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Abstract

In this paper, we develop a robust numerical method in pricing options, when the underlying asset

follows a jump diffusion model. We demonstrate that, with the quadratic spline collocation method,

the integral approximation in the pricing PIDE is intuitively simple, and comes down to the evaluation

of the probabilistic moments of the jump density. When combined with a Picard iteration scheme,

the pricing problem can be solved efficiently. We present the method and the numerical results from

pricing European and American options with Merton’s and Kou’s models.
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1 Introduction

It is well-known that the simple Black-Scholes model cannot explain the implied volatility smile seen

in the calibration of the volatility parameter to market prices. Large jumps in asset returns have also been

observed, and these discontinuities are arguably not reflected in a pure diffusion model.

Several models have been developed as alternatives to or extensions of the Black-Scholes model. The

local volatility approach, proposed in [11], generalizes the Black-Scholes model by considering a deter-

ministic time-dependent and price-dependent volatility function. This model is theoretically attractive, as

the local volatility function can be computed when a smooth set of option prices in all strikes and matu-

rities is known. In reality, a numerical optimization method (see for example [8]) is required, as there is

only a restricted set of options that trade enough, so that the quoted prices are accurate enough for these

methods to work. As was pointed out in [2], the local volatility approach alone does not produce station-

ary implied volatilities, in contrast with market experience. Stochastic volatility models, such as those in

[14] or [15], have been proposed. As multi-factor models, these models are numerically more expensive.

Another alternative to the classical Black-Scholes model is a jump diffusion model, due to [18]. The

idea is to model asset returns by the usual Wiener process combined with a compound Poisson process,

the latter corresponding to the “jumps”. By varying the jump parameters, one can obtain volatility shapes,

and control the skewness and kurtosis of the log asset return. A number of studies (for example, [3] and

[4]) suggest the addition of jumps to stochastic volatility models.

When the asset follows a jump diffusion model where the jump density is log-normally distributed

([18]), closed-form formulas can be obtained for European options’ prices. For other jump size distribu-

tions, closed-form solutions may not be guaranteed. Pricing exotic options in general requires numerical

methods as well.
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The option prices in a jump model satisfy a partial integro-differential equation (PIDE). The integral

is performed over the entire grid, and this non-locality poses numerical challenges. Different numerical

treatments have been proposed. Explicit methods or explicit treatment of the integral, such as those

proposed in [1] or [19], suffer from severe stability and convergence constraints. An FFT-ADI (Fast

Fourier Transform - Alternating Direction Implicit) approach is developed in [2], which is unconditionally

stable and has second order convergence. But as noted in both [10] and [5], it is not clear how this method

can be extended to pricing American options.

An explicit FFT treatment of the integral term together with a fixed-point iteration is suggested in

[10], and has second order convergence. The method, while robust and unconditionally stable, suffers

from a common problem in Fourier-based methods. The effect of wrap-around errors resulting from non-

periodicity of option values can be large. The remedy for this, suggested in [10], is to enlarge the grid to

the point that the wrap-around errors will be non-material. Enlarging the grid can be expensive especially

in higher-dimensions. For Kou’s model of the jump density, a much larger grid than that of Merton’s is

necessary to avoid large wrap-around errors. It was also reported in [10] that convergence can be slow for

Kou’s model, when numerical FFT methods are used.

The Fourier family methods also include the Fourier space timestepping method, developed in [16].

These Fourier methods are effective and robust, yet they usually require special attention to the grids. A

uniform grid is usually required for FFTs, sometimes leading to a waste of computational resources in

regions that are not important. In addition, a log transform is needed to utilize the FFT methods. That

means one has to maintain two grids, and interpolation between the two grids is needed to communicate

information. When one does timestepping in the original S-space instead of the Fourier space (the latter

suggested in [16]), up to two interpolations can be required in each timestep. Furthermore, it is not easy

to generalize the Fourier methods for the pricing of various exotic options.

There are other numerical approaches in the literature. Clever change of variable techniques have

been proposed in [5], which computes the integral in Merton’s model by solving the heat equation along

an artificial dimension, and for Kou’s model enables fast valuation of the integral term in linear time.

While these are attractive, the transformations are specific to the aforementioned two models (and their

related families).

In this paper, we develop a quadratic spline collocation method in the pricing problem under a finite

activity jump diffusion model. The evaluation of the integral term is reduced to the computation of

the probabilistic moments of the jump density, and works best for jump densities that have analytically

tractable partial moments. For a fixed non-adaptive (uniform or non-uniform) grid, our method requires

only a pre-computation of certain integral matrices. To the authors’ knowledge, no prior work has been

done on spline collocation methods in jump diffusion models.

2 PDE/PIDE formulation

2.1 Model

Let S(t) be the price of an asset. In the jump diffusion framework, S(t) is assumed to follow the

dynamics

dS

S
= µdt+ σdW (t) + d(

N(t)
∑

i=1

(Ji − 1)), (1)

where µ and σ are drift and volatility parameters respectively,Wt is a Wiener process,N(t) is Poisson with

rate λ, and Ji is the size of the i-th jump, for i = 1, . . . , N(t). We assume that the Ji’s are non-negative

i.i.d. with some distribution g.
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It is clear that some modelling assumptions on g are needed. In this paper, we focus primarily on two

models that are commonly considered studied in the literature, namely Merton’s and Kou’s models, with

the density g defined, respectively, by

(Merton) g(x) =
exp(− (log(x)2−µ)

2γ2 )
√
2πγx

(2)

where γ > 0, µ ∈ R, and

(Kou) g(x) =

{

pη1
exp(−η1 log(x))

x
for x ≥ 1,

(1− p)η2
exp(η2 log(x))

x
for x < 1.

(3)

where η1 > 1, η2 > 0, and 0 < p < 1. The specification (2), originally considered in [18], is the first

of its kind, and models a jump size density by a lognormal distribution (equivalently, it models log(J)
by a normal distribution). On the other hand, the assumption (3), considered in [17], models log(J) by a

double exponential distribution.

We remark that calibration of the jump parameters is out of the scope of this study.

Let V (S, τ) be the value of a contingent claim that depends on S and backward time τ = T − t, where

T is the expiration time of the contract. Based on the stochastic differential equation (SDE) (1), it can be

shown (see [18]) that V satisfies the PIDE

∂V

∂τ
=

1

2
σ2S2∂

2V

∂S2
+ (r − λκ)S

∂V

∂S
− (r + λ)V + λ

∫ ∞

0
V (Sη)g(η)dη (4)

with V (τ = 0) = F (S(τ = 0)) being the terminal payoff, and κ = E(J − 1), where E is the expectation

operator over the random variable J .

