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Abstract

We discuss efficient pricing methods via a Partial Diffel@riEquation (PDE) approach for long-dated for-
eign exchange (FX) interest rate hybrids under a threeffawtilti-currency pricing model with FX volatility
skew. The emphasis of the paper is on Power-Reverse Duadiityr (PRDC) swaps with popular exotic
features, namely knockout and FX Target Redemption (FX-NARChallenges in pricing these derivatives
via a PDE approach arise from the high-dimensionality ofrttuelel PDE, as well as from the complexities
in handling the exotic features, especially in the case®RK-TARN provision, due to its path-dependency.
Our proposed PDE pricing framework for FX-TARN PRDC swapisased on partitioning the pricing prob-
lem into several independent pricing sub-problems ovehn diate period of the swap’s tenor structure, with
possible communication at the end of the time period. Eadhedge pricing sub-problems can be viewed
as equivalent to a knockout PRDC swap with a known time-dégeinbarrier, and requires a solution of
the model PDE, which, in our case, is a time-dependent phacaBDE in three space dimensions. Finite
difference schemes on non-uniform grids are used for thigedpléscretization of the model PDE, and the Al-
ternating Direction Implicit (ADI) timestepping methodseamployed for its time discretization. Numerical
examples illustrating the convergence properties andesiity of the numerical methods are provided.

Keywords: Power-Reverse Dual-Currency (PRDC) swaps, Target Redem{@ARN), knockout, Partial
Differential Equation (PDE), finite differences, non-wmih grids, Alternating Direction Implicit (ADI)

1. Introduction

The cross-currency/foreign exchange (FX) interest ratvat&ves market, like the single-currency one,
is driven by investors’ interest in structured notes andmswén general, the investors are primarily interested
in a rate of return as high as possible, as well as in an oppitytto express a view, i.e. to bet, on future
directions of the spot FX rate and/or the interest rates. H@mother hand, the issuers want to have certain
protection against excessive movements in these rates.

In the current era of wildly fluctuating exchange rates, srogrrency interest rate derivatives, espe-
cially the FX interest rate hybrid derivatives, referredathybrids, are of enormous practical importance.
In particular, long-dated (maturities of 30 years or mor¥)ifterest rate hybrids, such as Power-Reverse
Dual-Currency (PRDC) swaps, are among the most liquid ecas®ncy interest rate derivatives [38]. For
cross-currency interest rate swaps in general, and PRD@ssiwgarticular, popular exotic features, such
as Bermudan cancelable, knockout and Target RedemptioRNJAare often included, since they appeal
to both the investors as an additional yield enhancemesttiegty, and to the issuers as a protection against
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excessive movements in the spot FX rate. Although Bermudanetability is typically favored by the is-
suers, as it gives the issuers the right to cancel the undgrswap at any of the dates of the swap’s tenor
structure, this exotic feature is usually disliked by mamyestors, since it does not provide an indication as
to when the underlying PRDC swap could be pre-maturely teaied [35]. On the other hand, a possibility
of early termination of a cross-currency interest rate swap a knockout or a TARN feature is explicitly
linked to the movements of the spot FX rate and/or the inteag¢ss. As a result, these two exotic features do
not have the afore-mentioned problem of Bermudan canee®béps, and hence, they are usually favored
by the investors. More specifically, in the context of PRD@Gp®; a knockout feature usually stipulates that
the associated underlying PRDC swap pre-maturely teresnat the first date of the swap’s tenor structure
on which the spot FX rate exceeds a specified level. In a PRD&p swth a TARN feature, the sum of
all FX-linked PRDC coupon amounts paid to date is recordad,the underlying swap is terminated pre-
maturely on the first date of the tenor structure when theraotated PRDC coupon amount, including the
coupon amount scheduled on that date, has reached or escaque-determined target cap. Hence, this
exotic feature is usually referred to as the FX-TARN.

As FX interest rate derivatives, such as PRDC swaps, aresegpim moves in both the spot FX rate
and the interest rates in both currencies, multi-factaripg models having at least three factors, namely the
domestic and foreign interest rates and the spot FX ratet beugsed for the valuation of such derivatives.
A popular choice for pricing PRDC swaps is Monte-Carlo (M@hwslation. However, this approach has
several major disadvantages, such as slow convergencediglems in low-dimensions, i.e. fewer than five
dimensions, and the limitation that the price is obtainealsihgle point only in the domain, as opposed to the
global character of the Partial Differential Equation (BRBproach. In addition, MC methods usually suffer
from difficulty in computing accurate hedging parameteushsas delta and gamma, especially when dealing
with the TARN feature/[35]. On the other hand, challengesrinipg these derivatives via a PDE approach
arise primarily from the “curse of dimensionality” assdewith high-dimensional PDEs, as well as from
the complexities in handling the exotic features, esplcialthe case of the FX-TARN provision, due to
its path-dependency. Also, in the context of interest rat@ps, additional complexity arises due to multiple
cash flows. As a result, the pricing of such derivatives veaRIDE approach is highly challenging. While
there are a few papers on the PDE-based pricing of the TARNre#n the literature, such as |7,/ 35], they
are limited to the context of single-currency notes. To testlof our knowledge, efficient PDE-based pricing
of FX interest rate swaps, such as PRDC swaps, with knockalEX-TARN features in a multi-currency
context has not been previously studied in the literatuhgs $hortcoming motivated our work.

In this paper, we discuss an efficient numerical PDE apprdachricing FX interest rate swaps with
knockout and FX-TARN provisions, with emphasis on the pdgpendency of the FX-TARN feature. We
adopt the three-factor pricing model with FX volatility skeroposed in[34]. The major contributions of the
paper are:

e We present an efficient PDE pricing framework for FX-TARN P&Bwaps. Our approach uses an
auxiliary path-dependent state variable to keep track @bttcumulated PRDC coupon amount. This
allows us to partition the pricing problem of these derivediinto several independent pricing sub-
problems over each period of the swap’s tenor structurdy efievhich corresponds to a discretized
value of the auxiliary variable, with possible communioatat the end of each time period. We show
that each of the afore-mentioned pricing sub-problems eandwed as equivalent to a knockout PRDC
swap with a known time-dependent barrier.

e To numerically solve each of the pricing sub-problems, Whiie our case, is a time-dependent parabolic
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

PDE in three space dimensions, we construct and investigafeerformance of certain pre-determined
non-uniform grids with centered finite differences (FD9)tfte discretization of the space variables of
the PDE, while utilizing efficient Alternating Direction Jpticit (ADI) timestepping techniques for its
time discretization.

e We present numerical examples demonstrating the conveggeithe numerical methods, as well as
their efficiency. We also analyze the profiles of the valuecfiom of the knockout and FX-TARN
PRDC swaps.

The remainder of this paper is organized as follows. In 8a@j we first describe the dynamics, knockout
and FX-TARN provisions, as well as the financial motivation PRDC swaps. We then introduce a three-
factor pricing model and the associated PDE. Numerical austland pricing algorithms for knockout and
FX-TARN PRDC swaps are described in detail in Secfibn 3. Nirakresults are presented and discussed
in Sectior 4. Sectionl5 concludes the paper and outlinestpesdsture work.

2. Power-Reverse Dual-Currency swaps

2.1. Introduction

A “vanilla” PRDC swap is similar to a “vanilla” single-cumey fixed-for-floating|[1, 4] interest rate swap,
in which both parties, namely the issuer and the investogeathat the issuer pays the investor a stream of
so-called PRDC coupon amounts, and in return, receivesitiestor's domestic LIBOR payments. (Usually,
the issuer of a PRDC swap is a bank.) However, in a PRDC swa@RDC coupon amounts are linked to
the spot FX rate prevailing when the PRDC coupon rate is sate Hhe spot FX rate is defined as the number
of units of domestic currency per one unit of foreign cursergoth the PRDC coupon rate and the domestic
floating rate are applied on the same domestic currencymadtidenoted by,. Unless otherwise stated, we
investigate PRDC swaps from the perspective of the issutedPRDC coupons. From this perspective, the
investor’'s domestic LIBOR payments represent the streafiomaf inflows, and hence, are usually referred to
as thefunding leg

To be more specific, we consider the tenor structure

T0:0<T1<-'-<T5<T5+1:T, Vo=T,—-Ty 1, a=1,2,...,0+1, (21)

wherev,, represents the year fraction betweEn ; andT,, using a certain day counting convention, such
as the Actual/365 day counting one [4]. Unless otherwistedtan this paper, the sub-scriptg’“and “f”

are used to indicate domestic and foreign, respectivelyA.&, T) be the prices at time < T in domestic
currency of the domestic zero-coupon discount bonds witturita7". For use later in the paper, define

T.+ =T, + 6 whereé — 0", T,- =T, —whered — 07, (2.2)

i.e.T,- andT,+ are instants of time just before and just after the dateespectively.
Given the tenor structuré (2.1), for a “vanilla” PRDC swapeach time{Ta}gzl, there is an exchange
of a PRDC coupon amount for a domestic LIBOR floating-ratenpayt. More specifically, the funding leg
pays the amount, L4(T,_1,T,) Ny at timeT,, for the period(T,_1,7,]. Here, Ly(T,_1,T,) denotes the
domestic LIBOR rate for the period?,_1, 7,], as observed at tim&, ;. This rate is simply-compounded
and is defined by [1, 4]
1— Py(Ty1,T,)

Ly(T,1,T,) = o PaTon o) (2.3)

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 3
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Figure 2.1: Fund flows in a “vanilla” PRDC swap. Inflows andftawts are from the perspective of the
PRDC coupon issuer, usually a bank.

Note thatl,(7,-1,7,) is set at timel,,_,, but the actual floating leg payment for the perjég_,, 7,,] does
not occur until timer,.

Throughout the paper, we denotediy) the spot FX rate prevailing at tinte The PRDC coupon raté,,
a=1,2,...,p, of the coupon amount,C, N, issued at tim&’, for the periodT,,, T,.1], « = 1,2,...,0,
has the structure

C,, = min (max (cfs(fa> — cq, bl> , bc), (2.4)

wherec, andc; respectively are domestic and foreign coupon raieandb, respectively are the floor and
cap of the payoff. The scaling factgy, is usually set to the forward FX raté(0, 7,,) defined by|[1]
Ps(0,T,)
F(0,T,) = =L22224(0), 2.5
( Y ) Pd(O,Ta)S( ) ( )
which follows from no-arbitrage arguments. All parametess:y, by, andb,. in (2.4) can vary from coupon
to coupon, i.e. they may depend @ﬁfa}gzl. However, to simplify the notation, we do not indicate the
time-dependence of these parameters. A diagram of fund floas‘'vanilla” PRDC swap is presented in
Figur
In the so-calledgtandard structurewhich is based on the most commonly used parameter settjngs)
andb. = oo, and by letting

he = <L, andk, = “f,, (2.6)
fa Cy

the PRDC coupon rat€, can be viewed as a call option on FX rates, since, in this ¢asegduces to
Co = ho max(s(T,) — ka,0). (2.7)

As a result, the PRDC coupon leg in a “vanilla” PRDC swap carvieered as a portfolio of long-dated
options on the spot FX rate, i.e. long-dated FX options.

Usually, there is a settlement in the form of an initial fixexde coupon between the issuer and the investor
at timeTj, that is not included in the description above. This signagpon is typically the value at timg,
of the swap to the issuer, i.e. the value at tilgef all net fund flows in the swap, with a positive value of the
fixed-rate coupon indicating a fund outflow for the issuer arral inflow for the investor, i.e. the issuer pays
the investor. Conversely, a negative value of this coupditates a fund inflow for the issuer.

! Note that in the above setting, the last perfidd, 7j51] of the swap’s tenor structure is redundant, since there exobange
of fund flows at timeTs1. However, to be consistent with [34], we follow Piterbangi&ation.

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 4
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In (2.7), theoption notionalh,, determines the overall level of the coupon payment, whigestiikek,,
determines the likelihood of the positiveness of the coudors important to emphasize that, if the strike
« IS low compared ta(7,), the PRDC coupon has a relatively high chance of paying dipesimount.
However, in this case, the option notiorial is typically chosen to be low also, and hence, the overadillev
of the PRDC coupon amount paid at tifhg is small. This is dow-leveragesituation, from the perspective

of the investor. On the other hand, if bath andh,, are high, then we havelagh-leveragesituation. Note
that the leverage level of a PRDC swap is affected by the odtig andc,, and not by their absolute values:
the absolute values @f; andc; only affect the overall coupon amount.

2.2. The model and the associated PDE

In order to model the evolution of the spot FX rate and of theedstic and foreign short rates, we consider
the multi-currency model with the FX volatility skew propakin [34]. We denote by(¢) the spot FX rate,
and byr;(t),i = d, f, the domestic and foreign short rates, respectively. Uniuerdbmestic risk-neutral
measure, the dynamics &ft), r4(t), r;(t) are described by [15]

0?:((;;) = (ra(t) — 1y (t))dt +(t, s(t)) AW, (t),

dra(t) = (0a(t) — ra(t)ra(t))dt + oa(t)dWs(t),
drp(t) = (05(t) — £y ()7 (t) = pra(t)ap()y(t, 5(8))dt + o ()dW (1),
whereW,(t), W,(t), andW,(t) are correlated Brownian motions with
AWa(t)dWs(t) = pasdt, dW(t)dWs(t) = pgsdt,  dWa(t)dW(t) = pardt.

