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Abstract8

In this paper, we study the error of a second order finite difference scheme for the one-dimensional9

convection-diffusion equation. We consider non-smooth initial conditions commonly encountered in10

financial pricing applications. For these initial conditions, we establish the explicit expression of the11

quantization error, which is loosely defined as the error of the numerical solution due to the placement12

of the point of non-smoothness on the numerical grid. Based on our analysis, we study the issue of13

optimal placement of such non-smoothness points on the grid, and the effect of smoothing operators14

on quantization errors.15
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1 Introduction18

For many financial pricing problems, exact solutions based on elementary functions are often un-19

known, and numerical solutions to the Black-Scholes equation and its variants are required. For diffusion-20

based linear problems, under general assumptions one can expect the solution to be at least C2 in the21

interior of the spatial domain and at least C1 in time. In fact, for the problems we consider in this paper,22

the solutions are C∞ in both space and time away from the initial time. Local analysis of leading error23

terms, common in numerical analysis textbooks, shows that, under sufficient smoothness assumptions24

that include the initial time, the Crank-Nicolson timestepping method combined with central differenc-25

ing in space should yield second order convergence to the solution of the partial differential equation26

(PDE).27

However, special difficulties arise in applying classical PDE timestepping methods to pricing Euro-28

pean contracts whose payoffs are not smooth in space. The European call option with payoff given by29

max(S(T )−K, 0), considered as a function of the terminal asset price S(T ), does not have a continuous30

first derivative at the strike K. The non-smoothness is known to cause high frequency errors under a31

classical Crank-Nicolson time discretization [1].32

The Rannacher timestepping method has been proposed [9] to address the difficulty with non-smooth33

initial data. In this method, the first few timesteps of the Crank-Nicolson timestepping are replaced34

by fully implicit timesteppings to restore optimal convergence order. It has been shown for various35

non-smooth initial conditions that the Rannacher start-up is able to suppress the high frequency error36

associated with the non-smoothness.37

An analysis of the Crank-Nicolson-Rannacher timestepping for the Black-Scholes equation and finite38

difference methods is found in [1], while [17] extends the analysis to two-dimensional Black-Scholes39

and the alternating direction implicit modified Craig-Sneyd method. The detailed investigation in [1]40

considers Dirac delta initial conditions and decomposes the Crank-Nicolson-Rannacher timestepping41

operator in low-, mid- and high-frequency components, and shows that the error in the low-frequency42
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component is more prominent. It also concludes that replacing each of the first two timesteps (of step-43

size k) with two timesteps of step-size k
2

is the optimal choice to reduce high-frequency errors associated44

with non-smoothness of the initial condition while not increasing the more prominent low-frequency45

errors. This is known as the Crank-Nicolson-Rannacher (CN-Rannacher) method.46

Other implementations of the Rannacher timestepping, including replacing two initial Crank-Nicolson47

timesteps by two fully implicit timesteps, have been studied in [1]. We refer the reader to their work for48

these other possible choices.49

Another novel timestepping technique has been proposed recently in [10], where it was shown that for50

Dirac-delta initial condition, a square root change of variable of the time dimension restores the optimal51

second order convergence (for small enough time-space step-size ratio) without the need of Rannacher52

timestepping. Numerical experiments there suggest that the technique is also useful for more complicated53

problems including the pricing of an American option. As an additional note, one could consider the54

use of the strongly A-stable second-order backward differentiation formula (BDF2) as an alternative to55

Crank-Nicolson to damp the high-frequency errors. However, it is noted in [16], that BDF2 performs56

poorly in the more complicated American options cases, such as shout options.57

Convergence of difference schemes for non-smooth initial data has been studied theoretically in58

[12]. Smoothing schemes for such initial data, as a remedy to restore optimal convergence of differ-59

ence schemes, are suggested in [5]. The study of Rannacher timestepping [9] is carried out with a finite60

element discretization, where the non-smooth initial condition is projected on the space of basis func-61

tions. This projection can be considered as a type of smoothing. In the most typical setting, the basis62

functions are piecewise linear, which means that, if there is a node at the discontinuity point, projec-63

tion does not alter the call/put payoffs. In [11] mesh shifting techniques, mostly aligning the strike on a64

mid-point, are suggested to restore convergence order. Application of these approaches in the financial65

context can be found in [8], [4], [11] or [2]. In the course of our analysis, these approaches will also be66

discussed. In particular, in [8], three techniques for restoring the convergence order are studied: averag-67

ing the initial data, shifting the mesh and projecting the initial data on a space of basis functions. It is68

concluded through extensive numerical experiments that, for discontinuous payoffs, Rannacher timestep-69

ping must be accompagnied by one of the three techniques to obtain a stable second order convergence.70

Other regularization and smoothing techniques for the Dirac-delta and Heaviside functions can be found71

in [13], [14] or [15], among others.72

This paper is dedicated to a detailed study of the leading error of the CN-Rannacher method due to73

grid resolution of the point of non-smoothness. We will focus on non-smoothness that is of most financial74

interest. In the course of the analysis, we will additionally develop and justify a few numerical schemes75

that could help achieve a stable convergence order. The contributions of the paper are:76

• We develop a general framework to analyze the quantization error for a finite difference scheme in77

relation to the relative position of the non-smoothness in the grid. We consider an arbitrary relative78

positioning, α, of the point of non-smoothness in the grid, to be explicitly defined later. We derive79

explicit formulae for the leading terms of the quantization error for various types of non-smooth initial80

conditions, such as Dirac delta, Heaviside, ramp, and exponential ramp.81

• We demonstrate that, in the presence of discontinuity/non-smoothness, the leading error of our finite82

difference solution depends not only on the spatial and time stepsizes, but also on α. We show that, for83

CN-Rannacher method with central differencing, the (more prominent) low-frequency error, derived84

in [1], can be (further) decomposed into a “normal” timestepping error component and a quantization85

error component, and it is the latter that is relevant to the positioning of the non-smoothness on the86

grid. In our model problem, the quantization error and its derivatives consists of a Gaussian centered87

at the point of non-smoothness.88
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• We demonstrate that, while the CN-Rannacher method is formally second order, for our finite differ-89

ence scheme, suboptimal convergence can result from the placement of a discontinuity. While the90

result is known (see, for example, [8]), the result comes as a natural consequence of our mathematical91

analysis. In addition, our analysis shows that for the unsmoothed Heaviside initial condition, our finite92

difference solution has a first order quantization error proportional to (α − 1
2
), explaining the inverse93

relationship between the error and the distance of the discontinuity from a mid-point in the grid. This94

explains the effect of mesh shifting techniques placing the discontinuity of the Heaviside function at95

mid-points noted experimentally in [8].96

• Our analysis shows that an unstable convergence estimate can result when the relative position of97

the non-smoothness, α, is not maintained during grid refinement. We also studied the possibility of98

choosing an optimal α. For our choice of finite difference with an unsmoothed ramp (call or put)99

initial condition, the quantization error is second order with a (α2 + α − 1
6
) coefficient, which gives100

two α values that result in minimum quantization error. This explains the numerical results in [7], in101

which, for the ramp function, the authors discovered two disjoint optimal ranges of α which contain102

the two roots of the quadratic function representing the quantization error. We also give a numerical103

example where a good choice of α could lead to third order convergence even though our numerical104

scheme of choice is only formally second order.105

• Our analysis shows that quantization error in the solution propagates to its divided-difference-based106

derivatives, in the same form. In a financial setting, these derivatives (a.k.a. as Greeks) are impor-107

tant parameters for determining hedging strategies. Numerical errors due to mesh positioning could108

therefore have an undesirable impact on hedging.109

• We demonstrate explicitly that smoothing operators can recover optimal convergence, which was a110

known result proved in a more general setting in [5]. While retaining O(h2) error by smoothing was111

known, our contribution lies in illustrating how and in which cases of initial conditions the depen-112

dence of the leading error on α can be removed by smoothing. From this, we derive in which cases113

maintaining α and applying smoothing can be used alternatively or must be used simultaneously to114

obtain second order convergence and stable order of convergence.115

The outline of the remainder of the paper is as follows. In Section 2, we present numerical experi-116

ments that motivate our study, and define the model problem that we will study in this paper. In Section 3,117

we develop the analysis and obtain explicit leading error formulae, starting from a review of the tech-118

niques in [1]. In Section 4, we discuss the possibility of choosing an optimal positioning of the point119

of non-smoothness in the grid, and present corresponding experiments. In Section 5, we show how to120

obtain explicit leading error formulae for the Greeks. In Section 6, the effect of smoothing operators on121

the quantization error is discussed. Section 7 concludes.122

2 Model problem123

2.1 Non-smooth initial data and convergence124

The Black-Scholes equation is one of the most important equations in financial pricing. In its basic125

form, the Black-Scholes equation is126

∂V

∂t
+

σ2S2

2

∂2V

∂S2
+ (r − q)S

∂V

∂S
− rV = 0, (2.1)127

where V (t, S) is the value of the option at time t and asset price S, which is assumed to have continuous128

dividend rate q. The risk-free rate is assumed to be a constant r. The volatility σ is unobservable, and129
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in the original formulation of the Black-Scholes model, this quantity is assumed to be a known constant.130

