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Abstract Modelling correlation between financial quantities is important in the accurate

pricing of financial derivatives. In this paper, we introduce some stochasticity

in correlation, by considering a regime-switching correlation model, in which

the transition rates between regimes are given. We present a derivation of the

associated Partial Differential Equation (PDE) problem. The problem involves

a system of ℓ PDEs, where ℓ is the number of regimes. We formulate a finite

difference method for the solution of the PDE system, and numerically demon-

strate that it converges with second order. We study the effect of certain model

parameters on the computed prices. We compare prices from this model, associ-

ated PDE and method with those from a stochastic correlation model, associated

PDE and method in van Emmerich, 2006, Leung, 2017, Leung et al., 2016 and

discuss advantages and disadvantages.
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1. Introduction

Correlation between financial quantities plays an important role in pricing

financial derivatives. A lot of existing popular models assume that correlation

either is constant, or exhibits some deterministic behaviour. However, market

observations suggest that correlation is a more complicated process. In partic-

ular, empirical evidence suggests that there is a significant correlation risk pre-

mium (e.g. Driessen et al., 2009, Driessen et al., 2012, Buss and Vilkov, 2012).

It is also observed that, during periods of financial crises, correlations between

asset returns increase (e.g. Longin and Solnik, 2001, Chiang et al., 2007, Min

and Hwang, 2012). These observations suggest that there is stochasticity in

correlation.

There are several models that introduce stochasticity in correlation. In Teng

et al., 2016, Driessen et al., 2012, van Emmerich, 2006, the dynamics of the

correlation variable are modelled directly by a stochastic process. This is also

the approach in Leung, 2017, Leung et al., 2016, where a related Partial Dif-

ferential Equation (PDE), with the correlation as an extra variable, is derived

and solved numerically.

In this paper, we consider correlation structures that are guided by regime

switching, with given transition rates from one regime to another. We show

a way to derive the related Partial Differential Equation (PDE) problems for

pricing several types of financial derivatives, and solve them by accurate and

efficient numerical methods. We also study the effect of certain model param-

eters to the prices. We present the PDE problems, the numerical solution, and

comparison of the PDE results to Monte-Carlo simulations. We also make a

comparison with results from the stochastic correlation PDE model in Leung,

2017, Leung et al., 2016.

The outline of the paper is as follows. In Section 2, we present the regime-

switching correlation model and derive the associated PDE problem using an

appropriate portfolio and the no-arbitrage principle. In Section 3, we formu-

late numerical methods for the PDE problem, based on finite differences, and

discuss properties of the arising linear system. Section 4 has numerical results

that demonstrate the convergence of the numerical solution and indicate the

effect of certain problem parameters on it. In the same section, a comparison

with the model in Leung, 2017, Leung et al., 2016 is discussed. Section 5

concludes the paper.
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2. Modelling correlation

During financial crises and periods of market distress, correlation often in-

crease, and/or exhibit a non-deterministic behaviour. A possible modelling ap-

proach for this type of variability of correlations is through regime switching.

In the simplest case, there are two regimes, corresponding one to the “good”

and another to “bad” times. In the general case, assume there are “states of the

world” (regimes) modelled by a (continuous-time) Markov chain X(t), taking

values in the (finite) index set {1, 2, . . . , ℓ}, where each value corresponds to a

regime. Let qαβ > 0 be the transition rate the economy switches from regime

α to β, for α 6= β, and qαα = −
∑ℓ

β=1,β 6=α qαβ . The transition rates are

assumed to satisfy

P (X(t+ h) = β | X(t) = α) = qαβh+ o(h), for α 6= β, h > 0,

and

P (X(t+ h) = α | X(t) = α) = 1 + qααh+ o(h), for h > 0.

For α 6= β, we can view qαβ as the rate of a Poisson process in which a jump

characterizes the transition from state α to state β. In this way, an element of

randomness in the correlation structure is introduced.

Let Si(t), i = 1, . . . , n, be values of respective (for simplicity non-dividend

paying) risky assets evolving as

dSi(t)/Si(t) = µidt+ σidWi(t), i = 1, 2, . . . , n, (2.1)

where

E(dWi(t), dWj(t)) = ρij(X(t))dt, i = 1, 2, . . . , n, j = 1, 2, . . . , n, (2.2)

where ρij denotes the correlation between assets i and j, µi and σi denote the

drift and volatility of Si, respectively, and Wi(t) denotes a standard Wiener

process. Note that, for each (i, j) pair, where i = 1, 2, . . . , n and j = 1, 2, . . . , n,

the correlation ρij(X(t)) takes on ℓ values, one in each regime, depending on

the value of X(t). We wish to calculate the price V (t,S(t),X(t)) of a (Eu-

ropean) contingent claim on S(t) = [Si(t), i = 1, . . . , n]. We assume V is

Markov in (S(t),X(t)).