The short rates follow the mean-reverting Hull-White md2dl with deterministic mean reversion rates and
volatility functions, respectively denoted by(t) ando;(¢), fori = d, f, while 0;(¢), i = d, f, also determin-
istic, capture the current term structures. Note that thefgo” drift adjustment-p,(t)o(t)y(t, s(t)), for
drs(t) comes from changing the measure from the foreign risk-aeoteasure to the domestic risk-neutral
one [33]. The local volatility function (t, s(t)) for the spot FX rate has the functional form|[34]

o) =0 (50) " 29)

where¢(t) is the relative volatility functiong(¢) is the time-dependent constant elasticity of variance (CEV
parameter and(t) is a time-dependent scaling constant which is usually s#tadorward FX ratef'(0, t),
for convenience in calibration [34].

Let u = u(s,rq,ry,t) denote the domestic value function of a PRDC swap at tinig,_, <t < T,,
a = f,...,1. Given a terminal payoff at maturity timig,, then onR, x R x R x [T,_1,T,), u satisfies the
PDE [15

(2.8)

ou ou 1 , 0%u 1 Pu 1 ,, 0%
E“"LU_E +37 2(t,s(t))s? 92 +3 (15)8 b + §Uf(t>0—rj%
0*u 0u 0*u
+ Pdsad(t)V(tS(t))SaSar + PfsUf(t)V(RS(t))Sasarf + Pded(t)Uf(t)m
ou ou Ju
Hramrp)s g +H(0al0) = ralt)ra) g +(00(0) O —ppao s (O (65(0)) 5. = rau = 0

2 Here, we assume thatis sufficiently smooth on the domai, x R x R x [T,,_1,Ty)

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 5
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Since we solve the PDE backward in time, the change of variabt T,, — t is used. Under this change of

variable, the PDH(2.10) becomes
Ou =Lu (2.11)
or

and is solved forward im. The pricing of cross-currency interest rate derivatimaganeral, and PRDC swaps

in particular, is defined in an unbounded domain
{(s,rg,7f,7)|s > 0,—00 < 1q < 00,—00 < 1p < 00,7 € [0,T]}, (2.12)

whereT = T, — T,_,. Here,—oo < ry < co and—oo < ry < oo, since the Hull-White model can yield
any positive or negative value for the interest rate. Toestie PDE[(2.11) numerically by FD methods, we
truncate the unbounded domain into a finite-sized commurtatione

{(S,’I“d,’r’f,T) € [0, Soo] X [_Td,ooard,oo] X [—rf,oo,rf,oo] X [O,T]} =0 x [O,T], (213)

wheres, 74, andr; ., are sufficiently large [22, 42].

Since payoffs and fund flows are deal-specific, we defer §prgithe terminal conditions until Sectidn 3.
The difficulty with choosing boundary conditions is thaty B arbitrary payoff, they are not known. A
detailed analysis of the boundary conditions is not the $aafuthis paper; we leave it as a topic for future
research. For this paper, following [16], we impose Dirgtklype “stopped process” boundary conditions
where we stop the processes), r¢(t),rq«(t) when any of the three hits the boundary of the finite-sized
computational domain. Thus, the value on the boundary iplginhe discounted payoff for the current
values of the state variables [16], and is given by

u(s,rq,rp,7) = Py(T, T)u(s,rq,re, T),

where

i. eithers =00rs = s,
ii. eitherry = —r4. OF7q = 7400, and
iii. eitherry = —rp Orry =7y 0.

Here, P,(7,T) under a Hull-White model can be easily computed (see, fomgka, [4]). These artificial
boundary conditions may induce additional approximatioors in the numerical solutions. However, we
can make these errors sufficiently small by choosing suffidy large values fos = s, 74,0, andry ... We
verify this in numerical tests reported in Sectioh 4.

We conclude this section by noting that the Cox-Ingersa$®R(CIR) modell[8, /9], which guarantees
positive instantaneous short rates, can be used for thestimna@ed foreign short rates in the pricing model
(2.8). The numerical methods developed in this paper aceexisected to work well in this case. It would be
interesting to compare the effects of various choices feirikerest short rate models on the prices of PRDC
swaps. We plan to investigate this issue further in the &utur

2.3. Exotic variations

Currently, the three most popular exotic features are Bdanwcancelable, knockout and FX-TARN. All
three features allow, under different conditions, the piure termination of the underlying PRDC swap
after ano-callperiod, usuallyTy, 71-]. The reader is referred to [11, 15] for a detailed discussfafficient
PDE-based numerical methods for “vanilla” and Bermudarcekable PRDC swaps. Efficient pricing of
Bermudan cancelable PRDC swaps using MC simulations inss-aorrency LIBOR market setting can be
found in [2]. Below, we describe PRDC swaps with knockout BXdTARN provisions.

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 6
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2.3.1. Knockout PRDC swaps

A typical example of a knockout provision is ap-and-outF-X-linked barrier: the associated underlying
PRDC swap pre-maturely terminates on the first datex = 1,2,..., 3, of the tenor structure on which
the spot FX rate(7,,) exceeds a specified level. Different variations of the kiootkeature may allow the
termination of the PRDC swap to occur immediately eitheoke{less common) or after (more common)
the occurrence of any exchange of fund flows scheduled ordttat The knockout provisions may allow
the barrier to be either constant, i.e. the barrier is theeskmall 7,, « = 1,2,..., 3, or time-dependent
(moving), i.e. the barrier changes at each datex = 2, ..., 5 — 1. In the context of PRDC swaps, a moving
barrier is usually a step-down one [39], i.e. the barrieuced by a pre-determined amount at each @gafe
a=2,...,8—1, of the swap’s tenor structure (in forward time). In this pgpve consider only knockout
PRDC swaps with a constant upper barrier, hereinafter édnmotb. The pricing of knockout PRDC swaps
with a (time-dependent) step-down barrier is presentedhéncontext of FX-TARN PRDC swaps, and is
based on straightforward modifications of the pricing of¢bastant barrier case. In particular, as shown in
Sectior 3.6, over each time period of the swap’s tenor stracthe pricing of FX-TARN PRDC swaps via a
PDE approach can be divided into multiple pricing sub-peais, each of which corresponds to a knockout
PRDC swap with a pre-determined step-down barrier.

Below we explain how the knockout provision is modelled. Lgtt) be the value at timeof a knockout
PRDC swap that ha$7,.1,...,73} as knockout opportunities, i.e. the swap is still alive etetil,. In
particular, the quantityiy(75) is the value of the knockout PRDC swap that we are interested imeTj,.

If the PRDC swap has not been knocked out up to and including 1i,, the valueu,_(7,+) is equal to
Ua(Ty+). On the other hand, i§(7,) > b, i.e. the swap knocks out at tin¥#,, the quantityi,_,(7,+) is
zero. That is, the condition for the possible early termorabf a knockout PRDC swap at each of the dates
{T,}°_, is enforced by

. 0 if s(T,) > b,
a1 (Tor) = { G (Tt ) oth(ervv>ise

In Subsection 315, we discuss how to enfoice (2.14) on a ctatipnal grid within the backward pricing
algorithm for knockout PRDC swaps.

(2.14)

2.3.2. FX-TARN PRDC swaps

In a FX-TARN PRDC swap, the PRDC coupon amount,,N,, « = 1,2, ..., is recorded. The PRDC
swap is pre-maturely terminated on the first déte< {7, }”_, when the accumulated PRDC coupon amount,
including the coupon amount scheduled on that date, reamhesceeds a pre-determined target cap, here-
inafter denoted by.. That is, the associated underlying PRDC swap terminatesetiately on the first date
T, € {T.}7_, when

Qy
> vaColNy > a. (2.15)

a=1

Depending on how the PRDC coupon amount scheduled on theteamination datel;,, is handled,
there are three versions of FX-TARN PRDC swaps.

1. The last PRDC coupon amount at the early termination figtés set toa, — 23‘:‘11 v,Co Ny S0 that
the accumulated PRDC coupon amount on terminatidf ais exactlya,..

2. The PRDC coupon amount paid at each datef the tenor structure is cappedat Note that this
allows the accumulated PRDC coupon amount to exeged the early termination datg,,, but the
accumulated PRDC coupon cannot exceed

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 7
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3. This coupon is paid in full.

To illustrate the difference between the three versionb®fX-TARN, consider the following example.
For simplicity, let the notionalV; = 1. Assume that,. = 10%, and thatZZ‘:‘l1 voCq = 8%, i.e. the swap
is still “alive” at time T,,,_)+. Furthermore, assume that the PRDC coupon amount schealuléhe date
T,,, as calculated by formul&_(2.4), i$%. If the first version of the FX-TARN applies, instead of &%
coupon, the issuer pays only2& (= 10% — 8%) coupon. However, if the second version of the FX-TARN
applies, the issuer pays a 10% (min(a., 16%)) coupon, whereas, if the third version of the FX-TARN
applies, the issuer pays the entli®% coupon. In all three cases, the underlying PRDC swap premelgt
terminates at timd},,. Note that, during the life of the swap, in the first versiortted FX-TARN, exactly
10% (= 8% + 2% = a.) of the notional is paid. However, in the second and thiragioers of the FX-TARN,
18% (= 8% + 10%) and24% (= 8% + 16%), respectively, of the notional are paid, both of which aneager
thana.. As noted above, the second version of the FX-TARN ensurap ai2a. on the accumulated PRDC
coupon amount, while the third version provides no cap at all

In practice, the first version of the FX-TARN is more popularang issuers than the other two, due to its
stronger protection against the unfavorable movementssispot FX rate. In this paper, we consider mainly
the first version of the FX-TARN feature, due to its popularih Subsectiof 3.614, we discuss extensions of
the numerical methods developed in this paper to price tt@gkand third versions of the FX-TARN PRDC
swaps.

Below, we describe the modelling and updating rules of theTRRN feature of PRDC swaps. We
observe a similarity between the TARN feature of a PRDC swmaltlae knockout feature of an Asian barrier
option which is governed by the average asset value [43]lowoig [43], our PDE pricing approach for
FX-TARN PRDC swaps is based on an auxiliary path-dependate sariable, hereinafter denoted &y ),

0 < a(t) < a. Which represents the accumulated PRDC coupon amount. VBhigble stays constant
between dates of the swap’s tenor structure and is updatedandate of the tenor structure to reflect the
PRDC coupon amount known on that date. It can be used to detetire pre-mature termination of the
underlying swap on that date.

The value of a FX-TARN PRDC swap depends on four stochastie stariables, namel(t), r4(t), r¢(t)
and the path-dependent varialklg). We denote byt = u(s, r4,7¢,t; a) the domestic value function of a
FX-TARN PRDC swap.

For presentation purposes, we further adopt the followioigtion: a,+ = a(Tp+), ao- = a(T,-). It
is important to note that, sinegt) changes only on the datég,,}”_,, the pricing PDE does not depend
on a(t). More specifically, apart from datdg7,}’_,, for any fixed value of:, the functionu satisfies the
model-dependent PDE{2]10). Moreover, on each of the d4tgs,_,, assuming thai,- < a, i.e. the swap
is still alive at timeT, -, the quantity. changes according to the updating rule

Ao+ = Q- + min(ae — aq—, VoCoNg) = a(a—1)+ + min(a. — a@-1)+, vaCalNg), (2.16)

where we have used,- = a(,_1)+, since, as noted above(t) changes only on the datég,}’_,. The
quantitymin(a. — a,-, v,CoN4) in (2.18) is the actual PRDC coupon amount paidf,attaking into account

the fact that the target cap for the total coupon amount meigxdactlya.. (See version 1 of a FX-TARN
PRDC swap described on pdde 7.) When = a., the swap terminates. By no-arbitrage arguments, across
each datg7,,}”_,, u must satisfy the updating rule

w(S,ra,Tf, Dot Gor ) = u(s, 74,75, To—; Go-) + VaLig(Toz1, To)Ng — min(a, — aq—, voCoNg).  (2.17)
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REMARK 2.1. We observe fron1(2.16) that, at each datea = 3, ..., 1, assuming that,,- < a., there is

a value of the spot FX rate, hereinafter denoted hyor whicha,+ = a., i.e. the underlying swap terminates
on the dater,,, if s(T,) > b,. The valueb, is in fact path-dependent (as expected), and is known at time
Ta—1y+,» Whena,- = a1+ is available, and can be obtained by solving4(r,,) from

VaColNg = a. — aq- <= Vohomax(s(T,) — ka, )Ny = ac — aq-,
where we have used the definition (2.7) . That is,

- Qe — Qp— Cq
e - Y T 2>k, 2.18
VahaNd * I/aCde f + Cff - ( )

where we have substituteéd, = ;—i andk, = i—;fa as defined in[(216). As noted in Subsection| 2/4,
decreases steeply @5 increases, and thus, so does the stkikeFurthermoreg,, is an increasing function
of T,,, i.e.an- > a(.—1)-. Hence, from[(2.18), we can see thatdecreases &g, increases. As a result, a
FX-TARN PRDC swap is essentially a knockout PRDC swap withthqmiependent step-down upper barrier.

2.4. Financial motivation for PRDC swaps

Below, we briefly outline a few important points associatethwhe financial motivation for PRDC swaps
with exotic features that are essential to understand #peip A more complete discussion of the dynamics
and investment strategies associated with PRDC swaps dante in the literature, e.g. in [29, 38,/39].

The origin of PRDC swaps as well as the interest in thesetsiied products are closely related to the
search for yield enhancements by domestic currency inkeatimen the interest rate for the domestic currency
is low relative to the interest rate for the foreign currendylore specifically, if the interest rate for the
domestic currency (e.g. Japanese Yen (JPY)) is low rel&iviee interest rate for the foreign currency (e.g.
United States Dollar (USD) or Australian Dollar (AUD)), tfeeward FX rate curve” (0, t),t > 0, computed
by the no-arbitrage formula (2.5), decreases steeplyirmsreases, predicting a significant strengthening of
the domestic currency. However, historical data suggésiisthe future spot FX rate will remain near its
current level. This is reflected in the coupon rate formuld)(2the investor receives a positive coupon at
time T, if s(7,) is sufficiently large compared th, = F'(0, T, ). Thus, the investor can be viewed as betting
that the domestic currency is not going to strengthen as maggbredicted by the forward FX rate curve.
Essentially, the investor’s strategy in a PRDC swap is sint the so-called “carry trade”, a very popular
trading strategy for currency investors in FX markets [31].

