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Abstract— Collocation methods based on quartic splines
are presented for second-order two-point boundary value
problems. In order to obtain a uniquely solvable linear sys-
tem for the degrees of freedom of the quartic spline colloca-
tion approximation, in addition to the boundary conditions
specified by the problem, extra boundary or near-boundary
conditions are introduced. Non-optimal (fourth-order) and
optimal (sixth-order) quartic-spline methods are considered.
The theoretical behavior of the collocation methods is veri-
fied by numerical experiments. The extension of the meth-
ods to two-dimensional problems is briefly considered.
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I. Introduction

Collocation is a simple discretization methodology for
boundary value problems (BVPs), which requires no inte-
gration.The most widely used collocation for BVPs is or-
thogonal piecewise polynomial C1 collocation at the Gauss
points [2]. Splines are piecewise polynomials of degree k

and continuity k − 1 on the nodes of the domain partition.
Spline collocation has been shown to be an effective alter-
native to spline Galerkin or orthogonal collocation. Spline
collocation uses only one data point per subinterval of the
partition, thus has an advantage over collocation at Gauss
points in terms of the size and the complexity of the arising
linear systems. When spline collocation is considered for
the discretization of second-order BVPs, the typical choice
of splines is either quadratic or cubic, while, for fourth-
order problems, either quartic or quintic. In the case of
quadratic [7] or cubic [5], [1] spline collocation and second-
order problems, the computed approximations exhibit up
to fourth order convergence, while in the case of quartic
[12] or quintic [8] and fourth-order problems, sixth order
can be achieved.

In an effort to obtain sixth order convergence with a
spline collocation approximation for a second-order prob-
lem, we use quartic splines. However, since quartic splines
have more degrees of freedom than quadratic and cubic
splines for the same partition, the choice of collocation
points and equations requires extra care. In developing
a quintic spline collocation method for second-order two-
point BVPs, Irodotou-Ellina, Houstis and Kim [9] face a
similar problem and present a way to overcome it.

Collocation methods based on quartic splines are pre-
sented for second-order two-point boundary value prob-
lems. In order to obtain a uniquely solvable linear sys-

Address: Department of Computer Science, University of
Toronto, Toronto, Ontario, M5S 3G4 Canada. E-mail:
{ccc,ghliu}@cs.toronto.edu .

The second author is currently at Department of Mathematics, Uni-
versity of Chicago, E-mail: ghliu@uchicago.edu

tem for the degrees of freedom of the quartic spline col-
location approximation, in addition to the boundary con-
ditions specified by the problem, extra boundary or near-
boundary conditions are introduced. The straightforward
way of forming the quartic spline collocation equations is
by satisfying the differential equation, boundary and extra
boundary conditions exactly on appropriate sets of collo-
cation points.

The approximations obtained by these equations are
fourth order, that is, non-optimal. Two optimal meth-
ods, namely the extrapolated (one-step) and the deferred-
correction (two-step) methods, are formulated based on
appropriate extra boundary conditions and an appropri-
ate perturbation of the operators of the differential equa-
tion, boundary conditions and extra boundary conditions.
The analysis shows that the maximum discrete error on the
nodes and midpoints of a uniform partition is of sixth or-
der, and the maximum global error is of fifth order for the
optimal methods. The theoretical behavior of the collo-
cation methods is verified by numerical experiments. The
extension of the methods to two-dimensional problems is
considered.

II. Problem and discretization

We consider the numerical solution of linear second-order
two-point boundary value problems (BVPs), which consist
of the operator equation

Lu ≡ p(x)u′′(x)+q(x)u′(x)+r(x)u(x)=f(x), x ∈ (a, b) (1)

subject to boundary conditions

Bu ≡ { B1u = α1u(a) + β1u
′(a) = g1,

B2u = α2u(b) + β2u
′(b) = g2 }, (2)

where u(x) is the unknown function, p(x), q(x), r(x) and
f(x) are given functions, and α1, α2, β1, β2, g1 and g2

are given scalars. The methods presented can easily be
extended to non-separable boundary conditions. For later
convenience, extend the notation of the scalars g1 and g2

by defining g(x0) ≡ g1 and g(xN ) ≡ g2.
Let ∆ be a partition of the interval [a, b] into subintervals

using uniform grid points xi = a + i × h, where h = b−a
N

,
i = 0, · · · , N . Consider also the set of collocation points

T = {τ0 = x0, τi =
xi−1 + xi

2
, i = 1, · · · , N, τN+1 = xN}.

(3)
Let S4

∆ be the space of quartic splines with re-
spect to ∆ with C3[a, b] smoothness. Let φi(x), i =
−1, 0, 1, · · · , N, N + 1, N + 2, be the standard basis func-
tions for quartic B-splines. Any quartic spline S ∈ S4

∆ can



be written as S(x) =
∑N+2

i=−1 ciφi(x),for some coefficients
(degrees of freedom – DOFs) ci, i = −1, · · · , N + 2. We
are seeking an approximation u∆ ∈ S4

∆ to the solution u of
BVP (1)-(2).

III. Quartic spline interpolation

In this section, we use the definition of a particular quar-
tic spline interpolant from [12], summarize some results
shown in [12], and present some more results directly de-
rived from [12]. We denote u(τi), i = 0, · · · , N+1 by ui, and
the kth derivative Dku(x) of u(x) by u(k). For example,
u(2) ≡ u′′. We extend these notations to other functions as
well. Let S ∈ S4

∆ satisfy

Si = ui, i = 1, · · · , N, (4)

S
(4)
i = u

(4)
i −

h2

24
u

(6)
i +

7h4

5760
u

(8)
i , i = 1, 2, N − 1, N. (5)

A. Quartic spline interpolant error

From [12], if u ∈ C10[a, b], we have, for i = 1, · · · , N ,

S
(1)
i = u

(1)
i −

7h4

5760
u

(5)
i + O(h6), (6)

S
(2)
i = u

(2)
i +

7h4

1920
u

(6)
i + O(h6), (7)

and, for i = 0, · · · , N ,

S(xi) = u(xi) + O(h6), (8)

S(1)(xi) = u(1)(xi) +
h4

720
u(5)(xi) + O(h6), (9)

S(2)(xi) = u(2)(xi) −
h4

240
u(6)(xi) + O(h6). (10)

Further, we define the discrete difference operator δ2 by

δ2γi ≡ γi−2 − 4γi−1 + 6γi − 4γi+1 + γi+2, i = 3, · · · , N − 2.