Since X(t) takes on ℓ discrete values, there are ℓ unknown price functions

V (t,S, α), α = 1, . . . , ℓ, one for each regime. Let V(t,S) be the vector

[V (t,S, α), α = 1, . . . , ℓ]. We will derive a system of PDEs that V satisfies.

To do this, we consider an appropriate portfolio of financial instruments that
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is riskless and, abiding with the no-arbitrage principle, equate its return to the

return from an equivalent amount invested at the risk-free interest rate r.

Consider a portfolio of ℓ̂ financial instruments, and denote its value at time

t by Π(t). Let V (l)(t,S(t),X(t)) be the value of the l-th instrument, where

l = 1, 2, . . . , ℓ̂. We take V (1) = V . The other ℓ̂ − 1 instruments are auxiliary

and help in the derivation of the system of PDEs. Let our holding of the l-th

instrument be a(l), which may vary with time, and a(1) ≡ 1. Assume also

the existence of a money-market account B(t) that pays an instantaneous short

rate r. Mathematically, we have

Π(t,S(t),X(t)) =
ℓ̂

∑

l=1

a(l)V (l)(t,S(t),X(t)) (2.3)

dV (l) =
(∂V (l)

∂t
+

n
∑

i,j=1

σiσjρij(X(t))Si(t)Sj(t)
∂2V (l)

∂SiSj
(2.4)

+

n
∑

i=1

µiSi(t)
∂V (l)

∂Si

)

dt

+
n
∑

i=1

σiSi(t)
∂V (l)

∂Si
dWi +

ℓ
∑

β=1

(V (l)(t,S(t), β) − V (l)(t,S(t), α))dXαβ (t),

l = 1, . . . , ℓ̂,

dB(t) = rB(t)dt, (2.5)

where X(t) = α, and Xαβ(t) is the Poisson process that corresponds to the

switch from the α to the β regime. For notational convenience, we suppress

the dependence of V (l) on (t,S(t),X(t)). Equation (2.3) is the value equation

of the portfolio, Equation (2.4) follows from Ito’s lemma for jump processes

and Equation (2.5) is the value equation for the money market account. We do

not exclude the money market account B from the set of instruments to trade.

Assume that we are always able to trade in such a way that (a) the portfolio is

self-financing, and (b) instantaneous risks corresponding to dX(t) and dWi(t)

are eliminated. Denote

∆αβV
(l)(t,S, α) ≡ V (l)(t,S, β) − V (l)(t,S, α),

and

L̂V (l)(t,S, α) ≡

n
∑

i,j=1

σiσjρij(α)SiSj
∂2V (l)

∂SiSj
+

n
∑

i=1

µiSi
∂V (l)

∂Si
.
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The first condition (self-financing portfolio) requires that

dΠ =

ℓ̂
∑

l=1

a(l)dV (l),

and the second condition (elimination of risks) requires that

ℓ̂
∑

l=1

a(l)
∂V (l)

∂Si
= 0, for each i and (2.6)

ℓ̂
∑

l=1

a(l)∆αβV
(l) = 0, for each α, β. (2.7)

The no-arbitrage principle implies that Π should grow at risk-free rate r: dΠ =

rΠdt. In other words, for each α,

ℓ̂
∑

l=1

a(l)(
∂V (l)

∂t
+ L̂V (l)) = r(

ℓ̂
∑

l=1

a(l)V (l)) (2.8)

⇐⇒
ℓ̂

∑

l=1

a(l)(
∂V (l)

∂t
∗ L̂V (l) − rV (l)) = 0.

Notice that (2.6), (2.7) and (2.8) form a linear system in the portfolio weights

a(l), with a(1) = 1. We assume the market is such that there exist ℓ̂ instruments

that these simultaneous equations are solvable. To have a non-trivial solution

to the homogeneous system, the rows must be linearly dependent. Therefore,

there exist ν, θi, ξαβ , not all zero, such that for each l and each α,

ν(
∂V (l)

∂t
+ L̂V (l) − rV (l)) +

n
∑

i=1

θi
∂V (l)

∂Si
+

ℓ
∑

β=1

ξαβ∆αβV
(l) = 0.

