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Abstract

Quadratic Spline Collocation (QSC) methods of optimal oxfeconvergence have been recently
developed for the solution of elliptic Partial Differeritiequations (PDES). In this paper, linear solvers
based on Fast Fourier Transforms (FFT) are developed fosdhgion of the QSC equations. The
complexity of the FFT solvers i®(N?log N), whereN is the gridsize in one dimension. These
direct solvers can handle PDEs with coefficients in one faéiar constant, and Dirichlet, Neumann
and periodic boundary conditions, along at least one dinecif a rectangular domain. General vari-
able coefficient PDEs are handled by preconditioned iteralvers. The preconditioner is the QSC
matrix arising from a constant coefficient PDE. The convecgeanalysis of the preconditioner is pre-
sented. It is shown that, under certain conditions, the @@®ance rate is independent of the gridsize.
The preconditioner is solved by FFT techniques, and integraith one-step or acceleration methods,
giving rise to asymptotically almost optimal linear sol/ewith complexityO(N? log N). Numerical
experiments verify the effectiveness of the solvers andgmditioners, even on problems more gen-
eral than the analysis assumes. The development and anafySFT solvers and preconditioners is
extended to QSC equations corresponding to systems dieRpEs.

Keywords: spline collocation, elliptic boundary value problem, engalue problem, fast Fourier
transform, iterative solver, scaled Laplace precondiipaystem of PDEs.

AMS Subiject Classification 65N22,65N25,65N35,65T50,65F10,65F15.

1 Introduction

Optimal convergence order collocation methods based ortneplines have been relatively recently
developed [19], [4], for the solution of elliptic BoundaryaMe Problems (BVPs). These methods offer
an alternative to Galerkin finite element methods as welbaddrmite spline collocation methods. It
is known that collocation is a simple-to-implement and gnétion-free method. Its implementation is
problem independent, requiring only one function evatraper data point. Compared to collocation
methods based on not-fully-smooth splines, e.g. Hermitécaplines, smooth spline collocation methods
give rise to smaller linear systems, since they use only @& point per subrectangle. Moreover, the
linear systems arising from the so-called deferred-ctioeespline collocation methods are sparser than
the respective ones from Hermite spline collocation anshefbalerkin methods.

In the numerical solution of (multi-dimensional) BVPs, taeger part of the overall computation time
is spent in solving the resulting linear system of equatioriserefore, the development of a fast solver
associated with a new discretisation method is essentiliéssuccess of the method. A variety of solvers
for spline collocation equations has been studied [18],ifgluding acceleration techniques with various
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preconditioners and domain decomposition, but the arsahas been carried out for only a few solvers
and for restricted classes of PDE operators. For examp[8],imultigrid methods for quadratic splines

are developed and proven to have rate of convergence indepeof the problem size for a certain model
problem.

Hermite cubic spline collocation on the Gauss points gieesth order of convergence approxima-
tions [11], [24]. Fast Fourier Transform (FFT) solvers foerhhite cubic spline collocation equations
arising from Poisson’s problem are developed in [3] andredte to PDEs with coefficients in one vari-
able. These solvers are used as preconditioners for moegatDE problems with Dirichlet conditions
in [1]. The convergence rate of the Richardson and MinimursidR&l (MRES) preconditioned iterative
methods is shown to be independent of the gridsize, by slipthim spectral equivalence of the Hermite
cubic spline operators corresponding to the Laplace andnmr@ general elliptic PDE operator with
Dirichlet boundary conditions.

In its standard formulation, Quadratic Spline Collocat{@$C) on the midpoints of a uniform rectan-
gular partition gives second (sub-optimal) order of cogeece approximations [4]. In [4], optimal QSC
methods are derived and analyzed; more specifically, the €BGcation approximation is fourth order
on the nodes and midpoints of a uniform rectangular pantitesmd third order globally. The derivation
of optimal QSC methods is based on appropriate perturtmbbeither the operator, giving rise to the
so-calledone-stepor extrapolatedQSC method, or of the right side, giving rise to the so-catiealstep
or deferred-correctiofQSC method. In [4], the QSC linear system arising from the $tep QSC method
applied to PDEs with constant coefficients and even deviedaérms is written in a tensor product form
and formulae for the eigenvalues and eigenvectors of theaae derived.

FFT solvers for the two-step QSC system arising from HeltziHeDEs with constant coefficients are
developed in [9]. The FFT is applied to both dimensions. dbiket, Neumann and periodic conditions
are handled. The QSC linear system arising from generadtiellPDEs with variable coefficients is
solved by preconditioned iterative methods, with the pnelttioner being a diagonal scaling of the QSC
matrix arising from a Helmholtz operator. The experimenitsvs that the rate of convergence of the
preconditioned iterative methods is independent of the gj@e, however, no analysis is given.

In this paper, we consider the analysis of the convergerteearad present a number of additional
results. We summarize the relevant properties of the QS@matSection 2, and the formulation of the
FFT solvers for QSC equations arising from Helmholtz PDE$ wonstant coefficients in Section 3. We
extend the FFT solvers to PDEs with coefficients in one végiadnd boundary conditions of any type
along the direction of the other variable, by applying thd k& one dimension and tridiagonal solves to
the other. We also consider2ax 2 system of elliptic PDEs, and the optimal QSC discretisati@ihod
for this problem as developed in [22] and [7], and we formeIBET solvers for the arising QSC matrix.
These solvers can be easily extended to n systems of elliptic PDEs.

In Section 4, using a technique similar to the one used inddHermite cubic splines, we show that
the QSC operators corresponding to the Laplace and to aajezikptic PDE operator without cross-
derivative term and with Dirichlet boundary conditions apectrally equivalent, and that the precondi-
tioned Richardson and MRES iterative methods applied tQB€ matrix arising from a general elliptic
PDE without cross-derivative term with preconditioner @8C matrix corresponding to the Laplace op-
erator have convergence rate independent of the gridsieeeXiénd the results to a genetak 2 system
of elliptic PDEs.

The technique used in [1] to show the spectral equivalenckeoHermite cubic spline operators is
based, among other, on a discrete inner product defined whrtta two-point Gauss quadrature rule, on
various relations regarding orthogonal spline collocgabperators shown in other papers [12], [23], [10],
[2], and on the eigenvalues and eigenfunctions for a modeketie eigenvalue problem, as presented in



[3].

For quadratic splines (and other smooth splines), thesd#tsese not given, and the proof techniques
used for these results in the case of orthogonal collocatiemot directly applicable to spline collocation.
(Note that the results in [12], [23] hold faZ! piecewise polynomials of degree> 3.) Reasons for
this include the facts that spline collocation is not neagbsassociated with orthogonal polynomials,
and that it uses only one data point per subinterval. In ggndrere is less literature on the area of
smooth spline collocation than on orthogo#l piecewise polynomial collocation, since optimal spline
collocation methods have been relatively recently devedopVMoreover, the fact that the basis functions
used with quadratic (and other smooth) spline collocatiemat nodal basis functions, i.e. the values of
the coefficients do not represent function values at pdatiquoints of the grid, complicates matters even
more.

In Section 4, we fill a part of this literature gap. We prove anber of new mathematical results
regarding the QSC operator, similar to those proven for thartte cubic spline operator in [12], [23],
[10], [2], and we develop the eigenvalues and eigenfunstiona model QSC eigenvalue problem.

Finally, in Section 5, we present numerical results venidyihe effectiveness of the solvers and of the
preconditioners even when applied to PDEs more generalhigaones assumed in the analysis.

2 Background

Consider a BVP described by the operator equation
Lu = augy + bugy + cuyy + duy, +euy + fu=g for (z,y) € Q=(0,1) x (0,1), Q)

wherea, b, ¢, d, e, f andg are given functions af andy, andu is the unknown function of andy, subject

to some boundary conditions on the boundaiyof (2. At each line 0©S2 the boundary conditions may be
any of the following typeshomogeneous Dirichlehomogeneous Neumaror periodic Note that some
of the solvers that will be described are applicable to a wmidege of boundary conditions (see Remark
1 of subsection 3.2 and Remark 3 of subsection 3.3). Fortyrewmithis section and subsection 3.1, we
assume that the boundary conditions are homogeneous Naumdme = direction and homogeneous
Dirichletiny, i.e.

u, = 0on x=0,z=1"for 0<y<1 (2)
u = 0on y=0,y=1for 0<z<1 3)

LetA, = {&; = i/M,i =0,---,M} andA, = {y; = j/N,j = 0,---, N} be uniform partitions
of (0, 1) with step-sized, = ﬁ andh, = % respectively. We denote by,, andSx, the quadratic
spline spaces with respect to partitiohs andA,, respectively, constructed so that the splines satisfy the
boundary conditions (2) and (3), respectively. The basigtions{¢f ()}, and {4 (y)}}, for Sa,
and S,,, respectively, are generated through appropriate tramsfions of the model quadratic spline
¢(x) defined by{ ¢(x) = 22 for0 <2 < 1; ¢(x) = =3 + 62 — 222 for 1 <z < 2; ¢(x) =9 — 62 + 22
for2 < z < 3; ¢(x) = 0 elsewherg, and appropriate adjustments to satisfy the boundary tondi
More specifically, letyf (z) = 5¢(;= — i +2), fori = 0,---, M + 1, andx}(y) = 3 (7= —j +2) for
j=0,---,N+1.Thengf = x7 + x5, ¢ = xi, i =2,---, M — 1, ¢y = Xy + X410, ¢ = X1 — Xo»
¢ = xi, i =2,---,N—-landoy = xy — X1 Letrf = (z;0 +2)/2,4 =1,---,M and
7/ = (yj-1 +y;)/2,j = 1,---, N be the midpoints of the partitions, andA,, respectively.

LetSa = Sa, ® Sa, be the approximating space for the BVP (1)-(3). This spasediaension\/ V.
Note that anyu, € S satisfies the boundary conditions by construction. The fskasis functions for
Sa is chosen to be the tensor prod@¢f(x)¢§(y)}iﬂi’fj:1 of quadratic B-splines in theandy directions.
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The two-step optimal quadratic spline collocation (QSCYhud [4] determines an approximation
ua € Sa tou in two steps. In the first step, a bi-quadratic splinee S, is computed so that it satisfies
(1), on the seT = {(7/,7/),i=1,---,M,j = 1,---, N} of collocation points, i.e.

LU =g on T. (4)

The approximatiort/ is of second order, i.e. non-optimal. In the second sigpe Sa is computed so
that it satisfies a perturbed operator equation,

Lua = g — PLU on T, (5)

wherePy, is a perturbation operator defined by stencils [4]. The tesphpproximation: is of fourth
order on the grid points and midpoints of the partition anditbrder globally, that is, it is of the same
order as the bi-quadratic spline interpolant.

The linear equations resulting from (4), if ordered acaogdio the natural ordering (without loss of
generality, first bottom-up, then left-to-right), giveeito aM N x M N linear systemdx = g, whereA
is a block-tridiagonal matrix with tridiagona& x N blocks, the right-side vectgyis a vector of values
of g(z,y) at the collocation points, andis the vector of unknown coefficients (degrees of freedom) of
the finite element representation of the bi-quadratic sphipproximatiortU. It is instructive to note that
equations (5) result in a linear system with the same malti@axd a perturbed right-side vector.

We next give the form ofd in (4) and (5) for specific cases of operatdrs We will use the nota-
tion trid{x1, k2, k3 } to denote a tridiagonal matrix whose all sub-, main- and sdfgonal elements
are equal to scalars;, x, and kg, respectively, except possibly a few elements which willdeéned
separately.

If the operatod. is of Helmholtz type with constant coefficients, i.e. the PBE

Lu = aug, + cuyy + fu =g in Q (6)

wherea, c and f are constants, then the QSC matrix takes the tensor prooinet f

1 a c
A= (T 0 TP + LT @ T8 4 Lrpit g o) )
3\nz 2 3
whereT";" is a M x M tridiagonal matrix of the formi";" = trid{1, -2, 1}, with (15", , = 1

and (7% = =1, TZM = 75" + 8IM, 1M is the M x M identity matrix, 77" isaN x N
tridiagonal matrix of the formi™;" = trid{1,—2,1}, with (I'3"), | = =3 and(T5")y x = =3,
7PN = 7% + 8IN andI is the N x N identity matrix. Note that the first superscri, or F, of

a matrix denotes the type of boundary conditions, DiricbleNeumann, respectively, inherited in the
entries of the matrix.

