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Abstract

In this paper, we study a partial differential equation (PDE) framework for option pricing where

the underlying factors exhibit stochastic correlation, with an emphasis on computation. We derive a

multi-dimensional time-dependent PDE for the corresponding pricing problem, and present a numer-

ical PDE solution. We prove a stability result, and study numerical issues regarding the boundary

conditions used. Moreover, we develop and analyze an asymptotic analytical approximation to the

solution, leading to a novel computational asymptotic approach based on quadrature with a perturbed

transition density. Numerical results are presented to verify second order convergence of the numer-

ical PDE solution and to demonstrate its agreement with the asymptotic approximation and Monte

Carlo simulations. The effect of certain problem parameters to the PDE solution, as well as to the

asymptotic approximation solution, is also studied.

Key words: stochastic correlation, option pricing, numerical solution, asymptotic solution, partial differential

equation

1 Introduction

In many areas of financial modeling such as pricing and risk reporting, correlation between random

variables is a critical input. A sound modeling of correlation is therefore necessary for capturing the

relationship between asset returns, particularly when the quantity of concern is sensitive to correlations.

It has been well documented in the literature that correlation is not a constant variable, but a time-varying

one (see, for example, [2, 33, 16], among many others). In particular, during periods of financial crisis, it

is observed that correlations between asset returns increase (e.g. [28, 5, 32])

In the options market, there is considerable empirical evidence of a large correlation risk premium

(e.g. [16, 15, 4]). In particular, in [16], it is established that correlation risk constitutes the missing

link between (empirically) un-priced individual variance premium risk and priced market variance risk.

Therefore, proper modelling of correlation is important in estimating correlation risk exposure.

There are several methods in the literature that seek to model the stochasticity of correlations. The

dynamic conditional correlation approach (see [19, 38]) proposes a class of multivariate GARCH models

that have time-varying correlations. This class of discrete-time model enjoys popularity, especially in

econometric analysis. In the continuous-time literature, the Wishart process [3], sometimes considered a

generalization of the Heston model [23], is often used to capture stochastic variances-covariances. This is

studied in the context of derivative pricing in such works as [11, 12, 22]. Being an affine specification, the

Wishart model has the advantage of analytical tractability, which is desired in many situations. However,
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in this model, variances and covariances must be specified, calibrated and evolved jointly, unlike the

dynamic conditional correlation approach. This could be an inconvenient feature when a specific model

of the volatility is required.

A third approach to modeling stochastic correlation is to directly specify the dynamics of the correla-

tion variable by a stochastic process (see, for example, [37, 15, 39]). This is also the modeling approach

of stochastic correlation that we adopt in this paper. Compared to Wishart processes, this approach has an

advantage of possible separate calibration of parameters. However, under this class of models, analytical

tractability is no longer preserved in derivative pricing, and numerical approximations become necessary.

In the domain of numerical methods, the Monte Carlo (MC) simulation is a popular choice. However,

depending on the use case, this approach can have disadvantages, such as slow convergence for problems

in low-dimensions, i.e. fewer than five dimensions, and the limitation that the price is obtained only at a

single point in the domain, as opposed to the global character of the Partial Differential Equation (PDE)

approach. In addition, unlike PDE methods, MC simulations usually suffer from difficulty in computing

accurate hedging parameters. To our best knowledge, a PDE approach for pricing contingent claims

under stochastic correlation has not been investigated in the literature. This forms the motivation for this

work.

In this paper, we will explore the computational aspects of pricing contingent claims when the corre-

lation variable is directly modeled by a mean-reverting stochastic process, with focus on the case of two

correlated underlying risk factors. The contributions of the paper are:

• We derive a time-dependent PDE in three space dimensions of the pricing problem, and propose

a numerical solution. We prove a stability result, and study the boundary conditions and their

associated numerical issues, especially those arising from the correlation variable.

• Using singular perturbation theory, we develop and analyze an asymptotic solution of the PDE as

the mean reversion rate of the correlation process becomes large. In cases where the price of the

contingent claim and its derivatives do not have a known closed-form solution under a constant

correlation model, we propose a novel asymptotic solution based on quadrature with a perturbed

transition density, which, to our best knowledge, is a new computational approach to the problem.

• Through numerical results, we illustrate the accuracy of the numerical PDE and asymptotic solu-

tion. We study the effect of certain problem parameters to the PDE and asymptotic solutions.

The outline of the remainder of the paper is as follows. In Section 2, we present a pricing model with

stochastic correlation and its corresponding PDE formulation. The numerical solution to the PDE is

discussed in details in Section 3. In Section 4, we discuss an asymptotic solution built-upon on singular

perturbation theory, and present an associated numerical algorithm that computes an approximation to the

option value with stochastic correlation. Numerical experiments and results are discussed in Section 5.

Section 6 concludes the paper and outlines possible future work.

2 Formulation

2.1 Model problem: contingent claims on two assets

As a model problem, we consider the pricing of a contingent claim on two (non-dividend-paying)

risky assets, whose price processes, denoted by S1(t) and S2(t), under the physical measure evolve as

follows:
dS1(t)/S1(t) = µS1dt+ σS1dB1(t),

dS2(t)/S2(t) = µS2dt+ σS2dB2(t),

dB1(t)dB2(t) = ρ(t)dt.

(2.1)
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Here, B1(t) andB1(t) are two correlated Brownian motions, and µS1 , µS2 , σS1 , σS2 are positive constants.

The correlation variable ρ(t) is unobservable, and is assumed to evolve stochastically as

dρ(t) = α(t, ρ(t))dt+ β(t, ρ(t))dB3(t), (2.2)

where α(t, ρ(t)) and β(t, ρ(t)) are functions that ensure a strong solution to the stochastic differential

equation (SDE), and are such that ρ(t) is bounded in [−1, 1] with probability 1. In this specification, the

Brownian motion B3(t) driving the correlation process is assumed to be independent of B1(t) and B2(t).
While it is possible to include a second layer of correlation structure between the correlation process and

the random shocks in asset prices, we shall restrict ourselves to the independence assumption

We remark that a second layer of correlation is considered in [15]. From a computational viewpoint,

the effect of this will be extra cross terms in the pricing PDE. While this is seldom a problem in practice

with a numerical PDE solver, it is not straightforward to interpret and specify second layer correlations.

If one would like to specify an instantaneous correlation between dB3(t) and dBi(t), say ψi, i = 1, 2,

then clearly ρ(t) has to be bounded within an interval depending on ψi in order that the instantaneous

correlation matrix is positive semi-definite. We remark that the resulting PDE would involve two more

cross derivative terms, each corresponding to the interaction between a price process and the correlation

process.

We are interested in pricing a contingent claim with terminal payoff g(S1(T ), S2(T )), where T is the

maturity of the contract. We denote by V = V (t, S1(t), S2(t), ρ(t)) the time-t value of the contingent

claim, 0 ≤ t ≤ T . We assume that the value of the contingent claim is Markovian in (S1(t), S2(t), ρ(t)).
We now derive the PDE that governs the price V .

Following a usual “no-arbitrage” argument, we consider a self-financing portfolio consisting of one

long unit position in V , (algebraically) short a1(t) shares of S1, a2(t) shares of S2, and ∆(t) units of

another derivative W on S1, S2. We assume also the existence of a money-market account, whose value

at time t is denoted by M(t), that pays instantaneous interest with rate r. For convenience, we assume

r > 0, however, our arguments are valid with minor modifications even if r is negative. Denote by b(t)
the (algebraically short) position in money-market account.

We denote by Π(t) the value of the portfolio. The portfolio value process can be written as

Π(t) = V (t, S1(t), S2(t), ρ(t))−∆(t)W (t, S1(t), S2(t), ρ(t))− a1(t)S1(t)− a2(t)S2(t)− b(t)M(t).

As the portfolio is self-financing, its infinitesimal change is

dΠ(t) = dV (t, S1(t), S2(t), ρ(t))−∆(t)dW (t, S1(t), S2(t), ρ(t))−a1(t)dS1(t)−a2(t)dS2(t)−b(t)dM(t).

By Itô’s lemma, dΠ(t) can be expanded as

dΠ(t) =

((

∂

∂t
+ L̃

)

V −∆(t)

(

∂

∂t
+ L̃

)

W − a1µS1S1 − a2µS2S2 − b(t)rM(t)

)

dt

+ σS1S1

(

∂V

∂S1
−∆(t)

∂W

∂S1
− a1(t)

)

dB1(t) + σS2S2

(

∂V

∂S2
−∆(t)

∂W

∂S2
− a2(t)

)

dB2(t)

+ β(t, ρ(t))

(

∂V

∂ρ
−∆(t)

∂W

∂ρ

)

dB3(t), (2.3)

where

L̃V .
=

σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2
+
β(t, ρ)2

2

∂2V

∂ρ2

+ µS1S1
∂V

∂S1
+ µS2S2

∂V

∂S2
+ α(t, ρ)

∂V

∂ρ
,
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and similarly for L̃W . In the above and for the rest of the paper, where applicable, the dependence on t
of S1(t), S2(t) and ρ(t) are suppressed for notational convenience.

We choose a1(t), a2(t) and ∆(t) such that the following holds:

∂V

∂S1
−∆(t)

∂W

∂S1
− a1(t) = 0,

∂V

∂S2
−∆(t)

∂W

∂S2
− a2(t) = 0,

∂V

∂ρ
−∆(t)

∂W

∂ρ
= 0. (2.4)

These three equations can be solved for a1(t), a2(t),∆(t). Using these choices, the terms involving real-

world drifts µS1 and µS2 are cancelled. Also, from the construction of a1(t), a2(t),∆(t), the terms involv-

ing dBi, i = 1, 2, 3, also disappear from dΠ in (2.3). As a result, the portfolio is instantaneously riskless.

In the presence of the risk-free money-market account paying instantaneous interest r, the following

equation has to hold:

dΠ(t) = rΠ(t)dt = r(V −∆(t)W − a1(t)S1(t)− a2(t)S2(t)− b(t)M(t))dt. (2.5)

Therefore, from (2.3)-(2.5), we have

∂V

∂t
+ LV = ∆(t)

(

∂W

∂t
+ LW

)

, (2.6)

where

LV .
=

σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2

+
β(t, ρ)2

2

∂2V

∂ρ2

+rS1
∂V

∂S1
+ rS2

∂V

∂S2
+ α(t, ρ)

∂V

∂ρ
− rV,

and similarly for LW . Assuming ∂W
∂ρ

6= 0, we have ∆(t) =
∂V
∂ρ
∂W
∂ρ

. As a result, the quantity

∂V
∂t

+ LV
∂V
∂ρ

is invariant for every financial derivative V that has non-zero sensitivity to ρ. Therefore, there exists

Λ(t, S1, S2, ρ) such that
∂V
∂t

+ LV
∂V
∂ρ

= Λ(t, S1, S2, ρ).