If each Si is tradeable, and if there exists an instrument, say the m-th, such

that the matrix [∆αβV
(m)]α,β=1,...,ℓ is non-singular, the coefficient ν of ∂V (l)

∂t
+

L̂V (l)−rV (l) is non-zero. Without loss of generality, we assume ν = 1. Thus,

∂V (l)

∂t
+ L̂V (l) − rV (l) +

n
∑

i=1

θi
∂V (l)

∂Si
+

ℓ
∑

β=1

ξαβ∆αβV
(l) = 0.
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Therefore, with τ = T − t, where T the maturity time of the contingent claim,

we arrive at the pricing equation

∂V (l)

∂τ
=

n
∑

i,j=1

σiσjρij(α)SiSj
∂2V (l)

∂SiSj
+

n
∑

i=1

(µi + θi)Si
∂V (l)

∂Si
(2.9)

−rV (l) +
ℓ

∑

β=1

ξαβ∆αβV
(l),

for each l and each α, where V (l) = V (l)(τ,S, α), and where we recall that

S is a vector of tradeable non-dividend paying asset prices Sj , and V (1) = V .

As (2.9) holds for the instrument with value V = V (1), the same equation in

particular holds for each Sj (which are also tradeable instruments), so we have

0 = 0 +

n
∑

i=1

(µi + θi)Siδij − rSj ⇐⇒ µj + θj = r, ∀j = 1, . . . , n,

with δij = 0 for i 6= j, and δii = 1. In other words, this is same as saying

that, in this regime-switching model, the price of the contingent claim does not

depend on the asset drift. This is consistent with, for example, Elliott et al.,

2007 in their work on regime-switching stochastic volatility processes.

Equation (2.9) holds for V = V (1), which gives the pricing equation

∂V

∂τ
(τ,S, α)=

n
∑

i,j=1

σiσjρij(α)SiSj
∂2V

∂SiSj
(τ,S, α) +

n
∑

i=1

rSi
∂V

∂Si
(τ,S, α)

(2.10)

−rV (τ,S, α) +

k
∑

β=1

ξαβ
∆αβV (τ,S, α).

Thus, the price V (τ,S, α) is interconnected to all other prices V (τ,S, β) through

a system of ℓ PDEs.

On the S-boundaries, the unknown prices V (τ,S, α), α = 1, . . . , ℓ, satisfy

boundary conditions determined by the type of financial derivatives priced. At

τ = 0 (t = T ), for each α, the initial condition for the price V (τ,S, α) is the

payoff function g(S), which is given by the type of financial derivatives priced.

Equation (2.10) can be cast in vector form as follows. Recall that V(τ,S) is

the vector whose α-th entry is V (τ,S, α), where α = 1, 2, . . . , ℓ, and similarly

define the vector (of matrices) ~ρij ≡ [ρij(α), α = 1, . . . , ℓ]. Denote Q to

be the ℓ × ℓ matrix with matrix entry Qαβ = ξαβ for α 6= β, and Qαα =
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−
∑ℓ

β=1,β 6=α ξαβ . In vector form (2.10) becomes

∂V

∂τ
(τ,S)=

n
∑

i,j=1

σiσj~ρijSiSj
∂2V

∂SiSj
(τ,S) +

n
∑

i=1

rSi
∂V

∂Si
(τ,S) (2.11)

−rV(τ,S) +QV(τ,S),

where the multiplication of ~ρij with ∂V
∂SiSj

(τ,S) is component-wise. In the

above derivation, the real world transition rates of the underlying Markov

chain do not appear in the final pricing equation. The generator matrix Q

is a risk-neutral parameter. Alternatively, one could fix Q a priori and derive

the pricing equation by considering its risk-neutral expectation as the solution

to a PDE through the Feynman-Kac theorem. We also note that, we assumed

non-dividend paying assets, only for simplicity. If Si pay dividend rates q̂i,

i = 1, . . . , n, respectively, we just adjust the coefficient rSi of ∂V
∂Si

(τ,S) in

(2.11) to (r − q̂i)Si.