Now consider a more general type of operdiothan the one in (6). LeL have coefficients in one
variable and no first order terms with respect to the othealib. Without loss of generality, assume that
the PDE is

Lu = aug, + cuyy + euy + fu=gin Q (8)

wherea, ¢, e and f are functions of;. Then the QSC matrix takes the tensor product form

1 1 1
A= g(ﬁTf;’M QTN + ﬁTGE’M QTN + ﬁTﬁE’M @ TN + S FIM @ Tip™) (9)
Yy Yy



whereT;," = D, TN, THY = DTN, 750" = DI and T ;™ = D, 7", and whereD,, D.,
D. andD; are N x N diagonal matrices with the values of the functians, e and f, respectively, on
the pointsr?, j = 1,---, N, andTy " isaN x N tridiagonal matrix of the fornfy”"" = trid{—1,0, 1},
with (T;”°Y), , = Land(Ty"")yy = —1.

3 FFT Solvers for Quadratic Spline Collocation Equations

3.1 Diagonalizations and Algorithms

In this section, we describe two algorithms for the dire¢tison of the QSC equations arising from (6)
and (8). Each algorithm is based on a certain diagonalizgtoblock-diagonalization) of the matrix of
QSC equations.

In [4] explicit formulae for the eigenvalues and eigenvestof the matrices in (7) are derived. As
noted in [9], bothHl™;" and7}?"" can be diagonalized by the inverse of the Discrete CosinesToan ||
(DCT-I1) [20] matrix CM of sizeM x M, and botil'>;" andT;"" can be diagonalized by the inverse of
the Discrete Sine Transform Il (DST-I1) [20] mati$X’ of size N x N, thus, the QSC matrix of (7) can
be diagonalized by the inverse 0f/ @ SV. That s,

A=((C") e (sh)THA(CY @sh) (10)

whereA is a diagonal matrix with the eigenvalues4f If A”}" andAL" areM x M diagonal matrices
with the eigenvalues df ”;" and7;", respectively, on the diagonal, and’;" andA;" areN x N
diagonal matrices with the eigenvaluesidt”™ and7;”"", respectively, on the diagonal,takes the form

1
A= g(%AEM ® AN + %Af’M ® AP + gAf’M ®Ag™"). (11)
T Yy

The diagonalization (10) of the QSC matrikin (7) gives rise to an algorithm for computing the
solutionx = A~'g, using the Fast Cosine Transform Il (FCT-II), the Fast Siren$form Il (FST-1I) and
the respective inverse transforms, iIFCT-Il and iFST-II.

For describing this algorithm and the next one, we adopt aexent notation from [20]. For any
MN x 1 vectorg, letgy. s denote aVv x M matrix with entries the components @faid out in N rows
and M columns, column-by-column. Also, for brevity and later eenience, we define the following
modules:

Module g® = FCST(M, N, g)

Step 1: Perform FCT-Il of siz&/ to each of theV columns of(gy ;)" to obtaing'l) v = CM (gywar)?.

Step 2: Perform FST-Il of siz& to each of thel/ columns of(g\!), ,)* to obtaing'? ,, = S (g} )7,
or equivalentlyg® = (CM @ SN)g.

The above two steps require approximatelyM N log, M and2.5M N log, N real single flops [20],
respectively. Hence, FCS, N, g) requires approximately.5M N log,(M N) real single flops.
Module x = iFCST(M, N, g®)

Step 1: Perform iFCT-Il of siz&/ to each of theV columns of(g'{). ,,)7 to obtaing?) , = (C¥)~1(g¥) 7.

Step 2: Perform iFST-II of siz& to each of thel/ columns of(gg(j)xN)T to obtainx y « = SN(gE\‘j>XN)T
or equivalentlyx = ((CM)~t @ (SV)1)g®.
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The above two steps require approximatzlyM N log, M and2.5M N log, N real single flops, respec-
tively. Hence, iIFCSTR/, N, ¢®?) requires approximatel.5M N log,(M N) real single flops.

We now give the algorithm for computing= A 'g based on the diagonalization (10) of the QSC
matrix A in (7). LetA be aM N x MN diagonal matrix, with the eigenvalues df on the diagonal.
Algorithm 2D-FFTQSC(M, N, g)

Step 1: Computg® = FCST(M, N, g) = (CM @ SN)g.

Step 2: Compute® = A~1g(?),

Step 3: Compute = iFCST(M, N,g®) = ((C*)~t @ (S¥) H)g® = (CM) ' @ (SY)"HAHCM @
SM)g=A""g.

The 2D-FFTQSC algorithm requires approximately N log, (M N) real single flops.

We now consider the QSC matri in (9). Since both™”;" and 7" can be diagonalized by the
inverse of the DCT-Il matrixC", the QSC matrix4 of (9) can be block-diagonalized by the inverse of
CM @IV, That s,

A=((CHteIMBCY oIY) (12)
where
11  gwm D,N 1 em D,N I em pN 1, mM D,N
B = g(ﬁA—’Z ® Tg, +ﬁA6’ ® 173, +ﬁA6’ ® Toe’ +§fA6’ ® Tgp™)- (13)
T Y Yy

Note that the block-diagonal matrix consists ofM/ tridiagonal blocks of sizé&v x N. Also note that the
form of A in (7) is a sub-case of the form of in (9), therefore the block-diagonalization (12) holds for
A'in (7) too.

A second algorithm for computing = A 'g based on the block-diagonalization (12) of the QSC
matrix A in (9) is now presented and turns out to be asymptoticallgevas fast as the 2D-FFTQSC
algorithm.

Algorithm 1D-FFTQSC(M, N, g)

Step 1: Perform FCT-Il of siz&/ to each of theV columns of(gy ;) to obtaing!’ = CM (gy )7,
or equivalentlygV) = (CM @ IV)g.

Step 2: Solve the block-diagonal systéig® = g1, whereB is given in (13).

Step 3: Perform iFCT-Il of siz&/ to each of theV columns of(g'?). ;)7 to obtaink,x x = (CM) (g ,,)7
or equivalentlyx = ((CM)! @ IV)g® = ((CM) 1 @ IM)BH(CM @ IV)g = A 'g.

The block-diagonal matri¥ consists of\/ tridiagonal blocks of sizéV x N, therefore Step 2 consists of
solving M tridiagonal systems of siz& x N, i.e. it requires approximatelyM N real single flops,
of which 3M N are attributed to LU factorization angl\/ N to back-and-forward (b/f) substitutions.
Therefore, the 1D-FFTQSC algorithm requires approxinyaéll N log, (M) (+ lower order terms of
M N) real single flops.

If we assume that/ =~ N, this is asymptotically twice as fast as the 2D-FFTQSC étligor. However,
for reasonable gridsizes, the advantage of the 1D over tre@iithm may not become visible, since the
extralog,(NN) term of the 2D algorithm complexity is small. It is also wortbting that, if the boundary
conditions are periodic in, the block-diagonal matri® consists of blocks that are no longer tridiagonal,
but “almost” tridiagonal (tridiagonal with “corner” en&s), in which case about twice as many flops are
needed for the solution of the blocks.

It is further instructive to note that in both the 2D-FFTQS@ahe 1D-FFTQSC algorithms, the
intermediate data are accessed by rows and by columns, ilteanading way. For example, in Step 1
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of 1D-FFTQSC gy« IS accessed by rows (Fourier transforms are applied to eathrows), while in
Step 2, the intermediate resgﬁ[)X v Is accessed by columns (tridiagonal solves are appliedcto efits
columns).

Algorithms “2D-FFTQSC” and “1D-FFTQSC” are the QSC equeraito Algorithms | and Il, respec-
tively, in [3]. Algorithms | and Il in [3] are given in a generform and the Fourier diagonalization and
block-diagonalization are given for Hermite cubic splim#i@cation. It is worth noting that, for Hermite
cubic spline collocation, four times as many Fourier transis are needed as for QSC, and that the sys-
tem of Hermite cubic spline collocation equations is founds as large as the QSC system. Moreover,
the matrixB arising in Algorithm Il from Hermite cubic spline collocati has 4 non-zero entries per row
(it is penta-diagonal and almost block-diagonal) instefe@i af the respective one from QSC.

For three-dimensional problems, FFT solvers that applyiEotransforms in one, two or three dimen-
sions can be used. In the most effective form, Fourier ttanss are applied to two dimensions and tridi-
agonal solves in the third dimension. Thus the 2D-FFTQSChegincorporated into a three-dimensional
solver that applies the 2D-FFTQSC to block-diagonalizditiesar system and uses tridiagonal solves for
the third dimension, giving rise to @(N?®log, N) asymptotic complexity. In [9], a three-dimensional
solver that applies Fourier transforms in all three dimensis developed.

3.2 Other boundary conditions

The two algorithms given in the previous section were dexigio handle boundary conditions that are
homogeneous Neumann in thelirection and homogeneous DirichletiinThey can be easily adjusted to
handle other boundary conditions that are Dirichlet, Nemmar periodic on any side of the rectangular
domain. Further, algorithm 1D-FFTQSC can handle generaditions in one direction.

For periodic conditions in any of (or both) the two direcspthe one-dimensional matrices arising can
be diagonalized by the inverse of the Discrete Fourier Toains(DFT) matrix, and the respective com-
putation is implemented by the Fast Fourier Transform (Fd its inverse (iFFT). Explicit formulae of
the eigenvalues and eigenvectors for periodic conditiegssen in [9]. When the 1D-FFTQSC algorithm
is used for boundary conditions that are periodig/iand Dirichlet or Neumann i, it is advisable to
order the points, equations and unknowns first left-totrigten bottom-up, so that the FFTs are applied
to they direction and the: direction is handled by the tridiagonal solves. In this vthag, solution of the
“almost” tridiagonal matrices is substituted by the santof (purely) tridiagonal matrices.

We now consider the case of Dirichlet conditions on one siu ldeumann on the opposite side
of the same direction, give explicit formulae for the eiganes and eigenvectors of the arising matrix,
and derive FFT solvers for it. The study of the FFT solutiorthed linear system arising in this case
of boundary conditions was motivated by [15]. Without lo$generality, we assume that the Dirichlet
boundary is ordered first and the Neumann one last (Dirigi&etmann boundary conditions).

The QSC matrix arising from the one-dimensional BVP

Uz = ¢g for z € (0,1), u(0) =0, u,(1)=0

takes the form?™2"" = trid{1, -2, 1}, with (75""),, = =3 and(T"") . = —1. The eigenval-
ues of 72" are
(2t — )

\; = —4sin? TR

=1, M (14)

and an orthonormal set of eigenvectors is

(60, = s CLDIZ0T 5y,
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We can show thaf’2)**! has a Fourier diagonalization of the form
2
T = (VaMET (M) ROAZ (RS By [ ) (15)

whereA”)™ denotes the/ x M diagonal matrix with the eigenvaluesBf;""" on the diagonal (given
by (14)), andE and R are2M x M extension and/ x 2M restriction matrices, respectively, defined by

10 0 S ()
oo1o00 - - - -0

M .
p=[%  anan= |00 00 L0 0
o .- - - - 01000
0 010,

Thus the computation associated with the Dirichlet-Neum@wundary conditions can be handled by the
FST-1l and iIFST-1l of double size, and the appropriate esitem and restriction operations. This gives
rise to an extra factor of 2 in the computational complexityhe algorithms. It should be noted that, if
the 1D-FFTQSC algorithm is used for solving a problem withidlet-Neumann boundary conditions in
only one direction, this direction should be handled by tigagonal solves, with appropriate ordering
of the points, equations and unknowns, thus avoiding théleaize Fourier transforms. If the Neumann
boundary is ordered first and the Dirichlet last, the eigetaurs are given by cosine formulae, and a diag-
onalization similar to (15) occurs, which uses the DCT-lltnxadouble size and its inverse, and slightly
different extension and restriction operators.

