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Abstract

Spread option contracts are becoming increasingly important, as they frequently arise in the energy

derivative markets, e.g. exchange electricity for oil. In this paper, we study the pricing of European

and American spread options. We consider the two-dimensional Black-Scholes Partial Differential

Equation (PDE), use finite difference discretization in space and consider Crank-Nicolson (CN) and

Modified Craig-Sneyd (MCS) Alternating Direction Implicit (ADI) methods for timestepping. In or-

der to handle the early exercise feature arising in American options, we employ the discrete penalty

iteration method, introduced and studied in Forsyth and Vetzal (2002), for one-dimensional PDEs dis-

cretized in time by the CN method. The main novelty of our work is the incorporation of the ADI

method into the discrete penalty iteration method, in a highly efficient way, so that it can be used for

two or higher-dimensional problems. The results from spread option pricing are compared with those

obtained from the closed-form approximation formulae of Kirk (1995), Venkatramanan and Alexander

(2011), Monte Carlo simulations, and the Brennan-Schwartz ADI Douglas-Rachford method, as im-

plemented in MATLAB. In all spread option test cases we considered, including American ones, our

ADI-MCS method, implemented on appropriate non-uniform grids, gives more accurate prices and

Greeks than the MATLAB ADI method.

Keywords: Modified Craig-Sneyd, Alternating Direction Implicit method, two-dimensional Black-

Scholes, American option, spread option, exchange option, analytical approximation, numerical PDE

solution, penalty iteration 2

1 Introduction

Spread options are popular financial contracts for which, except the simplest case called exchange

contracts (i.e. strike = 0), there exist no analytical solutions. We are interested in pricing spread options,

using a numerical Partial Differential Equation (PDE) approach.

A spread option is a two-asset derivative, whose payoff depends on the difference between the prices

s1(t) and s2(t) of the two assets. Essentially, the European call (put) spread option gives the holder the

right, but not the obligation, to buy (sell) the spread s1(T ) − s2(T ) at the exercise price K, at maturity

time T .

In the energy markets, an example of a spread option is an option on the spark spread, which is the

difference between the price received by a generator for electricity produced and the cost of the natural gas

needed to produce that electricity. Another example of a spread option is an option on the crack spread,

which is the difference between the price of refined petroleum products and crude oil.

Several spread option pricing approaches can be used, such as Monte Carlo (MC) simulations or tree

(lattice) methods, however, for problems in low dimensions, the PDE approach is a popular choice, due to

1This work was supported by the Natural Sciences and Engineering Research Council of Canada
2AMS: 65M06, 91G60.
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its efficiency and global character. In addition, the essential parameters for risk-management and hedging

of financial derivatives, such as delta and gamma, are generally much easier to compute via the PDE

approach than via other methods.

We consider the basic two-dimensional Black-Scholes (BS) PDE and compute a numerical approxima-

tion to the solution using second-order finite differences (FD) discretization in space and Crank-Nicolson

(CN) or Alternating Direction Implicit (ADI) methods, more specifically, the Modified Craig-Sneyd

(MCS) method, for timestepping. Note that MCS is stable without stepsize restrictions, and exhibits

second-order convergence in both space and time when applied to PDEs with mixed derivative terms

([12], [13], [24]). To price American spread options a non-linear penalty term is added to the PDE, and

an iterative method is employed to solve the resulting problem. This technique is introduced in [8] for

one-dimensional problems and CN timestepping. Our focus in this paper is to incorporate the ADI-MCS

method efficiently into the penalty iteration. We present results from our ADI-MCS method on various

types of spread options and compare them to results from other PDE approximation methods, analytical

approximation formulae and MC simulation methods.

Regarding analytical formulae, for the case of European exchange options, there exists the Margrabe

formula [17], which gives the exact price of the exchange option, and is an accurate reference value

for comparison. For general European spread options, there is no formula that gives the exact price.

However, there exist analytical formulae that approximate the price of European spread options. These

approximations include Kirk’s formula [15] and the formula developed by Venkatramanan and Alexan-

der [22]. Kirk’s formula provides a good approximation of spread option prices when the strike K is small

compared to the current value of s2. Venkatramanan and Alexander [22] express the price of a European

spread option as the sum of the prices of two compound exchange options (CEOs), one to exchange vanilla

call options and the other to exchange vanilla put options. Using a conditional relationship between the

strike of vanilla options and the implied correlation, the authors reduce the problem to one-dimensional

put and call vanilla option computations.

For both European and American spread option test cases, we also consider two different numeri-

cal approximations in MATLAB. One is MATLAB’s implementation of the Douglas-Rachford (DR) ADI

timestepping (func. spreadsensbyfd), and another is the MC simulations (func. spreadsensbyls).

In the MATLAB function spreadsensbyfd, for American spread options, the ADI-DR timestepping

is combined with the Brennan-Schwartz algorithm [1], in order to solve the Linear Complementarity

Problem (LCP) arising when pricing American type options. In [10], the algorithm is re-formulated using

a form of LU decomposition, and this form is used in the MATLAB code.

Moreover, we display results of Greeks computed using our method, as well as MATLAB’s functions

spreadsensbyfd and spreadsensbyls. Finally, we present results for the free boundary.