Since, in the numerical experiments, we will be considering the case of two

regimes and two-assets contingent claims, we present the system of two PDEs

in two space variables in a simplified format. Let S = (S1, S2), v(τ,S) =

V (τ,S, 1) (regime 1) and w(τ,S) = V (τ,S, 2) (regime 2). Let also the nota-

tion ρij be adjusted so that ρα = ρ12(α) = ρ21(α) is the correlation between

assets 1 and 2 in regime α, α = 1, 2. Then (2.11) becomes

∂v

∂τ
=

σ2
1S

2
1

2

∂2v

∂S2
1

+
σ2
2S

2
2

2

∂2v

∂S2
2

+ ρ1σ1σ2S1S2
∂2v

∂S1∂S2
(2.12)

+(r − q̂1)S1
∂v

∂S1
+ (r − q̂2)S2

∂v

∂S2
− rv + q12(w − v) = 0

≡ L(ρ1)v + q12(w − v) = 0

∂w

∂τ
=

σ2
1S

2
1

2

∂2w

∂S2
1

+
σ2
2S

2
2

2

∂2w

∂S2
2

+ ρ2σ1σ2S1S2
∂2w

∂S1∂S2
(2.13)

+(r − q̂1)S1
∂w

∂S1
+ (r − q̂2)S2

∂w

∂S2
− rw + q21(v − w) = 0

≡ L(ρ2)w + q21(v −w) = 0.

3. Numerical methods

In this section, we present the discretization of (2.12)-(2.13). We first trun-

cate the semi-infinite space domain [0,∞)× [0,∞) to [0, S1,max]× [0, S2,max],

for appropriately large S1,max and S2,max. Then, discretize [0, S1,max]×[0, S2,max]
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using a rectangular partition with N and M subintervals in the S1- and S2-

dimensions, respectively.

We use standard second-order finite differences for the space discretization

of (2.12)-(2.13). For the time-stepping, we use the θ-method, which, for θ = 1
2

gives Crank-Nicolson (CN), and, for θ = 1, gives Backward Euler (BE or

fully implicit method). While it is easy to formulate the discretization with

non-uniform space and/or time stepsizes, in the numerical experiments, we

consider uniform stepsizes in both space and time. Also, for the numerical

experiments, we set θ = 1
2 for all timesteps, except the first four, for which

we set θ = 1 and pick half time stepsize. Thus, we are using the typical CN-

Rannacher timestepping Rannacher, 1984, which is known to smoothen out the

propagation of the initial conditions discontinuity.

Let AL(ρ) be the matrix arising from the (spatial) discretization of L(ρ).

Then the matrix arising from the spatial discretization of the system of PDEs

(2.12)-(2.13) is

A =

[

AL(ρ1)− q12I q12I

q21I AL(ρ2)− q21I

]

, (3.1)

where I is the (N − 1)(M − 1) × (N − 1)(M − 1) identity matrix. Then,

with I2 being the 2(N − 1)(M − 1)× 2(N − 1)(M − 1) identity matrix, and

time stepsize ∆τ , the θ-timestepping at the kth timestep, k = 1, . . . , Nt, for

the system of PDEs (2.12)-(2.13) becomes

(I2 − θ∆τA)

[

vk

wk

]

= (I2 + (1− θ)∆τA)

[

vk−1

wk−1

]

+ b (3.2)

with appropriate adjustment to the boundary equations, and with b a vector

arising from the boundary conditions.

Note that the system of linear equations that needs to be solved at each

timestep is of size 2(N − 1)(M − 1) (assuming appropriate Dirichlet condi-

tions). The matrix A as presented in (3.1) (and therefore the matrix I2−θ∆τA

as well) has semi-bandwidth (N − 1)(M − 1), where we have assumed that

we first order the equations arising from the discretization of (2.12) (in natural

ordering), then those from (2.13). We can easily reduce the semi-bandwidth to

2min{N−1,M−1}, by changing the ordering of the equations to alternating

between those arising from (2.12) and (2.13). In this case, the linear system has

bandwidth just twice as large as a linear system arising from the discretization

of a scalar two-dimensional PDE.

