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Abstract A fundamental challenge in the numerical solution of multidimensional
partial differential equations (PDEs) is the exponential increase of the number of
unknowns as the dimensions increase, known as the curse of dimensionality. This
creates difficulties in obtaining accurate solutions for even moderate-dimension
problems. Researchers have used the sparse grid combination method to reduce the
computational workload for multidimensional PDEs. To resolve the unstable order
of convergence that arises from the nonsmooth initial conditions, typical of finance
problems, researchers applied smoothing (in Fourier space) or, in the case of a Bas-
ket option, a clever coordinate transformation that aligns the line of discontinuity
with a coordinate axis. We view the transformation through the lens of quantization
error, which allows us to determine the minimum order of smoothing required for
restoring the order of convergence, and to highlight certain features of smoothing
techniques. Additionally, we present numerical results for American options and
for options with payoffs that cannot be transformed to align their nonsmoothness
regions with a coordinate axis.

Key words: computational finance, curse of dimensionality, sparse grids, smooth-
ings, quantization error

1 Introduction

There are several option pricing problems described by multidimensional PDEs.
The most basic form of the Black-Scholes equation [1], that models the price of
a contingent claim on a single underlying asset, is one-dimensional (involves one
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spatial variable). One source of additional dimensions comes from multiple assets.
There are options written on arbitrarily many assets, such as basket options, geo-
metric average options, and more.

To mitigate the curse of dimensionality that arises from numerically solving mul-
tidimensional PDEs, researchers have used the sparse grid combination method [5],
which uses substantially fewer degrees of freedom compared to the full grid method,
and hence is more computationally efficient, at the cost of a slightly deteriorated or-
der of convergence from O(hβ ) to O(hβ (logh)d−1), for β -order methods. Sparse
grid methods have originally been developed for multidimensional numerical in-
tegration [14]. The success of the sparse grid combination method relies heavily
on smoothness requirements, which are not normally satisfied in computational fi-
nance, as the typical initial conditions (ICs) exhibit discontinuities. Some recent
works on the pricing of European options use high-order methods [6] with a grid
transformation [9], which aligns the plane of discontinuity for basket options with a
coordinate axis, reducing the smoothness requirements to one dimension, and sim-
plifying smoothing of the ICs when required. Additionally, in [7], no coordinate
transformation is applied, and a more general multidimensional smoothing [8] is
applied to restore the order of convergence. In our work, we

• compare various smoothing techniques with or without the coordinate transfor-
mation, and highlight certain features of each,

• demonstrate, through numerical examples, that the theory of quantization error
[2] for the one-dimensional problem can be applied to certain multidimensional
cases to explain smoothness requirements of the ICs,

• apply the sparse grid combination method to a nonlinear PDE arising from an
American option pricing problem with payoff depending on both dimensions,
and

• provide examples where discontinuities in the payoff cannot be aligned with a
coordinate axis, and show how averaging [11] restores the order of convergence.

2 Problem Formulation

The financial options we consider in this paper are under the Black-Scholes model.
For European options, the PDE that governs the price of the option is given by

Vτ = LV ≡ 1
2

σ
2S2VSS + rSVS − rV, (1)

where V denotes the option price that we are solving for, S the price of the underly-
ing asset, τ the reverse time counted from expiry T (τ = T − t, t is forward or real
time), σ the volatility, r the interest rate, and subscripts denote partial derivatives.
In d dimensions, with d assets, the Black-Scholes PDE is given by

Vτ = LV ≡ 1
2

d

∑
i, j=1

ρi, jσiσ jSiS jVSi,S j +
d

∑
i=1

rSVSi − rV, (2)
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where Si and σi denote the price and volatility of the i-th asset, and ρi, j denotes the
correlation between Si and S j.

Payoff functions correspond to ICs. There are many different payoffs in d dimen-
sions; we use the Basket Put, given by V (0,Si) = max(K −∑wiSi,0), the Min-Put,
given by max(K −min(Si),0), and the Digital (or binary) Basket Call, given by
1(wiSi −K > 0), where K is known as the strike price, wi are the weights, conven-
tionally taken to sum to 1, and 1 is the indicator function. Note that Basket Put and
Min-Put payoffs are C 0, while Digital is C−1. We are interested in the option values
at τ = T and Si ≈ K, as this is considered the interesting region to practitioners.