When this quantity is deterministically dependent on time and space, the resulting model is the local131

volatility model due to Dupire [3].132

Upon substitution x = log(S) and τ = T − t, equation (2.1) is transformed to a convection-diffusion133

equation with constant coefficients134

∂v

∂τ
=

σ2

2

∂2v

∂x2
+ (r − q − σ2

2
)
∂v

∂x
− rv, (2.2)135

where v(τ, x) = V (T − τ, ex).136

The payoff of the option g(ST ) dependent on the terminal asset price at maturity T translates into137

a terminal condition for (2.1) or an initial condition for (2.2). Numerical solutions to (2.1), (2.2) and138

their generalizations are important in many occasions. When more complex structures are specified, for139

example a parametric form of the local volatility or higher dimensional volatility models, exact solution140

based on elementary functions is often unknown even for basic payoff functions g(·). Numerical solutions141

to these equations therefore remain important for many applications.142

Many financial derivatives, however, have non-smooth payoff functions. The most representative of143

all are the calls and puts, which respectively have the form max(S − K, 0) and max(K − S, 0), where144

K is known as the strike. The first derivative with respect to S is not continuous precisely at the strike145

S = K. Another common payoff that has similar difficulties is the digital option, which has payoff146

H(S−K) (or alternatively, H(K−S)), where H(x) =

{

1 if x ≥ 0

0 else
is the Heaviside function. This147

option pays off a fixed amount if and only if the asset price is above (or alternatively, below) a certain148

strike S = K. The payoff itself is not continuous at the strike.149

It has been widely reported and known that applying a finite difference method with Crank-Nicolson150

directly to (2.1) or (2.2) with non-smooth initial data will result in erratic convergence rates and in some151

cases large errors in derivative approximations. The Rannacher timestepping successfully eliminates152

higher frequency errors and restores second order leading errors for calls and puts [1]. However, subop-153

timal convergence is still observed experimentally for digital options [8].154

As an example, we consider solving (2.2) with an initial condition equal to H(x) so that discontinuity155

occurs at the strike x = 0. Equivalently, this is the price of a digital option that pays $1 when exp(x)156

is above 1, under the assumption of geometric Brownian motion. We use a finite difference method157

with central differences and Rannacher timestepping, so that the first two Crank-Nicolson timesteps are158

replaced by four fully implicit timesteps of half the step-size. We begin with a uniform grid on [−8, 8]159

with step-size h = 1
12

. For each successive run, we insert mid-points into the grid so that the grid remains160

uniform, and the step-size is halved. In this way, the discontinuity falls always at a grid-point. This is a161

common method of refining grids (but by no means the only one). We shall revisit this point later in the162

paper. Finally, Dirichlet conditions with the exact solution are imposed on the two far end-points.163

From the (l − 1)-th mesh (coarser) to the l-th mesh (finer), we also define the quantity for l > 1:164

Υl ≡ log

(
∣

∣

∣

∣

errorl−1

errorl

∣

∣

∣

∣

)

/ log(2).165

The error is defined to be the numerical approximation minus the exact value of the solution to the PDE,166

at t = 0 (terminal point τ = T ). If the numerical scheme has first order convergence, then the error is167

approximately halved as the grid is refined by one level. In this case, the Υl’s would be close to 1. On168

the other hand, one can expect the Υl’s to be close to 2 for a quadratically convergent scheme.169

The results from solving (2.2) with an initial condition equal to H(x) using central difference with170

Rannacher timestepping are shown in Table 2.1. It is evident that, in this setting, one only observes a171
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Spatial

step-size h
Time

step-size k
Error Convergence rate

estimate Υ
1/12 1/6 7.9320× 10−2 –

1/24 1/12 3.9038× 10−2 1.0228

1/48 1/24 1.9495× 10−2 1.0018

1/96 1/48 9.7551× 10−3 0.9989

Table 2.1: Results of solving equation (2.2) with initial condition the Heaviside function H(x). Solution

evaluated at x = 0. Volatility σ is 20%, risk-free rate r is 5%, dividend q is 0% and maturity T is 1.

Numerical method is Rannacher timestepping with central spatial difference. Each grid is refined by

inserting mid-points. Discontinuity aligned with a grid-point.

Spatial

step-size h
Time

step-size k
Error Convergence rate

estimate Υ
1/12 1/6 1.6067× 10−2 –

1/24 1/12 2.3803× 10−2 -0.5670

1/48 1/24 3.9294× 10−3 2.5988

1/96 1/48 5.8572× 10−3 -0.5759

Table 2.2: Results of solving equation (2.2) with initial condition the Heaviside function H(x). Solution

evaluated at x = 0. Volatility σ is 20%, risk-free rate r is 5%, dividend q is 0% and maturity T is 1.

Numerical method is Rannacher timestepping with central spatial difference. Each grid is refined by

inserting mid-points. Discontinuity not aligned with a grid-point. Cubic spline interpolation is used for

the evaluation.

first order convergence experimentally. An existing technique in mitigating this sub-optimal convergence172

is by placing the discontinuity at a mid-point (e.g. [8]). We will revisit this technique from a different173

viewpoint as we develop the analysis later in the paper.174

If the discontinuity is not a grid-point, which is a common scenario, and no additional effort is taken to175

align the discontinuity to a grid-point in the numerical software, then an erratic experimental convergence176

using the aforementioned way of refining grids might be observed. This can be seen in Table 2.2. In177

this experiment, the first grid has grid-points ( 1
30

+ j

12
), j = −100, . . . , 92, so that the endpoints are178

(−8.3, 7.7), on which we impose Dirichlet boundary conditions based on the known exact solution. We179

refine the grid by inserting mid-points. In this way, the relative position of the strike 0 (which is the point180

of discontinuity) in the grid does not align with a grid-point but fluctuates. To carry the evaluation at the181

strike 0, cubic spline interpolation is used. As evident in Table 2.2, the error does not necessarily improve182

even as the step-sizes are halved. The experimental convergence is far from stable.183

An erratic convergence could be problematic. Extrapolation, for example, is a common technique184

to eliminate the leading error term in order to obtain a more accurate solution using numerical solutions185

from a coarse grid and a finer grid. This is a useful technique when computational costs are high, for186

instance in a higher dimension PDE solver. However, extrapolation is only possible when the convergence187

is stable. It is difficult to obtain a reliable extrapolated value when the convergence is unstable, like the188

one in Table 2.2. The difficulty of extrapolation when convergence is unstable is also noted in [4].189

Finally, the errors in Table 2.2 in fact are smaller than those in Table 2.1. This is an expected phe-190

nomenon and we will explain why placing the strike on a grid-point will lead to larger errors later in the191

paper.192

The error resulting from the alignment of the non-smoothness is known as the quantization error193
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in [11]. In other words, this is an error that arises from the resolution of the discontinuity (or point of194

non-smoothness) on the grid, on top of the classical finite difference discretization errors. In this paper,195

we will analyze in detail how this quantization error affects the quality of a numerical solution.196

2.2 The convection-diffusion equation197

As the logarithmic transformation converts the Black-Scholes equation to a convection-diffusion198

equation with constant coefficients, we work with the following model problem as in [1]:199

∂v

∂t
+ a

∂v

∂x
=

∂2v

∂x2
, (t, x) ∈ (0, 1]× (−∞,∞). (2.3)200

We consider a finite difference method using second order central difference with Rannacher timestep-201

ping. Let h be the stepsize of a spatial discretization, and k be the time stepsize. Denote tl = lk (with202

l = 1, 2, . . . , m and tm = 1) and xj = (j+(1−α))h, where j ∈ {. . . ,−1, 0, 1, . . .} = Z, and α ∈ (0, 1].203

Let v(l) be a discrete approximation to v, i.e. v
(l)
j ≈ v(tl, xj). The fully implicit discretization of (2.3)204

with a time step-size of k
2

is205

v
(l)
j − v

(l−1)
j

k
2

=
v
(l)
j+1 − 2v

(l)
j + v

(l)
j−1

h2
− a

v
(l)
j+1 − v

(l)
j−1

2h
, (2.4)206

whereas the Crank-Nicolson discretization of (2.3) with a time step-size k is as follows:207

v
(l)
j − v

(l−1)
j

k
=

1

2

(

v
(l−1)
j+1 − 2v

(l−1)
j + v

(l−1)
j−1

h2
− a

v
(l−1)
j+1 − v

(l−1)
j−1

2h
208

+
v
(l)
j+1 − 2v

(l)
j + v

(l)
j−1

h2
− a

v
(l)
j+1 − v

(l)
j−1

2h

)

