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Abstract. We consider the numerical solution of linear fourth-order
boundary value problems (BVPs) in one and two dimensions, by methods
based on quartic splines and the collocation methodology. The discretiza-
tion error is sixth order on the gridpoints and midpoints of a uniform
partition and fifth order globally in the uniform norm. For the linear sys-
tems arising from the discretization of certain biharmonic problems by
quartic spline collocation, we develop fast solvers based on Fourier trans-
forms, leading to asymptotically almost optimal solution techniques.
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1 Two-point fourth-order BVP

We consider the linear fourth-order two-point BVP described by the differential
equation

Lu(x) ≡

4
∑

i=0

pi(x)u(i)(x) = g(x), x ∈ I ≡ (ω1, ω2), (1)

and boundary conditions of the form

Bku(ωj) ≡

3
∑

i=0

αk,ju
(i)(ωj) = γk,j , j = 1, 2, k = 0, 1, (2)

where u(x) is an unknown function, u(i) ≡ diu
dxi , γk,j and αk,j , j = 1, 2, k = 0, 1,

are given, pi(x), i = 0, . . . , 4, and g(x) are given functions.
For the problem (1)-(2), we develop and analyze quartic spline collocation

(QrSC) methods. Let ∆ ≡ {xi ≡ ω1 + ih, i = 0, . . . , N}, with h = (ω2 − ω1)/N ,
be a (uniform) partition of I, and let D ≡ {τi = (xi−1 + xi)/2, i = 1, . . . , N}, be
the midpoints of ∆. Let U(x) =

∑

i ciφi(x) be the spline approximation to u(x)
written in terms of appropriate quartic spline basis functions φi(x) (piecewise
quartic polynomials with C3 continuity on the nodes of ∆).

The standard formulation of quartic spline collocation applied to (1)-(2),
collocates (1) at the midpoints of ∆ and the boundary equations (2) at the
boundary points. That is, the collocation approximation U(x) satisfies
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LU(x) = g(x), x ∈ D, Bku(ωj) = γk,j , j = 1, 2, k = 0, 1. (3)

The approximation U(x) can be shown to be second order, both mathematically
and numerically [6], that is, it is sub-optimal compared to quartic spline inter-
polants. To obtain optimal quartic spline collocation approximations, we develop
perturbations PL, P1,L and PB,k, P1,B,k of the discrete forms of L and Bk, re-
spectively [6]. These perturbations can be used in two approaches, both leading
to optimal QrSc methods. In the first approach, referred to as extrapolated or
one-step method, the collocation approximation u∆ satisfies

(L+PL)u∆(x) = g(x), x ∈ D, (Bk+PB,k)u∆(ωj) = γk,j , j = 1, 2, k = 0, 1. (4)

In the second approach, referred to as deferred-correction or three-step method,
three collocation approximations U(x), U2(x) and u∆(x) are computed. The
approximation U(x) is computed by (3), and U2(x) and u∆(x) by

LU2(x)=g(x)−P1,LU(x), x ∈ D, BkU2(ωj)=γk,j−P1,B,kU(x), j =1, 2, k=0, 1, (5)

Lu∆(x)=g(x)−PLU2(x), x ∈ D, Bku∆(ωj)=γk,j−PB,kU2(x), j =1, 2, k=0, 1.(6)

The analysis of the above methods is carried out using the Green’s functions’
approach [6], and will be given in an extended version of this paper. It can be
shown that, with h being the stepsize of the partition, the convergence rate for
the approximation and its jth derivative is O(h6−j), on certain sets of points of
the partition, and O(h5−j), j = 0, . . . , 4, globally in the uniform norm.

2 Two-dimensional fourth-order BVP

We consider the linear fourth-order BVP in a rectangular domain described by

Lu ≡

4
∑

i=0

4−i
∑

j=0

pi,j(x, y)
∂i+ju

∂xi∂yj
(x, y) = g(x, y), (x, y) ∈ Ω ≡ (ω1, ω2) × (ω3, ω4)(7)

Bku(x, y) = γk(x, y), k = 0, 1, (x, y) ∈ ∂Ω ≡ {x = ω1, x = ω2, y = ω3, y = ω4},(8)

where u(x, y) is an unknown function, pi,j(x, y), g(x, y), γk(x, y), i = 0, . . . , 4,
j = 0, . . . , 4 − i, k = 0, 1, are given functions, and the exact form of Bk is
omitted for brevity.