In the general case of ℓ regimes, the system of linear equations that needs

to be solved at each timestep is of size ℓ(N − 1)(M − 1), and the equations
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Si,max T σ1 σ2 ρ1 ρ2 q12 q21 q̂1 q̂2

500 1 0.20 0.30 0.1 0.7 0 0

Table 4.1. Numerical and market parameters for exchange option; parameters q12 and q21 are

set as indicated in each experiment

can be ordered so that the matrix A (and therefore the matrix Iℓ − θ∆τA as

well) has semi-bandwidth ℓmin{N − 1,M − 1}. Therefore, both the number

of equations and the semi-bandwidth increase by a factor of ℓ compared to the

constant correlation case. The bandwidth ℓmin{N −1,M −1} is the smallest

bandwidth that can be obtained for a two-asset problem with ℓ regimes, assum-

ing a simple direct linear solver is used at each timestep. Clearly, other more

efficient linear solvers can be used, and other timestepping techniques can be

employed. For example, Alternating Direction Implicit (ADI) timestepping

methods could result in solving linear systems of semi-bandwidth ℓ, indepen-

dently of N or M .

4. Numerical results

In this section, we present numerical results that demonstrate that our nu-

merical model converges in second order, and study numerically the effect of

certain parameters to the price functions.

The first test, while financially uninteresting, is a typical numerical test of

the accuracy and convergence of our numerical model. We consider an ex-

change option, which has payoff

g(S1, S2) = max{S1(T )− S2(T ), 0}.

For such an option, assuming constant correlation, the exact price is known and

given in analytic form by Margrabe’s formula Margrabe, 1978. For our regime-

switching PDE model (2.12)-(2.13) and its numerical solution, we pick the pa-

rameter values given in Table 4.1, and we intentionally set q12 = 0, which

means that we are always in regime 1, and, therefore, we have a “degener-

ate” regime switching case with constant correlation ρ1. We run our numerical

method (3.2) for this problem and compare our results with Margrabe’s for-

mula (using ρ1 as correlation), by calculating the exact error and respective

order of convergence. The results are shown in Table 4.2. We notice a straight

second order convergence for the price and the Greeks. Similar orders have

been obtained on other points of the domain.
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N = M Nt V error order ∂V
∂S2

error order ∂2V

∂S2

2

error order

50 25 18.4115 1.42e-01 -5.5669e-01 3.02e-03 1.2936e-02 -1.49e-04

100 50 18.5182 3.51e-02 2.02 -5.5442e-01 7.42e-04 2.02 1.2823e-02 -3.61e-05 2.04

200 100 18.5445 8.74e-03 2.00 -5.5386e-01 1.85e-04 2.01 1.2796e-02 -8.97e-06 2.01

400 200 18.5510 2.18e-03 2.00 -5.5372e-01 4.62e-05 2.00 1.2789e-02 -2.24e-06 2.00

800 400 18.5527 5.46e-04 2.00 -5.5369e-01 1.15e-05 2.00 1.2788e-02 -5.60e-07 2.00

Table 4.2. Values, errors and orders of convergence for a European exchange option under a

degenerate “two-regime” correlation model with the parameters in Table 4.1, and q12 = 0, at

point (100, 90). Margrabe’s formula gives price 18.5532.

Next, we consider again an exchange option, with the same parameter values

given in Table 4.1, and with q12 = 0.3 and q21 = 1.5. In this test, we have a

two-regime correlation problem and do not have exact solution values, so we

approximate the error of our numerical method, by the change of the values

obtained by a refinement (doubling) of the grid. The order of convergence

is calculated based on the approximate error. The results are shown in Table

4.3, where we again notice a stable second order of convergence for the price

and the Greeks. We also note that once we use at least 400 spatial points and

200 timesteps, there is good agreement of the PDE results with the Monte

Carlo (MC) simulation results, where we have used 50000 simulations with a

timestep of 10−3.

We also consider an exchange option with the same parameters as in Table

4.1, but now q12 varies as shown in Table 4.4, and q21 = 1.5. We only show the

results with N = M = 800 and Nt = 400. We notice that the value at a point

decreases as q12 increases. This is financially expected, as increasing transition

rate from regime 1 to 2 means that the likelihood of the correlation going from

ρ1 = 0.0 to ρ2 = 0.7 is higher, and therefore the two assets are likely to be

higher correlated, which implies a drop in the exchange option value, as the

payoff depends on the difference S1(T )− S2(T ).