Remark 1. Algorithm 1D-FFTQSC is applicable not only to a wider rargfePDE operators, but also
to a wider range of boundary conditions, than algorithm ZO-@SC. More specifically, the block-
diagonalization (12) and the applicability of algorithm-HBPTQSC are still valid, even if the boundary
conditions in they direction are not of the types listed in Section 2. Moreoteg, roles of ther and

y directions can be switched as follows. df ¢, d and f are functions ofz, b = 0, e = 0, and the
boundary conditions are of one of the types listed in Sec@iam they direction and arbitrary in the
direction, with appropriate ordering of points, equatiand unknowns, we can apply an algorithm similar
to 1D-FFTQSC to solve the resulting linear system.

3.3 Extension to systems of PDEs

We consider the extension of the FFT solvers to QSC equatinssg from a2 x 2 system of linear
second-order elliptic PDEs in two dimensions

Ly Ly U g1 :
= in 16
le L22][U] lgzl ( )
where, fori = 1,2 andj =1, 2,

Liju = aijum + bijua;y + cijuyy + dijuz + eijuy + fiju, (17)

aij, bij, cij, dij, €ij, fi; and g; are given functions of andy, andu andv are the unknown functions
of x andy. We assume that botlhandv are subject to same boundary conditions, any of those listed



Section 2. For simplicity, in this subsection we will assutieg the boundary conditions are homogeneous
Neumann in the: direction and homogeneous Dirichletyrfor bothu andw, i.e.

Uy =v, = 0on z=0,z=1for 0<y<1 (18)
u=v = 0ony=0,y=1for 0<zx<1 (29)

The optimal two-step QSC method applied to (16), (18)-(X¥escribed in [22], [7] gives rise to two
linear systems. In the first step of the QSC method, a system= g is to be solved, which, with
appropriate ordering (block ordering), takes the 2 block form

A Ap X1 g1
= 20
[Am Ag lX2] [g2 (20)
Each submatrix;;, fori = 1,2and;j = 1, 2, arises from the QSC discretization of the respective dpera
L;; of (16). In the second step of the QSC method, a linear systigmtke same matrix and perturbed
right-side vector arises.

If each of the operatork;;, fori = 1,2 andj = 1, 2, is of Helmholtz type with constant coefficients,
each of the blocksl;; takes a tensor product form similar to that in (7) and the matrassumes the

block-diagonalization
A — W 0 A11 A12 w1t 0
N 0o W A21 A22 0 w1
wherelV = (CM)~t @ (SV)~!, andA;; = WA, W, fori = 1,2 andj = 1,2, are diagonal matrices,
that take a tensor product form as in (11). The matrix

All A12
A= 22
[Am A22] (22)

(21)

can be reordered to give a block-diagonal matrix Witk 2 blocks on the diagonal. It should be empha-
sized that (21) is not a point-diagonalization of the maitnix20), as is (10) of the QSC matrix in (7),
in the scalar PDE case. A point-diagonalization of the matri(20) is possible [22], [7], but it leads to
an FFT algorithm that requires more flops than the FFT algori2D-FFTQSC?2 arising from (21) and
described further in this section.

If each of the operatork;;, fori = 1,2 and;j = 1, 2, has coefficients variable inand no first order
terms with respect te, each of the blocks!;; takes a tensor product form similar to that in (9) and the
matrix A assumes the block-diagonalization

[z 01[Bu Bu][2Z' 0
a= 102w A @)

whereZ = (CM)"' @ IV, andB;; = Z7'A;;Z, fori = 1,2 andj = 1,2, are block-diagonal matrices
with tridiagonal blocks on the diagonal, that can take adepsoduct form similar to that in (13). The

matrix
Bll BlZ
B = 24
[ By Ba ] (24)

can be reordered to give a block-diagonal matrix with seligonal blocks on the diagonal and at most
6 non-zero entries per row.

The block-diagonalization (21) gives rise to an algoritmndomputing the solution = A 'g, using
the Fast Cosine Transform Il (FCT-1I), the Fast Sine Tramafdl (FST-II) and the respective inverse
transforms, iIFCT-Il and iFST-II.



Algorithm 2D-FFTQSC2(M, N, g)
Step 1: Compute!” = FCSTM, N, g;) = (CM @ SV)g;.
Computeg”) = FCSTIM, N, g) = (CM @ SV)g,.
Step 2 Leg® = [(g{")T(g{")T]7. Solve the systemg® = g1, whereA is given in (22).
Letgt” = [(g®);,i=1,---, MN]” andg}” = [(g®);,i = MN +1,---,2MN]".
Step 3: Compute!’) = iFCST(M, N, g!?) = (CM)1 @ (SV)1)gl?.
Computegt? = iFCST(M, N, gl?) = (CM)~1 @ (SV)1)gl?.
Letx = [xIxI]T.

The dominant part of the computation in the above algorithent@o performances of FCST and two of
iFCST. The solution of\g®? = gM) in Step 2, is performed by reordering the rows and column4 of
and the rows of" according to the alternating ordering [22], [7], so thhabecomes a block-diagonal
matrix with 2 x 2 blocks on the diagonal. Therefore, Step 2 requivéd/N) flops, more precisely,
approximately8 M N real single flops. Therefore, the 2D-FFTQSC2 algorithm meguapproximately
10M N log,(MN) (+ lower order terms of\/ N) real single flops, that is, about twice as much as the
2D-FFTQSC algorithm for a single Helmholtz PDE problem (8);(3).

A second algorithm for computing= A 'g based on the block-diagonalization (23) is now presented
and turns out to be asymptotically twice as fast as the 2DFFHT2 algorithm.
Algorithm 1D-FFTQSC2(M, N, g)

Step 1: Perform FCT-Il of siz&/ to each of theV columns of((g;) v x:)” to obtain(g") sy =
CM((g1)nx)?, or equivalentlyg! = (CM @ IV)g,.
Perform FCT-II of sizel/ to each of theV columns of((g2) v )7 to obtain(gt") sy =
CM ((g2) wxar) T, O equivalentlyg) = (CM @ IV)g,.

Step 2 Leg® = [(g{")T(g{")T]7. Solve the systemBg® = gV, whereB is given in (24).
Letg{® = [(g®);,i =1, -+, MN]” andg}” = [(g®);,i = MN +1,---,2MN]".

Step 3: Perform iFCT-II of sizé/ to each of theN columns of(( )NxM)T to obtain (x;)yxy =
(CM)L((g?) v )T, or equivalentlyx;, = ((CM)~! @ I¥)g!?
Perform iFCT-Il of sizeM to each of theN columns of(( )NxM)T to obtain (xo) iy =

(CM) "1 ((g5”) wxar)T, OF equivalentlyx, = ((CM) ' @ IV)gl”
Letx = [xIxI]T.

The solution ofBg® = g1 in Step 2, is performed by reordering the rows and columng ahd the
rows of g) according to the alternating ordering [22], [7], so tiabecomes a block-diagonal matrix
with septa-diagonal blocks on the diagonal. (In the impletagon, we actually formB as a septa-
diagonal matrix, and reorder the componentg®f andg® appropriately.) Therefore, Step 2 requires
O(M N) flops, more precisely, approximatelyM N real single flops, of which8M N are attributed to
LU factorization and6M N to b/f substitutions. Each of Steps 1 and 3 reqQise2.5M N log, (M) real
single flops. Therefore, the 1D-FFTQSC2 algorithm requégesroximatelylOM N log, (M) (+ lower
order terms ofd/ N) real single flops, that is, about twice as much as the 1D-FJ @lgorithm for

a single Helmholtz PDE problem (6), (2)-(3), which is (relatto the single PDE case) optimal. If
we assume that/ ~ N, 1D-FFTQSC2 is asymptotically twice as fast as the 2D-FFTQ3algorithm.
However, we note again that, for reasonable gridsizes,dis@dage of the 1D over the 2D algorithm may
not become visible, since the exira, (V) term of the 2D algorithm complexity is small, and the factor
for the lower order terms af/ NV of the 1D algorithm is relatively large.
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Remark 2. Both the 1D-FFTQSC2 and the 2D-FFTQSC2 algorithms can temdrd in a straightforward
way ton x n systems of PDEs.

Remark 3. In describing the algorithms, we have assumed that bathdv satisfy the same boundary
conditions all along)$2. While this assumption cannot be relaxed for algorithm Z-QSC2, algorithm
1D-FFTQSC?2 is applicable in some other cases of boundarglitons. More specifically, itz andv
satisfy the same boundary conditions of either Dirichletuhann, periodic, or Dirichlet-Neumann type
in thez-direction, and different in thg, then the diagonalization (23) is still valid, and the FFhisdd be
applied in the direction of the same boundary conditiond tha tridiagonal solves in the other. Moreover,
the roles ofr andy directions can be switched as explained in Remark 1 or stibeek:2.

Remark 4. When converting the biharmonic equation subject to aetiaundary conditions into a system
of two second-order PDESs, we obtain a special case of (16)wj = Lyy = —A, L, = 0andLy, = E,
whereA\ is the Laplacian andL is the identity operator, and whetieandv satisfy Dirichlet or Neumann
conditions. This system is decoupled and its solution caaltained by solving two single PDEs. The
single PDEs can be solved each by algorithm 1D-FFTQSC asdsrthe boundary conditions in one
of the directions are among those listed in Section 2. (Algor 2D-FFTQSC is also applicable if the
boundary conditions allow.) For the convergence analyisi3C for systems of two PDEs see [7].

4 Preconditioners for Quadratic Spline Collocation Equations

In this section, we consider the solution of the QSC equatatsing from general elliptic PDEs of the
form (1) by preconditioned iterative methods. The analissarried out for the QSC equations arising
from self-adjoint PDEs with homogeneous Dirichlet bourydanditions all alon@f). It is then extended

to non-self-adjoint PDEs without cross-derivative ternineTanalysis assumes that the preconditioner is
the QSC operator\, arising from the Laplace operator and homogeneous Diticdaditions onos?,
therefore,Sx,, the basis functiong?, and consequently, are adjusted appropriately.

4.1 Quadrature relations
Consider the BVP described by the operator equation (1)renhés a self-adjoint operator given by
Lu = —(a(z,y)us)e — (c(z, y)uy)y + f(z,y)u, (25)
and homogeneous Dirichlet boundary conditiongoni.e.
u(z,y) =0 onol. (26)

In the following, let(-, -) denote the standard inner product, thatisw) = [, vwdD, whereD may be
an one- or two-dimensional domain, and|let|| .2 (p) be the associatet? norm.

For any bounded functiongz, y) andw(z, y), define the discrete pseudo-inner produgty),, by two
equivalent formulae

N
(U, w)ﬂ?y = Z hy(v('v ij)v w('v ij))a: = Z hx(U(Tixv ')7 w(TixJ ))?J?
=1 '
where(v, w), and(v, w), are defined by

(v,w), = th(vw)(ﬁ”, -) and(v, w), = Zhy(vw)(-,T;-’).

i—1 j=1
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Note that, forv,w € Sa, (v,w)4, is an inner product, since any bi-quadratic spline can bgueaty
determined by its values on the collocation points [4], ar@-quadratic spline is the zero one, if and
only if its values on all the collocation points are zero. fdiere, S, is a Hilbert space ang, -),,, the
associated inner product.

Using the Peano representation for the midpoint quadratleserror applied to a functiop €

C?lz; 1, 2], 0 =1,---, M, we get
—/i pdxr = —/i P Ki () d, (27)

where K;(z) is the Peano kernel defined B;(z) = (z;, — x)?/2for x; | < z < 7¥ and K;(z) =
(w; — x)?/2 for 7¥ < x < x;. Itis easy to show that < K;(z) < h2Cy, fori = 1,---, M, where
Let L, andA;, be QSC operators frorfiy into S corresponding td. in (25) and toA (Laplacian),
respectively. That isl,, and/A,, are defined by
(Lpo)(r¥, 7)) = Lo(77, 7}) and(Ap) (77, 7)) = DAov(7f, 7))

> g 10

fori=1,---,M,j=1,---,N. Our goal is to show that,, is spectrally equivalent te-A;,, under the
inner product-, -),,. This is shown in Theorem 3, but to obtain this result we wéid a number of other
results which we show next.