For the problem (7)-(8), we develop optimal (extrapolated and three-step)
bi-QrSC methods based on tensor products of quartic splines in the x and y
dimensions. The details can be found in [5] and are omitted here for brevity.

We are particularly interested in certain biharmonic problems. The bihar-

monic Dirichlet problem is given by

uxxxx(x, y) +2uxxyy(x, y) +uyyyy(x, y) = g(x, y) (x, y) ∈ Ω, (9)

u(x, y) = γ0(x, y), for{x = ω1, x = ω2, y = ω3, y = ω4}, (10)

ux(x, y) = γ1(x, y), for{x = ω1, x = ω2}, (11)

uy(x, y) = γ1(x, y), for{y = ω3, y = ω4}, (12)
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where ux = ∂u
∂x , uxxxx = ∂4u

∂x4 , etc. We also consider two auxiliary biharmonic
problems. Biharmonic problem II is given by (9)-(10)-(12) and

uxx(x, y) = γ2(x, y), for{x = ω1, x = ω2}, (13)

that is, it differs from the biharmonic Dirichlet problem only in the boundary
conditions along the two vertical sides of the domain. Biharmonic problem III

is given by (9)-(10)-(13) and

uyy(x, y) = γ2(x, y), for{y = ω3, y = ω4}, (14)

that is, it differs from the biharmonic problem II only in the boundary conditions
along the two horizontal sides of the domain.

When biharmonic problem II is discretized by the (standard or the three-
step) bi-QrSC method on a uniform n × n grid, it gives rise to a linear system
Bη = g, where

B = Q4 ⊗ QDN
0 + Q2 ⊗ QDN

2 + Q0 ⊗ QDN
4 (15)

and where the matrices Qi, i = 0, 2, 4 share the same eigenvectors. More specif-
ically, they are diagonalizable by the inverse of the discrete sine transform II
(DST-II) matrix [4]. This property leads to a block diagonalization of B

(S ⊗ I)B(S−1 ⊗ I) = W = blockdiag{w1, w2, . . . , wn}
= Λ4 ⊗ QDN

0 + Λ2 ⊗ QDN
2 + Λ0 ⊗ QDN

0
(16)

where Λi, i = 0, 2, 4 are diagonal matrices holding the eigenvalues of Qi, i =
0, 2, 4, respectively, S is the DST-II matrix, and I the identity matrix of order
n. Note also that the matrices Qi, i = 0, 2, 4, are matrix polynomials of the
quadratic spline collocation matrix arising from uxx, so their eigenvalues are
explicitly known, using the formulae in [2]. Thus, an FFT-based solver for ma-
trix B, and therefore for the biharmonic problem II, similar to the algorithm
1D-FFTQSC in [3] for solving bi-quadratic spline collocation equations, can be
derived. For any mn× 1 vector g, let gn×m denote an n×m matrix with entries
the components of g laid out in n rows and m columns, column by column.

Algorithm FFTSC(n, ḡ)

Step 1: Apply FST-II of size n to each of the n columns of (ḡn×n)T to obtain

g
(1)
n×n = S(ḡn×n)T , or equivalently, g(1) = (S ⊗ I)ḡ

Step 2: Solve the block-diagonal system Wg(2) = g(1), with W given in (16).

Step 3: Apply iFST-II of size n to each of the n columns of (g
(2)
n×n)T to obtain

η̄n×n = S−1(g
(2)
n×n)T , or equivalently, η̄ = (S−1 ⊗ I)g(2) = B−1ḡ.

Due to the form of W , Step 2 involves solving n pentadiagonal systems of size
n×n. Thus it requires O(n2) work. Each of Steps 1 and 3 requires O(n2 log(n))
work. Hence, the FFTSC algorithm requires O(n2 log(n)) work.
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When the biharmonic Dirichlet problem is discretized by the (standard or
the three-step) bi-QrSC method on a uniform n×n grid, it gives rise to a linear
system Aθ = g, where

A = QDN
4 ⊗ QDN

0 + QDN
2 ⊗ QDN

2 + QDN
0 ⊗ QDN

4 . (17)

The matrices QDN
i , i = 0, 2, 4, are not diagonalizable by any of the known

Fourier transforms. Therefore, the matrix A is not solvable by Fourier transforms
directly. To derive a fast solver for A, we write the difference A − B as

A − B = (U4 ⊗ QDN
0 + 2U2 ⊗ QDN

2 + U0 ⊗ QDN
4 ) (U ⊗ I)