2.1 American Options

In contrast to European options, American options can be exercised at any time up
to expiry. This early exercise right gives rise to a linear complementarity problem,
which we solve by replacing with the nonlinear PDE [4]

Vτ = LV +ρ max(V ∗−V,0), (3)

where ρ is the reciprocal of the desired accuracy ε for solving with a penalty it-
eration algorithm. Solving the American PDE (3) using second-order numerical
methods results in a deteriorated order of convergence, as shown in [4]. The au-
thors propose to resolve this issue using adaptive timesteps. Further research [13]
has shown that a quadratic transformation of the uniform timesteps also restores the
order of convergence. We prefer to use the latter in our work due to its simplicity.

3 Sparse Grid Combination Method

The sparse grid combination method [5] (henceforth, combination method) is a dis-
cretization method for mitigating the curse of dimensionality. It makes use of ex-
isting PDE solvers, each based on a different, anisotropic tensor product discretiza-
tion. By combining the numerical solutions of the subproblems appropriately, error
terms from dimensions which have coarser discretizations are cancelled out, result-
ing in an accurate approximation to the numerical solution computed by the full
grid method. Additionally, since the subproblems have no interdependence on each
other, parallelization comes easily.

Consider the case in two dimensions. Let ui, j denote the numerical solution com-
puted by the two-dimensional grid with level i and j in the first and second variables
respectively. Each increase by one in level doubles the number of gridpoints in that
dimension.

In two dimensions, the combination method solution at grid level q is computed
by

uc
q = ∑

i+ j=q+1
ui, j − ∑

i+ j=q
ui, j, (4)

and if the method for solving the subproblems admits an error expansion of the form

u−ui, j =C1h2
i +C2h2

j +Dh2
i h2

j (5)
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with hi and h j the stepsizes in the first and second dimensions, respectively, and
where C1, C2 and D are bounded above by a constant independent of hi or h j, then,
with asymptotic error expansions, it can be shown [5] that the error terms on the
coarse grids in both dimensions cancel out, and only q-level errors remain. The com-
bination formulas can be generalized to d dimensions, resulting in O((logN)d−1)
subproblems, each of size O(N) for a total complexity of O(N(logN)d−1). The
combination method solution for the general d-dimensional case is given by

uc
q =

d−1

∑
p=0

(−1)p
(

d −1
p

)
∑

∑ li=q+(d−1)−p
ul1,l2,...,ld . (6)

In other words, it is a sum of d sums, and the coefficient associated with each term
is given by binomial coefficients with alternating signs.

Due to the slightly deteriorated order of convergence, typical orders expected for
2D problems vary from ∼ 1.4 to ∼ 1.8, while for 3D problems from ∼ 1.2 to ∼ 1.7,
assuming about 7 grid refinements.

The combination method was originally developed for elliptic PDEs. In the ap-
plication to parabolic PDEs, we apply the appropriate combination formula to the
solution computed at the final timestep at the respective levels. The timesteps are
chosen to be the same size as that for a full grid method on the same grid level.

4 Numerical methods

In our work, we use second-order accurate methods. Specifically, we use Crank-
Nicolson with Rannacher smoothing [12] (CNR) for timestepping and three-point
finite difference (FD) formulas on nonuniform grids generated by smooth mappings
[3] for spatial discretization. Note that while the nonuniform three-point FD approx-
imation to the second derivative is technically first-order, because we apply it on a
smooth nonuniform grid, it can be shown to be second-order accurate. Multidimen-
sional grids are created from tensor products of one-dimensional grids.

For each spatial variable Si, we truncate the semi-infinite domain [0,∞) to
[0,Si,max] where Si,max is chosen sufficiently large such that the accuracy of the so-
lution near the strike is affected minimally. For 2D problems, we set Si,max = 8K,
and for 3D problems, we set Si,max = 6K.

In a multidimensional discretization, the straightforward application of CNR
timestepping in the combination method may lead to spurious oscillations, so we use
smoothing and other techniques described subsequently to remove the nonsmooth-
ness of ICs. While the nonsmoothness of the ICs may also affect the convergence
of the full grid method, the effect is less visible, especially on C 0 payoffs.