In [12], if u ∈ C10[a, b], from (6)-(10), the following rela-
tions are shown for i = 3, · · · , N − 2:

u
(5)
i =

δ2S
(1)
i

h4
+ O(h2), (11)

u
(6)
i =

δ2S
(2)
i

h4
+ O(h2). (12)

If u ∈ C10[a, b], then the following approximations to
u(5) and u(6) are justified in [12] at boundary and near-
boundary points {x0, τ1, τ2, τN−1, τN , xN} for k = 5, 6

u(k)(x0) =
1

2h4
(7δ2S

(k−4)
3 − 5δ2S

(k−4)
4 ) + O(h2),(13)

u(k)(τ1) =
1

h4
(3δ2S

(k−4)
3 − 2δ2S

(k−4)
4 ) + O(h2), (14)

u(k)(τ2) =
1

h4
(2δ2S

(k−4)
3 − δ2S

(k−4)
4 ) + O(h2), (15)

u(k)(τN−1) =
1

h4
(2δ2S

(k−4)
N−2 − δ2S

(k−4)
N−3 ) + O(h2), (16)

u(k)(τN ) =
1

h4
(3δ2S

(k−4)
N−2 − 2δ2S

(k−4)
N−3 ) + O(h2), (17)

u(k)(xN ) =
1

2h4
(7δ2S

(k−4)
N−2 − 5δ2S

(k−4)
N−3 ) + O(h2).(18)

In a similar way, if u ∈ C10[a, b], we can show, for k = 5, 6

u(k)(x1) =
1

2h4
(5δ2S

(k−4)
3 − 3δ2S

(k−4)
4 ) + O(h2),(19)

u(k)(xN−1) =
1

2h4
(5δ2S

(k−4)
N−2 − 3δ2S

(k−4)
N−3 ) + O(h2).(20)

For the global error bounds, we have Theorem 1 [12].
Theorem 1: Let S be the quartic spline interpolant of

u ∈ C10[a, b] defined by (4)-(5). We have the global error
bounds

‖ S(k) − u(k) ‖∞= O(h5−k),

for k = 0, · · · , 4.

B. Quartic spline interpolant residual

By (6)-(10), the interpolant S satisfies

LSi = fi+
7h4

1920
piu

(6)
i −

7h4

5760
qiu

(5)
i +O(h6), i = 1, · · · , N,

(21)
and

B1S(x0) = g1 +
h4

720
β1u

(5)(x0) + O(h6), (22)

B2S(xN ) = g2 +
h4

720
β2u

(5)(xN ) + O(h6). (23)

By (8)-(10), S also satisfies

LS(xi) = f(xi) +
h4

240
p(xi)u

(6)(xi) −
h4

720
q(xi)u

(5)(xi)

+ O(h6), i = 0, · · · , N, (24)

The approximation of derivatives stated in (11)-(18) allow
(21) and (22)-(23) to be written as

LS1 −
7

1920
p1(3δ2S

(2)
3 −2δ2S

(2)
4 )+

7

5760
q1(3δ2S

(1)
3 −2δ2S

(1)
4 )

= f1 + O(h6), (25)

LS2 −
7

1920
p2(2δ2S

(2)
3 −δ2S

(2)
4 )+

7

5760
q2(2δ2S

(1)
3 −δ2S

(1)
4 )

= f2 + O(h6), (26)

LSi −
7

1920
piδ

2S
(2)
i +

7

5760
qiδ

2S
(1)
i

= fi + O(h6), i = 3, · · · , N − 2, (27)

LSN−1 −
7

1920
pN−1(2δ2S

(2)
N−2−δ2S

(2)
N−3)

+
7

5760
qN−1(2δ2S

(1)
N−2 − δ2S

(1)
N−3)

= fN−1 + O(h6), (28)

LSN −
7

1920
pN (3δ2S

(2)
N−2−2δ2S

(2)
N−3)

+
7

5760
qN (3δ2S

(1)
N−2−2δ2S

(1)
N−3)

= fN + O(h6), (29)

and

B1S(x0)−
1

1440
β1(7δ2S

(1)
3 −5δ2S

(1)
4 ) = g1+O(h6), (30)

B2S(xN )−
1

1440
β2(7δ2S

(1)
N−2−5δ2S

(1)
N−3) = g2+O(h6). (31)



From (19)-(20), we can write (24) for x1 and xN−1 as

LS(x1) +
1

480
p(x1)(5δ2S

(2)
3 − 3δ2S

(2)
4 )

−
1

1440
q(x1)(5δ2S

(1)
3 − 3δ2S

(1)
4 )

= f(x1) + O(h6), (32)

LS(xN−1) +
1

480
p(xN−1)(5δ2S

(2)
N−2 − 3δ2S

(2)
N−3)

−
1

1440
q(xN−1)(5δ2S

(1)
N−2 − 3δ2S

(1)
N−3)

= f(xN−1) + O(h6), (33)

and for x0 and xN as

LS(x0) +
1

480
p(x0)(7δ2S

(2)
3 − 5δ2S

(2)
4 )

−
1

1440
q(x0)(7δ2S

(1)
3 − 5δ2S

(1)
4 )

= f(x0) + O(h6), (34)

LS(xN) +
1

480
p(xN )(7δ2S

(2)
N−2 − 5δ2S

(2)
N−3)

−
1

1440
q(xN )(7δ2S

(1)
N−2 − 5δ2S

(1)
N−3)

= f(xN ) + O(h6). (35)

Denote by L∗ the discrete operator defined by the left
side of equations (25)-(29) and (32)-(35). Similarly, denote
by B∗ the discrete operator defined by the left side of equa-
tions (30)-(31). The operators L∗ and B∗ can be viewed as
perturbed operators L and B, respectively, at the associ-
ated points. That is, L∗ = L+PL and B∗ = B+PB, where
PL and PB the perturbation terms arising from (25)-(35).
Then, we have following lemma.