For simplicity, we take r (the risk-free interest rate) and σ to be constant for the rest of the paper.

However, r and σ can be non-constant, e.g. r = r(t) for a projected deterministic risk-free curve or

σ = σ(S, t) for a local volatility model. If r and σ are variable, provided they are deterministic, the

arguments in this paper will go through with only trivial modifications.

2.2 Time discretization: Crank-Nicolson and Rannacher

A common numerical timestepping approach for PDEs and PIDEs is the θ-method. For notational

convenience, denote

LV ≡ 1

2
σ2S2∂

2V

∂S2
+ (r − λκ)S

∂V

∂S
− (r + λ)V + λ

∫ ∞

0
V (Sη)g(η)dη.

Then the time-dependent PIDE (4) can be written as

∂V

∂τ
− LV = 0.

Discretizing along the time direction, at the j-th timestep, we have

V j+1 − V j

∆τ
= θLV j+1 + (1− θ)LV j. (5)
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When θ = 0.5, the scheme is known as Crank-Nicolson (CN), and formally has second order local trun-

cation error in ∆τ , assuming V satisfies certain smoothness assumptions. The choice θ = 1 is known

as fully implicit timestepping. This scheme has favourable stability properties, but it is only first order

consistent in ∆τ . In this work, unless otherwise specified, we use the CN-Rannacher timestepping tech-

nique, which uses CN after a few fully implicit timesteppings initially. It should be noted that the CN

timestepping alone might not lead to second order convergence, when applied to the Black-Scholes equa-

tion (even without the presence of the integral term), due to the discontinuity of the derivative in the initial

conditions. However, as shown in [13], the CN-Rannacher timestepping technique results in second order

convergence; see also [12]. It is also worth noting, that the integrand of the integral term in (4) may also

exhibit discontinuities, but the integral term itself does not.

2.3 Space discretization: quadratic spline collocation

In this work, we explore the use of quadratic spline collocation (QSC) in the space discretization of

the PIDE problem (4). This method approximates the solution of a PDE or PIDE using quadratic splines.

The method of quadratic spline collocation in parabolic PDEs has been studied in [7].

Define

ψ(x) ≡ 1

2



















x2 if 0 ≤ x ≤ 1,
−3 + 6x− 2x2 if 1 ≤ x ≤ 2,

9− 6x+ x2 if 2 ≤ x ≤ 3,
0 elsewhere.

On a uniform mesh partition of a generic space interval [a, b], with n subintervals and step size h =
b−a
n

, the space of quadratic splines is spanned by the functions φi(x) = ψ(x−a
h

− i + 2), where i =
0, . . . , n+ 1.

We then model the approximation to the solution V (τ, x) of the PIDE (4) by

V∆(τ, x) =
n+1
∑

i=0

ci(τ)φi(x), (6)

for some unknown “degrees of freedom” ci(τ), i = 0, . . . , n + 1. The zeroth, first and second deriva-

tives of V∆ with respect to space variable x can be easily computed given the functional form (6).

Note that the second derivative of V∆ is discontinuous at the nodes. For uniformity in notation, we

set ∂2V∆(·, x0)/∂x2 = ∂2V∆(·, xn)/∂x2 = 0.

In the standard QSC method, one defines a set of prescribed collocation points mi, i = 0, . . . , n + 1.

If the mesh is given by [xi−1, xi], for i = 1, . . . , n, and is uniform, then a common choice is mi =
xi−1+xi

2
,

i = 1, . . . , n, and m0 = x0, mn+1 = xn, the latter two points used to incorporate the spatial boundary

conditions. At the j-th timestep, given c
j−1
i , i = 0, . . . , n + 1, (equivalently V j−1

∆ ), we find c
j
i , i =

0, . . . , n + 1, such that (5) holds at the prescribed collocation points mi for i = 1, . . . , n, and we impose

context-specific Dirichlet boundary conditions at m0 and mn+1. This results in a linear system with n+2
equations, and n+ 2 unknowns (the degrees of freedom).

The values of the quadratic spline V∆ at the collocation points and the degrees of freedom are related

by the quadratic spline interpolation matrix T0. More specifically, if we let ~V∆(τ) be a vector whose i-th
entry is V∆(τ,mi−1), i = 1, . . . , n+ 2, then

~V∆(τ) = T0~c(τ).
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Similarly, for the first and second derivatives of V∆ with respect to x, if we let ~V
(i)
∆ (τ), i = 1, 2, be

vectors whose i-th entry, i = 1, . . . , n+2, is ∂V∆(τ,mi−1)/∂x and ∂2V∆(τ,mi−1)/∂x
2, respectively, then

~V
(i)
∆ (τ) = Ti~c(τ),

for some precomputed matrices Ti. We emphasize that Ti, i = 0, 1, 2, are tridiagonal matrices. (The

details of the Ti matrices are given in Appendix A.)

The matrix arising from the QSC discretization of the spatial derivative part of (4) is given by a matrix

TL, of which the i-th row, i = 2, . . . , n+ 1, is given by

TL(i, :) =
1

2
σ2m2

i−1T2(i, :) + (r − λκ)mi−1T1(i, :)− (r + λ)T0(i, :). (7)

The first and last rows of TL are not defined in (7) as they are not needed when forming the final

collocation matrix that needs to be solved at each timestep. As will be seen, the i-th row, i = 2, . . . , n+1,

of the final collocation matrix to be solved at each timestep is

T0(i, :)− θ(∆τ)TL(i, :),

while the first and last rows are set to incorporate the Dirichlet boundary conditions, thus they are equal

to the first and last rows of T0, respectively. The detailed formulas can be found in [7].

In the case where λ = 0 (i.e. no jumps), the framework is already discussed in [6]. The present work

is to study the collocation approach when the integral term is introduced.

2.4 Treatment of the integral

Given the discretization

V∆(τ, x) =
n+1
∑

i=0

ci(τ)φi(x),

one wants to evaluate the quantity
∫ ∞

0
V∆(τ, Sη)g(η)dη

at S = mi, where i = 1, . . . , n (interior collocation points), so that collocation of the PIDE (4) can be

done. To evaluate the integral term, we consider the integral inside and outside the spatial grid separately.