We next consider a basket put option, which has payoff

g(S1, S2) = max{K − (S1(T ) + S2(T )), 0},

with K the strike price. Since the payoff of a basket put involves the sum

S1(T ) + S2(T ) and not the difference S1(T )− S2(T ) as in the case of the ex-

change option, we expect that an increase of correlation between the two assets

would imply an increase in the value of the option. In Table 4.6, we present

results of the application of our numerical method to a European dividend-

paying basket put with the parameters of Table 4.5, q21 = 1.5, and with q12
varying as shown in Table 4.5. We notice that as q12 increases, which means
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N = M Nt V change order ∂V
∂S2

change order ∂2V

∂S2

2

change order

50 25 18.0423 -5.6336e-01 1.3379e-02

100 50 18.1522 1.10e-01 -5.6100e-01 2.36e-03 1.3256e-02 -1.22e-04

200 100 18.1793 2.71e-02 2.02 -5.6042e-01 5.78e-04 2.03 1.3227e-02 -2.95e-05 2.05

400 200 18.1861 6.75e-03 2.00 -5.6028e-01 1.44e-04 2.01 1.3219e-02 -7.31e-06 2.01

800 400 18.1878 1.69e-03 2.00 -5.6024e-01 3.59e-05 2.00 1.3218e-02 -1.82e-06 2.00

Table 4.3. Values, changes and orders of convergence for a European exchange option in

regime 1, under a two-regime correlation model with the parameters in Table 4.1, q12 = 0.3

and q21 = 1.5, at point (100, 90). Monte Carlo price is 18.1872, and the 95% confidence

interval is (18.1798, 18.1945).

(S1, S2) q12 = 0 q12 = 0.1 q12 = 0.2 q12 = 0.3

(90, 100) 8.5528 8.4252 8.3037 8.1879

(100, 100) 13.6365 13.4939 13.3580 13.2285

(110, 100) 19.8601 19.7175 19.5817 19.4523

Table 4.4. Values of a European exchange option in regime 1, under a two-regime correlation

model with the parameters in Table 4.1, with q21 = 1.5, and q12 varying as indicated.

Si,max T K r σ1 σ2 ρ1 ρ2 q12 q21 q̂1 q̂2

500 1 200 0.05 0.20 0.30 0.1 0.7 1.5 0.03 0.02

Table 4.5. Numerical and market parameters for basket put option; parameter q12 is set as

indicated in each experiment

that the likelihood of passing from regime 1 with ρ1 = 0.1 to regime 2 with

ρ2 = 0.7 increases, the value of the option also increases, as expected.

In the next experiment, we study the effect of maturity on the prices of

options either under regime switching or under a constant correlation. We

consider an exchange option with parameters as in Table 4.1, except that T

(S1, S2) q12 = 0 q12 = 0.1 q12 = 0.2 q12 = 0.3

(90, 100) 17.0331 17.1327 17.2272 17.3169

(100, 100) 12.2263 12.3313 12.4309 12.5255

(110, 100) 8.4790 8.5815 8.6788 8.7712

Table 4.6. Values of a European basket put option in regime 1, under a two-regime correlation

model with the parameters in Table 4.5, and q12 varying as indicated.



12

2 4 6 8 10

maturity T

20

25

30

35

40

45

p
ri
c
e

 o
f 

e
x
c
h

a
n

g
e

 -
- 

re
g

im
e

 1

q
12

 = 0.0

q
12

 = 0.3

Figure 4.1. Plot of European exchange option price at (100, 90) versus T with a constant

correlation and the two-regime correlation model (2.12)-(2.13), and parameters in Table 4.1,

with q21 = 1.5, while T and q12 are as indicated.

varies from 1 to 10 years. In Figure 4.1, we plot the value of the exchange

option versus the maturity T , with q12 = 0 (constant correlation, no regime

switching), and with q12 = 0.3 (regime switching). We notice that the values

increase with maturity, as expected. Furthermore, the difference between the

no regime and the regime switching values also increases with T . These results

highlight the importance of appropriate modelling of correlation in pricing long

maturity financial derivatives.