In Section 2, we present the PDE along with initial and boundary conditions. The discretization of

the problem along the space dimension and the ADI time-stepping technique are described in Section

3. In Section 4, the handling of American options using the discrete penalty iteration method for both

CN and ADI timestepping is demonstrated. Special attention is paid in efficiently incorporating the ADI-

MCS method into the discrete penalty iteration. Finally, in Section 5, we present numerical results that

demonstrate the performance of our method. We first compare our results for a European exchange

option with Margrabe’s exact solution. We then make an experimental investigation on the accuracy and

convergence of the price computed by our method for both uniform and non uniform spatial meshes for

different test case scenarios, for which the exact solution is unknown. We also compare with the results

obtained by analytical approximation formulae and other numerical methods.
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2 Problem Description

Let’s assume that the asset prices s1 and s2 follow the standard Wiener processes

dsi = (r − qi)sidt+ σisidWi, i = 1, 2, with E [dW1dW2] = ρdt. (1)

Variables σ1 and σ2 are the volatilities of s1 and s2, respectively, q1 and q2 the dividends paid by s1 and

s2, respectively, r the risk-free interest rate, ρ the correlation between s1 and s2, and E [·] the expectation.

It can be shown that under assumption (1), and some other assumptions, the price u = u(s1, s2, τ) of a

European option on two correlated assets satisfies the backward BS PDE

∂u

∂τ
= Lu ≡

σ2
1s

2
1

2

∂2u

∂s21
+ρσ1σ2s1s2

∂2u

∂s1∂s2
+
σ2
2s

2
2

2

∂2u

∂s22
+(r−q1)s1

∂u

∂s1
+(r−q2)s2

∂u

∂s2
−ru (2)

where τ the backward time variable, i.e. τ = T − t, with t being the forward time variable (t ∈ [0, T ])
and T the maturity time of the option.

The initial condition at time t = T (τ = 0), which arises from the option’s payoff, for a spread option

with exercise price K is

u∗(s1, s2) = u(s1, s2, 0) = [ω(s1 − s2 −K)]+. (3)

The values ω = 1 and ω = −1 indicate scenarios of call and put options, respectively. Throughout this

paper, the notation x+ is defined as x+ ≡ max{x, 0}.

The PDE (2) is defined in a semi-infinite [0,∞) × [0,∞) domain in space. In order to formulate

boundary conditions, we truncate the semi-infinite domain to [0, S1] × [0, S2], for large enough values

of S1 and S2. The particular values of S1 and S2 used in our experiments are given in Section 5. For

European spread options, we use the following (Dirichlet) boundary conditions, arising from the payoff

with discounting:

u(0, s2, τ) = [ω(−s2e
−q2τ −Ke−rτ )]+, (4)

u(s1, 0, τ) = [ω(s1e
−q1τ −Ke−rτ )]+, (5)

u(S1, s2, τ) = [ω(S1e
−q1τ − s2e

−q2τ −Ke−rτ )]+, (6)

u(s1, S2, τ) = [ω(s1e
−q1τ − S2e

−q2τ −Ke−rτ )]+. (7)

To formulate boundary conditions for American spread options, we consider the boundary conditions (4)-

(7) for European options, and take into account that the American option value is always above or on the

payoff. Thus, for American spread options, we consider the (Dirichlet) boundary conditions

u(0, s2, τ) = max{[ω(−s2e
−q2τ −Ke−rτ )]+, [ω(−s2 −K)]+}, (8)

u(s1, 0, τ) = max{[ω(s1e
−q1τ −Ke−rτ )]+, [ω(s1 −K)]+}, (9)

u(S1, s2, τ) = max{[ω(S1e
−q1τ − s2e

−q2τ −Ke−rτ )]+, [ω(S1 − s2 −K)]+}, (10)

u(s1, S2, τ) = max{[ω(s1e
−q1τ − S2e

−q2τ −Ke−rτ )]+, [ω(s1 − S2 −K)]+}. (11)

It is worth noting that, except for the case s1 = 0 and ω = 1, the above boundary conditions for European

and American spread options are approximate. However, our numerical results for the chosen S1 and S2

indicate that the inexact boundary conditions do not hinder the accuracy of our methods.
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3 PDE Discretization

Let τk, k = 0, . . . , Nt, be points in time, with 0 = τ 0 < τ 1 < . . . < τNt = T , and ∆τk =
τk−τk−1, k = 1, . . . , Nt. Note that τk, k = 0, . . . , Nt, may be non-uniformly spaced. Consider a possibly

non-uniform partition of [0, S1] with gridpoints s1,i, i = 0, . . . , Nx, 0 = s1,0 < s1,1 < . . . < s1,Nx
= S1,

and a possibly non-uniform partition of [0, S2] with gridpoints s2,j, j = 0, . . . , Ny, 0 = s2,0 < s2,1 <
. . . < s2,Ny

= S2. Let hx
i = s1,i − s1,i−1, i = 1, . . . , Nx, and hy

j = s2,j − s2,j−1, j = 1, . . . , Ny.

Let uk = uk(s1, s2) be the semi-discrete (CN or ADI timestepping) approximation to the solution

of the PDE (2) at time τk. Let also uk
i,j be the approximation to the solution of the PDE at point

(s1, s2, τk), i.e., uk
i,j ≈ u(s1,i, s2,j , τk), i = 1, . . . , Nx − 1, j = 1, . . . , Ny − 1. Furthermore, let uk =

[uk
1,1, u

k
2,1, . . . , u

k
Nx,Ny

]T be the (Nx − 1)(Ny − 1) × 1 vector of values uk
i,j, i = 1, . . . , Nx − 1, j =

1, . . . , Ny − 1. Note that the indexing of the components is first along the s1-dimension, then along the

s2-dimension.

3.1 Space discretization

Using standard second-order centered finite differences for the spatial derivatives, the discretization

of L of (2) results in a matrix A, which can be written as A = A0 + A1 + A2, where A1 and A2 are the

matrices arising from FD discretization of the first and second derivative terms of (2) with respect to the

s1- and s2 variables, respectively, and A0 is the matrix resulting from the cross-derivative discretization.