Consequently, we obtain the pricing PDE

∂V

∂t
+

σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2
+
β(t, ρ)2

2

∂2V

∂ρ2
(2.7)

+ rS1
∂V

∂S1

+ rS2
∂V

∂S2

+ (α(t, ρ)− Λ(t, S1, S2, ρ))
∂V

∂ρ
= rV. (2.8)

Expectedly, the quantity Λ(t, S1, S2, ρ) is related to a drift adjustment from the physical measure to a

risk-neutral measure. This is seen heuristically as follows. For illustration, assume that β(t, ρ) 6= 0, then

Λ(t, S1, S2, ρ) can be rewritten as Λ(t, S1, S2, ρ) = φβ(t, ρ), where φ ≡ φ(t, S1, S2, ρ) =
Λ(t,S1,S2,ρ)

β(t,ρ)
.
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We have from Itô’s lemma that

d
(

e−rtV (t, S1(t), S2(t), ρ(t))
)

= e−rt

(((

∂

∂t
+ L̃

)

V − rV

)

dt + σS1S1
∂V

∂S1
dB1(t) + σS2S2

∂V

∂S2
dB2(t) + β(t, ρ(t))

∂V

∂ρ
dB3(t)

)

=

(

(µS1 − r)S1e
−rt ∂V

∂S1
+ (µS2 − r)S2e

−rt ∂V

∂S2
+ φβ(t, ρ)e−rt∂V

∂ρ

)

dt

+σS1S1e
−rt ∂V

∂S1

dB1(t) + σS2S2e
−rt ∂V

∂S2

dB2(t) + β(t, ρ(t))e−rt∂V

∂ρ
dB3(t)

= σS1S1e
−rt ∂V

∂S1

(

dB1(t) +
µS1 − r

σS1

dt

)

+ σS2S2e
−rt ∂V

∂S2

(

dB2(t) +
µS2 − r

σS2

dt

)

+ β(t, ρ(t))e−rt∂V

∂ρ
(dB3(t) + φdt).

The Brownian motion B2 can be constructed as dB2 = ρ(t)dB1(t) +
√

1− ρ(t)2dB′
2(t) for some B′

2(t)
such that B1(t), B

′
2(t) and B3(t) are independent Brownian motions. The market price of risk process

γ̄ = [γi], i = 1, 2, 3 is given component-wise by the following:

γ1(t) =
µS1 − r

σS1

, γ2(t) =
1

√

1− ρ(t)2

(

µS2 − r

σS2

− ρ(t)γ1

)

, γ3(t) = φ.

In turn, the function Λ is related to an equivalent local martingale measure, where the third market price

of risk process is given by φ (subject to technical conditions that guarantee that the stochastic exponential

of the market price of risk processes is a true martingale).

2.2 Quanto options

In this section, we present a popular type of contingent claims that decouples equity and FX risk

in the terminal payoff, referred to as quanto options. The value of such derivatives depends on the

instantaneous correlation between the exchange rate process and the equity price process. The pricing of

such instruments in the presence of stochastic correlation is also studied in [37, 29]. In this context, we

denote by S(t) the underlying asset priced in the foreign currency, and by R(t) the spot FX rate which

is defined as the number of units of domestic currency per one unit of foreign currency. In a quanto

option, the payoff depends on S(T ) and a fixed strike, and is paid in the domestic currency. For this

kind of options, it is also important to realistically capture the correlation between S(t) and R(t). This

is because the currency mismatch in a quanto option gives rise to a “quanto adjustment” that depends

heavily on the correlation parameter between S(t) and R(t). Let S(t) and R(t) evolve as

dS(t)/S(t) = µSdt+ σSdB1(t),

dR(t)/R(t) = µRdt+ σRdB2(t),

dB1(t)dB2(t) = ρ(t)dt, (2.9)

where ρ(t) is as specified before, and µS, σS , µR, and σR are positive constants. Under the model (2.9),

it can be shown that the price V (t, S(t), ρ(t)) of a quanto option satisfies the PDE

∂V

∂t
+
σ2
SS

2

2

∂2V

∂S2
+
β(t, ρ)2

2

∂2V

∂ρ2
+ (rf − σSσRρ)S

∂V

∂S
+ (α(t, ρ)− Λ(t, S, ρ))

∂V

∂ρ
= rdV, (2.10)
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where rd and rf are positive constant domestic and foreign risk-free interest rates, respectively, and the

quanto terminal condition is given by V (T, S) = g(S), in which the payoff g(S) is independent of the

exchange rate R.

REMARK 2.1. Considering R as a risk source, Itô’s lemma would have led to derivatives with respect

to the R-variable, as shown below,

∂V

∂t
+
σ2
SS

2

2

∂2V

∂S2
+
β(t, ρ)2

2

∂2V

∂ρ2
+
σ2
RR

2

2

∂2V

∂R2
+ σSσRρSR

∂2V

∂S∂R

+ (rf − σSσRρ)S
∂V

∂S
+ (α(t, ρ)− Λ(t, S, ρ))

∂V

∂ρ
+ rRR

∂V

∂R
= rdV, (2.11)

where rR = rd − rf is the risk-neutral drift of R(t). The PDE is subject to the same terminal condition

as that of (2.10). As the quanto payoff g(S) is independent of the state variable R, it is straightforward

to see that any solution to (2.10) is a solution to (2.11). Thus, it suffices to consider the two dimensional

version (2.10).

2.3 Correlation process

We now discuss the choice for the correlation process ρ(t). The Jacobi process is a popular choice for

modeling stochastic correlation ([15], [39], [29] and [30]). If the correlation is assumed to attain values

anywhere in (−1, 1), then the following is a candidate choice of α and β:

α(ρ) = λ(η − ρ), β(ρ) = σρ
√

1− ρ2. (2.12)

Here, λ, η, and σρ are positive constants.

The parameter restriction λ ≥ σ2
ρ

1±η
, typically referred to as the Feller condition, is needed for the process

to remain in (−1, 1) with probability 1 (see [39]). This is the stochastic correlation model we will focus

on in this work. Unlike the Wishart process (see for example [10]), this class of models is not affine. In

general, a closed-form solution to (2.7) or (2.10) for a general payoff function is not known analytically,

and numerical methods are needed to approximate the solution.

In the analysis, we will focus on the model PDE (2.7). For pricing purposes and simplicity, for the

rest of the paper, we assume that the specification in (2.12) is risk-neutral, i.e. Λ ≡ 0. The following

theorem shows that the concept of classical solutions suffices for our purpose.

THEOREM 2.1. With α(ρ) and β(ρ) chosen as in (2.12), the price of a European contingent claim (with

bounded payoff g(S1(T ), S2(T ))), given by the discounted risk-neutral expectation

e−r(T−t)Et,x,y,ρ [g(S1(T ), S2(T ))] ,

satisfies (2.7) and is C1,2,2,2 on [0, T )× (0,∞)2 × (−1, 1).

Proof. See Appendix A.

3 Numerical solution

Since we solve the PDE (2.7) backward in time, the change of variable τ = T − t is used. Under this

change of variable, the PDE (2.7) becomes

∂V

∂τ
= LV (3.1)
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and is solved forward in τ . The pricing of the option price is defined in an unbounded domain

{(τ, S1, S2, ρ) ∈ (0, T ]× (0,∞)2 × (−1, 1)}, (3.2)

subject to the initial condition g(·, ·).
While an implementation of the finite difference scheme may seem straightforward, caution must be

taken to ensure proper discretization due to the unique features of this problem. Most of the techniques

of this section can be modified to other choices of α(t, ρ) and β(t, ρ).

3.1 Localization

Localization estimates are well studied in the literature. See, for example, [27] (multi-dimensional Black-

Scholes equation), [8] (exponential Lévy models and jump diffusion processes), and [7] (two-asset jump

diffusion models), among many others. Relevant to our work, in [8] and also in [25], for various models

(with constant correlations, though) and different assumption on payoffs, it has been proved that the price

of a European option is approximated exponentially well by that of a corresponding barrier option (in log

of the barrier). We now extend this result to the context of stochastic correlation.

For the statement of the result, we will switch to log scaling. We denote Xt = log(S1(t)) and

Yt = log(S2(t)), and generic variables x = log(S1), y = log(S2). Let also −Rlog and Rlog, where

Rlog > 0, respectively denote generic lower and upper barriers for the processes Xt and Yt.

PROPOSITION 3.1. Let ulog(τ, x, y, ρ) = e−rτEx,y,ρ

(

g
(

eXτ , eYτ
))

be the option price with the bounded

payoff function g in log scaling (||g||∞ < ∞). Define Mx
τ = supτ̂∈[0,τ ] |Xτ̂ |, My

τ = supτ̂∈[0,τ ] |Yτ̂ | and

Mx,y
τ = max(Mx

τ ,M
y
τ ). Furthermore, denote by θ̂ is the first exit time of (Xτ̂ , Yτ̂ ), τ̂ ∈ [0, τ ] from the

region [−Rlog, Rlog]× [−Rlog, Rlog]. Let

u1Rlog(τ, x, y, ρ) = e−rτE
[

g
(

eXτ , eYτ
)

1{Mx,y
τ <Rlog}

]

,

u2Rlog(τ, x, y, ρ) = e−rτE

[

g
(

eXτ , eYτ
)

1{Mx,y
τ <Rlog} + g

(

eXθ̂ , eYθ̂

)

1{Mx,y
τ ≥Rlog}

]

.

Then, for γ > 0, there exists constant C(γ, σS1 , σS2 , r, τ) independent of Rlog such that, for i = 1, 2,

|ulog(τ, x, y, ρ)− uiRlog(τ, x, y, ρ)| ≤ C(γ, σS1 , σS2 , r, τ)||g||∞(e−γ(Rlog−|x|) + e−γ(Rlog−|y|)),

pointwise in (0, T ]× [−Rlog, Rlog]× [−Rlog, Rlog]× (−1, 1).

Proof. By construction

|ulog(τ, x, y, ρ)− u1Rlog(τ, x, y, ρ)| ≤ ||g||∞Q
(

{Mx,y
τ ≥ Rlog}

)

,

where Q is the pricing measure. Similarly, we have

|ulog(τ, x, y, ρ)− u2Rlog(τ, x, y, ρ)| ≤ 2||g||∞Q
(

{Mx,y
τ ≥ Rlog}

)

.

We can writeXτ̂ = x+Uτ̂ and Yτ̂ = y+ Ũτ̂ , τ̂ ∈ [0, τ ], where Uτ̂ , and Ũτ̂ start from 0 and have drifts

r− σ2
S1

2
and r− σ2

S2

2
, respectively. We have Mx

τ = supτ̂∈[0,τ ] |x+Uτ̂ |. Theorem 25.18 of [36] implies that

for any γ > 0, C1(γ, σS1 , r, τ) = E

[

eγ supτ̂∈[0,τ ] |Uτ̂ |
]

< ∞. Therefore, by the exponential Chebyshev’s

inequality, for every Rlog
1 > 0,

Q

({

sup
τ̂∈[0,τ ]

|Uτ̂ | ≥ Rlog
1

})

≤ C1e
−γR

log
1 .
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As a result,

Q
({

Mx
τ ≥ Rlog

})

≤ C1(γ, σS1, r, τ)e
−γ(Rlog−|x|).

A similar bound can be obtained for Q
(

{My
τ ≥ Rlog}

)

, i.e.

Q
({

My
τ ≥ Rlog

})

≤ C2(γ, σS2, r, τ)e
−γ(Rlog−|y|).

The result follows by noting that

Q
(

{Mx,y
τ ≥ Rlog}

)

≤ Q
(

{Mx
τ ≥ Rlog}

)

+Q
(

{My
τ ≥ Rlog}

)

.

Proposition 3.1 shows that the price of a continuously monitored barrier option approximates that of a

European option arbitrarily well by extending the log barrier Rlog. As only a bounded domain is required

to compute the price of a barrier option, in the present case of European options, truncation of the domain

is effective when the truncation boundary is far enough from the points of interest.