The exotic features, such as those described earlier,gg@votection, from the perspective of the issuer,
against excessive movements in the spot FX rate via a pessarly termination of the swap. However,
from the perspective of the investor, these exotic featuaegsbe viewed as an additional yield-enhancing
mechanism which provides a higher rate of return in the fokmtagher fixed-rate coupon paid by the issuer
to the investor during theo-call period, usually at timd,. More specifically, in a PRDC swap with an
exotic feature, such as knockout or FX-TARN, the issuer @aniéwed as “buying” from the investor a right
to protect themselves against unfavorable movements ispgbeFX rate. As a result, a positive value (to the
issuer) from such a position is generated and contributasigher positive initial fixed-rate coupon at time
Tp, i.e. a higher fund inflow for the investor at tirfig. Therein lies the main attraction of the exotic features
to the investor: this initial fixed-rate coupon paid by th&uisr to the investor is usually much higher than the
rate of return that the investor can obtain anywhere elsedtition, the investor benefits even more from
an exotic feature if the swap terminates quickly. For examiplthe underlying PRDC swap is terminated
at time77, the investor essentially pays a low domestic LIBOR paymeh}(7y, 71) N, and receives a very
high initial fixed-rate coupon on top of the PRDC coupon antey6'; NV, (or possibly a reduced coupon as
described in Subsection 2.8.2.)

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 9
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3. Numerical methods

In this section, we discuss the discertization of the mod®E §2.11) and the pricing algorithms for
knockout and FX-TARN PRDC swaps.

3.1. Discretization of the model PDE

Let the number of sub-intervals be-1, p+1, ¢+ 1, andl in thes-, r4-, r-, andr-directions, respectively.
As described below in Subsections]3.2 3.3, we use a fixedidi necessarily uniform, spatial grid
together with dynamically chosen timestep sizes. Thesgaspad temporal stepsizes are denoted\ay =
Si — Si—1, Arqj = ra; — Taj—1, Arypg = 5k — rpg—1, aNdAT,, = 7,, — 7,1, Wherei = 1,...,n + 1,
j=1,...,p+1, k=1,....,q+ 1, andm = 1,...,1[, respectively. Let the gridpoint values of a FD
approximation to the solutiom be denoted bytj’”;k R U(Si, Tdgs T ks Tm)-

For the discretization of the space variables in the diffeatoperator’ of (2.11), we employ Fzentral

schemes in the interior of the rectangular dom@inFor example, at the reference poinf, 74 ;, 7.k, Tm),
2

the first and second derivatives with respect to the spot Eesta.e. Ou and@ are approximated by

Os 0s?’
8u m m m
s RO -1 Uiy g T QoW 5 T QG 1l ks (3.1)
and
052 Bi—1uitq j i + Biowiy, + Bintit ;e (3.2)
respectively, where
ASH—I (Asi—i—l — ASZ) ASZ'
Q-1 = — y Qo= y o Q41 = )
ASi(ASi + Asi—i—l) ASZ'ASZ'_H ASi-‘,—l(AS’i + Asi—l—l) (3 3)
. & Bio =~ Bt = 2 |
hob ASZ-(ASi + ASH—I)’ no ASZ-ASZ'_H’ b ASZ'_H(ASZ‘ + ASH—I) .

Denote bya; andBjJ, wherej = {—1,0,1}, the coefficients analogous tq; and3;; in (3.1) and [(3.R),
respectively, but relevant to thg-direction, and defined in a similar way as in (3.3). Simitafor ther -
direction, the corresponding coefficients are denoted: by and Bk,,;. The cross-derivatives i (2.]11) are

approximated by a nine-poins (x 3) FD stenciﬁ For instance, at the reference pofst, 74, 7.k, T ), fOr

J%u

the discretization of the cross-derivatigeﬁ—, we use the FD scheme
SOTy

1

0*u
~ ~V |~ m~ -
Osdrq D il (34)

7‘7.7:_1

which can be viewed as obtained by successively applyingrfihecheme[(3]1) in the- andr,-directions.
2 2

Similar FD schemes can be derived for the cross-deriva < and . Details about our choice of

sory OrqOry
the non-uniform spatial grids are given in Subsecfioh 3.3.

3 On uniform grids, the nine-point FD stencil reduces to a4paint one.
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Let u™ denote the vector of values of the unknown prices at tipe@n the mesHh? that approximates
the exact solution™ = u(s,r4, ¢, 7). We denote byA™ the matrix of sizewpq x npq arising from the FD
discretization of the differential operatgrat 7,,,.

For the time discretization of the PDE (2111), we employ th&l Amestepping technique based on the
Hundsdorfer and Verwer (HV) splitting approach![25] 26]nbeforth referred to as thdV scheme We
note that problems containing cross-derivatives were rsmudsed in [25, 26]. In fact, the schemes based
on the HV splitting approach for problems containing crdssivatives were first proposed and analyzed
in [27] (for the case of two-dimensional convection-diffus parabolic PDES), and in [28] (for the case of
multi-dimensional diffusion parabolic PDES).

Following the HV approach, we decompose the maiX into four sub-matricesA™ = Aj" + A" +
A5 4+ AL The matrixA{’ is the part ofA™ that comes from the FD discretization of the cross-defreati
terms in [2.111), while the matrices]*, AJ* and A%" are the three parts o™ that correspond to the spatial
derivatives in thes-, r4-, andrs-directions, respectively. The termu in Lu is distributed evenly oveAT,

A% andA7. S;[E?rting fromu™~!, the HV scheme generates an approximatiénto the exact solution™,
m=1,...,1,b

p

vo=u""! + A7, (A™ a4 g™t (3.5a)
(I - 0AT, ATV = vioy — AT, AT u™ ! + 0AT, (g —g™!), i=1,2,3, (3.5b)

- 1 1

Vo = Vo + §Arm(Amv3 —Am™ g™ ¢ §A7m(gm — g™, (3.5¢)
(I-0AT, A"V, =v,_1 —0AT,A"vs, i=1,23, (3.5d)

u” = vs. (3.5€)

In (3.5), the vectog™ is given byg™ = E?:o g, whereg!™ are obtained from the boundary conditions
corresponding to the respective spatial derivative terms.

The free parametet in (3.5) is directly related to the stability and accuracytteé HV ADI scheme.
We note that results on the stability of the various ADI scasrapplied to three-dimensional pure diffusion
parabolic PDEs with cross-derivatives have been derivg@8h More specifically, it has been shown in
[2€] that, in this case, the HV scheme is stable whenéver 2(2 — v/3)(~ 0.402). However, sufficient
conditions or¥ for stability of the HV scheme applied to three-dimensiot@ivection-diffusion parabolic
PDEs with cross-derivatives, such as the one in this papee hot been yet established in the literature. For
the two-dimensional convection-diffusion parabolic PD#& conjecture in [27] is that the HV scheme is
unconditionally stable for at > 1 + 1./3(~ 0.7887). This value of¥ was successfully used in [22] for the
three-dimensional PDE arising from the hybrid Heston-HuMhite model[23, 24]. We also note that smaller
values off often give better accuracy.

Since the payoff functions are discontinuous at each dateedenor structure, in order to take advantage
of the damping property of the HV scheme wher- 1 [25], we first apply the HV scheme with = 1 for
the first few (usually two) initial timesteps, and then sWwito ) = % + %\/5 for the remaining timesteps. We
refer to this timestepping techniqueld¥ smoothingWe emphasize that choosing the parameter1 gives
a “partially” implicit timestepping method only, not a fylimplicit one. Hence, HV smoothing is not the
same as Rannacher smoothing [37], which initially uses a(teually two or three) steps of fully implicit
timestepping before switching to another timesteppindwtsuch as Crank-Nicolsan [10].

4 This is the scheme (1.4) in [28] with = 1.
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The HV splitting scheme treats the cross-derivative paftXin a fully-explicit way, while theA” parts,
1= 1,2, 3, are treated implicitly. Relationk (3]5a) and (3.5b) cawibeied as an explicit Euler predictor step
followed by three implicit, but unidirectional, correctsteps aiming to stabilize the predictor step. Several
well-known ADI methods, such as the Douglas and Rachforchate{17], are special instances of these
two steps. The purpose of the additional stages(3.5c)[aBd)(&hat compute;,i = 0, ..., 3, is to restore
second-order convergence for the general case with cersstives, while retaining the unconditional sta-
bility of the scheme. The FD discretization for the spateiables described i (3.1) arid (3.2) implies that,
if the gridpoints are ordered appropriately, the matrid&s A7 andA%" are block-diagonal with tridiagonal
blocks. (We assume a different ordering for eact\gf, A7* and A%*.) As a result, the number of floating-
point operations per time step is directly proportionahtqg, which yields a big reduction in computational
cost compared to the application of a direct method, sucheakslil factorization, to solve the problem arising
from a FD time discretization, such as Crank-NicolBon.

3.2. Timestep size selector

We use a simple, but effective, timestep size selector pteden [19] that was shown to work well in
the context of pricing options (e.g. see [6] and [19]). Thesidinderlying this scheme is to predict a suitable
timestep size for the next timestep, using only informafimm the current and previous timesteps. We
extend this timestep size selector for use with ADI timegilep methods applied to pricing PRDC swaps.

According to the formula in [19], given the current stepsieg,, m > 1, the new stepsizAr,, is given

by
) AT, (3.6)

Here,dnor mis a user-defined target relative change, and the s¥aie chosen so that the method does
not take an excessively small stepsize where the value dhien is small. Normally, for option values
in dollars, N = 1 is used. We usé&y = 1 for PRDC swap pricing too. In all our experiments, we used
A1, = 1072 anddnor m= 0.3 on the coarsest grids. The value afior mis reduced by two at each
refinement, whileAr; is reduced by four.

dnorm

9 m—1
ity |

[u

A7'm+1 = (mlnlﬁbﬁnm

max(N,|ul[,|[ul* 1)

AT,11 = min {ATm+1, T— Tm}.

3.3. Algorithms for constructing non-uniform partitions

In this subsection, we briefly describe algorithms that poednon-uniform, but fixed, partitions of an
interval with denser points in the regions of practical impoce. The algorithms make use of a function
that maps uniform grids to non-uniform ones. The mappingtion, based on thenh function, considered
in this paper was first suggested|in/[40]. Variations of itegfrequently in the literature (e.g! [6,/ 32]).

Our aim is to construct a non-uniform partition [0fu] with e sub-intervals, that are more concentrated
around the point € [[,«]. In addition, we also want to have some control over the dgsithe partition
points on the left and the right sides of the painflo this end, we associate the parameti@andd, with
the densities of points in the sub-regidhs| and|c, u], respectively. More specifically, the quantitigsand
i represent the density of points in the respective regioitl,alarger density giving rise to a partition that
is denser toward the poirtin the associated sub-region. We also chaose{0, 1, ..., e} and set the-th
gridpoint in the non-uniform partition to be equaltoThus, there aré sub-intervals in the sub-regidh |

5 When Crank-Nicolson timestepping method is employedaiiez methods with preconditioning techniques are ususlly
lized to solve the resulting matrix problem. See [15] for aaraple of this approach.
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and(e —1i) sub-intervals in the sub-regign u]. Hence, the numbers of gridpoints in the sub-regiéns$ and
[c, u] can be controlled by choosing an appropriate value.fétor example, by choosing= cei | (0.3¢),
wherecei | denotes the ceiling function, approximat8ély/% of the total number of sub-intervals will be in
the sub-regiorl, c|, and the rest will be in the sub-regi¢n u|. Non-uniform partitions fof/, u| are defined
as images of uniform partitions, and can be constructed ssited in Algorithni 3.1L

Algorithm 3.1 Algorithm for constructing a non-uniform partition of anténval with one concentration
point.
PartitionOn€l, u, c, e, i, d;, d,)

1: computey; = sinh™* (l d_ C) andg, = sinh™! <u — C);

l du .
2: computezy = [; z; = ¢ + d;sinh(g,(1 — k;)), wherek; = I j=1,...4 seth = {z}'
] )
3: computez; = ¢ + d, sinh(g,k;), wherek; = J L, j=1,...,(e—1); setP, = {zj}j;’i;
€ —1

4: returnP = P, U P,.

REMARK 3.1. The procedure described in AlgoritHm 1.1 can be easily aildo generate non-uniform
partitions that are dense towards either of the two endpgiot «. For example, choosing= v andi = e in

the above procedure gives rise to a non-uniform partitiahitimore concentrated towards the upper endpoint
u. We use this type of non-uniform partition later in this pafog the auxiliary state variable employed in
pricing FX-TARN PRDC swaps. This is discussed in Renpark 3.6.

Algorithm[3.1 can be used to construct a sub-partition fopa-aniform partition with more than one
concentration points. We use it in Algorithm B.2 to geneeat®n-uniform partition havingy sub-intervals
for the region[L, U] with concentration points;, j = 1,...,v, satisfyingL < ¢; < e < ... < ¢, < U.
Here,e; is the number of sub-intervals for thieth sub-region containing, j = 1,...,v, with > 7, e; = N;

i, is the local index of the gridpoint in thgth sub-region that is equal t9; d{ andd’ are the upper and
lower density parameters, respectively, associated Wéthi-th sub-region containing;.