Furthermore, the matrices A1 and A2 share evenly the discretization of the u (no-derivative) term in (2).

For the parabolic PDE (2) to be well-posed, we assume that the symmetric matrix arising from the

coefficients is positive definite, and that appropriate initial and boundary conditions are given. For the

timestepping, we present the standard θ-timestepping method, and the ADI-DR and ADI-MCS methods,

described next.

3.2 θ-timestepping

Let θ be such that 0 ≤ θ ≤ 1. To proceed from time τk−1 to time τk, with stepsize ∆τk = τk − τk−1,

the θ-timestepping discretization scheme to (2) solves the linear system

(I − θ(∆τk)A)uk = (I + (1− θ)(∆τk)A)uk−1 + (∆τk)(θgk + (1− θ)gk−1) (12)

where I is the identity matrix of order (Nx − 1)(Ny − 1), and gk is a vector of size (Nx − 1)(Ny − 1),
containing contributions from the boundary conditions at τk.

In (12), the values θ = 1/2 and θ = 1 give rise to the standard Crank-Nicolson (CN) and the fully-

implicit (Backward Euler - BE) methods, respectively. It is known that the CN method is second-order ac-

curate, but prone to producing spurious oscillations, while BE is first order accurate, but exhibits stronger

stability properties (e.g. [19]). For the BS equation with the non-smooth initial condition (3), to maintain

the accuracy of CN as well as the effect of stronger stability of BE, the Rannacher smoothing technique

[20], which applies the fully-implicit timestepping in the first few timesteps, using a smaller time step-

size, then switches to CN was used. While several other smoothing techniques have been suggested, for

example, [16], [21], the Rannacher smoothing is widely used by several researchers; see, for example,

[8].

3.3 ADI-DR/ADI-MCS timestepping

Alternating Direction Implicit methods are efficient implicit methods for solvingD-dimensional parabolic

PDEs, with D ≥ 2.
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A way to present ADI methods for problem (2) is to consider the semi-discretized form of the problem

after the spatial derivatives are discretized by FDs, which is written as an initial value problem for a system

of ODEs,

u′(τ) = F (τ, u(τ)) (τ ≥ 0) u(0) = u∗ (13)

where u∗ is the initial vector, and F is a given vector-valued function which can be split into the sum

F (τ, v) = F0(τ, v) + F1(τ, v) + F2(τ, v). (14)

The term F0 contains all contributions to F stemming from the mixed derivative terms in (2) and it is

treated explicitly in the numerical time-integration. The terms F1 and F2 represent the contribution to

F stemming from the first- and second-order derivatives in the s1 and s2-directions, respectively. These

terms are treated implicitly, at appropriate substeps of the method. The u term, i.e. the no-derivative term,

is distributed evenly among the F1 and F2 terms.

One of the ADI methods considered in this paper is known as Douglas and Rachford (DR) method [6],

[7], initially introduced for the heat equation. We consider a generalization of the method as presented in

[11]. For a two-dimensional problem, the method computes uk, given uk−1 and stepsize ∆τk as follows:

Douglas and Rachford (DR):







Y0 = uk−1 + (∆τk)F (τk−1, uk−1),
Yj = Yj−1 + θ(∆τk)(Fj(τ

k, Yj)− Fj(τ
k−1, uk−1)), j = 1, 2

uk = Y2.
(15)

The forward Euler predictor step is followed by two implicit but unidirectional corrector steps, whose

purpose is to stabilize the predictor step. We also consider the Modified Craig-Sneyd (MCS) scheme in

[12] which computes uk, given uk−1 and stepsize ∆τk as follows:

Modified Craig-Sneyd (MCS):



































Y0 = uk−1 + (∆τk)F (τk−1, uk−1),
Yj = Yj−1 + θ(∆τk)(Fj(τ

k, Yj)− Fj(τ
k−1, uk−1)), j = 1, 2

Ỹ0 = Y0 + σ(∆τk)(F0(τ
k, Y2)− F0(τ

k−1, uk−1)),

Ŷ0 = Ỹ0 + µ(∆τk)(F (τk, Y2)− F (τk−1, uk−1)),

Ŷj = Ŷj−1 + θ(∆τk)(Fj(τ
k, Ŷj)− Fj(τ

k−1, uk−1)), j = 1, 2

uk = Ŷ2.

(16)

The real parameters µ, θ > 0 and σ > 0 control the stability and accuracy properties of the method.

The MCS method starts with a forward Euler equation predictor, followed by two phases of two implicit

unidirectional relations as correctors, the two phases being separated by two explicit relations. Based on

previous studies [12], MCS applied to a two-dimensional problem is stable for θ ≥ 1

3
and has consistency

order of 2 if and only if {σ = θ, µ = 1

2
− θ}. The order of convergence of the MCS method is studied

in [13] and is shown to be two with respect to the time stepsize, independently of the spatial mesh width.

In [24], the convergence of the MCS scheme combined with Rannacher smoothing and second order FD

space discretization is studied for nonsmooth initial data.

For the two-dimensional BS equation (2), and the spatial discretization discussed in Section 3.1, the

spatial discretization of Fi(τ, u
k) gives rise to Aiu

k+Ri, i = 0, . . . , 2 and F (τ, uk) gives rise to Auk+R =
Σ2

i=0(Aiu
k + Ri), where A = Σ2

i=0Ai, R = Σ2
i=0Ri. Here, Ai, i = 0, 1, 2, are discretization matrices of

order (Nx − 1)(Ny − 1) corresponding to the continuous Fi, i = 0, 1, 2, functions, respectively, and the

vectors Ri, i = 0, 1, 2, include contributions from the boundaries.
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With the matrices Ai and the vectors Ri, we can present the vector/matrix version of the ADI methods.