REMARK 3.1. Proposition 3.1 is formulated in log price scaling. Technically, the equation in log space

corresponding to (3.1) is
∂ulog
∂τ

= Llogulog, (3.3)

defined on (0, T ]×R2 × (−1, 1) with terminal condition ulog(τ = 0, x, y, ρ) = g(ex, ey), where

Llog
.
=

σ2
S1

2

∂2

∂x2
+
σ2
S2

2

∂2

∂y2
+ ρσS1σS2

∂2

∂x∂y
+
β(ρ)2

2

∂2

∂ρ2

+

(

r − σ2
S1

2

)

∂

∂x
+

(

r − σ2
S2

2

)

∂

∂y
+ α(ρ)

∂

∂ρ
− r.

However, if analytic solution is known along the Si = 0 boundaries, i = 1, 2, such as in the case

of spread/basket/exchange options, then the price of the option can be similarly approximated by the

price of the corresponding barrier option. Specifically, this can be achieved by solving the original

Black-Scholes equation (3.1) in a truncated domain, with approximation error of the order O
(

1
(Rprice)

γ

)

pointwise in the domain, where Rprice is the far boundary in price scaling. In the case of non-negative

risk-neutral drift of the asset prices, this can also be seen from Doob’s martingale inequality.

REMARK 3.2. The boundedness condition imposed on the payoff function g may seem restrictive. In

particular, the analysis in Proposition 3.1 is applicable to only put payoffs, and not to call ones. How-

ever, it is possible to extend the results of Proposition 3.1 to more general, unbounded payoffs, such as

those given in [25]. If g is of polynomial growth, say bounded asymptotically by a multivariate poly-

nomial of order q, then using again Theorem 25.18 of [36], it suffices to provide a similar bound for

e−rτEx,y,ρ

(

eqmax(Xτ ,Yτ )1{max(Xτ ,Yτ )>Rlog}
)

. The bound can be obtained using tail decay estimates for

the normal distribution. Similar arguments can be found in [35]. Alternatively, when put-call parity for-

mulae are available, the analysis in Proposition 3.1 can be extended to European options with call-type

payoffs. In our numerical experiments, in cases with unbounded payoffs, such as a European call option,

we do not observe a problem, and notice good agreement of the numerical PDE price with that obtained

from Monte Carlo simulations.
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3.2 Boundary conditions

To solve the PDE (3.1) numerically by FD methods, we need to truncate the unbounded domain (3.2)

into a finite-sized computational one

{(τ, S1, S2, ρ) ∈ (0, T ]× [0, Smax
1 ]× [0, Smax

2 ]× (−1, 1)} ≡ (0, T ]× Ω, (3.4)

where Smax
1 and Smax

2 are sufficiently large (see Proposition 3.1). Denote ∂S1Ω = {(S1, S2, ρ) ∈
{0, Smax

1 } × [0, Smax
2 ] × [−1, 1]} and similarly for ∂S2Ω, and ∂ρΩ. In the same fashion, we can define a

localized spatial domain in the log scaling Ωlog = {(x, y, ρ) ∈ [−Rlog
1 , Rlog

1 ] × [−Rlog
2 , Rlog

2 ] × [−1, 1]}
and its boundaries.

From Proposition 3.1, we know the localization errors on the boundaries ∂S1Ω, and ∂S2Ω can be made

negligible if Smax
1 and Smax

2 are chosen sufficiently large. In our experiments, we choose a Dirichlet

condition for these boundaries. However, there is a difficulty with choosing the boundary conditions on

∂ρΩ, as, for an arbitrary option payoff, they are not known as ρ → ±1. Note that, from a computational

perspective with a finite difference method, it is necessary to specify the behaviour at ∂ρΩ. The focus of

the rest of this subsection is how to obtain appropriate ρ-boundary conditions.

We note that, under the choice (2.12) for α(·) and β(·, ·), the correlation process ρ is of the Cox-

Ingersoll-Ross (CIR) type [9]. This type of processes are commonly used in modelling of interest rate and

volatility. In particular, it is reported in [24] that there can be multiple solutions to the CIR bond pricing

PDE under certain parameter choices. In [18], it is pointed out that only the stochastic representation of

the solution given by the discounted risk neutral expectation is C1 up to including the boundary.

Furthermore, in [17] (resp. [18]), the authors have studied the problems of boundary behaviors of the

discounted risk neutral expectation under stochastic volatility (resp. one factor term structure) models,

where at the zero boundary of the variance variable (resp. the short rate variable), a boundary condition

is unclear for the specification of the PDE. In their works, they proved that under regularity assumptions

such as bounded smooth payoff, linear growth of coefficients, square of volatility of the variance (resp.

the short rate) being continuously differentiable with a Hölder continuous derivative, and the vanishing of

the volatility of variance (resp. the short rate) as variance (resp. the short rate) goes to zero, the discounted

risk neutral expectation is C1 everywhere in the solution domain up to including the boundary of 0 in

volatility (resp. the short rate). Moreover using interior Schauder estimates, it was shown that the solution

satisfies a reduced PDE at the boundary, corresponding to the pricing equation with vanishing second

derivative term with respect to the variance (resp. the short rate).

From Theorem 2.1, the solution we seek isC2 in the interior of space andC1 in time. We do not intend

to carry out a similar analysis to [17] or [18] here, but instead, we assume that the C1-ness extends to the

ρ-boundaries, noting that the coefficients of the correlation process in our case satisfy the assumptions

in [17, 18] . Hence, a similar boundary condition holds for our European option pricing problem:

lim
ρ→±1

(

− ∂V

∂τ
+
σ2
S1
S1

2

2

∂2V

∂S2
1

+
σ2
S2
S2

2

2

∂2V

∂S2
2

+ ρσS1σS2S1S2
∂2V

∂S1∂S2

(3.5)

+rS1
∂V

∂S1
+ rS2

∂V

∂S1
+ λ(η − ρ)

∂V

∂ρ
− rV

)

= 0.

Note that, in log-price variables, this becomes

lim
ρ→±1

(

− ∂ulog
∂τ

+
σ2
S1

2

∂2ulog
∂x2

+
σ2
S2

2

∂2ulog
∂y2

+ ρσS1σS2

∂2ulog
∂S1∂S2

(3.6)

+

(

r − σ2
S1

2

)

∂ulog
∂x

+

(

r − σ2
S2

2

)

∂ulog
∂y

+ λ(η − ρ)
∂ulog
∂ρ

− rulog

)

= 0.
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The choice of finite difference discretization of (3.5) (or (3.6)) is to be further elaborated in Section 3.3,

with consideration given to numerical stability.

From the viewpoint of the Fichera theory, the Fichera function is given by F(ρ) = λ(η − ρ) + σ2
ρρ

and the boundary points relevant to our problem are ρmax = 1 and ρmin = −1. The outflow conditions

F(ρmax) = F(+1) ≤ 0 and F(ρmin) = F(−1) ≥ 0 can be written, respectively, as

λ(η − 1) + σ2
ρ ≤ 0, and λ(η + 1)− σ2

ρ ≥ 0.

These are identical to the Feller conditions λ ≥ σ2
ρ

1±η
mentioned in Section 2.3. If such Feller conditions

are satisfied, then mathematically, no boundary condition should be supplied at ρ = ±1. However,

for computational purposes, the boundary behaviour needs to be specified, and, therefore, the boundary

condition (3.5) or (3.6) coming from the PDE itself is needed for the finite difference implementation.

In summary, the localized problem in the original price scaling is

∂V

∂τ
= LV (3.7)

on (0, T ]× (0, Smax
1 )× (0, Smax

2 )× (−1, 1) subject to the terminal and boundary conditions

V (τ = 0, S1, S2, ρ) = g(S1, S2)

V (τ, S1, S2, ρ) = VDir(τ, S1, S2) on ∂S1Ω ∪ ∂S2Ω,

where VDir(τ, S1, S2) is a Dirichlet condition of choice. And finally, V satisfies (3.5) along the spatial

ρ-boundary ∂Ω\ (∂S1Ω∪∂S2Ω). Similar boundary conditions hold for the formulation in log-price space

(equation (3.3)).

3.3 Discretization

To obtain a provably monotone discretization, we switch to log scaling (3.3). Let h1, h2 and h3
be step-sizes of a uniform spatial discretization of Ωlog, and i ∈ I1 = {0, 1, . . . , n1}, j ∈ I2 =
{0, 1, . . . , n2}, k ∈ I3 = {0, 1, . . . , n3}. Let

Ω∆,log = {(xi, yj, ρk) = (−Rlog
1 + ih1,−Rlog

2 + jh2,−1 + kh3), i ∈ I1, j ∈ I2, k ∈ I3}.
Recall that we solve the equation (3.3) which is in the log space. We use the finite difference method

to obtain a discrete representation L∆
log of Llog on the discretized grid Ω∆,log. The time dimension is

discretized using the θ-timestepping. Let u
(l)
log be the vectorized numerical solution at the l-th timestep.

At the (l + 1)-th timestep, the timestepping reads as follows:

u
(l+1)
log − u

(l)
log

∆τ
= θL∆

logu
(l+1)
log + (1− θ)L∆

logu
(l)
log. (3.8)

When θ = 0.5, the scheme is known as Crank-Nicolson (CN), and the choice θ = 1 is known as fully

implicit timestepping.

Let A be the discretization matrix arising from L∆
log including the boundary conditions. For every i′ ∈ I1,

every j′ ∈ I2, and every k′ ∈ I3, we denote Ai′,j′,k′

i,j,k to be the matrix element where the index (i, j, k)
corresponds to the column index, while (i′, j′, k′) corresponds to the row index in a vectorized ordering

of (i, j, k). We require that the discretization matrix satisfies the following:

Ai,j,k
i,j,k ≤ 0 for all (i, j, k), (3.9)

Ai′,j′,k′

i,j,k ≥ 0 for (i′, j′, k′) 6= (i, j, k) where equality is component-wise, and (3.10)
∑

i′,j′,k′

Ai′,j′,k′

i,j,k ≤ 0 for all (i, j, k). (3.11)
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To ensure these properties are satisfied, first and cross derivatives have to be carefully discretized. For

first derivatives, one could choose between forward, backward and central differences in such a way

that the signs of the matrices are correctly obtained. For cross derivatives, a 7-point stencil can be used

according to the sign of the correlation variable. Details are provided in Appendix B.

While in this work we are primarily concerned with classical solutions, maintaining these conditions

has the advantage that the discretization matrix arising from the fully implicit timestepping is monotone,

a key requirement for convergence towards viscosity solutions. This is particularly relevant for options

with early exercise features. We plan to investigate this in a future work. Furthermore, for such a

discretization, implicit timestepping methods can be easily proved to have bounded l∞ norm. In the

following, we present a stability result.

THEOREM 3.1. Assume fully implicit timestepping is used (θ = 1), L∆ is discretized as in Appendix B,

and that the (x, y) grid satisfies h1

h2
=

σS1

σS2
. Then at each timestep l, we have

||u(l+1)
log ||∞ ≤ max(||u(l)log||∞, ||u

(l+1)
Dir ||∞),

where u
(l+1)
Dir is the Dirichlet condition imposed on ∂xΩ

log ∪ ∂yΩ
log during this timestep. The same

conclusion holds for Crank-Nicolson timestepping (θ = 1
2
) with a timestep restriction that scales with

O(min(h21, h
2
2)).

Proof. The result follows from Appendix B and steps in [7].

Solving a time-dependent PDE in three space dimensions, while feasible, could be expensive on tradi-

tional computing architecture. The computational time can be improved by using computing techniques

such as implementing an ADI scheme on graphic processing units (see e.g. [13, 14]).

While we have presented Theorem 3.1 in log-price scaling, in practice we have not observed a nu-

merical stability problem when a finite difference scheme is implemented on the original PDE (2.7) or

(2.10). Note that convection is strong in the ρ direction away from the mean η, and upwind differencing

should be utilized where necessary.