Algorithm 3.2 Algorithm for constructing a non-uniform partition of arténval with multiple concentration
points.

PartitionMulti(L, U, {c;}?_y, {e;}0y, {i;} ooy, {10y, {di 1)
. + .
1. P, < PartitionOne <L, aTe 1, e, i, d), di);

2: P PartitionOne(cj_12+ cj, 5 +2Cj+1,cj,ej,ij,dj ), j=2,...,v—1;

1 Yu

Cy—1 +CU - v VY -
——, U, ey, €000, d}, dy);

3: P, < PartitionOne( 5 L, dy

4: returnP = U;_, F;.

We conclude this section by noting that the non-uniform ggdnstructed using Algorithin_3.2 may
possibly yield “jJumps” in the grid stepsizes at the pointam&here the two sub-regions are pasted, resulting
in possibly non-smooth grid partitions. In this case, th¢ation error of the FD scherne 3.2 for the second
spatial derivatives is only first-order approximation. Hmer, since this problem may occur only at just a
few points and the jumps are relatively small, it may not imgiee overall second-order convergence of the
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methods. As illustrated in Sectiéh 4 on the numerical ressiecond-order convergence of the numerical
methods are preserved.

3.4. Non-uniform spatial partitions

Non-uniform partitions in the;- andr¢-directions are relatively straight-forward to construdfore
specifically, we can apply Algorithin 3.1 to build non-unifopartitions with the concentration points being
the initial domestic and foreign interest short ratgd) andr;(0), and use the same partitions for all time
periods of the swap’s tenor structure.

With respect to the partitions in the spot FX direction, sitii the PRDC coupon leg in a PRDC swap
can be viewed as a portfolio of options on the spot FX rate FXeoptions, and (ii) the possibility of early
termination is also directly linked to the spot FX rate, prdp constructed non-uniform grids for the spot FX
rate variables are crucial for the efficiency of the PDE-based pricing mdthadn the rest of this subsection,
we describe how to construct effective non-uniform pamtisi of the spot FX ratefor knockout PRDC swaps
with constant barrier. Due to the path-dependency of th&BRN feature, the construction of effective non-
uniform partitions of the spot FX rate in the case of FX-TARRDXC swaps requires further discussions, and
is given in a later subsection, Subsecfion 3.6.2.

For a knockout PRDC swap with a constant barrier, there anaégions of practical importance in the
s-direction. The first one is around the strikg which is the initial kink point in the payoff functioh (2. a}
each datd,, o = 3, ..., 1. Itis important to note that ead, is known in advance and is fully determined
by the domestic and foreign interest rate curves and thialispot FX rate. The second important region
is around the (constant) upper barrbedue to the discontinuities of the terminal condition atredateT,,

a = 3,...,1, of the swap’s tenor structure. (This is noted in Reniark)3A2.a result, in this case, it would
be desirable to have non-uniform partitions that are comatad around,, andb. Algorithm[3.2 can be used
to construct non-uniform partitions for the spot FX rater the rest of the paper, for knockout PRDC swaps,
we denote by

Ay =1{500=0<541 < <Sam < Sant+l = Soo}

the non-uniform partition generated by Algorithm]3.2 foe tvariables used for the solution of the model
PDE over the time periofl 1)+, 7,-], « = 3,...,1. Two examples of such non-uniform partitions are
given in Figuré 3.11.

In Figure[3.2, we give an example of the spot FX rate curve sthkesk,, « = 3,...,1, and other
relevant data. In this example, the tenor structuig,is- 1, . . ., 29 (years), The domestic and foreign interest
rate curves are given b, (0, ¢) = exp(—0.02 x ¢) and P¢(0,t) = exp(—0.05 x t). The initial spot FX rate
is set tos(0) = 105.0, domestic and foreign coupons ate= 8.1%, ¢; = 9.0%, and the fixed upper barrier
isb = 131.25. These data are used for experiments with the high-leverage reported in Subsectionl4.1.
We plot the forward FX rate curvé'(0,t) as a function of time (marked by stars). Note thdt(0,t) is
defined byF'(0,t) = 258’25(0), (seel(2.b)). Note that, due to the interest rate differeb&tween the two
currencies, withr, being éonsiderably smaller thap, the quantityP;(0,t)/P,(0,¢) decreases substantially
ast increases. Thus, as illustrated in Fighred 3.2, the forwat¢dde curve is steeply downward sloping as
t increases. We also plot the strikes, o = f,..., 1, at selected dates of the tenor structure (marked by

black dots). Note that, sinde, = ﬁfa = ﬁF(O,Ta), according to[(2)6), and’ is fixed, the strikeg,, also
C C C

f f
decrease a$, increases. Other relevant data are the initial spot FX4@te = 105.0 (marked by a white
dot), and the barrief = 131.25 (marked by a plus).
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As shown in Figuré 3]2, when we proceed backward in time, ttikes &, move closer to the barrier
b from the left, because the forward FX rate curve is downwéodisg. Thus, although the non-uniform
partitionsA,, are fixed within each time period{._,)+, 7,-] of the swap’s tenor structure, they should be
reconstructed when we proceed to the next time period taucapie new initial kink poink,_;. In our ap-
proach, at the end of each time peri@d,_,)+,7,,-], « = 3, ..., 2, interpolation along the-direction of the
PDE solution values correspondingAg, must be employed to find the PDE solution values correspgndin
to A,_;. These values then become part of the terminal conditiothisolution of the PDE over the next
time period[T(,—9)+, T(a—1)-]. In our numerical experiments, linear interpolation isdise

W 7 T .

S O O A O A

L

oeleaROny s T 10569 00 000000000000
PO P N A A A A A A

9 \.\\*\ | | | | | | | | [

><7571 19,**1 S R R R

O+ b 4 + + w 111‘0,**1 A
A R A B S A

\\\\\\\\.i**\ [

457111111111:?9%1‘%‘

0 105 210 315 220 525 300i 3 5 7 9 1‘1 1‘3 15 f7 1‘9 2‘1 2‘3 2‘5 2‘7 25

spot FX rate t (years)

Figure 3.1: Two examples of non-uniform paFigure 3.2: An example of the forward FX
titions in the s-direction generated by Algotate curve (marked by stars), and the strikgs
rithm [3.2. The concentration points, = 39.5 (marked by black dots) at selected dates of the
(bottom) ands = 53.5 (top), marked by blacktenor structurd,, = 1,...,29 (years). Other rel-
dots, play the role of,, while s = 131.25, evantdata ares(0) = 105.0 (marked by a white
marked by a white dot, plays the role of the codet), b = 131.25 (marked by a plus). The data
stant barrier). used for the computation are given for the high-
leverage case in Subsection]4.1.

3.5. Pricing algorithm for knockout PRDC swaps

Recall thati, (t) denotes the value at timtef a knockout PRDC swap that h§&, .1, ..., T3} as knock-
out opportunities. We denote by, (s, ;, 74,5, 7.k, t) @an approximation ta,, (t) at the gridpoints, ;, r4.;, 7.
a=p,...,1,i=1,...,n,5=1,...,p,andk = 1,...,¢. (Note that the quantityi,(7;) = u,(0) corre-
sponding ta(s(0), 74(0),7¢(0)) is an approximation to the value of the knockout PRDC swajmae T} that
we are interested in, and can be obtained fiIi3, ;, 74 ;, 714, 0). See Remark 34 for details.) For edth
a = f,...,1, we assume that the quantities(s....r4;,” .. To+) have been computed at the previous time
period of the tenor structure, i.e. these are availablg,at On a computational grid, the conditian (2.14) for
the possible early termination of a knockout PRDC swap isreefd by

0 if Sayi > b,

Uey1(Seyis T i Tty Tt ) = . )
a1(Sais Ta s Tpks Tort) { G (Sis Tajy Tk Tat)  Otherwise

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 15
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We now consider the backward pricing algorithm for knockeRDC swaps from timé,- to T(,_;)+. One
may attempt to start the backward algorithm at tifye with the payoff

ﬁﬁfll(sa,z—, Tdis T ks Do) = Ua—1(SaisTdjs T s Lot ) + VaLla(To-1,Ta)Ng — VaCo Ny, (3.7)

wherev, Ly(T,—-1,T,) Ny andv,C, N, are the funding payment and PRDC coupon amount scheduliedeat t
T., respectively. Unfortunately, the above payoff is patpetelent, since the LIBOR ratk;(1,_1,7,) is
determined at tim&,_;, but the LIBOR payment takes place at tifie To overcome this difficulty, over
each period of the swap’s tenor structure, we consider tieengrof the funding leg and the PRDC coupon
leg separately. The value at tirfig, )+ of the funding payment scheduled @p is simply given by (e.g.
see[12])

(1 = Py(To-1,To)) Na. (3.8)

On the other hand, the value at tirfig,_,)+ of the PRDC coupom,N,;C,, is computed by solving the PDE
(2.10). To this end, let® (Sa,isTdj Ttk Tia—1)+) e the value obtained by solving the PDE (2.10) backward

a—1

in time from time7,- to timeT{,_,)+ with terminal condition

A

) A
ua_l(sa,iu Tdj,Tf ks Ta*) = ua—l(sa,ia TdjsTfk, Ta+) - VaCaNd-

A(2)

We then apply interpolation to,,” (s, 7aj, 7.k, T(a—1)+) @long thes-direction, to obtainlfll(sa_u, Tdj,

71k, Ta—1)+). The approximate value of the knockout PRDC swap at fifpe;)+ on A,y is then given
by
Uo—1(Sa—1,isTdj> T . L(a—1)t) = ﬁle(sa—l,iﬂ’d,jﬂ’f,k, Tia—1y+) + (1 = Py(To-1,14))Na.

A backward pricing algorithm for knockout PRDC swaps is praed in Algorithm_3.3.

It should be clear from the discussion earlier that the dtiesit,,C, N, and(1— Py(7T,_1,T,)) N, depend
on s, and, on a computational grid, they are computed using etiged values of. To avoid introducing
more notation, throughout the paper, we omit showing theeddgnce of these quantities on the gridpoint
indices.

REMARK 3.2. Itisimportant to note that, due 0 (3.9), the paybff (3. embles that of a digital option. It
is well-known that discontinuities in a digital payoff fuian can result in a reduction of the observed order
of convergence of a numerical scheme [36]. In the contexiptiba pricing, to restore the expected order
of convergence, a remedy is to have the strike price positionidway between the gridpoints [36, 40], an
approach referred to as tlyeid shifting technique We adopt this technique in our numerical method: the
grids are chosen so that the fixed upper barribes midway between the gridpoints in the spot FX rate,
i.e. thes-direction. It is not necessary to haveas a midpoint of the grid in the,- and/orr-directions,
since the digital condition of the payoff functidn (B8.9) @eypls only on the spot FX ratét). Although other
techniques for smoothing the discontinuities in the ihitlata, such as averaging and projection methods
[3€], can be used, we adopted the grid shifting techniguedomumerical experiments due to its simplicity
and effectiveness. In addition, it is worth pointing outtthsince discontinuities in the payoff functions
may be introduced at each of the tim{dsy}fé:l, in our numerical experiments, we apply the HV smoothing
technique for each of the daté%, }”_, of the tenor structure when knockouts are possible. Thisrias to

the techniques discussedin[41] in the context of discratady options. Our numerical results presented in
Sectiorl 4 show that this technique provides good dampingwamkis well for PRDC swaps with a knockout
provision.

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 16



10

11

12

13

14

15

16

17

18

Algorithm 3.3 Backward algorithm for computing knockout PRDC swaps.

1: constructAz by Algorithm[3.2, and seis(-, -, -, Ts+) = 0;
2. fora=p,...,1do

3:  set
0 if Sai = b,
Ua—1(Sais TdisTrks Lot) = R - 3.9
a=1(Sai Tag Tk Tor) {ua(sa,i,rd,j,rﬁk,Tw) otherwise (3.9)
4: set
(1 .
ugll(sa,i, TajsTfks La—) = Ua—1(Sais Tdj, Tk Lot ) — VaNaCla; (3.10)

5:  solve the PDE[(2.10) with the terminal conditién (3.10) baakd in time fromT,- to T(,_yy+ using
the ADI schemel(3]5) for each timg,, m = 1, ..., [, with the timestep siz&r,, selected by((316), to
obtaini” | (sa.i, a7k Tia 1)+ );

6: ifa>2then

7 constructA,_; by Algorithm[3.2;

8: apply interpolation tolfll(sav,-, Tdjs Tk L(a—1)+) 1O obtainafll(sa_l,i, Tdj ks L{a—1)+ )
9: S€Ula—1(Samt,i>Tdgs Tk Tlae1y+) = US4 (Sactis Tags T Tae1yt) + (1= Pa(Tae1, Ta)) N
10: €else

11: Setﬂa_l(sa,i, Tdj,Tfk T(a_1)+) = a((fll(sa,ia Tdj,Tfk, T(a—l)*) =+ (1 - Pd(Ta—17 TOt))Nd;

12:  endif

13: end for

14: Setﬁo(, Ty Ty TO) - '&JO('a ) T0+);

REMARK 3.3. The upper barrieb may not be a midpoint between two adjacent gridpoints in #rétpon
A,. To adjust the partitiona, so that the upper barriéris a midpoint, we proceed as follows. We first con-
struct the partitiom\, with n sub-intervals instead of + 1 sub-intervals using Algorithin-3.2. This partition
hasb = s,,; for somei € {1,...,n}. We then (i) slightly relocate the gridpoint correspondiaghe barrier

and (ii) add one extra gridpoint to the area around the baagdollows:

= SetASO‘E - min{saj — Sa,i-1)Sai+1l — Sa,i};
As, 7

2: SEtSai < Sai — 3304,1;

e 20s, ;

3: add a gridpoint Vi, ;.1 ¢ Sa; + —=;

The barrier is now a midpoint of the two gridpoints; (i) ands,, ;.1 (ii).