For brevity, and since the ADI-DR method matches with the first few steps of the ADI-MCS method, we

include only the ADI-MCS method description. We emphasize that u∗ and Y∗ denote vectors of values at

the grid points of the semi-discrete functions u∗ and Y∗, respectively.

Modified Craig-Sneyd (MCS) method in vector/matrix form:


















































compute Y0 = uk−1 + (∆τk)(Auk−1 +Rk−1)
solve (I − θ(∆τk)A1)Y1 = Y0 + θ(∆τk)(Rk

1 − A1u
k−1 − Rk−1

1 )
solve (I − θ(∆τk)A2)Y2 = Y1 + θ(∆τk)(Rk

2 − A2u
k−1 − Rk−1

2 )

compute Ỹ0 = Y0 + σ(∆τk)(A0Y2 +Rk
0 −A0u

k−1 − Rk−1

0 )

compute Ŷ0 = Ỹ0 + µ(∆τk)(AY2 +Rk − Auk−1 − Rk−1)

solve (I − θ(∆τk)A1)Ŷ1 = Ŷ0 + θ(∆τk)(Rk
1 − A1u

k−1 − Rk−1

1 )

solve (I − θ(∆τk)A2)Ŷ2 = Ŷ1 + θ(∆τk)(Rk
2 − A2u

k−1 − Rk−1

2 )

set uk = Ŷ2.

(17)

4 American Spread Options

The price of the American option is greater than its European counterpart, because it gives the holder

the right to exercise at any point in time prior to the expiry date. Therefore, the BS model for the American

options is more complex and takes the form of a free-boundary problem [23], which can be written as a

linear complementarity problem (LCP) as






∂u

∂τ
− Lu > 0

u− u∗ = 0







or







∂u

∂τ
− Lu = 0

u− u∗ ≥ 0







(18)

subject to payoff (3) and appropriate boundary conditions.

Following [8], we replace the LCP (18) by a non-linear PDE obtained by adding a penalty term to the

right side of BS equation. More specifically, with a penalty parameter p, p → ∞, the non-linear PDE

considered for pricing an American put option is

∂u

∂τ
− Lu = pmax(u∗ − u, 0) (19)

subject to payoff (3) and appropriate boundary conditions. The discretization of (19) is the same as that of

(2), as far as the spatial discretization and the timestepping methods are concerned. The only difference

is the treatment of the penalty term pmax(u∗ − u, 0). The penalty term is discretized as P k · (u∗ − uk),
where u∗ is the vector of payoff values and P k = P (uk) is a diagonal matrix defined by

P k
i1,i2

≡

{

p if i1 = i2 and uk
i1
< u∗

i1

0 otherwise.

}

(20)

Note that P k depends on uk, thus there is non-linearity in P k · (u∗ − uk). To handle the non-linearity, a

penalty iteration is introduced at each timestep.

4.1 Penalty iteration for θ-timestepping

Adding the discretized penalty term to (12), gives rise to the linear system

(I − θ(∆τk)A)uk + P kuk = (I + (1− θ)(∆τk)A)uk−1 + (∆τk)(θgk + (1− θ)gk−1) + P ku∗. (21)
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For convenience, let

bk ≡ (I + (1− θ)(∆τk)A)uk−1 + (∆τk)(θgk + (1− θ)gk−1). (22)

In order to resolve the non-linearity between P k and uk, we use the penalty iteration as described in [8].

Let m be the index of the non-linear penalty iteration. Let uk,m be the mth estimate of uk, and P k,m be

the mth penalty matrix constructed at the kth timestep. The initial guess vector uk,0 is chosen to be uk−1,

i.e. the solution vector at the previous timestep. For convenience, let uk,m
i,j denote the component of uk,m

corresponding to the (s1,i, s2,j) point. Let also tol be a tolerance, usually set to 1/p. The penalty iteration

algorithm for θ-timestepping is described below.

Algorithm 1: Penalty iteration for θ-timestepping to compute uk given uk−1

1. initialize uk,0 = uk−1 and compute P k,0 = P (uk−1) using (20)

2. for m = 1 , . . .

3. solve (I − θ(∆τk)A + P k,m−1)uk,m = bk + P k,m−1u∗

4. compute P k,m = P (uk,m) using (20)

5. if maxi,j{
|uk,mi,j −u

k,m−1

i,j |

max{1,|uk,mi,j |}
} < tol or P k,m = P k,m−1, break, endif

6. endfor

7. set uk = uk,m

4.2 Penalty iteration for ADI-MCS timestepping

We introduce the penalty matrix into the MCS method, by introducing it into the solution of the linear

system for Ŷ2, i.e. the last linear system to be solved in the given timestep. An alternative is to intro-

duce the penalty matrix into the solution of the linear systems for Y2 and Ŷ2. Our experiments show

that both alternatives produce very similar results, and since the former is more efficient, we present only

that. Thus, using vector and matrix notation, the penalty iteration algorithm for ADI-MCS timestepping is:

Algorithm 2: Penalty iteration for ADI-MCS timestepping to compute uk given uk−1

1. initialize uk,0 = uk−1 and compute P k,0 = P (uk−1) using (20)

2. compute Y0 = uk−1 + (∆τk)(Auk−1 +Rk−1)
3. solve (I − θ(∆τk)A1)Y1 = Y0 + θ(∆τk)(Rk

1 −A1u
k−1 − Rk−1

1 )
4. solve (I − θ(∆τk)A2)Y2 = Y1 + θ(∆τk)(Rk

2 −A2u
k−1 − Rk−1

2 )
5. compute Ỹ0 = Y0 + σ(∆τk)(A0Y2 +Rk

0 −A0u
k−1 − Rk−1

0 )
6. compute Ŷ0 = Ỹ0 + µ(∆τk)(AY2 +Rk − Auk−1 − Rk−1)
7. solve (I − θ(∆τk)A1)Ŷ1 = Ŷ0 + θ(∆τk)(Rk

1 −A1u
k−1 − Rk−1

1 )
8. for m = 1 , . . .