4 Asymptotic solution and approximation algorithm

In practical cases, solving a full time-dependent PDE in three space dimensions could be time-

consuming and undesirable. It is possible to trade accuracy for computational efficiency. Approximation

formulas are desirable in that rapid computation is possible, which makes calibration or pricing much

more efficient.

Following [21], we assume that the mean reversion speed λ in (2.12) is fast, i.e. λ = 1/ǫ, where

ǫ → 0. We scale σρ such that the variance of the correlation process’ invariant distribution is finite and

fixed. Therefore, the volatility of correlation has the corresponding scale σρ =
σ̃ρ√
ǫ
.

Define the differential operators

A0 = (η − ρ)
∂

∂ρ
+
σ̃ρ

2(1− ρ2)

2

∂2

∂ρ2
, and

A1 =
∂

∂t
+
σ2
S1
S1

2

2

∂2

∂S2
1

+
σ2
S2
S2

2

2

∂2

∂S2
2

+ ρσS1σS2S1S2
∂2

∂S1∂S2

+rS1
∂

∂S1
+ rS2

∂

∂S2
− rI,
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where I is the identity operator. Note that ∂
∂t
+ L = A1 +

1
ǫ
A0.

The pricing equation (3.1) can be written as

A1V +
1

ǫ
A0V = 0.

Let V ǫ be a power series expansion of V in ǫ

V ǫ = V (0) + ǫV (1) + ǫ2V (2) + . . . .

We will determine V (0) and V (1). We impose the terminal condition V (0)(T, S1, S2, ρ) = g(S1, S2). Upon

substitution the following equations are obtained from setting the lower order terms to zero:

O

(

1

ǫ

)

: A0V
(0) = 0 (4.1)

O(1) : A1V
(0) +A0V

(1) = 0 (4.2)

O(ǫ) : A1V
(1) +A0V

(2) = 0 (4.3)

Equation (4.1) implies that we could choose V (0) = V (0)(t, S1, S2), i.e. independent of ρ. For λ >
2σ2

ρ

1±η

(equivalently σ̃ρ
2 < 1±η

2
), Equation (4.2) implies a centering condition

〈A1V
(0)〉 = 0,

where 〈·〉 denotes expectation with respect to the invariant distribution of ρ. This is because (4.2) leads

to

〈A1V
(0)〉 = −

∫

A0V
(1)Φ(ρ)dρ =

∫

V (1)A∗
0Φ(ρ)dρ = 0,

where A∗
0 is the adjoint of A0, taking also into account that Φ satisfies the stationary form of the Fokker-

Planck equation A∗
0Φ = 0. The vanishing of the boundary terms requires that Φ(±1) = Φ′(±1) = 0.

This can be satisfied by imposing λ >
2σ2

ρ

1±η
. The explicit form of Φ is given in Appendix C. Note that

condition λ >
2σ2

ρ

1±η
is more restrictive than Feller’s condition by a factor of 2.

As V (0) is independent of ρ, the centering condition implies that

ABS(ρ̄)V
(0) = 0,

where ρ̄ = η is the mean of ρ with respect to the invariant distribution (see Appendix C), and that ABS(ρ̄)
is the same as A1, except that ρ is changed to the constant ρ̄. Therefore, the zeroth order approximation

V (0) is given by the solution to the two-dimensional Black-Scholes equation with constant correlation

equal to ρ̄ = η.

We proceed to find V (1). From (4.2) we have

A0V
(1) = −A1V

(0) = −σS1σS2S1S2(ρ− ρ̄)
∂2V (0)

∂S1∂S2

,

where the equality 〈ABS(ρ̄)V
(0)〉 = 0 is used to eliminate the non-cross derivative terms. Consequently,

V (1) = −(φ(ρ))σS1σS2S1S2
∂2V (0)

∂S1∂S2
+ C(t, S1, S2), where φ(y) is a solution to the equation A0φ = ρ− ρ̄

and C(t, S1, S2), arising from the integration of this ODE, is independent of ρ. We take, as a particular

solution, φ(ρ) = ρ̄− ρ = η − ρ.
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Next, we determine C(t, S1, S2). Define the differential operator D1,1 = S1S2
∂2

∂S1∂S2
. One sees

immediately that D1,1 commutes with A1. The solvability of the Poisson equation (4.3) requires

〈A1V
(1)〉 = 0. (4.4)

As a result,

〈A1V
(1)〉 = 0

〈A1C(t, S1, S2)〉 = 〈A1((η − ρ)σS1σS2D1,1V
(0))〉

〈A1〉C(t, S1, S2) = 〈(A1 − 〈A1〉)((η − ρ)σS1σS2D1,1V
(0))〉+ 〈〈A1〉((η − ρ)σS1σS2D1,1V

(0))〉
= 〈(ρ− η)(η − ρ)〉σ2

S1
σ2
S2
D2

1,1V
(0)

= −Eσ2
S1
σ2
S2
D2

1,1V
(0),

where E =
(1−η2)σ̃2

ρ

2+σ̃2
ρ

(see Appendix C). We specify C(T, S1, S2) = 0. By commutativity, one can verify

thatC(t, S1, S2) = (T−t)Eσ2
S1
σ2
S2
D2

1,1V
(0) is a solution, because 〈A1〉 = ABS(η), and ABS(η)V

(0) = 0.

Therefore, we obtain the approximation V ǫ,1 to V given by

V ǫ,1 = V (0) + ǫ(ρ− η)σS1σS2D1,1V
(0) + ǫ(T − t)

(1− η2)σ̃2
ρσ

2
S1
σ2
S2

2 + σ̃2
ρ

D2
1,1V

(0), (4.5)

where, as defined earlier, V (0) is the solution to the two-dimensional Black-Scholes equation with con-

stant correlation η. The error of the approximation (4.5) is given in the following theorem.

THEOREM 4.1. Assume the payoff function g is smooth and that g and its derivatives have at most

polynomial growth as their arguments approach ±∞. Assume also λ >
2σ2

ρ

1±η
(equivalently σ̃ρ

2 < 1±η

2
).

Then for t < T ,
∣

∣V (t, S1, S2, ρ)− V ǫ,1(t, S1, S2, ρ)
∣

∣ = O(ǫ2).

Proof. See Appendix D.

4.1 Asymptotic solution based on transition density

The approximation (4.5) requires knowing the price of the derivative and its derivatives under a con-

stant correlation model. This is known, however, only for a few derivatives, such as exchange options

(via the Margrabe’s formula [31]). For many other popular derivatives, such as spread options, a closed

form solution is not currently available, hence the approximation (4.5) is limited in these cases. To deal

with this difficulty, we propose a heuristic solution based on (4.5). The idea is simple. Since the set of

European option prices fully determines the transition density, we apply heuristically (4.5) to compute

the transition density instead.

Specifically, we denote by f(T, S1(T ), S2(T ), ρ(T )|t, S1, S2, ρ), the joint transition density function

of the terminal prices S1(T ) and S2(T ) and the correlation value ρ(T ), given the asset prices S1, S2 and

correlation value ρ at an earlier time t. The time-0 option price can be computed by

∫ ∞

0

∫ ∞

0

∫ 1

−1

e−rTg (S1(T ), S2(T )) f (T, S1(T ), S2(T ), ρ(T )|0, S1, S2, ρ) dρ(T )dS1(T )dS2(T )

=

∫ ∞

0

∫ ∞

0

e−rTg (S1(T ), S2(T )) pm (T, S1(T ), S2(T )|0, S1, S2, ρ) dS1(T )dS2(T ),
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where pm(·|·) is the associated marginal transition density. The idea is to approximate pm(·|·) by pǫ,1m (·|·),
a perturbed version of pm(·|·), obtained from formally applying (4.5) to pm(·|·). Explicitly, this means

pǫ,1m = p(0)m + ǫ(ρ− η)σS1σS2D1,1p
(0)
m + ǫ(T − t)

(1− η2)σ̃2
ρσ

2
S1
σ2
S2

2 + σ̃2
ρ

D2
1,1p

(0)
m . (4.6)

We denote by

p(T, S1(T ), S2(T )|t, S1, S2)

the joint transition density in the case of the constant correlation ρ̄ = η. Its explicit form is known and

is given in Appendix E. It is easy to see that the zeroth order approximation of pm(·|·) is given by p(·|·).
The rest of the right-side on (4.5) depends on derivatives of p(·|·). These involve some algebraic work,

given also in Appendix E. Finally, we propose approximating the time-0 price of a European option by

the double integral

∫ ∞

0

∫ ∞

0

e−rTg (S1(T ), S2(T )) p
ǫ,1
m (T, S1(T ), S2(T )|0, S1, S2, ρ) dS1(T )dS2(T ), (4.7)

which can be computed using quadrature methods. We present the details of this approximation in Ap-

pendix E. We demonstrate the effectiveness of this approach in Section 5.

An example algorithm that uses (4.7) for pricing is shown in Algorithm 1.

Algorithm 1 A sample pricing algorithm with the perturbed density at time t = 0

1: Retrieve market data: prices S1, S2, current correlation ρ, risk-free rate r, mean reversion level of

correlation η applicable forward-looking volatilities σS1 , σS2 , σρ.

2: Retrieve European option data: payoff g(·, ·), maturity T .

3: Obtain the constant correlation (set to mean reversion level η) marginal density

p(T, S1(T ), S2(T )|0, S1, S2), and their derivatives D1,1(p) and D2
1,1(p). These formulae are

explicitly given in Appendix E.

4: Calculate pǫ,1m (T, S1(T ), S2(T )|0, S1, S2, ρ) from (4.6).

5: Choose a grid (0, Smax
1 )× (0, Smax

2 ) and discretize.

6: For the particular discretization chosen, calculate the price from (4.7) with truncated Si-boundaries

using quadrature.

We note that the complexity of the algorithm does not depend on the maturity of the option. As a

result, given model parameters, long-term options are priced with the same computational complexity,

which is an advantageous feature compared to timestepping-based methods, such as simulation or PDE

approaches. This feature is especially desirable in computational scenarios such as calibration, in which

model parameters are implied from a given set of option prices by solving an inverse problem.

We conclude this section by noting that, although we restrict the analysis to non-dividend-paying

assets, it is relatively straightforward to generalize the asymptotic solution in the case of non-zero con-

tinuous dividend rate by adjusting the risk-neutral drifts of S1 and S2.

5 Numerical experiments

In this section, we present numerical results from the implementation of our method on the following

options:

(a) spread and basket options on two assets with stochastic correlation using the three-dimensional

PDEs (3.1) and (3.3);
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(b) quanto options with stochastic correlation using the two-dimensional PDE (2.10); and

(c) max options on two assets with stochastic correlation using a two-dimensional PDE obtained after

a similarity reduction.

For all experiments, the S-boundary conditions are of Dirichlet type where the value on the boundary

is simply the discounted payoff for the current values of the state variables. The ρ-boundary conditions

are as those described in Section 3.2. See Equations (3.5) and (3.6) for the boundary conditions used

in the price space and log-price space formulations, respectively. Similar conditions are used for the

two-dimensional PDEs.

Unless otherwise stated, we use standard second order differences for all spatial derivatives, including

the cross-derivatives. The only exception is when the convection term α(t, ρ)∂V
∂ρ

is large, in which case

we use forward or backward first order differences, depending on the sign of α(·, ·). Whenever solving

the log-price space formulation PDE (3.3), the discretization is carried out as described in Section 3.3

and Appendix B, so that a monotone discretization scheme is obtained. In all cases, the timestepping is

Crank-Nicolson-Rannacher, i.e. we use the fully implicit timestepping for the first few timesteps, then

switch to Crank-Nicolson for the remaining timesteps.