Lemma 1: Let S be the quartic spline interpolant of the
solution u ∈ C10[a, b] to (1)-(2), defined by (4)-(5). Then
S satisfies the relations

LS(τi) = f(τi) + O(h4), i = 1, · · · , N,

BS(xi) = g(xi) + O(h4), i = 0, N, (36)

LS(xi) = f(xi) + O(h4), i = 0, 1, N − 1, N,

L∗S(τi) = f(τi) + O(h6), i = 1, · · · , N,

B∗S(xi) = g(xi) + O(h6), i = 0, N, (37)

L∗S(xi) = f(xi) + O(h6), i = 0, 1, N − 1, N.

Note that, since L∗ = L + PL and B∗ = B + PB, relations
(37) can be equivalently written as

LS(τi) = f(τi) − PLS(τi) + O(h6), i = 1, · · · , N,

BS(xi) = g(xi) − PBS(xi) + O(h6), i = 0, N, (38)

LS(xi) = f(xi) − PLS(xi) + O(h6), i = 0, 1, N − 1, N.

IV. Quartic spline collocation

Let u∆(x) =
∑N+2

i=−1 ciφi(x) be a quartic spline colloca-
tion approximation to u(x). It is clear that N + 4 linearly
independent conditions are required in order to uniquely
determine a quartic spline. The straightforward formula-
tion of collocation applies the operator and boundary op-
erator equations (1)-(2) at a certain prescribed set of col-
location points. By applying collocation to (1) and (2)

at the points of T , we have N + 2 linearly independent
conditions. In order to uniquely define the quartic spline
u∆(x), another two conditions are required, referred to as
extra boundary or near-boundary conditions. The choice of
the extra conditions and of the points at which they are
applied is critical in formulating any quartic spline colloca-
tion method and, in particular, an optimal quartic spline
collocation method.

Let E1 and E2 be the operators of the extra conditions,
and let t1 and t2 be the collocation points, where these
extra conditions are applied. A set of N + 4 collocation
conditions is then

Lu∆(τi) = f(τi), i = 1, · · · , N,

Bu∆(xi) = g(xi), i = 0, N,

Eiu∆(ti) = ei, i = 1, 2,

where the scalars e1 and e2 are determined with respect
to the choice of E1 and E2. In the following, we discuss
possible choices for E1, E2, t1 and t2.

A. Extra conditions Lu = f at x1 and xN−1

One choice of extra conditions which leads to a uniquely
defined quartic spline collocation approximation, as well
as to an optimal quartic spline collocation method is to
apply the operator L at the grid points, x1 and xN−1, that
is, the nodes near the boundary points. This implies that
E1 = E2 = L, t1 = x1, t2 = xN−1, e1 = f(x1), and
e2 = f(xN−1).

A quartic spline collocation method for BVP (1)-(2) de-
termines v ∈ S4

∆ by the equations

Lv(τi) = f(τi), i = 1, · · · , N, (39)

Bv(xi) = g(xi), i = 0, N, (40)

Lv(xi) = f(xi), i = 1, N − 1. (41)

The approximation v determined by the above equations
turns out to be of fourth order, that is, sub-optimal.

In one formulation of the optimal quartic spline colloca-
tion method, we determine a quartic spline u∆ ∈ S4

∆ that
satisfies the relations

L∗u∆(τi) = f(τi), i = 1, · · · , N, (42)

B∗u∆(xi) = g(xi), i = 0, N, (43)

L∗u∆(xi) = f(xi), i = 1, N − 1. (44)

We refer to this method as the one-step or extrapolated

quartic spline collocation method.
In an alternative formulation of the optimal quartic

spline collocation method, we determine a quartic spline
u∆ ∈ S4

∆ through a two-step quartic spline collocation
method. In Step 1, v ∈ S4

∆ is determined by equations
(39)-(41). In Step 2, u∆ ∈ S4

∆ is determined by equations

Lu∆(τi) = f(τi) − PLv(τi), i = 1, · · · , N, (45)

Bu∆(xi) = g(xi) − PBv(xi), i = 0, N, (46)

Lu∆(xi) = f(xi) − PLv(xi), i = 1, N − 1. (47)

In [6], it is shown that the one-step quartic spline colloca-
tion equations (42)-(44) are uniquely solvable for the BVP



problem (1)-(2), where p(x) = 1, q(x) = r(x) = 0, α1 =
α2 = 1, β1 = β2 = 0, g1 = g2 = 0. Similar results can be
shown for the two-step method.

B. Extra conditions Lu = f at x0 and xN

A second choice of extra boundary conditions is to apply
L at the boundary points x0 and xN . This implies that
E1 = E2 = L, t1 = x0, t2 = xN , e1 = f(x0), and e2 =
f(xN ).

A fourth-order quartic spline collocation method for
BVP (1)-(2) determines v ∈ S4

∆ by the equations (39)-(40)
and

Lv(xi) = f(xi), i = 0, N. (48)

The optimal one-step quartic spline collocation method de-
termines u∆ ∈ S4

∆ by the equations (42)-(43) and

L∗u∆(xi) = f(xi), i = 0, N. (49)

The optimal two-step quartic spline collocation method de-
termines u∆ ∈ S4

∆ in two steps. First v ∈ S4
∆ is determined

by equations (39)-(40) and (48), then u∆ ∈ S4
∆ is deter-

mined by equations (45)-(46) and

Lu∆(xi) = f(xi) − PLv(xi), i = 0, N. (50)

In [6], it is shown that the one-step quartic spline colloca-
tion equations (42)-(43) and (49) are uniquely solvable for
the BVP problem (1)-(2), where p(x) = 1, q(x) = r(x) =
0, α1 = α2 = 1, β1 = β2 = 0, g1 = g2 = 0. Similar results
can be shown for the two-step method.

In [6], other types of extra conditions are also presented.
Some conditions resemble the natural cubic spline inter-
polant end-conditions or variations thereof. They lead to
uniquely determined, however sub-optimal, quartic spline
collocation approximations.

V. Convergence Analysis

In this section, we present the convergence analysis of
the two-step quartic spline collocation method (39)-(40)
and (48), (45)-(46) and (50). The analysis of the one-step
method is found in [6].