≡ S T
(18)

where Ui, i = 0, 2, 4, are sparse n × 2 matrices known explicitly, U is a sparse
2× n matrix known explicitly, S ≡ (U4 ⊗QDN

0 + 2U2 ⊗QDN
2 + U0 ⊗QDN

4 ), and
T ≡ U ⊗ I. With the Sherman-Morisson formula,

A−1 = B−1 − B−1S (I2n + TB−1S)−1 TB−1

≡ B−1 − B−1S D−1 TB−1 (19)

where D is a 2n×2n dense matrix, representing a problem along the two vertical
boundaries of the domain. It can be shown that the inversion of D can be decom-
posed into two n× n problems, which can be solved by preconditioned GMRES
(PGMRES). With appropriate preconditioners we can show mathematically that
the convergence rate of PGMRES is independent of n, therefore, the application
of D−1 to a vector requires O(n2) work. Using the FFTSC solver for B and
PGMRES for D we can obtain the solution of A, and hence of the bi-QrSC
linear system arising from the biharmonic Dirichlet problem, in O(n2 log(n))
computational time.

3 Numerical Results

Problem 1: Consider the problem

Lu ≡ u(4) +
1

1 + x2
u(3) − ex/2u(2) + x5/2u(1) + x3u = f, x ∈ (0, 5)

u(0) = g0, u
(1)(0) = g1, u

(2)(5) = g2, u
(3)(5) = g3.

The functions f and gi, i = 0, . . . , 3, are determined so that the exact solution
is u(x) = ex. Results are shown in Table 1. The subscript τi, xi, λi attached to
the norm of the error denotes maximum errors at the midpoints, gridpoints and
Gauss points, respectively.
Problem 2: Consider the BVP (7)-(8) with Ω ≡ (0, 2) × (0, 2) and

Lu ≡
[

(1 + e−(x+y))D4
x + x+y

10 D3
xDy + (3 + 1

1+x+y )D2
xD2

y + 1
5+xy DxD3

y

+ (1 + xy
4 )D4

y − (x + y)D3
x + (1 + xy)D3

y +ex+yDxDy − xDy + (x + y)]u,

B1u ≡ u, B2u ≡ ∂u/∂n, where Di
zu denotes the ith z-derivative of u, ∂u/∂n

the normal derivative of u, and g, γ0 and γ1 are chosen so that u(x, y) = ex+y.
Table 2 gives results from this problem. The results of both Tables 1 and 2 verify
the optimal order of convergence and superconvergence of the QrSC method.
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Table 1. Errors and corresponding orders of convergence for Problem 1 solved by the
three-step QrSC method.

N ||u − u∆||τi,xi
||u(2) − u

(2)
∆ ||τi,xi

||u(3) − u
(3)
∆ ||λi

||u(4) − u
(4)
∆ ||τi

8 1.9-02 8.5-02 4.3-01 4.3-01 1.4+00 4.9+00
16 4.9-04 5.28 8.7-04 6.60 1.7-03 7.96 9.9-03 5.46 6.2-02 4.49 3.6-01 3.75
32 2.7-05 4.17 3.4-05 4.65 2.0-04 3.13 4.8-04 4.36 8.8-03 2.81 1.2-01 1.49
64 5.1-07 5.72 5.6-07 5.93 1.8-05 3.41 2.2-05 4.40 1.0-03 3.02 3.6-02 1.84

128 9.4-09 5.77 9.7-09 5.86 1.2-06 3.92 1.4-06 3.98 1.3-04 2.96 9.2-03 1.96

Problem 3: Consider the biharmonic Dirichlet problem in the unit square with
g, γ0 and γ1 chosen so that u(x, y) = x3 ln(1 + y) + y

(1+x) . This problem was

also considered in [1]. Figure 1 compares the errors of the three-step bi-quartic
spline collocation method and the method in [1] for Problem 3.

Table 2. Errors and corresponding or-
ders of convergence for Problem 2 solved
by the three-step bi-QrSC method.
n ||u − u∆||xi,τi,∞

8 4.18-05 1.48-05 5.28-05

16 6.37-07 6.04 2.29-07 6.02 1.11-06 5.58

24 4.98-08 6.28 1.56-08 6.63 1.21-07 5.46

32 8.38-09 6.20 2.27-09 6.70 2.64-08 5.28

48 7.37-10 6.00 2.21-10 5.74 3.27-09 5.16

Figure 1. Comparison of the three-
step bi-QrSC method with the
method in [1] on Problem 3.
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