While it is easier to carry out stability analysis in log price space, in practice there could be computa-

tional disadvantages in solving the log transformed equation. A uniform grid in log price space becomes

a non-uniform grid in price space. A fine discretization around the region of interest in the price space

could require a much finer discretization of the log price grids, and hence higher computational cost.

Moreover, for non-smooth payoffs, it could be hard to align the points of discontinuity (of derivatives)

with nodes on the log-price grid. For this reason, in our numerical experiments with the log-price space

PDE formulation (3.3), an averaging procedure has been applied to smooth out the payoff function (see

[34]).

In the numerical experiments, we also report a quantity

ζq ≡ log

(∣

∣

∣

∣

changeq−1

changeq

∣

∣

∣

∣

)

/ log(2),

where changeq is the absolute difference of solution value from the (q − 1)-th grid refinement to the q-th

grid refinement. This is an estimate of numerical order of convergence, as each successive refinement

involves halving the time and space step-sizes.

5.1 Options on two assets

We report numerical results of the proposed method on two types of options on two assets, namely

spread and basket options. The market parameters are listed in Table 5.1.

5.1.1 Spread options

As an illustration, we will price a spread option, more specifically a call option on spread. Mathemat-

ically, the terminal payoff of such an option is given by

g(S1, S2) = max(S1 − S2 −K, 0).

In Table 5.2, we list numerical results for the pricing of a 1-year spread option with K = 10 for dif-

ferent values of spot prices and current levels of correlation (S1(0), S2(0), ρ(0)). For this test, we solve

the log-price space formulation PDE (3.3). In the numerical experiments, instead of [−Rlog, Rlog] ×
[−Rlog, Rlog] × [−1, 1] for a sufficiently large Rlog > 0 as in Proposition 3.1, we have localized the grid
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Volatility of first asset σS1 30 %

Volatility of second asset σS2 30 %

Mean reversion level of correlation η 0.0

Mean reversion speed of correlation λ 3.0

Volatility of correlation σρ 50 %

Risk-free rate r 5 %

Table 5.1: Market parameters for Section 5.1

to [1, 5] × [1, 5] × [−1, 1] in the log grid for more efficient use of computing power. As indicated, the

numerical method exhibits second-order convergence.

n1, n2 n3 ∆t (50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

20 10 0.1 6.3630 2.6413 9.7262 5.9775 2.3802 9.3587

40 20 0.05 5.1514 1.8937 8.4685 4.7068 1.6277 8.0308

80 40 0.025 4.8444 1.6994 8.1535 4.3815 1.4314 7.6944

ζ3 1.98 1.94 2.00 1.97 1.94 1.98

Table 5.2: Value of the 1-year spread option with K = 10 at different values of (S1(0), S2(0), ρ(0)),
in three successive grid refinements, using the log-price space formulation PDE (3.3). The domain is

Ω∆,log = [1, 5]× [1, 5]× [−1, 1]. Nodes are placed uniformly, with n1 (resp. n2, n3) being the number of

subintervals in the log(S1) (resp. log(S2), ρ) direction.

In Table 5.3, we present similar results as in Table 5.2, but from solving the price space formulation

PDE (3.1). The numerical results indicate that solving directly (3.1) does not seem to pose a problem in

terms of stability, although a positive discretization is no longer guaranteed.

n1, n2 n3 ∆t (50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

20 10 0.1 4.5456 1.5370 7.7828 4.0878 1.2727 7.3315

40 20 0.05 4.7035 1.6080 7.9973 4.2367 1.3385 7.5352

80 40 0.025 4.7418 1.6274 8.0478 4.2728 1.3566 7.5829

ζ3 2.04 1.87 2.09 2.05 1.86 2.10

Table 5.3: Value of the 1-year spread option with K = 10 at different values of (S1(0), S2(0), ρ(0)),
in three successive grid refinements, using the PDE in price space formulation (3.1). The domain is

Ω∆ = [0, 200]× [0, 200]× [−1, 1]. Nodes are placed uniformly, with n1 (resp. n2, n3) being the number

of subintervals in the S1 (resp. S2, ρ) direction.

To validate our approaches, we compare the numerical PDE prices with those obtained by the asymp-

totic solution (Section 4) and Monte Carlo (MC) simulations. To obtain more accurate PDE prices, the

PDE solutions from Tables 5.2 and 5.3 are extrapolated using Richardson extrapolation, with conver-

gence exponent 2, as the method is supposed and has demonstrated to achieve. The numerical results

are given in Table 5.4. They show good agreement among solutions under the various approaches. In

particular, the PDE and asymptotic solutions all lie in the MC’s 95% confidence intervals (CIs). Here,

for MC simulation, 50000 scenarios and 200 timesteps are used.
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(50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

PDE (3.3) extrap 4.7420 1.6346 8.0486 4.2730 1.3659 7.5822

PDE (3.1) extrap 4.7545 1.6338 8.0646 4.2848 1.3627 7.5988

asymptotic (4.7) 4.7592 1.6412 8.0672 4.2666 1.3546 7.5797

MC 95% CI [4.6772,

4.8543]

[1.5965,

1.6919]

[7.9666,

8.1867]

[4.2106,

4.3744]

[1.3266,

1.4111]

[7.5011,

7.7095]

Table 5.4: Value comparison for the 1-year spread option with K = 10 at different values of

(S1(0), S2(0), ρ(0)). Both sets of PDE prices are extrapolated from respective data in Tables 5.2-5.3,

using Richardson extrapolation, assuming quadratic convergence.

5.1.2 Effect of truncated boundary

In this section, we verify numerically, that the truncated boundary in the S1- and S2-directions is far

enough, so that the quality of the approximation is not affected. We price again the spread option of

Section 5.1.1 by solving the price space formulation PDE (3.1), this time with the truncated boundary in

the S1- and S2-directions double as far, and with double the number of grid points in these two directions.

Table 5.5 presents the results. As it can be seen, the differences between the results of Tables 5.5 and

5.3 are approximately at the level of 10−4 and they are decreasing as the number of grid points increases.

Furthermore, the accuracy of the results of Table 5.3 seems to be at most at the level of 10−2. These

results indicate that the truncated boundary chosen for the experiment of Table 5.3 does not compromise

the quality of the numerical PDE approximation.

n1, n2 n3 ∆t (50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

40 10 0.05 4.5504 1.5372 7.7888 4.0927 1.2723 7.3378

4.8e-03 1.3e-04 6.0e-03 4.9e-03 -3.6e-04 6.3e-03

80 20 0.025 4.7046 1.6081 7.9987 4.2379 1.3385 7.5367

1.2e-03 1.4e-04 1.4e-03 1.2e-03 1.5e-05 1.5e-03

160 40 0.0125 4.7420 1.6274 8.0481 4.2731 1.3566 7.5833

2.9e-04 4.1e-05 3.4e-04 3.0e-04 8.0e-06 3.6e-04

Table 5.5: Value of the 1-year spread option with K = 10 at different values of (S1(0), S2(0), ρ(0)),
using the PDE in price space formulation (3.1). The domain is Ω∆ = [0, 400]× [0, 400]× [−1, 1]. Below

each line of values, the differences from the respective values of Table 5.3 are also presented.

5.1.3 Effect of mean reversion rate on accuracy of asymptotic solution

The development of the asymptotic solution in Section 4 suggests that the accuracy of the asymptotic

solution improves as the mean reversion rate λ increases. In this section, we focus on the effect of λ
on the accuracy of the asymptotic solution. For this reason, we consider pricing spread options with the

parameters of Table 5.1, except that we vary λ from 0.5 to 2.5, and we scale σ̃ρ accordingly, so that σρ
2/λ

remains constant. We consider the solutions by the price space PDE (3.1), the Richardson-extrapolated

price space PDE, the asymptotic (4.7), and the MC simulation. Table 5.6 shows the results. We have run

PDE experiments for grid sizes with n1, n2 and n3 as in Section 5.1.1, but, for brevity, we only display

the PDE solution for n1 = n2 = 80, n3 = 40.
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In Figure 5.1, we plot the solutions at one

point versus λ. The results of Table 5.6 and

Figure 5.1 indicate that, once λ is above 1.5

approximately, the asymptotic solution falls

within the 95% confidence interval of the

MC simulation. We also notice monotonic

convergence of the asymptotic to both the

PDE and extrapolated PDE solutions as λ in-

creases. The agreement of the asymptotic to

the PDE solutions varies from approximately

one to three digits as λ varies from 0.5 to 3.

Clearly, as long as λ is reasonably large, the

asymptotic solution (4.7) is a powerful alter-

native to the PDE solution.

0.5 1 1.5 2 2.5 3

4.8

5

5.2

5.4

5.6

5.8

mean reversion rate λ

pr
ic

e

 

 

PDE
PDE extrap
Asymptotic
MC
MCdn
MCup

Figure 5.1: Comparison of 1-year spread option prices

with K = 10 at (S1, S2, ρ) = (50, 50,−0.2) versus λ for

different numerical solution methods. Parameters as in Ta-

ble 5.1, except that λ varies as shown and σρ =
√

λ/12.

(50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

λ = 0.5, σρ = 0.2041
PDE (3.1) 5.0778 1.8282 8.3783 3.9122 1.1558 7.2227

PDE (3.1) extrap 5.0911 1.8350 8.3957 3.9234 1.1617 7.2373

asymptotic (4.7) 5.8880 2.3569 9.1614 2.9325 0.6376 6.2366

MC 95% CI [5.0087,

5.1950]

[1.7928,

1.8957]

[8.2899,

8.5181]

[3.8105,

3.9624]

[1.1051,

1.1802]

[7.0812,

7.2791]

λ = 1.0, σρ = 0.2887
PDE (3.1) 4.9669 1.7620 8.2691 4.0303 1.2221 7.3405

PDE (3.1) extrap 4.9800 1.7687 8.2864 4.0418 1.2280 7.3555

asymptotic (4.7) 5.2107 1.9275 8.5049 3.7329 1.0678 7.0425

MC 95% CI [4.8989,

5.0822]

[1.7275,

1.8279]

[8.1834,

8.4089]

[3.9275,

4.0831]

[1.1699,

1.2479]

[7.1970,

7.3980]

λ = 1.5, σρ = 0.3536
PDE (3.1) 4.8851 1.7132 8.1887 4.1178 1.2708 7.4279

PDE (3.1) extrap 4.8981 1.7198 8.2058 4.1295 1.2768 7.4432

asymptotic (4.7) 4.9849 1.7843 8.2860 3.9997 1.2112 7.3111

MC 95% CI [4.8181,

4.9991]

[1.6797,

1.7783]

[8.1046,

8.3282]

[4.0140,

4.1722]

[1.2179,

1.2980]

[7.2830,

7.4863]

λ = 2.0, σρ = 0.4082
PDE (3.1) 4.8240 1.6767 8.1286 4.1836 1.3073 7.4936

PDE (3.1) extrap 4.8369 1.6832 8.1456 4.1954 1.3133 7.5092

asymptotic (4.7) 4.8720 1.7127 8.1766 4.1332 1.2829 7.4454

MC 95% CI [4.7577,

4.9371]

[1.6440,

1.7412]

[8.0458,

8.2679]

[4.0790,

4.2391]

[1.2541,

1.3357]

[7.3483,

7.5533]

λ = 2.5, σρ = 0.4564
PDE (3.1) 4.7776 1.6489 8.0830 4.2338 1.3351 7.5439

PDE (3.1) extrap 4.7904 1.6554 8.0999 4.2457 1.3411 7.5596

asymptotic (4.7) 4.8043 1.6698 8.1109 4.2132 1.3260 7.5260

MC 95% CI [4.7121,

4.8903]

[1.6171,

1.7133]

[8.0011,

8.2220]

[4.1289,

4.2904]

[1.2817,

1.3645]

[7.3984,

7.6047]

Table 5.6: Value comparison for the 1-year spread option with K = 10 at different values of

(S1(0), S2(0), ρ(0)) and several values of λ. The PDE solution is obtained with n1 = n2 = 80 and

n3 = 40, while the extrapolated PDE solution is obtained using PDE solutions with two grid sizes, the

above and a coarser one, assuming quadratic convergence.
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5.1.4 Basket options

We also consider an equal-weighted basket call option whose payoff is

g(S1, S2) = max(S1 + S2 −K, 0).