We consider the BVP (1)-(2) with p(x) = 1 and homo-
geneous Dirichlet boundary conditions g1 = g2 = 0. We
assume that u, u∆ and v satisfy the boundary conditions.
Assume that the BVP u′′ = 0, Bu = 0 has a unique solu-
tion. Then [11] there is a Green’s function G(x, t) for that
problem. Let y ≡ u′′, y∆ ≡ u′′

∆, and s ≡ v′′. Then u, u∆,
v and their first derivatives can be obtained by

u(x) =

∫ b

a

G(x, t)y(t)dt, u′(x) =

∫ b

a

Gx(x, t)y(t)dt,

u∆(x) =

∫ b

a

G(x, t)y∆(t)dt, u′

∆(x) =

∫ b

a

Gx(x, t)y∆(t)dt,

v(x) =

∫ b

a

G(x, t)s(t)dt, v′(x) =

∫ b

a

Gx(x, t)s(t)dt.

Introduce the operator K : C1(a, b) → C(a, b) defined by

Kz(x) = q(x)

∫ b

a

Gx(x, t)z(t)dt+r(x)

∫ b

a

G(x, t)z(t)dt, (51)

and the linear projection P∆ that maps L2(a, b) to S2
∆ by

piecewise quadratic interpolation at the midpoints {τi}
N
1

and grid points x0, xN .
With the notations introduced, we can rewrite equations

(39), (48) and (45), (50), respectively as

P∆(s + Ks) = P∆f, (52)

P∆(y∆ + Ky∆) = P∆f̄ , (53)

where f̄ the discrete function defined by f̄(x) ≡ f(x) −
PLv(x), for x = τi, i = 1, · · · , N , or x = xi, i = 0, N . Since
P∆s = s and P∆y∆ = y∆, we simplify (52) and (53) as

(I + P∆K)s = P∆f, (54)

(I + P∆K)y∆ = P∆f̄ . (55)

Equation (1) can be rewritten as

y + Ky = f. (56)

Assumption (a2) implies that (56) is uniquely solvable for
any f , therefore the (I + K)−1 exists and is bounded. By
the definition of P∆, ‖ P∆y − y ‖∞ converges to zero as h

approaches zero for a continuous function y. The complete
continuity of K [11], implies that ‖ P∆K−K ‖∞ converges
to zero as h converges to zero. Therefore, by Neumann’s
theorem [10], we conclude that the operators (I +P∆K)−1

exist, and are uniformly bounded for sufficient small h.
Theorem 2: We assume that

(a1) q(x), r(x) and f(x) are continuous on [a, b],
(a2) the BVP Lu = f , Bu = 0 has a unique solution in
C10(a, b), and
(a3) the BVP u′′ = 0, Bu = 0 has a unique solution.
Then we conclude that
(b1) the collocation approximation v ∈ S4

∆ defined by (39)-
(40) and (48) in step 1 exists,
(b2) the global error u − v satisfies

‖ u − v ‖∞ = O(h4), (57)

‖ (u − v)(k) ‖∞ = O(h5−k), k = 1, 2, (58)

and
(b3) the error u − v at the midpoints satisfies

| (u − v)(k)(τi) |= O(h4), k = 0, 1, 2, i = 1, · · · , N. (59)
Proof : From the existence and uniform boundedness of

(I+P∆K)−1, the solvability of (54) and (55) follows, hence
the unique existence of v follows.

Recall the quartic spline interpolant S of u in (4)-(5).
By (22)-(23) we have shown that BS = O(h4). Note that
there exists a linear function w such that Bw = BS =
O(h4) because of assumption (a3), and the fact that any
problem with non-homogeneous boundary conditions can
be converted to one with homogeneous ones. It can be
further shown that ‖ w ‖∞= O(h4) and ‖ w′ ‖∞= O(h4).
It is clear that the problem (S − w)′′ = S′′, B(S − w) = 0
is solvable. Then (21) and (24) can be rewritten in the
operator notations introduced as

(I + P∆K)S′′ = P∆f + O(h4),



in which S′′ is substituted by (S − w)′′ to yield

(I + P∆K)(S′′ − w′′) = P∆f + O(h4). (60)

Subtracting (54) and (60) we have

(I + P∆K)(S′′ − w′′ − v′′) = O(h4).

From the uniform boundedness of (I +P∆K)−1, we obtain

‖ S′′ − w′′ − v′′ ‖∞= O(h4). (61)

Since the unique solvability of (S−w−v)′′ = 0, B(S−w−
v) = 0 is ensured by assumption (a3), we obtain using the
Green’s function

(S − w − v)′(x) =

∫ b

a

Gx(x, t)(S′′ − w′′ − v′′)(t)dt,

(S − w − v)(x) =

∫ b

a

G(x, t)(S′′ − w′′ − v′′)(t)dt.

These imply that

‖ S − w − v ‖∞ = O(h4), (62)

‖ S′ − w′ − v′ ‖∞ = O(h4). (63)

By (61), (62)-(63), the definition and properties of w, and
the use of the triangle inequality we obtain

‖ S(k)−v(k) ‖∞≤‖ S(k)−w(k)−v(k) ‖∞ + ‖ w(k) ‖∞= O(h4),
(64)

for k = 0, 1, 2. We can establish the error bounds (57)-(58)
and (59) from equations (6)-(7), Theorem 1, relation (64),
and the use of the triangle inequality. This completes the
proof.

Before proceeding to the analysis of the optimal quartic
spline collocation method, we make an assumption. We
assume that the expansion of the error S(k) − v(k), k =
0, 1, 2, at the collocation points (which was shown to be
O(h4) in Theorem 2) is smooth enough, so that we have
the relation

δ2S
(k)
i = δ2v

(k)
i + O(h6), (65)

for k = 0, 1, 2 and i = 2, · · · , N −1. This relation is verified
in the numerical results of Table IV.