We finally do a comparison between the results from the stochastic corre-

lation model in Leung, 2017, Leung et al., 2016, and the regime-switching

correlation model in this paper. The model in Leung, 2017, Leung et al., 2016

assumes that correlation is a stochastic variable with

dρ(t) = α̂(t, ·)dt + β̂(t, ·)dWρ(t), (4.1)

where Wρ is independent of Wi, i = 1, 2, . . . , n. The model for α̂ and β̂

considered in Leung, 2017, Leung et al., 2016 is a mean-reverting model, with

the risk-neutral specification

α̂(ρ(t)) = κ(η − ρ(t)), β̂(ρ(t)) = σρ
√

1− ρ(t)2, (4.2)

where κ > 0 is the mean reversion rate of correlation and η ∈ (−1, 1) is the

mean reversion level of correlation. For the case of two assets with prices S1

and S2, evolving as (2.1)-(2.2), the PDE that the price V = V (τ,S, ρ) of a
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Si,max T σ1 σ2 η κ σρ

500 1 0.20 0.30 0.1 1.2 1.0

Table 4.7. Numerical and market parameters for exchange option under stochastic correlation

model (4.1)-(4.2)

European contingent claim on S = (S1, S2) with the stochastic correlation

model (4.1)-(4.2) satisfies, as derived in Leung, 2017, Leung et al., 2016, is

∂V

∂τ
=

σ2
1S1

2

∂2V

∂S2
2

+
σ2
2S2

2

∂2V

∂S2
2

+ ρσ1σ2S1S2
∂2V

∂S1S2
+

β̂2

2

∂2V

∂ρ2
(4.3)

+(r − q̂1)S1
∂V

∂S1
+ (r − q̂2)S2

∂V

∂S2
+ α̂

∂V

∂ρ
− rV,

where, now, ρ ∈ [−1, 1] is an extra variable. Clearly, the stochastic correla-

tion PDE model (4.1)-(4.2)-(4.3) is different from the two-regime correlation

PDE model (2.12)-(2.13). However, in Figures 4.2 and 4.3, we plot the prices

of European exchange options versus S2 for S1 = 100, computed with the

two-regime correlation model in this paper, and with the stochastic correlation

model in Leung, 2017, Leung et al., 2016, respectively. For the two-regime

correlation model we set the parameters as in Table 4.1, with q12 = 0.03 and

q21 = 1.3, and plot the prices in both regimes (ρ1 = 0.1 and ρ2 = 0.7). For the

stochastic correlation model we set the parameters as in Table 4.7, and plot the

prices for two values of ρ, namely ρ = 0.1 and ρ = 0.7. At least qualitatively

speaking, the two Figures indicate considerable agreement in the general be-

haviour of the prices. Clearly, it is important to note that, while the stochastic

correlation PDE model (4.1)-(4.2)-(4.3) gives solutions that can be evaluated

at any ρ, we plotted the prices that correspond to ρ = ρ1 and ρ = ρ2. Finally,

it is worth emphasizing that, in this experiment, the mean reversion level η of

the stochastic correlation PDE model is set to the “primary” correlation value

ρ1 of the two-regime model.

5. Conclusions

We have developed a regime-switching correlation PDE model for valuing

European options on multiple assets. The transition rates between regimes are

assumed to be given. The model involves a system of PDEs, as many as the

number of regimes, with the component functions interconnected to each other

through the transition rate matrix applied to the no-derivative term. We for-

mulated a standard second-order finite differences method for its solution. We
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Figure 4.2. Plot of European exchange option price versus S2 with two-regime correlation

model (2.12)-(2.13), and parameters in Table 4.1, q12 = 0.03 and q21 = 1.3
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Figure 4.3. Plot of European exchange option price versus S2 with stochastic correlation

model (4.1)-(4.2)-(4.3) Leung, 2017, Leung et al., 2016, and parameters in Table 4.7

tested the model and numerical method on certain options on two assets, un-

der a two-regime setting. We numerically verified second order convergence

for the solution and its derivatives (Greeks), as well as good agreement with

MC simulations. We studied the effect of the transition rates on the computed

prices and showed that the model and method respond faithfully to certain

financial facts. We also compared the results from the two-regime correla-

tion model with those from a full stochastic correlation model in Leung, 2017,

Leung et al., 2016, and noted interesting similarities. The advantage of the

regime-switching correlation model in this paper compared to the model in

Leung, 2017, Leung et al., 2016 is that it gives rise to smaller size and band-
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width linear systems to be solved at each timestep, since it does not introduce

another dimension, but only increases the number of equations and bandwidth

by a factor equal to the number of regimes. On the other hand, the advantage

of the model in Leung, 2017, Leung et al., 2016 is that it can incorporate more

flexible correlation behaviours and allow the prices to be evaluated at any cor-

relation level in [−1, 1], at the expense of introducing extra dimensions and,

therefore, considerably increasing the bandwidth and size of linear systems to

be solved at each timestep.
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