. (2.5)209

Our goal is to compare v(m) and v(1, ·) and investigate the effect of non-smoothness on their discrep-210

ancy. We will also investigate how the error changes as we refine the grid by inserting mid-points into211

the previous mesh. As in Section 2.1, the quantity λ = k
h

is held constant as the grid is refined.212

2.3 Difference equation and the discrete-time Fourier transform213

For the rest of this paper, the variable i denotes the canonical choice of the complex number such that214

i2 = −1. Following [1], for a function U defined on the discretized grid such that its value at xj is given215

by Uj , we define the transform216

Û(θ) = h
∞
∑

j=−∞

Uje
−

ixjθ

h . (2.6)217

The inverse transform is given by218

Uj =
1

2πh

∫ π

−π

Û(θ)e
ixjθ

h dθ =
1

2π

∫ π
h

−π
h

Û(hκ)eixjκdκ (θ = hκ). (2.7)219

The transforms (2.6) and (2.7) are also known as discrete-time Fourier Transform pair. Starting from220

(2.4), with some manipulation, and using the transform definition in (2.6), we get, with λ = k
h

and221

d = k
h2 ,222

v̂(l)(θ) =
1

1 + iaλ
2
sin θ + 2d sin2 θ

2

v̂(l−1)(θ).223

March 1, 2018



Analysis of quantization error 7

Working similarly with (2.5), we get224

v̂(l)(θ) =
1− iaλ

2
sin θ − 2d sin2 θ

2

1 + iaλ
2
sin θ + 2d sin2 θ

2

v̂(l−1)(θ).225

After 2R applications of (2.4) with time step-size k
2

followed by m − R > 0 applications of (2.5) with226

time step-size k, we have at terminal time l = m (where tm = 1),227

v̂(m)(θ) = zm1 (θ)zR2 (θ)v̂
(0)(θ), (2.8)228

with229

z1(θ) = (1− i
aλ

2
sin θ − 2d sin2

θ

2
)(1 + i

aλ

2
sin θ + 2d sin2

θ

2
)−1 (2.9)230

z2(θ) = (1− i
aλ

2
sin θ − 2d sin2

θ

2
)−1(1 + i

aλ

2
sin θ + 2d sin2 θ

2
)−1. (2.10)231

3 Error Analysis of CN-Rannacher method232

3.1 Review of Giles-Carter analysis [1]233

Our analysis relies heavily on utilizing the sharp error estimates developed in [1] for linear PDEs with234

Dirac-delta initial data. In this section, we summarize the relevant results in [1]. We denote235

Û (m)(θ) = zm1 (θ)zR2 (θ).236

One can easily see Û (m) as the numerical timestepping operator up to time t = 1 in Fourier space given237

any initial v̂(0). Algebraically, we write (here and in the rest of the paper) θ = hκ.238

The domain of κ is [−π
h
, π
h
]. Choose b such that 0 < b < 1

3
and c such that 1

2
< c < 1. For each h, we239

divide this domain of κ into three parts:240

• Low frequency domain: |κ| < h−b
241

• High frequency domain: |κ| > h−c, and242

• Mid frequency domain: h−b ≤ |κ| ≤ h−c.243

Propositions 4.1, 4.2 and 4.3 in [1] show that the value of Û (m)(θ) is more prominent in the low frequency244

domain than in the other two. In the low frequency domain, the value of Û (m) is of order O(1). In the245

high frequency domain, the value of Û (m) is of order O(h2R) where R is the number of fully implicit246

timesteps initially applied. Finally, the value of Û (m) in the mid frequency domain goes to zero faster247

than any polynomial in h, as h → 0.248

More specifically, for the low frequency domain, it is shown that249

Û (m)(θ) = Û (m)(hκ) = e−iaκ−κ2

(

1 + h2p(κ, a, λ, R)

)

+ higher order terms (3.1)250

where p(κ, a, λ, R) of a specific polynomial form given in [1].251

Consider the continuous Fourier transform (in x) of an L1 function f(t, x)1:252

f̃(t,Ψ) =

∫ ∞

−∞

f(t, x)e−iΨxdx. (3.2)253

1We denote f̃ to be the continuous Fourier transform of f , and f̂ to be the discrete-time Fourier transform from samples

of f .
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Its inverse transform is given by254

f(t, x) =
1

2π

∫ ∞

−∞

f̃(t,Ψ)eiΨxdΨ. (3.3)255

The analysis in [1] shows that the finite difference solution for (2.3) with Dirac-delta initial data has256

three components. The low-frequency component is of order O(1) and differs from the true frequency257

representation by h2. More specifically, for Dirac-delta δ(x) initial data (at t = 0), with δ(x) = 0 if x 6= 0,258

and
∫

R
δ(x)dx = 1, we have ṽ(0,Ψ) = δ̃(Ψ) = 1 and so ṽ(1,Ψ) = e−iaΨ−Ψ2

. This is to be compared259

with the low frequency region approximate (3.1). Substituting formally Ψ with κ, we see that the true260

frequency representation ṽ(1, ·) of v(1, ·) is, therefore, of O(h2) difference with the representation Û (m)
261

in (3.1).262

Finally, when R = 2, the high frequency component in Proposition 4.2 in [1] is of order h4, which263

can be shown to contribute to an O(h3) value in the spatial domain after performing an inverse transform.264

We assume R = 2 for the rest of our paper, and focus on the low frequency domain error.265

In the following sections, we will study three types of non-smoothness of financial interest. We first266

illustrate our analysis for the solution of (2.3) with Dirac-delta initial condition, which is the continuous267

analogue of the price of an Arrow-Debreu security, also known as the state-price security, in financial268

theory. Next, we will consider the case when the initial condition is the Heaviside function, which is269

discontinuous at zero, corresponding to the payoff of a digital option. We will demonstrate how the270

discontinuity gives rise to a first order error that will dominate the second order error expected of a CN-271

Rannacher central difference method. Finally, we demonstrate the effect of the relative position of the272

point of non-smoothness on the leading error when the ramp function is the initial condition, even though273

it is continuous. In option pricing terminology, this initial condition is the payoff of a call option.274

3.2 Dirac-delta function275

We start with the analysis of the numerical solution of (2.3) with Dirac-delta initial condition. The276

Dirac-delta function δ(x) is a generalized function, defined formally by277

• δ(x) = 0 for x 6= 0278

•
∫

R
δ(x)dx = 1.279

Despite the singularity, the solution to (2.3) is smooth and is given by the Gaussian280

vδ(t, x) =
1√
4πt

e−
(x−at)2

4t . (3.4)281

Numerically, such an initial condition requires an approximation. Recall that our discretized grid is282

xj = (j + (1 − α))h, where j ∈ {. . . ,−1, 0, 1, . . .} = Z. We shall use the following grid-dependent283

approximation of the Dirac-delta function:284

v
(0)
δ,α,h(xj) =











(1−α)
h

for j = −1
α
h

for j = 0

0 else.

(3.5)285

The subscript δ in v
(0)
δ,α,h indicates that it is an adaptation of the Dirac-delta function, while α and h286

indicate dependence on the discretized grid. The point of non-smoothness is at x = 0.287

Equation (3.5) is by no means the only way to approximate the Dirac-delta function. A more detailed288

study on this point can be found in [14].289
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Analysis of quantization error 9

Applying the discrete-time Fourier transform (2.6) to (3.5), we obtain290

v̂
(0)
δ,α,h(θ) = (1− α)eiαθ + αe−i(1−α)θ. (3.6)291

From (2.8) and Proposition 4.2 of [1], the value of v̂
(m)
δ,α,h(θ) = v̂

(m)
δ,α,h(hκ) in the high frequency component292

remains fourth order in h as h → 0. This portion of the frequency domain then translates into an O(h3)293

value at any test point x∗ in the spatial domain, since this high frequency domain contributes to the inverse294

Fourier transform by295

1

2πh
|
∫

|κ|>h−c

Û (m)(θ)v̂
(0)
δ,α,h(θ)e

iκx∗

dκ|296

≤ 1

2πh
|
∫ π

h

−π
h

(−1)m−2h4

(2λ sin2 θ
2
)4
e
− 1

λ2 sin2( θ2 ) (1 +O(hθ−2))dκ| (3.7)297

≤ 2h3

2π(2λ)4

∫ π

0

1

sin8 θ
2

e
− 1

λ2 sin2( θ2 )dθ + higher order terms (θ = κh)298

= O(h3)299

where the second last integral is finite by Appendix A in [1]. As a result, the dominating error term is300

O(h2) and is given by the low-frequency component. We rewrite (3.6) as301

v̂
(0)
δ,α,h(θ) = (1− α)eiαθ + αe−i(1−α)θ

302

= ṽ
(0)
δ (κ)− α(1− α)

2
κ2h2 +O(h3), (3.8)303

where ṽ
(0)
δ (κ) ≡ δ̃(κ) = 1 is the continuous Fourier transform of the Dirac-delta function. As discussed,304

up to O(h2), we are only concerned with the low frequency component of Û (m), for R = 2. There-305

fore, using (2.7) and (3.1), an approximation of our finite difference solution v
(m)
δ,α,h(x