Lemma 1 Letp € Sa,. Then0 < ||px||%2(0,1) < (= Puwy D)
PROOF

Using integration by parts and applying (27)+@.,p in each subintervdk:; ,z;],i = 1,---, M, and
summing up we have

0 < (P2, Pz) = (—PwzsP) = (— P> P Z/ (PaaD) 22 di (2)dr < (—Dazs D)
Ti—1

taking into account that, in eadh;_1, z;], (pyep)se = P2, > 0 andK;(z) > 0. QED.

Theorem 1 Assume(x,y) € C3(2) with respect tar andc(x, y) € C*(Q) with respect tay, f(z,y) €
C, and0 < a < a(w,y), c(x,y) < v, forall (x,y) € Q. Then, for allv, w € S,

(Lh,U?w)Iy = Bflt(vaw) +Bf2L(an) + (fvaw)zya (28)
where
By (v,w) = By(w,v) (29)
(=D, 0) ey < Bii(v,0) < Y(=Ap0,0)4y (30)
|Bii(0,w)] < C8(hy, hy) (= Do, 0) 302 (= Dpw, w),1?, (31)

and where(' is a positive constant independentot, f, h, andh,, and

6(h, hy) = max(h, max(|[a||oo, [|@zz| o) + hiHamxHOOv hy max(||ey||oo; [|cyylloo) + hZHnyyHoo)-

12



PROOF
For anyj = , N, by applying (27) to—(av,).(-, 7}/ )w(-,7}) in each subintervalr; ,z;], i =
1,--+, M, summlng up and using integration by parts and Leibnitdfedéntiation formula, we get

(—(ave)e (-, 77),w(71))e = (ave(-,7/),w —FZ:/CEz 1 (aV2) W) e (2, 7)) Ki(2)d

= Li(a,v,w,7)) + Ly(a,v,w,T}), (32)

L)

where 1

I(a,v ’LU,TJ) = (av,w,)(z, dx+a0222/ (AU W) l‘,T])K (z)dz,
0 Ti—1

1<m<2,0<n<2

M 3 &
S Y o (@), ) Ki(w)ds
=1 Ti1

i=1 1= m+n=4—1 i

Ir(a,v w,T;/)

where the constants,,,,, arise from Leibnitz’s formula and are positive.
From the definition off;, the lower bound of:, the positiveness af,,,,,, and of the integrals, and the
fact thatl,(1,v,v,7/) = 0, we have

Li(a,v,0,7!) > / 2dx+aa0222/x dx
= al(1,v,v,7; )+ alsy(1, U,U,ij) = a(—vm(-,Tf),v(-,T;-’))x.
In a similar way, we can show an upper boundfgu, v, v, 7). Thus
a(=vse(, 7)), 0(77))e < Lia,v,0,7)) < Y(=vae(, 7)), 0(, 7)) (33)

From the definition of/, and the triangle and Cauchy-Schwarz inequalities, we have

M 3 1<m<2,0<n<2
|IQ(CL,U,UJ,T;-!)| < h?vC?ZZ ||a¥>||00 Z ||Ua(5m>('7Tf)||L2($i—1,$i)||w9(5n>('7T]Z/)||L2($i—1,$i)
i=11=1 m+n=4—I1
1<m<2,0<n<2

3
< RG> el D0 I 20
=1

m-+n=4—1

) 2o

whereC; is a positive constant arising from the constants, andC,. Using the inverse inequality
[VzalL2(0,1) < Cs3hy vzl 20,1, fOr v € Sa, whereC; a positive constant independent/of, and the
Poincaré |nequallty|v||L2 0,1) < C4||vx||L2 (0,1), C4 > 0, we have

| L2(a, v, w, 77)| < Cs0a(ha)l|va (- ) |20, Jwa (- 7)1 2200, (34)
where 0a(hy) = hy max(||az|oos [|@ze|oo) + hiHameoo
andC’; a positive constant arising froak, C; andCy. By applying Lemma 1, (34) becomes
[ Ia(a, 0,0, 77)| < Csba(he) (=vaa (-, 71), 0(, 7))y 2 (—waw (5 7)), w (e, 7)), (35)

By (32) and the definition of-, -),,,, we have

( (avx xz, W Zh avx * yz/)aw('aT;'J))x = C}IL(UJw) +C}%(va)=



where Chv,w) = Zh[lava)andC’hvw thgava)

By (33) and the definition ofl, we have

Cy(v,w) = Cy(w, v) (36)
Vs V) gy < Chi(0,0) < Y(—Viy V) - (37)

1/2 1/2

Furthermore by (35), Lemma 1 and the inequdjily; < (X s:)Y2(2 t;)1/?, for nonnegative scalars

s; andt;, we have

N
|C}?(va)| < Zhy Uxx » T, )7U('JTJZ/))im(_wCECE('Jij)Jw('va))glvﬂ
7=1
N N
< ) (O Py (=00a (7)), 0 (7)) ) 2 (3 hy (— w0 (-, 7)), w (-, 7)) 2
7j=1 7j=1
= 05(5a(h$)(—1)$$,U)i?f(—ﬂ)xx,w)if. (38)

By symmetry, we can show that

Dj (v,w) = Dj(w,v) (39)
a(—vyy, V)gy < D} (v,v) < Y(—Vyys V) zy (40)
|Dji (v, w)] < C50c(hy) (—vyy, v) g (—wyy, w)ad, (41)

where

M
Di(v,w) = Zhle(c,v,w,Tf), Dh v, w) Zh Jo(e,v,w, ),

1 N
Ji(e,v,w, ) = /0 (cvywy)(Tf,y)dy—i-QOQQZ/y.] (cvyywyy ) (1, y) K;(y)dy, and
=179

-1

N 3 1<m<2,0<n<2

ey =i = y]
- / (Dom ™) (72 y) K (y) dy.

j=ll=1 m4n=4—I it

[
N
M
M

Jo(e,v,w, TF)

Finally, letB) = C}+D; andB; = C7+ Dj. Then(Lyv, w),, = Bi(v,w)+Bi(v,w)+ (f(z,y)v, W)z
Conditions (29) and (30) follow easily from (36), (37), (3)d (40). Condition (31) follows from (38),
(41) and the inequality used in the derivation of (38). QED.

Theorem 1 is the QSC counterpart of Theorem 3.1 in [1], whad$for Hermite cubic splines.

4.2 Eigenvalues and eigenfunctions of a QSC problem

In this section, we obtain the eigenvalues and an orthonlosetaof eigenfunctions for a model one-
dimensional QSC eigenproblem. The respective Hermiteccgjiline results are found in [13], [14] and
[3]. Consider the eigenvalue problem

_pa:a:(Tzz) = )\p(,]_lz ) izla"'aMa peSAza p#o (42)
p(0) = p(1)=0. (43)



Using the eigenvalue and eigenvector formulae for the QStixras given in [4], it is easy to show that
the eigenvalues for (42)-(43) are

8 sin®(Irh,/2)

A = _ 1.
' R2(=sin?(Inh, J2) + 2) ’

M

and the corresponding eigenfunctions are

2 M . B
pile) = — sin®(Imhg/2) + 2 ;W@ (2), E=1,--, M,

where the vectorg, are defined by
(@) = V2sin(lmh, (20 — 1)/2), i =1,--- M, I =1,--- M — 1,

and
(qu )i = sin(w(2i — 1)/2), i=1,---, M.

It is also easy to show that the eigenvalues are distinct aattiye.
Lemma 2 Letv,w € Sa,. Then(v,,, w), = (v, W) -

PROOF
As in the proof of Lemma 1

Tj— 1

and (v, Wea)z = (U, W) Z/ (VW) 20 K () d.

The result of the Lemma now follows by noting that, w) ., = vyzWee = (VW,y) e fOr v, w € Sa,, and
that (v,,, w) = (v, w,,) due to the integration by parts rule. QED.

Applying Lemma 2 in the: andy dimensions, we get that the QSC operatgris self-adjoint.

Lemma 3 The sef{p;}”, is orthonormal with respect to the inner prodyet:)...

PROOF
Forl # m, we have

M M
((pl)xx;pm = hxz pl :v:vpm ) = _)\lhx Z(plpm)(Tiw) = _)\l(pl;pm)x
=1

=1

M
and (pla (pm a:a: Tz — ha: Z D pm zz ) - _)\ h Z plpm ) - _)\m(plapm)z-
i=1

i=1

By Lemma 2,((p)) sz, Pm)z = (1, (Pm)ze)- BUt @s the eigenvalues are distinct we must have,,), =
0, for i # m, which implies orthogonality. To show orthonormality, wave, forl # M, ¢/ ¢ =
M 2sin?(Irh,(2i — 1)/2) = 2- M/2 = M, while ¢X,qyy = M, sin?(7(2i — 1)/2) = M. Letp; be
the vector of values gf(z) on7?,i =1,---, M. Then,p; = 213 ¢,/ (= sin®(Irh,/2) + 2) = ;. The
orthonormality ofp;, i = 1, - - -, M, follows from the fact thatp;, p;), = h.pi’ b;- QED.

Any v € Sa, can be written as = >, (v, p;).p;. The following theorem gives bounds for the QSC
operator/\, in terms of the identity operator.
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Theorem 2 Forall v € Sy,

)\*(hxa hy)(va U)a:y S (_Ahva U)xy S )\* (hxa h’y)(UJ U):Eya (44)
where
)\*(haza hy) - )\mzn(hw) + )\mzn(hy)a A* (hza hy) - )\maaz(ha:) + )\maz(hy)a
8 sin®(wh/2) 8
Amin(h) = - , and \,..(h) = —, whereh = h, or h = h,,.
) = e a2 (rh/2) 7 9) () =gz W v
PROOF

First, forw € Sa,,

M M

M
'LU p] —Pj a:a:;Z(w pz a:pz Tz — ZZ w p] ’U] pz)az((_p])zzapz)z
1 =1 =1 j=1

M

(— Wy, w

TM:
=

M

(w p] (w pi)z)\j(pjapi)a: = Z(wapi)?v)‘i(piapi)z = Z)\i(wapi)i'

1j=1 =1 =1

M:

[

Since(w, w), = ¥, (w, p;)2 > 0, we have
)\min(hx)(waw)x S (_wxmw)x S )\max(hx)(w;w)x-

Then, forv € Sy,

Amin (he) (v, U)xy = hy 2_31 Amin (ha) (0 (:, ij); -, Tgy))a:
< hy ;(—U(-,Tf)ww,v(-,T;-/))w = (_vzmv)wy
< hy Z: Amaz (ha) (0(-, 7)), 0(,7)))e = Amaz(ha) (0, ) 2y

By symmetry\in (hy) (0, )2y < (—0yy, 0)zy < Amaz(hy) (v, v)4,. HENCe,
)\* (hza hy)(va U)a:y S (_Ua:a: - Uyya U)a:y S )\*(haza hy)(va U)zy

QED.
From Theorem 2, it is clear thatA,, is positive definite. Also(—A;)~! exists and is unique.

4.3 Spectral equivalence of QSC operators

The following theorem shows that the QSC operdtpcorresponding td in (25) is spectrally equivalent
to the QSC operator A\, corresponding to the negative Laplacian. The Hermite csiplice equivalent
is Theorem 3.1 of [1]. For any two linear operatdrsand L7 from S, into Sa, the notationZ; < L2
means(L;v, v),, < (Lv, v)4y, Yo € Sa.

Theorem 3 Under the assumptions of Theorem 1,

*

Yt — L CS(h hy)| (D) (45)

7
e N\, < Ly <
Q + C&(hzy hy)] ( h) - h = )\*(h/:lH hy)

Ay hy)
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and
(Li, = Ln) (=D0) (L — L) < 4C°62 (hy, hy) (= D), (46)

where
n. = min(0, f,), n" = max(0, f*), f. = min{f(z,y)}, f* = max{f(z,y)},
C andd(hy, h,) are defined in Theorem 1, and(h, h,) in Theorem 2.