REMARK 3.4. It is also important to point out that botfy(0) andr,(0) are gridpoints in the respective
spatial partitions, i.erq(0) = r,; andr(0) = r;; for somej € {1,...,p} andk € {1,...,q}. How-
ever,s(0) is not guaranteed to be a gridpointAf. As a result, to compute an approximate valué ()
corresponding tds(0),74(0),77(0)) = (s(0),ry3,7,;), Which is the quantity we are interested in, inter-
polation along thes-direction using the valuesy(s1,i,7,;,7;4,0), ¢ = 0,...,n + 1, may be needed. To
avoid this possible interpolation, we adjust the partittonby adjusting the closest t€0) gridpoint to be
s(0). Thatis,s(0) = s, ; for somes € {1,...,n}. Hence, an approximate valuedg(0) corresponding to
(s(0),74(0),77(0)) is simply given byio(s, ;, 745,74, 0).
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3.6. Pricing algorithm for FX-TARN PRDC swaps
3.6.1. Key observation and a general pricing framework

Generally speaking, in pricing an interest rate swap via & Rpproach, the purpose of the backward
procedure from the last date of exchange of fund flows (& dn our case) to the datg,,_y+, o = 3, ... 1,
is to compute the value at timg,_,)+ of all the fund flows scheduled on or afté}, in the swap’s tenor
structure. If a FX-TARN PRDC swap is pre-maturely termiwialy the timeT{,_,+, there are no further
fund flows scheduled on or aftdi,, and, hence, the swap’s value is zero. This observationestgghat,
over each periodl{,_,)+,T,-] of the swap’s tenor structure, the backward procedure wtichputes the
solution backward in time frond,- to 7(,_)+ needs to be invoked only if the swap is still alive at time
Tia-1)+, 1.6 if aq_1)+ satisfiedd < a—1)+ < a.. Since we progress backward in time and the variablg
is path-dependent, we do not know the exact valuegf,)+. However, sincé < a1+ < a., we can
discretize the variable, as we do for other spatial variables. This key observaga$ to the following
general PDE pricing framework for a FX-TARN PRDC swap:

(i) across each dat{sTa}}y:B and for each discretized value of the variableapply the updating rules
(2.16) and[(2.17) on the swap values to
(a) take into account the fund flows scheduled on that date;
(b) reflect changes in the accumulated PRDC coupon amouhtharmossibility of early termination;
(c) obtain terminal conditions for the solution of the PD&rfr time T, to T,—)+ (See Step (ii)
below);
(ii) over each periodl(,_1)+,T,-],« = f3,...,1, of the swap’s tenor structure, for each discretized value
of the variables, solve the model PDE (2.110) backward in time fr@in- to 7(,_1y+, with the corre-
sponding terminal condition obtained in Step (i.c).

For the rest of the paper, we adopt the following notatiomtifRan the interval0, a.] into w + 1 sub-intervals
having gridpoints
0=ap<a; <...<ay <yl = Q. (3.11)

Note that, for all periods of the swap’s tenor structure, \agehthe fixed, not necessarily uniform, set of
gridpoints [[3.111) in the-direction. (See Remalk 3.6 for our choice of non-uniforntifians for the variable
a.) Below, we first discuss the construction of non-uniforntigians for thes variable, then describe in detail
a PDE-based pricing algorithm for FX-TARN PRDC swaps.

3.6.2. Non-uniform partitions for the spot FX rate

In light of RemarK 2.1, for each fixed valug, y = 0,...,w, and at each datg,, a« = §,..., 1, there
is a value of the spot FX rate, hereinafter denotedfyfor which the underlying swap terminates on the
dateT,, if s(7,) > b¥. Following (2.18), since,,y = 0, ..., w, are fixed for all time periods, the valugs

y=0,...,w,a=f,...,1,are known in advance and can be pre-computed via
=W s (3.12)
I/aCde Cr
As a result, each pricing sub-problem, corresponding toeifualuea,, y = 0,...,w, can be viewed as a
knockout PRDC swap with a pre-determined step-down uppeieba’. (Note that for a fixedy, all sub-
problems have the santg, but differentb?.) Thus, for eaclu,, y = 0,...,w, and ateacll;,, « = 3,...,1,

it is desirable to construct a non-uniform partition for theariable that is refined in the regions around the
strike k., and the barriet?. Similar to knockout PRDC swaps with a constant barrieroftlpm[3.2 can be
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employed to generate such non-uniform partitions. Foréseaf the paper, for FX-TARN PRDC swaps, we
denote by
AV ={slg=0<s!,<...<sY, <8\, =50}

the non-uniform partition for the spatial varialieised for the solution of the PDE corresponding jmver
the time periodT(,_1)+, T, -].

REMARK 3.5. From (3.12), for a fixedy, we observe that, ifi,, y = 0,...,w, is relatively close ta,,

bY can be relatively close tb,. In such cases, instead of applying Algorithml| 3.2, we carstant a non-
uniform partition with only one concentration point cemtgraround the striké, using Algorithm3.1. We
can then apply the adjustment mentioned in Rerhark 3.3, sahbebarrierb? falls at a midpoint. In our
experiments reported in Sectibh 4 for FX-TARN PRDC swapsamelied this procedure to construct non-
uniform partitions for thes variable whenevel, — k, < smal | - r ange. In our experiments, the constant
smal | - range is selected to be 15 by trial-and-error.

3.6.3. PDE-based pricing algorithm
Let u,(t; a) represent the value at timef a FX-TARN PRDC swap that has

(i) {To+1,...,T3} as pre-mature termination opportunities, i.e. the swaplisbve at time7,; and

(ii) the total accumulated PRDC coupon amount, includirggdgbupon amount scheduled @}, is equal
toa < a,.

In particular, the quantityiy(75; 0) is the value of the FX-TARN PRDC swap we are interested inmaéti
Ty. If a FX-TARN PRDC swap has not been pre-maturely terminatetime7,, i.e.a,+ < a., the value
Ua—1(To+; a—1)+) is given by

Ua—1(Tot; a@a-1)+) = Ua(Tot; Gar) = ua(Tor; -1+ + min(ac — a@—1y+, VaCoalNa)), (3.13)

according to the updating rule_(2]16). On the other handheifdwap is terminated at tin7g,, we then have
Ua—1(Th+; a—1y+) = 0. That is, the condition for a possible early termination 8% TARN PRDC swap
at each of the times§7,}”_, is enforced by

0 if ap+ > a.,
ta=1(Tors Go-1yr) = { Ue (Tot; Ao+ ) otherwise (3.14)
wherea,+ = A(a—1)+ T min(ac — Qa—1)+; I/aCaNd).
One may attempt to start the backward algorithm at titpe with the payoff
ua_l(Ta+; a(a_1)+) + l/aLd(Ta)Nd — v,CyNy. (3.15)

However, there are several difficulties with this approa€hst, (3.15) is a path-dependent payoff, similar
to (3.7) arising in pricing knockout PRDC swaps. To overcdhig difficulty, over each period of the tenor
structure, we value the funding payment and the PRDC coupwots geparately, as we do when pricing
knockout PRDC swaps, described in Subsedtioh 3.5.

The second difficulty arises because the quantity

Qo+ = Q(a-1)+ T min(ac — Q(a—1)+, VaCaNd)
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needed to evaluate the right side[of (3.13) may not be a gntipothe a-direction, i.e. not a gridpoint of the
fixed set of pointd(3.11). As a result, the value

U (Tt 0ot ) = ua(Tor; aa—1y+ + min(ae — aa—1)+, VaColNa))

of (3.14) may not be immediately available. Below, we ilhag¢ how to enforcd (3.14) using only the fixed
set of gridpoints[(3.11) for the variable, and discuss the backward procedure for FX-TAR@Rwaps
from timeT,- to T{,—,)+ on a computational grid.

We denote byi (s, ;, 74, 71k, t; @) @n approximation ta,,(t; a, ) at the gridpoin{(s}, ;, 74, 77x), where
a=p#,...,1,i=1,....,n,j=1,...,p,k=1,...,¢q,andy = 0, ..., w. (Note that the quantityy(7p; 0) =
uo(0; 0) corresponding tds(0), r4(0),7,(0)) is an approximation to the value of the FX-TARN PRDC swap
that we are interested in at tin¥g, and can be obtained fromb(s?,i,rd,j,rka, 0;0). See Remark 37 for
details.) For eaclf,,, we assume that the quantiti@s(s, ;, 7a.j,7 .k, To+, ay), y = 0, ..., w, are computed at
the previous time period of the tenor structure, i.e. thesexaailable af’, .

On a computational grid, to enforde (3.14), we proceed devisl For eachi,, y = 0,...,w, and for
each gridpoin(sivi, ra,7r.x), We first find the corresponding quantity specified by

ay = a, +min(a. — ay, VoCoaNg).

Note that the quantity;, depends orf,, and on the partitions, but, to simplify the notation, we dd no
indicate these dependencies. We then find; (s, ;, 7,5, 7.k, Ta+; Gy) USINQUG (S}, i, Tajs T gy Tat Gy )y Y =
0,...,w+ 1. More specifically, ifa, > a., the swap terminates pre-maturely at tiifig whence
Ua—1(84,45Td,j, Tf.k> Tat; Gy) 1S Z€ro. On the other hand,df, < a., the swap does not terminate pre-maturely
at time7,. In this caseg, may fall between two computational gridpoints in théirection, i.e.a; < a, <
a;+1 forsomeyin {0, ..., w}. In addition, it is important to note that, since the basiér,y =0,...,w+1,

are not the same, the non-uniform partitioh%, y = 0,...,w + 1, are different, primarily in the region

around the barrier. Thus; ; may fall between the computational gridpointssf andAZ*, i.e.

y v y g+l g+l
Sai S S S Soin AN s 5 Sso St
for some: andi in {0,...,n}. To approximateua_i(s;, 7, sk, Tu+;dy), We apply two-dimensional

linear interpolation along the- anda-directions, which can be viewed as obtained by succeysimilying
the standard one-dimensional linear interpolation alcagheespective direction, using the following four
values:

] . ] .
uoc(sajv Tdj,Tf ks To+; ag)a ua(saj_,_lv Tdjs Ttk Tort; a?)7
and

j+1 _ j+1 _
Ua(S) = T, T ik Tati Ggen), ta(s?, a7 ok Tats agi)-

More specifically, by first applying two one-dimensionalar interpolations along thedirection, we obtain
the quantities

sY . —s7
Y T .- ~ Mt al ] T . -
Ua(Sgi Td g Tk Tt ag) = J Ua(S0 5115 T T ks Tats ag)

o,it+1 Sa,?
Y Y
§7 - . — 8. _
a,i+1 , Y .

+ T Ua(S0 5 Tdgs Trks Tariag), (3.16)

sT. o —s7 - ’
a,i+1 a,
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and

y+1
Seni — Sz—% 741
Yy . ~ ’ > Yy .
ua(sa,iv TdgsT ks Lot a?-i-l) ~ G+1 ua(saj_,_l» Tdjs ' f ks Lot a?+1)
ozj—i—l 04,7
g+l Yy
Sa,i-ﬁ-l T 2ayi g+1
+ P g+1u0<(5aj Tdgs Tk Lot ager).  (3.17)
o,i+1 i

Then, by performing a linear interpolation along thdirection using the two intermediate quantities defined
in (3.16) and[(3.17), we arrive at the following approxineattou, 1(sy, ;; 7a,, 7rks Tat; dy):@
Gy~ %y Mua(sii, TajsT ks Lot Q).
(3.18)
Note that, in the special case that= w, we setu, (-, -, -, To+; ag11) = ual:, -, -, Ta+;a.) = 0. The above
procedure essentially enforcés (3.14), within the acgquodidinear interpolation. A pictorial illustration of
this two-dimensional linear interpolation procedure iegiin Figuré 3.3. Figure_ 3.4 presents an illustration
of the procedure to enforce (i) the updating ruled.in (2.18) &.17) using only the fixed set of gridpoints
(3.11) for thea variable, and (ii) a possibility of early termination at batate of the swap’s tenor structure.

Yy .
Ua(Seis Tdg Tfks Tots ga1) +

Yy T a4 )~
ua—l(sa,m T, Ty Lot Gy) =
Qg1 — 0y ag+1—0yg

%
, Z-H Zzz SZ,EH 8?;1“ °

Figure 3.3: A two-dimensional linear interpolation prooesl to enforce[(3.14) which can be viewed as
obtained by combining linear interpolations along (i) thdirection (seel[(3.16) and (3]17)), and (ii) the

a-direction (see[(3.18)).

In implementing the backward procedure, we first take intmant the PRDC coupon payment by computing

ey

y Ca ) — y . ' _
Ue 1 (Sg.50Tdgs Tk Tams Gy) = Ua—1(584, T g Tk Tat; Gy) — min(ae — ay, vaCoNg), y=0,...,w,

which becomes the terminal condition for the PDE (2.10). \&fktsolve this PDE backward in time from
T, t0 T{4_1)+ using the ADI scheme (3.5) for each timg, m = 1,...,, to obtain

(2)

Y .
ua—l(sa,iv Tdgs T fks T(a—1)+7 a’y)-

& When the spatial partitions are the same foraglk, the procedure described above simplifies to one-direasiinear
interpolation along the-direction [43].
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Figure 3.4: A procedure to enforce (i) the updating ruled2id§) and[(2.17) using only the fixed set of

gridpoints [(3.111) for the variable and (ii) a possibility of early termination at eatdte of the swap’s tenor
structure.