∗) at x∗ is given by306

(modulo O(h3))2
307

v
(m)
δ,α,h(x

∗) ≈ 1

2π

∫ π
h

−π
h

e−iaκ−κ2

(

1 + h2p(κ, a, λ, R)

)

(ṽ
(0)
δ (κ)− α(1− α)

2
κ2h2)eiκx

∗

dκ308

≈ 1

2π

∫ π
h

−π
h

e−iaκ−κ2

eiκx
∗

(

ṽ
(0)
δ (κ) + h2p(κ, a, λ, R)ṽ

(0)
δ (κ)− α(1− α)

2
κ2h2

)

dκ309

≈ 1

2π

∫ ∞

−∞

e−iaκ−κ2

eiκx
∗

(

ṽ
(0)
δ (κ) + h2p(κ, a, λ, R)ṽ

(0)
δ (κ)− α(1− α)

2
κ2h2

)

dκ310

for h small311

=
1

2π

∫ ∞

−∞

e−iaκ−κ2

eiκx
∗

ṽ
(0)
δ (κ)dκ+ E

(D)
δ (x∗) + E

(Q)
δ (x∗)312

= vδ(1, x
∗) + E

(D)
δ (x∗) + E

(Q)
δ (x∗), (3.9)313

2As h → 0, the integral outside [−π
h
, π
h
] is arbitrarily small and can be controlled by considering an asymptotic expansion

of the error function erfc(x). Intuitively, this approximation from a finite integral to infinite integral holds as the Gaussian in

the integrand e−iaκ−κ2

goes to zero faster than any polynomial as h → 0.
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10 C. C. Christara, Nat Chun-Ho Leung

Spatial

step-size h
Time

step-size k
FD Error Error from (3.9) Convergence rate

estimate Υ (FD)

1/12 1/36 1.8962× 10−4 1.8932× 10−4 –

1/24 1/72 4.7349× 10−5 4.7329× 10−5 2.0017

1/48 1/144 1.1833× 10−5 1.1832× 10−5 2.0005

1/96 1/288 2.9581× 10−6 2.9581× 10−6 2.0001

1/192 1/576 7.3952× 10−7 7.3951× 10−7 2.0000

Table 3.1: Results of solving equation (2.3) with initial condition the Dirac-delta function v
(0)
δ,α,h(xj)

(3.5). Solution evaluated at x∗ = 0.3 with cubic spline interpolation. The speed of convection a is 0.5.

Numerical method is CN-Rannacher timestepping with central spatial difference. Each grid is refined by

inserting mid-points. Initially, the singularity is at a grid-point (α = 1).

where vδ is the exact solution to (2.3) with Dirac-delta initial data, and is given by (3.4). Therefore, the314

leading error of our finite difference solution at x∗ is given by E
(D)
δ (x∗) + E

(Q)
δ (x∗), where315

E
(D)
δ (x∗) =

h2

2π

∫ ∞

−∞

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
δ dκ (3.10)316

E
(Q)
δ (x∗) = −h2

2π

α(1− α)

2

∫ ∞

−∞

e−iaκ−κ2

eiκx
∗

κ2dκ, (3.11)317

and the subscript δ indicates that this error is pertinent to Dirac-delta initial condition, approximated as318

in (3.5). It is helpful to think of E
(D)
δ as the inherent error from a CN-Rannacher discretization of the319

continuous problem. This error is present in the low frequency component and is invariant with respect320

to the positioning of the point of singularity.321

The error E
(Q)
δ is in a similar spirit of the “quantization error” loosely defined in [11] as the error322

resulting from the resolution of the point of non-smoothness. This error, considered as a function of α,323

is a quadratic function that varies as the positioning of the singularity changes. For Dirac-delta initial324

condition, both these two errors can be explicitly calculated by elementary integration.325

To illustrate this result, we take α = 1 and compare our finite difference (FD) results with (3.9).326

Results are shown in Table 3.1. Here and in subsequent tables, “FD Error” will mean the error of our327

finite difference approximation compared to the known exact solution of the PDE. In Table 3.1, we notice328

a remarkable agreement between the “FD Error” and the error from our analysis as shown in (3.9).329

As α is always 1 in Table 3.1, it turns out that the quantization error E(Q) is zero in all runs. What330

remains is the error term E(D), which is of second order. This is the optimal convergence order of CN-331

Rannacher with central differencing, and is experimentally observed in Table 3.1.332

More interestingly, we start with α > 0, and refine the grid by inserting mid-points so that the step-333

sizes are halved. Results in Table 3.2 show an unstable experimental convergence. Clearly, the error334

does not depend only on the spatial step-size, but also on the relative position of the singularity in the335

grid. While the error itself is always O(h2), the coefficient of the leading error term changes from one336

run to the next. With this particular way of refining the grid, the second order error is not experimentally337

observed.338

This oscillatory behavior of convergence can be understood by looking at E
(Q)
δ , which depends339

quadratically on α. The usual scheme of refining the grid by inserting mid-points will result in a dif-340
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Spatial

step-size h
Time

step-size k
FD Error Error from (3.9) Convergence rate

estimate Υ (FD)

1/12 1/36 8.9209× 10−5 8.9528× 10−5 –

1/24 1/72 1.8841× 10−5 1.8818× 10−5 2.2433

1/48 1/144 7.0749× 10−6 7.0804× 10−6 1.4131

1/96 1/288 1.1758× 10−6 1.1761× 10−6 2.5891

1/192 1/576 4.4262× 10−7 4.4253× 10−7 1.4094

Table 3.2: Results of solving equation (2.3) with initial condition the Dirac-delta function v
(0)
δ,α,h(xj)

(3.5). Solution evaluated at x∗ = 0.3 with cubic spline interpolation. The speed of convection a is 0.5.

Numerical method is CN-Rannacher timestepping with central spatial difference. Each grid is refined by

inserting mid-points. Initially, the singularity is placed at a non grid-point (α = 0.7).

ferent α from one run to the next. More precisely, from the (l − 1)-th run to the (l)-th, we have341

αl =

{

2αl−1 − 1 if αl−1 > 0.5

2αl−1 if αl−1 ≤ 0.5.
342

With α changing from one run to another, E
(Q)
δ does not exhibit a stable O(h2) convergence.343

To summarize, for Dirac-delta initial condition, the approximation error depends not only on the344

step-sizes but also on the relative position of the singularity in the grid. We shall see that this dependence345

occurs for other examples we shall consider in this paper.346

3.3 Heaviside function347

The Heaviside function3 is defined as348

v
(0)
H (x) =

{

1 if x ≥ 0

0 else.
(3.12)349

One would run into trouble when applying (2.6) directly to (3.12). This is because the series350

v̂H,α,h(θ) = h

∞
∑

j=0

e−i(j+(1−α))θ (3.13)351

does not converge for any θ ∈ R. Therefore, without a Fourier transform as in (2.6), it would be difficult352

to apply the theory in [1].353

Fortunately, the fix is easy. Consider instead a complex θ. If the imaginary part of θ, is negative (i.e.354

Im(θ) < 0), then the geometric series (3.13) will converge as |e−iθ| < 1.355

The transforms in (2.6), (2.7), (3.2) and (3.3) extend to complex-valued θ and correspondingly to356

κ = θ
h

by considering contour integrals on horizontal lines in the complex plane. For real numbers ζ ,357

define358

Cζ = {x+ iζ, x ∈ [−π, π]},359

360

Dζ = {x+ iζ, x ∈ R}.361

3In Section 2.1, the Heaviside function is denoted by H(·), but, in this subsection and in what follows, we use v
(0)
H (·) for

consistency with other subsections.
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12 C. C. Christara, Nat Chun-Ho Leung

The only difference between Cζ and Dζ is that the former is a finite domain while the latter is infinite.362

Explicitly, for θ ∈ Cζ , the discrete-time Fourier transform that takes a discrete sample of a function into363

a continuous spectrum of frequencies is364

Û(θ) = h

∞
∑

j=−∞

Uje
−

ixjθ

h . (3.14)365

Its inverse transform is given by366

Uj =
1

2πh

∫

Cζ

Û(θ)e
ixjθ

h dθ. (3.15)367

Similarly, the continuous Fourier transform for Ψ ∈ Dζ is368

f̃(t,Ψ) =

∫ ∞

−∞

f(t, x)e−iΨxdx. (3.16)369

The inverse transform is given by370

f(t, x) =
1

2π

∫

Dζ

f̃(t,Ψ)eiΨxdΨ. (3.17)371

While the algebraic operations in Section 2.3 and in [1] mostly apply to the case of complex θ and κ,372

there are a few more key differences.373

Firstly, we know that for θ ∈ R, the Crank-Nicolson timestepper z1 satisfies374

|z1(θ)| = |(1− i
aλ

2
sin θ − 2d sin2 θ

2
)(1 + i

aλ

2
sin θ + 2d sin2 θ

2
)−1| ≤ 1.375

This is no longer true for complex θ. We have, however, the following bound. Recall κ = θ
h