PROOF
By using the left inequality in (44),

(fva U)xy < f*(va U)xy < 77*(7)7 U)xy < n*(_AhUa U):vy/)‘*(hxa hy)a
and
(fo,0)ay 2 fe(v,0)ay > (0, 0)ay 2 N (=L30,0) ey / A (hies hy).-
Relation (45) now follows from Theorem 1.
To show (46), consider = (—A,)~ (L, — L;)v. From (28), (29) and (31) we have

w, (L — L))y = B2(v,w) — B2(w,v) < 206(hy, hy) (—Apv, 0) 2 (w, (L, — LE)v)L/?
n)V)xy h h y h

Ty Ty

and hence
(w, (L = Ly)v)ay < 4C%0% (hy, hy) (= Lnv, 0)ay,

which implies (46). QED.

4.4 Preconditioned iterative methods for QSC

Let go be the quadratic spline interpolant @ft the midpoints. In this section, using the spectral equiv-
alence ofL;, and —A,, we formulate preconditioned iterative methods for saivin,un = ga, with
preconditioner-A,, and convergence rate independentpaindh,,.

Let||-[| = 1/(:,)sy be the standard norm i, ||L}|| = sup,, [|L;v]|/]|v]| be the induced norm
of operatorL;, from Sx to Sa, || - |2 = /(L3+, -) be the energy norm (at;-norm) associated with the

self-adjoint and positive definite operatbt from S to Sa andEj, be the identity operator ifa.

Let us assume that(z,y) > —272%a for (z,y) € ©Q, and let also the assumptions of Theorem 1 be
valid. Relations (45) and (46) of Theorem 3 show that the apes ., and—/\; (A andB, respectively,
in [1]) satisfy all the assumptions of Lemma 2.1 of [1], with

*

Ui

e
* Ty 'Yy

Ae(h, hy) + CO(has hy), 3 = C(ha, hy).

Note that, by using the fact thsit(x) = = + O(2?), Va, we havel /A, (hy, hy) = 1/(27%) + O(h2 + hZ).
Then,

M n
272 272
Furthermore, sinc¢ > —2n%«, 7; > 0 for sufficiently smallh, andh,, andy; > 0. Also note that
the conditionf > —27?« guarantees that the eigenvalues of the QSC matrix arisorg & constant
coefficients Helmholtz operator are of the same sign [4].

Applying Lemma 2.1 of [1] withD of the Lemma chosen to be/A, gives

7=+ + O(hy + hy), 72 =7+ + O(hy + hy) andy; = O(hy + hy). 47)

B — 70, 2L, < p (48)
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where

2 _ 1+R)r-1-F)n _ V3
(1_/)’{)7 p= K=

7t 72 Q+®)p+1-r~)n" 1/7172—1—7??.
Relation (48) shows thatis the bound for the norm of the iteration matrix of a one-gisgronditioned
iterative method applied th,uan = ga With preconditioner/\, and scaling factor. Thusp is the rate

of convergence of the respective preconditioned Richardsnl MRES methods as shown in Theorems
2.1 and 2.2 in [1]. More specifically,

(49)

k
1ul) = uall_a, <P —uall a, (50)

whereu(A'“) =M Zj.vzl ng“j) o7 ¢? is the bi-quadratic spline approximation computed atiftle iteration
of Richardson’s method applied 1g,ux = ga, With (symmetric) preconditioner A\, and scaling factor
7, whereT andp are given by (49). A similar relation can be shown for the MRte8ates and for the
(L;(—=Ap) "t Ly)-norm of the error,

We next show thap is asymptotically independent &f, andh,. We also predict an approximation
to p and the optimum scaling parametefor Richardson’s method according to Lemma 2.1 in [1]. From
(47) and (49) we have

2 oy —a+(—n)/(27?)

T = + O(hy + h,) andp =
ot ey Ot ) andp = ) )

It is interesting to note that the approximationsfandp obtained from (51) by disregarding th¥h,, +
h,) terms are exactly the same as those in [1] for Hermite cublicespollocation.

It is also worth noting that, if we make certain assumptiangiie signs off, and f*, tighter bounds for
Ly, than those in (45) can be obtained. For examplg, if 0,

fe
Xl )

+ O(hy + hy). (51)

— Co(hy, hy)l (—Ap) <L, < |v+ % + Co(hy, hy)| (—A). (52)

However, (52) leads to a convergence rate improved by Oh? + hz) compared tg in (51), since
1/X*(hg, hy) = O(hZ + h3).

4.5 H!' norms of the QSC approximation error

Relation (50) gives the rate of convergence in the\,)- norm of the error in the bi-quadratic spline
approximationm(f) =M ] 1 U qﬁ%y toun = 3M, xzjqﬁwqﬁy computed by the preconditioned
Richardson method. We WI|| now obtaln aresultin Henorm of the error. For Hermite cubic splines,
the equivalence of the-A, and H!-norms follows easily from earlier work on Hermite cubicispl
collocation, mainly [12] and [23]. In the case of QSC, we naesghow first several results.

Lemma 4 Letp € Sa,. Then(—pee, p)e < 5lpal2(0,1)-

PROOF
Similarly as in the proof of Lemma 1, by applying (27)tgp.. in each subintervak; ;, x;],i =1,---, M,
and summing up we have

0 < (Pes Pe)e = (P> D) Z/ (P2)ou K (@) da.
Ti—1
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Thus(p,, p.) > XM, - 1(p$)$$K( )d:c Sincep is a quadratic ifiz; 1,;132] (pi)m = 2p2. = 2(PeaP) va-
ThUS (—Paas D)o = (Par Do) + ity Job (Peal)eaKi(@)dr = (poy pa) + 5 01 [t (02)eai(2)da <

3( . QED.
5 (D2 2)- Q

We establish bounds on the quadratic spline basis funcsiom$ar to those shown in Lemma 5.4 and
Theorem 5.5 of [23], using the technique of that paper.

Lemmab Fori=1,---,M,j=1,---, M, ||¢7||1oo(a;_1,a,) < 3377,

PROOF
Using the form of the quadratic spline basis functions, weeti@?|| <, ,..;) <
which leads to the desired result. QED.

max{1, 2 5, 1,0} = 3

1
2 4’

Corollaryl Fori=1,---,M,j=1,---, M,

(67, 6%)| < §he27.

PROOF

Without loss of generality, let< j. Using Lemma 5, and a technique similar to that used for thefyof

Theorem 5.51in [23] we have

|(6F, 65| < Sply Jof, 1651|651 de < he 3Ly 37UHHIZRD < 87, 37079(2 4 j — ).

Now using the inequalitg + 1 < 2( )i WhICh holds for any integer> 0, we get the desired result. QED.
The following lemma holds for quadratic splines and doeshave a Hermite cubic spline equiva-

lent, since quadratic splines are “non-nodal”, that is,dbgrees of freedom of a quadratic spline do not

represent values of the spline at some patrticular points.Iditnma is needed in the proof of Theorem 4.

Lemma 6 Letx;,: = 1,---, M, be the coefficients (degrees of freedom) of the finite elem@eresenta-
tion of a quadratic spling@ € S, ,. Then

PROOF
Given thatp(T{”) = %(5X1 + XQ), p(Tix) = %(Xi—l + 6x; + Xi+1), 1= 2, M — 1, andp(ﬁ@) =
%(XM_l + 5x,), the proof of this lemma, though tedious, uses only simpleutations. QED.

Theorem 4 Letp € Sa,. Thens(p,p)x < [Ipl[20,1) < %5 (0 D)

PROOF
The left inequality is shown by considering an arbitraryistdrval (z;_;, z;), j = 1,---, M, and show-
ing thatzh, (p(77))? < Jo (p(x ))?dx by doing simple calculations, singds a quadratic. To show the

right mequallty conS|der the finite element represeatatifp = >, x,¢*. Then, using Corollary 1 and
a technique similar to that used for the proof of Theorem ®[23], we have
Pl 7200y = it 27 xixs(9F, ¢) < 9h SIS [ 27 < Sy YoM M (2 4a2) 27l <
She Yoty (x2 3080, 271 < 27h > M x2. Now using Lemma 6, we get the desired result. QED.

We now extend Lemma 4 to two dimensions. In order to do thisfaNew the approach in [23] and
define a semidiscrete norm fx by

_—_ Loy y Z Loy s
wl|]]” = Zhy/o wz(x,Tj)dx+Zh$/[) wy (71", y)dy.
j=1 =1

Note that||| - ||| is a seminorm in the space of differentiable function&in
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Corollary 2 Letw € Sa. Theng||jw||| < [|[Vw|z2@) < 2| |w]]|.

PROOF
The proof follows from Lemma 4 applied to both thendy dimensions. QED.

The following theorem shows the equivalence ofth&,- and H'-norms in the bi-quadratic spline space.

Theorem 5 Letw € Sa. Then, for some positive constaigand C; independent of\,

Csl|wlmra) < lwll-a, < Collwl|mg).

PROOF
Consider the left inequality. By the definition of the-),,, (-, -), and(:, -), inner products and by Lemma
1, we haVQ|w||2_Ah = (— Wiy W)y +(—Wyy, W)y = Zﬁl Py (=W, W)+ TJZ/)+Z¢A§1 ha(—wyy, w), (777, 7)
> 30 hy(wa, we) (-, 7Y) + X0 he(wy, wy) (77, +) = |/|w]||%. Employing Corollary 2, then the Poincaré
inequality, we gef||w||| > 52 [|Vwl|12@) > Cs||w|| o). The right inequality can be shown in a similar
way, using Lemma 4 instead of Lemma 1. QED.

Having the equivalence of theA - and H'-norms for bi-quadratic splines and using (50), we get

1) = uallmoy < Co*|ul — uallm o) (53)

whereu(Ak) =M Z;-Vzl xz(f“j) o7 ¢? is the bi-quadratic spline approximation computed atiftle iteration
of Richardson’s method applied i9,un = ga, With preconditioner 2\, and scaling factor, where7
andp are given by (51), and' is a constant independent &f a, c and f.

We can obtain the relation (53) for the preconditioned MREgates too, by first establishing the
spectral equivalence of the/\, and L} (—A,)~'L, operators as in Lemma 3.1 of [1], then employing
Theorem 2.2 in the same paper.

4.6 Non-self-adjoint operators

In this section, we extend the result of Theorem 3 to nonadjlbint operators, without cross-derivative
term. Consider the BVP described by the operator equatipmiereL is given by

Lu = _(a(xa y)ua:)z - (C(.Q?, y)uy)y + d(ﬂ?, y)u$ + 6(.2?, y)uy + f(ﬂ?, y)u’ (54)

and homogeneous Dirichlet boundary condition®6n(26). LetL; be QSC operator fromis into Sa
corresponding td in (54).

Theorem 6 Assume(z,y) andd(z,y) € C3(Q2) with respect tar andc(z, y) ande(z, y) € C*(Q) with
respecttay, f(z,y) € C,and0 < a < a(x,y), c(z,y) <, forall (z,y) € Q. Then, for allv, w € Sa,

(0 sy -l ul) o < L s (4 5 +Clovad) o 69
and
(Lj, = Lp)(—=2n) " (L — Ly) < 4C%[0 + 6(ha, hy) + w(ha, hy)*(—A4), (56)

20



where(' is a positive constant independentwt, d, e, f, h, and by, 6(h,, h,) is defined in Theorem 1,
As(hy, hy) in Theorem 2, and
7. = min(0,min f(z,y)), 7* = max(0, max f(z,y)),
W(ha, hy) = max(h, max(||d||co, ||dzl|oo) + hi max(|[dez!|oos || duze|o0),
hy max([le]]oo, [ley[loo) + iy max([legy|loos [leyyylloo));

o = max(||d]|co, ||da]loc, [|€]]sc, [|€y[|0),
wheref(z,y) = f(x,y) — [du(z,y) + ey (2, 9)]/2.
PROOF
We can rewritd.u to get
Lu = —(a(z,y)us)e — (c(,y)uy)y
+%[d(w, Y)ug + (d(z, y)u)s + e(x, y)u, + (e(z, y)u),] + f(x,y)u.