Then,Weinterpolat&fll(sg,i,rd,j,rfk,T(a_l) ;a,) to obtalnu 5 (80 1.6:Tags 1k Ta—1)+; ay). Finally, we
incorporate the funding leg payment by computing

a1 (S8 150 Tags T Tty b5 y) = U (81 5o o g Tiamny5 @) + (1= Pa(Ta)) Na.
A backward pricing algorithm for FX-TARN PRDC swaps is pretsel in Algorithn{3.4.

REMARK 3.6. To improve the accuracy of the interpolation scheime (3. b8&)reing (3.14), for the: vari-
able, we use non-uniform partitions that are more conceuriowards the cap,., due to possible discon-

tinuities in the swap values at. Such non-uniform partitions can be constructed using Allgm[3.1 with
settings as discussed in Remark 3.1.

REMARK 3.7. Note that, sinces(0) is not guaranteed to be a gridpoint &f, interpolation along the-
direction may be needed to compute an approximatian t@; 0) corresponding tds(0), 74(0), 7(0)) using
the valuesLO(s%i, ra;, "k, 0;0),4=0,...,n+1. To avoid this possible interpolation, we adjust the piartit
AY as noted in Remaifk 3.4 for knockout PRDC swaps.
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Algorithm 3.4 Backward algorithm for computing FX-TARN PRDC swaps.

1: constructA} by Algorithm (3.2), and sets(-, -, -, Tp+;a,) = 0,y =0,...,w
2. fora=p,...,1do

3: for eacha,,y=0,...,w,do
4: set

ay = a, + min(a. — ay, VaCoNg); (3.19)
5: set

( 0 if a, > a,

Ay —ay
Ua(Sp i Tdgs T es Tots A1)
T . a) = ag+1—0ay
Un— 1(Saz7lrdj7/rfk?7 a+aay) - ag—l—l_dy y . _
+7ua(sa7i,rd7j,rf,k, To+say) ifay <a, < agy,
ay+1— Ay
\ 56{07710}7

(3.20)
whereu,(s?, ;, 7aj, 7.k Tat; ag) andug(sh ;, 7, 1k Tat; ag+1) are defined by(3.16) and (3117),
respectively;
6: set

fx)l(sa IRl Tdm Tf k> Toﬁ; ay) = ua—l(s?(iia Td,j7 Tf,ku Ta+; dy) - min(ac — aya VaCaNd>; (321)

7: solve the PDE[(2.10) with the terminal condition (3.21) frém to 7(,_1)+ using the ADI scheme

(3.8) for each timer,,, m = 1,...,1, with the timestep sizé\r,, selected by[(316), to obtain

2 /.y . .
Up— 1 (S is T T ks Tam1)+3 @y);

8: if > 2then

9: constructA? _, by Algorithm (3.2);

10: mterpolateua)l( St is Tdgs Tt ks Tla—1)+; Gy) 10 obtamu() (8105 Tdgs Tr s Tla—1y+ 5 Gy,

11 Setua_1 (%1 4 Ta s Tk Tlami)t: Gy) = U1 (414 Tags ks Tlamys @) + (1= Pa(To)) N
12: else

13: setug,_1(s? Sevis Tdgs Thks Tla—1)+; Qy) = u((fll(sgé,i, Tdjs Tk La—1)t: ay) + (1 = Py(To))Na;

14: end if

15:  end for

16: end for

17: setug(-, -, -, Tp; 0) = uo(:, -, -, To+; 0);

3.6.4. Other versions of FX-TARN PRDC swaps

The above algorithm for pricing the first version of FX-TARIRBC swaps could, after straight-forward
modifications, be used for pricing the second and third vessof the FX-TARN. Recall that, for all three
versions of the FX-TARN PRDC swaps, the target eaps fixed and known in advance, and the only
difference between the first version and the second andvbkisions of the FX-TARN PRDC swaps is how
the PRDC coupon amount scheduled on the early terminatitmisldandled. As a result, we can use the
same discretization for thevariable via the set of fixed gridpoin{s (3111), and, in thieipg algorithm, we
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only need to adjust the actual PRDC coupon amount paid atdegeft,, « = 3, ..., 1, to be
min(a,, voCoNg) and v,Cy Ny
for the second and third versions of the FX-TARN PRDC swagspectively.

3.7. Overview of a parallelization of the pricing algoritsm

To design a parallel algorithm, we divide the pricing of FARN PRDC swaps intav 4+ 1 indepen-
dent pricing sub-problems, one for each gridpoint,y = 0,1,...,w, of thea-grid, during each period,
[T(a—1y+,T,-], of the tenor structure. We can run theser 1 pricing processes in parallel on each period
of the tenor structure, with communication only{4t,}°_!, where exchange of data is required between the
processes to implement the interpolation schémel(3.18Y.imdplementation of Algorithmi 314 uses a cluster
of Graphics Processing Units (GPUs) together with the Campified Device Architecture (CUDA) Ap-
plication Programming Interface to solve theser 1 independent sub-problems simultaneously, each on a
separate GPU. A second level of parallelism can be explasiede the main computational task associated
with each sub-problem is the solution of the model PDE_{(2.#@)ich can be accomplished via a highly
efficient GPU-based parallelization of the ADI timestegpiechniquel(3.5a)E(3.5d), details of which can be
found in [13]. In addition, we utilize the Message Passingitiace (MPI) [20, 21], a widely used message
passing library standard, for efficient communication lestwthe pricing processes at the end of each time
period, i.e. a{ 7,,}°_!. Details of an implementation of Algorithia 3.4 on a GPU clusind selected timing
results for knockout and FX-TARN PRDC swaps can be found 2j.[1

4. Numerical results

4.1. Model parameters

As parameters to the model, we consider the same interest, @rrelation parameters, and the local
volatility function as given inl[34]. The domestic (JPY) afateign (USD) interest rate curves are given
by Py(0,7) = exp(—0.02 x T') and P;(0,T") = exp(—0.05 x T'). The volatility parameters for the short
rates and correlations are givendy(t) = 0.7%, rq(t) = 0.0%, o4(t) = 1.2%, k¢(t) = 5.0%, pgy = 25%,
pas = —15%, prs = —15%. The initial spot FX rate is set t§(0) = 105.00, and the initial domestic and
foreign short rate aré.02 (2%) and0.05 (5%), respectively, which follows from the respective inténege
curve. The parametegsgt) ands(t) for the local volatility function are assumed to be piecensnstant and
given in Tablé 4.1. Note that the forward FX rdt€0, ¢) defined by[(2.5) ané;(t), i = d, f, in (2.8), and the

period (years)
(0,0.5](0.5,1]| (1,3]| (3,5]| (5,71 (7,10][(10, 15]/ (15, 20] (20, 25] (25, 30]
£(t)| 9.03% 8.87%) 8.42%8.99% 10.18%413.30% 18.18% 16.73% 13.51% 13.51%
¢(t)| -200% -172%)-115% -65%)| -50%)| -24%| 10%| 38% 38%| 38%

Table 4.1: The parameteg$t) ands(¢) for the local volatility function[(2.9). (Table C in [34].)

domestic LIBOR ratd (213) are fully determined by the abafermation [1, 4].

We consider the tenor structufe (2.1) that has the followhogerties: (iy, = 1 (year),a=1,...,5+1
and (ii) 5 = 29 (years). Features of the PRDC swap are:
- Pay annual PRDC coupons and receive annual domestic LIBYR@nts.
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- Standard structure, i.&; = 0, b, = +oc0. The scaling factof f, }°_, is set to the forward FX rat& (0, T,,).
- The domestic and foreign coupons are chosen to provide tihifeerent levels of leverage: low( =
225%, cf = 450%), medium ed = 436%, Cy = 625%), hlgh (Cd = 81%, Cy = 900%)

- Exotic features:

- Knockout: the fixed upper barrier is setto= 110.25, 120.75 and 131.25 for the low-, medium- and
high-leverage levels, respectively.

- FX-TARN: the capua, is settoa, = 50%, 20%, and10% of the notional for the low-, medium-, and
high-leverage levels, respectively.

The truncated computational domdinis defined by setting,, = 5s(0) = 525.0, 740, = 10r4(0) = 0.2,
andry ., = 10r¢(0) = 0.5. The grid sizes and the number of timesteps reported in thesan this section
are for each time period of the Talblel4.1. Note that, whenithedtep size selectdr (3.6) is used, the number
of timesteps reported is the average number of timestepsatitane periods of the swap’s tenor structure.

We report the quantity “value”, which is the value of the finah instrument. In pricing PRDC swaps,
this quantity is expressed as a percentage of the notignebince in our case, an accurate reference solution
is not available, to provide an estimate of the convergeateeaf the algorithm, we also compute the quantity
“log, ratio” which provides an estimate of the convergence rateeélgorithm by measuring the differences
in prices on successively finer grids, referred to as “changere specifically, this quantity is defined by

log, ratio = log Happros (B7) uappmx(%)
’ (A E—E Y

whereu,,,-..(Az) is the approximate solution computed with discretizatimpsizeAx. For second-order
methods, the quantityg, -ratio is expected to be abakitAs demonstrated further in this section, the methods
in this paper exhibit second-order convergence, even iftmeuniform grids constructed may not be smooth
at a few points.

REMARK 4.1. It is important to note that, in the first time peridd, 1], of the swap’s tenor structure, the
piecewise constant parametél$) andc(t) of the local volatility function change their values at thmae

t = 0.5 (see Tablé 4]1). As a result, when solving the model PDE iffitsietime period0, 1], it is desirable
to make the time = 0.5 a gridpoint in the time direction to avoid a non-smooth cleaimgthe coefficients of
the model PDE within one timestep.

4.2. Non-uniform spatial partitions

The non-uniform partitions for the domestic and foreignrshates,r; andry, respectively, are con-
structed using the procedurartitionOndl, u, c, e, i, d;, d,,)) described in Algorithri 311. More specifically, as
input to this procedure, for the variable, we usé= —r; ., u = 14, d; = d,, = 0.0005. The index of the
point of interestr,(0), is settoi = cei | (0.4(p+1)). For ther, variable, we use the same set of parameters,
exceptforl = —ry ., u =1y andi = cei | (0.4(¢ + 1)). (Note that the total numbers of sub-intervals are
p + 1 andg + 1 for r4 andr, respectively.) An example of such non-uniform partitiovith p = ¢ = 40 is
given in Figuré_4.11. Note that the partitions for both ingtrghort rates are the same for all time periods of
the swap’s tenor structure.

The strikek,, a = 29,...,1, can be computed via (2.6), with the forward FX rdt€), t) (2.5) being
fully determined by the model parameters. For a knockout ERWap, the non-uniform partitio,, is
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Figure 4.1: The location of the gridpoints for the non-unifiopartitions for the domest|c (a) and foreign
interest short rate variables. The points of interegt)) andr,(0), which are the instantaneous forward
rates, are each marked by a black dot.

first constructed using the procedWartitionMulti(L, U, {c;}2_, {e;}_1, {i;} o1, {d 12, {d}}2)) as de-
scribed in Algorithni 3.2. We then apply the adjustment dbescrin Remark 3.3 to ensure thafalls at a
midpoint. As input to the partition generating proceduos, dll time periods of the swap’s tenor structure,
we use the set of parameters listed in Tablé 4.2. Examplegobf son-uniform partitions with = 35 are

given in Figure§ 412 (&) ard (b) .

L‘U‘Cl‘CQ‘ 61‘ 62‘ 7,1‘ 7,2‘ dll‘dlz‘ull‘ulz
knockout

AlgorithmB.2| 0| s [ ka| blceil (22)[(n+1) —ei|ceil (0.5¢;)[ceil (0.4¢5)| 10[ 10] 10]3.5
FX-TARN

Algorithm[3.1| 0| a.| a.|n/a w
(thea variable)
Algorithm[3.2 | 0| s | ko | V% |ceil (%) (n+1) —ei|ceil (0.5¢;)[ceil (0.4¢5)| 10] 10] 10]/3.5
Algorithm[3.1 | 0| sy | ko | N/a n+1 n/ajcei | (0.5e;) n/a| 10|n/a| 10|n/a
(0¥ — ko < 15)
Table 4.2: Parameters to the partition generating proesdRartitionOne (Algorithm [3.1) andPartition-
Multi (Algorithm[3.2) employed to generate non-uniform partisdor thes anda variables. Here, the total
numbers of sub-intervals are+ 1 andw + 1 for the s anda variables, respectively.

For a FX-TARN PRDC swap, the non-uniform partition for the@ariable is constructed using the pro-
cedurePartitionOnewith modifications as described in Remarkl3.1. The paramdterthis procedure are
givenin Tablé 4.R. Foreagl),y = 0, ..., w, of the partition for the: variable constructed in this fashion and
for eachT,, o = 29, ..., 1, the non-uniform partitiod\? for thes variable can be generated usiPartition-
Multi in a similar fashion to those constructed for a knockout PR@p. However, we switch to procedure
PartitionOnewhen?t? — k, < smal | - range (see Remark3l5). As input to the partition generating pro-
cedure, for all time periods of the swap’s tenor structure fan all a,,, we use the set of parameters listed in
Table[4.2. Examples of such non-uniform partitions with- 35 and several different values of are given
in Figured 4.2 (¢) and (d). It may be interesting to investdarther possibly better parameter settings for
the partition generating procedures. However, this is bdybe scope of this paper.