.376

PROPOSITION 3.1. (Stability) Let θ ∈ Chζ (in other words, ζ = Im(κ) is fixed and independent of h).377

If the scaling k
h
= λ is maintained, then |z1(θ)|n is bounded independently of n and h.378

Proof. Write379

θ = Re(θ) + i Im(θ)380

381

κ = Re(κ) + i Im(κ),382

where the two variables are again related by θ = hκ. From (tedious) differentiation, the function z1(θ),383

considered as a function of Re(θ), attains its maximum at θ∗ characterized by sin(Re(θ∗)) = 0. As a384

result, the complex number sin(θ∗) is purely imaginary. As ζ = Im(κ) is assumed to be fixed, we have385

that sin(θ∗) = ±e−hζ−ehζ

2i
. For simplicity, take sin(θ∗) = e−hζ−ehζ

2i
. Therefore,386

|z1(θ)|n ≤ |z1(θ∗)|n387

= |(1− 1

2
iaλ sin θ∗ − 2d sin2 θ

∗

2
)|n|(1 + 1

2
iaλ sin θ∗ + 2d sin2

θ∗

2
)|−n

388

= |1− 1

2
aλ

e−hζ − ehζ

2
+ 2d

e−hζ + ehζ − 2

4
|n389

|1 + 1

2
aλ

e−hζ − ehζ

2
− 2d

e−hζ + ehζ − 2

4
|−n

390

= |1 + 1

2
aλhζ +

λ

h

h2ζ2 +O(h4)

2
| 1
λh |1− 1

2
aλhζ − λ

h

h2ζ2 +O(h4)

2
| 1
λh391

→ exp(aζ + ζ2),392

as h → 0.393
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The analysis in [1] goes through for complex θ and correspondingly κ = θ
h

, with the following394

modifications:395

• The Taylor series for the logarithm could have an additional term which would be an integral multiple396

of 2πi, due to the complex logarithm being a multi-valued function. This does not affect the argument397

as the subsequent exponentiation will yield the same result regardless (e2πi = 1).398

• Following the proof of Proposition 3.1, the maximum and the minimum points of z1(θ) as a function399

of Re(θ) can be similarly identified. The rest of the argument goes through.400

We fix ζ = Im(κ) < 0 and consider θ = hκ. As Im(θ) < 0,401

v̂
(0)
H,α,h(θ) = h

∞
∑

j=0

e−i(j+(1−α))θ =
he−i(1−α)θ

1− e−iθ
. (3.18)402

The continuous Fourier transform (3.2) of the Heaviside function is given by403

ṽ
(0)
H (κ) =

∫ ∞

0

e−iκxdx =
1

iκ
. (3.19)404

Substituting θ = hκ in (3.18), Taylor series expansion yields405

v̂
(0)
H,α,h(hκ) = ṽ

(0)
H (κ) + (α− 1

2
)h +

iκh2

2
(α2 − α +

1

6
) +O(h3).406

It is not hard to prove that the high-frequency error is again O(h3) when two Rannacher timesteps are407

used (R = 2). As a result, up to O(h2), for h small, our finite difference solution is408

v
(m)
H,α,h(x

∗) ≈ 1

2π

∫

Dζ

e−iaκ−κ2

(

1 + h2p(κ, a, λ, R)

)

409

×
(

ṽ
(0)
H (κ) + (α− 1

2
)h +

iκh2

2
(α2 − α +

1

6
)

)

eiκx
∗

dκ410

≈ 1

2π

∫

Dζ

e−iaκ−κ2

eiκx
∗

(

ṽ
(0)
H (κ) + h2p(κ, a, λ, R)ṽ

(0)
H (κ)411

+(α− 1

2
)h+

iκh2

2
(α2 − α +

1

6
)

)

dκ412

=
1

2π

∫

Dζ

e−iaκ−κ2

eiκx
∗

ṽ
(0)
H (κ)dκ+ E

(D)
H (x∗) + E

(Q)
H (x∗)413

= vH(1, x
∗) + E

(D)
H (x∗) + E

(Q)
H (x∗), (3.20)414

where E
(D)
H (x∗) and E

(Q)
H (x∗) are analogously given by415

E
(D)
H (x∗) =

h2

2π

∫

Dζ

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
H dκ (3.21)416

E
(Q)
H (x∗) =

h

2π
(α− 1

2
)

∫

Dζ

e−iaκ−κ2

eiκx
∗

dκ (3.22)417

+
ih2

4π
(α2 − α +

1

6
)

∫

Dζ

e−iaκ−κ2

eiκx
∗

κdκ.418
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Figure 3.1: The error of our finite difference approximation in frequency space, at t = 1. Parameters:

a = 1, λ = 1
3
, h = 1

12
. The imaginary part of κ is fixed to −0.1.

In other words, the quantization error4 is first order in h. The relative position of the discontinuity on419

the grid has a more prominent effect than the “usual” timestepping error from CN-Rannacher timestep-420

ping, and cannot be damped by the initial backward Euler integrations. In the lower end of the frequency421

space, it corresponds to a shift by a Gaussian. Figure 3.1 shows this phenomenon.422

Again, it is straightforward to obtain the integrals in E
(Q)
H or E

(D)
H exactly or numerically. In Table423

3.3, we show the agreement between the numerical solution error and the error as approximated in (3.20).424

As expected, the convergence is only linear when the point of discontinuity is placed at a grid-point.425

Considered as a function in α, the O(h)-term in the quantization error E
(Q)
H is directly proportional to426

(α− 1
2
), and vanishes when α = 1

2
. A corollary is that, placing the discontinuity at grid-point is the worst427

possible choice in terms of minimizing error. The farther the discontinuity is away from the mid-point,428

the larger the first order error will be. This is illustrated in Table 3.4. In each refinement, we use a mesh429

that has the required α and spatial step-size h, and compute our finite difference solution based on such a430

grid. Table 3.4 shows that, with essentially the same computational effort, the grid placement has a direct431

and prominent effect on the efficiency of the numerical method.432

This particular form of E
(Q)
H also explains why the errors in Table 2.1 are larger than the errors in433

Table 2.2, despite the more stable convergence of the former. As |α − 1
2
| is maximized when α = 0434

or α = 1, the error of our finite difference approximation is also maximized when the discontinuity is435

placed at a grid-point, other things equal.436

4To be precise, E
(Q)
H also contains the difference between the discrete and continuous Fourier transforms.
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Spatial

step-size h
Time

step-size k
FD Error Error from (3.20) Convergence rate

estimate Υ (FD)

1/12 1/24 1.0504× 10−2 1.0492× 10−2 –

1/24 1/48 5.2241× 10−3 5.2227× 10−3 1.0076

1/48 1/96 2.6057× 10−3 2.6055× 10−3 1.0035

1/96 1/192 1.3013× 10−3 1.3013× 10−3 1.0017

1/192 1/384 6.5029× 10−4 6.5029× 10−4 1.0008

Table 3.3: Results of solving equation (2.3) with initial condition the Heaviside function v
(0)
H (x) (3.12).

Solution evaluated at x∗ = 0. The speed of convection a is 0.7. Numerical method is CN-Rannacher

timestepping with central spatial difference. Each grid is refined by inserting mid-points. Initially, the

discontinuity is at a grid-point (α = 1).

Spatial

step-size h
Time

step-size k
α = 0.3 α = 0.5 α = 0.9 α = 1

1/12 1/24 −4.1349× 10−3 1.7457× 10−5 8.3946× 10−3 1.0504× 10−2

1/24 1/48 −2.0730× 10−3 4.3549× 10−6 4.1772× 10−3 5.2241× 10−3

1/48 1/96 −1.0381× 10−3 1.0882× 10−6 2.0840× 10−3 2.6057× 10−3

1/96 1/192 −5.1949× 10−4 2.7201× 10−7 1.0409× 10−3 1.3013× 10−3

1/192 1/384 −2.5986× 10−4 6.7999× 10−8 5.2020× 10−4 6.5029× 10−4

Approximated Convergence Linear Quadratic Linear Linear

Table 3.4: Results of solving equation (2.3) with initial condition the Heaviside function v
(0)
H (x) (3.12).