Foranyj = 1,---, N, by applying (27) to((dv, + (dv).)w)(z,7/) in each subintervaly; i, z;], i =
1,---, M, summing up and using integration by parts and Leibnitdfedgntiation formula, we get

My

((dvg + (dv)2) (5 7)), w5 7))e = (dvx(-,Tf),w(-,T}’))—Z/ (dvsw) e (v, 7 ) Ki(w)dix

i=17Ti-1

+ ((dv)o (-, 7/ Z/ ((dv)ow) o (2, 7)) Ki(2)d
= I(dUwT)+I4(dUw,TJ) (57)
where
1 1
Li(d,v,w,7}) = / ((dv),w)(x Ty)d:L‘—/ ((dw)gv)(x, 7})d,
0 0
M 3 0<m,n<2 @
L(dv,w,tf) = > > oqmn/ (dPvmw) (@, 70) Ki(z)da.
i=1 =1 m+n=3—1 Tit

By using (57) and a similar approach to that in the proof ofdreen 1, we can show that

(Lpv,w), E:BZ v,w) + (f(z,y)v, w),

where the bilinear form®; and B? satisfy (29)-(31) and
B} (v,v) =0, |Bi(v,w)| < Co(=Lyv, 0)1/2( Apw w)i{/?,

Bl(v,w)| < Cw Py, Iy Ahvvl/Q —Apw, w2,
h

zy
The proof of the inequalities (55) and (56) now follows in engar way to that of the proof for the
inequalities (45) and (46) in Theorem 3. QED.

Theorem 6 is the QSC counterpart of Theorem 4.1 in [1]. No&, tlor QSC as for Hermite cubic
spline collocation, we cannot predict an approximationh éptimal scaling factor for Richardson’s
method, when the PDE operator is non-self-adjoint.

Theorem 6 allows relations (50) and (53) to hold even on QS@tans arising from (54), assuming
that the conditiory (z, y) > —2n2« is replaced byf (z, y) > —272a, wheref is defined in Theorem 6.
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4.7 Extension to systems of PDEs

In this section, we consider the solution of the QSC equataising from genera x 2 systems of elliptic
PDEs of the form (16) by preconditioned iterative methods.

Consider the spacgx x Sa of 2 x 1 vectors|u, v]” of bi-quadratic splines that satisfy homogeneous
Dirichlet boundary conditions by construction. In thistsew, for convenience, we will denote, v]1 by
[u, v]. Itis easy to show that, fQti;, v1], [ug, va] € Sa X Sa, ([u1,v1], [u2, Vo])ay = (U1, U2)zy + (V1, V2)y
defines an inner product, and thtat x S is a Hilbert space, of dimensiaiv M.

The analysis is carried out for the QSC equations arising {{06), withL,;, 7 = 1,2, j = 1, 2, given
by

Liju = —(aij(%, y)uz)e — (ci5(@, y)uy)y + fij(z, y)u. (58)
We assume that bothhandv satisfy homogeneous Dirichlet boundary conditions)n The precondi-
tioner is the QSC operator arising from

A=

QA 6O
HA 6 ] (59)

with & > & > 0. In Theorem 8 we give a formula to compute the “beSt'and &, a priori, using
knowledge only from the coefficients of the PDE operators.

Let L,;; be the QSC operators correspondindig, ¢ = 1,2, j = 1,2, respectively. Fofu,v] €
Sa % Sa, define the operatois, andA, to be the QSC operators correspondindi@andA, respectively.
That is,

ﬁh[u, U] = [thlu + thzv, Lh21U + Lhzgv] andAh[u, U] = [flAhu + §2Ahv, §2Ahu =+ flAhv].

ThUS, (_Ah[ua U]a [uaAv])a:y = gl(_Ahua u)zy + 52(—Ah7), u)zy + 62(_Ahua U)a:y + 51(—Ah7), U)a:y- It
is easy to show that, is self-adjoint and positive definite undgr, -], [+, -]).,. More specifically, from
Theorem 2 and the definition df,, we have

(& — &) AP, hy)([u, 0], [u, 0])gy < (—&h[u, ol [, 0])zy < (&1 + &) A (ha, By) ([u, V], 1, 0])ay.
Note also that the adjoirit; of L, is given byL; [u, v] = [Lj,,u+ Lj,,v, Ly u + Lj,,v] and the inverse
Aytof Apis given byA, Hu,v] = g[G4, 'u — LA, v, —6A, u+ A, ],

We consider first the cagg = 1, & = 0. In the following, we present a result similar to Theorem 3
for 2 x 2 systems of PDEs and the above preconditioner.

Theorem 7 Assume that the operatols;, for: = 1,2 andj =1, 2, satis_fy assumptions similar to those
of Theorem 1, witl) < Q5 < aij(x,y),cij(:v,y) < Yij for all (x,y) e Q, andfij > —27T26Yij, fori =
1,2andj = 1,2, andL,, and Ly, are self-adjointundet-, -),,. LetA;; = a;j+ o=~ —C;;(hy, hy),

)‘*(hmhy) o
Ly = %'j+7A*(Zf iy +Cdij(ha, hy), wheren;;., 17; andé;; are defined similarly tg., n* andd in Theorem
3, respectively. Let; = I';5/Ay1, 0y = T'y1 /Ay and© = (611, + 6,15,)/2. Then,
min{A;; — ©}(=Ap) < Ly < max{ls + 0}(~Ay) (60)
and - ) - A
(Lh = L) (=An) ™ (Lo = L) < 4C% max{67 (he, hy) } (= L), (61)

whereC' is a positive constant independentaf, c;;, fi;, h, andh,, and A, is constructed withf; = 1
and&, = 0.
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PROOF
We note that, sinc&;;, for: = 1,2 and;j = 1,2, satisfy assumptions similar to those of Theorem 1,
Theorem 3 holds for each of the discrete operafggs, i = 1,2 andj = 1,2. Thus

Ajj(=An) < Lp; <Tyj(=An), (62)

and note that\;; > 0 for sufficiently smallh, andh,. Thus, all four operatoré;;, : = 1,2, j =
1,2, are spectrally equivalent to each other and to the neghtipéacian. More specificallyl,;» <
Dio(=An) < Tio/Avi Ly = 61 Ly Similarly, Loy < oy /AgoLpoy = 02Lpag. From Lyy < 60y Lpy,
we get(Lpiou, 1) gy < 01(Lpi1u, u)gy, Which implies

(Ln120, w)zy > —01(Lpint, )y + (Lpiz(u + v), t)gy. (63)
In a similar way, and using the self-adjointnesd.gf,, we get

(Ln120, u)zy > =01 (Lp110,0)ay + (Lpiz(u + v), 0) gy (64)
From (63), (64), and (62) applied 19,;;, we get

2(thgv,u)zy —91F11((—Ahu,u)zy+ (—Ahv,v)wy) —}—Alg(—Ah(u—}—v),u—}—v)zy (65)

From (65) and a similar relation fdr,,; we have

2((Lp12v, ) gy + (Lpo1u, v)gy) > —(61111 + 62192) (—Dpu, w) gy + (—LAp0, 0)gy) (66)
+(Ar2 + Ag1) (—An(u +v), U+ )y
> —(6iT11 4 0:T92) ((—Apu, w) gy + (—DR0, 1) 4y)- (67)

In a similar way, we can get

2((Lh121}, U)xy + (thlu, U)xy) S (91F11 + 92F22)((—Ahu, U)xy + (—Ahv, U)xy) (68)
—(Ar2 + A1) (—Lp(u = v), u — 0)gy
< (01011 4 02D 90) (= Apu, 1) gy + (— DR, V) gy (69)

From (67), (69), and (62) applied 1g,,; andL,,,, we can obtain (60).

To show (61), consideiu, v1] = (—Ax)~(Ly — Lj)[u, v]. Using the self-adjointness df,;, and
Lz, we have([u, v1], (L — Lj)[w, v])ey = (u1, (Lary = Liyy)0)ey + (01, (Lnzz — Ligz)0)ey- APPlying
a technique similar to that used for the proof of (46) to edcthe terms of the above sum we get (61).
QED.
Remark 5. Theorem 7 shows that, if, for sufficiently small andh,, A;; — © > 0, for; = 1,2, then
Ly, is spectrally equivalent te A,,. Thus, the preconditioner constructed frem,, gives rise to iterative
methods with convergence rate independent of the probleen slaving sufficiently smalt, andh, is
needed in bounding not only;;, 7 = 1, 2, but alsomin;_; ,{A;; — ©} from below by a positive constant
independent ok, andh,, andmax;_; »{I';; + ©} from above by a constant independentgfandh,.
Remark 6. The conditionsA;; — © > 0, for i = 1,2, force; and/or#, to be strictly less than 1 (and
possibly far less than 1).
Remark 7. The conditiond., 1o < 01 Lp11 andLys; < 65 L,99, With 8, < 1 andé, < 1 can be interpreted
as strict diagonal dominance bf, andLs, overL,, andLs;, respectively.
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Remark 8. If 6, > 1, but Lo > 07Lyy, for 07 > 1, andf, > 1, but Ly, > 605 Lo, for 85 > 1, with
appropriate rearrangement of the PDE operators and/omtkreown functions: andv, we can obtain an
equivalent x 2 system of PDEs which satisfies the “diagonal dominance” itimmd
Remark 9. The self-adjointness df,;» andL,,; under(-, -),, is a quite restrictive condition. It holds if
L., andL,; have constant coefficients, or in some other special caséde We were not able to relax
this condition for the analysis, our experiments show thatdondition is only sufficient, not necessary.
We consider now the case of the preconditioner arising fre®y with&; > &, > 0. In the following,
we present a result similar to Theorem 3 2ox 2 systems of PDEs and the above preconditioner.

Theorem 8 Assume that the operatols;, fori = 1,2 and;j = 1, 2, satisfy assumptions similar to those
of Theorem 1, with < «;; < ai(z,y), cii(x,y) < vy, forall (z,y) € Q, fi; > 2%y, fori = 1,2

andj = 1,2, and Ly, and L, are self-adjoint undet:, -),,,. LetA;; = «;; + % — Cb;j(hy, hy),
Ly =i+ % +C6ij(hy, hy), wheren,;., ni; andd;; are defined similarly tay., n* andd in Theorem

3, respectively. Lml = F12/A11, 02 = FQI/AQQ, 0’1 = A12/F11, 05 = A21/F22, = (91F11 + 92F22)/2,
B = (A12 + A21)/2, 0 = (9’1A11 + géAQQ)/Q, andB’ = (Flz + le)/2 Then,

K(=Ap) < Ly < (=Ay) (70)
wherex = min{B/B’, min,; ; »{A;; — O}/ max;_; »{I';; — ©'}} and A, is constructed with
&1 = I,Efl%i{rii +B' -0}, & =8 (71)
Moreover,

26,
(& = &)(& — &)

where(' is a positive constant independentf, c;;, fi;, h, andh,,.