Theorem 3: Under the hypotheses of Theorem 2, we con-
clude that
(b1) the collocation approximation u∆ ∈ S4

∆ defined by
(45)-(46) and (50) in step 2 exists,
(b2) the global error u − u∆ satisfies

‖ (u − u∆)(k) ‖∞= O(h5−k), k = 0, 1, 2, (66)

and
(b3) the error u − u∆ at the nodes and midpoints satisfies

| (u − u∆)(xi) = O(h6), i = 0, · · · , N, (67)

| (u − u∆)(τi) = O(h6), i = 1, · · · , N, (68)

| (u − u∆)(k)(τi) = O(h4), k = 1, 2, i = 1, · · · , N.(69)

Proof: Using (65), equations (25)-(31) and (34)-(35) can
be rewritten as

LSi = f̄i + O(h6), i = 1, · · · , N,

LS(xi) = f̄(xi) + O(h6), i = 0, N,

BkS(xi) = ḡk + O(h6), i = 0, N, k = 1, 2.

Therefore, for u∆ defined in (45)-(46), (50), we have

L(S − u∆)(τi) = O(h6), i = 1, · · · , N, (70)

L(S − u∆)(xi) = O(h6), i = 0, N, (71)

B(S − u∆) = O(h6). (72)

Again note that there exists a linear function w such that
Bw = B(S−u∆) = O(h6), and ‖ w ‖∞= O(h6), ‖ w′ ‖∞=
O(h6). It is clear that the problem (S − w − u∆)′′ = (S −
u∆)′′, B(S−w−u∆) = 0 is solvable due to the assumption
(a3). Then we can rewrite equations (70)-(72) as

(I + P∆K)(S′′ − w′′ − u′′

∆) = O(h6).

Using the same arguments in the proof of Theorem 2, we
can obtain the bounds

‖ S(k) − w(k) − u
(k)
∆ ‖∞= O(h6), k = 0, 1, 2.

By the triangle inequality

‖ S(k) − u
(k)
∆ ‖∞≤‖ S(k) − w(k) − u

(k)
∆ ‖∞ + ‖ w(k) ‖∞,

it follows that

‖ S(k) − u
(k)
∆ ‖∞= O(h6), k = 0, 1, 2. (73)

The error bounds (66) and (67)-(69) follow from equations
(6)-(10), Theorem 1, relation (73), and the use of the tri-
angle inequality. This completes the proof.

VI. Numerical results

In this section, we present numerical results to demon-
strate the performance of the quartic spline collocation
methods. More results can be found in [6]. In the ta-
bles of this section, we present, for several problems, the
maximum in absolute value errors of the quartic spline col-
location approximations and derivatives at the midpoints
(τi), grid points (xi), Gauss points (λi), and at a large set of
uniformly distributed points (∞) (e.g. 1002 points). These
points are referred to as global points, and the maximum
error at these points is considered as an approximation to
the infinity norm of the error. We consider two sets of
boundary conditions

u(a) = g1, u(b) = g2, and (74)

u(a) − u′(a) = g1, u(b) − u′(b) = g2. (75)

A. Extra conditions Lu = f at x1 and xN−1

We apply the optimal two-step quartic spline collocation
method (39)-(41), (45)-(47) to the problems indicated and
report the results.



Problem 3 Consider the differential equation

Lu = u′′(x) + u′(x) + u(x) = f(x), x ∈ [0, 1] (76)

with boundary conditions (75). We consider three in-
stances of this problem, with the function f(x), g1 and

g2 chosen so that u(x) = exsin(πx), u(x) = x
11
2 , and

u(x) = x
13
2 , respectively.

Tables I-III show the errors and the orders of convergence
for the indicated exact solutions u(x). In Tables I and III,
the order of convergence of the midpoints and global errors
are about 6, while in Table II they are about 5. In Tables
I and III, we obtain superconvergence for the approxima-
tion to u(2)(x) at midpoints and grid points (order 4), for
the approximation to u(4)(x) at midpoints (order 2), and
for the approximation to u(3)(x) at Gauss points (order
3). These superconvergence orders are degraded by one
half in Table II. This indicates that C6 continuity for u(x)
is necessary to obtain the optimal orders of convergence,
including superconvergence. We emphasize that the condi-
tion u ∈ C10, mentioned in the formulation and analysis of
the quartic spline collocation methods, is only a sufficient
and not a necessary condition. Also, these results indicate
that the fact that L contains all the terms up to second or-
der and the fact that the boundary conditions (75) involve
the derivative of u(x) do not affect the optimal orders of
convergence, or the superconvergence.

TABLE I

Errors, orders of conv. for Problem 3 u(x) = exsin(πx).

N τi xi ∞ λi

8 1.3-04 1.3-04 1.3-04 1.3-04
16 2.6-06 5.63 2.6-06 5.63 2.7-06 5.57 2.7-06 5.57

u∆ 32 3.6-08 6.15 3.7-08 6.13 4.0-08 6.07 4.0-08 6.07
64 4.4-10 6.37 4.5-10 6.35 5.5-10 6.18 5.5-10 6.19
128 5.6-12 6.31 5.8-12 6.28 8.6-12 6.00 8.6-12 6.01
8 1.2-04 3.1-04 3.1-04 1.6-04
16 1.2-05 3.31 1.4-05 4.45 1.4-05 4.45 3.7-06 5.42

u′

∆ 32 7.8-07 3.99 8.8-07 4.03 8.8-07 4.04 1.6-07 4.58
64 4.9-08 4.01 5.5-08 4.00 5.5-08 3.99 9.3-09 4.08
128 3.0-09 4.00 3.5-09 4.00 3.4-09 4.00 5.8-10 4.01
8 2.5-03 5.2-03 1.1-02 1.1-02
16 1.8-04 3.81 1.9-04 4.76 1.3-03 3.02 1.3-03 3.02

u′′

∆ 32 1.1-05 3.97 1.3-05 3.91 1.6-04 3.01 1.6-04 3.01
64 7.2-07 3.99 8.1-07 3.96 2.0-05 3.00 2.0-05 3.00
128 4.5-08 3.99 5.2-08 3.97 2.6-06 3.00 2.6-06 3.00
8 4.4-01 8.7-01 8.7-01 1.3-01
16 1.1-01 2.01 2.2-01 2.00 2.1-01 2.02 1.2-02 3.38

u
(3)
∆ 32 2.7-02 2.00 5.4-02 2.00 5.3-02 2.02 1.6-03 2.94

64 6.8-03 2.00 1.4-02 2.00 1.3-02 2.04 2.0-04 2.97
128 1.7-03 2.00 3.4-03 2.00 3.3-03 1.95 2.5-05 2.98
8 2.2+00 4.1+01 4.1+01 2.4+01
16 4.8-01 2.222.1+010.982.1+011.001.2+011.01

u
(4)
∆ 32 1.3-01 1.911.0+011.001.0+011.016.0+001.00

64 3.3-02 1.955.2+001.005.1+001.003.0+001.00
128 8.5-03 1.982.6+001.002.6+000.991.5+001.00

Table IV presents the errors and convergence of the 5-
th and 6-th derivatives of the approximation v in the first

TABLE II

Errors, orders of conv. for Problem 3, u(x) = x
11
2 .