In Tables 5.7 and 5.8, we present convergence results for the two versions of PDE for different values of

(S1(0), S2(0), ρ(0)) with the strikeK = 100. Again, while a monotone discretization scheme is no longer

guaranteed in price space, numerically we do not observe a problem with this approach. Comparison

of values using the PDE, Monte Carlo and asymptotic methods is presented in Table 5.9. Given the

symmetry of the problem, the solution should be symmetric in (S1(0), S2(0)). The discrepancy in Monte

Carlo solutions is due to randomness from the simulations.

n1, n2 n3 ∆t (50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

20 10 0.1 13.6654 7.8450 7.8450 14.0295 8.1965 8.1965

40 20 0.05 11.4502 6.0209 6.0209 11.9017 6.4390 6.4390

80 40 0.025 10.8984 5.5584 5.5584 11.3750 5.9966 5.9966

ζ3 2.01 1.98 1.98 2.01 1.99 1.99

Table 5.7: Value of the 1-year equal-weighted basket call option with strike K = 100 at different values

of (S1(0), S2(0), ρ(0)), in three successive grid refinements, using the log-price space formulation PDE

(3.3). The domain is Ω∆,log = [1, 5]× [1, 5]× [−1, 1]. Nodes are placed uniformly, with n1 (resp. n2, n3)

being the number of subintervals in the x = log(S1) (resp. y = log(S2), ρ) direction.

n1, n2 n3 ∆t (50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

20 10 0.1 10.4788 5.2020 5.2020 10.9576 5.6262 5.6262

40 20 0.05 10.6710 5.3601 5.3601 11.1537 5.8006 5.8006

80 40 0.025 10.7165 5.3985 5.3985 11.2001 5.8428 5.8428

ζ3 2.08 2.04 2.04 2.08 2.05 2.05

Table 5.8: Value of the 1-year equal-weighted basket call option with strike K = 100 at different values

of (S1(0), S2(0), ρ(0)), in three successive grid refinements, using the price space formulation PDE (3.1).

The domain is Ω∆ = [0, 200] × [0, 200] × [−1, 1]. Nodes are placed uniformly, with n1 (resp. n2, n3)

being the number of subintervals in the S1 (resp. S2, ρ) direction.

(50,50,-0.2) (40,50,-0.2) (50,40,-0.2) (50,50,0.2) (40,50,0.2) (50,40,0.2)

PDE (3.3) extrap 10.7145 5.4043 5.4043 11.1992 5.8491 5.8491

PDE (3.1) extrap 10.7317 5.4113 5.4113 11.2156 5.8569 5.8569

asymptotic (4.7) 10.7131 5.3945 5.3945 11.2199 5.8616 5.8616

MC 95% CI [10.5006,

10.7668]

[5.2276,

5.4151]

[5.2429,

5.4309]

[10.9719,

11.2542]

[5.6614,

5.8629]

[5.6782,

5.8804]

Table 5.9: Value comparison for the 1-year equal-weighted basket call option with K = 100 at different

values of (S1(0), S2(0), ρ(0)). Both sets of PDE prices are extrapolated from respective data in Tables

5.7-5.8 using Richardson extrapolation, assuming quadratic convergence.

We conclude this subsection by noting that, although call payoffs do not satisfy the boundedness re-

quired in Proposition 3.1, numerically, we do not observe any a problem, and good agreement is achieved

among different approaches. Also see Remark 3.2.
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5.2 Quanto options

In this section, we consider the pricing of a quanto option under stochastic correlation as in model

(2.9) and (2.12). Similar to previous experiments, we assume that the parameters are calibrated so that

Λ ≡ 0. As an illustration, we price a 5-year quanto call option with payoff

g(S(T )) = max(S(T )−K, 0),

where K = 100. The parameters to the model are given in Table 5.10.

Volatility of price σS 30 %

Volatility of exchange rate σR 10 %

Domestic risk-free rate rd 5 %

Foreign risk-free rate rf 3 %

Mean reversion rate of correlation λ 3.0

Mean reversion level of correlation η -0.1

Volatility of correlation σρ 30 %

Table 5.10: Market parameters for quanto option

In this case, the pricing PDE is (2.10). Because there is no cross term in the PDE, by discretizing the

first derivatives carefully in the upwind direction when necessary, a positive discretization can be obtained

without grid-size restrictions. Therefore, techniques such as non-uniform spacing can be used without

sacrificing a positive discretization. In our experiment, we use a non-uniform grid that concentrates

around the strike value 100 (see, e.g. [6]).

Results in Table 5.11 show that the PDE method has numerically quadratic convergence. Table 5.12

shows good agreement among solutions obtained from different techniques.

n1 n3 ∆t (100,−0.2) (120,−0.1) (90, 0.0)
50 10 0.5 29.9609 43.9209 23.4803

100 20 0.25 29.9843 43.9513 23.5008

200 40 0.125 29.9894 43.9578 23.5052

400 800 0.0625 29.9907 43.9595 23.5064

ζ3 2.21 2.22 2.22

ζ4 1.91 1.90 1.91

Table 5.11: Value of a 5-year quanto call option with strike K = 100 at different values of (S(0), ρ(0)),
in four successive grid refinements, using PDE (2.10). The domain is Ω∆ = [0, 500]× [−1, 1]. There are

n1 (resp. n3) subintervals in the S (resp. ρ) direction.

(100,-0.2) (120, -0.1) (90, 0.0)

PDE (2.10) 29.9910 43.9599 23.5067

asymptotic

solution

29.9674 43.8848 23.4952

MC 95% CI [29.6126,

30.6397]

[43.3529,

44.6529]

[23.1074,

23.9883]

Table 5.12: Value comparison for the 5-year quanto call option with strikeK = 100 at different values of

(S(0), ρ(0)). The set of PDE prices is extrapolated from respective data in Table 5.11 using Richardson

extrapolation, assuming quadratic convergence.
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In Table 5.13, we present values of selected partial derivatives of the option price with respect to the

underlying asset price S and the correlation factor ρ. Note that, although second order convergence is not

guaranteed due to the choice of upwind differencing, in most cases we obtain second order convergence.

n1 n3 ∆t (100,−0.2) (120,−0.1) (90, 0.0)
∂2V/∂S2

50 10 0.5 4.5994× 10−3 3.1606× 10−3 5.5495× 10−3

100 20 0.25 4.6107× 10−3 3.1625× 10−3 5.5434× 10−3

200 40 0.125 4.6129× 10−3 3.1630× 10−3 5.5444× 10−3

400 800 0.0625 4.6134× 10−3 3.1631× 10−3 5.5445× 10−3

ζ3 2.31 2.03 2.63

ζ4 2.36 1.76 2.73

∂V/∂ρ
50 10 0.5 −6.6204× 10−1 −8.8469× 10−1 −5.4737× 10−1

100 20 0.25 −6.6191× 10−1 −8.8515× 10−1 −5.4806× 10−1

200 40 0.125 −6.6194× 10−1 −8.8526× 10−1 −5.4817× 10−1

400 800 0.0625 −6.6196× 10−1 −8.8529× 10−1 −5.4818× 10−1

ζ3 1.80 2.05 2.70

ζ4 0.94 2.01 2.78

Table 5.13: Selected sensitives of the option price with respect to S and ρ.

5.3 Effects of model parameters

In this section, the effect of correlation model parameters on option prices is studied. We will focus

on the max option, which has payoff

V (t = T, S1(T ), S2(T )) = max(S1(T ), S2(T )). (5.1)

For options of this form, it is not necessary to solve the full three-dimensional PDE (3.1). Instead,

a similarity reduction is possible because of the nature of the payoff. For τ = T − t > 0, define

W (τ, S1, S2) by

V (τ, S1, S2) = S1W (τ, S1, S2).

Introduce the similarity reduction ξ = S2/S1, corresponding to a change of numéraire. It is now straight-

forward to see that

Wτ =
(σ2

S1
+ σ2

S2
− 2ρσS1σS2)ξ

2

2
Wξξ +

β2

2
Wρρ + αWρ, (5.2)

where α, β are chosen as in (2.12). The reduced problem has terminal condition

W (τ = 0, ξ) = max(1, ξ).

The diffusion coefficient in (5.2) is non-negative because σ2
S1

+ σ2
S2

− 2ρσS1σS2 ≥ 0. It should be

noted that r, the risk-free rate, factors out of the pricing problem naturally. This similarity reduction

can be easily seen to be the PDE equivalent to a measure change from the T -forward measure to the

S1-measure.

For illustration purposes we have restricted to non-dividend-paying assets. For dividend-paying as-

sets, the same variable transformation can be carried out. In that case, a PDE two-dimensional in space

similar to (5.2) will be obtained, with a convection and a discounting term.
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The discretization of (5.2) is less restricted than that of (3.1). A positive discretization is ensured with

usual central differences of the second derivatives and careful discretization of the first derivatives in the

upwind direction where necessary. In our experiment, we solve (5.2) on a uniform grid of 801×81 nodes

in [0, 5]× [−1, 1], with timestep 0.025.

In Figure 5.2, we show the effect of the long-term mean reversion level η of correlation on the price

of the max option. With higher η, the expected value of the total correlation experienced during the life

of the option is increased. Naturally this leads to a lower value of the optionality. This effect is captured

also by the asymptotic solution (4.5), which we restate here:

V ǫ,1 = V (0) + ǫ(ρ− η)σS1σS2D1,1V
(0) + ǫ(T − t)

(1− η2)σ̃2
ρσ

2
S1
σ2
S2

2 + σ̃2
ρ

D2
1,1V

(0).

Recall V (0) is the Black-Scholes price with constant correlation η. The Black-Scholes sensitivity ∂V (0)

∂η

is negative, and the dominant zeroth order term decreases in value as η increases, for ǫ ≪ 1. The effect

of the spot-correlation is present in the first order correction (second term in the above equation), and

is of order ǫ for fast mean reversion. The sensitivity D1,1V
(0) of the Black-Scholes price is negative as

it is a positive multiple of ∂V (0)

∂η
. This explains the three decreasing set of prices for different values of

ρ(0) = ρ0.
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Figure 5.2: Effect of η on max option prices.

Other parameters: σS1 = 0.2, σS2 = 0.3, λ = 2.0,

σρ = 1.0, maturity is 1 year.
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Figure 5.3: Effect of λ on max option prices.

Other parameters: σS1 = 0.2, σS2 = 0.3, η =
−0.1, σρ = 1.0, maturity is 1 year.

In Figure 5.3, we show the effect of the mean reversion speed λ on the prices of the max option. As λ
increases, it is plausible that any deviation from the mean of the correlation is more heavily punished with

the stronger convection, and one should expect a price closer to the Black-Scholes price with constant

correlation equal to the long-term mean. Once again this is encoded in (4.5). The terms involving ǫ de-

crease in absolute value and convergence towards V (0), the Black-Scholes price with constant correlation

η, is expected.