+

1 n/a el n/a|0.01| n/a| n/a| n/a

+

4.3. Numerical results
4.3.1. Convergence and efficiency

In this subsection, we discuss the convergence of the cadguices and the efficiency of the numerical
methods developed in this paper for knockout and FX-TARN ERWaps. An analysis of the pricing results
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Figure 4.2: The location of the gridpoints of the non-umifiguartitions for thes variable at selected dates of
the swap’s tenor structure used for pricing a knockout PRid&pswith low-leverage coupdn {a) and high-
leverage coupon (b), and for a high-leverage FX-TARN PRD@pswitha, = 0%[(c) anda, ~ 9.70% [(d).
The strikek,, is marked by a black dot, while the barrier is marked by a wiite

is given in the next subsection. In addition to the ADI-FD hweat with non-uniform grids and timestep sizes
chosen by[(3)6) (non-uniform ADI-FD) described in this papee also carried out experiments with the
ADI-FD method with uniform grids and uniform timestep siZasiform ADI-FD).

Note that, with the above choice of the truncated computatidomain and for all spatial grid sizes
considered for the ADI-FD uniform method, there is a gridpait the spot value in each spatial dimension,
i.e. ats(0), r4(0) andr(0). Also, for all grid sizes considered for the knockout PRD@ps/with uniform
grids, the fixed FX-linked barrigr is one of the midpoints of the grid in the spot FX rate direttioe. we
use the grid shifting strategy.

a) Knockout PRDC swaps

D. M. Dang, C. C. Christara, K. R. Jackson and A. Lakhany 27



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

In the left half of Tabld_4.3, under the header “with grid §hi§”, we present pricing results for the
knockout PRDC swap for various leverage levels obtainedgudie uniform ADI-FD method and the grid
shifting technique. Note that, when uniform grids are us$epgling the number of gridpoints)(= 3) of a
coarser grid having the fixed FX-linked barrieas a midpoint ensures that the resulting finer grid has the
same property. We expect the quantity; ratio to be about 2 for a second-order discretization me#satie
grids are refined in this fashion. When the grid shifting teghe is employed, the computed prices indicate
second-order convergence is achieved for the uniform ADtethod, as expected.

leverage [ n+1 p+1 g¢+1 |value| change| log, I n+1 p+1 ¢+1|value| change log,
level |(7) (s) (ra) (ry)| (%) ratio|| (1)  (s) (ra) (rf)| (%) ratio
with grid shifting without grid shifting
6 50 40 400.856 12 100 80 800.841
low 18 150 120 1201.321|4.6e-03 24 200 160 1601.107|2.7e-03
54 450 360 3601.358/4.7e-04 2.2 || 48 400 320 3201.241|1.3e-03 1.1
6 50 40 401.441 12 100 80 801.416
medium| 18 150 120 1202.049|6.1e-03 24 200 160 1601.768|3.5e-03
54 450 360 3602.109(5.9e-04 2.1 | 48 400 320 320(01.943|1.7e-03 1.0
6 50 40 405.104 12 100 80 804.837
high | 18 150 120 12(05.468|3.6e-03 24 200 160 1605.183|3.4e-03
54 450 360 3605.519{4.8e-04 1.9 | 48 400 320 3205.354|1.7e-03 1.1

Table 4.3: Computed prices and convergence results fombekout PRDC swap for various leverage levels
under the FX skew model obtained using the uniform ADI-FDhodt HV smoothing is applied.

To show the effect of the grid shifting technique on the cogeace and accuracy of the numerical meth-
ods, we carried out experiments with different uniform gnehich do not havé as a midpoint, but rather as
a gridpoint, in the spot FX rate direction. The results osthexperiments are presented in the right half of
Table[4.8 under the header “without grid shifting”. In thes@eriments, the coarser grids having the fixed
FX-linked barrier as a gridpoint are refined by doubling the number of gridgdint= 2). It is evident from
Table[4.8 that, although the prices obtained by the unifoildi-BD method without grid shifting appear
to converge to the approximately same values as those eltainthe uniform ADI-FD method with grid
shifting, only linear convergence is observed in this casethe observetbg, ratio is aboutl instead of2.

This emphasizes the importance of handling appropriakaydiscontinuities in the terminal conditions on
each date of the tenor structure of the knockout PRDC swaptisaussed in Remalrk 8.2.

In Table[4.4, we report the pricing results for knockout PREps for various leverage levels obtained
using the non-uniform ADI-FD method. Note that, our apptoxconstructing non-uniform grids ensures
that the grid shifting technique is always employed. The poted prices indicate that second-order conver-
gence is achieved for the non-uniform ADI-FD method wheriadgo knockout PRDC swaps.

b) FX-TARN PRDC swaps

In Table[4.5, we present pricing results for FX-TARN PRDC pw/éor various levels of leverage and
values of the target cap obtained with uniform and non-uniform ADI-FD methods. lhases, the number
of sub-intervals in thei-direction is40, i.e.w = 39 in (3.11). Hence40 pricing sub-problems must be
solved over each time period of the swap’s tenor structutese@e that, similar to knockout PRDC swaps,
for all leverage levels, the computed prices also exhilmibsd-order convergence, as expected from the ADI
timestepping methods and the interpolation scheme.
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leveragel [ n+1 p+1 ¢+1 | value| change| log,
level | (1) (s) (ra) (ry) || (%) ratio
5 40 20 20| 1.195
low 11 80 40 40| 1.328| 1.3e-3
22 160 80 80| 1.358| 3.0e-4| 2.1
43 320 160 16Q 1.365| 6.8e-5| 2.0
5 40 20 20| 1.996
medium| 11 80 40  40)| 2.091| 9.5e-4
22 160 80 80f 2.110| 1.9e-4| 2.3
43 320 160 16Q 2.115| 5.4e-5| 1.9
5 40 20 20| 5.364
high 11 80 40 40| 5.490| 1.2e-3
22 160 80 80| 5.516| 2.6e-4| 2.2
43 320 160 16Q 5.523| 6.9e-5| 1.9

Table 4.4: Computed prices and convergence results forkknbnd®RDC swaps for various leverage levels
under the FX skew model using the non-uniform ADI-FD meth@dd shifting technique is embedded. HV
smoothing is applied.

As mentioned in Subsectidn 2.2, using artificial boundanyditions may induce additional approxima-
tion errors into the numerical solutions. However, we cakenthese errors sufficiently small by choosing
sufficiently large values fos = s, 74, andr; .. Table[4.6 shows select prices of high-leverage PRDC
swaps obtained with different large boundaries. The siaid timestep sizes in these examples are chosen
to be the same with those of the coarsest grids in Tablés 4t gwd shifting) and 4.5a. It is observed that,
smaller range for the truncated boundary valuess.,, r4 ., andr; . than what we use in this paper may be
inappropriate, since the computed prices of the swaps appba sensitive to these values of the boundaries.
However, once these values are sufficiently large, we do Ine¢rved sensitivities in the computed prices of
the swaps to boundaries of the computational domain.

We conclude this subsection by noting that second-orderexgance on non-uniform grids of various
ADI FD schemes, including the HV scheme considered in thepaapplied to the three-dimensional PDE
arising from the hybrid Heston-Hull-White model [23/ 24]sHaeen recently reported in [22]. However, the
non-uniform spatial partitions considered in our paperehiavo concentration points, as opposed to those
with only one concentration point used in [22].

c) Discussion of efficiency

To check the accuracy and to compare the efficiency betwesmrtliorm and non-uniform ADI-FD
methods, we establish benchmark prices for knockout/FRNAswaps for different leverage levels using
MC simulations. With10° simulation paths for the spot FX rate, the timestep sizegogifi12 of a year, and
using antithetic variates as the variance reduction teglmifor the low-, medium-, and high-leverage levels,
the benchmark prices for the knockout PRDC swapla3é3% (with standard deviation (std. dev.) = 0.016),
2.116% (std. dev. = 0.015), and.526% (std. dev. = 0.019), respectively. TH8% confidence intervals
(Cls) are[1.364%, 1.371%)], [2.113%, 2.119%] and[5.522%, 5.530%], respectively, For the FX-TARN PRDC
swap, the MC benchmark prices and %i¢% Cls are—4.383% (std. dev. = 0.020, 95% CI = [-4.386%,
-4.379%]),3.796% (std. dev. = 0.018, 95% CI = [3.792%, 3.799%)]), arkd638% (std. dev. = 0.021, 95%
Cl = [18.635%, 18.641%]), respectively. Each of gt Cls contains the respective PDE-computed swap
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leverage| a. |w+1 I n+1 p+1 g+1| value| change| log,
level (@) | (1) (s) (ra) (ry) (%) ratio
6 60 40 40| -4.691
low 50% 40| 12 120 80 80| -4.467| 2.2e-03
24 240 160 160 -4.405| 6.2e-04| 1.9
48 480 160 160 -4.388| 1.7e-04| 1.9
6 60 40 40| 3.402
medium| 20% 40| 12 120 80 80| 3.692| 2.9e-03
24 240 160 160 3.768| 7.5e-04| 1.9
48 480 160 16Q 3.787|2.0e-04| 1.9
6 60 40 40| 18.212
high | 10% 40| 12 120 80 80| 18.528| 3.1e-03
24 240 160 160 18.610| 8.1e-04| 1.9
48 480 160 160 18.631| 2.1e-04| 1.9

(a) uniform ADI-FD

leverage| a. | w+1 I n+1 p+1 g+1| value| change| log,
level (@) | (1) (s) (ra) (ry) (%) ratio
6 30 15 15| -4.487
low 50% 30| 12 60 30 30| -4.409| 7.8e-04
23 120 60 60| -4.389| 2.0e-04| 1.9
47 240 120 120 -4.384| 5.4e-05| 1.9
6 30 15 15| 3.709
medium| 20% 30| 12 60 30 30| 3.775| 6.5e-04
23 120 60 60| 3.789| 1.4e-04| 2.0
47 240 120 120 3.793| 3.8e-05| 1.9
6 30 15 15| 18.521
high | 10% 30| 12 60 30 30| 18.609| 8.8e-04
23 120 60 60| 18.631| 2.2e-04| 1.9
47 240 120 120 18.637| 5.9e-05| 1.9

(b) non-uniform ADI-FD

Table 4.5: Values of the FX-TARN PRDC swap for various legeréevels under the FX skew model. HV
smoothing is applied.

price.

Due to memory limitations, we were not able to compute prarean uniform mesh finer than the finest
one in Table§ 413 (with grid shifting) and #.5(a). As a cotesisy check, we compared the MC benchmark
prices with the prices obtained using the computed pricdbarse two tables and extrapolation, assuming
guadratic convergence, since the uniform ADI-FD methoduigpesed to achieve this. With an accuracy
requirementl0~°, for the low-, medium-, and high-leverage levels, the gdtated prices for the knockout
PRDC swap obtained by the uniform ADI-FD method ar&67%, 2.118%, and5.525%, respectively. For
the FX-TARN PRDC swap, the extrapolated prices are381%, 3.795%, and18.638%, respectively. All
these extrapolated prices all agree very well with the MCqwiand th@5% Cls.

As observed in Tablés 43, 4.4 dnd|4.5, for both the knockedif2X-TARN PRDC swaps, the computed
prices obtained by the non-uniform ADI-FD method conveé¢he benchmark prices more quickly than
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[0, Soo] X [=Td00, Tdoo] X [=7 f.00, T'f.00) I n+1 p+1 qg+1 | value
() () (ra) (rp) ]| (W)
uniform ADI-FD (knockout)

[0,315] x [—0.1,0.1] x [—0.25,0.25] 6 30 40 40|| 0.853

[0,1050] x [—0.5,0.5] x [—0.75,0.75] 6 100 200 120| 0.856

[0,2100] x [—1.0,1.0] x [—1.0, 1.0] 6 200 400 160 0.856
uniform ADI-FD (FX-TARN)

[0,315] x [—0.1,0.1] x [—0.25,0.25] 6 36 40 40| -4.708

[0,1050] x [—0.5,0.5] x [—0.75,0.75] 6 120 200 120Q|-4.691

[0,2100] x [—1.0,1.0] x [—1.0, 1.0] 6 240 400 160 -4.691

Table 4.6: Effect of finite boundary. Low-leverage level.

do the prices obtained by the uniform ADI-FD method. In additit is also evident from these tables that
the non-uniform ADI-FD method is substantially more effidiéhan its uniform counterpart when applied to
price knockout and FX-TARN PRDC swaps. As an illustrativaraple, for the knockout swap, compare the
uniform ADI-FD method with(n + 1) x (p+ 1) x (¢ + 1) x I = 150 x 120 x 120 x 18 in Table[4.8 (with
grid shifting), to the non-uniform ADI-FD method wittn + 1) x (p+1) x (g+ 1) x I = 80 x 40 x 40 x 11

in Table[4.4. Itis evident that, for all leverage levels, tioa-uniform ADI-FD method is more accurate than
its uniform counterpart (compaie328%, 2.091%, and5.490% in Table[4.4 tol.321% 2.049% and5.468%

in Table[4.3 (with grid shifting), respectively), while agj only about% (~ 524040 ) of the total number
of gridpoints and aboui1% (=~ %) of the total number of timesteps. Similar efficiency restold for the
FX-TARN PRDC swap. In addition, note that, for the FX-TARNay although both uniform and non-
uniform ADI methods used the same number of timesteps,3ihgyridpoints in thez-direction are employed
for the non-uniform ADI method compared #0 gridpoints for the uniform ADI method. Consequently,
over each time period of the swap’s tenor structure, theuroform ADI method must solv80 PDEs (in
parallel) whereas the uniform ADI method must sol@ePDEs (in parallel). This results in a very significant
reduction in the computational requirements for the noifieam ADI method compared to the uniform ADI
method.