(—An), (72)

(£ — L) (~Bn) ™ (Ln — L) < 40 max{ 5 (hs. hy))

PROOF
As in the proof of Theorem 7 we can obtdil;11 < Lp1o < 01 Lp1 and@)Lyse < Lpoy < 09 Lpoy. We
re-write (66) as

2((Lh120; u)ay + (Ln21th, 0)ay) = —20((=Lnt, W)y + (= B30, 0)ay) + 2B(=L4(u 4 0), 4 4 0)ay
=2(B - O)((—Apu, t) gy + (= L1, v)zy) + 2B((—=Apw, 0) gy + (—DRv, 1) gy). (73)
Using the conditiong’| L1 < Lpia, 05 L2 < Ly, and a technique similar to that used for the proof of

(66) we get

2((Lh,12/07 U/)xy + (Lh?lu, U)xy) S _(0,1A11 + 05A22)((—Ahu7 U’)Iy -+ (_Ahv, U)(Ey)
+(1—‘12 + F21)(—Ah(u + ’U), U+ ’U)wy
=2(B' = O ((=LAnu, w)zy + (m2R0,0)4y) + 2B ((=Dpt, ) gy + (— D40, 1) 4y). (74)

From (73), (74), and (62) applied 19,;; andL;.,, we can obtain

EnAinE:m]{([Aii ]")— B — 0)}(=Apu, u) gy + (= D10, v)zy) + B((=Apu, 0) gy + (—ARv, 1) gy)
< (Lplu, v, U, V]) gy
<max;—1 o{(['i + B' — O") }((=Apu, w)zy + (—ARv,0)4y) + B ((=Apu, v) 5y + (—Av, u)wy).(75)
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For convenience, let; = B/B’, ko = min;_; »{(A;; — ©)}/ max;—; »{(I';; — ©')} and

k3 = min;_y o{(A;; + B — ©)}/ max;_; »{(I';; + B’ — ©")}. We now consider three cases.

Case 1: Ifk; = k1, thenk = k1 = Ky = k3, and we get (70) directly.

Case 2: Ifk3 > k1, thenky > k3 > K1 = K, In Which case we strengthen the left inequality (weaken the
left side) of (75) by replacingnin,;; »{(A;; + B—0)} by k max;_, »{(I';; + B’ — ©’)}, and then get (70).
Case 3: Ifk3 < k1, thenk = ks < k3 < K1, INn Which case we strengthen the left inequality (weaken the
left side) of (75) by replacin@® by x,B’, which again leads to (70). Thus the proof of (70) is complete
To show (72), considd, v;] = (—A,)Y(Ly, — L})[u, v]. Then, we have

([ur, vi), (Lo — Lj)[w, v])ay = (w1, (Lntr — Liyy ))ay + (1, (Llhzz — Lp11)0)ay
= Jl_2( Ai: (Lnir — Lyyy)u, (Lpay — Lhu)u)wy - %(‘AE (Lnoz — Liga)v, (Lna1 — Lzu)u)zy
( Ai?l(thl — Lj1)u, (Lpgz — L};22)U)zy + g‘ffflgg(_Alzl(LhZZ — Ljg0)v, (Lpgz — L};22)U)wy-

Applying a technique similar to that used for the proof of)(46éce to each of the first and fourth terms
of the above sum, and twice to each of the second and thirdtevenget

([ulv Ul]v (f/h - ﬁz)[”’ U])xy

& 4C?6T (= Apu, 1) 4y

€2
& - & Ta-g
£2

Ty
+ 5 5 20522( Ahv,v);éj 20511( Ahu U)1/2 51
1 2

&g
2 2 .
< mang;i{ggi(h“hy)}((—Ah[u,v], 1y 0]}y + E2(= Bt = 0), 4 — V)ay)
1 2

which leads to (72), taking into account t@g%(—ﬁh[u, 0], [ty 0]) oy > E2(—Dp(u—0), u—v)4,. QED.
Remark 10. Theorem 8 shows that, if, for sufficiently small andh,, A;; — © > 0, fori = 1,2, and

B > 0, thenL,, is spectrally equivalent te-A,,. Thus, the preconditioner constructed frond\, with

the scalarg; and&,; chosen as in (71) gives rise to iterative methods with cayerere rate independent
of the problem size. To obtain a computable approximatiog tand &,, approximated,; andl’;; by
ignoring theC's;; terms and approximating, by 272. It is worth noting that what matters in constructing
the preconditioner is the rattQ /¢, and not the actual values 6f and¢s.

Remark 11. Theorem 8 gives tighter bounds for the spectral equival@fé,;, and—A, than Theorem

7, in Cases 1 and 3 of the proof, since> min;—; 5{A;; — ©}/ max;—; 2{I';; + ©} = «’, andx and«’
give the ratios of the bounding constants in (70) and (6@peetively. These ratios are also an indication
of the convergence rate. The closer to 1 ther ' are, the better. (In Case 2, we cannot tell by theory
which bound is better.)

Remark 12. Whené&, = 0, the preconditioner is solved by two applications of the ABFQSC or
2D-FFTQSC algorithms and not by the 1D-FFTQSC2 or the 2D®$T2 algorithms. While the flops
counts are of the same order, the preconditioner @itk 0 requires less flops than the preconditioner
with & > 0.

Remark 13. The conditionA;; — © > 0 guarantees thdt;, — ©" > 0, which in turn guarantees that
&1 > &

Remark 14. Using a technique similar to that of the proof of Theorem &, ean show the relation
K'(=Ap) < Ly < (—Ap), with & = ming_; o { Ay — O}/ max;_; »{I'; — 2B + 0}, andA,, constructed
with & = max;_; 2{[';; — B+ ©}, & = B. However, Theorem 8 gives again (see Remark 11) tighter
bounds in Cases 1 and 3, since- . (Again, in Case 2, we cannot tell by theory which bound isdvgt

IN

20511( Ahu,u)i{l220522( Ahv U)1/2

402532(—Ahv,v)xy
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5 Numerical results

We present results from numerical experiments to demdestine performance of the FFT solvers de-
scribed. All experiments were run on a SUN Ultra-4 (CPU 400AV8UNW, UltraSPARC-II) in Fortran
using double precision. The timings were obtained by théimewet i me() (user CPU time). For the
implementation of the FFT we used the package [21], whiletferother transforms (FCT-II, FST-II, etc)
our own code. The QSC method was implemented by us.

The first problem considered is a Helmholtz problem with tamiscoefficients, used to compare the
performance of the 1D-FFTQSC and the 2D-FFTQSC algoritrsrdiract solvers.
Problem 1:

Ugg + 3ty —2u =g in Q= (0,27) x (0,7), u=0 ony=0,y=m, u periodicin z

The functiong is chosen so that the solutiento the problem isu(z,y) = sinz siny. Note that the
1D-FFTQSC algorithm is applicable as a direct solver to ti&€Q@ystem arising from more general than
constant coefficient Helmholtz problems. The computaticoanplexity of 1D-FFTQSC remains the
same whether it is applied to problems with operators ofype {6) or (8).

Table 1 shows results from the application of the 1D-FFTQ®Q the 2D-FFTQSC algorithms to
the QSC equations arising from the discretization of Prmoble The error and convergence results are
presented in order to verify the performance of the QSC nigths it is described in [4]. (Both solvers
produced the same errors.) For ed¢hshown in Table 1, the error “on grid points” corresponds ® th
maximum in absolute value error of the QSC approximatiorhemdiscretization grid, while the “global”
error corresponds to the maximum in absolute value erran@fQSC approximation on a uniform grid
of 20 x 20 points. The “global” error is taken as an approximation @ aiiform norm of the error. The
results show that the QSC method is globally of third orddrilevon the grid points of fourth order, as
expected.

The time shown corresponds to the application of the algmstin the first step of the QSC method.
The second step requires the same amount of time as the frsiTie times to generate and update the
right-side vector in the first and second steps, respegtiaélithe QSC method are not included. The
timing results verify that the FFT solvers are asymptolycalmost optimal. As a measure of the “drift”
from optimality, we apply linear least squares fit of the farime ~ x; x N2 to the data, and obtain
time ~ 2.1x107"N%25 for 1D-FFTQSC, andime ~ 2.1x10~"N?3 for 2D-FFTQSC. When comparing
the experimental timing results of 1D-FFTQSC and 2D-FFTQ®E advantage of the former over the
latter as obtained by the theoretically expected flops iffigdr The difference in the performance of
the two solvers is minimal for a small grid, while, as the gra# increases, it becomes more apparent.
However, the asymptotic factor of 2 obtained by the theornoisreached for the gridsizes considered in
the experiments.

The second problem is a system of two constant coefficientaht#tz PDEs.
Problem 2:
Otgy + 3ty + u + Tvgy + 4vyy +0v = g1

Sty + Aty + 1+ 2000 + 50y 40 =gy L= (DX OD), o ondL

0
The functionsy; andg, are chosen so that the solution to the problem(is y) = (z* — z)(y* — y)e**¥
andv(z,y) = 2°%(z — 1)%y°/%(y — 1)%. Note again that the 1D-FFTQSC2 algorithm is applicable as a
direct solver to the QSC system arising from more general thastant coefficient Helmholtz systems of
PDEs.

Table 2 shows results from the application of the 1D-FFTQ&0@ the 2D-FFTQSC2 algorithms to
the QSC equations arising from the discretization of Prok2e The error on the gridpoints corresponds
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Table 1. Errors, respective orders of convergence, and itinseconds, corresponding to Problem 1
discretized by the QSC method, for several gridsiXes N. The solution is obtained by 1D-FFTQSC
and 2D-FFTQSC.

on gridpoints global time
N error | order| error | order| 1D-FFTQSC 2D-FFTQSC
32 | 1.2e-05 5.8e-05 0.00061 0.00077
64 || 7.7e-07| 4.00 || 6.2e-06| 3.23 0.00212 0.00225
128 | 4.8e-08| 4.00 || 8.6e-07| 2.85 0.01118 0.01534
256 | 3.0e-09| 4.00 || 1.1e-07| 2.95 0.05423 0.06356
512 | 1.9e-10| 4.00 || 9.1e-09| 3.61 0.29842 0.41723

Table 2: Errors, respective orders of convergence, and itinseconds, corresponding to Problem 2

discretized by the QSC method, for several gridsiXes N. The solution is obtained by 1D-FFTQSC2
and 2D-FFTQSC2.

on gridpoints () global @) time
N error | order error | order| 1D-FFTQSC2 2D-FFTQSC2
32 || 8.6e-08 1.1e-07 0.00270 0.00285
64 | 5.4e-09| 4.00 || 1.0e-08| 3.46 0.01172 0.01054
128 || 3.4e-10| 4.00 | 1.2e-09| 3.12 0.04412 0.05097
256 || 2.1e-11| 4.00 || 5.3e-11| 4.46 0.21107 0.25862
512 | 1.3e-12| 4.00 || 8.8e-12| 2.58 1.12897 1.31450

to u, while the “global” error tov. The advantage of the 1D over the 2D FFT solver is less appiartre
case of systems than in the case of single PDEs. We note thaigthe septa-diagonal matri® in Step

2 of the 1D-FFTQSC2 algorithm gives rise to a relatively éafgctor (approximately 44, counting real
single flops) for the complexity of Step 2, which is not taketoiaccount in the asymptotic performance.
By linear least squares fit of the timing data, we obtaine ~ 1.4 x 10~°N?%1¢ for 1D-FFTQSC?2, and
time ~ 1.1 x 10" N?23 for 2D-FFTQSC2. The difference in the exponents 2.16 and fPthe case

of systems of PDEs is more significant than the differencééneixponents 2.25 and 2.30 for the case of
single PDEs, but its effect will be felt for larger gridsizes the factors 1.4 and 1.1 suggest.

The relatively large factor in the solution & may also be the reason for the large ratios between
the timings of 1D-FFTQSC2 of Table 2 over the respective aidD-FFTQSC of Table 1. The theory
suggests an asymptotic factor of 2, while we experimentgiyfactors of 5.5 to 3.7, whelN ranges
between 32 and 512. The experiments suggest that the tivabretymptotic factors are reached for
gridsizes larger than the ones considered in the expergnent

We now present results from numerical experiments to detratesthe performance of the precon-
ditioners described. We consider general elliptic PDE f@wis, including some problems more general
than the analysis assumes. The implementation of our salatethods can be extended in three aspects:
(a) the integration of the preconditioners with acceleratnethods, such as GMRES; (b) the application
of an additional diagonal scaling preconditioner; and k& substitution of the Laplace preconditioner
—/A\, by the QSC operatoff;, arising from the model Helmholtz operator (6) with= ¢ = 1 and
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f = —1. (A similar substitution can be done for systems of PDESs.)