When ρ = η = −0.1, the sensitivity D2
1,1V

(0) is negative. Therefore, while the second term in (4.5)

vanishes, an upward trend is still predicted by the formula (as ǫ decreases), albeit of a much smaller

magnitude due to the further diminishing effects of σ2
S1
σ2
S2

.
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6 Conclusions

In this paper, we have studied the problem of option pricing in the presence of stochastic correlation

from a computational viewpoint. Starting with the derivation of the pricing PDE, we have developed two

approaches to computing option values in this setting.

The first approach is a numerical PDE method. Unique to this problem is the specification of the

boundary behaviour when the correlation ρ is ±1. The boundary condition is necessary when one uses

such numerical techniques as the finite difference method. Following the findings in [17, 18], we propose

using a “PDE condition” on the ρ-boundaries. Furthermore, we discuss other important numerical issues

such as meshing, discretization of the cross term and numerical stability of the numerical scheme (with

this somewhat unusual boundary condition).

When the correlation process exhibits fast mean reversion, a second approach, based on singular

perturbation [21], is developed. The asymptotic solution involves a correction to the (multi-asset) Black-

Scholes price under a constant correlation. For options where analytic solutions or derivatives for a

constant correlation under the Black-Scholes multi-dimensional framework are not available or are diffi-

cult to obtain, we have studied a quadrature method based on the asymptotic density. Exact calculations

of such density corrections are provided. Our numerical experiments indicate that this approach is in

great agreement with Monte Carlo and PDE pricers. Furthermore, this first order correction is able to

capture effects of model parameters on prices, as shown in our numerical experiments.

A Proof of Theorem 2.1

Consider the European option price given by

v(t, x, y, ρ) = e−r(T−t)Et,x,y,ρ [g(S1(T ), S2(T ))] ,

where we take expectation in the risk-neutral measure induced by (2.12). We follow [17] and start by

first proving that the option price is continuous on (0, T )× (0,∞)2 × (−1, 1).
Let (tn, xn, yn, ρn) be a sequence of points converging to (t, x, y, ρ). Let Sn

1 , Sn
2 , and ρn be solutions

to their corresponding SDEs (2.1) and (2.2) (having parameter choices (2.12)) with initial conditions

Sn
1 (tn) = xn, Sn

2 (tn) = yn, and ρn(tn) = ρn, respectively. The explicit expressions for Sn
1 (T ), S

n
2 (T ) are

Sn
1 (T ) = xn exp

(

(

r − σ2
S1

)

(T − tn)

2
+ σS1

∫ T

tn

dW1(s)

)

Sn
2 (T ) = yn exp

(

(

r − σ2
S2

)

(T − tn)

2
+ σS2

∫ T

tn

ρn(s)dW1(s) + σS2

∫ T

tn

√

1− (ρn(s))2dW2(s)

)

,(A.1)

where dW1(s) and dW2(s) are independent Brownian motions adapted to the same filtrations generated

by dB1(s) and dB2(s). Similarly, define S1, S2, and ρ accordingly with the initial conditions S1(t) = x,

S2(t) = y, and ρ(t) = ρ, respectively. Note that S1(T ), S2(T ) can also be expressed in the same form as

(A.1).

By the Yamada-Watanabe theorem, pathwise uniqueness holds for our choice of the correlation model

(2.12). It follows from [1] that

E

[

sup
s≤T

∣

∣ρn(s)− ρ(s)
∣

∣

2
]

−→ 0 as n→ ∞. (A.2)
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Therefore, using Itô isometry,

E

[(
∫ T

tn

ρn(s)dW1(s) −
∫ T

t

ρ(s)dW1(s)

)2]

≤ 2E

[(
∫ T

tn

(ρn(s)− ρ(s))dW1(s)

)2]

+ 2E

[(
∫ tn

t

ρ(s)dW1(s)

)2]

= 2E

[
∫ T

tn

(ρn(s)− ρ(s))2ds

]

+ 2E

[
∫ tn

t

ρ(s)2ds

]

−→ 0

as n→ ∞. We also have

E

[(
∫ T

tn

√

1− (ρn(s))2dW2(s)−
∫ T

t

√

1− (ρ(s))2dW2(s)

)2]

≤ E

[(
∫ T

tn

√

|(ρn(s))2 − (ρ(s))2|dW2(s)

)2]

+ E

[(
∫ tn

t

√

1− (ρ(s))2dW2(s)

)2]

≤ 2E

[(∫ T

tn

|ρn(s)− ρ(s)| ds
)]

+ E

[(∫ t

tn

(

1− (ρ(s))2
)

ds

)]

−→ 0,

as n → ∞. This is due to Itô isometry, Lipschitz continuity of the function f(y) = y2 on the domain

[−1, 1], and Jensen’s inequality. In view of (A.1) above, it follows that Sn
1 (T ) and Sn

2 (T ) respectively

converge to S1(T ) and S2(T ) in probability, as n→ ∞. Since g(·, ·) is bounded, it follows that

Etn,xn,yn,ρn [g(S
n
1 (T ), S

n
2 (T ))] → Et,x,y,ρ [g(S1(T ), S2(T ))] , as n→ ∞.

Hence, the option price v is continuous.

Next, following Theorem 2.7 in [26], and since v is a continuous (stochastic) solution, it can be shown

that v is also a classical solution (in C1,2,2,2) that satisfies (2.7).

B Discretization

We define a (n3+1)× (n3+1) matrix ω in the ρ-direction by first defining the three (n3 +1)× (n3+1)
matrices

ω
(c)
kl =























σ2
ρ(1−ρ2k)

2h2
3

− λ(η−ρk)
2h3

for l = k − 1, 0 < k < n3

−σ2
ρ(1−ρ2k)

h2
3

for l = k, 0 < k < n3

σ2
ρ(1−ρ2

k
)

2h2
3

+ λ(η−ρk)
2h3

for l = k + 1, 0 < k < n3

0 else

(B.1)

ω
(b)
kl =























σ2
ρ(1−ρ2k)

2h2
3

− λ(η−ρk)
h3

for l = k − 1, 0 < k ≤ n3

−σ2
ρ(1−ρ2k)

h2
3

+ λ(η−ρk)
h3

for l = k, 0 < k ≤ n3

σ2
ρ(1−ρ2k)

2h2
3

for l = k + 1, 0 < k < n3

0 else

(B.2)
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ω
(f)
kl =























σ2
ρ(1−ρ2k)

2h2
3

for l = k − 1, 0 ≤ k < n3

−σ2
ρ(1−ρ2k)

h2
3

− λ(η−ρk)
h3

for l = k, 0 ≤ k < n3

σ2
ρ(1−ρ2k)

2h2
3

+ λ(η−ρk)
h3

for l = k + 1, 0 ≤ k < n3

0 else

(B.3)

Then, starting with ω = ω(c), rows of ω are modified one-by-one (chosen from any of the three ω(·))
so that off-diagonals are non-negative. The first row of ω (corresponding to k = 0) should be based

on forward differencing while the last row (corresponding to k = n3) should be based on backward

differencing.

Denote ui,j,k = u(xi, yj, ρk). Now following [7], the cross derivatives are discretized as follows:

∂2u

∂x∂y
(xi, yj, ρk) ≈

2ui,j,k+ui+1,j+1,k+ui−1,j−1,k−ui+1,j,k−ui−1,j,k−ui,j+1,k−ui,j−1,k

2h1h2
for ρk ≥ 0,

(B.4)

∂2u

∂x∂y
(xi, yj, ρk)≈

−2ui,j,k−ui+1,j−1,k−ui−1,j+1,k+ui+1,j,k+ui−1,j,k+ui,j+1,k+ui,j−1,k

2h1h2
for ρk < 0.

(B.5)

Intuitively, the case for ρ ≥ 0 corresponds to the discretization of the cross derivative operator

1

2
(∂x−∂y− + ∂x+∂y+),

where ± indicates the direction of the one-sided difference. Similarly, the case for ρ < 0 corresponds to

the discretization scheme
1

2
(∂x+∂y− + ∂x−∂y+).

Denote by χ(p) the induced cross derivative discretization matrix from the ρ ≥ 0 case, and similarly

for χ(m) for the ρ < 0 case. The cross derivative discretization can be written as ∂2u
∂x∂y

(xi, yj, ρk) ≈
∑

i′,j′ χ
(∗)
ij,i′j′ui′,j′,k. We now describe the discretization in x and y directions.

Denote µi = r− σ2
Si

2
, i = 1, 2. With the discretized domain Ω∆ as in Section 3.3 define the following

(n1 + 1)× (n1 + 1) matrices:

φ
(c)
il =



























σ2
S1

2h2
1
− µ1

2h1
for l = i− 1, 1 ≤ i < n1

−σ2
S1

h2
1

for l = i, 1 ≤ i < n1

σ2
S1

2h2
1
+ µ1

2h1
for l = i+ 1, 1 ≤ i < n1

0 else

(B.6)

φ
(b)
il =



























σ2
S1

2h2
1
− µ1

h1
for l = i− 1, 1 ≤ i < n1

−σ2
S1

h2
1
+ µ1

h1
for l = i, 1 ≤ i < n1

σ2
S1

2h2
1

for l = i+ 1, 1 ≤ i < n1

0 else

(B.7)
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φ
(f)
il =



























σ2
S1

2h2
1

for l = i− 1, 1 ≤ i < n1

−σ2
S1

h2
1
− µ1

h1
for l = i, 1 ≤ i < n1

σ2
S1

2h2
1
+ µ1

h1
for l = i+ 1, 1 ≤ i < n1

0 else

(B.8)

The matrix φ(c) corresponds to the spatial discretization of terms involving ∂2

∂x2 and ∂
∂x

using central dif-

ferences. The matrices φ(f) and φ(b) correspond to the discretization of the same terms using forward and

backward differences of the first derivatives, respectively.

For each ρ, we define a (n1 + 1) × (n1 + 1) matrix φ(ρ) which is equal to either φ(c), φ(b) or φ(f)

such that non-negativity of the off-diagonals of L∆ will be preserved. We can define correspondingly a

matrix, say ψ(ρ), for the S2 direction.

The discretization matrix A is specified by the action

(Au)i,j,k =

n1
∑

i′=0

φii′(ρk)ui′,j,k +

n2
∑

j′=0

ψjj′(ρk)ui,j′,k + σS1σS2ρk(1ρk≥0

∑

i′,j′

χ
(p)
ij,i′j′ui′,j′,k

+ 1ρk<0

∑

i′,j′

χ
(m)
i′,j′ui′,j′,k) +

n3
∑

k′=0

ωkk′ui,j,k′ − rui,j,k, (B.9)

for i 6= 0, n1 and j 6= 0, n2. For i = 0, n1 or j = 0, n2, one can specify (Au)i,j,k = 0 and modify the

right-side of the time-stepping equation to the imposed Dirichlet condition. From this discretization one

obtains a sufficient condition for (3.10) to hold. Consider the coefficients of ui+1,j,k and ui−1,j,k in (B.9).

Clearly, if
σ2
S1

2

1

h21
− σS1σS2 |ρk|

2h1h2
≥ 0,

then one can choose between central, backward and forward differences in the x-direction such that the

coefficients of ui+1,j,k and ui−1,j,k are non-negative. This is the case if we space the grid in such a way

that
h1
h2

≤ σS1

σS2

.