2.4.1 Integral inside the computational domain

To evaluate the integral term inside the generic computational domain [a, b], observe that, in [a, b], the

approximation V∆ is a piecewise polynomial at any τ . On each of the subintervals [xi−1, xi], we have that

V∆(τ, x) = aix
2 + bix+ ci, for some ai, bi, ci. While ai, bi, ci depend on τ , for simplicity of notation, we

omit this dependence. Therefore,

xi−1 ≤ Sη ≤ xi ⇔
xi−1

S
≤ η ≤ xi

S
.

Hence on the interval [xi−1

S
, xi

S
], we can write V∆(τ, Sη) = ai(Sη)

2 + bi(Sη) + ci.
It is then clear that the integral is locally computed through partial moments of the jump size density

∫ v

u
ηjg(η)dη,
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for j = 0, 1, 2, with u = xi−1

S
and v = xi

S
. If the jump size distribution has sufficient analytical tractability,

as in models (2) and (3), then the partial moments can be evaluated analytically.

As an example, one can evaluate this quantity for model (2) as follows:

∫ v

u
ηjg(η)dη =

∫ v

u
ηj
exp(− (log(η)−µ)2

2γ2 )
√
2πγη

dη

=
1√
2πγ

∫ log(v)

log(u)
exp(jy) exp(−(y − µ)2

2γ2
)dy (where y = log η)

=
1√
2πγ

∫ log(v)

log(u)
exp(−(y − µ)2 − 2γ2jy

2γ2
)dy

=
1√
2πγ

∫ log(v)

log(u)
exp(−(y − αjy + µ2)

2γ2
)dy (where αj = 2µ+ 2γ2j)

=
1√
2πγ

∫ log(v)

log(u)
exp(−(y − αj

2
)2 + µ2 − α2

j

4

2γ2
)dy

= exp(−µ
2 − α2

j

4

2γ2
)[N (log(v),

αj

2
, γ)−N (log(u),

αj

2
, γ)].

The integral inside the computational domain can be evaluated as

∫
xn
S

0
V∆(τ, Sη)g(η)dη =

n
∑

i=1

∫

xi
S

xi−1
S

(ai(Sη)
2 + bi(Sη) + ci)g(η)dη

=
n
∑

i=1

[ai exp(−
µ2 − α2

2

4

2γ2
)(N (log(

xi
S
),
α2

2
, γ)−N (log(

xi−1

S
),
α2

2
, γ))

+bi exp(−
µ2 − α2

1

4

2γ2
)(N (log(

xi
S
),
α1

2
, γ)−N (log(

xi−1

S
),
α1

2
, γ))

+ci(N (log(
xi
S
), µ, γ)−N (log(

xi−1

S
), µ, γ))]

=
n
∑

i=1

[aiui + bivi + ciwi],

for some coefficients ui, vi, wi, that depend only on the jump density and the grid. Once a grid is deter-

mined, these can be evaluated prior to the main computation. The coefficients ai, bi, ci are linear in the

degrees of freedom of a quadratic spline, so the integral can be evaluated under an affine transformation.

Denote the linear part by a n× (n+ 2) matrix R̂, so that
[

∫
xn
S

0
V∆(τ, Sη)g(η)dη

]mn

S=m1

= R̂~c,

where V∆ admits the basis representation given by ~c. For the details of the R̂ definition, see Appendix A.

The computation above can also be applied to Kou’s density model, and indeed any jump size model

that has analytical partial moments. In the case that these cannot be evaluated analytically, one can

numerically approximate the partial moments to sufficient accuracy in the pre-computation stage.

We now extend the R̂ matrix to a (n + 2) × (n + 2) matrix R by adding identically zero first and

last rows. The integral matrix R has properties resulting from its origin as a probabilistic expectation. To

describe the properties, we adopt the notation ~c ≥ 0 to denote ci ≥ 0, ∀i.
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PROPOSITION 1. The matrix R satisfies R~c ≥ 0 for all ~c ≥ 0, and ||R||∞ ≤ 1.

Proof. For any vector of degrees of freedom ~c, denote by Vc the quadratic spline given by ~c. If ~c ≥ 0,

then, from the non-negativity of the basis functions, we have Vc ≥ 0 in the domain that it is defined, and

hence
∫ xn

mi

0
Vc(τ,miη)g(η)dη ≥ 0.

For the ∞-norm bound of R, we first show the inequality ||Vc||∞ ≤ ||~c||∞, for any vector ~c of degrees

of freedom. A proof of this inequality is as follows. Without loss of generality, let x ∈ [0, 1] and we have

||c0φ0(x) + c1φ1(x) + c2φ2(x)||∞ ≤ |c0|φ0(x) + |c1|φ1(x) + |c2|φ2(x)

≤ 1

2
(|c0|(1− x)2 + |c1|(−2x2 + 2x+ 1) + |c2|x2)

≤ max{|c0|, |c1|, |c2|}
2

((1− x)2 + (−2x2 + 2x+ 1) + x2)

= max{|c0|, |c1|, |c2|}.

Now, again for any vector ~c of degrees of freedom, we have

||R · ~c||∞ = max
i=0,...,n+1

|
∫

xn
mi

0
Vc(miη)g(η)dη|

≤ max
i=0,...,n+1

∫ xn
mi

0
|Vc(miη)g(η)|dη

≤ max
i=0,...,n+1

∫
xn
mi

0
||~c||∞g(η)dη

= max
i=0,...,n+1

||~c||∞
∫

xn
mi

0
g(η)dη

≤ ||~c||∞.

So we have ||R||∞ ≤ 1.

2.4.2 Boundary condition: an extended one

The above computation did not consider the part of the integral outside the grid:
∫∞
xn
S
V∆(Sη)g(η)dη.

The way to evaluate or approximate this quantity depends on the type of option being priced.

For a simple put option, if the grid is large enough, we may just take

V∆(τ, x) = 0 for x > xn.

For a simple call option with strike K with risk-free rate r, we can take

V∆(τ, x) = x−K exp(−rτ) for x > xn.

For an up-and out barrier option with barrier B, we can (obviously) take

V∆(τ, x) = 0 for x > xn = B.
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Given these analytical approximations past the grid, the integral can be evaluated on [xn,∞], using the

same ideas as in Section 2.4.1. Thus, the vector b that arises from the extended boundary conditions, and

which possibly depends on τ , has components

b1 = 0, bi+1 =
∫ ∞

xn
mi

V (τ,miη)g(η)dη, i = 1, . . . , n, bn+2 = 0.