N τi xi ∞ λi

8 9.8-06 9.9-06 1.2-05 1.2-05
16 2.5-075.32 2.5-07 5.32 3.1-07 5.26 3.1-07 5.26

u∆ 32 9.9-094.63 1.0-08 4.57 1.2-08 4.72 1.2-08 4.72
64 4.5-104.44 4.7-10 4.48 4.8-10 4.60 4.8-10 4.60
1282.0-114.48 2.1-11 4.50 2.1-11 4.54 2.1-11 4.54
8 9.7-05 1.0-04 1.0-04 2.1-05
16 6.1-063.98 6.7-06 3.95 6.7-06 3.95 1.1-06 4.30

u′

∆ 32 3.8-074.00 4.2-07 3.99 4.2-07 3.99 6.6-08 4.00
64 2.4-084.00 2.6-08 3.99 2.6-08 3.99 4.2-09 3.98
1281.5-094.00 1.7-09 3.99 1.7-09 3.99 2.6-10 3.98
8 3.7-04 2.0-03 4.9-03 4.9-03
16 3.2-053.55 1.8-04 3.50 6.3-04 2.97 6.3-04 2.97

u′′

∆ 32 2.8-063.51 1.6-05 3.50 7.9-05 3.00 7.9-05 2.99
64 2.4-073.50 1.4-06 3.50 9.8-06 3.00 9.9-06 3.00
1282.1-083.50 1.2-07 3.50 1.2-06 3.00 1.2-06 3.00
8 2.0-01 4.3-01 4.3-01 3.9-02
16 5.2-021.97 1.1-01 2.01 1.1-01 2.01 6.9-03 2.51

u
(3)
∆ 32 1.3-021.99 2.6-02 2.00 2.6-02 2.00 1.2-03 2.50

64 3.3-031.99 6.6-03 2.00 6.6-03 2.00 2.2-04 2.50
1288.2-042.00 1.7-03 2.00 1.7-03 2.00 3.8-05 2.50
8 5.8-01 2.0+01 2.0+01 1.2+01
16 2.1-011.501.0+010.991.0+010.995.8+000.99

u
(4)
∆ 32 7.3-021.505.1+001.005.1+001.002.9+001.00

64 2.6-021.502.5+001.002.5+001.001.5+001.00
1289.1-031.501.3+001.001.3+001.00 7.3-01 1.00

step of the collocation method for u(x) = exsin(πx). We
denote by ‖ · ‖b the (maximum) errors at the boundary
points x0, xN , and near-boundary points x1, xN−1. We

also denote δ2v(1)

h4 by v(5) and δ2v(2)

h4 by v(6), for simplicity.

The results of Table IV indicate that the errors ‖ u(5) −
δ2v

(1)

i

h4 ‖ and ‖ u(6) −
δ2v

(2)

i

h4 ‖ are of second order, i.e. they
verify assumption (65). Note that, by (11)-(12) and (65),
we have for k = 1, 2:

u
(k+4)
i =

δ2S
(k)
i

h4
+ O(h2) =

δ2v
(k)
i

h4
+ O(h2).

Problem 4

Consider the differential equation

Lu = exu′′(x) + exu′(x) −
1

1 + x
u(x) = f(x), x ∈ [0, 1]

(77)
with boundary conditions (74). The function f(x), g1 and

g2 are chosen so that u(x) = x
13
2 . Table V shows the errors

and the orders of convergence.We notice that we achieve
the optimal orders of convergence, including superconver-
gence, for the approximation and its derivatives, even with
a general operator with variable coefficients.

B. Extra conditions Lu = f at x0 and xN

We apply the optimal two-step quartic spline collocation
method to Problem 3, and we use the extra boundary con-
ditions (48) instead of (41). The function f(x), g1 and g2



TABLE III

Errors, orders of conv. for Problem 3, u(x) = x
13
2 .

N τi xi ∞ λi

8 2.6-05 2.8-05 3.3-05 3.3-05
16 2.4-07 6.75 2.6-07 6.73 4.5-07 6.20 4.4-07 6.21

u∆ 32 2.7-09 6.45 2.9-09 6.50 8.9-09 5.64 8.9-09 5.65
64 3.8-11 6.16 3.1-11 6.56 3.0-10 4.91 2.9-10 4.91
128 1.9-12 4.35 1.7-12 4.16 1.0-11 4.88 1.0-11 4.88
8 3.9-04 4.8-04 4.8-04 1.2-04
16 2.5-05 3.95 3.0-05 4.01 3.0-05 4.01 6.3-06 4.26

u′

∆ 32 1.6-06 3.97 1.9-06 4.00 1.9-06 4.00 3.6-07 4.16
64 1.0-07 3.98 1.2-07 4.00 1.2-07 4.00 2.1-08 4.09
128 6.3-09 3.99 7.3-09 4.00 7.3-09 4.00 1.3-09 4.05
8 1.8-03 2.1-03 2.1-02 2.1-02
16 1.2-04 4.00 1.3-04 3.97 2.7-03 2.97 2.7-03 2.97

u′′

∆ 32 7.3-06 3.99 8.4-06 3.97 3.4-04 2.98 3.4-04 2.98
64 4.6-07 4.00 5.3-07 4.00 4.2-05 3.00 4.3-05 2.99
128 2.9-08 4.00 3.3-08 4.00 5.3-06 3.00 5.4-06 2.99
8 8.3-01 1.8+00 1.8+00 6.4-02
16 2.2-01 1.93 4.6-01 1.99 4.6-01 1.99 8.1-03 2.98

u
(3)
∆ 32 5.6-02 1.97 1.1-01 2.00 1.1-01 2.00 1.0-03 2.98

64 1.4-02 1.98 2.9-02 2.00 2.9-02 2.00 1.3-04 3.00
128 3.6-03 1.99 7.2-03 2.00 7.2-03 2.00 1.6-05 3.00
8 1.3+00 8.5+01 8.5+01 4.9+01
16 3.4-01 1.914.3+010.984.3+010.982.5+010.97

u
(4)
∆ 32 8.5-02 1.982.2+010.992.2+010.991.3+010.99

64 2.1-02 1.991.1+010.991.1+010.996.3+000.99
128 5.4-03 2.005.5+001.005.5+001.003.2+001.00

TABLE IV

Errors and orders of convergence for the 5-th and 6-th

derivatives of u(x) = exsin(πx).