By considering the non-negativity of the coefficients of ui,j+1,k and ui,j−1,k, we get, as a sufficient condi-

tion,
σ2
S2

2

1

h22
− σS1σS2 |ρk|

2h1h2
≥ 0,

which is ensured by
h1
h2

≥ σS1

σS2

.

In a similar way, we can study the sign of the other coefficients in (B.9). In summary, if h1

h2
=

σS1

σS2
, and

central, backward or forward differences are chosen appropriately in each direction, and cross-derivatives

are discretized by (B.4) or (B.5) appropriately, conditions (3.9)-(3.10) are satisfied. It is also easy to see

that (3.11) is trivially satisfied for r > 0, irrespectively of the central, backward or forward differences in

each direction, and the cross-derivative discretization.
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C Properties of the correlation process

The density Φ of the invariant distribution satisfies

∂

∂ρ
(λ(η − ρ)Φ) =

1

2

∂2

∂ρ2
(σ2

ρ(1− ρ2)Φ). (C.1)

The solution that satisfies
∫

Φ = 1 is given by

Φ(x) =
1

2
2λ

σ2
ρ
−1

Γ(2λ
σ2
ρ
)

Γ(λ(1−η)
σ2
ρ

)Γ(λ(1+η)
σ2
ρ

)
(1− x)

λ(1−η)

σ2
ρ

−1
(1 + x)

λ(1+η)

σ2
ρ

−1
. (C.2)

The moments of the process (where subscript t here indicates dependency on time, ρt = ρ(t)) can be

evaluated as follows:

E(ρt) =

∫ t

0

λ(η −E(ρu))du.

The solution is given by

E(ρt) = ρ0e
−λt + η(1− e−λt). (C.3)

Taking limit t → ∞, the mean with respect to the invariant distribution is η. This can also be verified

numerically by direct integration with (C.2). Similarly, by Itô’s lemma,

E(ρ2t ) =

∫ t

0

(

2(ληE(ρu))− (2λ+ σ2
ρ)E(ρ

2
u) + σ2

ρ

)

du.

The ODE that arises from this can be solved analytically given E(ρt) above. As t → ∞, the second

moment with respect to the invariant distribution is
σ2
ρ+2λη2

2λ+σ2
ρ

. Therefore, the variance is
σ2
ρ(1−η2)

2λ+σ2
ρ
.

D Proof of Theorem 4.1

Define

AǫV ǫ .= A1V
ǫ +

1

ǫ
A0V

ǫ = 0,

and V ǫ = V (0) + ǫV (1) + ǫ2V (2) + . . . . We write Zǫ = V ǫ − V (0) − ǫV (1) − ǫ2V (2), where V ǫ,1 is as

defined in (4.5). At terminal time, we have

Zǫ(T, S1, S2, ρ) = −ǫ(ρ − η)σS1σS2D1,1V
(0)(T, S1, S2)− ǫ2V (2)(T, S1, S2, ρ),

as we specified that C(T, S1, S2) = 0. In addition, we have

AǫZǫ = (A1 +
1

ǫ
A0)(V

ǫ − V (0) − ǫV (1) − ǫ2V (2))

= −1

ǫ
A0V

(0) − (A1V
(0) +A0V

(1))− ǫ(A1V
(1) +A0V

(2))− ǫ2A1V
(2)

= −ǫ2A1V
(2),

where we have used AǫV ǫ = 0 and equations (4.1) to (4.3). Therefore, the probabilistic representation of

the solution is

Zǫ(t, S1, S2, ρ) = −ǫE
[

e−r(T−t)(ρǫT − η)σS1σS2D1,1V
(0)(T, Sǫ

1,T , S
ǫ
2,T ) + ǫV (2)(T, Sǫ

1,T , S
ǫ
2,T , ρ

ǫ
T )

−ǫ
∫ T

t

e−r(s−t)A1V
(2)(s, Sǫ

1,s, S
ǫ
2,s, ρ

ǫ
s)ds | Sǫ

1,t = S1, S
ǫ
2,t = S2, ρ

ǫ
t = ρ

]

,
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where subscripts t, s, T indicate time dependence. The dependence of the processes on ǫ is emphasized

by superscripts. We bound each of the terms in the following lemmas. These bounds conclude the proof

of Theorem 4.1.

LEMMA 1. We have
∣

∣

∣

∣

E

[

e−r(T−t)(ρǫT − η)σS1σS2D1,1V
(0)(T, Sǫ

1,T , S
ǫ
2,T ) | Sǫ

1,t = S1, S
ǫ
2,t = S2, ρ

ǫ
t = ρ

]∣

∣

∣

∣

≤ C1e
−C2

1
ǫ ,

where C1, C2 > 0 are independent of ǫ.

Proof. By an argument similar to Lemmas A.1 and A.3 in [20], we can prove that

sup
ǫ≤1,t≤s≤T

E

[

|D1,1V
(0)(s, Sǫ

1,s, S
ǫ
2,s)||Sǫ

1,t = S1, S
ǫ
2,t = S2, ρ

ǫ
t = ρ

]

≤ C ′,

where C ′ is independent of ǫ. The proof consists of proving that the derivative D1,1V
(0) of the Black-

Scholes price V (0) is of polynomial growth in S1 and S2, which is a consequence of the assumption on

the payoff. The bound is obtained from boundedness of the marginal moments of S1 and S2, independent

of correlation. More details can be found in [20]. The lemma follows directly from this bound because

∣

∣

∣

∣

E

[

e−r(T−t)(ρǫT − η)σS1σS2D1,1V
(0)(T, Sǫ

1,T , S
ǫ
2,T ) | Sǫ

1,t = S1, S
ǫ
2,t = S2, ρ

ǫ
t = ρ

]∣

∣

∣

∣

≤ E

[

e−r(T−t)|ρ− η|e−T−t
ǫ σS1σS2 |D1,1V

(0)(T, Sǫ
1,T , S

ǫ
2,T )| | Sǫ

1,t = S1, S
ǫ
2,t = S2

]

≤ 2σS1σS2e
−r(T−t)e−

T−t
ǫ E

[

|D1,1V
(0)(T, Sǫ

1,T , S
ǫ
2,T )| | Sǫ

1,t = S1, S
ǫ
2,t = S2

]

.

Note that in the second inequality we have used (C.3).

LEMMA 2. We have

E

[

|V (2)(T, Sǫ
1,T , S

ǫ
2,T , ρ

ǫ
T )|+|

∫ T

t

e−r(s−t)A1V
(2)(s, Sǫ

1,s, S
ǫ
2,s, ρ

ǫ
s)ds| | Sǫ

1,t = S1, S
ǫ
2,t = S2, ρ

ǫ
t = ρ

]

≤ C3,

where C3 is independent of ǫ.

Proof. By (4.3), and (4.4), we have

A0V
(2) = −A1V

(1) = −(A1V
(1) − 〈A1V

(1)〉).

Recall that V (1) = (ρ− η)σS1σS2D1,1V
(0) + (T − t)

(1−η2)σ̃2
ρσ

2
S1

σ2
S2

2+σ̃2
ρ

D2
1,1V

(0). As V (0) is independent of ρ,

we have

A1V
(1) − 〈A1V

(1)〉 = (ρ(ρ− η)− 〈ρ(ρ− η)〉)K(V (0)),

where K(V (0)) is a linear combination of derivatives of V (0), which similarly has polynomial growth and

thereby bounded conditional expectation as in the lemma above. We now write V (2) = −ψ(ρ)K(V (0)),
where ψ solves the equation A0ψ = ρ(ρ − η) − 〈ρ(ρ − η)〉. Denote g(ρ) = ρ(ρ − η) − 〈ρ(ρ − η)〉.
Observe that

∫ 1

−1
g(ρ)Φ(ρ) = 〈g〉 = 0. Making use of (C.1), we derive

ψ′ =
2

σ̃2
ρ(1− ρ2)Φ

∫ ρ

−1

g(u)Φ(u)du.
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We prove ψ′ is bounded as ρ → −1. This is seen from the l’ Hôpital’s rule, where we apply (C.1) once

again:

lim
ρ→−1

2

σ̃2
ρ(1− ρ2)Φ

∫ ρ

−1

g(u)Φ(u)du = lim
ρ→−1

g(ρ)

(η − ρ)
.

Similarly ψ′ = 2
σ̃2
ρ(1−ρ2)Φ

∫ ρ

−1
g(u)Φ(u)du = 2

σ̃2
ρ(1−ρ2)Φ

∫ 1

ρ
g(u)Φ(u)du is bounded as ρ → 1. As a result,

ψ is bounded on (−1, 1), where the bound is independent of ǫ, i.e.

ψ(ρ) ≤ C4, ρ ∈ (−1, 1). (D.1)

Finally A1V
(2) and V (2) can be written as a polynomial combination of derivatives of V (0) times the

bounded functions ψ(ρ) and ρψ(ρ). Hence its conditional expectation is bounded independently of ǫ as

desired.

E Density calculations

We denote by p(T, S1(T ), S2(T )|t, S1, S2), t ≤ T , the joint transition density function in the case of

constant correlation ρ̄ = η of the terminal prices S1(T ) and S2(T ), given asset prices S1, S2 at an earlier

time t. Note that p(·|·) satisfies the backward Kolmogorov equation

∂p

∂t
+
σ2
S1
S1

2

2

∂2p

∂S2
1

+
σ2
S2
S2

2

2

∂2p

∂S2
2

+ ρ̄σS1σS2S1S2
∂2p

∂S1∂S2
+ rS1

∂p

∂S1
+ rS2

∂p

∂S2
= 0

with the terminal condition p(T, S1(T ), S2(T )|T, S1, S2) = δ(S1(T )−S1, S2(T )−S2), where δ denotes

the Dirac delta function. By direct computation, it can be shown that

p(T, S1(T ), S2(T )|t, S1, S2) =
1

2π
√
det ΣS1(T )S2(T )

e−
1
2
vTAv,

where

Σ = (T − t)

[

σ2
S1
σS1σS2 ρ̄

σS1σS2 ρ̄ σ2
S2

]

, A = Σ−1,

v
.
=

(

v1
v2

)

=





log(
S′

1

S1
)− (r − σ2

S1

2
)(T − t)

log(
S′

2

S2
)− (r − σ2

S2

2
)(T − t)



 .

By straightforward differentiation,

D1,0(p) = S1
∂p

∂S1

= p× (A1,1v1 + A1,2v2)

D0,1(p) = S2
∂p

∂S2

= p× (A2,1v1 + A2,2v2)

D1,1(p) = S1S2
∂2p

∂S1S2

= p×
(

(A1,1v1 + A1,2v2) (A2,1v1 + A2,2v2) +
ρ̄

σS1σS2(T − t) (1− ρ̄2)

)

.
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Finally,

D2
1,1(p) = D1,1(D1,1(p)) = D1,1(p)×

(

(A1,1v1 + A1,2v2)(A2,1v1 + A2,2v2) +
ρ̄

σS1σS2(T − t)(1− ρ̄2)

)

+ D1,0(p)×
(

− A1,2(A2,1v1 + A2,2v2)−A2,2(A1,1v1 + A1,2v2)

)

+ D0,1(p)×
(

− A1,1(A2,1v1 + A2,2v2)−A2,1(A1,1v1 + A1,2v2)

)

+ p×
(

A1,1A2,2 + A1,2A2,1

)

.

Incidentally, one can verify equalities such that ∂p

∂ρ̄
= σS1σS2(T − t)D1,1(p).

It is then straightforward to apply the right-side of (4.5) to p(·|·) to obtain pǫ,1m (·|·) for use in (4.7).
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Lévy processes, Finance and Stochastics, 14 (2010), pp. 527–567.
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