Concerning the accuracy of this approximation of the semi-infinite integral, and taking into account

that g is a density function, therefore,
∫∞
−∞ g(η)dη = 1, we have that

|
∫ ∞

xn
S

V∆(τ, Sη)g(η)dη −
∫ ∞

xn
S

V (τ, Sη)g(η)dη| ≤
∫ ∞

xn
S

|V∆(τ, Sη)− V (τ, Sη)|g(η)dη

≤ ||(V∆(τ, x)− V (τ, x))1x≥xn
||∞

∫ ∞

xn
S

g(η)dη

≤ ||(V∆(τ, x)− V (τ, x))1x≥xn
||∞,

where 1A is the set indicator function of A, i.e. the function that has value 1 at all points of A and value 0
elsewhere.

The interpretation of the above bound is that the error of this approximation to the extended part of

the integral is at most as bad as the error of the user-specified assumption, or belief, on the asymptotic

behaviour of the option. The above argument depends on the (reasonable) assumption that the quantity

||(V∆(τ, x)− V (τ, x))1x≥xn
||∞

is bounded.

In practice, if we are concerned only about practical values of the option around the strike, then the

error of this part of the integral can be made quickly small enough by extending the grid. Assume that

g(x) ≤ C exp(−ρx) asymptotically for some ρ (which is true for both jump densities in (2) and (3)). If

we extend the grid so that xn

S
is large for S near the strike, then

||(V∆(τ, x)− V (τ, x))1x≥xn
||∞

∫ ∞

xn
S

g(η)dη ≤ ||(V∆(τ, x)− V (τ, x))1x≥xn
||∞

∫ ∞

xn
S

C exp(−ρη)dη

=
C

ρ
||(V∆(τ, x)− V (τ, x))1x≥xn

||∞ exp(−ρxn
S
).

The last two terms decrease (in fact rapidly for the exponential one) as xn increases, the first being

finite. The error decreases exponentially as we extend the grid. So this approximation of the extended

part of the integral would not practically affect the accuracy solution, if we specify a reasonable extended

boundary condition.

2.5 Dense system

The integral matrix R defined in Section 2.4.1 is a dense one, due to the global nature of the integral

at each collocation point. The CN-Rannacher discretization in time, as described in Section 2.2, then

involves solving a dense system at each timestep, which is inefficient. To avoid the direct solution of the

dense linear system, a fixed-point iteration can be used, as proposed in [10]. We describe the scheme

below in the context of QSC.

Recall that the θ-discretization scheme is, in general,

V j+1 − V j

∆τ
= θLV j+1 + (1− θ)LV j,
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and that, in the context of QSC, the unknowns are the degrees of freedom, ~c.

The θ-discretization of the PIDE, when combined with (7), can be written as

(T0 − θ(∆τ)TL − θ(∆τ)λR)~cj+1 − θ(∆τ)λbj+1

= (T0 + (1− θ)(∆τ)TL + (1− θ)(∆τ)λR)~cj + (1− θ)(∆τ)λbj . (8)

The boundary terms, bj and bj+1, are from our assumptions of the extended boundary behaviour,

while the first and last equations of (8) are modified to be

T0(1, :)~c
j+1 = dj+1

1 , T0(n + 2, :)~cj+1 = dj+1
2 , (9)

where dj+1
1 and dj+1

2 arise from the corresponding Dirichlet conditions prevailing at time (j + 1)(∆τ).
The presence of the dense matrix R in (8) makes the resulting system a dense one. The fixed-point

iteration involves solving the system with the dense part “lagging” one step behind. For notational conve-

nience, denote

uj+1 = θ(∆τ)λbj+1 + (T0 + (1− θ)(∆τ)TL + (1− θ)(∆τ)λR)~cj + (1− θ)(∆τ)λbj ,

and

A = T0 − θ(∆τ)TL, D = θ(∆τ)λR,

where we recall that the first and last rows of TL and D are zero. Modifying the first and last components

of uj+1 to u
j+1
1 = dj+1

1 and u
j+1
n+2 = dj+1

2 , the θ-discretization of the PIDE as given in (8), results in

solving the linear system

(A−D)~cj+1 = uj+1 (10)

which is dense, due to the presense of D. Denoting by ~cjk the result of the k-th fixed-point iteration at the

j-th timestep. the fixed-point iteration in the (j + 1)-st timestep is as follows:

Set ~cj+1
0 = ~cj

for k = 1, . . . , until convergence do

Solve

A~cj+1
k = D~cj+1

k−1 + uj+1. (11)

end for

Set ~cj+1 = ~cj+1
k

Note that the matrix A = T0 − θ(∆τ)TL is tridiagonal, and is easier to solve than the full system. Recall

also that the first and last equations of the system to solve are given in (9).

To show that the fixed-point iteration scheme converges, we consider a mathematically equivalent

version of the system (10), which simplifies the mathematical derivations. As explained in Appendix

B, any (n + 2) × (n + 2) system arising from QSC with Dirichlet conditions can by transformed to an

equivalent one of size n× n that has the Dirichlet conditions incorporated. Let

(A′ −D′)~qj+1 = vj+1 (12)

be the system arising after the transformation of (10). The fixed-point iteration corresponding to the

transformed system (12) requires the solution of

A′~qj+1
k = D′~qj+1

k−1 + vj+1. (13)
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Denote ~ek = ~qj+1
k − ~qj+1, where ~qj+1 is the true solution to (12). It is easy to see that

A′~ek = D′~ek−1.

It is shown in Appendix C, that, for sufficiently small spatial step size h, and if the left boundary point

satisfies x0 > 0, we have

||A′−1||∞ ≤ C

for some C independent of the mesh size. We have also numerically studied ||A′−1||∞ and verified that it

is bounded independently of n, even when x0 = 0. Therefore, using the fact that ||D′||∞ = O(∆τ)||R||∞
and Proposition 1, we have that

||~ej+1
k+1||∞ ≤ Cθ(∆τ)λ||~ej||∞. (14)

Thus, for sufficiently small ∆τ , the fixed-point iteration converges.

In practice, with a tolerance of 10−9, and parameters in the range of those in the experiments, the

fixed-point iterations converge in around 3 iterations.