To have a unique solution to the PDE problem, it is not always necessary to have
boundary conditions. For computational purposes, we impose some equations on
the boundary. All boundary conditions we impose are of Dirichlet type, and derived
by time-discounted payoffs (i.e. V (τ,∂Ω) =V (0,∂Ω)exp(−rτ)).
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4.1 Smoothing operators and quantization error

For the smoothing of functions, we turn to their representation in Fourier space. The
well-known paper [8] gives smoothing operators for various orders of smoothness;
relevant here are the first- and second-order smoothings, denoted by Φ1 and Φ2, re-
spectively. While these operators are presented in [8] for uniform grids, we consider
the generalization of Φ1 that appears in [11] and is known as averaging, defined as

us(x j) =
1

x j+1/2 − x j−1/2

∫ x j+1/2

x j−1/2

u(x) dx, (7)

where u is the IC, us(x j) is the smoothed function sampled at the gridpoints x j,
x j−1/2 is halfway between the points x j and x j−1, and x j+1/2 likewise. It can be seen
that us is the average value of u in [x j−1/2,x j+1/2], hence the name. The averag-
ing technique can also be seen as a simple approximate extension of Φ1 of [8] to
nonuniform grids. It also generalizes easily to higher dimensions. For example, in
two dimensions,

us(x j,yi) =
1

(x j+1/2 − x j−1/2)(yi+1/2 − yi−1/2)

∫ x j+1/2

x j−1/2

∫ yi+1/2

yi−1/2

u(x,y) dx dy, (8)

and higher dimensions are analogous.
Quantization error is loosely defined as the error arising from the placement of

the point of nonsmoothness on the discrete grid. In [2], for one-dimensional prob-
lems, explicit formulae are developed for the quantization error with various ICs
of varying degrees of nonsmoothness. We briefly review some facts directly rele-
vant to this paper. Let α ∈ (0,1] be the relative placement of the nonsmooth point
on the grid. As shown in [2], for Heaviside (digital), the quantization error without
smoothing has an O(h) term with coefficient α −0.5, and an O(h2) term with coef-
ficient dependent on α . Thus, aligning the discontinuity with a midpoint in all grid
refinements results in stable O(h2) convergence. Equivalently, the Φ1-smoothed
Heaviside gives stable O(h2) convergence, if α remains constant in all refinements,
and the Φ2-smoothed Heaviside also gives stable O(h2) convergence, regardless
of α . For ramp (call, put, etc) ICs, the quantization error without smoothing has
an O(h2) term with coefficient dependent on α . Thus, aligning the discontinuity
with a gridpoint (easy to maintain in all grid refinements in 1D) results in stable
O(h2) convergence. Equivalently, the Φ1-smoothed ramp function also gives stable
O(h2) convergence, regardless of α . Note that, in multiple dimensions, maintaining
α constant is not easy, if not impossible.

5 Numerical Experiments

To demonstrate the improved efficiency of the methods along with requirements on
smoothness, we present numerical experiments for the two-dimensional American
Basket Put, two-dimensional Digital Basket Call, and three-dimensional Min-Put
options.
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In all numerical experiments, the solution of all subproblems takes place in par-
allel, with enough workers, such that it is possible to distribute only one subproblem
to each worker.

Throughout the section of numerical results, q denotes the grid level, with the
sparse grid solution for a certain grid index qk intended to approximate the full grid
solution at the same index qk, Np denotes the number of subproblems, NS denotes the
number of spatial gridpoints used, Nτ denotes the number of timesteps taken (for the
combination method, we count the gridpoints and timesteps from all subproblems),
and convergence order is calculated with successive differences; that is,

order = log2
(
(uq −uq−1)/(uq+1 −uq)

)
(9)

where uq is the solution of the q-th grid level, measured pointwise at (K,K) in the
two-dimensional case, or (K,K,K) in the three-dimensional case. In all tables and
relevant discussion, “Sparse Grid method” refers to the combination method.

5.1 American Basket Put

Our first problem is the American Basket Put, with results shown in Table 1. The
Full Grid method is not as sensitive to the unsmooth C 0 payoff, and even with un-
smoothed ICs, exhibits second-order convergence. The Sparse Grid method on the
original coordinates with 2D-averaging gives compatible (if not slightly better) re-
sults. The Sparse Grid method on the transformed coordinates as given in [9] is
also comparable. We point out that, since the coordinate transformation aligns the
discontinuity with one coordinate axis, the Fourier transform of the IC reduces to
the one-dimensional case, which is studied extensively in [2]. When using the co-
ordinate transformation, we ensure that our one-dimensional grid in the direction
orthogonal to the plane of nonsmoothness has a gridpoint (1D-alignment with grid-
point) in the location of the nonsmoothness. This allows the combination method
to exhibit a stable order of convergence. In the terminology of [2], the quantization
error is always present and is second order, with a constant coefficient.

