, V̂ ǫ = V̂0, which is also equal to the pay-off function.

In addition, we have

LǫE =(
1

ǫ
L0 +

1√
ǫ
L1 + L2)(V̂

ǫ − V̂0 −
√
ǫV̂1/2 − ǫV̂1 − ǫ

√
ǫV̂3/2)

=− 1

ǫ
(L0V̂0)−

1√
ǫ
(L0V̂1/2 + L1V̂0)− (L0V̂1 + L1V̂1/2 + L2V̂0)−

√
ǫ(L0V̂3/2 + L1V̂1 + L2V̂1/2)

− ǫ(L1V̂3/2 +
√
ǫL2V̂3/2) = −ǫ(L1V̂3/2 +

√
ǫL2V̂3/2), (100)

taking also into account (82)-(85). The Feynman-Kac probabilistic representation formula for the solution

of (100) is given as

E(τ, S, λC) =− E
Q
[

e−rτ (ǫ(1−RC)(θ − λC)V̂
+
0 + ǫ3/2V̂3/2 | Sǫ

T−τ = S, (λC)
ǫ
T−τ = λC

]

+ E
Q

[
∫ τ

0

e−r(τ−s)(ǫL1V̂3/2 + ǫ3/2L2V̂3/2)ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]

+ E
Q

[
∫ τ

0

e−r(τ−s)f(λC , E)ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]

. (101)

By (85), we have

L0V̂3/2 = −L1V̂1 − L2V̂1/2

= ρσSνS(1− RC)(
√

λC − 〈
√

λC〉)
∂V̂ +

0

∂S
+ f(θ, V̂1/2)− f(λC , V̂1/2). (102)

Hence, following the arguments in [18], |V̂3/2| ≤ C1|∂V̂
+

0

∂S
|, where C1 is a positive constant. Then we have

∣

∣

∣
E
Q
[

ǫ3/2V̂3/2 | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]
∣

∣

∣
≤ C2ǫ

3/2, (103)
∣

∣

∣

∣

E
Q

[
∫ τ

0

e−r(τ−s)ǫ3/2L2V̂3/2ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]
∣

∣

∣

∣

≤ C3ǫ
3/2, (104)

where C2 and C3 are positive constants. We also notice that, since λC is bounded from above,
∣

∣

∣

∣

E
Q

[
∫ τ

0

e−r(τ−s)ǫL1V̂3/2ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]
∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E
Q

[

∫ τ

0

e−r(τ−s)ǫρσSνS
√

λC

∂2V̂3/2

∂S∂λC
ds | Sǫ

T−τ = S, (λC)
ǫ
T−τ = λC

]
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E
Q

[

∫ τ

0

e−r(τ−s)ǫ3/2ρσSSσλC

√

λC

∂2V̂3/2

∂S∂λC
ds | Sǫ

T−τ = S, (λC)
ǫ
T−τ = λC

]
∣

∣

∣

∣

∣

≤C4ǫ
3/2, (105)
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where C4 is a positive constant.

With similar arguments as in [11, 18, 21], and taking into account that 〈θ − λC〉 = 0, we have, with C5

and C6 positive constants, and since λC is bounded from above,

∣

∣

∣
E
Q
[

e−rτ (1−RC)(θ − λC)V̂
+
0 | Sǫ

T−τ = S, (λC)
ǫ
T−τ = λC

]
∣

∣

∣

≤C5

∣

∣

∣
E
Q
[

(θ − λC) | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]

∣

∣

∣
≤ C5e

−C6
1

ǫ , (106)

which converges exponentially fast as ǫ → 0.

Now let’s consider the last term of the right-hand-side of (101):

E
Q

[
∫ τ

0

e−r(τ−s)f(λC , E)ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]

=E
Q

[
∫ τ

0

e−r(τ−s)[−(sF + (1− RC)λC)E+ − (1− RB)λBE−]ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]

=− E
Q

[
∫ τ

0

e−r(τ−s)[(sF + (1− RC)λC)E+ + (1−RB)λBE−]ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]

.

(107)

Taking into account (103)-(107), equation (101) results in

∣

∣

∣

∣

E(τ, S, λC) + E
Q
[

∫ τ

0

e−r(τ−s)[(sF + (1− RC)λC)E(τ, S, λC)
+

+(1−RB)λBE(τ, S, λC)
−]ds | Sǫ

T−τ = S, (λC)
ǫ
T−τ = λC

]

∣

∣

∣

∣

≤ Cǫ3/2, (108)

where C is a positive constant.

We consider two cases for the sign of E(τ, S, λC). If E(τ, S, λC) ≤ 0, equation (108) results in

∣

∣

∣

∣

E(τ, S, λC) + E
Q
[

∫ τ

0

e−r(τ−s)(1− RB)λBE(τ, S, λC)ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]

∣

∣

∣

∣

≤ Cǫ3/2,

(109)

where both terms inside the absolute value are negative or zero. We also have

∣

∣

∣
E
Q
[

∫ τ

0

e−r(τ−s)(1−RB)λBE(τ, S, λC)ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]
∣

∣

∣

≥
∣

∣

∣
(1− RB)λBe

−rτ
E
Q
[

∫ τ

0

E(τ, S, λC)ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]
∣

∣

∣

=
∣

∣

∣
(1− RB)λBe

−rτ
E
Q
[

E(τ, S, λC) | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]
∣

∣

∣

=
∣

∣

∣
(1− RB)λBe

−rττE(τ, S, λC)
∣

∣

∣
. (110)

With (110), relation (109) leads to

∣

∣

∣

∣

E(τ, S, λC) + (1−RB)λBe
−rττE(τ, S, λC)