2.6 Matrix approximation

Solving an n × n tridiagonal system takes O(n) time, but a dense matrix-vector multiplication costs

O(n2). Asymptotically, then, the matrix-vector multiplication is more costly than solving the tridiagonal

system. In this section, we propose a simple algorithm, which does not alter the asymptotic cost of the

multiplication, but could practically save up to half of the work. For the rest of this subsection, we assume

that we are working with a rapidly decaying density, such as Merton’s (2) and Kou’s (3) models. For

simplicity, we also assume that the jump is on the down-side. With minor changes, we can treat jumps on

the up-side.

Our aim is to find the smallest i(S) such that

|
∫ xn/S
xi(S)/S

V (τ, Sη)g(η)dη

max(V (0, S), 1)
| ≤ C, (15)

for some user chosen constant C. The assumption that g is rapidly decaying means that, when S is small,

a big region of the integral does not have to be computed, because g has insignificant contribution there.

For a put option or a call option, a no-arbitrage bound can always be obtained. For a put option,

|
∫ xn/S

xi(S)/S
V (τ, Sη)g(η)dη| ≤ K

∫ xn/S

xi(S)/S
g(η)dη,

where K is the strike. For a call option,

|
∫ xn/S

xi(S)/S
V (τ, Sη)g(η)dη| ≤

∫ xn/S

xi(S)/S
Sηg(η)dη.

Using the above no-arbitrage bounds and certain quantities that are computed through the QSC method,

we can, for any S = mi, i = 1, . . . , n, compute i(S), so that (15) is approximately satisfied. More

specifically, through the QSC method, the quantities
∫ xn/S
xj/S

g(η)dη and
∫ xn/S
xj/S

Sηg(η)dη, for S = mi, i =

1, . . . , n, and j = 0, . . . , n − 1, have been computed. Then, we can compute (an approximation to) i(S)
by checking which i(S) satisfies

K|
∫ xn/S
xi(S)/S

g(η)dη

max(V (0, S), 1)
| ≤ C (16)
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for a put option and

|
∫ xn/S
xi(S)/S

Sηg(η)dη

max(V (0, S), 1)
| ≤ C (17)

for a call option.

As in Section 2.4.1, let R be the dense integral matrix. We define the approximation R̃ of R by

R̃i,j = 0 for j ≥ imi−1
, R̃i,j = Ri,j else,

where imi−1
= i(mi−1) was computed as in (16) or (17), and mi−1 is the corresponding collocation point

for the ith row.

Suppose we have computed Rz for the dense matrix R and a vector z. Then, for a point z1 near z, we

can compute an approximation y1 to Rz1 by

y1 = Rz + R̃(z1 − z).

From this construction, we have that

|y1 − Rz| ≤ |z1 − z|,
so that our approximation error is never greater than the distance between z and z1. From y1, we could

approximate Rz2 for a point z2 near z1 by

y2 = y1 + R̃(z2 − z1).

In the fixed-point iterations, where typically the maximum change of vectors after 1 or 2 iterations quickly

goes down to the order of 10−8, this matrix approximation effectively saves a lot of work that does not

materially change the results. The effect of the matrix approximation will be illustrated in Section 3.

If the jump is on the up-side, we find the largest i(S) such that

|
∫ xi(S)/S
0 V (τ, Sη)g(η)dη

max(V (0, S), 1)
| ≤ C, (18)

and proceed accordingly.

2.7 American options

The penalty method, developed in [12], can be applied to QSC in valuing American options under

jump diffusion models. The application of the penalty method to QSC without jump diffusion was de-

scribed in [6]. With jump diffusion, the general procedure is similar to the one described in [9]. More

specifically, with ~c∗ being the vector of quadratic spline degrees of freedom corresponding to the payoff,

and P (~cj) the QSC penalty matrix (scaled version of T0) defined as in [6], the following iteration takes

place at the (j + 1)st timestep:

Set ~cj+1
0 = ~cj

Set P j+1
0 = P (~cj+1

0 )
for k = 1, . . . , until convergence do

Solve

(A+ P j+1
k−1)~c

j+1
k = D~cj+1

k−1 + uj+1 + P j+1
k−1~c

∗. (19)

Set P j+1
k = P (~cj+1

k )
end for

Set ~cj+1 = ~cj+1
k
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3 Numerical experiments

In this section, we present some numerical results. For the Merton model (2), we choose the parame-

ters in Table 1. Note that, for the Merton model, we have κ = exp(µ+ γ2)− 1. For Kou’s model (3), we

choose the parameters in Table 2. For both cases, these parameters are the same as those used in [10].

In the numerical experiments, the CN-Rannacher timestepping scheme was used to discretize the

equation along the time direction. Adaptive timestepping, as outlined in [10], with the value of dnorm set

to 0.125 for the coarsest grid and divided by 2 for each doubling of n, is used to determine the step size in

each timestep. This means that the number, nt, of timesteps taken is not predetermined. Therefore, there

are variations in nt when different methods are used for the same problem. The space grid is taken to be

fixed (but non-uniform) at each timestep, as explained below.

In the QSC experiments, we obtained the non-uniform grid by mapping the uniform grid with the

indicated number of points into a non-uniform grid via the mapping defined in [6]. Note that, according

to the mapping in [6], a midpoint is placed at the strike. The matrix approximations are obtained with

C = 1 in (16) or (17). In the finite difference experiments, we implemented the approach outlined in [10].

Essentially the same grid is used in the finite difference experiments for a fair comparison, but the FD grid

has to be enlarged or refined to reduce wrap-around errors. Details can be found in [10].

In the following tables, when analytic formulas exist, the term “error” means the signed difference of

the computed value minus the exact value at the specified point, while “grid error” and “midpoint error”

mean the maximum in absolute value error across the grid and midpoints, respectively. Then, we also

define

α ≡ log(|errorn2

errorn1

|)/ log(n1

n2

),

where n2 ≈ 2n1, as our numerically estimated order of convergence in a non-uniform grid.

We first present the case with an at-the-money European put option, under the jump diffusion model of

Merton. We present results from QSC as well as standard finite differences (FDs) as spatial discretization

methods.

Table 3 shows the numerical results using QSC (without matrix approximation) for an at-the-money

non-dividend-paying put option under the jump diffusion process. Using the same “base” grid (before

the added grid points for the FFT wrap-around), the numerical results using the FD method are presented

in Table 4. The last column in Tables 3 and 4 shows the average number of fixed-point iterations per

timestep. We notice that this decreases, as the mesh and time step sizes decrease. For QSC, as we have

shown in (14), the bound for the reduction factor of the error at each fixed-point iteration is proportional

to ∆τ , so we expect a decrease in the average number of fixed-point iterations. Similar results have been

shown for finite differences. We also give the price for the same type of option without jumps, using an

analytic formula for the solution of the standard Black-Scholes equation. As expected, since µ < 0, the

put price without jumps is lower than the one with jumps.