We briefly give the rationale for these extensions. The ewrpartal study in [9], which considers
several acceleration methods, as well as Richardson andSvikREEhods, shows that acceleration methods
such as GMRES are in general faster solution methods thastepenethods, and that their convergence
rate with the preconditioners considered is independeahiegbroblem size, as is that of one-step methods.
Although we do not provide an analysis of the convergence s&tGMRES in this paper, we present
numerical results from the GMRES application, since thelte®f Theorem 2.2 of [1] are valid for the
GMRES method as well (though GMRES may converge faster phan(51) indicates), and since the
overall times with GMRES are in general lower than those wither Richardson or MRES. In [9], a
diagonal scaling preconditioner applied in a multiplicativay on top of the Laplace preconditioner is
considered. Left, right and symmetric-left-right diagbpeeconditionings are tested. These variations
were motivated by the work in [16]. In [9], it is shown expe&antally, that left diagonal preconditioning
(D L-preconditioning) is in most cases more effective than rgalnal preconditioning or other forms of
diagonal preconditioning applied on top of Laplace predioning. In this paper, the results of Table 3
are with theD L preconditioner, since, for Problem 3, this preconditiomeguires a few less iterations than
—A\,. In[9], problems with boundary conditions other than Dhifet are considered. When the boundary
conditions are Neumann or periodic, the QSC matrix arisiogifthe Laplace operator is not uniquely
solvable, therefore;-A\,, is substituted by, defined above. Through numerical experiments, we have
found that for Dirichlet conditions the number of iteratsowith preconditionel{,, is the same as with
-/, and with Neumann or periodic conditiond;, has convergence rate independent of the problem
size. Therefore, Helmholtz preconditioning can be usexpectively of the boundary conditions. In [9]
results from three-dimensional problems are also predente

In all experiments, the stopping criterion is the relativelidean norm of the residual and the toler-
ance is set ta0—® for step 1 of the QSC method and1®° for step 2. The “restart” of GMRES is set to
20. We use [17] for the implementation of the GMRES method.

We consider a test problem with variable coefficients.
Problem 3:
(x+y 4+ Dugy + " Yuyy + (x4 Dug + (y — Duy — C(ry + u =g in Q=(0,1) x (0,1)
u =10 on 0f)

The functiong is chosen so that the solutiarto the problem isi(z,y) = %2 (x — 1)%y%/%(y — 1)%. The
parameter controls the size of the term. Several values of the paramejevere considered. Note that
¢ = —10, barely violates the conditiofi > —2r2«, while ¢ = —15 clearly violates it, and = —50
violates it further.

Table 3 shows results from the application of the precomwi#d GMRES method applied to to the
QSC equations arising from the discretization of ProblerfoB( = —15 and( = —50. Note that the
number of iterations were the same for the caSes 1, ( = —10 and( = —15. The 1D-FFTQSC
and the 2D-FFTQSC algorithms were used for the solution @fpifeconditioner at each iteration. The
convergence rate of the iterative method is independenh®fptoblem size, for both = —15 and
¢ = —50, a fact that indicates the effectiveness of the preconwiticeven for problems that do not meet
the (anyway sufficient but not necessary) conditions obthiinom the theory. However, the absolute
number of iterations is affected ky as expected from theory. The timing results show the tinemisp
per iteration, which includes the solution of the precaodier by the FFT algorithms and any other
computation required by the GMRES method, as well asdta time for the solution of the QSC system
(both steps), which includes the time to generate the QS @ aaitd right-side vector, some preprocessing
necessary for the FFT, the solution of the first step of the @f@@od, the update of the right-side in the
second step, and the solution of the second step of the QS det
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Table 3: Errors on the gridpoints, respective orders of eaggnce, number of iterations for convergence
of the D L-preconditioned GMRES method and time in seconds, correlpg to Problem 3 discretized
by the QSC method, for several gridsiz&sx N. The solution of the preconditioner is obtained by
1D-FFTQSC and 2D-FFTQSC.

¢(=-15 ¢ =-50
on gridpoints no. of iter. time no. of iter. time
N error | order| step1l step 2 perit. total\ perit. total|| stepl step2 total
1D-FFTQSC 2D-FFTQSC GE
32 || 3.1e-08 18 13 || 0.003 0.18 0.003 0.18| 24 20 0.11

64 || 1.9e-09| 4.00 18 13 || 0.013 0.73/ 0.013 0.73] 26 20 0.95
128 || 1.2e-10| 4.01 18 13 | 0.060 3.16 0.063 3.24| 26 20 10.51
256 | 7.4e-12| 4.01 18 13 || 0.281 13.90 0.297 14.31 26 20 | 162.28
512 | 4.6e-13| 4.01 18 13 || 1.315 61.58 1.456 65.79| 26 20

By comparing the times of Table 1 with the per iteration timmE€$able 3, we note that the FFT solver
is a small part (about 25%) of the GMRES iteration. From th&ada Table 3, we also infer that the
computation associated with the discretization of the lgmol{matrix and right-side vector generation) is
a significant part (about 33%) of the overall computationisTé of course, a “desirable” effect of a fast
solution method. For comparison, we show the time taken bgéa Gauss elimination.

Next, we consider a system of PDEs with cross-derivativaserThis system of PDEs arises in stress-
analysis problems.

Problem 4: ) )
Vau+ 175, (Ugz + Vay) = 1

. u =0
in =(0,1) x (0,1), on 0.
V20 + 125 (Vg + Uzy) = g2 (0.1) (0, 2) v =

0

The functionsy; andg, are chosen so that the solution to the problentis y) = (z*—x)(y*—y)e*™ and
v(z,y) = 2%%(x — 1)%y?/%(y — 1)2. Although this problem has constant coefficients, it careosolved
directly by the FFT solvers, because of the cross-derigaéivm. The parametercontrols the size of this
term. The physically acceptable valuesddre in (0, 0.5). The larger the the more ill-conditioned the
arising linear system.

Table 4 shows results from the application of the precomw#d GMRES method applied to to the
QSC equations arising from the discretization of Problenfod,r = 0.25 andv = 0.35. For this
experiment, we chosg = 1 and&, = 0.

Forv = 0.25, that is, for relatively small cross-derivative term, theneergence rate of the iterative
method is independent of the problem size, whilefor= 0.35, it is slightly affected by the problem
size. The number of iterations is dependent on the condhigpaf the system, as expected. Even for
ill-conditioned problems, though, the effectiveness efpheconditioned iterative solver over Gauss elim-
ination is apparent. Note that the bandwidth of the QSC tisgatem arising from & x 2 system of
PDEs (with the alternating ordering [22])2$N + 2) + 3, so the memory and time requirements of Gauss
elimination are 4 and 8 times as large, respectively, forstesy of PDESs than for a single PDE.

The ratios of the respective per iteration timings of Tadlesd 3 are around 2.3 to 2.5. In the iterative
solution of the QSC equations by the GMRES method, a signifipart of each iteration is the matrix-
vector multiplication; another part is the solution of thregonditioner; and the rest are vector operations
and the solution of a small least squares problem. The medckor multiplication time for a system of
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Table 4: Errors on the gridpoints, respective orders of eaggnce, number of iterations for convergence
of the— A, -preconditioned GMRES method with;, &) = (1, 0), and time in seconds, corresponding to
Problem 4 discretized by the QSC method, for several gredsizx V. The solution of the preconditioner
is obtained by two applications of 1D-FFTQSC or of 2D-FFTQSC

v=.25 v=.35
on gridpoints () no. of iter. time no. of iter. time
N error | order || stepl step 2| perit. total\ per it. total|| step1 step 2 total
1D-FFTQSC2 2D-FFTQSC2 GE
32 || 1.8e-07 21 16 || 0.007 0.63| 0.007 0.65| 32 25 0.69

64 || 1.1e-08| 3.97 22 17 | 0.033 2.55| 0.033 2.62| 34 28 5.83
128 || 7.8e-10| 3.87 22 17 || 0.167 11.32 0.167 11.68| 35 29 || 74.09
256 | 7.3e-11] 3.43 22 17 || 0.710 46.67 0.718 48.59| 36 29
512 | 6.7e-12| 3.44 22 17 || 3.310 205.12 3.482 218.39] 36 30

two PDEs over the respective time for a single PDE gives aseratio of 4. The respective ratio for the
solution of the preconditioner is 2, and for the vector opers 2 as well. Therefore, the experimentally
obtained global ratios of about 2.3 to 2.5 are within the efgxrange.

Finally, we present some results to show the effeg @nd¢&, to the number of iterations required for
convergence. We consider two systems of PDEs, namely PngtBeand 6. In each problem, each of the
four operatord;;, i = 1,2, j = 1, 2, is of the form (58), withu;;, ¢;; and f;; defined below.

Problem 5:
a1 =5+2e%, ¢ =6+e W, app=1+0.5(x%+y?), ciz =1+ 0.5z + 29?),

Jiu=z+y, fz=-1/(1+z+y)

as; = 0.3e* 1Y, ¢y = 0.3e* 7Y, Uy9 = 7+ 2sinxsiny, cgps = 5 + cosx cos y,
for = —aPy?, fa2 = 1/(1 + zy)

Problem 6:

apl = 3+ exy) Ci1 = 4 + e—a:y) 12 = 3+ 05(ZU2 + y2), Cio2 = 3+ 05([152 + 2y2),
Jiu=z+y, fo=-1/(1+z+y)

as; = 0.5e* 1Y, ¢y = 0.5 Y, a9 = 4+ sinxsiny, cp = 3 + cosx cosy,
fa = =2y, foo =1/(1+2y)

For both problems, the domain is the unit square, the boyradarditions are homogeneous Dirichlet, and
the functionsy; andg, are chosen so that the solution to the problemgisy) = (z* — x)(y* — y)e*™
andv(z,y) = 2% (x — 1)%y°?(y — 1)%

Table 5 shows the number of iterations required for convergef GMRES with the precondition-
ers arising from the indicated values §fand¢&,, for Problems 5 and 6. On Problem 5, the condition
min,;_; »{A;; — O} > 0 is satisfied and the computed ratig/¢, according to Theorem 8 is 5.28. From
the experiments, it is verified that the least number of itena is obtained wheg, /&, is 5. (Values close
to 5 also gave the same number of iterations.) For Problem 5, 0.15 andx’ = 0.10 (see Remark
11), so it is not surprising that the preconditioner with, {&,) = (1,0) requires more iterations than
the one with(¢;, &) = (5,1). We also calculated” = 0.11 and¢; /¢, = 24.69 according to Remark
14. Neither the bound nor the iterations are any better theaoiem 8. On Problem 6, the condition
min,;_; »{A;; — O} > 0is not satisfied, therefore, formally speaking Theoremsdr&aare not applicable.
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Table 5: Number of iterations for convergence of th& ,-preconditioned GMRES method withy, &)
as shown, corresponding to Problems 5 and 6 discretizedel #C method, for several gridsiz&s< V.

Problem 5 Problem 6
€,&) | Lo | 21 | 31| G1) | (251 (10 | 21) | G1 | GBI

N stepy 2 2|1 2|1 21 2|1 241 2|1 2|1 2
32 12 9(15 11,12 9,11 8|11 8|21 16|16 12|17 13|19 14
64 12 9(15 11,12 9,11 8|11 8|21 16|16 12|17 13|19 14
128 12 915 11|12 9|11 8|11 9|22 16|16 12(18 13|19 14
256 12 915 11|12 9|11 8|11 9|22 16|16 12(18 13|19 14

However, we calculated the rat{g/&, according to Theorem 8 and it was found to be 2.11. From the
experiments, it is verified that the least number of iteratits obtained wheég, /&, is 2. The ratiat; /&,
according to Remark 14 is 5.9, which gives the same numbedeugidtions ag¢;, &) = (5,1), clearly
more than(¢;, &) = (2,1). In all cases, the convergence rate remains independeng giroblem size,
except for very minor deviations.

As a final remark, we note that the algorithms presented reare & high degree of parallelism (as far
as the computation is considered). As noted in [6], thoughmassively parallel distributed memory ma-
chines, they are not very scalable due to the high commuaitatsts arising from the data transposition
operations, which are used to implement the patterns ofatatess in the algorithms. Still, satisfactory
parallel efficiencies can be obtained for large gridsizesraasonable number of processors [6].
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