We note that, to make a more rigorous efficiency comparisbmd®n the uniform and non-uniform ADI-
FD methods, we should take into account the total cost of théPD methods. When utilizing the non-
uniform ADI-FD method, certain additional costs arise,lsas (i) interpolation at each date of the swap’s
tenor structure; (ii) matrix-vector multiplications indfSteps[(3.5a) and_(315c¢) of the ADI timestepping
method (e.g. a nine-poin & 3) stencil for matrix-vector multiplications involvind{* on non-uniform grids
versus a four-point one on uniform grids); and (iii) the tstep size selector. However, since these additional
computational costs are only a small fraction of the methtmtal computational costs, it is still true that, for
knockout and FX-TARN PRDC swaps, the non-uniform ADI-FD hwet is considerably more efficient than
its uniform counterpart.

4.3.2. Analysis of pricing results

a) Effects of the leverage levels

We briefly review the prices of “vanilla” PRDC swaps, due teithrelevance to our discussion later in
the section. With the set of model parameters used in thisrppe computed prices for low-, medium- and
high-leverage “vanilla” PRDC swaps are approximatelyi.107%, —12.686% and—11.087%, respectively.
(See [12; 14, 15]). (Note that, due to the impact of the FX tahaskew, the prices of “vanilla” PRDC
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swaps obtained under a FX skew model, such as the model usled paper, are approximately the same
for the low- and high-leverage cases, while are smallermare negative, for the medium-leverage case.
A detailed discussion in this regard can be found in thedttee, e.g. inl[34].) These results indicate that
the investor who buys the “vanilla” PRDC swap should pay acoeeipon of aboul1.107%, 12.686% and
11.087%, respectively, of the notional to the issuer. Hence, fromgkrspective of the investor, “vanilla”
PRDC swaps are not attractive, because the investor musheayitial coupon.

On the other hand, for the knockout PRDC swaps consideregealior the low-, medium- and high-
leverage cases under the FX skew model, the issuer should petycoupon of about365%, 2.115% and
5.523% of the notional to the investor (see Tablel4.4). For the levetage FX-TARN PRDC swap considered
above, the investor should pay a net coupon of ah@#4% of the notional to the issuer. (Note the negative
values in this case.) However, for the medium- and highrbaye cases, the issuer should pay the investor a
net coupon of abowt.793% and18.637%, respectively, of the notional. (See Tablel4.5, non-unif&DI-
FD.) Compared to the “vanilla” PRDC swap, it is clear thawpfirthe perspective of the investor, the knockout
and FX-TARN features result in more positive prices for theys. This is consistent with the discussion in
Subsectio Z2]4. Of course, in all cases, the issuer woul@pte pay less, if the prices are positive, or to
receive more, if the prices are negative, and keep the difter as profit.

Another observation is that, for both knockout and FX-TARRDC swaps, among the three leverage
cases, the high-leverage case is the most attractive tontbstor, due to the high initial coupon paid by the
issuer to the investor. On the other hand, the low-leverage s the least attractive to the investor, due to a
smaller initial coupon, which may even be negative in sonsesaresulting in an initial fund outflow for the
investor. For example, for the low-leverage FX-TARN swaphwi. = 50%, the investor must pay the initial
coupon (although it is smaller than the coupon the investastmpay in the low-leverage case for a “vanilla”
PRDC swap). This observation is consistent with the remiar34] for Bermudan cancelable PRDC swaps.

20

leverage a e ooy X-TAR
level 10%] 20%] 50%] 80% 8 lowlev X TARN
low | 5367 1.231]-4.388|-6.847| _ 1 . & med-lev vanila ]
medium| 8.801| 3.787| -3.133| -6.329 S -*
high 18.637| 14.910| 9.018| 5.948 é o %
Figure 4.3: Prices of FX-TARN PRDC swaps fc & I
various target cap levels,., and various lever- Z T
age levels for the FX skew model using the fine ~%—e—e———e&———»o——o 82
mesh in Tablé 4]5 and the non-uniform ADI-FI
method. -20 ‘ ‘ : : ‘ ‘
0 20 40 60 80 100 120

coupon target cap (%)
Figure 4.4: For large values af, prices of FX-
TARN PRDC swaps tend to the prices of “vanilla”
PRDC swaps.

b) Effects of the target cap.

In Figurel4.8, we present selected prices for FX-TARN PRD@psnfor various values of the target caps
a. obtained using the finest mesh in Tabld 4.5, non-uniform ADI-We observe that the price of a FX-TARN
PRDC swap is a decreasing function of the target«capore specifically, a smaller value of the target cap
a. results in a more positive price of the FX-TARN PRDC swapjdating that the issuer pays the investor
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the initial coupon (e.g. see the low-leverage case with {10%, 20%}). On the other hand, if the target cap
a. IS large enough, the price could become negative, i.e. trestar pays the issuer the initial coupon (e.g.
see the low-leverage case with= {50%, 80%}). This behavior of the price of a FX-TARN PRDC swap is
expected, since, the smaller the target cap is, the higbdetierage of the swap (from the perspective of the
investor). On the other hand, the larger the value of theetargp is, the later the underlying PRDC swap is
expected to terminate. As a result, a FX-TARN PRDC swap witdrge target caps., tends to behave like

a “vanilla” PRDC swap. Hence, the price of a FX-TARN PRDC swath a large target cap,, is close to
the price of the “vanilla” swap, as shown in Figlrel4.4.

c) Profiles of the swap values

20 T T 20
10t
= —
S S 100
g )
=< =
> 0 —_— <
o >
I Q.
: g |
[7) Z 0
_lo,
-20 - - -10

25 125 150 25 125 150

75 75
spot FX rate spot FX rate

Figure 4.5: Values of knockout PRDC swaps, Figure 4.6: Values of FX-TARN PRDC swaps,

percentage ofV,, as a function of the spot FXin percentage ofV,, as a function of the spot FX

rate at timel,+ = T3+ = 3 with high-leveragerate at timel,+ = T3+ = 3 with high-leverage

coupons. The constant barrier is 131.25. coupons and,+ = az- ~ 6.25%. The computed
barrier is126.3.

To better understand the dynamics of knockout and FX-TARIDERwaps, we investigate the value of
the knockout/FX-TARN swap at an intermediate date of thetstructure as a function of the spot FX rate
on that date. In Figurie 4.5, we plot the value function foihRigverage knockout PRDC swaps immediately
after the exchange of fund flows scheduled at tiffie= 3, i.e. at timeT3+, as a function of the spot FX
rate on that date. Note that, this is a plot of the quanitity, (7,,+) defined in[(2.14) as a function ef7,,),
wherea = 3. Similarly, in FigureL4.5, we plot the value function for hideverage FX-TARN PRDC swaps
immediatelyafterthe exchange of fund flows scheduled at tije= 3, given the accumulated PRDC coupon
amountay+ = az- < a.. This is essentially the plot of the quantity_, (7,+; a(.—1)+) defined in[(3.14) as a
function ofs(T,), for « = 3. For the FX-TARN swap example considered in Figuré 4.6, wesle ~ 6.25%,
whence, from[(3.12), the computed knockout barrier is ab®6it3. Note that, the striké, and the forward
FX rate F'(0,7,) whena = 3 are abouB6.4 and95.4, respectively.

For both the knockout and FX-TARN PRDC swaps, we observe thahe region to the left of the
strike, the value function is positive and concave-dowa, it. has negative gamma. This agrees with the
interpretations that (i) the swap is not pre-maturely teated, due to low spot FX rates, and that (ii) the
issuer has a short position in low-strike FX call option. ¢ReE&that the issuer pays PRDC coupons, the
rates of which can be viewed as call options on the spot FX esténdicated by the coupon rate formula
(2.1). For the low-, medium-, and high-leverage cases, tifilees:, = ﬁ—jfa is set to50%, 70% and90% of
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fa = F(0,T,), respectively, hence is significantly less th&). As a result, the PRDC coupon rates defined
by (2.7) can be viewed as low-strike FX call options.)

However, in the region to the right of the strike and tendiodghte barrier, as evident from Figurlesl4.5
and[4.6, the value function becomes negative and its prdfis@ges from being concave-down to being
concave-up, i.e. it has positive gamma. The value functiecolmes negative in this region because the
higher PRDC coupon rates amount to fund outflows from thesissperspective. The change of concavity
can be understood by noting that the underlying PRDC swagriseted wher(7,,) > b (for the knockout
swap) ors(7,,) > bY (for the FX-TARN swap). This can be interpreted as the ishagmng a long position in
high-strike FX call options. Hence, the profile of the valuadtion changes from concave-down to concave-
up to reflect this change from a short position in low-strikedall options to a long position in high-strike
FX call options.

The discussion above explains why the profile of a knockoE®>6TARN PRDC swap is similar to that
of a bear spread created by call optlonshich is known to be very sensitive to the skewness of the FX
volatility smile. These observations for knockout and FXRN PRDC swaps are similar to those reported
in [34] for Bermudan cancelable PRDC swaps. However, a kowitkX-TARN PRDC swap exhibits even
more sensitivity to the FX volatility skew in the concave{gat, near the barrier, due to the discontinuity in
the payoff function at the barrier. As a result, the overalpact of the FX volatility skew on the price of a
knockout/FX-TARN PRDC swap is expected to be quite substhrfince it is not a focus of this paper to
discuss the impact of the FX volatility skew on the price ohagkout/FX-TARN PRDC swap, we limit our
discussion of this important topic to a few brief remarksr @&periments, reported in [12], indicate that, the
three-factor FX skew model considered in this paper resukgynificantly lower prices (i.e. higher profits)
of the knockout/FX-TARN swap for the issuer than those atgdiunder a similar three-factor log-normal
model calibrated to the same market cﬁatdence, from the perspective of the issuer, it is importaihziee
a model that can accurately capture the skew of the FX vityatil

5. Conclusions and future work

We discussed efficient PDE-based methods to price foreighagige interest rate hybrid derivatives,
with particular emphasis on PRDC swaps with knockout andTRRN features, under a three-factor multi-
currency pricing model with FX volatility skew. Due to thetpadependency of FX-TARN PRDC swaps,
forward pricing algorithms, such as MC simulation, are thé&ural choice for pricing these derivatives. By
introducing an auxiliary state variable to keep track of titkal accumulated PRDC coupon to date, which
stays constant between dates of the tenor structure anddaaghon each date of the tenor structure by
a PRDC coupon amount known on that date, we developed a PBdttmicing algorithm for FX-TARN
PRDC swaps which steps backward in time. This approachnesjus to solve a set of independent model
PDEs for each of the discretized values of the auxiliaryestatiable over each period of the swap’s tenor
structure, with communication at the end of the period onlye showed that each of these pricing sub-
problems can be viewed as equivalent to a knockout PRDC swthpwime-dependent step-down barrier,
the solution of which can be computed by solving a time-ddpatparabolic PDE in three space dimensions.
We investigated the construction of certain pre-deterchiman-uniform grids for use with second-order cen-

A bear spread can be created using call options by going atant-strike call option and going long a higher-strike cgition
with the same maturity.

8 Here, a log-normal model refers to a model in which the lootatiity function is a deterministic function of the timaniable
t only, and does not depend on the spot FX rate
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tered FD discretizations for the space variables of the hfDE&, while utilizing efficient timestepping ADI
techniques, combined with a simple, but effective, timestige selector, for the time discretization of the
PDE. Our numerical results confirm the validity of the PDEpry approach and the convergence properties
of numerical methods. They also show that suitably consttlnon-uniform computational grids can sub-
stantially improve the efficiency of numerical methods focimg cross-currency/FX interest rate derivatives,
especially swaps with knockout/FX-TARN features.

We conclude by mentioning some possible extensions of teik.wlIt would be desirable to have a
theoretical analysis of the second-order convergenceeoADI timestepping method on non-uniform grids
for three-dimensional time-dependent parabolic PDEs.mFaonumerical methods perspective, it would
be interesting to investigate the effects of higher-ordegrpolation schemes, such as cubic splines, on the
swaps’ prices. To further increase the efficiency of the micakmethods, higher-order spatial and time
discretization methods can be employed. For example, tithf@rder (optimal) quadratic spline collocation
(QSC) method developed in [5], which requires the solutibordy one tridiagonal linear system at each
timestep, could be utilized in combination with a fourttder ADI time-stepping method. To achieve even
a higher efficiency, adaptive techniques, such as thosdagmeein [6, 30], which dynamically adjust the
location of the gridpoints to control the error in the appnoate solution, could be used.

Several extensions to the model adopted in this paper ceutdudlied. Firstly, due to the sensitivity of
PRDC swaps with exotic features to the FX volatility skewy@uld be desirable to have a model that more
accurately approximates the observed FX volatility skevthis regard, one approach is to model the variance
of the spot FX rate using a stochastic process, such as therHesdel[23], so that the market-observed FX
volatility smiles are more precisely captured. Anothergilole direction worth investigating is to retain the
standard three-factor model, and instead of having a lagatility function, use a regime switching model
[3,118] for the stochastic volatility of the spot FX rate. 8edly, since one-factor interest rate models cannot
provide realistic evolutions of the term structures oveegyvong time period, such as the typical maturity
of a PRDC swap, multi-factor Gaussian interest rate modalsh) as two- or three-factor Hull-White models,
should be explored.

As an enriched model may have significantly more than threehssistic factors, a PDE-based pricing
approach becomes less suitable, due to the “curse of dioralgy” associated with high-dimensional PDEs.
While a MC pricing approach is the popular choice in this ¢célse main challenge is to find an effective
variance reduction technique. To this end, a hybrid priomeghod, combining the MC and PDE approaches,
might be attractive. More specifically, one could possitdg @ highly accurate numerical solution obtained
from the standard model with a local volatility function \ttee PDE approach developed in this paper as a
control variate to accelerate the convergence of numesaations obtained from an enriched model using
MC simulations.
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