Using the same parameters, we also study the effect of using the matrix approximation. The results

without matrix approximation for a case of an out-of-the-money European put option are presented in

Table 5, while the respective one with matrix approximation are presented in Table 6. It is observed that the

numerical errors and the order of convergence are only minimally affected by the matrix approximation.

The fixed-point iteration convergence is not affected at all. In most of the computation, we can work with

a reduced matrix instead of a fully dense one.

The robustness of the numerical scheme extends to the computation of the option Greeks, as illustrated

in Table 7 for a European call. Second order convergence can be observed in the computation of deltas

and gammas. A corresponding analysis for the finite difference method is shown in Table 8. Both methods
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perform satisfactorily for the computations of deltas and gammas.

The QSC method applied to Kou’s model (3) also gives an almost second order convergence of option

values. In this test, we verify this fact for both grid points and midpoints, and show the results in Table 9,

where the maximum in absolute value errors at the respective sets of points are displayed. The discontinu-

ity does not interfere with convergence because of the analytic tractability of the moment valuations. We

remark that the general numerical treatments as outlined in [10] cannot guarantee second order conver-

gence. Taking into account the last column of Table 9, we also remark, that the convergence of fixed-point

iteration for Kou’s model is similar to the one for Merton’s model.

With matrix approximation, the results do not in general work as fine as those in the Merton’s model.

This is expected, as the jump size distribution has fatter tails for Kou’s model, and so g(η) does not

decrease as rapidly. More entires are needed to keep the accuracy. Although not shown here, the conver-

gence can get bizarre towards extreme regions (near S = 0). The areas near the strike are not affected,

as illustrated in Tables 10 and 11. More specifically, the errors with and without approximation agree in

about two significant digits, therefore, they are comparable.

Finally, in Tables 12 and 13, we report numerical results from valuing an American option under the

jump diffusion models of Merton and Kou, respectively. In these cases, we do not have an exact solution,

so the “change” as compared to the half-size grid solution is reported in Tables 12 and 13 instead of the

true error. We also report a reference price for Merton’s case from the literature. The last columns of each

of Tables 12 and 13 indicate that the convergence of fixed-point iteration for American options is similar

to the one for European options.

4 Summary and future directions

We developed a QSC spatial discretization method for the PIDE arising in modelling option prices

under jump diffusion with various jump size densities. The method treats the integral term of the PIDE

in a simple way, based on the piecewise polynomial representation of the approximate solution and on

analytical formulae for calculating the zero-th, first and second partial moments of the density function.

The integral term discretization gives rise to a dense matrix, the inversion of which is avoided by a fixed-

point iteration.

Compared to standard finite differences, the QSC method avoids the transformations to/from the

Fourier space and the associated problems with the so-called wrap-around error. The QSC error is, in

general, smaller than the respective finite difference error, while both methods are of second order. Sec-

ond order convergence is observed for the deltas and gammas of the approximation, and, again, QSC

exhibits smaller error than finite difference. Though avoiding the Fourier transformation makes the QSC

method asymptotically less efficient than finite difference, the method can still be attractive to practi-

tioners due to its simplicity, higher accuracy and ease in calculating the Greeks. Furthermore, the QSC

method can still be easily extended to price American and other non-vanilla options.

The technique for treating the integral term of the PIDE presented in this paper is applicable to any

piecewise polynomial finite element method. The QSC (or other finite element method) can be combined

with adaptive mesh methods, to make the method more efficient for a given number of spatial points. The

version of QSC that exhibits fourth order of convergence on certain sets of points can also be incorporated

to further improve the performance of the method.
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A QSC matrices

In this section, we provide the implementation details of the QSC method for a uniform grid. Suppose

we work on the computational domain [a, b]. Let h = (b−a)/n be the spatial step size, and xi = a+ih, i =
0, . . . , n, be the grid points. The collocation points are m0 = x0 = a,mi =

xi−1+xi

2
, i = 1, . . . , n, and

mn+1 = xn = b. There are n+2 collocation points, and so the collocation system involves n+2 equations.

The QSC matrices for the zeroth, first, and second derivatives are:

T0 =
1

8





















4 4
1 6 1

1 6 1
· · ·

1 6 1
4 4





















(20)

T1 =
1

2h





















−2 2
−1 0 1

−1 0 1
· · ·

−1 0 1
−2 2





















(21)

T2 =
1

h2





















0 0
1 −2 1

1 −2 1
· · ·

1 −2 1
0 0





















. (22)

Now suppose we have a jump density g(x). Define the matrices U, V and W , of size n× n, by

Ui,j = m2
i

∫

xj

mi

xj−1
mi

x2g(x)dx, i, j = 1, . . . , n.

Vi,j = mi

∫

xj

mi

xj−1
mi

xg(x)dx, i, j = 1, . . . , n,

Wi,j =
∫

xj

mi

xj−1
mi

g(x)dx, i, j = 1, . . . , n.

Define n × (n + 2) matrices A, B, and C that “extract” the piecewise quadratic polynomial terms as

follows. For i = 1, ..., n,

Ai,i =
1

2h2
, Ai,i+1 = − 1

h2
, Ai,i+2 =

1

2h2
,

Bi,i = − i

h
, Bi,i+1 =

2i− 1

h
, Bi,i+2 = −i− 1

h
,

Ci,i =
i2

2
, Ci,i+1 = −2(i− 1)2 + 2(i− 1)− 1

2
, Ci,i+2 =

(i− 1)2

2
,



Quadratic spline collocation in jump diffusion models 15

and zero otherwise.

Mathematically, A,B,C take a vector of degrees of freedom, which is of size n+ 2, and map it to the

second, first and zeroth, respectively, polynomial coefficient in each subinterval [xl−1, xl], l = 1, . . . , n.

For example, if~c is the vector of degrees of freedom of V∆,Ac = [a1, a2, . . . , an]
T

, where ai, i = 1, . . . , n,

are the quadratic coefficients in the [xi−1, xi] branch of V∆, as in Section 2.4.1.

The dense matrix R̂ is then given as follows. First, define

R̂ = U × A+ V ×B +W × C.