Solution evaluated at x∗ = 0. The speed of convection a is 0.7. Numerical method is CN-Rannacher

timestepping with central spatial difference. The relative position α is maintained at each run.
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3.4 Call and put type initial conditions437

We consider the following functions:438

v
(0)
C (x) = max(x, 0) (Call) (3.23)439

v
(0)
P (x) = max(−x, 0) (Put) (3.24)440

v
(0)
EC(x) = max(ex − 1, 0) (Exponential Call) (3.25)441

v
(0)
EP (x) = max(1− ex, 0) (Exponential Put) (3.26)442

These functions are continuous but not continuously differentiable. The exponential call and put443

functions are related to solving for the value of a call/put option under geometric Brownian motion, after444

a log transform.445

Similarly to Section 3.3, we can consider the complex extension of the Fourier transform, i.e. (3.14)446

to (3.17). In order for the series to converge, we require that447

Im(θ) < 0 ⇔ Im(κ) < 0 for call (3.27)448

Im(θ) < −h ⇔ Im(κ) < −1 for exponential call (3.28)449

Im(θ) > 0 ⇔ Im(κ) > 0 for put/exponential put. (3.29)450

3.4.1 Call and put451

For θ such that Im(θ) < 0, the discrete-time Fourier transform of the ramp function (3.23) is452

v̂
(0)
C,α,h(θ) = h2

∞
∑

j=0

(j + (1− α))e−i(j+(1−α))θ = h2e−i(1−α)θ

(

1− α

1− e−iθ
+

e−iθ

(1− e−iθ)2

)

. (3.30)453

This is to be compared with the continuous Fourier transform of (3.23), which for Im(κ) < 0 is given by454

ṽ
(0)
C (κ) =

∫ ∞

0

xe−iκxdx = − 1

κ2
. (3.31)455

Substituting θ = hκ in (3.30), Taylor series expansion yields456

v̂
(0)
C,α,h(hκ) = ṽ

(0)
C (κ) + h2(−α2

2
+

α

2
− 1

12
) +O(h3). (3.32)457

Let ζ1 < 0. By repeating the argument in Section 3.3, we have the expression of our finite difference458

solution459

v
(m)
C,α,h(x

∗) ≈ 1

2π

∫

Dζ1

e−iaκ−κ2

(

1 + h2p(κ, a, λ, R)

)

460

×
(

ṽ
(0)
C (κ) + h2(−α2

2
+

α

2
− 1

12
)

)

eiκx
∗

dκ461

=
1

2π

∫

Dζ1

e−iaκ−κ2

eiκx
∗

ṽ
(0)
C (κ)dκ+ E

(D)
C (x∗) + E

(Q)
C (x∗)462

= vC(1, x
∗) + E

(D)
C (x∗) + E

(Q)
C (x∗), (3.33)463
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where E
(D)
C (x∗) and E

(Q)
C (x∗) are given by464

E
(D)
C (x∗) =

h2

2π

∫

Dζ1

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
C dκ (3.34)465

E
(Q)
C (x∗) =

h2

2π
(−α2

2
+

α

2
− 1

12
)

∫

Dζ1

e−iaκ−κ2

eiκx
∗

dκ. (3.35)466

As a result, even though a second order error is to be expected from a CN-Rannacher discretization,467

the coefficient of the error depends (quadratically) on the placement of the point of non-smoothness in the468

grid. In both the frequency space and the original mesh, this error corresponds to a shift by a Gaussian.469

Incidentally, for R = 2, the spatial error due to high frequency component for the call is not O(h3),470

but in fact O(h5). This is because471

ṽ
(0)
C (κ) = − 1

κ2
= −h2

θ2
,472

which adds two orders in h to the high frequency component, in a calculation similar to (3.7):473

1

2πh
|
∫

|κ|>h−c

Û (m)(θ)v̂δ,α,h(θ)e
iκx∗

dκ|474

≤ 1

2πh
|
∫ π

h

−π
h

(−1)m−2h6

(2λ sin2 θ
2
)4θ2

e
− 1

λ2 sin2( θ2 ) (1 +O(hθ−2))dκ| (3.36)475

≤ 1

(2λ)4π

∫ π

0

h5

θ2 sin8 θ
2

e
− 1

λ2 sin2( θ2 )dθ + higher order terms (θ = κh)476

= O(h5).477

Coming to the put initial conditions, we compute the discrete-time and continuous Fourier transforms478

of (3.24) for Im(θ) > 0 and Im(κ) > 0. It turns out that479

v̂
(0)
P,α,h(θ) = h2

−1
∑

j=−∞

(−(j + (1− α)))e−i(j+(1−α))θ) = h2e−i(1−α)θ

(−(1− α)eiθ

1− eiθ
+

eiθ

(1− eiθ)2

)

, (3.37)480

and481

ṽ
(0)
P (κ) = −

∫ 0

−∞

xe−iκxdx = − 1

κ2
. (3.38)482

Substituting θ = hκ in (3.37), Taylor series expansion yields483

v̂
(0)
P,α,h(hκ) = ṽ

(0)
P (κ) + h2(−α2

2
+

α

2
− 1

12
) +O(h3). (3.39)484

Interestingly, the initial conditions (3.32) and (3.39) have the same transform, even though they are485

defined on different regions on the complex plane.486

Let ζ2 > 0. Our finite difference solution under CN-Rannacher timestepping is487

v
(m)
P,α,h(x

∗) ≈ 1

2π

∫

Dζ2

e−iaκ−κ2

(

1 + h2p(κ, a, λ, R)

)

488

×
(

ṽ
(0)
P (κ) + h2(−α2

2
+

α

2
− 1

12
)

)

eiκx
∗

dκ489

=
1

2π

∫

Dζ2

e−iaκ−κ2

eiκx
∗

ṽ
(0)
P (κ)dκ+ E

(D)
P (x∗) + E

(Q)
P (x∗)490

= vP (1, x
∗) + E

(D)
P (x∗) + E

(Q)
P (x∗), (3.40)491
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where E
(D)
P (x∗) and E

(Q)
P (x∗) are given by492

E
(D)
P (x∗) =

h2

2π

∫

Dζ2

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
P dκ (3.41)493

E
(Q)
P (x∗) =

h2

2π
(−α2

2
+

α

2
− 1

12
)

∫

Dζ2

e−iaκ−κ2

eiκx
∗

dκ. (3.42)494

We also have that495

p(κ, a, λ, R)× (− 1

κ2
) = −1

6
iaκ− 1

12
κ2 +

1

12
λ2κ(ia + κ)3 − 1

4
Rλ2(ia + κ)2496

is analytic as a function of κ. As a result,497

E
(D)
C (x∗) = E

(D)
P (x∗), and498

E
(Q)
C (x∗) = E

(Q)
P (x∗).499

In other words, at least up to second order, the error of CN-Rannacher is the same for the call and the put.500

This is to be expected, as it is easy to prove that501

vC(t, x)− vP (t, x) = x− at,502

and that our numerical scheme is exact on linear functions. This numerical phenomenon does not occur503

for the exponential call and put, as we shall see in the next section.504

3.4.2 Exponential call and put505

Consider now the exponential call as the initial condition to (2.3), given by (3.25). Its discrete-time506

Fourier transform for Im(θ) < −h is507

v̂
(0)
EC,α,h(θ) = h

∞
∑

j=0

(e(j+(1−α))h − 1)e−i(j+(1−α))θ) = he−i(1−α)θ

(

e(1−α)h

1− e−iθ+h
− 1

1− e−iθ

)

. (3.43)508

Its continuous Fourier transform is, for Im(κ) < −1,509

ṽ
(0)
EC(κ) =

∫ ∞

0

(ex − 1)e−iκxdx =
1

iκ(iκ− 1)
. (3.44)510

Substituting θ = hκ in (3.43), Taylor series expansion yields511

v̂
(0)
EC,α,h(hκ) = ṽ

(0)
EC(κ) + h2(−α2

2
+

α

2
− 1

12
) +O(h3). (3.45)512

Comparing (3.45) with (3.32), we see that the quantization error (the EQ-component) of an exponential513

call is the same as the one for the corresponding (non-exponential) call.514

Let ζ1 < −1. By repeating the argument in Section 3.4.1, we have the following expression of our515

finite difference solution516

v
(m)
EC,α,h(x

∗) ≈ 1

2π

∫

Dζ1

e−iaκ−κ2

(

1 + h2p(κ, a, λ, R)

)

517

×
(

ṽ
(0)
EC(κ) + h2(−α2

2
+

α

2
− 1

12
)

)

eiκx
∗

dκ518

=
1

2π

∫

Dζ1

e−iaκ−κ2

eiκx
∗

ṽ
(0)
EC(κ)dκ+ E

(D)
EC (x

∗) + E
(Q)
EC (x

∗)519

= vEC(1, x
∗) + E

(D)
EC (x

∗) + E
(Q)
EC (x

∗), (3.46)520
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where E
(D)
EC (x

∗) and E
(Q)
EC (x

∗) are given by521

E
(D)
EC (x

∗) =
h2

2π

∫

Dζ1

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
ECdκ (3.47)522

E
(Q)
EC (x

∗) =
h2

2π
(−α2

2
+

α

2
− 1

12
)