∣

∣

∣

∣

≤ Cǫ3/2, (111)
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from which we get

|1 + (1−RB)λBe
−rττ ||E(τ, S, λC)| ≤ Cǫ3/2 =⇒

|E(τ, S, λC)| ≤
C

|1 + (1− RB)λBe−rττ |ǫ
3/2. (112)

If E(τ, S, λC) > 0, equation (108) results in

∣

∣

∣

∣

E(τ, S, λC) + E
Q
[

∫ τ

0

e−r(τ−s)[(sF + (1− RC)λC)E(τ, S, λC)
+]ds

| Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]

∣

∣

∣

∣

≤ Cǫ3/2, (113)

where both terms inside the absolute value are positive. We also have

∣

∣

∣
E
Q
[

∫ τ

0

e−r(τ−s)[(sF + (1− RC)λC)E(τ, S, λC)
+]ds | Sǫ

T−τ = S, (λC)
ǫ
T−τ = λC

]
∣

∣

∣

≥
∣

∣

∣
E
Q
[

∫ τ

0

e−r(τ)δCE(τ, S, λC)ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]
∣

∣

∣

=
∣

∣

∣
e−rτδCE

Q
[

∫ τ

0

E(τ, S, λC)ds | Sǫ
T−τ = S, (λC)

ǫ
T−τ = λC

]
∣

∣

∣

=
∣

∣

∣
e−rτδCτE(τ, S, λC)

∣

∣

∣
, (114)

where δC ≥ 0 is a constant lower bound of (sF + (1− RC)λC). With (114), relation (113) leads to

∣

∣

∣

∣

E(τ, S, λC) + e−rτδCτE(τ, S, λC)

∣

∣

∣

∣

≤ Cǫ3/2, (115)

from which we get

|1 + e−rτδCτ ||E(τ, S, λC)| ≤ Cǫ3/2 =⇒

|E(τ, S, λC)| ≤
C

|1 + e−rτδCτ |
ǫ3/2. (116)

Combining (112) and (116), we have that the accuracy of the asymptotic solution V̂ ǫ,1 = V̂0+
√
ǫV̂1/2+ǫV̂1

of (91) is at least of order O(ǫ3/2).
For the case of zero correlation, since the analysis technique is similar, and since the general correla-

tion case is more interesting, we do not show the details, but present the final result. We can show that the

approximation V̂ ǫ,1 of (80) is at least of order O(ǫ2).
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[2] I. ARREGUI, B. SALVADOR, AND C. VÁZQUEZ, CVA computing by PDE models, in NAA16:

Numerical Analysis and Its Applications, I. Dimov et al, ed., LNCS 10187, Springer, 2017, pp. 15–

24.

[3] C. BURGARD AND M. KJAER, In the balance, Risk, 24 (2011), pp. 72–75.

[4] C. BURGARD AND M. KJAER, Partial differential equation representations of derivatives with bi-

lateral counterparty risk and funding costs, The Journal of Credit Risk, 7 (2011), pp. 75–93.

[5] C. BURGARD AND M. KJAER, The FVA debate: In theory and practice,

https://papers.ssrn.com/sol3/papers.cfm?abstract id=2157634, (2012).

[6] , Funding strategies, funding costs, Risk, 26 (2013), pp. 82–87.

[7] Y. CHEN AND C. C. CHRISTARA, Penalty methods for bilateral XVA pricing in European and

American contingent claims by a PDE model, Journal of Computational Finance, 24 (2021), pp. 41–

70.

[8] D. DUFFIE AND N. GARLEANU, Risk and valuation of collateralized debt obligations, Financial

analysts journal, 57 (2001), pp. 41–59.

[9] Y. FENG, CVA under Bates model with stochastic default intensity, Journal of Mathematical Finance,

7 (2017), pp. 682–698.

[10] P. A. FORSYTH AND K. R. VETZAL, Quadratic convergence for valuing American options using a

penalty method, SIAM J. Sci. Comput., 23 (2002), pp. 2095–2122.

[11] J.-P. FOUQUE, M. LORIG, AND R. SIRCAR, Second order multiscale stochastic volatility asymp-

totics: stochastic terminal layer analysis and calibration, Finance and Stochastics, 20 (2016),

pp. 543–588.

[12] J.-P. FOUQUE, G. PAPANICOLAOU, AND K. R. SIRCAR, Derivatives in financial markets with

stochastic volatility, Cambridge University Press, 2000.

[13] J. P. FOUQUE, G. PAPANICOLAOU, R. SIRCAR, AND K. SOLNA, Singular perturbations in option

pricing, SIAM J. Appl. Math., 63 (2003), pp. 1648–1665.

[14] A. GREEN, XVA: Credit, Funding and Capital Valuation Adjustments, Wiley, 2015.

[15] T. HAENTJENS AND K. J. IN’T HOUT, ADI schemes for pricing American options under the Heston

model, Applied Mathematical Finance, 22 (2015), pp. 207–237.

[16] J. C. HULL, Options, Futures, and Other Derivatives, Pearson, 10 ed., 2017.

June 28, 2022



32 Y. CHEN, C. CHRISTARA

[17] K. J. IN’T HOUT AND S. FOULON, ADI finite difference schemes for option pricing in the Hes-

ton model with correlation, International Journal of Numerical Analysis and Modeling, 7 (2010),

pp. 303–320.

[18] N. C.-H. LEUNG, C. CHRISTARA, AND D. M. DANG, Partial differential equation pricing of

contingent claims under stochastic correlation, SIAM J. Sci. Comput., 40 (2018), pp. B1–B31.
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