9. solve (I − θ(∆τk)A2 + P k,m−1)uk,m = Ŷ1 + θ(∆τk)(Rk
2 − A2u

k−1 − Rk−1

2 ) + P k,m−1u∗

10. compute P k,m = P (uk,m) using (20)

11. if maxi,j{
|uk,mi,j −u

k,m−1

i,j |

max{1,|uk,mi,j |}
} < tol or P k,m = P k,m−1, break, endif

12. endfor

13. set uk = uk,m

Note that, while the MCS method (17) requires the solution of four tridiagonal systems of size N ×N
(two for each of the two dimensions of (2)) at each timestep, where N = (Nx − 1)(Ny − 1), each penalty
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iteration requires the solution of only one tridiagonal system of size N ×N (Line 9 of Algorithm 2), after

computing the solution of three tridiagonal systems of size N × N outside the iteration loop. Thus the

number of tridiagonal solutions at the kth timestep of MCS with penalty iteration is 3 + nitk, where nitk
is the number of penalty iterations in the kth timestep. Note that the above ADI-MCS penalty technique is

implicit, just as the method proposed in [8] for θ-timestepping, and different from the method in [9]. An

extensive numerical study of the convergence of various techniques for handling the early exercise bound-

ary of American options is found in [14]. It is also worth noting, that our technique of incorporating the

ADI-MCS method into the discrete penalty iteration method for two-dimensional problems, can easily be

extended to higher dimensional problems. For example, for a D-dimensional problem, the MCS method

(for the linear problem) requires the solution of 2D tridiagonal systems of size N × N at each timestep,

while, with the penalty iteration technique (for the nonlinear problem), it requires 2D−1+nitk solutions

of tridiagonal systems, at each timestep.

5 Numerical Results

Table 1 displays the parameter values of the test cases we considered. In Table 1, s1
∗ and s2

∗ are

points of evaluations. For all cases, the right boundaries are set to S1 = 8s1
∗ and S2 = 8s2

∗. The test

cases starting with EC, AC and AP denote European Call, American Call and American Put problems,

respectively. Most of the parameter values for the EC and AC problems are taken from example 3 in

[18], and we vary some of these parameters, in order to better study the behaviour of our method. For the

EC problems, we vary the strike; Problem AC P1 has the same parameter values as EC P1, and, for this

no dividend case, the American and the European call spread options are expected to have the same price;

Problem AC P2 is the same as AC P1, with the exception of non-zero dividends. Most of the parameter

values for the AP problems are taken from example 2 in [18], and we vary some of these parameters, in

order to better study the behaviour of our method. In Problem AP P2, we increase the correlation level

compared to AP P1, and in problem AP P3, we also increase the maturity time.

We present results from two instances of our ADI-MCS method, one using uniform (MCS u), and

another using non-uniform (MCS nu) space grid. In the non-uniform implementation, for each of the two

spatial dimensions, we concentrate more points around the respective coordinate of the evaluation point,

using the smooth mapping function of uniform to non-uniform points (see [3], [2])

f(s) =
(

1 +
sinh(b(s− a))

sinh(ba)

)

K, (23)

with a ≈ 0.38, and adjusted so that the strike falls on a gridpoint, and b chosen so that the last gridpoint

falls exactly at the right boundary. We used θ = 1, σ = θ, µ = 0.5 − θ for the MCS parameters, and

p = 10−5 for the penalty parameter.

We compare the ADI-MCS results, whenever appropriate, with the results derived using various

other methods, such as other PDE approximation methods, analytical formulae, or MC simulations.

More specifically, for comparison purposes, we use the PDE ADI-DR method of MATLAB [7], [5]

(FD Mat, function spreadsensbyfd), applicable to both European and American spread options, MAT-

LAB’s MC simulations (MC Matlab, function spreadsensbyls), also applicable to both European and

American spread options, Margrabe’s formula [17] applicable only to European exchange options and giv-

ing the exact value, and the analytical approximations by Kirk (Kirk apprx) [15] and Venkatramanan and

Alexander (VenAlex apprx) [22], applicable only to European spread options (or American call spread op-

tions with zero dividends). The FD Mat results presented are for the same grid resolutions as the MCS u
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Table 1: Points of evaluation and parameters used in the Black-Scholes equations

Problem s1
∗ s2

∗ K T r σ1 σ2 ρ q1 q2
EC P0 105.84 101.61 0 61/365 0.035 0.38 0.34 0.35 0 0

EC P1 105.84 101.61 4.5 61/365 0.035 0.38 0.34 0.35 0 0

EC P2 105.84 101.61 7.0 61/365 0.035 0.38 0.34 0.35 0 0

AC P1 105.84 101.61 4.5 61/365 0.035 0.38 0.34 0.35 0 0

AC P2 105.84 101.61 4.5 61/365 0.035 0.38 0.34 0.35 0.0762 0.1169

AP P1 127.68 99.43 25 61/365 0.035 0.35 0.38 0.30 0 0

AP P2 127.68 99.43 25 61/365 0.035 0.35 0.38 0.60 0 0

AP P3 127.68 99.43 25 122/365 0.035 0.35 0.38 0.60 0 0

and MCS nu results. It is worth noting that MATLAB’s spreadsensbyfd (FD Mat) applies a logarithmic

transformation to the si variables, then discretizes them on a uniform grid. For the MC Matlab results,

we run 100, 000 paths, and used 1/365 as stepsize, for both European and American cases. Note that,

for the American case, the function spreadsensbyls automatically sets the stepsize to 1/365. The Mar-

grabe, Kirk apprx and VenAlex apprx formulae are continuous functions and do not have discretization

parameters. We emphasize that, of all these methods, only Margrabe’s formula is exact.