∫

Dζ1

e−iaκ−κ2

eiκx
∗

dκ. (3.48)523

Similarly, for Im(θ) > 0 and Im(κ) > 0, the discrete-time and continuous transforms for the expo-524

nential put are525

v̂
(0)
EP,α,h(θ) = h

−1
∑

j=−∞

(1− e(j+(1−α))h)e−i(j+(1−α))θ) = he−i(1−α)θ

(

eiθ

1− eiθ
− e(1−α)h+iθ−h

1− eiθ−h

)

, (3.49)526

and527

ṽ
(0)
EP (κ) =

∫ 0

−∞

(1− ex)e−iκxdx =
1

iκ(iκ− 1)
. (3.50)528

Substituting θ = hκ into (3.49), once again Taylor series expansion yields529

v̂
(0)
EP,α,h(hκ) = ṽ

(0)
EP (κ) + h2(−α2

2
+

α

2
− 1

12
) +O(h3). (3.51)530

For ζ2 > 0, we have the following expression of our finite difference solution for the exponential put531

v
(m)
EP,α,h(x

∗) ≈ 1

2π

∫

Dζ2

e−iaκ−κ2

(

1 + h2p(κ, a, λ, R)

)

532

×
(

ṽ
(0)
EP (κ) + h2(−α2

2
+

α

2
− 1

12
)

)

eiκx
∗

dκ533

=
1

2π

∫

Dζ2

e−iaκ−κ2

eiκx
∗

ṽ
(0)
EP (κ)dκ+ E

(D)
EP (x

∗) + E
(Q)
EP (x

∗)534

= vEP (1, x
∗) + E

(D)
EP (x

∗) + E
(Q)
EP (x

∗), (3.52)535

where E
(D)
EP (x

∗) and E
(Q)
EP (x

∗) are given by536

E
(D)
EP (x

∗) =
h2

2π

∫

Dζ2

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
EPdκ (3.53)537

E
(Q)
EP (x

∗) =
h2

2π
(−α2

2
+

α

2
− 1

12
)

∫

Dζ2

e−iaκ−κ2

eiκx
∗

dκ. (3.54)538

Obviously, as their corresponding integrands are analytic, we have539

E
(Q)
EC (x

∗) = E
(Q)
EP (x

∗),540

in other words, the leading quantization errors are equal. However, because of a pole at κ = −i, it541

holds that E
(D)
EC (x

∗) 6= E
(D)
EP (x

∗). To see this, consider a positively oriented contour Γ consisting of the542

following segments, for some M > 0:543

Γ1 = {x+ iζ1| −M ≤ x ≤ M}544

Γ2 = {M + iy| ζ1 ≤ y ≤ ζ2}545

Γ3 = {x+ iζ2| −M ≤ x ≤ M}546

Γ4 = {−M + iy| ζ1 ≤ y ≤ ζ2}.547
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Spatial

step-size h
Time

step-size k
FD Error Error from (3.55) Convergence rate

estimate Υ (FD)

1/12 1/24 −2.0221× 10−4 −2.0174× 10−4 –

1/24 1/48 −5.0466× 10−5 −5.0434× 10−5 2.0025

1/48 1/96 −1.2610× 10−5 −1.2609× 10−5 2.0007

1/96 1/192 −3.1523× 10−6 −3.1521× 10−6 2.0001

1/192 1/384 −7.8804× 10−7 −7.8803× 10−7 2.0001

Table 3.5: Results of solving equation (2.3) with initial condition the exponential forward v
(0)
F (x) (3.56).

Solution evaluated at x∗ = 0. The speed of convection a is 0.7. Numerical method is CN-Rannacher

timestepping with central spatial difference. Each grid is refined by inserting mid-points. Initially, we set

α = 0.7.

By Cauchy’s residue theorem, we have548

∫

Γ

e−iaz−z2eizx
∗ p(z, a, λ, R)

iz(iz − 1)
dz = −2πi

[

e−iaz−z2eizx
∗ p(z, a, λ, R)

z

]

z=−i

.549

The last quantity is readily computable as
p(z,a,λ,R)

z
itself is a polynomial in z. Finally, as M → ∞, we550

note that the contributions from Γ2 and Γ4 vanish and551

∫

Γ1

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
ECdκ →

∫

Dζ1

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
ECdκ552

and similarly553

−
∫

Γ3

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
EPdκ → −

∫

Dζ2

e−iaκ−κ2

eiκx
∗

p(κ, a, λ, R)ṽ
(0)
EPdκ554

Therefore, we have555

E
(D)
EC (x

∗)− E
(D)
EP (x

∗) = −h2i

[

e−iaz−z2eizx
∗ p(z, a, λ, R)

z

]

z=−i

556

= −h2ex−a+1

(

a

6
− 1

12
+

1

12
λ2(a− 1)3 − 1

4
Rλ2(a− 1)2

)

. (3.55)557

As E
(Q)
EC (x

∗) = E
(Q)
EP (x

∗), the quantity E
(D)
EC (x

∗) − E
(D)
EP (x

∗) is in fact the second order error of solving558

(2.3) with the initial condition559

v
(0)
F (x) = ex − 1 (3.56)560

under CN-Rannacher timestepping5. In financial context, this initial condition is the payoff of a forward561

contract under the geometric Brownian motion model. As the quantization error is cancelled out, the562

relative position of the strike on the grid is no longer relevant in the second order error, and the leading563

error depends (computationally) only on the time and spatial step size. This is illustrated in Table 3.5.564

5 This connection between the values of put, call and forward via integration across complex poles is a form of put-call

parity [6].

March 1, 2018



Analysis of quantization error 21

Spatial

step-size h
Time

step-size k
FD Error Convergence rate

estimate Υ (FD)

1/12 1/24 9.3332× 10−7 –

1/24 1/48 1.1988× 10−7 2.9608

1/48 1/96 1.5140× 10−8 2.9851

1/96 1/192 1.8924× 10−9 3.0001

1/192 1/384 2.3323× 10−10 3.0205

Table 4.1: Results of solving equation (2.3) with initial condition the exponential put v
(0)
EP (x) (3.26). So-

lution evaluated at x∗ = 0 with cubic spline interpolation. The speed of convection a is −0.3. Numerical

method is CN-Rannacher timestepping with central spatial difference. The relative position of the strike

is maintained at α = 0.37853.

Initial condition Optimal α to eliminate the

leading term of E(Q)

Point of the extremum of

the quadratic E(D) + E(Q)

Dirac-delta 0 or 1 0.5

Heaviside 0.5 not applicable (linear)

Usual Call, Put and

Exponential Call, Put

1
2
−

√

1
12

≈ 0.2113 or

1
2
+
√

1
12

≈ 0.7887

0.5

Table 4.2: Special choices of α.

4 On choosing α565

The analysis from Sections 3.2 to 3.4 suggests that as long as the relative position of the point of non-566

smoothness on the grid is maintained, the convergence order is stable. The next question is to determine567

an optimal α such that the error is minimized.568

This is complicated by the fact that, while α directly influences E(Q), the other term in the error E(D)
569

is independent of α. It is possible to use the quantization error E(Q) to our advantage. For the initial570

conditions considered in this paper, one could consider the error E(D) + E(Q) as a quadratic function in571

α. In some cases, the leading error term could be completely eliminated by a good choice of α, leading572

to super-convergence by a second order finite difference scheme (see Table 4.1).573

This technique of choosing α to obtain a superconvergence does not seem to be possible in practical574

situations, as a detailed study of E(D) and E(Q) seems necessary to determine the α for which supercon-575

vergence occurs. In addition, such an α that cancels the leading second order term may not exist. Instead,576

we proceed to minimize merely E(Q). Consider E(Q) as a function in α in itself, one can minimize its577

absolute value and obtain the estimates as listed in Table 4.2. For the case of call and put, often the578

combined error E(D) + E(Q) has no root, considered as a function of α. In those cases, the mid-point579

minimizes the overall error. We remark that these numbers seem to confirm the empirical findings of [7],580

in which the authors found experimentally that the optimal value of α lies in (0.2, 0.3) or (0.7, 0.8) for581

the call option, and 0.5 for the bet option (Heaviside initial condition).582

5 Quantization error of Greeks583

Derivatives to the spatial variable are usually obtained from the finite difference approximation using584

difference formulas. In such usage, the quantization error retains the same form as the original finite585
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difference approximation.586

As an example, the quantization error propagates to the first central difference of the Heaviside ap-587

proximation (3.22) as follows (up to second order in h):588

E
(Q)
Hδ (x

∗) =
ih

2π
(α− 1

2
)

∫

Dζ

e−iaκ−κ2

eiκx
∗

κdκ (5.1)589

−h2

4π
(α2 − α +

1

6
)