5.2 Digital Basket Call

We consider the Digital Basket Call option to demonstrate our numerical method on
C−1 ICs, show that the Greeks have stable convergence also, and to further show
that the coordinate transformation in [9] allows us to analyze basket options using
the one-dimensional case. Although the coordinate transformation method allows
us, with a simple 1D-alignment with a gridpoint, to avoid smoothing for C 0 ICs, as
we have seen in the previous example, this is a feature of the nonsmooth but contin-
uous ICs and not entirely of the transformation itself. When we have discontinuous
ICs, such as this problem, we cannot avoid smoothing even on full grids. This is ap-
parent from the first sub-table of Table 2, where the Full Grid method is first-order.
In the second sub-table, the Full Grid method on transformed coordinates and nei-
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q Np Nτ NS iters value difference order time (s)
Full Grid method, no smoothing

1 1 34 1089 63 0.874869332 — — 2.79e-01
2 1 66 4225 129 0.877385013 2.52e-03 — 2.48e+00
3 1 130 16641 258 0.878047559 6.63e-04 1.92 2.36e+01
4 1 258 66049 515 0.878225544 1.78e-04 1.90 2.58e+02
5 1 514 263169 1027 0.878265165 3.96e-05 2.17 2.46e+03

Sparse Grid method, original coordinates, 2D-averaging
2 3 198 5379 365 0.877620427 — — 9.30e-01
3 5 650 17029 1203 0.878118233 4.98e-04 — 2.97e+00
4 7 1806 46471 3373 0.878241795 1.24e-04 2.01 1.28e+01
5 9 4626 117641 8687 0.878276333 3.45e-05 1.85 5.18e+01
6 11 11286 284555 21153 0.878284761 8.43e-06 2.03 3.11e+02
7 13 26650 667533 50235 0.878287086 2.33e-06 1.86 1.44e+03

Sparse Grid method, transformed coordinates, 1D-alignment with gridpoint
2 3 198 5379 382 0.876834538 — — 2.57e+00
3 5 650 17029 1231 0.877947454 1.11e-03 — 4.73e+00
4 7 1806 46471 3429 0.878204302 2.57e-04 2.12 1.26e+01
5 9 4626 117641 8797 0.878267177 6.29e-05 2.03 5.72e+01
6 11 11286 284555 21583 0.878282833 1.57e-05 2.01 3.03e+02
7 13 26650 667533 50819 0.878286697 3.86e-06 2.02 1.51e+03

Table 1 Two-dimensional American Basket Put Option, with parameters σi = 0.4, ρ = 0.2, r =
0.1, T = 1, and K = 10, solved with penalty method, and quadratic transformation of time domain.
In the Sparse Grid method, all subproblems are solved in parallel.

ther smoothing, nor proper 1D-alignment with a midpoint is also first-order; see
also first-order results in Table 8 of [9]. But, in the third sub-table, 2D-averaging
(second sub-table) restores second-order for the Full Grid method. We note that,
in theory, 2D-averaging (approximation to 2D-Φ1) may not be enough for stable
second-order, but the Full Grid method is not as sensitive to nonsmoothness as the
Sparse Grid method. Also, in the fourth sub-table, transformed coordinates and 1D-
alignment with a midpoint give second-order errors.

Due to lack of space, we present Sparse Grid method results exclusively with
smoothing, since smoothing is necessary even for Full Grid. To get second-order
with the Sparse Grid method, we use transformed coordinates, and 1D-alignment
with a midpoint in all grid refinements (fifth sub-table), which is easy to apply in
one dimension, namely the dimension orthogonal to the plane of discontinuity. The
second-order error can be explained mathematically, by applying the multidimen-
sional Fourier transform to the IC. Since the IC in the new coordinate system de-
pends on only one variable, the Fourier transform is the same as the one-dimensional
transform in that variable. Therefore, the theory in [2] applies. In the original coor-
dinate system, we cannot apply the theory of grid alignment, since the anisotropic
grids from the sparse grid combination method cause gridpoints to have varying
alignments with the plane of discontinuity. If we wish to keep the original coor-
dinates with the Sparse Grid method, we need to apply 2D-Φ2 smoothing (sixth
sub-table).