In Table 2, we present results from the EC problems EC P0 and EC P2, obtained by FD Mat, MCS u

and MCS nu PDE approximation methods. Furthermore, we present results from MC Matlab, Margrabe

(for EC P0) and Kirk apprx and VenAlex apprx (for EC P2). Since the prices of European and American

call spread options with zero dividends are the same, we just mention that our numerical results also

agree with this fact, and, for brevity, we omit the results for EC P1, as they are similar to the ones

of AC P1, presented later. The results of Table 2 indicate reasonable agreement between the analytical

formulae, MC simulations, and all PDE discretization methods, with the MCS nu method being the closest

to Margrabe for EC P0 and to Kirk for EC P2. We also notice full monotonic convergence for MCS nu,

while monotonic convergence for MCS u and FD Mat is missed only in a few coarse grid cases, but

asymptotically still observed. Furthermore, comparing the values from EC P0 and EC P2, we notice

that the spread call option value decreases as the strike increases, which is expected, as a larger strike

reduces the payoff.

In Table 3, we present results from the AC problems, obtained by the FD Mat, MCS u and MCS nu

PDE approximation methods. Furthermore, we present results from MC Matlab. For AC P1, we also

show the values of Kirk apprx and VenAlex apprx, since these formulae, designed for European spread

options, are applicable to zero dividend American call options too. Furthermore, in Table 3, we list the

number of penalty iterations, only for the MCS nu method, as the number of penalty iterations for MCS u

were very similar to those of MCS nu.

For AC P1, we again notice reasonable agreement between the analytical formulae, MC simulations,

and all PDE discretization methods, with the MCS nu method being the closest to Kirk for AC P1

(EC P1). We also notice monotonic convergence for MCS nu and FD Mat. When comparing the re-

sults of AC P1 (EC P1) and EC P2, we notice that Kirk apprx deviates from MCS nu more as the strike

increases. If we assume that our MCS nu results with large grids give the most accurate prices, and take

into account that, according to [15], the closed-form approximation become less accurate as the strike

price grows larger compared to s2
∗, then the increase of deviation of Kirk apprx with the increase in

strike is expected. For AC P2, we again notice reasonable agreement between MC simulations, and all

PDE discretization methods. When comparing the results of AC P1 and AC P2, we notice that the larger
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Table 2: Prices at (s1
∗, s2

∗) of three numerical PDE methods with various grid sizes for EC P0 and

EC P2. For comparison, for EC P0, Margrabe (exact) = 9.2753426. For EC P2, Kirk apprx =
5.7273001, VenAlex apprx = 5.6950133, and MC Matlab = 5.6998858.

Problem EC P0 EC P2

Nx ×Ny ×Nt FD Mat MCS u MCS nu FD Mat MCS u MCS nu

32 × 16 × 61 9.574830 8.597333 9.122241 6.139433 4.640012 5.589742

64 × 32 × 122 9.645158 9.431610 9.257059 6.068464 5.772938 5.708169

128 × 64 × 244 9.312788 9.352157 9.271836 5.761532 5.812146 5.723239

256 × 128 × 488 9.300076 9.292630 9.274627 5.750488 5.736627 5.725557

512 × 256 × 976 9.280919 9.279982 9.275167 5.731687 5.730293 5.726053

Table 3: Prices at (s1
∗, s2

∗) of three numerical methods and number of penalty iterations (p. it) with

various grid sizes for AC P1 and AC P2. For comparison, for AC P1, Kirk apprx = 6.8656070,

VenAlex apprx = 6.8242103, while MC Matlab = 6.8589669. For AC P2, MC Matlab = 7.0777440.

Problem AC P1 AC P2

Nx ×Ny ×Nt FD Mat MCS u MCS nu p. it FD Mat MCS u MCS nu p. it

32 × 16 × 61 7.362621 5.075992 6.723185 130 7.512371 5.361243 6.927942 125

64 × 32 × 122 7.238465 6.650605 6.848179 255 7.421661 6.890148 7.052129 258

128 × 64 × 244 6.905050 6.885889 6.862544 528 7.103625 7.096546 7.066011 527

256 × 128 × 488 6.891098 6.881371 6.864935 1060 7.093056 7.086801 7.068371 1052

512 × 256 × 976 6.871178 6.871348 6.865274 2023 7.074242 7.075286 7.068662 2021

dividend for s2 results in larger price for the option. This is expected, since the larger dividend for s2
increases the spread, and thus the payoff of the option.

Looking at the total number of penalty iterations in Table 3, we can easily find that the average number

of penalty iterations for MCS varies between 2.05 and 2.20, and, for the finest grids, it is 2.07. The small

variance in number of iterations indicates that the convergence rate of penalty iteration is independent of

the problem size. Note that the computation of the first penalty iteration is attributed to the plain MCS

method, therefore, essentially only one penalty iteration suffices to obtain convergence.