∫

Dζ

e−iaκ−κ2

eiκx
∗

κ2dκ.590

In other words, the grid positioning also gives rises to a first order error proportional to (α − 1
2
) and the591

first derivative of a Gaussian centered at the discontinuity. Positioning the point of discontinuity at mid-592

point restores not only the second order error of the solution, but also that of the central first derivative as593

consistent with the theory for smooth functions.594

6 Smoothing595

Smoothing has long been a popular approach to obtain stable convergence and in some cases restore596

optimal order of convergence in the presence of non-smoothness in the initial data. In the financial con-597

text, a very popular approach is averaging ([8], [11], [4], [2]). This technique has been used successfully598

in the case of digital options (the initial condition being the Heaviside function). In this section, we will599

take a closer look at the smoothing technique in the context we developed in the earlier parts of the paper.600

We start with the family of smoothing operators suggested in [5]. Their idea is to consider operators601

of the convolution type, which in frequency space corresponds to pointwise multiplication. In frequency602

space, define603

Φ̂µ(hκ) =
pµ(sin

h
2
κ)

(h
2
κ)µ

, (6.1)604

where pµ(sinω) is a polynomial of degree µ in sinω that satisfies605

pµ(sinω) = ωµ +O(ω2µ), as ω → 0.606

The idea is that high frequency (large κ) components in the initial condition, which are often the607

cause for non-smoothness, can be damped simply by multiplication with Φ̂µ. The integer µ is considered608

the order of the smoothing operator, as, from the definition of pµ we have609

Φ̂µ(ω) = 1 +O(ωµ), as ω → 0, and610

611

Φ̂µ(ω) = O(|ω − 2lπ|µ), as ω → 2lπ, l ∈ Z.612

The first two polynomials are particularly simple:613

p1(sinω) = sinω614

p2(sinω) = sin2 ω.615

The first smoothing operator Φ̂1 is the familiar averaging technique. To see this, it suffices to compute616

its inverse Fourier transform at a spatial point x:617

Φ1(x) =
1

2π

∫ ∞

−∞

sin h
2
κ

h
2
κ

eiκxdκ =
1

2π

∫ ∞

−∞

ei
h
2
κ − e−ih

2
κ

ihκ
eiκxdκ618

=
1

2πh

∫ ∞

−∞

eiκ(
h
2
+x) − eiκ(−

h
2
+x)

iκ
dκ619

=

{

0 if |x| > h
2

1
h

if |x| < h
2
.

620
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As a result, the convolution operator that Φ̂1 induces in the spatial domain is of the form621

(Φ1 ∗ v)(x) =
1

h

∫ h
2

−h
2

v(x− y)dy. (6.2)622

Similarly, the inverse transform of Φ̂2 is623

Φ2(x) =







0 if |x| > h

1
h

(

1− |x|
h

)

if |x| < h.
624

In convolution form, the second order smoothing takes the form625

(Φ2 ∗ v)(x) =
1

h

∫ h

−h

(1− |y|
h
)v(x− y)dy. (6.3)626

We shall apply these operators to the initial conditions we have studied in Sections 3.2 through 3.4627

and analyze how errors are affected by these techniques.628

6.1 Dirac-delta function629

As the Dirac-delta function is a generalized function, it can only be approximated on our numerical630

grid xj = (j + (1 − α))h. If we replace formally the Dirac-delta function by the first order smoothed631

version of it (6.2), then we obtain the following approximation of the Dirac-delta initial condition (we632

leave out the case α = 0.5 to avoid ambiguity):633

v
(0)
Φ1,δ

(xj) =











1
h

if α < 0.5 and j = −1
1
h

if α > 0.5 and j = 0

0 else.

634

Its discrete-time Fourier transform is635

v̂
(0)
Φ1,δ,α,h

(hκ) =

{

eiαhκ if α < 0.5

e−i(1−α)hκ if α > 0.5.
636

Clearly then637

v̂
(0)
Φ1,δ,α,h

(hκ) =

{

1 + iαhκ +O(h2) if α < 0.5

1− i(1− α)hκ +O(h2) if α > 0.5.
638

In other words, had we started our analysis with this approximation of the Dirac-delta function, then we639

will end up with a first order error of our finite difference solution.640

In fact, one can show that (3.5) is in fact the second order smoothing operator (6.3) applied formally641

to the Dirac-delta function. The results in Section 3.2 show that only the second order error term will642

remain, although the second order error depends quadratically on the relative position of the singularity643

on the grid.644
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6.2 Heaviside function645

Applying (6.2) to the Heaviside function, we obtain the following modified initial condition:646

v
(0)
Φ1,H

(xj) =











1−2α
2

if α < 0.5 and j = −1
3−2α

2
if α ≥ 0.5 and j = 0

v
(0)
H (xj) else.

647

In other words, first order smoothing involves modifying only one point of the sampled function given648

any α. When α = 0.5, the function is identical to the original sample of the unsmoothed Heaviside649

function v
(0)
H (xj). It is not surprising that the smoothing technique restores an error of second order in h.650

In fact, its discrete-time Fourier transform (for κ suitably defined on the complex plane) is651

v̂
(0)
Φ1,H

(hκ) =

{

ṽ
(0)
H (κ) + ih2κ(−α2

2
+ 1

12
) +O(h3) if α < 0.5

ṽ
(0)
H (κ) + ih2κ(−α2

2
+ α− 5

12
) +O(h3) if α ≥ 0.5.

652

The first order term, proportional to (α− 1
2
) in (3.20) is removed by the first order smoothing technique.653

This observation has been noted in [8] and [11].654

Although the first order error is successfully removed by smoothing, it is interesting to see what effect655

the second order smoothing operator Φ2 would have on the Heaviside function. After applying (6.3) to656

the Heaviside function v
(0)
H (x), one obtains657

v
(0)
Φ2,H

(xj) =











(1−α)2

2
if j = −1

2−α2

2
if j = 0

v
(0)
H (xj) else.

658

Namely, the second order smoothing modifies two points on the sampled function. Its discrete-time659

Fourier transform is given by660

v̂
(0)
Φ2,H

(hκ) = ṽ
(0)
H (κ) +

iκh2

12
+O(h3).661

Therefore, the second order smoothing not only removes the first order error that would be present with662

a non-smooth Heaviside initial condition, it also removes the dependence of the second order error on α.663

The relative position of the grid no longer affects the dominant error term.664

6.3 Call and put665

The first order smoothing of the call and put gives the following modifications, respectively:666

v
(0)
Φ1,C

(xj) =











(1−2α)2h
8

if α < 0.5 and j = −1
(3−2α)2h

8
if α ≥ 0.5 and j = 0

v
(0)
C (xj) else,

667

668

v
(0)
Φ1,P

(xj) =











(1+2α)2h
8

if α < 0.5 and j = −1
(1−2α)2h

8
if α ≥ 0.5 and j = 0

v
(0)
P (xj) else.

669
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Type of initial condition Unsmoothed Φ1 smoothing Φ2 smoothing

Dirac-delta Not applicable O(h) error O(h2) error, de-

pendent on α
Heaviside O(h) error O(h2) error, de-

pendent on α
O(h2) error, inde-

pendent of α
Usual Call, Put and

Exponential Call, Put

O(h2) error, de-

pendent on α
O(h2) error, inde-

pendent of α
–

Table 6.1: Summary of the effect of smoothing techniques on CN-Rannacher error under different types

of non-smooth initial conditions.

For κ suitably defined, the discrete-time Fourier transforms give670

v̂
(0)
Φ1,C

(hκ) = ṽ
(0)
C (κ) +

h2

24
+O(h3), and671

672

v̂
(0)
Φ1,P

(hκ) = ṽ
(0)
P (κ) +

h2

24
+O(h3).673

As a result, the first order smoothing successfully removes the dependence on α in the second order674

error. Removing the dependence on α is favorable, as the only computational parameters that affect the675

error will be step-sizes. This can be found convenient in some implementations. We summarize these676

discussions in Table 6.1.677

7 Conclusions678

In this paper, we have carried out a detailed investigation of the relationship between the numerical679

approximation error and the placement of the point of non-smoothness relative to the numerical grid (α),680

when solving the one-dimensional convection-diffusion equation with non-smooth initial conditions.681

Our analysis has explicitly demonstrated the often non-linear relationship between α and the so-called682

quantization error, which arises from the non-smoothness of the initial condition. In addition, we have683

studied the possibility of an optimal choice of α. Based on a careful study of the quantization error,684

we also gave an example of a third order convergent numerical approximation despite using a formally685

second order scheme, due to a good choice of α. Moreover, using the quantization error formulae devel-686

oped for the solution function, we derived such formulae for the Greeks, which are important hedging687

parameters. Finally, we demonstrate how smoothing operators not only recover the optimal order of688

convergence, as was proved in [5], but also remove the dependence of the leading discretization error on689

the placement parameter α. This could be a useful result for developing black-box numerical software690

that makes use of extrapolation techniques. In Table 7.1, we summarize our conclusions, in the form of691

recommendations to the user, as to when maintaining α and smoothing should be used alternatively or692

simultaneously, to preserve second and stable order of convergence.693

It would be interesting to extend our analysis to higher order finite difference methods or to finite694

element methods. We also plan to extend our analysis to higher dimensional problems.695
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