The last sub-table has a different structure, because we also want to show con-
vergence of the Greeks; we indicate the Gamma (Vxx). Note that Np, Nτ and NS are
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the same as the previous sub-table. The number of iterations would be very similar,
hence is is omitted. Convergence is stable and monotonic.

q Np Nτ NS iters value difference order time (s)
Full Grid method, original coordinates, no smoothing

1 1 34 1089 157 0.5335624882 — — 3.58e-02
2 1 66 4225 401 0.5413892716 7.83e-03 — 1.76e-01
3 1 130 16641 981 0.5454967719 4.11e-03 0.93 1.49e+00
4 1 258 66049 2630 0.5475973997 2.10e-03 0.97 1.70e+01
5 1 514 263169 7058 0.5486592436 1.06e-03 0.98 1.76e+02

Full Grid method, transformed coordinates, no smoothing, 1D-alignment with gridpoint
1 1 34 1089 136 0.5316505597 — — 3.80e-02
2 1 66 4225 301 0.5402955722 8.65e-03 — 1.53e-01
3 1 130 16641 657 0.5449069062 4.61e-03 0.91 1.09e+00
4 1 258 66049 1555 0.5472907262 2.38e-03 0.95 1.11e+01
5 1 514 263169 3623 0.5485028562 1.21e-03 0.98 9.54e+01

Full Grid method, original coordinates, 2D-averaging
1 1 34 1089 170 0.5506961685 — — 5.36e-02
2 1 66 4225 398 0.5499706420 -7.26e-04 — 1.95e-01
3 1 130 16641 1038 0.5497891960 -1.81e-04 2.00 1.73e+00
4 1 258 66049 2632 0.5497438271 -4.54e-05 2.00 1.74e+01
5 1 514 263169 7065 0.5497323344 -1.15e-05 1.98 1.77e+02

Full Grid method, transformed coordinates, 1D-alignment with midpoint
1 1 34 1089 138 0.5520491862 — — 1.12e-01
2 1 66 4225 322 0.5502341477 -1.82e-03 — 1.70e-01
3 1 130 16641 658 0.5498469489 -3.87e-04 2.23 1.08e+00
4 1 258 66049 1555 0.5497573230 -8.96e-05 2.11 1.05e+01
5 1 514 263169 3624 0.5497357514 -2.16e-05 2.05 9.32e+01

Sparse Grid method, transformed coordinates, 1D-alignment with midpoint
2 3 198 5379 809 0.5502339155 — — 8.77e-01
3 5 650 17029 2565 0.5498468301 -3.87e-04 — 1.14e+00
4 7 1806 46471 6796 0.5497572770 -8.96e-05 2.11 1.76e+00
5 9 4626 117641 17033 0.5497357335 -2.15e-05 2.06 5.06e+00
6 11 11286 284555 41471 0.5497304484 -5.29e-06 2.03 1.95e+01
7 13 26650 667533 92999 0.5497291349 -1.31e-06 2.01 7.35e+01
8 15 61470 1531791 206345 0.5497287984 -3.37e-07 1.96 3.33e+02
9 17 139298 3456913 450930 0.5497286947 -1.04e-07 1.70 1.59e+03

Sparse Grid method, original coordinates, 2D-Φ2 smoothing
Gamma (Vxx) value (V ) time (s)

2 1.729238e-04 — — 0.5501696945 — — 2.06e-01
3 1.726895e-04 -2.34e-07 — 0.5498427171 -3.27e-04 — 3.82e-01
4 1.726071e-04 -8.24e-08 1.51 0.5497595027 -8.32e-05 1.97 1.18e+00
5 1.725810e-04 -2.61e-08 1.66 0.5497369071 -2.26e-05 1.88 3.88e+00
6 1.725732e-04 -7.83e-09 1.74 0.5497308590 -6.05e-06 1.90 1.48e+01
7 1.725709e-04 -2.31e-09 1.76 0.5497292769 -1.58e-06 1.93 6.26e+01
8 1.725701e-04 -7.79e-10 1.57 0.5497288599 -4.17e-07 1.92 2.76e+02
9 1.725699e-04 -2.09e-10 1.90 0.5497287516 -1.08e-07 1.94 1.28e+03

Table 2 Two-dimensional Digital Basket Call Option, with parameters σx = 0.4, σy = 0.2, ρ =
0.2, r = 0.1, T = 1, and K = 10. In the Sparse Grid method, all subproblems are solved in parallel.
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5.3 Three-Dimensional Min-Put