In Tables 4 and 5, we present results from the AP problems, obtained by the FD Mat, MCS u and

MCS nu PDE approximation methods. For AP P1, we also present results by the CN timestepping

method. For brevity, we only include the non-uniform grid CN results (CN nu). Furthermore, we present

results from MC Matlab. We also list the number of penalty iterations, for brevity, only for the MCS nu

and CN nu methods. Notice that Problem AP P3 has double maturity time, and we used double the

number of timesteps. For AP P1, all PDE discretization methods exhibit monotonic convergence, except

one coarse grid case of MCS u. The average number of penalty iterations is around 2 for both MCS nu

and CN nu. For AP P2 and AP P3, where the correlation value is larger, the monotonic convergence

is disturbed for the coarse grid sizes, but recovered for the fine ones. As explained in [4], the standard

tensor-product centered cross-derivative FD approximation may hinder the monotonicity properties of the

matrix to be solved, and when this term comes with a larger factor (larger ρ), it becomes more prominent.

However, as discussed later in the experimental convergence study, the convergence order of the PDE
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Table 4: Prices at (s1
∗, s2

∗) and number of penalty iterations (p. it) of four numerical methods with various

grid sizes for AP P1. For comparison, MC Matlab = 6.42514245.

Nx ×Ny ×Nt FD Mat MCS u MCS nu p. it CN nu p. it

32 × 16 × 61 7.537957 5.023413 6.244111 134 6.246340 141

64 × 32 × 122 6.758517 6.378849 6.382559 269 6.382566 303

128 × 64 × 244 6.491617 6.432238 6.398929 540 6.398665 552

256 × 128 × 488 6.416549 6.414472 6.401766 1033 6.401568 1031

512 × 256 × 976 6.407908 6.405585 6.402309 2005 6.402195 1996

Table 5: Prices at (s1
∗, s2

∗) and number of penalty iterations (p. it) of three numerical methods with

various grid sizes for AP P2 and AP P3. For comparison, for AP P2, MC Matlab = 4.5322051, and for

AP P3, MC Matlab = 6.9451714.

Problem AP P2 AP P3

Nx ×Ny ×Nt FD Mat MCS u MCS nu p. it Nt FD Mat MCS u MCS nu p. it

32 × 16 × 61 6.326957 4.277741 4.524914 131 122 8.371589 7.277957 6.941974 232

64 × 32 × 122 5.185030 5.166896 4.542905 260 244 7.538642 7.677932 6.956781 504

128 × 64 × 244 4.716645 4.865245 4.531880 527 488 7.073126 7.243086 6.941153 1015

256 × 128 × 488 4.565280 4.654163 4.527039 1100 976 6.973622 7.038208 6.934672 2076

512 × 256 × 976 4.537528 4.564074 4.525580 2124 1952 6.942077 6.962628 6.932875 4076

methods is still almost 2. Furthermore, the average number of penalty iterations per timestep remains

approximately 2, i.e. one extra tridiagonal solution is needed per timestep for MCS, besides the four

tridiagonal solutions of the main MCS method.

We next present an experimental study of the convergence of the three PDE approximation methods,

FD Mat, MCS u and MCS nu. For European exchange (zero strike spread) options, i.e. Problem EC P0,

Margrabe’s formula [17] gives the exact value, so we can calculate the exact error for any approximation

method. For European spread options (with non-zero strike), there is no exact formula. We emphasize

that PDE approximation methods exhibit the property of converging to the solution as the discretization

is refined and more computational power is utilized, with the convergence being limited mainly by the

machine precision. The analytical approximations do not possess this property. They are of more limited

accuracy, and, therefore, we do not expect the PDE discretization methods to asymptotically converge

to any of the analytical approximations, such as Kirk apprx or VenAlex apprx. Computing the error as

the difference of a numerical solution from another state of-the-art numerical method or a closed form

approximation carries the problem that we are not guaranteed that the reference solution is more accurate

than our numerical solution.

Considering this, for all the test cases except European exchange options, the error at a particular grid

resolution is estimated by the difference (change) of the solution value with that grid resolution from the

solution value with the previous (coarser) grid resolution.

For brevity, we do not list the errors or changes, but present plots that indicate the behaviour of the

methods. In the graphs of Figure 1, we plot, in log-log scale, the error or change corresponding to

Problems EC P0, EC P2, AC P1, AC P2, AP P1 and AP P3, for the methods FD Mat, MCS u and

MCS nu. In the plots, we included more grid sizes than in the tables, in order to gain better insight on
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Figure 1: Log-log scale graphs of the error or change vs. grid size Nx for different test case problems.
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Table 6: Maximum and mean changes at several points about 20% away of (s1
∗, s2

∗), as compared to

FD Mat changes at (s1
∗, s2

∗), for problem AP P1.

FD Mat MCS nu

Nx ×Ny ×Nt change order max order mean order

64 × 32 × 122 7.8e-01 2.8e-02 1.2e-02

128 × 64 × 244 2.7e-01 1.55 1.6e-02 0.81 5.7e-03 1.07

256 × 128 × 488 7.5e-02 1.83 3.1e-03 2.37 1.1e-03 2.37

512 × 256 × 976 8.6e-03 3.12 6.4e-04 2.28 2.3e-04 2.26

the behaviour of the methods. We notice that MCS nu exhibits a stable order of convergence (easily

calculated from the results of the tables to be close to 2), and the least error (or change) compared to the

other PDE approximation methods. More specifically, the MCS nu error or change is about one order

lower than that of the other methods. Furthermore, the FD Mat and MCS u errors fluctuate a bit, even for

some large grids.