N ‖u(5)−v(5)‖τi
‖u(6)−v(6)‖τi

‖u(5)−v(5)‖b‖u
(6)−v(6)‖b

8 3.6+02 7.9+02 5.3+02 1.1+03
16 8.8+01 2.02 1.6+02 2.29 1.3+022.032.3+022.29
32 1.9+01 2.25 4.0+01 2.01 2.8+012.226.3+011.87
64 3.5+00 2.41 1.2+01 1.73 5.6+002.331.9+011.75
128 6.5-01 2.43 3.0+00 2.01 8.8-01 2.664.8+001.98

are chosen so that u(x) = exsin(πx).The errors and the
orders of convergence are presented in Table VI.

Comparing Table VI withTable I,we see that the quartic
spline collocation method with extra conditions (48) has
the same optimal orders of convergence, including super-
convergence, for this problem, as the method with extra
conditions (41). In general, the two optimal quartic spline
collocation methods with extra boundary conditions (41)
and (48) seem to be equivalent in orders of convergence and
accuracy, with the method using (41) being only slightly
more accurate in the approximation of u(x).

C. One-step method

We apply the optimal one-step quartic spline collocation
method to Problem 3 with extra conditions (44). The func-
tion f(x), g1 and g2 are chosen so that u(x) = exsin(πx).
Table VII shows the errors and the orders of convergence.

TABLE V

Errors, orders of conv. for Problem 4, u(x) = x
13
2 .

N τi xi ∞ λi

8 2.7-06 3.2-07 9.8-06 9.4-06
16 4.0-08 6.09 1.5-08 4.36 2.9-07 5.09 2.8-07 5.07

u∆ 32 6.2-10 5.99 3.4-10 5.52 8.7-09 5.04 8.6-09 5.03
64 9.8-12 5.98 6.2-12 5.75 2.7-10 5.02 2.7-10 5.01
128 1.5-13 5.99 9.5-14 6.04 8.4-12 5.01 8.3-12 5.01
8 3.8-04 4.9-04 4.9-04 1.3-04
16 2.5-05 3.93 3.0-05 4.03 3.0-05 4.03 6.4-06 4.32

u′

∆ 32 1.6-06 3.97 1.9-06 4.00 1.9-06 4.00 3.6-07 4.17
64 1.0-07 3.98 1.2-07 4.00 1.2-07 4.00 2.1-08 4.10
128 6.3-09 3.99 7.3-09 4.00 7.3-09 4.00 1.3-09 4.05
8 1.9-03 2.0-03 2.1-02 2.1-02
16 1.2-04 4.01 1.3-04 3.96 2.7-03 2.97 2.7-03 2.97

u′′

∆ 32 7.3-06 3.99 8.4-06 3.97 3.4-04 2.98 3.4-04 2.98
64 4.6-07 4.00 5.3-07 4.00 4.2-05 3.00 4.3-05 2.99
128 2.9-08 4.00 3.3-08 4.00 5.3-06 3.00 5.4-06 2.99
8 8.3-01 1.8+00 1.8+00 6.4-02
16 2.2-01 1.93 4.6-01 1.99 4.6-01 1.99 8.1-03 2.98

u
(3)
∆ 32 5.6-02 1.97 1.1-01 2.00 1.1-01 2.00 1.0-03 2.98

64 1.4-02 1.98 2.9-02 2.00 2.9-02 2.00 1.3-04 3.00
128 3.6-03 1.99 7.2-03 2.00 7.2-03 2.00 1.6-05 3.00
8 1.3+00 8.5+01 8.5+01 4.9+01
16 3.4-01 1.914.3+010.984.3+010.982.5+010.97

u
(4)
∆ 32 8.5-02 1.982.2+010.992.2+010.991.3+010.99

64 2.1-02 1.991.1+010.991.1+010.996.3+000.99
128 5.4-03 2.005.5+001.005.5+001.003.2+001.00

Comparing the results in Table VII with those in Ta-
ble I obtained by the two-step collocation method, we can
see that the numerical results by the two-step collocation
method are slightly better than those by the one-step collo-
cation method, specifically, for the approximation to u(x)
at the midpoints, the grid points, the global points and
Gauss points. We should though emphasize that this is not
always the case. We applied the one-step quartic spline col-
location method to several problems [6] and we found that,
in general, the one-step quartic spline collocation method
gives almost equivalent results as the two-step method.
There are a few problems where the one-step method gives
slightly better results than the two-step method, but more
problems where the opposite happens.

VII. Extension to two dimensions, other

A natural extension of the methods presented in this
paper is an optimal bi-quartic spline collocation method
for elliptic partial differential equations. The method for
two-point BVPs that uses extra boundary conditions at
x1 and xN−1 can be easily extended to two dimensions.
In this case, collocation of the operator L takes place on
the points that are Cartesian products of {τx

1 , x1, τ
x
i , i =

2, · · · , N − 1, xN−1, τ
x
N}, with {τy

1 , y1, τ
y
j , j = 2, · · · , M −

1, yM−1, τ
y
M}, where τx

i , τ
y
j and yj are the x−midpoints,

y−midpoints and y− grid points, respectively. This gives
nL = (N + 2)(M + 2) equations, including the extra
boundary conditions. The operator B is collocated at



TABLE VI

Errors, orders of conv. for Problem 3, u(x) = exsin(πx).