Now R̂ is of size n× (n+ 2). We extend R̂ to an (n+ 2)× (n+ 2) matrix R, by adding identically zero

first and last rows.

B Transformation of system

In this section, we explain how the system (10) is transformed to (12).

Consider a generic (n + 2) × (n + 2) linear system Bx = r arising from the QSC discretization of

a PIDE with Dirichlet boundary conditions. The QSC discretization of the Dirichlet boundary conditions

implies that the first and last equations of the system are

1

2
x1 +

1

2
x2 = r1,

1

2
xn+1 +

1

2
xn+2 = rn+2,

which result in

x1 = 2r1 − x2, xn+2 = 2rn+2 − xn+1.

Substituting x1 = 2r1−x2 and xn+2 = 2rn+2−xn+1 in all other equations results in a transformed n×n
linear system B′x′ = r′, with

B′
i,1 = Bi+1,2 −Bi+1,1, B′

i,n = Bi+1,n+1 − Bi+1,n+2,

r′i = ri+1 − 2Bi+1,1r1 − 2Bi+1,n+2rn+2, x′
i = xi+1,

for i = 1, . . . , n, while, for the rest of the entries of B′ we have B′
i,j = Bi+1,j+1. Clearly, if B′x′ = r′ is

solved, the values xi, i = 2, . . . , n + 1, have been computed, and then the values of x1 and xn+2 can be

easily recovered from x1 = 2r1−x2 and xn+2 = 2rn+2−xn+1. Thus, solvingB′x′ = r′ is mathematically

equivalent to solving Bx = r. Note also that ||B′||∞ = O(||B||∞).

C Boundedness of inverse matrix

In this section, we give the proof of the boundedness of ||A′−1||∞. Let A = T0 − θ(∆τ)TL, and recall

that TL corresponds to the differential part of L, and has zero first and last rows. Suppose our spatial

computational domain is [a, b] with a > 0. Also assume that r−λκ > 0. It is easy to see that the diagonal

entries of TL are negative, as they are of the form

(TL)i,i = − 1

h2
σ2m2

i−1 −
6(r + λ)

8
, i = 2, . . . , n+ 1.

For h sufficiently small, the off-diagonal entries of TL are non-negative, as they are of the form

(TL)i,i±1 =
1

2h2
σ2m2

i−1 ∓
1

2h
(r − λκ)mi−1 −

(r + λ)

8
, i = 2, . . . , n+ 1,
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and the O(h−2) term dominates.

Now consider the transformation of the matrix A and its constituent matrices TL and T0 to A′, T ′
L and

T ′
0, respectively, as explained in Appendix B. The negativity of the diagonal entries and the non-negativity

of the off-diagonal entries of T ′
L are clearly preserved.

For notational convenience, define the operator K as follows. Let M be a matrix. Define KM to be

the column vector such that the i-th element of KM is |Mi,i| − |Mi,i+1| − |Mi,i−1|. If M is tridiagonal,

then, clearly, diagonal dominance of M is equivalent to KM > 0.

We study the sign of the elements of KA′. Let i be a given interior index, i = 2, . . . , n + 1. In any

case, it is clear that A′
i,i > 0. For the off-diagonal entries of A′, there are three cases:

• A′
i,i+1 > 0 and A′

i,i−1 > 0. In this case, the i-th entry of KA′ is

A′
i,i − A′

i,i−1 − A′
i,i+1 =

1

2
− θ(∆τ)(TL

′
i,i − TL

′
i,i−1 − TL

′
i,i+1).

However, since TL
′
i,i < 0 and TL

′
i,i±1 > 0, the term TL

′
i,i − TL

′
i,i−1 − TL

′
i,i+1 is negative. So

(KA′)i >
1
2
.

• A′
i,i+1 < 0 and A′

i,i−1 < 0. In this case, the i-th entry of KA′ is

A′
i,i + A′

i,i−1 + A′
i,i+1 = 1− θ(∆τ)(TL

′
i,i + TL

′
i,i−1 + TL

′
i,i+1).

It is easy to see that

TL
′
i,i + TL

′
i,i−1 + TL

′
i,i−1 = −(r + λ).

So (KA′)i = 1 + θ(∆τ)(r + λ) > 1.

• A′
i,i+1 < 0 and A′

i,i−1 > 0. This is the only possible different-sign case for off-diagonal entries,

because, if r − λκ > 0, we have

T ′
Li,i+1 > T ′

Li,i−1.

In this case, the i-th entry of KA′ is

A′
i,i − A′

i,i−1 + A′
i,i+1 =

3

4
− θ(∆τ)(TL

′
i,i − TL

′
i,i−1 + TL

′
i,i+1)

>
3

4
,

where the term TL
′
i,i − TL

′
i,i−1 + TL

′
i,i+1 is negative because it is of the form

TL
′
i,i − TL

′
i,i−1 + TL

′
i,i+1 = − 1

h2
σ2m2

i−1 −
6(r + λ)

8

− 1

2h2
σ2m2

i−1 +
(r + λ)

8
+

1

2h
(r − λκ)mi−1

+
1

2h2
σ2m2

i−1 −
(r + λ)

8
+

1

2h
(r − λκ)mi−1

= − 1

h2
σ2m2

i−1 −
6(r + λ)

8
+

1

h
(r − λκ)mi−1

and the O(h−2) term dominates for h sufficiently small.
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Thus, (KA′)i >
1
2
, for any interior index i.

As for the boundary cases (i = 1 and i = n), the proof follows the same lines, with only two entries

being involved. Thus, KA′ > 1
2
, from which we can bound ||(A′)−1||∞, independently of n.

It is worth noting that the proof technique for the boundedness of ||(A′)−1||∞ cannot be used to prove

the boundedness of ||A−1||∞, because the first and last rows of A are not strictly diagonally dominant.

However, we verified numerically that ||A−1||∞ is bounded independently of the mesh size.
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volatility σ 0.15

expiry T 0.25

interest rate r 0.05

strike K 100

mean arrival rate λ 0.1

mean of jump size µ -0.9

standard deviation of jump size γ 0.45

Table 1: Basic parameters for Merton’s model.

volatility σ 0.15

expiry T 0.25

interest rate r 0.05

strike K 100

mean arrival rate λ 0.1

η1 3.0465

η2 3.0775

p 0.3445

Table 2: Basic parameters for Kou’s model.

n nt Value Error α Aver.no.fix.iter.