For AP P1, we also consider the prices at several grid points in a rectangular area that extends 20% in

each direction around the original evaluation point. In Table 6, we report the maximum and mean value

changes on a 5 × 5 grid of points in this area, i.e. 25 points. These points are not necessarily points

of the discretization grid. In order to calculate the prices at the 25 points, we use the MATLAB interp2

function, to carry two-dimensional spline interpolation. Table 6, also presents the FD Mat price changes

at the single evaluation point, and the orders of convergence of the displayed changes. We notice that

the MCS nu max (and mean) changes are still significantly smaller than the FD Mat changes on just the

single evaluation point, and the orders remain close to 2.

Table 7 displays values of Greeks, in particular, values of ∆1 = ∂u/∂s1, ∆2 = ∂u/∂s2, Γ1 =
∂2u/∂s21, and Γ2 = ∂2u/∂s22 obtained by MCS nu for different mesh sizes and allows us to compare them

with the FD Mat results as well as results from MC simulations. For brevity, we did not include the MCS u

values of Greeks. However, in Figure 2, we plot the changes of Greeks for FD Mat, MCS u and MCS nu,

versus the grid size, including more data than in Table 7. The Greeks obtained by MCS nu exhibit

monotonic convergence (except one coarse grid ∆1 case). The orders of convergence of the changes for

MCS nu can be easily calculated from the data and are approximately 2 and fairly stable, as the grid is

refined. MCS u exhibits almost similar convergence order behaviour as MCS nu, with some fluctuations

only for the coarse grids, while the MCS u changes are about one or two orders higher than those of

MCS nu. The Greeks obtained by FD Mat do not converge monotonically, but, most importantly, some

of the values obtained do not have any correct digits. The convergence orders of the changes for FD Mat,

whenever they can be calculated, are fluctuating. These results indicate the MCS nu is substantially more

reliable method for computing the Greeks than FD Mat, with MCS u being reliable, but less accurate than

MCS nu. Figure 3 gives three-dimensional plots of ∆1 (left) and Γ1 (right) for problem AP P1 calculated

by the MCS nu method.

Figure 4 presents a three-dimensional plot of the solution (left) as well as the evolution of the free

boundary (right) for problem AP P1 solved by the non-uniform MCS method. The free boundary plot

shows that, for the case of American spread put options, the free boundary starts (t = T or τ = 0) at the

line K − s1 + s2 = 0, where discontinuity of the first derivatives of the payoff occurs, and, as t goes to 0
(τ goes to T ), moves away towards the left.
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Figure 2: Log-log scale graphs of the change vs. grid size Nx for Delta and Gamma values of problem

AP P1.

Figure 3: The Greeks ∆1 (left) and Γ1 (right) calculated for problem AP P1, solved by the MCS nu

method.
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Table 7: Delta and Gamma values at point (s1
∗, s2

∗) for AP P1. For comparison,

MC Matlab(∆1) = −0.405427490, MC Matlab(∆2) = 0.477727230, MC Matlab(Γ1) = 0.044671072
and MC Matlab(Γ2) = 0.038212200.

Nx ×Ny ×Nt ∆1(FD Mat) ∆1(MCS nu) ∆2(FD Mat) ∆2(MCS nu)

32 × 16 × 61 -0.47619079 -0.40038480 0.50423501 0.46551430

64 × 32 × 122 -0.38621580 -0.40093240 0.47275222 0.46882980

128 × 64 × 244 -0.39353201 -0.40090210 0.45739797 0.46942040

256 × 128 × 488 -0.40316349 -0.40087120 0.46803051 0.46954080

512 × 256 × 976 -0.40067206 -0.40086030 0.46864958 0.46957030

Nx ×Ny ×Nt Γ1(FD Mat) Γ1(MCS nu) Γ2(FD Mat) Γ2(MCS nu)

32 × 16 × 61 0.00000000 0.01961120 0.00000000 0.01831630

64 × 32 × 122 0.00000000 0.01912450 -0.00000000 0.01994320

128 × 64 × 244 0.00000000 0.01907570 -0.00000000 0.02014250

256 × 128 × 488 0.01189903 0.01906890 0.03562448 0.02018090

512 × 256 × 976 0.01833890 0.01906810 0.01834768 0.02018960
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Figure 4: The non-uniform MCS approximation of problem AP P1 (left) and free boundary lines at

different timesteps for problem AP P1 (right).
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6 Summary

The pricing of European and American spread options was considered using a two-dimensional Black-

Scholes PDE model, solved by an ADI-MCS method. The ADI-MCS method, especially when imple-

mented with a non-uniform grid, is shown to be a competitive timestepping technique for spread option

pricing. In the case of American spread options, a penalty iteration technique is proposed for the handling

of the early exercise feature. We explain how to bind the penalty iteration technique efficiently with ADI-

MCS. The number of tridiagonal system solutions on top of those of the ADI-MCS method required due

to the penalty iteration is essentially one per timestep, irrespectively of grid size. The way we incorporated

ADI-MCS into the penalty iteration can be straightforward extended to problems of higher dimensions.

Our numerical experiments demonstrate that, for European exchange options, we obtain second order

convergence to the exact value given by Margrabe’s formula. For other spread options, we obtain second

order convergence behavior for price values and the Greeks, as well as smooth solutions, Greeks, and free

boundary lines. The ADI-MCS results demonstrate reasonable agreement with those of MC simulations,

MATLAB’s ADI-DR, as well as with those obtained by Kirk’s formula, with the changes of ADI-MCS

prices from one grid resolution to a finer one being at least an order smaller than the MATLAB ADI-DR

ones, and the changes of ADI-MCS Greeks being several orders smaller than the MATLAB ADI-DR

ones.
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