Unlike basket options, the Min-Put, a put option written on the minimum of several
assets, has ICs with multiple regions of discontinuity, that make alignment with a
coordinate axis difficult, if not impossible. Hence, these experiments demonstrate
the more general nature of the averaging technique, compared to applying transfor-
mations. In Table 3, we present three sub-tables, one showing second-order con-
vergence of the Full Grid method, and two showing steady and erratic convergence
of the Sparse Grid method with and without smoothing, respectively. In the last
sub-table, we include results with minimum number of subintervals in all grids and
subproblems minN = 12, and minN = 24. A larger minN improves the convergence
rate, at the cost of increased runtime [10]. For minN = 12, Nτ and NS are the same as
no smoothing, with similar runtime. For minN = 24, Nτ is doubled and NS octupled.
The efficiency of the Sparse Grid method is emphasized in the 3D problem, with the
highest grid index (q = 5) of the Full Grid method using similar time as the highest
grid index (q = 8) of the Sparse Grid method for 100 times the error. For the Full
Grid method, we estimate that it would take about three months for q = 8.

q Np Nτ NS iters value difference order time (s)
Full Grid method, no smoothing

1 1 14 2197 42 1.631619998 — — 2.66e-01
2 1 26 15625 78 2.082438148 4.51e-01 — 2.25e-01
3 1 50 117649 201 2.177623887 9.52e-02 2.24 3.78e+00
4 1 98 912673 588 2.200021333 2.24e-02 2.09 9.13e+01
5 1 194 7189057 1769 2.205548944 5.53e-03 2.02 1.60e+03

Sparse Grid method, no smoothing (minN = 12)
3 10 500 64090 1082 2.210251041 — — 1.94e+00
4 19 1862 222247 3907 2.245322399 3.51e-02 — 1.42e+00
5 31 6014 682087 12028 2.212317996 -3.30e-02 0.09 2.74e+00
6 46 17756 1937098 34874 2.218271375 5.95e-03 2.47 1.10e+01
7 64 49280 5214448 89798 2.208918361 -9.35e-03 -0.65 6.84e+01
8 85 130730 13497241 219145 2.210013624 1.10e-03 3.09 3.57e+02

Sparse Grid method, 3D-aver., minN = 12 Sparse Grid method, 3D-aver., minN = 24
3 2.226693054 — — — — — —
4 2.215203163 -1.15e-02 — 2.210620071 — — 1.37e+01
5 2.209757568 -5.45e-03 1.08 2.208408052 -2.21e-03 — 2.38e+01
6 2.208213011 -1.54e-03 1.82 2.207671564 -7.36e-04 1.59 7.16e+01
7 2.207626025 -5.87e-04 1.40 2.207493028 -1.79e-04 2.04 3.11e+02
8 2.207437289 -1.89e-04 1.64 2.207433828 -5.92e-05 1.59 1.46e+03

Table 3 Three-dimensional European Min-Put Option, with parameters σi = 0.4, ρi, j = 0.2 for
i ̸= j, r = 0.1, T = 1, and K = 10. In the Sparse Grid method, all subproblems are solved in parallel.

6 Conclusions

The sparse grid combination method allows numerical solutions of multidimen-
sional PDEs to be computed on grids that have finer resolution than is feasible for
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standard full grid methods. We focused on problems from computational finance,
which are characterized by nonsmooth ICs, that are shown to cause trouble if the
sparse grid combination method is blithely applied. Like other researchers [9, 6, 7],
we turned to smoothing techniques to remedy this. We highlighted particular fea-
tures. The coordinate transformation [9] eliminates discontinuities in all but one
dimension, and allows the application of grid-alignment theory from [2]. Averaging
[11] allows the treatment of more general ICs with discontinuities that cannot be
aligned to a coordinate axis, and gives rise to errors equivalent to coordinate trans-
formation, for C 0 ICs. We obtained second-order accurate solutions and Greeks
(without visible deterioration) for 2D problems, including American options. For
3D problems and complicated payoffs, we obtained the expected (slightly reduced)
order of convergence.

Subsequent work involves the application of sparse grids to other multidimen-
sional nonlinear PDEs, their smoothing requirements, the study of the quantization
error in multiple dimensions, dimension-adaptive techniques for transformed vari-
ables, and closed-form formulae for the smoothing of common payoffs.
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