N τi xi ∞ λi

8 1.3-04 1.3-04 1.3-04 1.3-04
16 2.4-06 5.75 2.5-06 5.73 2.6-06 5.69 2.6-06 5.68

u∆ 32 3.7-08 6.06 3.7-08 6.05 4.0-08 5.99 4.0-08 5.99
64 5.3-10 6.11 5.4-10 6.10 6.5-10 5.97 6.5-10 5.97
128 9.1-12 5.87 9.3-12 5.86 1.2-11 5.70 1.2-11 5.71
8 1.7-04 2.8-04 2.8-04 1.5-04
16 1.3-05 3.70 1.4-05 4.30 1.4-05 4.30 3.5-06 5.44

u′

∆ 32 7.8-07 4.02 8.8-07 4.00 8.8-07 4.01 1.6-07 4.51
64 4.9-08 4.01 5.5-08 3.99 5.5-08 3.99 9.3-09 4.07
128 3.0-09 4.00 3.5-09 4.00 3.4-09 4.00 5.7-10 4.01
8 2.5-03 3.4-03 1.1-02 1.1-02
16 1.8-04 3.79 2.3-04 3.91 1.3-03 3.03 1.3-03 3.03

u′′

∆ 32 1.1-05 3.97 1.4-05 4.06 1.6-04 3.01 1.6-04 3.01
64 7.2-07 3.99 8.4-07 4.03 2.0-05 3.00 2.0-05 3.00
128 4.5-08 3.99 5.2-08 4.01 2.6-06 3.00 2.6-06 3.00
8 4.4-01 8.7-01 8.7-01 9.6-02
16 1.1-01 2.01 2.2-01 2.00 2.1-01 2.02 1.3-02 2.85

u
(3)
∆ 32 2.7-02 2.00 5.4-02 2.00 5.3-02 2.02 1.7-03 3.02

64 6.8-03 2.00 1.4-02 2.00 1.3-02 2.04 2.1-04 3.01
128 1.7-03 2.00 3.4-03 2.00 3.3-03 1.95 2.6-05 3.00
8 1.9+00 4.1+01 4.1+01 2.4+01
16 5.3-01 1.822.1+010.982.1+011.001.2+011.01

u
(4)
∆ 32 1.3-01 1.981.0+011.001.0+011.016.0+001.00

64 3.4-02 1.995.2+001.005.1+001.003.0+001.00
128 8.5-03 1.992.6+001.002.6+000.991.5+001.00

the points that are Cartesian products of {x0, xN} with
{y0, τ

y
1 , y1, τ

y
j , j = 2, · · · , M − 1, yM−1, τ

y
M , yM}, and of

{y0, yM} with {τx
1 , x1, τ

x
j , i = 2, · · · , N−1, xN−1, τ

x
N}. This

gives another nB = 2(M + 4) + 2(N + 2) equations, to a
total of nL + nB = (N + 4)(M + 4) equations, which is
the dimension of the bi-quartic spline space. Note that
the method that uses x0 and xN as collocation points for
the extra boundary conditions may require careful devel-
opment of extra boundary conditions at the four corners of
the two-dimensional domain.

Problems with layers and generally rough behaviour
of the solution function usually require adaptive (non-
uniform) grids. The development of appropriate pertur-
bations of the differential, boundary and extra boundary
operators for quartic splines on non-uniform grids is a dif-
ficult and interesting task. Furthermore, the development
of gridsize and error estimators is a necessary companion
of any adaptive grid technique [3], [4]. In [6], we make pre-
liminary tests of some grid and error estimators for quartic
spline collocation and get satisfactory results.

VIII. Conclusions

We have presented quartic spline collocation methods of
optimal orders of convergence (up to sixth order) for two-
point BVPs. Besides their high order of convergence, the
methods are also efficient, in the sense that there is only
one point/equation/unknown for each subinterval of the
domain partition.

TABLE VII

Errors, orders of conv. for Problem 3, u(x) = exsin(πx) for

the one-step method.

N τi xi ∞ λi

8 1.3-04 1.3-04 1.3-04 1.3-04
16 2.4-06 5.76 2.4-06 5.74 2.5-06 5.69 2.5-06 5.69

u∆ 32 3.6-08 6.07 3.6-08 6.06 4.0-08 6.00 4.0-08 6.00
64 5.1-10 6.14 5.2-10 6.13 6.3-10 5.99 6.3-10 5.99
128 7.4-12 6.12 7.5-12 6.11 1.1-11 5.82 1.1-11 5.82
8 1.7-04 2.8-04 2.8-04 1.5-04
16 1.3-05 3.71 1.4-05 4.30 1.4-05 4.30 3.5-06 5.44

u′

∆ 32 7.8-07 4.02 8.8-07 4.00 8.8-07 4.01 1.6-07 4.51
64 4.9-08 4.01 5.5-08 3.99 5.5-08 3.99 9.3-09 4.07
128 3.0-09 4.00 3.5-09 4.00 3.5-09 4.00 5.8-10 4.01
8 2.5-03 3.4-03 1.1-02 1.1-02
16 1.8-04 3.79 2.3-04 3.91 1.3-03 3.03 1.3-03 3.03

u′′

∆ 32 1.1-05 3.97 1.4-05 4.06 1.6-04 3.01 1.6-04 3.01
64 7.2-07 3.99 8.4-07 4.03 2.0-05 3.00 2.0-05 3.00
128 4.5-08 3.99 5.2-08 4.01 2.6-06 3.00 2.6-06 3.00
8 4.4-01 8.7-01 8.7-01 9.6-02
16 1.1-01 2.01 2.2-01 2.00 2.1-01 2.02 1.3-02 2.85

u
(3)
∆ 32 2.7-02 2.00 5.4-02 2.00 5.3-02 2.02 1.6-03 3.02

64 6.8-03 2.00 1.4-02 2.00 1.3-02 2.04 2.1-04 3.01
128 1.7-03 2.00 3.4-03 2.00 3.3-03 1.95 2.6-05 3.00
8 1.9+00 4.1+01 4.1+01 2.4+01
16 5.3-01 1.822.1+010.982.1+011.001.2+011.01

u
(4)
∆ 32 1.3-01 1.981.0+011.001.0+011.016.0+001.00

64 3.4-02 1.995.2+001.005.1+001.003.0+001.00
128 8.5-03 1.992.6+001.002.6+000.991.5+001.00
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