64 26 3.150453 1.4274e-03 3.88

128 50 3.149463 4.3756e-04 1.9846 3.68

256 96 3.149144 1.1885e-04 2.0116 3.53

512 188 3.149056 3.0860e-05 2.0085 3.21

1024 373 3.149034 8.5562e-06 1.8797 2.98

Table 3: QSC without matrix approximation for an at-the-money European put, Merton parameters in

Table 1. For comparison, the value without jumps is 2.39284975.

n nt Value Error α Aver.no.fix.iter

77 19 3.145145 -3.8759e-03 3.47

154 37 3.148064 -9.6161e-04 1.7446 3.19

308 74 3.148789 -2.3654e-04 1.8915 2.96

615 149 3.148967 -5.8751e-05 1.9488 2.97

1229 300 3.149011 -1.4629e-05 1.9757 2.89

Table 4: Finite Difference for an at-the-money European put, Merton parameters in Table 1.
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n nt Value Error α Aver.no.fix.iter.

64 26 1.904609 -1.3401e-03 3.88

128 50 1.905562 -3.8645e-04 2.0871 3.68

256 96 1.905850 -9.8883e-05 2.1037 3.53

512 188 1.905923 -2.6193e-05 1.9788 3.21

1024 373 1.905943 -6.2586e-06 2.0977 2.98

Table 5: QSC without matrix approximation for European put, S = 105, Merton parameters in Table 1.

For comparison, the value without jumps is 0.89018298.

n nt Value Error α Ratio of entries kept Aver.no.fix.iter.

64 26 1.904574 -1.3749e-03 0.55587 3.88

128 50 1.905544 -4.0505e-04 1.7632 0.54868 3.68

256 96 1.905841 -1.0867e-04 1.8981 0.54494 3.53

512 188 1.905918 -3.1001e-05 1.8096 0.54311 3.20

1024 373 1.905941 -8.6987e-06 1.8334 0.54219 2.98

Table 6: QSC with matrix approximation for European put, S = 105, Merton parameters in Table 1.

n nt Delta error αDelta Gamma error αGamma Ratio of entries kept

64 31 -4.3706e-04 1.2603e-04 0.60393

128 60 -1.3173e-04 1.7302 3.8214e-05 1.7215 0.56869

256 117 -3.6887e-05 1.8364 1.0376e-05 1.8809 0.55130

512 231 -1.0172e-05 1.8586 2.5841e-06 2.0055 0.54290

1024 458 -2.8915e-06 1.8146 6.0489e-07 2.0949 0.53878

Table 7: QSC with matrix approximation for an at-the-money European call, Merton parameters in Table

1.

n nt Delta error αDelta Gamma error αGamma
77 22 -1.1508e-03 -3.2605e-05

154 45 -3.4375e-04 1.7432 -2.6823e-05 0.2816

308 91 -9.2714e-05 1.8905 -9.3338e-06 1.5229

615 184 -2.4005e-05 1.9494 -2.6920e-06 1.7937

1229 371 -6.1031e-06 1.9757 -7.1935e-07 1.9035

Table 8: Finite difference for an at-the-money European call, Merton parameters in Table 1.

n nt Grid error αgrid Midpoint error αmid Aver.no.fix.iter.

64 24 2.6599e-03 2.6057e-03 3.71

128 45 7.9732e-04 1.7381 7.9066e-04 1.7206 3.60

256 87 2.1641e-04 1.8814 2.1622e-04 1.8705 3.41

512 171 5.6084e-05 1.9481 5.6056e-05 1.9476 3.09

1024 338 1.4999e-05 1.9027 1.4999e-05 1.9020 2.97

Table 9: QSC without matrix approximation for a European put, Kou parameters in Table 2. Maximum

errors across grid points and midpoints shown.
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Error for Error for Error for

n nt S = 95 α95 S = 100 α100 S = 105 α105

64 24 1.9637e-03 2.3318e-03 -1.8033e-04

128 45 5.8531e-04 1.7463 7.0491e-04 1.7259 -4.4851e-05 2.0075

256 87 1.6305e-04 1.8439 1.9177e-04 1.8781 -6.2841e-06 2.8354

512 171 4.2028e-05 1.9559 4.9646e-05 1.9496 -2.2785e-06 1.4636

1024 338 1.1469e-05 1.8736 1.3278e-05 1.9027 -2.3481e-07 3.2785

Table 10: QSC without matrix approximation for a European put, Kou parameters in Table 2.

Error for Error for Error for Ratio of

n nt S = 95 α95 S = 100 α100 S = 105 α105 entries kept

64 24 1.9502e-03 2.3284e-03 -1.8153e-04 0.73580

128 45 5.7803e-04 1.7544 7.0339e-04 1.7270 -4.5232e-05 2.0048 0.72127

256 87 1.5963e-04 1.8564 1.9113e-04 1.8798 -6.3509e-06 2.8323 0.71456

512 171 4.0309e-05 1.9856 4.9366e-05 1.9526 -2.2717e-06 1.4832 0.71146

1024 338 1.0630e-05 1.9230 1.3153e-05 1.9082 -2.1758e-07 3.3841 0.71005

Table 11: QSC with matrix approximation for a European put, Kou parameters in Table 2.

n nt Value Absolute change α Ratio of entries kept Aver.no.fix.iter.

64 27 3.2366028 0.59186 3.70

128 51 3.2399223 3.3195e-03 0.56316 3.68

256 98 3.2408754 9.5304e-04 1.8004 0.55167 3.42

512 191 3.2411502 2.7483e-04 1.7940 0.54638 3.09

1024 378 3.2412255 7.5242e-05 1.8689 0.54381 2.99

Table 12: QSC with matrix approximation for an at-the-money American put, Merton parameters in

Table 1. Reference price = 3.241251 from [10] using a finite difference method with grid size 4065. For

comparison, the value without jumps is 2.50462405, using the method in [6] with grid size 320.

n nt Value Absolute change α Ratio of entries kept Aver.no.fix.iter.

64 25 2.8043801 0.73580 3.88

128 47 2.8068893 2.5092e-03 0.72127 3.74

256 89 2.8075644 6.7509e-04 1.8941 0.71456 3.49

512 174 2.8077951 2.3074e-04 1.5488 0.71146 3.12

1024 344 2.8078571 6.1974e-05 1.8965 0.71005 2.99

Table 13: QSC with matrix approximation for an at-the-money American put, Kou parameters in Table 2.


